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Abstract The Expectation-Maximization algorithm has beeimcluding experiments with images acquired from the iCub
classically used to find the maximum likelihood estimates dfiumanoid robot.

parameters in probabilistic models with unobserved data, _ ) _
for instance, mixture models. A key issue in such problemié@ywords Image ProcessingUnsupervised Learning

is the choice of the model complexity. The higher the num>elf-Adapting Gaussians Mixture&xpectation Maximiza-
ber of components in the mixture, the higher will be thefion - Machine Learning Clustering

data likelihood, but also the higher will be the computa-

tional burden and data overfitting. In this work we propose

a clustering method based on the expectation maximization Introduction

algorithm that adapts on-line the number of components

of a finite Gaussian mixture model from multivariate data.lmage segmentation is a key low level perceptual capability
Or method estimates the number of components and theiii many robotics related applications, as a support functio
means and covariances sequentially, without requiring anyor the detection and representation of objects and regions
careful initialization. Our methodology starts from a sieg  with similar photometric properties. Several applicasiom
mixture component covering the whole data set and sequefumanoid robots [27], rescue robots [3], or soccer robots
tially splits it incrementally during expectation maximiz [12], [14] rely on some sort on image segmentation. Addi-
tion steps. The coarse to fine nature of the algorithm reducéonally, many other fields of image analysis depend on the
the overall number of computations to achieve a solutionperformance and limitations of existing image segmematio
which makes the method particularly suited to image segalgorithms: video surveillance [6], medical imaging [8l¢cE
mentation applications whenever computational time is amecognition [23], and database retrieval [31] are some exam
issue. We show the effectiveness of the method in a seripkes. In this work we study and develop a fast method for
of experiments and compare it with a state-of-the-art alter fitting gaussian mixtures to a set of data, with applications
native technique both with synthetic data and real imagesio image segmentation.

Unsupervised image segmentation is a typical cluster-
ing problem: Image pixels must be grouped into "classes”
according to some similarity criteria (pixel color, proxim
ity, etc.). The classes, also calleldisters are detected auto-
matically, i.e. without any input by an external agent. This
method finds applications in many fields, such as in im-
age processing (e.g. face-color segmentation [11] or pestu
recognition [2]) , sound analysis [18], segmentation of mul
tivariate medical images (a wide overview can be fond here
(20)).
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The techniques for unsupervised learning range from Ko-
honen maps [21] [22], Growing Neural gas [10], [15], k-
means [25], to Independent component analysis [5], [16],



etc. Particularly interesting is the Expectation Maximiza method [32]. Subsequently, ZhaatAl.introduced another

tion algorithm applied to Gaussian mixtures which allowssplit-and-merge technique [34]. Merge an split criterien i

to model complex probability distribution functions. g efficient in reducing number of model hypothesis, and it is

a mixture model to the distribution of the data is equivalentoften more efficient than exhaustive, random or genetic al-

in some applications, to the identification of the clusteitaw gorithm approaches. To this aim, particularly interesisg

the mixture components [26]. the method proposed by Figueiredo and Jain, which goes on
step by step until convergence using only merge operations
(9]

1.1 Related Work A different approach has been explored by Ketchantang
et Al, by using Pearson mixture model (PMM) in conjunc-

Expectation-Maximization (EM) algorithm is the standardtion with Gaussian copula instead of pure Gaussian mixture

approach for learning the parameters of the mixture modalistributions [19] The model is combined with a Kalman fil-

[13]. It is demonstrated that it always converges to a locater in order to predict the object’s position within the next

optimum [7]. However, it also presents some drawbacksframe. However, despite its validity in tracking multiple-o

For instance, EM requires am-priori selection of model jects and its robustness against different illumination-co

order, namely, the number of components to be incorpatexts, the required computational burden is higher than the

rated into the model, and its results depend on initialirati  corresponding Gaussian mixture based models.

The higher the number of components within the mixture,

the higher will be the total log-likelihood. Unfortunateig-

creasing the number of gaussians will lead to overfitting and

to an increase of the computational burden.

Particularly in image segmentation applications, wher
the number of points is in the order of several hundred thou-
sand, finding the best compromise between precision, genéf/e propose an algorithm that simultaneously determines the
alization and speed is a must. A common approach to choodg!mber of components and the parameters of the mixture
the number of components is trying different configurationgnodel with only split operations. The particularity of our
before determining the optimal solution, e.g. by applying t model is that it starts from only one mixture component
algorithm for a different number of components, and selectProgressively adapting the mixture by splitting composent
ing the best model according to appropriate criteria. when necessary.

Different approaches can be used to select the best num- Our formulation guarantees the following advantages.
ber of components. These can be divided into two main clasbést, the initialization is very simple. Diversely fromeh
off-lineandon-linetechniques. standard EM algorithm, or any EM technique that starts with

The first ones evaluate the best model by executing inmore than one component, where initialization is often ran-
dependent runs of the EM algorithm for many different ini-dom, in our case the initialization is deterministic: The in
tializations and number of components, and evaluating eadial component is a single gaussian that best fits the whole
estimate with criteria that penalize complex models (dg.t data set. Moreover, the splitting criterion is also deteisi
Akaike Information Criterion (AIC) [30] and the Rissanen tic, as it will be explained later. Hence, the whole algarith
Minimum Description Length (MDL) [29]). These, in order is deterministic: By applying the same algorithm to the same
to be effective, have to be evaluated for every possible nuninput data we will always get the same results. Second, itis
ber of models under comparison. Therefore, it is clear tha@ technique with computational cost lower than other ap-
for having a sufficient search range the complexity goes wittproaches. The algorithm complexity will be analyzed later
the number of tested models as well as the model paramé the paper and compared to the alternatives.
ters. In a sense, we approach the problem in a different way

