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Abstract The Expectation-Maximization algorithm has been
classically used to find the maximum likelihood estimates of
parameters in probabilistic models with unobserved data,
for instance, mixture models. A key issue in such problems
is the choice of the model complexity. The higher the num-
ber of components in the mixture, the higher will be the
data likelihood, but also the higher will be the computa-
tional burden and data overfitting. In this work we propose
a clustering method based on the expectation maximization
algorithm that adapts on-line the number of components
of a finite Gaussian mixture model from multivariate data.
Or method estimates the number of components and their
means and covariances sequentially, without requiring any
careful initialization. Our methodology starts from a single
mixture component covering the whole data set and sequen-
tially splits it incrementally during expectation maximiza-
tion steps. The coarse to fine nature of the algorithm reduce
the overall number of computations to achieve a solution,
which makes the method particularly suited to image seg-
mentation applications whenever computational time is an
issue. We show the effectiveness of the method in a series
of experiments and compare it with a state-of-the-art alter-
native technique both with synthetic data and real images,
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including experiments with images acquired from the iCub
humanoid robot.
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1 Introduction

Image segmentation is a key low level perceptual capability
in many robotics related applications, as a support function
for the detection and representation of objects and regions
with similar photometric properties. Several applications in
humanoid robots [27], rescue robots [3], or soccer robots
[12], [14] rely on some sort on image segmentation. Addi-
tionally, many other fields of image analysis depend on the
performance and limitations of existing image segmentation
algorithms: video surveillance [6], medical imaging [8], face
recognition [23], and database retrieval [31] are some exam-
ples. In this work we study and develop a fast method for
fitting gaussian mixtures to a set of data, with applications
to image segmentation.

Unsupervised image segmentation is a typical cluster-
ing problem: Image pixels must be grouped into ”classes”
according to some similarity criteria (pixel color, proxim-
ity, etc.). The classes, also calledclusters, are detected auto-
matically, i.e. without any input by an external agent. This
method finds applications in many fields, such as in im-
age processing (e.g. face-color segmentation [11] or posture
recognition [2]) , sound analysis [18], segmentation of mul-
tivariate medical images (a wide overview can be fond here
[20]).

The techniques for unsupervised learning range from Ko-
honen maps [21] [22], Growing Neural gas [10], [15], k-
means [25], to Independent component analysis [5], [16],
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etc. Particularly interesting is the Expectation Maximiza-
tion algorithm applied to Gaussian mixtures which allows
to model complex probability distribution functions. Fitting
a mixture model to the distribution of the data is equivalent,
in some applications, to the identification of the clusters with
the mixture components [26].

1.1 Related Work

Expectation-Maximization (EM) algorithm is the standard
approach for learning the parameters of the mixture model
[13]. It is demonstrated that it always converges to a local
optimum [7]. However, it also presents some drawbacks.
For instance, EM requires ana-priori selection of model
order, namely, the number of components to be incorpo-
rated into the model, and its results depend on initialization.
The higher the number of components within the mixture,
the higher will be the total log-likelihood. Unfortunately, in-
creasing the number of gaussians will lead to overfitting and
to an increase of the computational burden.

Particularly in image segmentation applications, where
the number of points is in the order of several hundred thou-
sand, finding the best compromise between precision, gener-
alization and speed is a must. A common approach to choose
the number of components is trying different configurations
before determining the optimal solution, e.g. by applying the
algorithm for a different number of components, and select-
ing the best model according to appropriate criteria.

Different approaches can be used to select the best num-
ber of components. These can be divided into two main classes:
off-lineandon-linetechniques.

The first ones evaluate the best model by executing in-
dependent runs of the EM algorithm for many different ini-
tializations and number of components, and evaluating each
estimate with criteria that penalize complex models (e.g. the
Akaike Information Criterion (AIC) [30] and the Rissanen
Minimum Description Length (MDL) [29]). These, in order
to be effective, have to be evaluated for every possible num-
ber of models under comparison. Therefore, it is clear that,
for having a sufficient search range the complexity goes with
the number of tested models as well as the model parame-
ters.

The second ones start with a fixed set of models and
sequentially adjust their configuration (including the num-
ber of components) based on different evaluation criteria.
Pernkopf and Bouchaffra proposed a Genetic-Based EM Al-
gorithm capable of learning gaussians mixture models [28].
They first selected the number of components by means of
the minimum description length (MDL) criterion. A combi-
nation of genetic algorithms with the EM has been explored.

Uedaet Al. proposed a split-and-merge EM algorithm
to alleviate the problem of local convergence of the EM

method [32]. Subsequently, Zhanget Al. introduced another
split-and-merge technique [34]. Merge an split criterion is
efficient in reducing number of model hypothesis, and it is
often more efficient than exhaustive, random or genetic al-
gorithm approaches. To this aim, particularly interestingis
the method proposed by Figueiredo and Jain, which goes on
step by step until convergence using only merge operations
[9].

A different approach has been explored by Ketchantang
et Al., by using Pearson mixture model (PMM) in conjunc-
tion with Gaussian copula instead of pure Gaussian mixture
distributions [19] The model is combined with a Kalman fil-
ter in order to predict the object’s position within the next
frame. However, despite its validity in tracking multiple ob-
jects and its robustness against different illumination con-
texts, the required computational burden is higher than the
corresponding Gaussian mixture based models.

1.2 Our contribution

We propose an algorithm that simultaneously determines the
number of components and the parameters of the mixture
model with only split operations. The particularity of our
model is that it starts from only one mixture component
progressively adapting the mixture by splitting components
when necessary.

Our formulation guarantees the following advantages.
First, the initialization is very simple. Diversely from the
standard EM algorithm, or any EM technique that starts with
more than one component, where initialization is often ran-
dom, in our case the initialization is deterministic: The ini-
tial component is a single gaussian that best fits the whole
data set. Moreover, the splitting criterion is also determinis-
tic, as it will be explained later. Hence, the whole algorithm
is deterministic: By applying the same algorithm to the same
input data we will always get the same results. Second, it is
a technique with computational cost lower than other ap-
proaches. The algorithm complexity will be analyzed later
in the paper and compared to the alternatives.

