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a b s t r a c t

Log-polar imaging consists of a type of methods that represent visual information with a space-variant
resolution inspired by the visual system of mammals. It has been studied for about three decades and has
surpassed conventional approaches in robotics applications, mainly the ones where real-time constraints
make it necessary to utilize resource-economic image representations and processing methodologies.
This paper surveys the application of log-polar imaging in robotic vision, particularly in visual attention,
target tracking, egomotion estimation, and 3D perception. The concise yet comprehensive review offered
in this paper is intended to provide novel and experienced roboticists with a quick and gentle overview of
log-polar vision and to motivate vision researchers to investigate the many open problems that still need
solving. To help readers identify promising research directions, a possible research agenda is outlined.
Finally, since log-polar vision is not restricted to robotics, a couple of other areas of application are
discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Both natural and artificial visual systems have to deal with
large amounts of information coming from the surrounding envi-
ronment. When real-time operation is required, as happens with
animals or robots in dynamic and unstructured environments, im-
age acquisition and processing must be performed in a very short
time (a few milliseconds) in order to provide a sufficiently fast re-
sponse to external stimuli. Appropriate sensor geometries and im-
age representations are essential for the efficiency of the full visual
processing stream. To address this problem it is wise to look for
the solutions present in biological systems, which have been op-
timized by millions of years of evolution. For instance, the visual
system of many animals exhibits a non-uniform structure, where
the receptive fields1 represent certain parts of the visual field more
densely and acutely. In the case of mammals, whose eyes are able
to move, retinas present a unique high resolution area in the cen-
ter of the visual field, called the fovea. The distribution of recep-
tive fields within the retina is fixed and the fovea can be redirected
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1 Receptive fields are spatially organized biological computational elements and,

according to [1], are probably the most prominent and ubiquitous computational
mechanism employed by biological information systems. The concept is revisited
in Section 2.

to other targets by ocular movements. The same structure is also
commonly used in robot systems with moving cameras [2–6].

In the late 70s computer vision researchers broke new ground
by considering the foveal nature of the visual systems of primates
as an alternative to conventional uniform resolution sensors for ar-
tificial perception in computers and robots. Earlier on, biological
findings in the visual cortex ofmonkeys [7] had shown that the dis-
placement of a light stimulus in the retina produces displacements
in the cortex that are inversely proportional to the distance to the
fovea. This effect, also known as cortical magnification, indicates a
general scaling behavior by which both receptive field spacing and
size increase linearly with eccentricity, i.e. the distance from the
fovea [8]. It was found that responses to linear stimuli originating
in the fovea lie roughly along lines in the cortex, and circular stim-
uli centered on the fovea produce linear responses in the cortex at
approximately orthogonal orientations [9]. Thus, the information
transmitted between the retina and the visual cortex is organized
in an approximate logarithmic-polar law [10].

The foveal structure of the retina of some animals is, together
with their ability to move the eyes, a fundamental mechanism in
the control of visual perception. In the late 80s and early 90s, re-
searchers started exploiting eye movements to achieve complex
visual tasks. The paradigm of active vision emerged as a powerful
concept to endow an active observer with the ability to find more
efficient solutions to problems that, from a passive vision perspec-
tive, were ill-posed and non-linear [11]. The idea can be general-
ized beyond pure perception by includingmanipulation. The smart
usage of robot arms and hands, for instance, opens up many more

0921-8890/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2009.10.002



V. Javier Traver, A. Bernardino / Robotics and Autonomous Systems 58 (2010) 378–398 379

possibilities for better visual perception [12]. A great deal of excite-
ment was aroused at that time with regard to the present and fu-
ture possibilities of active vision [13]. For instance, by purposefully
moving the eyes, an observer with a foveal low resolution sensor
can acquire a ‘‘virtual’’ high resolution image of its entire field of
view [14]. Therefore, following on as the next natural step forward,
a new concept appeared —space-variant active vision [15].

Since then, efforts have been made to explore the advantages
that foveal-like log-polar imaging can bring to robotic applications.
However, after almost three decades since those initial studies,
no systematic and comprehensive work has been published that
attempts to review past research on the topic. While a careful
review of log-polar models was conducted ten years ago in [16], its
focus was a detailed study and comparison of log-polar mapping
templates and models with overlapping receptive fields. More
recently, themotivations for retina-like sensors and the properties
of the log-polar mapping were nicely considered in [17,18].
Another paper [19] surveyed foveated sensors with a particular
emphasis on image processing issues.

Thus, while these few review-like papers did not consider the
applications and usages of log-polar images in depth, we feel that
such an analysis is needed, to reflect on past achievements, discuss
current challenges, and predict future developments. Additionally,
this literature overview would be a valuable aid to any researcher
interested in approaching the field, particularly to beginners.
Finally, another important benefit of such a survey is that of helping
to promote furtherwork, both on the theoretical andpractical sides
of log-polar vision.

Therefore, the present survey aims to complement these
previous reviews, by looking further into the variety of applications
of log-polar sensing that have been proposed. Furthermore, our
analysis pays particular attention to robotic applications. Hence,
the usage of the log-polar transform for pattern recognition issues,
though important, is not considered here. Studies and reviews on
this other perspective can be found elsewhere [20–23].

An overview of the log-polar mapping (Section 2) allows the
readers to become familiar with the basics of this transform.
There are different ways to obtain log-polar images either from
conventional images or directly from a scene, using software-
and/or hardware-based solutions (Section 3). In Section 3 we
also address issues regarding how the mapping parameters may
influence the visual task and whether the selection of optimal
parameters can be automated. The area of visual attention and
salience computation under foveal vision (Section 4) has not been
explored very much, even though it plays a key role in active
object search and recognition, in exploratory gaze strategies, and
in the proper integration of different visual tasks in practical
scenarios. One of the visual processes where log-polar imaging
is most suitable is probably active target tracking (Section 5),
and substantial research has been devoted to this topic. Some
advantages have also been found in estimating the observer’s
motion using log-polar images (Section 6), basically due to its
polar geometric nature which fits particularly well with time-
to-collision computation and other navigation tasks in mobile
robots. Binocular depth estimation has been considered with a
joint usage of log-polar imaging and active vergence movements
(Section 7). There are also a number of less conventional sensor
arrangements and less known properties of log-polar imaging that
deserve some consideration. It is our prediction that many of these
issueswill open up the door to fascinating new research challenges
in automatic foveal vision not onlywithin robotics but also in other
fields of application (Section 8).

2. Log-polar mapping

Log-polar mapping is a geometrical image transformation that
attempts to emulate the topological reorganization of visual

Fig. 1. The log(z)model for retino-cortical mapping, where a central circle of small
radius has been left out of themapping in order to dealwith the singularity problem.
The retinal plane (left) is mapped onto the cortical plane (right) via w = log(z).
Concentric circumferences and radial lines in the retinal plane become straight
lines in the cortical plane. Rectangular cells in the transform domain correspond
to sections of concentric annuli in the original domain.

information from the retina to the visual cortex of primates. It
can also be found in the literature under different names, such
as log-polar transformation or the log(z) model. The reason for
this last denomination comes from the fact that the mapping can
be mathematically modeled by the complex logarithmic function
log(z), where z is the complex variable representing points on the
image plane.

2.1. Definition

Let us consider the complex retinal and cortical (log-polar)
planes, represented by the variables z = x + jy and w = ξ + jη,
respectively (j is the complex imaginary unit). The complex log-
polar mapping is:

w = log(z) (1)

and the log-polar coordinates ξ (eccentricity) and η (angle) are
given by:

ξ = log(|z|) = log
√

x2 + y2

η = arg(z) = atan2(y, x)

where atan2(y, x) denotes the two-argument arctangent function
that considers the sign of x and y in order to determine the
quadrant of the resulting angle.

This mapping transforms concentric circumferences and radial
lines in the retinal plane into straight lines along the ξ and η
directions in the cortical plane, respectively (Fig. 1).

2.2. Properties

The main properties of the mapping and some of their practical
implications are as follows:

Conformal mapping: The cortical image (also called log-polar
image) preserves oriented angles between curves and
neighborhood relationships, almost everywhere, with
respect to the retinal image. In theory, this property
predicts that image processing operations developed for
Cartesian images can be applied directly to log-polar
images. In practical terms, however, specific algorithms
are required in many applications.