The second ones start with a fixed set of models antb Figueiredo and Jain. They start the computation with the
sequentially adjust their configuration (including the rum maximum possible number of mixture components. Although
ber of components) based on different evaluation criteriathat work is among the most effective to date, it becomes
Pernkopf and Bouchaffra proposed a Genetic-Based EM Akoo computationally expensive for image segmentation ap-
gorithm capable of learning gaussians mixture models [28Jplications, especially during the first iterations. It tsawith
They first selected the number of components by means afie maximum number of components, decreasing it progres-
the minimum description length (MDL) criterion. A combi- sively until the whole space of possibilities has been ex-
nation of genetic algorithms with the EM has been exploredplored, whereas our method starts with a single component

Uedaet Al. proposed a split-and-merge EM algorithm and increases its number until a good performance is at-
to alleviate the problem of local convergence of the EMtained.

el.2 Our contribution



1.3 Real-Time Applications are the given input data set” to be classified, while the

"incomplete data”are a series of auxiliary variables in the
The algorithm described in this paper was developed keeet# indicating for each input sample which mixture com-
ing in mind the need for real-time operation, having imageponent it comes from. We defirie (-) the expected value
segmentation for robots as our first objective. Due to thef a random variable, computed with respect to the density
large resolution of modern frame grabbers and cameras, inpgz (2, %).
age segmentation requires fast techniques in order tdysatis  \We define:
the real-time demands of robotic applications, rangingifro _ L
simple tracking to autonomous vehicle guidance and vide&? (19('1)719(”71)) =EL (19(%1)) 3)
surveillance. Since there are no efficient global solutions
the general problem of unsupervised estimation of mixturevith L 19_<”*1)) being the log-likelihood of the observed
models, we have developed a greedy approach where thgta at step — 1:
design choices are taken to specifically address the image
segmentation problem achieving simultaneously fast perfo _
mance and results competitive with the state-of-the-ant. F L (19“‘*1)) =logp (%,%5(”*1}) 4)
evaluation purposes, we also perform experiments on 2D
synthetic data, where the method’s performance can be more The EM procedure repeats the two following steps until
easily visualized and compared. However, we stress that tHgnvergence, iteratively:
main aspect considered in W”Fmg the algorithm > specifica _ E-step: It computes the expectation of the joint probabil-
tion is a fast performance in image segmentation. Several ity density:
results on this domain, both with generic images and with '
images t.aken in our robotic platform, are presented and com- Q (19_(n) : 19_(n—1)) —F [Iog P (%7 %gmfl))} (5)
pared with the state-of-the-art.

— M-step: It evaluates the new parameters that maximize

. Q; this, according to the ML estimation, is:
1.4 Outline

. . 9" =argmaxQ (5_”,19_(”*1)) (6)
The paper is organized as follows. In sec. 2 we summarize 9

the main results of the classical Expectation Maximization L
. . ) The convergence to a local maxima is guaranteed. How-
algorithm. In sec. 3 we introduce the proposed algorithm,

- o o .. ever, the obtained parameter estimates, and therefor@;the
Specifically, we describe its formulation in sec. 3.1, the in P .

T . T curacy of the method greatly depend on the initial parame-
tialization in sec. 3.2, the component split operation io. se N

- . ters9°.
3.4, and the decision thresholds update rules in sec. 3r5. Fu

thermore, in sec. 5 we describe our experimental set-up for

testing the validity of our new technique and in sec. 6 we, 1 gm Algorithm: Application to a gaussians Mixture
discuss our results. Finally, in sec. 7 we draw the main con-

clusions of this work. When applied to a gaussian mixture density we assume the
following model:

2 Expectation Maximization Algorithm =

P ’ P9 = 3 Wer pe(¥)
The Expectation-Maximization algorithm serves to find the . 1 (7
maximum likelihood estimates of a probabilistic model with Pc (X) =
unobserved data. A common usage of the EM algorithm is

to identify the"incomplete, or unobserved data”

o 3 He) |Ze| (%~ Fe)

Nl

—
(2m)2| 2|

wherepc (X) is the component prior distribution for the class

o — ()71 7 )7’) (1) ¢, and withd, L. and>; being the input dimension, the mean
o and covariance matrix of the gaussians compoogeatdnc
given the couplé.2”, %) - with 2" defined as: the total number of components, respectively.
Let us considencclasse€nc, with p(x]C;) = pc (X) and
2 ={x%,... N} (2)  P(C.) = w being the density and thepriori probability of

) - _ the data of the clasS;, respectively. Then:
also calledcomplete data’, which has a probability density

(or joint distribution)p (2", #'|8) = pg (2", #') depending
on the paramete?. More specifically, thécomplete data”

P = 5 P(C)P(TCE) = 5 e P ®



Inthis setting, the unobserved dataget= (y*,y2,...,yN) runs of the EM algorithm for many different initializations
contains as many elements as data samples, and each ve@nd number of components. Then, after each run they pro-
y = [)"L)éf" e, .yinc]T is such thaty, = 1 if the data  duce a number, the value of the information criterion itself
samplex belongs to the clags; andy. = 0 otherwise. The characterizing the overall description. Each criterios i
expected value of thé" component of the random vectpr — own characteristics. For a detailed overview about the most

is the clas<C; prior probability: used ones, refer to [24]. A common feature is that all of
, them tend to penalize complex models. Some examples are
E (Yo) =We (9 the Akaike Information Criterion (AIC) [30], the Rissanen

Minimum Description Length (MDL) [29], and the Wallace
Minimum Message Length [33]. However, in order to be ef-
known buty”are unknown; fective, they have to be evalyated for every pqssible num-
- b) E-step:for each data sample evaluate its class posterio?er O,f models under comparison. Thereforg, i clea.r that,
probabilitiesP (y' _ 1|>2'f) e 1...nC or wide enough search range, the complexity goes with the
¢ ’ number of tested models as well as the model parameters.
p (yIC — 1|)('r) ) (Cc|>7'r) The following section describes our approach to perform an
- - efficient exploration of the model space, not only avoiding
— p(x |C°);P(Cc) — We - Pe (X)A (10) exaustive search but also reducing as most as possible the
p(X) Y ccaWe - Pe(X) model computational costs.