In a sense, we approach the problem in a different way
to Figueiredo and Jain. They start the computation with the
maximum possible number of mixture components. Although
that work is among the most effective to date, it becomes
too computationally expensive for image segmentation ap-
plications, especially during the first iterations. It starts with
the maximum number of components, decreasing it progres-
sively until the whole space of possibilities has been ex-
plored, whereas our method starts with a single component
and increases its number until a good performance is at-
tained.
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1.3 Real-Time Applications

The algorithm described in this paper was developed keep-
ing in mind the need for real-time operation, having image
segmentation for robots as our first objective. Due to the
large resolution of modern frame grabbers and cameras, im-
age segmentation requires fast techniques in order to satisfy
the real-time demands of robotic applications, ranging from
simple tracking to autonomous vehicle guidance and video
surveillance. Since there are no efficient global solutionsto
the general problem of unsupervised estimation of mixture
models, we have developed a greedy approach where the
design choices are taken to specifically address the image
segmentation problem achieving simultaneously fast perfor-
mance and results competitive with the state-of-the-art. For
evaluation purposes, we also perform experiments on 2D
synthetic data, where the method’s performance can be more
easily visualized and compared. However, we stress that the
main aspect considered in writing the algorithm’s specifica-
tion is a fast performance in image segmentation. Several
results on this domain, both with generic images and with
images taken in our robotic platform, are presented and com-
pared with the state-of-the-art.

1.4 Outline

The paper is organized as follows. In sec. 2 we summarize
the main results of the classical Expectation Maximization
algorithm. In sec. 3 we introduce the proposed algorithm.
Specifically, we describe its formulation in sec. 3.1, the ini-
tialization in sec. 3.2, the component split operation in sec.
3.4, and the decision thresholds update rules in sec. 3.5. Fur-
thermore, in sec. 5 we describe our experimental set-up for
testing the validity of our new technique and in sec. 6 we
discuss our results. Finally, in sec. 7 we draw the main con-
clusions of this work.

2 Expectation Maximization Algorithm

The Expectation-Maximization algorithm serves to find the
maximum likelihood estimates of a probabilistic model with
unobserved data. A common usage of the EM algorithm is
to identify the”incomplete, or unobserved data”:

Y =
(

ȳ1
, ȳ2

, . . . , ȳ j) (1)

given the couple(X ,Y ) - with X defined as:

X = {x̄1
, x̄2

, . . . , x̄N} (2)

also called”complete data”, which has a probability density
(or joint distribution)p

(

X ,Y |ϑ̄
)

= pϑ̄ (X ,Y ) depending
on the parameter̄ϑ . More specifically, the”complete data”

are the given input data setX to be classified, while the
”incomplete data”are a series of auxiliary variables in the
setY indicating for each input sample which mixture com-
ponent it comes from. We defineE

′
(·) the expected value

of a random variable, computed with respect to the density
pϑ̄ (X ,Y ).

We define:

Q
(

ϑ̄ (n)
, ϑ̄ (n−1)

)

= E
′
L
(

ϑ̄ (n−1)
)

(3)

with L
(

ϑ̄ (n−1)
)

being the log-likelihood of the observed

data at stepn−1:

L
(

ϑ̄ (n−1)
)

= logp
(

X ,Y |ϑ̄ (n−1)
)

(4)

The EM procedure repeats the two following steps until
convergence, iteratively:

– E-step: It computes the expectation of the joint probabil-
ity density:

Q
(

ϑ̄ (n)
, ϑ̄ (n−1)

)

= E
′
[

logp
(

X ,Y |ϑ̄ (n−1)
)]

(5)

– M-step: It evaluates the new parameters that maximize
Q; this, according to the ML estimation, is:

ϑ̄ n = argmax
ϑ̄

Q
(

ϑ̄ n
, ϑ̄ (n−1)

)

(6)

The convergence to a local maxima is guaranteed. How-
ever, the obtained parameter estimates, and therefore, theac-
curacy of the method greatly depend on the initial parame-
tersϑ̄ 0.

2.1 EM Algorithm: Application to a gaussians Mixture

When applied to a gaussian mixture density we assume the
following model:

p(x̄) =
nc

∑
c=1

wc · pc(x̄)

pc (x̄) =
1

(2π)
d
2 |Σc|

1
2

e−
1
2(x̄−µ̄c)

T |Σc|
−1(x̄−µ̄c)

(7)

wherepc(x̄) is the component prior distribution for the class
c, and withd, µ̄c andΣc being the input dimension, the mean
and covariance matrix of the gaussians componentc, andnc
the total number of components, respectively.

Let us considerncclassesCnc, with p(x̄|Cc) = pc (x̄) and
P(Cc) = wc being the density and thea-priori probability of
the data of the classCc, respectively. Then:

p(x̄) =
nc

∑
c=1

P(Cc) · p(x̄|Cc) =
nc

∑
c=1

wc · pc(x̄) (8)
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In this setting, the unobserved data setY =
(

ȳ1, ȳ2, . . . , ȳN
)

contains as many elements as data samples, and each vector
ȳi =

[

yi
1,y

i
2, · · · ,y

i
c, · · ·y

i
nc

]T
is such thatyi

c = 1 if the data
samplexi belongs to the classCc andyi

c = 0 otherwise. The
expected value of thecth component of the random vector ¯y
is the classCc prior probability:

E
′
(yc) = wc (9)

The algorithm main stages are:
- a) consider the whole data set̄D = (X ,Y ), where ¯xi are
known butȳi are unknown;
- b) E-step:for each data sample evaluate its class posterior
probabilitiesP

(

yi
c = 1|x̄i

)

,c = 1· · ·nc:

P
(

yi
c = 1|x̄i) = P

(

Cc|x̄
i)

=
p
(

x̄i |Cc
)

·P(Cc)

p(x̄i)
=

wc · pc
(

x̄i
)

∑nc
c=1wc · pc(x̄i)

, π i
c

(10)

For simplicity of notation, from now on we will refer to
E
′ (

yc|xi
)

asπ i
c. This is probability that ¯xi belongs to class

Cc.
- c) M-step: re-estimate the parameter vectorϑ̄ , which at

the n+ 1 iteration will beϑ̄ (n+1). This, in case of a gaus-
sians mixture distribution, i.e.pc (x̄) is a gaussians density,
we haveϑ̄ = (wc, µ̄c,Σc). Then, we evaluate the means and
the covariances by weighting each data sample by the degree
in which it belongs to the class as:

µ̄ (n+1)
c =

∑N
i=1 π i

cx̄
i

∑i
i=1 π i

c

Σ (n+1)
c =

∑N
i=1 π i

c

(

x̄i− µ̄ (n+1)
c

)(

x̄i− µ̄ (n+1)
c

)T

∑N
i=1 π i

c

(11)