Elegant trade-off solution between these three mutually opposing
criteria: wide field of view, high visual resolution and
little data to process. For robotics applications, there
are two significant benefits of this particular sampling.
On the one hand, the reduced size of log-polar images
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(as much as 30 times smaller than uniformly-sampled
Cartesian images have been reported) hugely facilitates
real-time visual data processing. On the other hand,
the radially logarithmic sampling entails that a higher
resolution is devoted to the center of the scene (fovea
area) which, in turn, means that foveal information is
represented by a big number of pixels in the log-polar
image. One of the most interesting practical implications
of this foveal predominance, is that foveated targets can
be tracked without being explicitly segmented from the
background. Additionally, the segmentation of a verged
target in a binocular system becomes easier.

Biological plausibility: It approximates the receptive field distribu-
tion and retino-cortical mapping in the visual system of
mammals. Depending on the application, this mimicry of
biological solutions can be seen as an experimental sup-
port tool to neurophysiology, either to validate its find-
ings or to propose new hypotheses. On the other hand,
from an engineering point of view, it is a rich source of
inspiration for sound strategies developed in the natural
animal world.

Rotation and scaling ‘‘invariance’’: When the original image is
rotated or scaled with respect to its center, patterns
in the log-polar image only undergo translations, thus
preserving their shape. This geometric property, also
known as edge or shape invariance, is particularly helpful
for rotation- and scale-invariant pattern recognition, but
it has also been exploited for motion estimation in active
tracking scenarios, as described in Section 5.

The first two properties (conformality and data selection) are
common to other space-variant imagingmodels, while the last two
(biological inspiration and edge invariance) are specific advantages
of the log-polar mapping.

2.3. Singularity at the origin

One weakness of the log(z) model is the existence of a singu-
larity in the center of the image, since it is not possible to evaluate
log(0). This means that receptive fields would become infinitely
small toward the origin. Therefore, points in the fovea cannot be
represented with this mapping. Two solutions are commonly used
to overcome this problem: either using a different mapping for the
fovea (e.g. the identitymapping or a pure polar structure) or apply-
ing the log(z + a) model. This other model was proposed in [24]
as a better approximation to the retino-topic mapping of monkeys
and cats. The log(z + a) model transforms points in the first and
fourth quadrants (x ≥ 0) of the retinal plane via

w = log(z + a), (2)

where a is a positive real number. In coordinates, we have:

ξ ′ = log
√

(x + a)2 + y2

η′ = arctan

(

y

x + a

)

.

Because x is positive in the first quadrant and a is a positive con-
stant, theminimumvalue of ξ ′ is finite (min ξ ′ = log(a)), therefore
avoiding the singularity present in the log(z) model (Fig. 2(a,b)).

The mapping for the other quadrants is obtained by symmetry,
which saves some computation time. Additionally, pixels in the
log-polar plane are rearranged to match the quadrants of the
Cartesian plane and to be connected at the origin (Fig. 2(c,d)). The
resulting mapping is:

Fig. 2. The log(z + a) model [25] can be seen as removing the shaded region in
(a) from the log(z) model. The new log-polar coordinates are designed to have
connectivity at the origin and regions organized in the usual quadrants (Q1, Q2,
Q3, Q4). Figure adapted from [25].
Source: With kind permission from Springer Science + Business Media: Interna-
tional Journal of Computer Vision, Volume 13, 1995, pages 75, R. Wallace, P. Ong, B.
Bederson, and E. Schwartz, Fig. 3.

• first and fourth quadrants (x ≥ 0):

ξ ′ = log
√

(x + a)2 + y2 − log(a)

η′ = arctan

(

y

x + a

)

• second and third quadrants (x < 0):

ξ ′ = − log
√

(−x + a)2 + y2 + log(a)

η′ = arctan

(

y

−x + a

)

.

The additional term log(a) produces a shift in the radial
coordinates such that points at the origin result in ξ = 0, thus
forcing the connectivity of the different quadrants. The use of
the arctan(·) function instead of atan2(·, ·) is chosen so that the
angular range is

[−π
2 , π

2

]

, which promotes the arrangement of the
quadrants in the usual sequence.

The log(z+a)model lacks the property of exact scale invariance.
However, this is often tolerated in practical applications. Other
solutions to the singularity problem have also been proposed
[16,26–28].

2.4. Discretization

The log(z) and log(z + a) are conceptual models defined
in continuous coordinates. They tell us how retinal and cortical
coordinates are related, but, in practice, the mapping must be
discretized. The conventional approach considers the cortical plane
to be uniformly discretized as if it was an ordinary Cartesian image,
i.e. covered with a dense grid of rectangular regions. Thus, let us
consider a grid of E × A rectangular pixels (also known as cortical
cells) whose corners are at coordinates wp,q = ξp + jηq, p ∈
{1, . . . , E}, q ∈ {1, . . . , A}, with E as the number of eccentricities
(radial rings) and A the number of angular sectors. In the retinal
plane, the corresponding regions, γp,q, are shaped like angular
sections of concentric annuli. Such regions are called retinal cells
or receptive fields (RFs). Fig. 1 illustrates the partition of the cortical
plane with a uniform grid and the corresponding retinal cells.
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Fig. 3. Top: Retinal images on the log-polar mapping template. Bottom: The
corresponding log-polar images. To illustrate the edge invariance property, the
image on the left is rotated (middle) and scaled (right), which correspond to
approximate translations in the log-polar domain, in the angular (η) and radial (ξ )
directions, respectively, as shown with the arrows.

Each retinal cell has a weighing function φp,q(z) associated to it
that represents the way the value of each cortical pixel is obtained
from the information in the retinal array. This can be modeled by

cp,q = 〈f , φp,q〉, (3)

where f is the function representing the Cartesian image. With
uniform weighting functions, this operation represents the simple
averaging of the retinal information within the spatial support
of each retinal cell. Neighbor cells in the retinal domain are
also neighbors in the cortical domain, except along the angular
discontinuity and the radial singularity. Shape invariance to
centered rotations and scalings no longer holds perfectly for the
discretized log(z) model. However the approximation is good
enough for practical applications, if discretization is not too coarse
(Fig. 3).

2.5. Other implementation details

Models following biological datamore closely have overlapping
cells. They are computationally more expensive than non-
overlapping ones but gain in smoothness of the log-polar image
pixels. The models presented in [29] and [30] have cells with a
log-polar distribution but with circular shapes and a moderate
amount of overlap with the neighbors. In [29] a tessellation is
proposed with a linear relation between receptive field size and
eccentricity, and a cell overlap of 50%, as shown in Fig. 4(a). The
proposal in [30] also uses circular receptive fields but attempts to
minimize the amount of overlap between them by using a slightly
different organization of receptive fields where direct neighbors
are not in the same ring (Fig. 4(b)). Besides those seen above,
there are other implications of log-polar sampling, as well as less
obvious properties. For instance, discrete log-polar images and
their internal representation introduce some practical difficulties,
as the shapes andmotions of the objects are distorted in a complex
non-linear and inhomogeneous way. Appropriate algorithms and
strategies have to be devised carefully to deal with these issues.
Another example is the difference in resolution between the
fovea and the periphery which calls for active strategies from the
observers so that the gaze can be redirected according to the scene,
the goals of the task and the ongoing visual events.

In terms of data structures in computer implementations, a log-
polar image may not differ from a conventional image, except for

②

①

❢�✁✂✄❘☎

❛ ✆

Fig. 4. Overlapping models: (a) the model of [29] implemented in [31], and (b) the
model in [30] (figure taken from [16]).2

✝ ✞

❝ ✟

Fig. 5. The connectivity graph (CG) [33,34]: (a, b) sensors with (a) a log-polar and
(b) an arbitrary pixel arrangement; (c, d) their corresponding CGs.
Source: With kind permission from Springer Science + Business Media: Interna-
tional Journal of Computer Vision, Volume 13, 1995, pages 77, 79, R. Wallace, P.
Ong, B. Bederson, and E. Schwartz, Fig. 4 and Fig. 6.

the different meaning of the axes (row and column indices). In this
case, one common difficulty to be tackled refers to the circularity
of the angular axis, since the two ends of the rectangular log-
polar image have to be processed as if they were really connected.
To solve these kinds of technical complexities, an alternative
representation, the connectivity graph, was proposed [32]. It has
the advantage of being very general and able to accommodate
arbitrary sensor lattices, as illustrated in Fig. 5. Local image
operations, such as edge detection, can therefore be applied
without special cases (e.g. image boundaries) in mind. As a
disadvantage, graphs have to be defined, built, and processed,
whichmay result in a loss of efficiency in particular circumstances.