The algorithm main stages are: _
- a) consider the whole data sbt= (2", %), wherex" are

in

For simplicity of notation, from now on we will refer to 3 FASTGMM: Fast Gaussian Mixture Modeling

E' (ye/X) as . This is probability thak belongs to class

Ce- _ In this section we describe the rational of our algorithm. It

- ©) M-step: re-estimate the parameter veciby which at  pas peen mainly designed to perform an efficient search for
the n+ 1 iteration will bed(™1). This, in case of a gaus- the number of mixture components. Whereas the classical
sians mixture distribution, i.epc (X) is a gaussians density, approach is to perform an exhaustive search of the number
we haved = (W, e, 2¢). Then, we evaluate the means andof components, doing independent EM runs with different
the covariances by weighting each data sample by the degrg@stializations, a new class of algorithms has been deedop

in which it belongs to the class as: in the last decade in the attempt to speed up the computa-
N o tions. The basic idea is to incrementally estimate the méxtu
ﬁé”*” = lezliﬂ‘cx parameters and the number of components simultaneously.
2i1Tk The number of components is incremented or decremented
sN. 7 (g‘_ Ec(nﬂ)) (g‘_ Ec(nﬂ))T (1) at certain stages of the optimization procedure but the val-
Zc(”“) = N ues of the mixture parameters are incrementally changed
2i=1Tt and not reinitialized. In this class of algorithms we refer t
Finally, we re-estimate the-priori probabilities of the classes,Figueiredo and Jain [9] (only decrement the number of com-
i.e. the probability that the data belongs to the ctaas: ponents) and to Ueda [32] (increment/decrement). Our al-
gorithm starts with a single component and only increments
W((:n+l) _ 1 N né, with c={1,2,...,nc} (12) its number as the optimization proce_dure progresses. Wi.th
N i; respect to the other approaches, our is the one with the min-

imal computational cost.
We distinguish two main features in our algorithm: The
2.2 EM Algorithm: Model Selection Criteria splitting and the stopping criteria. The key issue of ouhtec
o i i _nique is looking whether one or more gaussians are not in-
Deciding the best number of components in a MiXture is e asing their own likelihood during optimization. Our al-

critical issue. The more components there are, the highey. i, m evaluates the current likelihood of each single com
the log-likelihood will be. However a high number of com- ponentc as (13):

ponents increases the computational cost of the algorihtm

and the risk of a data overfitting. On the other side, a low k _

number of components may not allow for a good enough defcurr(¢) (¥) = _Z'Og (We - pe (X)) (13)
scription of the data. Several information criteria haverbe =

developed in order to evaluate the best mixture complex- In other words, if their likelihood has stabilized they will
ity (number of components) subject to the specific inputbe split into two new ones and check if this move improves
data. They evaluate the best model by executing independettie likelihood in the long run. To each Gaussian component



we also associateagevariable in order to control ow long key decision is taken: If a component’s own likelihood does
the component’'s own likelihood does not increase signifinot increase more thaftyy for a predetermined number of
cantly (see sec. 3.1). The split process is controlled by thémes and its area exceeélgy, this component will be split
following adaptive decision thresholds: in two. Both thresholdg\ty andéty are time varying, like
an annealing schedule, to promote gradual splits. If tHesspl

— One adaptive thresholdr, for determining a signifi- do not improve the whole log-likelihood significantly, the

cant increase in likelihood (see sec. 3.5); .
— One adaptive thresholyy for triggering the split pro- algorithm Stops.
) . The whole algorithm pseudocode is shown in Algorithm
cess based on the component’s own age (see sec. 3.5)3 1
— One adaptive thresholfy for deciding to splita gaus- ~
sian based on its area (see sec. 3.4).

Algorithm 3.1 FASTGMM: Pseudocode
It is worth noticing that even though we consider three— T Parameter initialization

threShO|dS to tune a.” Of them are adaptlve and Only I'equn' 2: while (Stopp|ng criterion is not medo

a coarse initialization. 3 Acurr(g), evaluation, for = 0,1,.
These parameters will be fully detailed within the next 4:  Whole mixture log- |Ikellh00d-(z9) evaluation
sections. 5: Re-estimate prlorwi,(lfﬂ)c =0,1,..., r?c )
6: Recompute centefi; and covariancess;  , for ¢ =
0,1,...,n
. 7: - Evaluation whether changing the gaussians distribugtouc-
3.1 FASTGMM Formulation ture -
8: for (c=0tonc)do
Our algorithm’s formulation can be summarized within three ©: if J(ac > Arn) then
) 10: if (Acurr () — Mast(c)) < /\tw) then
steps: 11 it
— Initializing the parameters; 12: - General condition for changing satisfied; now check-
- . ' ing those for each component -
- Spllttlng a gaussian; 13: if (5. > &r4y) then
— Updating decision thresholds. 14: if (c < maxNumComponenttjen
. . . 15: split gaussians- split
Each mixture componeutis represented as follows: 4. hor=1_
— _ 17: resetéry «— ﬂ%
Fe=p (Wc, He, 2, Ec7Alast(c)a/\curr(c)7ac) (14) 18: resetAtH — LTH_INnIT
) ] ] 19: reset a,ag < 0, with A, B being the new two
where each element is described in tab. 3.1. In the rest of the gaussians
paper the index notation described in tab. 3.1 will be used. 20: J?}Eum
Two important elements are the area (namely, the covarg-;j ende?f !
ance matrix determinant) and the age of a Gaussian compgé: Ari = Aris - (1_ _)
nent, respectivelly. andac. .
. _ MA
24: fTH*ETH'(l_ e )
25: end if
[ Symbol ] Element | 26 end if
We a-priori probabilities of the class 27:  endfor
Hc mean of the gaussian component 28: end while
S covariance matrix of the gaussian component 29: Optional: Optimizing selected mixture
& area of the gaussian component
Aast() log-likelihood at iteratiort — 1 of the gaussian component
Acurr (¢) log-likelihood at iteratiort of the gaussian componenit
ac ageof the gaussian componeant
c single mixture component
nc total number of mixture components 3.2 Parameters initialization
i single input point
K total number input points The decision thresholds),y,r will be initialized as follows:
d single data dimension
D input dimensionality
Table 1 Symbol notation used in this paper ErH_INIT = &data

LrhoinT =Kith (15)

ArH— =k
During each iteration, the algorithm keeps in memory THEINIT = PATH

the previous likelihoodAjast(c))- Once the re-estimation of with k_ry andkary (namely, the minimum amount of like-
the vector parametet has been computed in the EM step, alihood difference between two iterations and the number of



iterations required for taking into account the lack of @ik the same color), spatial components are intrinsically non-
lihood consistent variation) relatively low (i.e. both inet  overlapping ((x,y) coordinates are unique). Thus, in theco
order of 10, or 20). Of course, higher values kpfy and  text of image segmentation applications it makes sense to
smaller forkaty give rise to a faster adaptation, howeverfavor non-overlapping components, thus empirically justi
adding instabilities. fying the proposed rule.