Finally, we re-estimate thea-priori probabilities of the classes,
i.e. the probability that the data belongs to the classc as:

w(n+1)
c =

1
N

N

∑
i=1

π i
c, with c= {1,2, . . . ,nc} (12)

2.2 EM Algorithm: Model Selection Criteria

Deciding the best number of components in a mixture is a
critical issue. The more components there are, the higher
the log-likelihood will be. However a high number of com-
ponents increases the computational cost of the algorihtm
and the risk of a data overfitting. On the other side, a low
number of components may not allow for a good enough de-
scription of the data. Several information criteria have been
developed in order to evaluate the best mixture complex-
ity (number of components) subject to the specific input
data. They evaluate the best model by executing independent

runs of the EM algorithm for many different initializations
and number of components. Then, after each run they pro-
duce a number, the value of the information criterion itself,
characterizing the overall description. Each criterion has its
own characteristics. For a detailed overview about the most
used ones, refer to [24]. A common feature is that all of
them tend to penalize complex models. Some examples are
the Akaike Information Criterion (AIC) [30], the Rissanen
Minimum Description Length (MDL) [29], and the Wallace
Minimum Message Length [33]. However, in order to be ef-
fective, they have to be evaluated for every possible num-
ber of models under comparison. Therefore, it is clear that,
for wide enough search range, the complexity goes with the
number of tested models as well as the model parameters.
The following section describes our approach to perform an
efficient exploration of the model space, not only avoiding
exaustive search but also reducing as most as possible the
model computational costs.

3 FASTGMM: Fast Gaussian Mixture Modeling

In this section we describe the rational of our algorithm. It
has been mainly designed to perform an efficient search for
the number of mixture components. Whereas the classical
approach is to perform an exhaustive search of the number
of components, doing independent EM runs with different
initializations, a new class of algorithms has been developed
in the last decade in the attempt to speed up the computa-
tions. The basic idea is to incrementally estimate the mixture
parameters and the number of components simultaneously.
The number of components is incremented or decremented
at certain stages of the optimization procedure but the val-
ues of the mixture parameters are incrementally changed
and not reinitialized. In this class of algorithms we refer to
Figueiredo and Jain [9] (only decrement the number of com-
ponents) and to Ueda [32] (increment/decrement). Our al-
gorithm starts with a single component and only increments
its number as the optimization procedure progresses. With
respect to the other approaches, our is the one with the min-
imal computational cost.

We distinguish two main features in our algorithm: The
splitting and the stopping criteria. The key issue of our tech-
nique is looking whether one or more gaussians are not in-
creasing their own likelihood during optimization. Our al-
gorithm evaluates the current likelihood of each single com-
ponentc as (13):

Λcurr(c) (ϑ) =
k

∑
i=1

log(wc · pc(x̄i)) (13)

In other words, if their likelihood has stabilized they will
be split into two new ones and check if this move improves
the likelihood in the long run. To each Gaussian component
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we also associate aagevariable in order to control ow long
the component’s own likelihood does not increase signifi-
cantly (see sec. 3.1). The split process is controlled by the
following adaptive decision thresholds:

– One adaptive thresholdΛTH for determining a signifi-
cant increase in likelihood (see sec. 3.5);

– One adaptive thresholdATH for triggering the split pro-
cess based on the component’s own age (see sec. 3.5);

– One adaptive thresholdξTH for deciding to split a gaus-
sian based on its area (see sec. 3.4).

It is worth noticing that even though we consider three
thresholds to tune, all of them are adaptive, and only require
a coarse initialization.

These parameters will be fully detailed within the next
sections.

3.1 FASTGMM Formulation

Our algorithm’s formulation can be summarized within three
steps:

– Initializing the parameters;
– Splitting a gaussian;
– Updating decision thresholds.

Each mixture componentc is represented as follows:

ϑ̄c = ρ
(

wc, µ̄c,Σc,ξc,Λlast(c),Λcurr(c),ac
)

(14)

where each element is described in tab. 3.1. In the rest of the
paper the index notation described in tab. 3.1 will be used.

Two important elements are the area (namely, the covari-
ance matrix determinant) and the age of a Gaussian compo-
nent, respectivellyξc andac.

Symbol Element

wc a-priori probabilities of the classc
µ̄c mean of the gaussian componentc
Σc covariance matrix of the gaussian componentc
ξc area of the gaussian componentc

Λlast(c) log-likelihood at iterationt−1 of the gaussian componentc
Λcurr (c) log-likelihood at iterationt of the gaussian componentc

ac ageof the gaussian componentc
c single mixture component
nc total number of mixture components
i single input point
k total number input points
d single data dimension
D input dimensionality

Table 1 Symbol notation used in this paper

During each iteration, the algorithm keeps in memory
the previous likelihood (Λlast(c)). Once the re-estimation of
the vector parameter̄ϑ has been computed in the EM step, a

key decision is taken: If a component’s own likelihood does
not increase more thanΛTH for a predetermined number of
times and its area exceedsξTH, this component will be split
in two. Both thresholdsΛTH andξTH are time varying, like
an annealing schedule, to promote gradual splits. If the splits
do not improve the whole log-likelihood significantly, the
algorithm stops.

The whole algorithm pseudocode is shown in Algorithm
3.1.

Algorithm 3.1 FASTGMM: Pseudocode
1: - Parameter initialization
2: while (stopping criterion is not met)do
3: Λcurr (c), evaluation, forc = 0,1, . . .,nc
4: Whole mixture log-likelihoodL

(

ϑ̄
)

evaluation
5: Re-estimate priorswc, for c = 0,1, . . .,nc

6: Recompute center̄µ (n+1)
c and covariancesΣ (n+1)

c , for c =
0,1, . . .,nc

7: - Evaluation whether changing the gaussians distribution struc-
ture -

8: for (c = 0 tonc) do
9: if ](ac > ATH) then

10: if ((Λcurr (c)−Λlast(c)) < ΛTH) then
11: ac+ = 1
12: - General condition for changing satisfied; now check-

ing those for each component -
13: if (Σc > ξTH) then
14: if (c < maxNumComponents)then
15: split gaussians→ split
16: nc+ = 1
17: resetξTH←

ξTH−INIT
nc

18: resetΛT H← LTH−INIT

19: reset aA,aB← 0, with A, B being the new two
gaussians

20: return
21: end if
22: end if

23: ΛTH = ΛTH ·
(

1− λ
nc2

)

24: ξTH = ξTH ·
(

1− αMAX
nc2

)

25: end if
26: end if
27: end for
28: end while
29: Optional: Optimizing selected mixture

3.2 Parameters initialization

The decision thresholds(·)INIT will be initialized as follows:

ξTH−INIT = ξdata

LTH−INIT = kLTH

ATH−INIT = kATH

(15)

with kLTH andkATH (namely, the minimum amount of like-
lihood difference between two iterations and the number of



6

iterations required for taking into account the lack of a like-
lihood consistent variation) relatively low (i.e. both in the
order of 10, or 20). Of course, higher values forkLTH and
smaller forkATH give rise to a faster adaptation, however
adding instabilities.