2 Source: Reprinted from Computer Vision and Image Understanding, Vol. 69, No.
2, M. Bolduc and M. D. Levine, A review of biologically motivated space-variant
data reduction models for robotic vision, Pages 170–184, Copyright (1998), with
permission from Elsevier.
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(a) Reciprocal Wedge Transform (RWT) [46].
© 1995 IEEE.

(b) Cartesian Foveal Geometry (CFG) [52].
© 2006 IEEE.

(c) Dimensionally-independent exponential mapping (DIEM) [59].
© 1998 IEEE.

Fig. 6. Some alternative foveal imaging methods. Left column: original Cartesian
image; Middle column: image in the transform space; Right column: Cartesian
image after reconstruction from transformed image.

2.6. Noise issues

Three aspects that relate log-polar images and noise issues can
be identified. One of them is the occurrence of noise problems that
need to be dealt with during the design or implementation of a
log-polar sensor. A second situation may arise in image processing
operations or computer vision applications that are performed
favorably in terms of noise tolerance thanks to the nature of the
log-polar image. Finally, procedures can be designed to reduce the
noise present in an existing log-polar image. The scarce literature
existing on these three aspects is commented briefly below.

With respect to sensor design, the implementation of hardware-
based log-polar sensors (more on this in Section 3) brings noise-
related problems, such as those related with the different size of
the sensing elements used at different eccentricities, and that have
to be addressed [35–38].

Regarding image noise, the advantage of log-polar images has
been considered for scale-invariant feature recognition [39]. Since
the noise in different Cartesian pixels is uncorrelated, the signal-to-
noise ratio (SNR) improves in log-polar pixels when the log-polar
transform is computed from Cartesian images [40]. The averaging
procedure associated to the each receptive field to compute the
gray-level value of a log-polar pixel is essentially a low-pass filter,
and that is why an enhanced noise tolerance is also observedwhen
performing image diffusion in the log-polar domain [41]. Among
linear filters, a simple moving average is shown to be optimal
in reducing random white noise and preserving sharpness in the
step response, with noise being reduced by a factor of

√
n for n

pixels being averaged [42, Ch. 5]. Since the size of the RFs increases
with eccentricity, resolution decays, but the SNR increases with
distance to the center. Furthermore, for a given layout of RFs, their
overlapping allows each of the RFs to be larger, which improves
its SNR if the averaged signals are locally correlated, as it usually

happens in natural images [43]. An optimal amount of overlap can
be found as a trade-off between a greater SNR and a smaller data
redundancy [43]. Recently, projection-based motion estimation
has been shown to exhibit higher noise robustness in log-polar
images than in Cartesian images [44]. But log-polar imaging is
not only good at tackling sensor noise in the periphery, it is also
highly insensitive to perceptual noise (such as unmodeled issues,
image clutter and distractors), since these undesirable artifacts are
blurred or de-emphasized with respect to the dominant foveal
visual data. This advantage has been demonstrated in a number of
visual tasks, including tracking, depth computation and vergence
control, as commented in Sections 5 and 7 below. Certainly, this
very fact becomes a disadvantage if some occlusion happens at the
foveal area.

Concerning noise reduction, in [45] a discrete wavelet trans-
form is applied to reducewhite Gaussian noise in log-polar images.
Interestingly, as a consequence of the implicit low-pass filtering
discussed above, if low-pass filtering is required in log-polar im-
ages, this process can be limited to the central foveal area since the
peripheral pixels, if large enough, already implement this. As a re-
sult, this can save further computational cost.

2.7. Other foveal methods

While log-polar imaging is the most common foveal method,
many alternative foveating approaches have been proposed. These
are generally aimed at (a) preserving linearities; (b) having a
shiftable fovea, adaptive-size fovea, or multiple foveae, or (c)
the flexibility of a family of parameterized transformations. All
the techniques share as their common goal that of reducing the
amount of visual information and they differ in the different
geometries and data structures chosen to suit certain purposes.

The Reciprocal Wedge Transform (RWT) [46,47] (Fig. 6(a))
preserves linear features, which is not possible in the log-polar
domain. The RWT has been shown to be suitable in road following
and depth recovery tasks. Multiresolution, pyramid-based foveal-
likemechanisms, such as the Cartesian exponential topology (CET),
have been used in active vision [48], video transmission [49],
and motion and image segmentation [50,51]. The Cartesian
Foveal Geometry (CFG) [52] (Fig. 6(b)) is similar to the CET,
but the receptive fields are of constant size regardless of their
eccentricity and no actual multiresolution is used. While CET
and CFG have been shown to work in some tasks, no particular
benefit over log-polar imaging has been demonstrated besides the
claimed advantage that conventional image processing procedures
require less modification than in the log-polar case. In general,
foveated systems have been proposed to reduce the required
communication bandwidth by exploiting the limitations (space-
variant nature) of the human visual system [53–55].

Multiple foveae systems are described in [56] and [57] for stereo
and video-conference applications, respectively. The potential
benefit of having a relocatable fovea or several foveae in active
vision contexts is that no hardware is required for camera
movements, and their costly and/or inaccurate movements due to
their mechanical nature are avoided [58]. In practical terms, multi-
foveae systems have virtually not been applied in robotic systems.

The dimensionally-independent exponential mapping (DIEM)
[59] (Fig. 6(c)) can sample along the vertical and horizontal
dimensions differently. Possibly, the main advantage of DIEM is
its flexibility, so that its parameters can easily be chosen to fit the
problem at hand by granting more importance to one dimension
or the other, and by sampling more densely at the center or at the
periphery.

In short, no foveation mechanism is suitable for all tasks, and
all of them exhibit advantages and disadvantages. With respect to
other techniques, the log-polar method is biologically motivated,
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(a) first CCD sensor built [61].
© 2002 IEEE.

(b) CMOS sensors reported in [65].
© 1995 IEEE.

(c) CMOS sensors reported in [36].
Source: Courtesy by Cypress
Semiconductor Image Sensor.

Fig. 7. Retina-like sensors.

it is one of the best known transforms, and it has been largely
studied and shown to be useful in a wide range of applications.
While linearities and translation invariance are certainly lost in
log-polar images, the limitations associated with this lack can
be compensated by proper algorithm design and/or appropriate
active vision mechanisms, as reported in a significant part of the
literature surveyed in this article. Real-time active target tracking
and time-to-impact estimation are possibly the tasks that log-polar
imaging is clearly best suited to, due to its favorable geometric
arrangement.

3. Sensor design

While the market of commercial visual cameras is dominated
by sensors with conventional Cartesian lattices, research and de-
velopment on foveal imaging during the 90s led to the design and
construction of several prototypes of the so-called retina-like cam-
eras with sensitive elements arranged following a log-polar pat-
tern. The first versions of these sensors and cameras were based
on the Charged Coupled Device (CCD) technology [60–64], while
later models used the Complementary Metal Oxide Semiconduc-
tor (CMOS) technology [65,66,36]. Technical difficultieswere grad-
ually overcome and the sensor was improved by increasing the
number of pixels and introducing color sensing [67]. Three of these
sensors are depicted in Fig. 7. A detailed report on vision chips, in-
cluding foveal ones, is provided in [68,69].

Themain advantage of these hardware-based log-polar imaging
devices is that the captured image is already in the log-polar
format,which allows or promises fast real-timeprocessing in time-
critical applications like active vision tasks. One main drawback,
however, is represented by the technical obstacles faced either
during their design and construction or even during their usage,
which limits the range of applications. Furthermore, the hard-
coded geometry layout makes it very difficult, if not impossible,
to experimenting with different sensor parameters. An alternative
(not log-polar) biologically inspired kind of visual sensor is offered
by curved sensors [70], which mimic the hemispherical geometry
of the human eye and bring forward additional challenges and
possibilities.

Because flexibility in setting the log-polar parameters is such
an important issue for experimental work, software that obtains
log-polar images fromCartesian ones has been themost frequently
used method. In this case, however, care should be taken to
perform the log-polar transformation properly. The literature
contains several works that provide hints for log-polar mapping
computation [71–74], design or resolution considerations [75–77],
and alternative fovea designs [78].

Unlike hardware-based sensors, software-based ones have
the unavoidable cost of obtaining the log-polar image from

the Cartesian image. While this represents no (significant)
disadvantage for proof-of-concept studies, it may be a drawback
in real applications. To overcome this problem and still count on
the flexibility of software, an intermediate solution is represented
by virtual log-polar sensors [79,80]. This alternative still needs
Cartesian images as input, but the implementation of the
log-polar mapping is performed in special-purpose hardware
cards, thus making the conversion faster while providing the
possibility of setting the sensor parameters. Other possibilities, not
considered to date, include parallel implementations of the log-
polar transform, or exploring the speed-up provided by the now
popular Graphics Processing Units (GPUs) [81,82].