At the beginning, before starting with the iteratioégy To implement this split operation we make use of the sin-
will be automatically initialized to the Area of the whole gular value decomposition. A rectangutex p matrix A can
data set - i.e. the determinant of the covariance matrix relebe decomposed as= USV', where the columns df are
tive to all points, as follows: the left singular vector$§ (which has the same dimension as

A) is a diagonal matrix with the singular values arranged in

descending order, and’ has rows that are the right singular
(16) vectors. However, we are not interested in the whole set of

eigenvalues, but only the biggest one, therefore we can save

some computation by evaluating only the first columtJof
wherek is the number of input data vectors ~ and the first element & _

More precisely, A gaussian with parametéks_p will
be split in two new gaussiamsandB, with means:

1.
Hdatad = Elzxd

Zdata,i = <)?|* l'_‘data,> <)?|* Edata)T

3.3 Gaussian components initialization

Sop =USV
The algorithm starts with a single gaussian. Its mean will beuyax = U, 1; Svax = Si1
the whole data mean, as well as its covariance matrix willbe 1
_ - a7)
that of the whole data set. Ha = HoLp + 5 MAXUMAX
That leads to a unique starting configuration. _ 1

U = HoLp — ESMAXU_MAX

3.4 Splitting a gaussian whereuyax is the first column olJ, andsyax the first ele-
ment of S,

When a component's covariance matrix area overcomes the The covariance matrices will then be updated as:
maximum area thresholéry it will split. As a measure of

the area we adopt the matrix’s determinant. This, in fact, Si1= }SMAX

describes the area of the ellipse represented by a gaussian 4 (18)
componentin 2D, or the volume of the ellipsoid representedZA =Zp=USV'

by the same component in 3D.

It is worth noticing that the way the component is spli
greatly affects further computations. For instance, abersa 1 1
2-dimensional case, in which alongatedjaussian is present. wa = =WoLp W = =WoLD (19)
Depending on the problem at hand, this component may be 2
approximating two components with diverse configurations: ¢ js worth noticing that the first split occurs immediately

Either covering two smaller data distribution sets, placedter the initialization. Otherwise the algorithm wouldvea

along the longer axis, or two overlapped sets of data withy, \yait until the first Gaussian gets old before adding the
different covariances, etc. So, splitting a componentis a i q,, components, which is clearly unnecessary.

posed problem and the best way depends on the problem The decision thresholds will be updated as explained in

at hand. In this paper we make a choice suited to applicas-ec_ 3.5. Finally, their agesa, andag, will be reset to zero.
tions in color image segmentation whose purpose is to ob-

tain components with lower overlap. For this case a reason-

able way of splitting is to put the new means at the two ma- ) o

jor semi-axis’ middle point. Doing so, the new components3-5 Updating decision thresholds

will promote non overlapping components and, if the ac- o ) o

tual data set reflects this assumption, it will result indast 1N€ decision thresholds are updated in two situations:
convergence. In fact, in image segmentation applicationsy \yhen a mixture componentis split;

points are composed of the R,G,B color values (or othel \yhen each iteration is concluded.

color space) and spatial (x,y) coordinates. Whereas ttwe col

components can overlap (there may be many pixels witffhese two procedures will be explained in the following.

t While the newa-priori probabilities will be:




- Singleiteration. experience, these parameters can be tuned only once for
The thresholdé\ty, andéry vary at each step with the fol- each specific type of data. Particular instantiations o dat
lowing rules: with the same characteristics do not require retuning.-or i

A stance, the 2D input data of sec. 5 uses the same paramenter
ATH=ATH = 5 A\TH and the same happens for the image data sets. Therefore we
A propose a methodology to tune the parameters depending on
AL (1_ Cz) (20) the demands of the application: focussing more on the sta-
AMAX bility or on the accuracy. If precision is preferred, stagti
§TH = &TH — n® §TH with low values assures a low frequency of split and a better
. amAx convergence to a local optimum. Thenyax andA should
=&t (1- . . .
nc? be gradually increased until a satisfactory performanbe. T

with nc is the number of current gaussias, and ayax  best way is to use a test input set, and comparing the out-

are the coefficients for the likelihood and area change evaput of our algorithm with “ground truth” for different runs,

uation, respectively. Using high values forand foramax increasingavax andA each time. In the second case, it is

the corresponding thresholds  andéry decrease. There- better to follow the opposite way: starting with higher \esu

fore, since a component splits when its covariance matrief awax andA than before, and then reducing them at each

area overcomes the threshdlgl, decreasingiuax willin-  run. It is not possible to establish a priori the best stgrtin

crease the split frequency and promote a faster convergenselues, because they depend on the type of data (dimension-

In an analogous form controls the minimum increase in ality, scale). In our experiments we uskd= 20 for all the

log-likelihood a component must have to be split. Theretests, whilexyax = 1.5 for the 2D input data, angivax = 1

fore, the highent is, the easier the system will promote a for the images.