At the beginning, before starting with the iterations,ξTH

will be automatically initialized to the Area of the whole
data set - i.e. the determinant of the covariance matrix rela-
tive to all points, as follows:

µdata,d =
1
k

k

∑
i

xi
d

Σdata,i = 〈x̄i− µ̄data〉〈x̄i− µ̄data〉
T

(16)

wherek is the number of input data vectors ¯x.

3.3 Gaussian components initialization

The algorithm starts with a single gaussian. Its mean will be
the whole data mean, as well as its covariance matrix will be
that of the whole data set.

That leads to a unique starting configuration.

3.4 Splitting a gaussian

When a component’s covariance matrix area overcomes the
maximum area thresholdξTH it will split. As a measure of
the area we adopt the matrix’s determinant. This, in fact,
describes the area of the ellipse represented by a gaussian
component in 2D, or the volume of the ellipsoid represented
by the same component in 3D.

It is worth noticing that the way the component is split
greatly affects further computations. For instance, consider a
2-dimensional case, in which anelongatedgaussian is present.
Depending on the problem at hand, this component may be
approximating two components with diverse configurations:
Either covering two smaller data distribution sets, placed
along the longer axis, or two overlapped sets of data with
different covariances, etc. So, splitting a component is a ill
posed problem and the best way depends on the problem
at hand. In this paper we make a choice suited to applica-
tions in color image segmentation whose purpose is to ob-
tain components with lower overlap. For this case a reason-
able way of splitting is to put the new means at the two ma-
jor semi-axis’ middle point. Doing so, the new components
will promote non overlapping components and, if the ac-
tual data set reflects this assumption, it will result in faster
convergence. In fact, in image segmentation applications,
points are composed of the R,G,B color values (or other
color space) and spatial (x,y) coordinates. Whereas the color
components can overlap (there may be many pixels with

the same color), spatial components are intrinsically non-
overlapping ((x,y) coordinates are unique). Thus, in the con-
text of image segmentation applications it makes sense to
favor non-overlapping components, thus empirically justi-
fying the proposed rule.

To implement this split operation we make use of the sin-
gular value decomposition. A rectangularn x p matrixA can
be decomposed asA = USVT , where the columns ofU are
the left singular vectors,S(which has the same dimension as
A) is a diagonal matrix with the singular values arranged in
descending order, andVT has rows that are the right singular
vectors. However, we are not interested in the whole set of
eigenvalues, but only the biggest one, therefore we can save
some computation by evaluating only the first column ofU
and the first element ofS.

More precisely, A gaussian with parametersϑ̄OLD will
be split in two new gaussiansA andB, with means:

Σ̄OLD = USVT

ūMAX = U∗,1; sMAX = S1,1

µ̄A = µ̄OLD +
1
2

sMAXūMAX

µ̄B = µ̄OLD−
1
2

sMAXūMAX

(17)

whereūMAX is the first column ofU , andsMAX the first ele-
ment ofS.

The covariance matrices will then be updated as:

S1,1 =
1
4

sMAX

ΣA = ΣB = USVT
(18)

while the newa-priori probabilities will be:

wA =
1
2

wOLD wB =
1
2

wOLD (19)

It is worth noticing that the first split occurs immediately
after the initialization. Otherwise the algorithm would have
to wait until the first Gaussian gets old before adding the
new components, which is clearly unnecessary.

The decision thresholds will be updated as explained in
sec. 3.5. Finally, their ages,aA andaB, will be reset to zero.

3.5 Updating decision thresholds

The decision thresholds are updated in two situations:

A. When a mixture component is split;
B. When each iteration is concluded.

These two procedures will be explained in the following.
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- Single iteration.
The thresholdsΛTH, andξTH vary at each step with the fol-
lowing rules:

ΛTH = ΛTH−
λ

nc2 ·ΛTH

= ΛTH ·

(

1−
λ

nc2

)

ξTH = ξTH−
αMAX

nc2 ·ξTH

= ξTH ·
(

1−
αMAX

nc2

)

(20)

with nc is the number of current gaussians,λ , andαMAX

are the coefficients for the likelihood and area change eval-
uation, respectively. Using high values forλ and forαMAX

the corresponding thresholdsΛTH andξTH decrease. There-
fore, since a component splits when its covariance matrix
area overcomes the thresholdξTH, decreasingαMAX will in-
crease the split frequency and promote a faster convergence.
In an analogous form,λ controls the minimum increase in
log-likelihood a component must have to be split. There-
fore, the higherλ is, the easier the system will promote a
split. In tandem,αMAX andλ control the convergence speed
together. However, fast convergence is often associated to
instability around the optimal point, and may even lead to a
divergence from the local optimum.

Notice thatΛTH andξTH decrements are inversely pro-
portional to the square of the number of components. The
rationale is to promote splits in models with low complexity
and prevent the fast growing of the number of components
in models with high complexity.

Finally, every time a gaussians is added these thresholds
will be reset to their initial value (see next section).

- After gaussian splitting.
The decision thresholds will be updated as follows:

ξTH =
ξTH−INIT

nc
ΛTH = LTH−INIT

(21)

wherencOLD andnc are the previous and the current num-
ber of mixture components, respectively. Substantially, this
updates the splitting threshold to a value that goes linearly
with the initial value and the actual number of components
used for the computation.

All these rules, although empirical, have proven success-
ful in the estimation of mixture components, as will be shown
in the results. The sole parameters to cotrol the process are
αMAX and λ . A practical rule to tune these parameters is
given in the following section.