In the case of hardware-based retina-like sensors, the maxi-
mum resolution achievable is dictated by the limits of the smallest
sensing element that current imaging technology has to offer. In
contrast, the maximum resolution of log-polar images formed by
remapping the contents of Cartesian images depends on the size of
the sensing element used in conventional Cartesian images. There-
fore, while it is possible to oversample a Cartesian pixel to set the
brightness of a set of corresponding log-polar pixels, this strategy
can only lead to redundant visual information in the foveal area.
For this reason, and because of the singularity of the logarithmic
function, a central region is usually kept out of the mapping, thus
becoming a blind area, as can be appreciated in Fig. 3(top). The re-
verse phenomenon, under-sampling, occurs when many Cartesian
pixels contribute to the same log-polar pixel. At the borders be-
tween receptive fields, a Cartesian pixel can be recursively subdi-
vided, up to a desired precision, so that its contribution to a given
log-polar pixel is weighted according to the percentage of its area
lying in the associated receptive field [26,83].

Receptive fields can be defined to have different shapes, loca-
tions, amounts of overlapping and averaging functions [16]. De-
pending on the requirements, different solutions can be adopted.
While for higher precision, sub-pixel methods [26] are possible,
sampling without receptive fields averaging is sometimes used to
speed-up computations [73]. Unfortunately, as far as we know, no
systematic study has been performed to date on the actual practi-
cal impact that these different sampling strategies have.

There has been some interest in analyzing the influence of
sensor parameters on performance in some visual tasks, such
as vergence control [84] or depth recovery3 [85]. Formulating
this problem in a more general way, one can be interested in
finding the sensor parameters that are best suited to a particular
task automatically. As a step further towards this automation, a

3 The concepts of vergence control and depth recovery are covered later, in
Section 7.
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generic framework is proposed in [86], where a genetic algorithm4

finds the geometric parameters of a log-polar sensor that fulfill
a set of given design criteria. A further challenging step would
be to automatically find the best sensor configuration adaptively,
depending on the particular visual task currently being carried out.

While log-polar imaging is adequate for many tasks, it turns
out to be limited in certain scenarios. For instance, the log-polar
mapping is used in [88] in a context of human–robot interaction
to extract depth information through vergence movements of the
cameras of a binocular head mounted on a robotic arm, and to
center and track a target (in this case, a user’s mouth) [89]. This
work illustrates that having a central region with too much infor-
mation becomes a disadvantage when a target is too close to the
camera, because of the amount of redundancy. Therefore, in such
a situation they use a modified log-polar transform [90], moving
the location of maximum resolution towards the periphery. It can
be shown [91] that Jurie’s log-polar mapping [26] can accomplish
this resolution-reversing effect just by properly setting one param-
eter, even though this was not a planned prerequisite of its design,
and neither did the author explicitly mention this property. The
logarithmic profiles for different values of this parameter of Jurie’s
model are shown in Fig. 8. However, as can be easily verified [92],
this log-polar model lacks the scaling invariance property.

This is a nice example giving rise to the need for flexible
general visual transforms so that switching between them can be
performed quickly and easily as a function of the requirements of
the task at hand. In particular, a generalized (log-)polar transform,
with a reduced and meaningful set of changeable parameters,
could be a useful tool in a number of computer vision problems.
Viewing the mapping-related computations as matrix operations
can be a conceptually elegant way to get insight into this desired
generalization [93].

To perform experiments under the philosophy of active vision,
some researchers propose the use of foveal sensors in conjunction
with hardware-based mobile platforms. One of the first of such,
conceived for the specifications required by an active vision
context, is the spherical pointing motor, a miniature pan–tilt
system [94] that had a CCD sensormounted on it, and the log-polar
transform was applied to obtain a complete space-variant active
vision system, Cortex-I [95]. Binocular systems with log-polar

4 Genetic algorithms are a kind of stochastic optimization methods that are
particularly useful in searching in large and non-convex search spaces [87].

imaging have also been studied, either as single heads [96,97,78]
or as part of bigger humanoid-like robots [98]. Very often, off-the-
shelf, commercial (pan–tilt) cameras are used, rather than more
sophisticated, high performance, expensive platforms. For some
proof-of-concept research these simpler solutions are enough,
however. It is important to notice that although all theseworks use
log-polar images in their robotic mechanisms, all of them simulate
log-polar images by software conversion. Indeed, little published
material exists reporting the direct usage of hardware-based,
retina-like sensors, one example being the work by Yeung and
Barnes [99,100]. Finally, a few authors also simulate the camera
and the environment by using simple graphics-based setups
[101,77,102–104].

4. Visual attention

In animals, attention is a cognitive process through which only
a reduced subset of all sensory stimuli in the environment is se-
lected. Paying attention to all the information at all times would
clearly overwhelm the animal’s cognitive capabilities. In robots,
this selection is also required since the computational resources
are limited, and it is also beneficial to automatically select and pro-
cess only the most interesting parts. Regarding visual perception,
models of primate visual attention [105], as well as computational
models [106–108] have been proposed. Important distinctions in
all thesemodels are bottom-up vs. top-down approaches, covert vs.
overt attention, and object-based vs. space-based attention [109].

Bottom-up attention is driven by low-level visual cues (con-
trast, orientation, color, motion, etc.) which are different within a
neighborhood and thus become visually salient. On the other hand,
top-down attention is guided by the requirements of the current
task. Computationally, bottom-up attention is typically modeled
through salience maps encoding the degree of local conspicuity
within an image, while top-down attention is usually represented
by providing these maps with task-related biases.

In relation with other visual tasks, visual attention can be
understood as a core task orchestrating the functioning of the
whole system. For instance, before a target is tracked, it should
be detected by drawing the attention of the system over other
parts of the scene or even over other competing targets. Most
trackingworks, however, obviate this attentional part, and assume
the target position to be known initially, typically by having the
target centered in the visual field.

While a considerable amount of work has been carried out on
visual attention in the computer vision and robotics communities,
little published material exists that explores the topic within
the context of log-polar vision. However, addressing the problem
of visual attention combined with foveal vision is relevant and
important for several reasons [110]. First, both log-polar vision
and visual attention have sound underlying biological principles
andmotivations; second, a deep interplay between both issues can
be expected and this deserves an in-depth study; and third, these
related problems are of great interest for robot vision systems.

In his thesis, 15 years ago,Milanese considered amodel of visual
attention with several elements of biological plausibility [111]. He
was possibly a pioneer in considering log-polar images within an
attention model. However, this was only lightly dealt with on the
surface, as a possible extension of his work. Rao et al. have also
explored attention-like problems [112,113] and provided ideas
to extend their approaches to space-variant sensing. A simplified
model of salience computation with log-polar images was pro-
posed in [114]. Some authors [115,116] have implemented a ver-
sion of the Itti and Koch’s well-known model [117] for log-polar
images (Fig. 9). The FeatureGate bottom-up attention model [108]
is adopted in [118] through banks of oriented filters on log-polar
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Fig. 9. Salience maps. Results of a model of object-based visual attention being
tested on Babybot, a humanoid robot endowed with log-polar vision [116]: picture
4 is the bottom-up salience of picture 1; picture 5 is the top-down salience map of
picture 2; and picture 6 shows a segmented object after its recognition.
© 2005 IEEE.

images. Unlikemany other approaches, they include the optic flow
as one of the feature maps.

The work by Colombo et al. [119,120] consists in computing
‘‘cortical pyramids’’ (image pyramids in the cortical domain) of
some given features, an interesting innovative approach in the
log-polar literature. As an example, a 3-level cortical pyramid is
depicted in Fig. 10. They describe a system that computes a salience
map and models task priorities through scalar weights. From this,
they derive a mechanism of gaze selection for attention control.
Their simulations with motion features (optical flow magnitude
and upper bound on immediacy of collision) allows objects to be
recognized after a reduced number of foveations. This setup, while
simple, demonstrates the effectiveness of modeling biological
theories in computer vision applications. Fig. 11 illustrates how
this system works in a toy scenario.