split. In tandemayax andA control the convergence speed

together. However, fast convergence is often associated to

instability around the optimal point, and may even lead to & g ||I-Conditioned components

divergence from the local optimum.
Notice thatArny andétn decrements are inversely pro- We experienced that during the EM steps, the computation

portional to the square of the number of components. Thgometimes leads to a ill-conditioned component. This hap-

rationale is to promote splits in models with low complexity pens when a Gaussian becomes too “enlongated”, which

and prevent the fast growing of the number of componentgan be tested through its conditioning number (i.e. the ra-

in models with high complexity. tio between the biggest and smallest eigenvalue) becoming
Finally, every time a gaussians is added these thresholdso large. It may happen in several situations with différen
will be reset to their initial value (see next section). kinds of input data, from the classical 2-dimensional pgint
- After gaussian splitting. to 3 dimensional (e.g. xyz cartesian points, or RGB color
The decision thresholds will be updated as follows: images), and this may “crash” the algorithm. However, this
ETHoINIT problem happens more frequently with images than with
$TH = " nc (21)  simple input points. Many images we tried with the Figuered
ATH = LTHoINIT and Jain's algorithm cannot have been segmented due to this
problem.

wherenco p andnc are the previous and the current num-

ber of mixture components, respectively. Substantiaflig t . o Y
P P y » ance matrix conditioning number, and if it is higher than

dates th litting threshold t lue that li = .
upgates the Spiiting thresnold 1o a value that goes meara limit (e.g. 1@+1%) we stop the EM computation. In fact,

with the initial value and the actual number of components.. . .
. since that component does not contribute enough to the in-
used for the computation.

All these rules, although empirical, have proven success.r-)Ut data description, we directly reject this component.

fulin the estimation of mixture components, as will be shown

in the results. The sole parameters to cotrol the process are

amax and A. A practical rule to tune these parameters is3-7 Optimizing the selected mixture
given in the following section.

To address this problem we evaluate the class’ covari-

After FASTGMM algorithm stops, we may keep the chosen
3.5.1Tuning amax and A mixture as the final result or we may perform an aditional

EM step to refine the solution. This is an optional proce-
Tuning paramentergyax andA depend mostly on the di- dure. The former choice is the fastest but less accuratég whi
mensionality and type of data and the application requirethe latter one introduces new computations but ensures more
ments for precisioivs computation time. According to our precision.




Why to choose the second possibility? does not add a considerable burden, while giving an impor-
It may happen that FASTGMM decides to increase the numtant improvement to the original computation in terms of
ber of components even though the EM has not reached itelf-adapting to the data input configuration at best. More-
local maximum, due to the splitting rule. In this case currenover, it is worth noticing that even though the optimization
mixture can still be improved by running the EM until it procedure is performed, this starts very close to the optima
achieves its best configuration (the log-likelihood no leng mixture configuration. In fact, the input mixture is the rigsu
increases). of the FASTGMM computation, rather than a generic ran-

Whether applying the first or second procedure is a matdom or k-means initialization (as it happens with the simple
ter of what predominates in tHeumber of iterations vs. EM algorithm, generally).
solution precision"compromise at each time.

4 Application to Color Image Segmentation
3.8 Stopping criterion

This section mainly focuses on the application of our ap-

The algorithm stops when the log-likelihood does not in-Proach for segmenting real colored images. Since the algo-
crease over a minimum value. This is a common used alj'l.thm is suitable for this kind OftaSk, it is relevant to dealie
proach [9] [32]. However, rather than consider the absoa brief section about it.
lute value of the log-likelihood, as in the two previous tech ~ Each pixel of the image is represented as a 5-dimensional
niques, we considered a percentage variation. In fact, de/ector, where the dimensions are R G,B) color space
scribing different input data sets with theiestmixture give ~ and the(x,y) pixel coordinates. The input data set is com-
rise to different values for the final log-likelihood. There posed by all the pixels of the image. After the Gaussian
fore, instead of fixating an absolute value as the minimuninixture estimation process, we will have several compo-
increment, a percentage amount allows a more general apents, each one representing a Gaussian distribution in the
proach. In this work, we stop the EM computation when theédD joint (R,G,B,x,y) space, represented by a mean color, a
log-likelihood does not increase more that%. mean spacial coordinate and associated covariances. Each
pixel vector is assigned a likelihood of belonging to each
of these distributions. We choose the maximum likelihood
3.9 Computational complexity evaluation assignment. In the experimental results we show segmenta-
tion results (see Fig. 2). In those images, each pixel is col-
We refer to the pseudocode in algorithm 3.1, and to the not&2red with the mean RGB value of its maximum likelihood
tion presented in sec. 3.1.The computational burden of eacHuster.
iteration is:

— the original EM algorithm (steps 3to 6) take¢N - D -nc) 5 Experimental Validation
for each step, for a total @ (4-N- D - nc) operations;

— our algorithm take© (nc) for evaluating all the gaus- The experiments performed in this paper aim at a careful

sians (_step 810 27), _ . comparison with a state-of-the-art unsupervised leartsiolg-
— our split (step 15) operation requir€gD). nique [9] which is based on similar principles (mixture mbde
— the others tak®(1). estimation) and makes publicly available the correspond-

— the optional procedure of optimizing the selected mix-ing source code. We compare both approaches in synthetic
ture (step 29) take®(4-N-D-nc), being the original data (artificially generated with a known mixture), and to
EM. some real images (taken by a webcam or by our robotic plat-

form). The comparison criteria include the computational

cost (both algorithms have MATLAB implementations), the

— O(4-N-D-nc), while our algorithm add®© (D-nc) on  number of components, and robustness to operating condi-
the whole, 0l0(4-N-D-nc), givingrise toO(4-N-D-nc) tions. In the experiments performed with real images we also
+0O(D-nc)=0(4-N-D-nc+D-nc)=(nc-D-(4N+1)) show the output of a successful image segmentation algo-
in the first case; rithm based on theneanshift algorithnj4], using the EDI-

— 2.0(4-N-D-nc)+0O(D-nc)=0O(8-N-D-nc+D-nc)  SON binary packagé Although based on different princi-
= (nc-D- (8N +1)) in the second case, with the opti- ples, this method is one the best with respect to image seg-
mization procedure. mentation. However it is a non adaptive method: it relies on

two main parameters, the spatial and the color bandwidth,

Therefore, the original EM algorithm takes:

Considering that usuallfp << N andnc << N, and that
the optimization procedure is not essential, our procedure?! hitp://coewww.rutgers.edu/riuliresearch/code/EDISON




that rougly define the neighborhood in space and color to de— The percentage difference in time for our algorithm with
fine clusters [4], and that we have manually tuned to achive a the optimization process;
number of clusters similar to ours. The available implemen-— The final log-likelihood;
tation is coded in C and therefore we cannot compare the— The percentage difference in final log-likelihood for our
performance in terms of the computation time. We used it algorithm with the optimization process;
as an example of one of the best quality image segmentation- The normalized L2 distance to the generation mixture
methods currently available. without optimization;

— The normalized L2 distance to the generation mixture

with optimization (only for FASTGMM).