3.5.1Tuning αMAX and λ

Tuning paramentersαMAX andλ depend mostly on the di-
mensionality and type of data and the application require-
ments for precisionvs computation time. According to our

experience, these parameters can be tuned only once for
each specific type of data. Particular instantiations of data
with the same characteristics do not require retuning. For in-
stance, the 2D input data of sec. 5 uses the same paramenter
and the same happens for the image data sets. Therefore we
propose a methodology to tune the parameters depending on
the demands of the application: focussing more on the sta-
bility or on the accuracy. If precision is preferred, starting
with low values assures a low frequency of split and a better
convergence to a local optimum. Then,αMAX andλ should
be gradually increased until a satisfactory performance. The
best way is to use a test input set, and comparing the out-
put of our algorithm with “ground truth” for different runs,
increasingαMAX andλ each time. In the second case, it is
better to follow the opposite way: starting with higher values
of αMAX andλ than before, and then reducing them at each
run. It is not possible to establish a priori the best starting
values, because they depend on the type of data (dimension-
ality, scale). In our experiments we usedλ = 20 for all the
tests, whileαMAX = 1.5 for the 2D input data, andαMAX = 1
for the images.

3.6 Ill-Conditioned components

We experienced that during the EM steps, the computation
sometimes leads to a ill-conditioned component. This hap-
pens when a Gaussian becomes too “enlongated”, which
can be tested through its conditioning number (i.e. the ra-
tio between the biggest and smallest eigenvalue) becoming
too large. It may happen in several situations with different
kinds of input data, from the classical 2-dimensional points,
to 3 dimensional (e.g. xyz cartesian points, or RGB color
images), and this may “crash” the algorithm. However, this
problem happens more frequently with images than with
simple input points. Many images we tried with the Figueiredo
and Jain’s algorithm cannot have been segmented due to this
problem.

To address this problem we evaluate the class’ covari-
ance matrix conditioning number, and if it is higher than
a limit (e.g. 10e+10) we stop the EM computation. In fact,
since that component does not contribute enough to the in-
put data description, we directly reject this component.

3.7 Optimizing the selected mixture

After FASTGMM algorithm stops, we may keep the chosen
mixture as the final result or we may perform an aditional
EM step to refine the solution. This is an optional proce-
dure. The former choice is the fastest but less accurate, while
the latter one introduces new computations but ensures more
precision.
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Why to choose the second possibility?
It may happen that FASTGMM decides to increase the num-
ber of components even though the EM has not reached its
local maximum, due to the splitting rule. In this case current
mixture can still be improved by running the EM until it
achieves its best configuration (the log-likelihood no longer
increases).

Whether applying the first or second procedure is a mat-
ter of what predominates in the”number of iterations vs.
solution precision”compromise at each time.

3.8 Stopping criterion

The algorithm stops when the log-likelihood does not in-
crease over a minimum value. This is a common used ap-
proach [9] [32]. However, rather than consider the abso-
lute value of the log-likelihood, as in the two previous tech-
niques, we considered a percentage variation. In fact, de-
scribing different input data sets with theirbestmixture give
rise to different values for the final log-likelihood. There-
fore, instead of fixating an absolute value as the minimum
increment, a percentage amount allows a more general ap-
proach. In this work, we stop the EM computation when the
log-likelihood does not increase more than 0.1%.

3.9 Computational complexity evaluation

We refer to the pseudocode in algorithm 3.1, and to the nota-
tion presented in sec. 3.1.The computational burden of each
iteration is:

– the original EM algorithm (steps 3 to 6) takesO(N ·D ·nc)
for each step, for a total ofO(4 ·N ·D ·nc) operations;

– our algorithm takesO(nc) for evaluating all the gaus-
sians (step 8 to 27);

– our split (step 15) operation requiresO(D).
– the others takeO(1).
– the optional procedure of optimizing the selected mix-

ture (step 29) takesO(4 ·N ·D ·nc), being the original
EM.

Therefore, the original EM algorithm takes:

– O(4 ·N ·D ·nc), while our algorithm addsO(D ·nc) on
the whole, orO(4 ·N ·D ·nc), giving rise toO(4 ·N ·D ·nc)
+ O(D ·nc) = O(4 ·N ·D ·nc+D ·nc)= (nc·D · (4N+1))
in the first case;

– 2·O(4 ·N ·D ·nc) + O(D ·nc) = O(8 ·N ·D ·nc+D ·nc)
= (nc·D · (8N+1)) in the second case, with the opti-
mization procedure.

Considering that usuallyD << N andnc << N, and that
the optimization procedure is not essential, our procedure

does not add a considerable burden, while giving an impor-
tant improvement to the original computation in terms of
self-adapting to the data input configuration at best. More-
over, it is worth noticing that even though the optimization
procedure is performed, this starts very close to the optimal
mixture configuration. In fact, the input mixture is the result
of the FASTGMM computation, rather than a generic ran-
dom or k-means initialization (as it happens with the simple
EM algorithm, generally).

4 Application to Color Image Segmentation

This section mainly focuses on the application of our ap-
proach for segmenting real colored images. Since the algo-
rithm is suitable for this kind of task, it is relevant to dedicate
a brief section about it.

Each pixel of the image is represented as a 5-dimensional
vector, where the dimensions are the(R,G,B) color space
and the(x,y) pixel coordinates. The input data set is com-
posed by all the pixels of the image. After the Gaussian
mixture estimation process, we will have several compo-
nents, each one representing a Gaussian distribution in the
5D joint (R,G,B,x,y) space, represented by a mean color, a
mean spacial coordinate and associated covariances. Each
pixel vector is assigned a likelihood of belonging to each
of these distributions. We choose the maximum likelihood
assignment. In the experimental results we show segmenta-
tion results (see Fig. 2). In those images, each pixel is col-
ored with the mean RGB value of its maximum likelihood
cluster.

5 Experimental Validation

The experiments performed in this paper aim at a careful
comparison with a state-of-the-art unsupervised learningtech-
nique [9] which is based on similar principles (mixture model
estimation) and makes publicly available the correspond-
ing source code. We compare both approaches in synthetic
data (artificially generated with a known mixture), and to
some real images (taken by a webcam or by our robotic plat-
form). The comparison criteria include the computational
cost (both algorithms have MATLAB implementations), the
number of components, and robustness to operating condi-
tions. In the experiments performed with real images we also
show the output of a successful image segmentation algo-
rithm based on themeanshift algorithm[4], using the EDI-
SON binary package1. Although based on different princi-
ples, this method is one the best with respect to image seg-
mentation. However it is a non adaptive method: it relies on
two main parameters, the spatial and the color bandwidth,

1 http://coewww.rutgers.edu/riul/research/code/EDISON/
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that rougly define the neighborhood in space and color to de-
fine clusters [4], and that we have manually tuned to achive a
number of clusters similar to ours. The available implemen-
tation is coded in C and therefore we cannot compare the
performance in terms of the computation time. We used it
as an example of one of the best quality image segmentation
methods currently available.