An interest operator, which can be regarded as a very simple
version of a salience-computation model, was defined in [121] on
foveated sensors. By using this operator, a sequence of fixation
points are selected, and a panoramic-like representation is built
from successive snapshots by combining high and low resolution
image areas. A measure of convergence of the ‘‘scan path’’ (the
sequence of gaze fixations following attentional cues) can be used
to evaluate different attention-based strategies [122]. An example
of such a scan path is given in Fig. 12. Another possible way
to assess the performance of a computational model of visual
attention is by (subjectively) comparing its results with those of
actual persons obtained through psychophysical experiments, as
illustrated in Fig. 13. Sela and Levine [123] propose an interest-
point selection method, also based on a symmetry measure,

❛ �

❝ ✁

Fig. 11. Illustration of an attentional system [120]. From a first ‘‘neutral’’ foveation
in (a), the dog draws the system’s attention in (b) because its immediacy of
collision is higher than the speed of the cat, which is moving away. After this,
the recognition task is triggered, and a sequence of four foveations are executed
to complete the identification of the dog at (c). While the system is recognizing
the dog, the train starts moving parallel to the camera, but the system does not
interrupt the recognition process because speed detection has a lower priority than
the recognition task. Therefore, only after recognition is the system’s attention
drawn by the moving train at (d).
Source: With kind permission of Springer Science + Business Media.

which is then adapted to log-polar images. It can be seen that
symmetry-based measures have been repeatedly proposed for
visual attention since it is believed that humans are particularly
good at detecting symmetric stimuli [124]. An interest map,
combining features such as blobs, bars, corners and opponent
color bands, is also used in [125], where images resulting from
narrow-span saccades are reconstructed (fused) into a single
representation.

While interest or key points detection is usually adopted
in matching and recognition problems, they can also be used
to compute measures of salience, even though this particular
meaning of saliencemight be somehowdifferent to that implied by
researchers who use the term either to denote perceptual salience
or to seek more biologically faithful attentional models. For

Fig. 10. A3-level cortical pyramid [120]. Cortical (log-polar) images are on the bottom rowand their reconstructions to Cartesian (retinal) space are in the top row. Resolution
(and the size of the log-polar images) decreases from left to right.
Source: With kind permission of Springer Science + Business Media.
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Fig. 12. Example of scan path [121] at (a) first fixation and after (b) 6, (c) 10 and (d) 13 fixations.5

(a) A human subject.6 (b) The system proposed in [121]
using a symmetry operator.

Fig. 13. Similar scan paths.5

instance, the popular Kadir–Brady Scale Saliency algorithm [126]
(which, despite its name, is also a key-point detector), has
recently been tested and compared using log-polar images [110].
Although they do not explicitly demonstrated how it could be
achieved, these authors suggest that the same principles could
potentially be applied both for interest-point detection and
salience computation, since both problems aim at a different, but
very similar goal, namely, finding local distinctiveness. In any case,
key-point detection and local image descriptors, which have a
richer literature in the context of conventional images [127,128],
remain open problems for log-polar images, and in space-variant
imaging in general. Achieving general geometric invariance in local
descriptors for these unconventional image formats represents an
interesting but challenging issue.

Fovea and periphery areas in the image sensor may serve
different purposes. Features can be extracted from the periphery
to address the ‘‘where-to-look-next’’ problem, while central vision
is better suited for a detailed analysis of the visual data [129]. Scene
exploration can therefore be performed by the suitable integration
of both behaviors. Object recognition can also benefit from active
and purposive movements [130,131]. Baba et al. [132] propose a
fish-eye system where the log-polar images obtained at each eye
fixation are integrated into a global map. A similar idea is provided
in [133], where the merging of old and new visual data into the
panoramic image considers the resolution at which the data is
acquired. Baron et al. [134] compute a salience map based on a
radial symmetry operator and use this map, along with a set of
simple heuristics, to perform a sequence of exploratory fixations,

5 Source: Reprinted from Computer Vision and Image Understanding, Vol. 63,
No. 1, H. Yamamoto, Y. Yeshurun, and M. D. Levine, An active foveated vision
system: Attentional mechanisms and scan path convergence measures, Pages
50–65, Copyright (1996), with permission from Elsevier.

while a long-termmemory keeps track of the scene areas that have
already been visited. In [135], depth maps computed in log-polar
images are input to dynamic neural fields to get distinctive blobs
of activation which are used to trigger saccades.

There is not yet full evidence on how salience influences eye
movements and these, in turn, influence further visual salience and
attention shifts. However, Sun et al. [136] propose a computational
model to integrate (covert) attentional shifts and (overt) gaze
movements, based on object-based visual attention and tested on
natural scenes, where eyemovements were simulated by selecting
image windows (no robotic platform is actually used). Log-polar
images of these windows are taken and processed.

Because detailed high-frequency information is lost in periph-
eral areas of log-polar images, a filtering before sampling (FbS)
mechanism is suggested in [137, Ch. 6]. The idea is to perform
local image operations on Cartesian images (filtering) to get fea-
ture maps, and only after that is the log-polar transformation
(sampling) of these feature maps performed. While there is some
biological motivation underlying this strategy, the alternative ap-
proach, filtering after sampling (FaS), is not only possible, but also
makes sense for several reasons [138], including the probable com-
putational advantage and its agreement with the principles of ac-
tive vision. Both perspectives, FbS and FaS, have advantages and
disadvantages, and further studies can be carried out to explore
and compare them more deeply.

Exploring visual salience and attention under a space-variant
sampling is of interest not only in computer and robot vision, but
also in animal vision studies, as shown in recent research [139]. The
relationship between spatial resolution and visual attention [140]
is also of relevance in the context of foveal-based robot vision.

We feel that many important topics on visual attention in log-
polar images can still be studied, and a few of them are mentioned
briefly here. The role of the periphery for attention is of great
importance and clearly still under-explored. The integration of
overt attention in robotic heads, possibly inspired by existing
models of eye movements [141,142] is a suggestive research
avenue for using foveal vision in its natural context of active
vision.7 While computationalmodels for emotion exist for artificial
agents, no attempt has yet been performed, as far as we know, to
combine attention and emotion. However, biologically, emotions
and attention emerge from the same area in the brain [143], which
suggests their connection, in particular, for top-down attention
modeling. Research showing the usefulness of attention for

6 Source:Reprinted fromVisionResearch, Vol. 11, D. Noton and L. Stark, Scanpaths
in sccadic eye movements while viewing and recognizing patterns, Pages 929–942,
Copyright (1971), with permission from Elsevier.
7 Journals such as Vision Research (www.sciencedirect.com/science/journal/

00426989), Perception (www.perceptionweb.com), or Journal of Vision (www.
journalofvision.org) are also excellent sources for robot vision researchers to get
inspiration and learn from findings and advances in the field of Vision Sciences.
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faster, non-brute-force, recognition [144] has still room of further
development, particularly for foveal imaging. Since attention
provides a link between perception and action [145], it might play
a significant role inmodeling and implementing affordances [146].
Demonstrating the usefulness of attention in practical real-world,
useful applications, and its seamless integrationwith the rest of the
components of a robotic system, is also an appropriate and exciting
direction to pursue.

5. Visual tracking

Visual tracking consists in keeping track over time of the
movements of one or more moving objects within the visual field
of a given observer. When the camera dynamically changes its
parameters to track a moving object [147], this can be referred
to as active tracking. On the contrary, passive tracking just keeps
record of the target position without moving the camera, and
therefore entails a smaller field of view. A simple taxonomy
of visual tracking may consider two dimensions: passive/active
tracking and uniform/space-variant sampling [148]. Foveal vision
makes most sense when used in active vision scenarios and this is
thus our focus in this section. In this context, several issues can be
raised regarding the impact on performance of a number of factors
such as the dynamics of the mechanical visual system, the delays
due to computations, the hardware constraints, and themobility of
the target. These relationships were analyzed in [149], using linear
optimal control theory.

There are two main issues to consider in active tracking ap-
proaches. One has to do with the estimation of the relative mo-
tion between the target to be tracked and the camera. This ‘‘retinal
slip’’ is one of the main visual features used by humans in control-
ling the oculomotor behavior known as smooth pursuit [150]. Most
of the work conducted within the context of visual tracking with
log-polar sensors addresses this problem and this will be the main
interest in this section.

The second relevant issue to consider is how to control the
active tracking device in order to keep the target stabilized in the
fovea most of the time. Tracking can only be perfect when the
target trajectories are regular. If the system is able to predict these
regularities, it can issue the motor commands anticipatively and
cancel the delays existing in the control system. Such predictive
control schemes are found in infants at early ages and have
been implemented recently in humanoid robot heads [151–153].
Constant velocity, constant acceleration and sinusoidal motions
are typical motions taken into account in these problems. When
the trajectories of the target are not regular, tracking errors will
arise and the target may move out of the fovea. In these cases
the perception system must be able to identify the target in the
periphery of the visual system.