5.1 Synthetic data In the following we discuss the main differences be-
tween the two algorithms.

In order to evaluate our algorithm’s performance with gribun

truth data, we tested it by classifying different input data5.1.1 Evaluated number of components

sets randomly generated by a known gaussians mixture. The

same input sets have been proposed in [9]. Each distributiohhere are substantially no differences in the selected eumb

has a total of 2000 points, but arranged with different mix-of components. Both our approach and [9] perform well on

ture distributions. Even though our procedure can be agyplielow number of mixture components, while having the ten-

to any input dimensionality, we choose to show the resultslency of underestimating them when the number increases.

for 2-dimensional input because they are easier to represe\n exception is our approach that overestimates the 8-coemtse

As the ratio(# gaussians)/(# data point#)creases, it be- case but correctly estimates the 16-components case. How-

comes harder to reach a good solution in a reasonable nur@ver, it is worth considering that even though it estimates

ber of steps. Therefore, we are interested in evaluating howell the number of components, the parameters may differ.

our algorithm behaves when the model complexity graduFor instance, two components may be regarded as only one,

ally increases. while a single one can be considered as a multiple one. This
Since [9] depends on the initialization, to have a fairbehavioris presentin both algorithm (see Fig. 2), suggesti

comparison, we adopted a commonly used approach: séat a perfect algorithm is hard to find.

lect 10 different initial random conditions and report teos

giving the highest likelihood. The output of the two algo-

rithms is shown in Fig. 2. Each subplot set is composed b¥.1.2 Elapsed time

the graphical output representation for the 2-D point distr

bution (top) and the 3-D estimation mixture histogram (bot-It is important to distinguish the required number of itera-

tom). Here we show the representation for different mixgure tions from the elapsed time. FASTGMM employs fewer it-

of 3, 4, 5, 8, 12, 14, and 16 gaussian components. The dagjations than FIGJ without making use of the optimization

plots show the generated mixture (blue) and the evaluatefocess, while more in the other case. At a first glance, this

one (red). The data on the left results from our approacHnay suggest a whole FASTGMM slower computation than

while on the right we show the results of [9], relative to theFIGJ. However, the whole elapsed time that occurs for run-

same input data set. The 3D plots at the bottom in each suling our procedure is generally less than FIGJ's, because

figure represent, respectivelly, the generated mixtuneabu  MOst iterations are performed with lower number of compo-

gorithm’s estimation, and the estimation given by the algonents. The elapsed time of the algorithm in [9] strongly de-

rithm in [9]. pends on the initial number of components. The more they
We can see that our algorithm is capable of identifying2re; the slower itis. [9], on the other side, starts in the op-

the input data mixture starting from only one componeni0site way, i.e. with the maximum allowed components. The

with an accuracy comparable with that of [9]. rule to define this number relies on a desired minimum prob-
Here we performa a detailed quantitative comparison wifPility of successful initialization of - &, with the limit of

[9]. In table 2 we show a detaile quantitative comparisoma‘”ng at least the following amount of starting components

with [9] (from now on denoted FIGJ). The table contains: Cmin (S€C. 6.1 0f [9]):
Ine

In(1— dmin)

— The number of initial mixture components; Crmin > (22)
— The number of detected components;
— The actual number of components, i.e. that of the genemheredmin = min{ay, az,--- , ac} is the probability of the

ation mixture; component that will be more probability left out of the ini-
— The number of total iterations; tialization, for its excessively small probability. Thetgim-

— The elapsed time; ing a probability of successful initialization of 90%= 1 —
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Fig. 1 For each plot set: Generation mixture (blue) and the evaedlabe (red) for FASTGMM and FIGJ on the same input sets.

Input Algorithm #Initial | # Detected| Actual gaussian| # Iterations Elapsed Time| Diff time FASTGMM Log-likelihood Diff lik FASTGMM | Normalized L2 Distance] Normalized L2 Distance| Crashed
P! 9 gaussians| gaussians number [s] with opt vs FIGJ% 9 with opt vs FIGJ % without optimization with optimization
FASTGMM 3 76 3.99716 -8420.917867
n Optimization 1 3 130 6.151567 -8379.161274 5.770135 3.918034 no
392U | EASTGMM + Opt. 3 3 206 10.148727 5389844289 |\ —gargTeIo7g| 0495867477
FIGJ 16 3 277 29.433288 -9524.692099 3.670464 3.670464 no
FASTGMM 4 101 5.615204 -7573.101881
. Optimization 1 3 186 12.531248 -7405.078438 10.670613 0.07519 no
4-gau: FASTGMM + Opt. 7 4 587 18146457 -123.166389 e rTaae 2.218687212
FIGJ 16 4 205 13.52505 -8729.761818 0.076403 0.076403 no
FASTGMM 9 276 5.750431 -8599.51
. Optimization 1 8 199 4.428076 -8598.17 0.196817 1.971166 no
8-02U: | "FASTGMM + Opt. 9 8 475 10.178507 22.99575458 §508.17 0.015582283
FIGJ 16 7 333 48.156629 -9798.154848 0.14491 0.14491 no
FASTGMM 11 376 18.496127 -7536.534442
. Optimization 1 12 117 5.593468 -7532.833615 1.069315 0.284287 no
12-93U" RS TGMM + Opt. 11 12 793 24.089595 22.99575458 753y gazeis| 0049105156
FIGJ 16 11 340 12.882045 -8922.220193 1.116857 1.116857 no
FASTGMM 12 351 17.651956 -8008.490211
. Optimization 1 14 280 14.813798 -7995.859443 5.906032 1.884532 no
4-gau: FASTGMM + Opt. 12 14 631 32.465753 16.07843346 995.859443 0.157717218
FIGJ 20 12 419 30.707378 -9465.594783 3.639617 3.639617 no
FASTGMM 16 501 26.667825 -8165.436422
n Optimization 1 16 202 12.848394 -8160.778985 0.251515 1.033934 no
16-0aU: -ExsTGMM + Opt. % 16 703 39.516219 5182061529 —g7gn 778085 0057038433
FIGJ 20 14 363 63.740854 -9540.91802 2.98916 2.98916 no