5.1 Synthetic data

In order to evaluate our algorithm’s performance with ground
truth data, we tested it by classifying different input data
sets randomly generated by a known gaussians mixture. The
same input sets have been proposed in [9]. Each distribution
has a total of 2000 points, but arranged with different mix-
ture distributions. Even though our procedure can be applied
to any input dimensionality, we choose to show the results
for 2-dimensional input because they are easier to represent.
As the ratio(# gaussians)/(# data points)increases, it be-
comes harder to reach a good solution in a reasonable num-
ber of steps. Therefore, we are interested in evaluating how
our algorithm behaves when the model complexity gradu-
ally increases.

Since [9] depends on the initialization, to have a fair
comparison, we adopted a commonly used approach: se-
lect 10 different initial random conditions and report those
giving the highest likelihood. The output of the two algo-
rithms is shown in Fig. 2. Each subplot set is composed by
the graphical output representation for the 2-D point distri-
bution (top) and the 3-D estimation mixture histogram (bot-
tom). Here we show the representation for different mixtures
of 3, 4, 5, 8, 12, 14, and 16 gaussian components. The data
plots show the generated mixture (blue) and the evaluated
one (red). The data on the left results from our approach,
while on the right we show the results of [9], relative to the
same input data set. The 3D plots at the bottom in each sub-
figure represent, respectivelly, the generated mixture, our al-
gorithm’s estimation, and the estimation given by the algo-
rithm in [9].

We can see that our algorithm is capable of identifying
the input data mixture starting from only one component
with an accuracy comparable with that of [9].

Here we performa a detailed quantitative comparison with
[9]. In table 2 we show a detaile quantitative comparison
with [9] (from now on denoted FIGJ). The table contains:

– The number of initial mixture components;
– The number of detected components;
– The actual number of components, i.e. that of the gener-

ation mixture;
– The number of total iterations;
– The elapsed time;

– The percentage difference in time for our algorithm with
the optimization process;

– The final log-likelihood;
– The percentage difference in final log-likelihood for our

algorithm with the optimization process;
– The normalized L2 distance to the generation mixture

without optimization;
– The normalized L2 distance to the generation mixture

with optimization (only for FASTGMM).

In the following we discuss the main differences be-
tween the two algorithms.

5.1.1 Evaluated number of components

There are substantially no differences in the selected number
of components. Both our approach and [9] perform well on
low number of mixture components, while having the ten-
dency of underestimating them when the number increases.
An exception is our approach that overestimates the 8-components
case but correctly estimates the 16-components case. How-
ever, it is worth considering that even though it estimates
well the number of components, the parameters may differ.
For instance, two components may be regarded as only one,
while a single one can be considered as a multiple one. This
behavior is present in both algorithm (see Fig. 2), suggesting
that a perfect algorithm is hard to find.

5.1.2 Elapsed time

It is important to distinguish the required number of itera-
tions from the elapsed time. FASTGMM employs fewer it-
erations than FIGJ without making use of the optimization
process, while more in the other case. At a first glance, this
may suggest a whole FASTGMM slower computation than
FIGJ. However, the whole elapsed time that occurs for run-
ning our procedure is generally less than FIGJ’s, because
most iterations are performed with lower number of compo-
nents. The elapsed time of the algorithm in [9] strongly de-
pends on the initial number of components. The more they
are, the slower it is. [9], on the other side, starts in the op-
posite way, i.e. with the maximum allowed components. The
rule to define this number relies on a desired minimum prob-
ability of successful initialization of 1− ε, with the limit of
having at least the following amount of starting components
cmin (sec. 6.1 of [9]):

cmin >
lnε

ln(1−αmin)
(22)

whereαmin = min{α1,α2, · · · ,αc} is the probability of the
component that will be more probability left out of the ini-
tialization, for its excessively small probability. Then,claim-
ing a probability of successful initialization of 90%=⇒ 1−
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Fig. 1 For each plot set: Generation mixture (blue) and the evaluated one (red) for FASTGMM and FIGJ on the same input sets.

Input Algorithm
# Initial # Detected Actual gaussian

# Iterations
Elapsed Time Diff time FASTGMM

Log-likelihood
Diff lik FASTGMM Normalized L2 Distance Normalized L2 Distance

Crashed
gaussians gaussians number [s] with opt vs FIGJ% with opt vs FIGJ % without optimization with optimization

3-gau:

FASTGMM 3

3

76 3.99716

-53.89844289

-8420.917867

0.495867477
Optimization 1 3 130 6.151567 -8379.161274 5.770135 3.918034 no

FASTGMM + Opt. 3 206 10.148727 -8379.161274
FIGJ 16 3 277 29.433288 -9524.692099 3.670464 3.670464 no

4-gau:

FASTGMM 4

4

101 5.615204

-123.166389

-7573.101881

2.218687212
Optimization 1 3 186 12.531248 -7405.078438 10.670613 0.07519 no

FASTGMM + Opt. 4 287 18.146452 -7405.078438
FIGJ 16 4 205 13.52505 -8729.761818 0.076403 0.076403 no

8-gau:

FASTGMM 9

8

276 5.750431

22.99575458

-8599.51

0.015582283
Optimization 1 8 199 4.428076 -8598.17 0.196817 1.971166 no

FASTGMM + Opt. 9 475 10.178507 -8598.17
FIGJ 16 7 333 48.156629 -9798.154848 0.14491 0.14491 no

12-gau:

FASTGMM 11

12

376 18.496127

22.99575458

-7536.534442

0.049105156
Optimization 1 12 117 5.593468 -7532.833615 1.069315 0.284287 no

FASTGMM + Opt. 11 493 24.089595 -7532.833615
FIGJ 16 11 340 12.882045 -8922.220193 1.116857 1.116857 no

14-gau:

FASTGMM 12

14

351 17.651956

16.07843346

-8008.490211

0.157717218
Optimization 1 14 280 14.813798 -7995.859443 5.906032 1.884532 no

FASTGMM + Opt. 12 631 32.465753 -7995.859443
FIGJ 20 12 419 30.707378 -9465.594783 3.639617 3.639617 no

16-gau:

FASTGMM 16

16

501 26.667825

51.82061529

-8165.436422

0.057038433
Optimization 1 16 202 12.848394 -8160.778985 0.251515 1.033934 no

FASTGMM + Opt. 16 703 39.516219 -8160.778985
FIGJ 20 14 363 63.740854 -9540.91802 2.98916 2.98916 no

Table 2 Experimental results on synthetic data.
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ε = 0.9 =⇒ ε = 0.1 we getcmin = 26,4∼= 27 as the mini-
mum number of component, i.e. more than double the actual
necessary components.