An interesting study by Vincze and Weiman [154] considers
the trade-off existing between sampling time and tracking errors.
For a certain velocity error, the longer the sampling time is, the
farther away the target will be from the predicted position. This
would suggest that short sampling times are better, but with short
sampling times one can only process small image windows that
may not reach the target. Vincze and Weiman [154] show that
some space-variant sampling approaches, such as log-polar and
pyramids, always improve their performance when their visual
search range increases: the rate of growth of computation time
is smaller than the rate of growth in the window size. The same
does not happen for Cartesian geometries, where thewindow sizes
that maximize performance are limited to prevent long sampling
times that would allow the target to escape from the field of view.
This is a significant argument for the use of space-variant sampling
strategies in active tracking scenarios.

The remainder of this section will review motion estimation
methods in log-polar images, either for passive tracking (to update

the tracking window) or in active tracking (to update the camera’s
gaze directions). Although the focus is on tracking, the techniques
described here can also be helpful in other problems. We will
distinguish between approaches which estimate the target motion
more explicitly from those which estimate the change of target
position and, therefore, motion is estimated indirectly.

5.1. Explicit motion estimation

Motion estimation is a fundamental and challenging problem
in computer vision [155], and has many applications in robotics,
including visual tracking. In terms of the locality of the visual
information being used and the usage of parametric motion
models, two broad groups of motion estimation methods can be
distinguished: optical flow-based ones (which tend to be local and
non-parametric) and region-based ones (which are generallymore
global and assume parametric motion models). Both approaches
are discussed in the following paragraphs.

5.1.1. Optical flow-based methods

One fundamental technique to estimatemotion is that of optical
flow [156–159], where the motion is estimated locally either at
each image pixel or only at selected image positions. The main
advantage of optical flow lies in its flexibility to represent local
motion, which is required when the moving object is non-rigid,
or articulated, or when different objects move independently in
the same scene. However, optical flow estimation also has some
disadvantages, such as the influence of the aperture problem8, a
high computational cost, and noise sensitiveness.

Theoretically, optical flow can also be computed in log-polar
images. Araujo and Dias [74,73] compute the normal optic flow,
which is the projection of the flow vector perpendicular to the
local image gradient, since the aperture problem prevents the true
motion vector from being computed unless more sophisticated
means and assumptions are employed. Daniilidis and Krüger have
also made contributions to optical flow computation and 3D
motion estimates using log-polar images [161,162].

In practice, care must be taken when computing optical flow in
log-polar images [71]. On the one hand, some techniques devel-
oped bearing the Cartesian geometry in mind may lead to wrong
results if they are directly applied to the log-polar geometry; on the
other hand, the particular polar nature and logarithmic sampling
of discrete log-polar images motivate the need of devising appro-
priate filters for computing spatio-temporal derivatives. Similarly,
the well-known brightness constancy assumption [160] underlying
many optical flow methods,9 is easily violated when illumination
changes, and under these conditions motion could be wrongly de-
tected even with a static scene. To deal with this problem, a gen-
eralized dynamic image model, which also takes into account the
changes in brightness, is used in [163] for log-polar images. In that
work, the practical issues related to space-variant sampling are
addressed through space-variant local windows and specialized
versions of the gradient operator, a topic also considered in other
works [164,40].

Despite these caveats, other authors have used conventional
optical flow in log-polar images, not only without drawing atten-
tion to any disadvantages, but in fact with reported benefits with
respect to Cartesian images [165]: under fixation conditions, trans-
lational motion is nearly zero, and the other affine motion com-
ponents (rotation, scaling and shear) can be estimated better in
polar-logarithmic images. This is based on the fact that the high-
acuity fovea can appreciate small motion, while the coarser sam-
pling at periphery is more suitable for larger motion estimation,

8 The aperture problem arises because the limited visual data of a local analysis
prevents the true direction of motion from being inferred [160].
9 Basically, this assumption states that a change in brightness at an image location

can only be due to an underlying motion.
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which is something other authors have noticed too [166]. Tun-
ley and Young’s approach has been employed by some au-
thors using log-polar images in active vision tasks [27,167,168].
This idea of detecting large-range motions while still being able
to accurately estimate them seems to be under-explored, despite
its theoretical and practical attractiveness. Recently, experiments
with 1D space-variant arrays of elementary motion detectors (EMD)
have been performed to actively track a single target [169]. The
tuning and arrangement of the EMDs within the array are cus-
tomized according to the expected target velocities and desired
precision. Even though this work does not really use log-polar
imaging, the concept is however applicable and provides inspira-
tion for further developments.

For actual practical purposes, the optical flow field itself is not
very useful, and some kind of post-processing is required. In [73],
for instance, the magnitude of the flow vectors are computed and
summedalong the radial and angular directions. The center ofmass
of the two resulting magnitude profiles is then used to locate the
moving target, and to control the cameras in order to fixate it.

5.1.2. Region-based methods

In contrast to optical flow, which is basically a local approach,
global and region-based techniques are attractive for their higher
robustness. One known and efficient region-based tracking ap-
proach is that proposed by Hager and Belhumeur [170] for Carte-
sian images, and which inspired two alternative solutions in the
log-polar domain. On the one hand, the work in [171] brings fur-
ther efficiency by reformulating the framework and then applying
it to log-polar images. On the other hand, the emphasis in [172] is
to exploit the log-polar domain by minimizing the explicit usage
of Cartesian coordinates.

While translation is the simplest motion component in Carte-
sian domain, because it can be represented simply by two con-
stants (the shifts along the x and y axes), it becomes a complicated
space-variant warping in log-polar imagery. An early attempt to
solve this used a 1D correlation-based approach along individual
rows and columns in an alternative log-polar representation that
was particularly suitable for the estimation of translationalmotion,
but lacked the scale and rotation invariance [173]. More recently,
the problem was better addressed in [174] by proposing and com-
paring two techniques: a gradient descent optimization approach
and a projection-based technique, the latter being much more
effective and robust. These two techniques deal with the added
complication of how translation maps onto log-polar domain
while, unlike [173], still preserving the edge invariance property.
Bonmassar and Schwartz proposed the exponential chirp transform
(ECT) [175], by means of which the shift invariance of a Fourier
transform still holds in a space-variant domain such as the log-
polar, and thatwas used formotion deblurring [176]. Although this
is an outstanding contribution, the conceptual and implementation
complexities behind the ECT probably reduce its appeal in practical
applications.

A progressive registration technique [177] has been success-
fully applied to log-polar images in [178] to track planar struc-
tures. The idea is to pre-compute a set of sample templates by
assuming a known initial reference template as well as the kind
and range of expected image deformations. Planar tracking in log-
polar images has also been approached with other methods, such
as complex wavelets [179] and spatio-temporal gradient-based
least squares [180]. A redundant 2Dmotionparameterization [171]
has proven effective in estimating different parametric motion
up to projective models. Basically, a linear combination of partial
derivatives is improved by a linear combination of discrete deriva-
tives in several directions and scales.

The effectiveness and robustness of log-polar images in
estimating large rotations and scale changes has been exploited

Fig. 14. From projections to motion estimates [148]. Radial and angular
projections, Rk , Ak , of the input images, Ik, k ∈ {1, 2}, allow the estimation of
shifts s and r along the two axes in the log-polar plane which, through the scale and
rotation invariance of this mapping, can be readily converted into the estimated
change of scale and rotation angle, respectively. Shifts s and r are thenused to rectify
one of the input images, so that finally the remaining translational shifts, b and c ,
are estimated from the vertical and horizontal projections,Vk andHk . In turn, b and
c are used to control the camera’s pan and tilt degrees of freedom.

in image registration problems, allowing the recovery of large
affine motions [181]. Motion estimation based on a generalized
least-squares (GLS) technique is studied and compared in [182]
both on Cartesian and log-polar images as well as on their
combination. These two last works are examples of combining
Cartesian images with the log-polar transform. While this idea is
a powerful means of exploiting the best of both domains, one of its
chief disadvantages is that itwould not be applicable if a hardware-
based log-polar sensorwere to be used, since only log-polar images
are available in this case.