Table 2 Experimental results on synthetic data.
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€ =0.9= ¢ =0.1 we getcmin = 26,4 = 27 as the mini- tailed comparison with [9] (to our knowledge this is the first
mum number of component, i.e. more than double the actugiime the algorithm of [9] is applied to image segmentation)
necessary components. and a qualitative comparison with an implementation of the
Nevertheless, we made FIGJ starting with a reasonablmeanshiftalgorithm [4]. Given the different principle and
number of components, just a few more than the optimumimplementation of this algorithm it is difficult to perform
so that they do not affect its performance negatively. Thie quantitative comparison in terms of computation time or
is 16 for the 3 to 12 mixture components, and 20 for the 14nodel complexity. Anyway, since this is one the most suc-
and 16 ones (see tab. 2). FASTGMM’s better performance isessfullimage segmentation algorithms, it provides aityual
due to the fact that our approach, growing in the number ofriteria benchmark to take into account. We segmented the
components, computes more iterations than FIGJ but with enages as 5-dimensional input in tliR, G,B,x,y) space.
small number of components per iteration. Therefore it runghe color image segmentation results are shown in Fig. 2.
each iteration faster, while slowing only at the end due o th The set of images is divided into two groups: Some gen-
augmented number of components. eral images (from (1) to (3)) and some images taken by the
Finally, FASTGMM stops when the best amount of com-iCub’s cameras (from (4) to (6)). For each group we show
ponents to cover the whole data distribution is found. FIGJihe original images, the segmentation provided by the EDI-
instead, once the optimum has been found, continues to ti§ON implementation of theneanshiftalgorithm, those ob-
all the remaining configurations, to that with just one com-tained with the [9], and those obtained with our algorithm,
ponent (which is our starting mixture), so that exploititig a from left to right, respectively.
the possible solutions. That contributes to slow the FIGJ's  £rom a visual inspection of the figures it is hard to say

performance. Generally, our approach performs faster thaj, o is the best segmentation. Theanshifoutput is prob-

[9]- ably more visually appealing. This method has been spe-
_ o o cially designed for image segmentation and contains a few
5.1.3 Mixture precision estimation post-processing steps that improve the overall qualithef t

_ _ . . results. Using raw mixture model estimation, as our method
Itis possible to see that FASTGMM usually achieves a highej, F|GJ, there are no clear qualitative advantages of one
final log-likelihood than FIGJ. This suggests a better apyyer the other.

proximation of the data mixture. However, a higher log- Table 3 sh o its of the i
likelihood does not strictly imply that the extracted misgu able 3 shows quantitative results of the Image segmen-

covers the data better than another one. A deterministic aﬁgt'o_n runs ys!ng _FASTGMM’ FIGJ ar?d FASTGM_M W'Fh
proach is to adopt a unique distance measure between tH%e final opt|m|zat|on_step. If co_mpl_JtatlonaI speed if an im-
generated mixture and the evaluated one. In [17] Jeaken portant requw_eme_nt in the appllcatlon at hand, we may say
Al. exposed three different strategies for computing such didn'at 0ur algorithmiis better forimage segmentation, bezaus
tance: The Kullback-Leibler, the Earth Mover, and the Nor-It IS fast. its initialization is simple and produces comgpar
malized L2 distance. The first one is not symmetric, and caF?Ie regsults. 90n the ngggtlve S'_de Onh:mA_x pazjrafr.nqer (S(fae
onlyy be evaluated in closed form for unidimensional gaus-sec' 5) [] msteab , It freqylrest prion de mm;}:n 0 h
sians. The second one suffers from analogous probIems.Tl%e r_’naxmurg nurp ero mlxturiﬁorgp%ner?tsf, thatlls the
third choice is symmetric, obeys to the triangle inequality,Star'[Ing number of components. The higher it is the longer

and it is easy to compute. We ue the latter to perform théthWIII ‘f"‘? for the input segn;)entatlon. lf_ It ITI set tolo src?all_
comparison. Its expression states [1]: t €30 ution space may not_ € approp_n_ate y explored, giv-
ing rise to undersegmentation. In addition, some problems

7Ny (ch, Z_c) — N, (ﬁa, Z_a) Ny (Em Z_b) arlsg with the evaluation of the covariances matrix for some
real images. It happens that some of them may become ill-
_ _ _ o _ conditioned, making FIGJ “crash” when too many compo-
Se=(St+5Y) 7 and o= Sc (S a+ 5 i) nents are computed.

Zo = |2M5, 5,5 Y 3o 3 (Ha— i)' Za o5, (Ha )

where

= |27 (5 + 5p) [P 2 (2t 2b) " (Ha i)
(23)
6 Discussion

5.2 Colored real images

In this section we highlight other aspects of the proposed
Here we evaluate the performance of our algorithm when apalgorithm and provide an overall comparison of the advan-
plied to the image segmentation problem. We perform a detages and disadvantages with respect to FIGJ.
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Original Image EDISON

FASTGMM

(@)

@

(©)

(©)

®)

(6)

Fig. 2 Color image segmentation results. We divide these imadeswo groups: Some general images, on the top (lines (1)))p48d some
images taken by the iCub’s cameras, on the bottom (lineo(@)}. For each group we show the original images, thosarwdavith EDISON,
those obtained with FIGJ, and those obtained with our algorifrom left to right, respectively.