Nevertheless, we made FIGJ starting with a reasonable
number of components, just a few more than the optimum,
so that they do not affect its performance negatively. This
is 16 for the 3 to 12 mixture components, and 20 for the 14
and 16 ones (see tab. 2). FASTGMM’s better performance is
due to the fact that our approach, growing in the number of
components, computes more iterations than FIGJ but with a
small number of components per iteration. Therefore it runs
each iteration faster, while slowing only at the end due to the
augmented number of components.

Finally, FASTGMM stops when the best amount of com-
ponents to cover the whole data distribution is found. FIGJ,
instead, once the optimum has been found, continues to try
all the remaining configurations, to that with just one com-
ponent (which is our starting mixture), so that exploiting all
the possible solutions. That contributes to slow the FIGJ ’s
performance. Generally, our approach performs faster than
[9].

5.1.3 Mixture precision estimation

It is possible to see that FASTGMM usually achieves a higher
final log-likelihood than FIGJ. This suggests a better ap-
proximation of the data mixture. However, a higher log-
likelihood does not strictly imply that the extracted mixture
covers the data better than another one. A deterministic ap-
proach is to adopt a unique distance measure between the
generated mixture and the evaluated one. In [17] Jensenet
Al. exposed three different strategies for computing such dis-
tance: The Kullback-Leibler, the Earth Mover, and the Nor-
malized L2 distance. The first one is not symmetric, and can
onlyy be evaluated in closed form for unidimensional gaus-
sians. The second one suffers from analogous problems. The
third choice is symmetric, obeys to the triangle inequality
and it is easy to compute. We ue the latter to perform the
comparison. Its expression states [1]:

zcNx
(

µ̄c, Σ̄c
)

= Nx
(

µ̄a, Σ̄a
)

·Nx
(

µ̄b, Σ̄b
)

where

Σ̄c =
(

Σ̄−1
a + Σ̄−1

b

)−1
and µ̄c = Σ̄c

(

Σ̄−1
a µ̄a + Σ̄−1

b µ̄b
)

zc = |2πΣ̄aΣ̄bΣ̄−1
c |

1
2 e−

1
2 (µ̄a−µ̄b)

T Σ̄−1
a Σ̄cΣ̄−1

b (µ̄a−µ̄b)

= |2π
(

Σ̄a + Σ̄b
)

|
1
2 e−

1
2 (µ̄a−µ̄b)

T(Σ̄a+Σ̄b)
−1

(µ̄a−µ̄b)

(23)

5.2 Colored real images

Here we evaluate the performance of our algorithm when ap-
plied to the image segmentation problem. We perform a de-

tailed comparison with [9] (to our knowledge this is the first
time the algorithm of [9] is applied to image segmentation)
and a qualitative comparison with an implementation of the
meanshiftalgorithm [4]. Given the different principle and
implementation of this algorithm it is difficult to perform
a quantitative comparison in terms of computation time or
model complexity. Anyway, since this is one the most suc-
cessfull image segmentation algorithms, it provides a quality
criteria benchmark to take into account. We segmented the
images as 5-dimensional input in the(R,G,B,x,y) space.
The color image segmentation results are shown in Fig. 2.
The set of images is divided into two groups: Some gen-
eral images (from (1) to (3)) and some images taken by the
iCub’s cameras (from (4) to (6)). For each group we show
the original images, the segmentation provided by the EDI-
SON implementation of themeanshiftalgorithm, those ob-
tained with the [9], and those obtained with our algorithm,
from left to right, respectively.

From a visual inspection of the figures it is hard to say
what is the best segmentation. Themeanshiftoutput is prob-
ably more visually appealing. This method has been spe-
cially designed for image segmentation and contains a few
post-processing steps that improve the overall quality of the
results. Using raw mixture model estimation, as our method
and FIGJ, there are no clear qualitative advantages of one
over the other.

Table 3 shows quantitative results of the image segmen-
tation runs using FASTGMM, FIGJ and FASTGMM with
the final optimization step. If computational speed if an im-
portant requirement in the application at hand, we may say
that our algorithm is better for image segmentation, because
it is fast, its initialization is simple and produces compara-
ble results. On the negative side on theαMAX parameter (see
sec. 3.5). [9] instead, it requires thea-priori definition of
the maximum number of mixture components, that is the
starting number of components. The higher it is the longer
it will take for the input segmentation. If it is set too small,
the solution space may not be appropriatelly explored, giv-
ing rise to undersegmentation. In addition, some problems
arise with the evaluation of the covariances matrix for some
real images. It happens that some of them may become ill-
conditioned, making FIGJ “crash” when too many compo-
nents are computed.

6 Discussion

In this section we highlight other aspects of the proposed
algorithm and provide an overall comparison of the advan-
tages and disadvantages with respect to FIGJ.
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Original Image EDISON FIGJ FASTGMM

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 2 Color image segmentation results. We divide these images into two groups: Some general images, on the top (lines (1) to (3)), and some
images taken by the iCub’s cameras, on the bottom (lines (4) to (6)). For each group we show the original images, those obtained with EDISON,
those obtained with FIGJ, and those obtained with our algorithm, from left to right, respectively.