By using four different kinds of projections (vertical, horizon-
tal, angular and radial), the four parameters of a similarity motion
model (horizontal and vertical translation, rotation angle and scal-
ing factor, respectively) can be recovered simultaneously as long
as the target is actively tracked, which reduces the amount of rel-
ative translation and thus decouples the translational effects from
scaling–rotation effects [148]. This is a nice example of exploiting
the synergy of active vision, foveal sensing and appropriately de-
vised algorithms: (i) active tracking simplifies motion estimation;
(ii) log-polar images allow fast image processing and facilitates ro-
tation and scaling estimation; and (iii) the efficient and effective
projection-based motion estimator makes active foveal tracking
possible and simpler. A block diagram of this projection-based ap-
proach is given in Fig. 14.

A number of approaches have been proposed to take advantage
of the fact that changes in scale and rotational motion both map to
simple shifts along the log-polar coordinates [172,148]. However,
moving beyond similarity motion models or disabling the active
tracking scenario, and still exploiting the log-polar domain, seems
considerably harder. A generalization of the spatial projections by
using the Radon transform for affine motion estimation has been
suggested [183,44] with interesting, but still limited, results as
regards the number of affine parameters and the range or accuracy
with which these parameters can be estimated. Nevertheless, log-
polar images have been shown to exhibit higher noise robustness
and better results than Cartesian images with the same number of
pixels and field of view [44].

Unfortunately, some of the more general approaches [171,184]
not only fail to exploit the characteristics of log-polar imaging
so smoothly, but also require that the target to be tracked
is known in advance, thus posing a significant limit on their
practical application.While both ideas are similar, themore recent
work [184], based on the idea of the interactionmatrix proposed for
Cartesian images in [185], has some advantages over [171]. This is
essentially due to the fact that it does not depend on the motion
model (theoretically, any arbitrarily complex motion model can
be implicitly adopted) nor on the image sampling scheme (any
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sampling other than log-polar can be used). A deeper analysis and
experimental comparison of both approaches in both theoretical
and practical termswould be interesting. Regarding their common
limitations of an assumed initial template, two kinds of interesting,
non-trivial solutions can be considered. On the one hand, the
computationally heavy off-line procedures now involved in these
approaches should be turned into very fast real-time processes, so
that they could be applied on-line once the target to be tracked
is decided. The other alternative would seek the quite different
route of devising some template-independent technique, and still
sharing with existing approaches nice properties such as search-
free motion estimation.

5.2. Feature-based approaches

The advantage of feature-based tracking is that, once features
have been extracted, fewer data have to be processed andmatching
may be less ambiguous. However, good features need be found
and matched, which is not always easy, and the object of interest
must have enough texture. Additionally, detecting certain features
in log-polar images can becomeaparticularly challenging problem.
Corner detection, for instance, was tackled in [99] through a
Hough-based straight-line detection. Detecting lines through the
Hough transform becomes more natural in log-polar space since
the Hough and (log-polar) image spaces are the same, as found
almost 20 years ago [186]. Since then, other researchers have
been attracted by the problems of line and circle detection in
the log-polar domain [187,188]. In general, learning is found to
be a better strategy for extracting some features (edges, bars,
blobs) than mathematically modeling these features [189,190].
Specialized table-based data structures are proposed [191] to
compute image processing operations directly and efficiently
onto foveated images. While initializing these tables can be time
consuming, this off-line effort is paid off by the real-time on-line
application.

As mentioned above, because of their sampling, log-polar
images are suitable for detecting large motion in the periphery
and smaller motions at the fovea [180,166,73], since these areas
have different motion sensitivity. Weiman and Juday proposed
three tracking algorithms acting differently, depending on the
position of the target blob [192]. An interesting aspect of their
approach is that they exploit the nature of log-polar images. For
instance, instead of explicitly computing the centroid of a blob,
centering it can be achieved actively by camera movements that
maximize thenumber of target pixels. This is a nice example of how
properties of log-polar mapping can be considered and exploited.
This algorithm is also used in [193], as part of a gaze control
mechanism. Similarly, [101] uses the fact that objects increase in
size as they approach the fovea.

Tracking simple bright shapes moving on a uniform black back-
ground is considered in [194] as a proof-of-concept of the adap-
tation to the log-polar domain of a number of well-known image
processing techniques (erosion, dilation, region labeling, boundary
tracking, corner detection and Hough transform of circles, ellipses
and polygons).

5.3. Other tracking approaches

Due to their particular geometric nature, log-polar images are
particularly well suited for actively tracking one single object at a
time. However, the unconventional work by Kang and Lee [195]
considers the tracking of several objects passively (i.e. without
camera movements) by keeping image templates and updating
themover time. In a simulated active vision system, Lim et al. [101]
also addressed a simplified version of the problem of tracking
multiple targets. They decide which object to foveate and track

next as a function of the size of the objects, how much they have
moved between consecutive images, and their distance to the
fovea.

Principal Component Analysis is employed in [26] for face
detection and tracking in log-polar images. This approach uses a
single face model for all possible positions. Under a space-variant
imaging representation, however, considering multiple models
seems more advantageous, as it takes advantage of the varying
resolution, as suggested in [196].

Since color is invariant to a number of geometric and resolution
changes, it is an appropriate cue in some visual tasks, allowing
distinctively colored objects to be robustly tracked even in log-
polar images [197].

Background subtraction is a well-known technique to detect
objects moving on a static background [198]. However, these al-
gorithms generally do not account for a moving background, and
are therefore not useful with a moving observer. In those situa-
tions, a panoramic image can be built, so that a part of the scene
can be indexed according to the direction of the observer’s gaze.
In the case of a pan–tilt unit, spherical panoramas seem to be par-
ticularly well suited to a polar-like image representation, as sug-
gested in [133]. An alternative way of segmenting an unknown
object from the background can be performed if the object is ac-
tively tracked and the background changes over time [172].

Binocular tracking is still another possibility, but it is left to
Section 7, where 3D issues (depth recovery and vergence control)
will be examined.

To recap on the usage of log-polar vision in tracking, it is
worth stressing how the implicit focus-of-attention brought by
the foveal predominance (Section 2) has been considered for
tracking without explicitly segmenting the target. However, this
is only possible if tracking is very accurate and/or the object
has a minimum size and certain round-like shapes. For instance,
it has been found [148] that centered targets should represent
roughly 25% of the field of view to successfully estimate their
motion and track them. While this result actually depends on the
particular mapping parameters being used and the capabilities of
the tracking algorithm, it is nevertheless clear that further research
is still required to address the tracking of non-centered, smaller,
arbitrarily-shaped targets, and also multiple targets. The actual
challenge lies in solving these problems as elegantly as possible
so that log-polar imaging, combined with powerful active vision
strategies, can still have advantages to offer.

6. Egomotion estimation

Egomotion is the motion of the observer (a pan–tilt camera,
a robot arm, or any other dynamic visual agent). Its estimation
is important in those situations where the knowledge of actual
robot movement is required either for self-localization, or to
distinguish it from the motion of objects in the scene. Although
egomotion estimation can be tackled with the general tools for
motion estimation, some specific approaches have been proposed
that exploit the task at hand. Two common characteristics of
these systems are their reliance on the computation and analysis
of patterns of optic flow, and their hardware implementation
(usually, on FPGA-based architectures). Not surprisingly, the polar-
like geometric nature of log-polar images makes them very
suitable for the estimation of self-motion in the direction of the
optical axis.When the focus of expansion is alignedwith the center
of the log-polar transform, motion flow vectors are only radial and
of uniform magnitude in the log-polar plane. As a result, time-to-
impact (also called time-to-collision, or its reciprocal, immediacy
of collision) computation can be addressed more easily [199–203].
However, some authors find that the main benefit comes from
the polar structure and no advantage, besides the computational
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speed-up, are gained from the logarithmic radial sampling [204].
Others consider that these radial-like sensors (polar and log-
polar) bring no particular advantage for the time-to-collision
computation, which is in fact simplified by the assumption of
fronto-parallel surfaces [205].

When it is the observer that moves, rather than a visual target,
the task of keeping a static target in view is called fixation. The
problem of fixation is similar to that of tracking, and has also been
tackled with log-polar images [180,206,207,99,208]. Ahrns and
Neumann [206,207] compare log-polar and Cartesian windows
and find that error measures tend to be more robust, with fewer
local minima, under a log-polar sampling. This result for the
pan angle of a camera, has been repeatedly verified in other
contexts, such as in vergence control [209,27,84], or translation
estimation [210]. An interesting point in the appearance-based
fixation strategy by Ahrns and Neumann is that a confidence-
based measure, by comparing the reference and current views,
is incorporated to make the procedure more robust against
occlusions or other changes of view [207].