6.1 FASTGMM Optimization Procedure in the final log-likelihood and the normalized L2 distance,
but allows some improvements in the final segmentation. If

We reported our results with and without the optimization®n€ claims for the fastest algorithm it is advisable to net us

procedure. Since one of the most prominent key feature df'€ ©Ptimization, even though it may lead to some improve-
our approach s its fast computation, together with its ggmp MeNts to the final mixture. Otherwise, FASTGMM gives a

implementation, the optimization process may seem worthd00d precision and a better computational cost.

less or too computational demanding. However, by compar-

ing its performance against those of [9], our algorithm stil

remains faster (see sec. 5.1.2). The difference in terms of fi

nal mixture precision is not so evident at a first glance, both
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# Initial

# Detected

Elapsed Time

Diff time FASTGMM

Diff lik FASTGMM

Diff lik FASTGMM

Input Algorithm gaussians| gaussians # lterations [s] with opt vs FIGJ % Log-likelihood with opt vs FIGJ with opt vs FIGJ Crashed
FASTGMM 9 551 71.460507 -235130.6216
Optimization 1 9 23 22.131293 -234692.3977 no
1 FASTGMM + Opt. 5 700 935918 130.9699636 534692 3977 0.186374662 17.03330409
FIGJ 16 16 422 307.454885 -274668.2675 yes, 17
FASTGMM 14 426 80.365553 -314931.44
Optimization 1 14 374 88.057387 -314551.5352 no
2 FASTGMM + Opt. 14 800 168.422941 109.5710584 -314551.5352 0120630946 1116531396
FIGJ 30 25 572 1611.816189 -349672.2017 no
FASTGMM 7 276 34.977055 -226138.1494
Optimization 1 7 36 5.860168 -226138.0738 no
3 FASTGMM + Opt. 7 312 40.837223 16.7543208 -226138.0738 3.342038-05 17.57803149
FIGJ 16 16 420 272.227272 -265888.6956 yes, 17
FASTGMM 7 576 72.744922 -281176.5478
Optimization 1 7 14 2.610093 -281176.5441 no
4 FASTGMM + Opt. 7 590 75.355015 3588007146 -281176.5441 1.30736E-06 15.72288044
FIGJ 11 11 267 106.453566 -325385.5959 yes, 12
FASTGMM 3 151 16.899695 -218447.7912
Optimization 1 3 23 2.27548 -218447.7848 no
5 FASTGMM + Opt. 3 174 19.943671 13.4646217 -218447.7848 2.963648-06 16.0195988
FIGJ 12 12 260 130.416222 -253442.2435 yes, 13
FASTGMM 11 451 67.534808 -210899.0185
Optimization 1 10 180 31.981125 -210657.4353 no
6 FASTGMM + Opt. 10 631 99.515933 47.35502469 -210657.4353 0114549212 1768706256
FIGJ 24 22 514 624.913104 -247916.5477 no

Table 3 Experimental results on real images segmentation.

0 200 a0

En ) h E)

Wm0 w0 w0 w0 w0

(h)

W w W

Fig. 3 The final log-likelihood evolution as function of the numlwdriterations of two different kinds of input data used witlihe experiments:
the 4 mixture components (a) - FIGJ and (e) FASTGMM, the 12unécomponents - (b) FIGJ and (f) FASTGMM, the image (4) -H&J and
(g) FASTGMM, and the image (5) - (d) FIGJ and (h) FASTGMM.

6.2 Log-Likelihood Similarly, when our algorithm splits a gaussian, i.e. addin

a component, a spike that decreases the log-likelihood ap-
We approach the prob]em Converse]y than in [9] Instead offears on the curve. Fina”y, when the |Og'|ike|ih00d dods no
starting with the maximum number of mixture componentsincrease significantly the computation stops.
we start with just only one. This will generate two opposite
evolutior_15 of the cost_ functions. FIGJ is characterized by 3 30verall comparison: Which algorithm is the best
decreasing exponential curve, that raises at the end. Gur apne?
proach, instead, is characterized by an increasing exponen

tial curve. Fig. 3 shows four examples of these output fofrhere’s not a unique answer to this question. Both appraache

each algorithm. has advantages and disadvantages. These are summarized in
Here it is possible to notice spikes in FIGJ curve, corretab. 4.

sponding to componentannihilation. When the log-liketiio Generally, our algorithm is faster than the [9]. However,

increases, it means that the current mixture description iboth techniques rely on sormaepriori parameters: FAST-

worse than the previous one. GMM amax andA, and FIGJ the maximum number of com-
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[ Algorithm | Pro |

Contro

| Application Domain |

FASTGMM

1. Deterministic. Independent runs of th
algorithm will produce the same result.
2. Initialization is unique. No paramete
required.

3. Low computational burden.

el. Requires tuning parameters for
controlling the convergence.
S

1. High dimensional data (e.g. Image
Segmentation, Robotics)

2. On-line and real-time applications
3. Applications requiring a low number
of components (e.g. low bandwidth coding).

1. Does not require parameter tuning fd
controlling convergence.

r 1. Stochastic. Different runs will lead to
different results.

1. Low-dimensional data.
2. Off-line applications.

2. Requires the specification of the initial 3. Applications requiring a high number
number of components. of components (e.g. high quality coding).
3. High computational cost.

4. Showed unreliable performance in
image segmentation.

2. Better results on average in syntheti

FIGJ data generated by gaussian mixtures

Table 4 Comparison between FASTGMM and FIGJ: Advantages and drelwhbaf both algorithms.

ponents. These greatly affect the algorithms, the firsttfer t tages of our algorithm in what regards computation time and
precision most, and the second for the computational burddfitting score to ground truth.
most.

Our approach is better when the time computation is acknowledgements This work was supported by the European Com-
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sults than FASTGMM.

and through project BIO-LOOK, PTDC / EEA-ACR / 71032 / 2006.
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