6.1 FASTGMM Optimization Procedure

We reported our results with and without the optimization
procedure. Since one of the most prominent key feature of
our approach is its fast computation, together with its simple
implementation, the optimization process may seem worth-
less or too computational demanding. However, by compar-
ing its performance against those of [9], our algorithm still
remains faster (see sec. 5.1.2). The difference in terms of fi-
nal mixture precision is not so evident at a first glance, both

in the final log-likelihood and the normalized L2 distance,
but allows some improvements in the final segmentation. If
one claims for the fastest algorithm it is advisable to not use
the optimization, even though it may lead to some improve-
ments to the final mixture. Otherwise, FASTGMM gives a
good precision and a better computational cost.
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Input Algorithm
# Initial # Detected

# Iterations
Elapsed Time Diff time FASTGMM

Log-likelihood
Diff lik FASTGMM Diff lik FASTGMM

Crashed
gaussians gaussians [s] with opt vs FIGJ % with opt vs FIGJ with opt vs FIGJ

1

FASTGMM 9 551 71.460507

130.9699636

-235130.6216

0.186374662 17.03330409
Optimization 1 9 23 22.131293 -234692.3977 no

FASTGMM + Opt. 9 700 93.5918 -234692.3977
FIGJ 16 16 422 307.454885 -274668.2675 yes, 17

2

FASTGMM 14 426 80.365553

109.5710584

-314931.44

0.120630946 11.16531396
Optimization 1 14 374 88.057387 -314551.5352 no

FASTGMM + Opt. 14 800 168.422941 -314551.5352
FIGJ 30 25 572 1611.816189 -349672.2017 no

3

FASTGMM 7 276 34.977055

16.7543208

-226138.1494

3.34203E-05 17.57803149
Optimization 1 7 36 5.860168 -226138.0738 no

FASTGMM + Opt. 7 312 40.837223 -226138.0738
FIGJ 16 16 420 272.227272 -265888.6956 yes, 17

4

FASTGMM 7 576 72.744922

3.588007146

-281176.5478

1.30736E-06 15.72288044
Optimization 1 7 14 2.610093 -281176.5441 no

FASTGMM + Opt. 7 590 75.355015 -281176.5441
FIGJ 11 11 267 106.453566 -325385.5959 yes, 12

5

FASTGMM 3 151 16.899695

13.4646217

-218447.7912

2.96364E-06 16.0195988
Optimization 1 3 23 2.27548 -218447.7848 no

FASTGMM + Opt. 3 174 19.943671 -218447.7848
FIGJ 12 12 260 130.416222 -253442.2435 yes, 13

6

FASTGMM 11 451 67.534808

47.35502469

-210899.0185

0.114549212 17.68706256
Optimization 1 10 180 31.981125 -210657.4353 no

FASTGMM + Opt. 10 631 99.515933 -210657.4353
FIGJ 24 22 514 624.913104 -247916.5477 no

Table 3 Experimental results on real images segmentation.
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Fig. 3 The final log-likelihood evolution as function of the numberof iterations of two different kinds of input data used within the experiments:
the 4 mixture components (a) - FIGJ and (e) FASTGMM, the 12 mixture components - (b) FIGJ and (f) FASTGMM, the image (4) - (c)FIGJ and
(g) FASTGMM, and the image (5) - (d) FIGJ and (h) FASTGMM.

6.2 Log-Likelihood

We approach the problem conversely than in [9]. Instead of
starting with the maximum number of mixture components,
we start with just only one. This will generate two opposite
evolutions of the cost functions. FIGJ is characterized by a
decreasing exponential curve, that raises at the end. Our ap-
proach, instead, is characterized by an increasing exponen-
tial curve. Fig. 3 shows four examples of these output for
each algorithm.

Here it is possible to notice spikes in FIGJ curve, corre-
sponding to component annihilation. When the log-likelihood
increases, it means that the current mixture description is
worse than the previous one.

Similarly, when our algorithm splits a gaussian, i.e. adding
a component, a spike that decreases the log-likelihood ap-
pears on the curve. Finally, when the log-likelihood does not
increase significantly the computation stops.

6.3 Overall comparison: Which algorithm is the best
one?

There’s not a unique answer to this question. Both approaches
has advantages and disadvantages. These are summarized in
tab. 4.

Generally, our algorithm is faster than the [9]. However,
both techniques rely on somea-priori parameters: FAST-
GMM αMAX andλ , and FIGJ the maximum number of com-



14

Algorithm Pro Contro Application Domain

1. Deterministic. Independent runs of the1. Requires tuning parameters for 1. High dimensional data (e.g. Image
algorithm will produce the same result. controlling the convergence. Segmentation, Robotics)

FASTGMM 2. Initialization is unique. No parameters 2. On-line and real-time applications
required. 3. Applications requiring a low number
3. Low computational burden. of components (e.g. low bandwidth coding).

1. Does not require parameter tuning for 1. Stochastic. Different runs will lead to 1. Low-dimensional data.
controlling convergence. different results. 2. Off-line applications.
2. Better results on average in synthetic 2. Requires the specification of the initial 3. Applications requiring a high number

FIGJ data generated by gaussian mixtures number of components. of components (e.g. high quality coding).
3. High computational cost.
4. Showed unreliable performance in
image segmentation.

Table 4 Comparison between FASTGMM and FIGJ: Advantages and drawbacks of both algorithms.

ponents. These greatly affect the algorithms, the first for the
precision most, and the second for the computational burden
most.

Our approach is better when the time computation is a
strict requirement. If the computation time is not a problem,
FIGJ can be applied to synthetic data with more precise re-
sults than FASTGMM.

FASTGMM performed especially well on image seg-
mentation. FIGJ, on the other side, did well in synthetic data,
but not for real images. This is because of three main points:
its low robustness to numerical errors produced crashes due
to singular matrices when a certain number of components
is analyzed (usually from 18, 20) as reported in tab. 3; higher
computation time; and inaccurate selection of number of
components.

7 Conclusion

In this paper we proposed a unsupervised algorithm that es-
timates on-line the parameters and number of components
of a finite mixture model from multivariate data. The main
focus was on computational speed. Our methodology starts
with a single mixture component and incrementally adds
new components until a good compromise between preci-
sion and speed is achieved. This promotes a faster compu-
tation that alternative methods that start with many compo-
nents and gradually refine them. From this class is the algo-
rithm of [9], for which we performed a detailed comparison
in the application to simple 2D mixtures or to more com-
plex image segmentation scenarios. Our methos has several
advantages: is fast, its initialization is unique, a rough tun-
ing of design parameters is sufficient for good performance.
We describe in detail the operation of the algorithm and its
variants, provide rules for tuning the important parameters
and show, through simulated and real data sets, the advan-

tages of our algorithm in what regards computation time and
fitting score to ground truth.
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