Daniilidis proposed two algorithms for the estimation of the
focus of expansion, which are based on a 1D global minima search
for flow patterns [204]. Similarly, the rotational component of
optical flow is used in [211,212] to implement an active docking
behavior, which aims to align the camera’s optical axis with the
robot’s direction of motion. Silva and Santos-Victor found that the
subset of points whose radial and circular normal flow vectors do
not depend on the camera translation are described, respectively,
by a special circle and line [213]. These image locations provide
relevant geometric information about the observer’s motion, and
their estimation is reduced to searches along horizontal and
vertical lines in the log-polar image, so that the focus of expansion
and the rest of the parameters are estimated in a two-step
algorithm [213]. In [214], four sets of spatio-temporal Gabor filters
are applied: two spatial filters are aligned in the radial and angular
directions, while two temporal Gabor filters are tuned to opposite
directions ofmotion, so that expanding and contracting patterns of
motion can be discriminated.

Bishay et al. [215] take advantage of the fact that a mobile
robot moving along an indoor corridor will perceive the edges
arising from the intersections between the walls and the floor
and between the walls and the ceiling as horizontal lines in the
log-polar plane. Additionally, the varying resolution of log-polar
images simplifies amatchingprocedure, since doors or lamps along
the corridor map to very similar patterns even when they are
at different depths. This makes the detection of these landmarks
simpler and faster for robot navigation. Similar ideas are explored
in [216]. Advantages of log-polar and other task-specific image
representations are also exploited in [217] for robot navigation in
a corridor. In outdoors environments with some structure, such as
roads, these kinds of benefits also apply: lanemarks in straight road
sections become parallel lines in the log-polar space and vehicles
are perceived with the same size and shapes. However, this is only
true if the vanishingpoint coincideswith the center of the log-polar
transform. To fulfill this assumption, the camera has to be fixated
on the vanishing point, so that the movements of the vehicle on
which the camera is attached can be compensated for [104].

To distinguish ecomotion (the object’s motion) from egomo-
tion, a differential algorithm is proposed for log-polar images, and
implemented using FPGAs [218–221] based on the fact that the
second temporal derivative in the image sequence is non-zero only
at the borders of self-moving objects.

Omnidirectional vision, usually consisting of the combination
of a curved mirror and a camera pointing towards this mirror,
provides a 360-degree view, which can be very effective for robot
navigation. Under this arrangement, if conventional cameras are
used, the resulting images have to be unwarped for their human or

machine processing. However, the mirror’s shape can be designed
tomatch certain design properties and,when combinedwith a log-
polar camera, rectangular panoramic images are obtained directly,
with no additional computational effort [222,223]. These ideas are
illustrated in Fig. 15.

One problem related to egomotion estimation is image
stabilization, where the goal is to compensate for unwanted
camera movements so that better images are obtained. Some
benefits of using log-polar images in the context of this problem
were explored in [224], where optical flow is computed in four
selected peripheral regions of the log-polar image.

7. 3D cues and vergence control

One of the most important capabilities of autonomous robots
is their ability to perceive the three-dimensional structure of the
environment, in order to avoid obstacles, recognize shapes, and
manipulate objects. Several cues for depth perception can be used
from an image stream. In monocular systems, motion, focus and
shading cues (amongst others) have been systematically used to
address the problem of depth perception. In binocular systems,
depth can be computed via stereo, a conceptually simple and easy
methodology. In active vision systems [11], improved perception
can be achieved by controlling the camera motion. In this section
we will review the main works using log-polar sensors for depth
perception, considering both static and active vision systems. In
the active case wewill also refer to the control of the vision system
parameters for improved perception.

7.1. Depth maps

Though a full 3D reconstruction of the environment is not
possible in the general case and, indeed, may not even be a
desirable goal under a purposive vision philosophy [225], depth
maps (i.e. images where each pixel location represents the
measured depth of an observed 3Dpoint) are important perceptual
structures for robot motion and behavior control.

Beyond the obvious reduction in computational cost, log-polar
images have other benefits in computing depth maps. Although
the greatest advantages arise in active vision scenarios (see next
section), the use of log-polar sensors is advantageous in the
following cases:

• Depth from forward motion: When the observer is moving
forward in natural scenarios, the optical flow amplitude grows,
on average, from the center to the periphery of the visual field.
Due to the log-polar transformation properties, the magnitude
of the optic flow in the periphery is reduced, thus facilitating its
computation by local search or gradient methods [226].

• Depth from convergent stereo: In converging camera config-
urations the image planes are rotated with respect to each
other. This poses registration difficulties because corresponding
points in the two images diverge towards the periphery of the
visual field. Again, since log-polar tessellations compress coor-
dinates in the periphery, registration mismatches are reduced,
thus facilitating the search for corresponding points [227].

In this section we review some works that compute depth maps
in log-polar images. The techniques are similar to their Cartesian
counterparts, but must be adapted to cope with the different
image topology. Two basic approaches have been used: depth-
from-motion and depth-from-stereo.

In depth-from-(ego)motion, a (monocular) moving observer in
a static scenario can stabilize the center of the image by a proper
gaze control. In these fixation conditions, the depth-from-motion
problem becomes well-posed and its dimensionality is reduced.
Optical flow corresponding to camera motion can then be used to
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(a) Catadioptric system. (b) Image with a conventional setup. (c) Image with a space-variant camera.

Fig. 15. (a) Catadioptric sensor designed within the OMNIVIEWS EU project [223]; panoramic images obtained with (b) a conventional mirror–camera setup, and (c) a
mirror designed to match the geometric features of an existing log-polar camera.
© 2002 IEEE.

compute the depth only at sufficiently texturedpixels (sparsedepth
maps) [226]. Alternatively, a phase-based technique using Gabor
filters can be used to compute optical flow vectors and integrate
them over time via a Kalman filter [228]. This results in a depth
estimation for every pixel (dense depth map).

The second approach, depth-from-stereo, uses two cameras
and the projection of 3D scene points onto different locations in
the retinas. The difference between these corresponding locations,
known as disparity, depends on the depth of the observed point as
well as on the camera setup calibration. Sparse disparity maps can
be computed [229] by estimating disparity in log-polar images at
pixels with enough texture. Dense disparity maps are computed
in real time in [230] by testing several hypotheses between pixels
from the left and right cameras and using local pixel interactions to
avoid ambiguities in the disparity estimates in non-textured areas.

More recently, epipolar geometry has been proposed to com-
pute dense disparity maps in log-polar images [231], which re-
duces the general 2D matching problem to a 1D search along the
epipolar lines. However, since straight lines in the Cartesian do-
main become curves in the log-polar space, good line re-sampling
algorithms are required for an accurate matching procedure [188].

7.2. Active perception

Log-polar images have their maximum acuity in the central
part (the fovea). Furthermore, the rotation and scaling invariance
properties only hold when objects are centered in the visual field.
Therefore, when analyzing some particular targets of interest,
it is natural to consider controlling the cameras motion so as
to keep the targets centered in the fovea. This is also the
solution adopted by foveated biological vision systems, which are
constantly changing the direction of their gaze toward the objects
of interest. Fig. 16 shows a couple of active robotic stereo heads
that have been used within this paradigm.

The advantages of using this elegant combination of foveated
sensors and active vision systems have been demonstrated in
a series of works. As far as depth estimation is concerned,
Weiman [234] was one of the first to formally analyze the gains
obtained from the use of log-polar images (apart from the obvious
computation reduction aspect). It was shown that the maximum
stereo resolution with a Cartesian binocular setup is obtained
inconveniently at the periphery of the visual field, whereas log-
polar stereo resolution is maximal in the center of the visual
field of both cameras. Therefore, actively controlling the point of

(a) Baltazar’s head [232]. (b) Eurohead [233].

Fig. 16. Example of robotic active stereo heads: (a) the head of Baltazar [232],
a humanoid robot, and (b) Eurohead [233], a high precision head for quality
measurements.

fixation toward the objects of interest allows the visual acuity to
be maximized also in the depth dimension.

To be able to fully exploit the stereo resolution properties of
log-polar stereo, the fixation point must be controlled to track the
object of interest. In active vision systems, oculomotor control is
usually inspired in its biological counterparts and is decomposed
into vergence and version movements [235]. To track motions in
depth, the vergence angle should be adjusted so that the fixation
point matches the distance from the object of interest. To track
motions in fronto-parallel directions to the observer, the camera’s
direction is controlled to center the target in the eyes. Interestingly,
it has been demonstrated that log-polar images facilitate the
tracking problem per se, both in depth and in fronto-parallel
directions to the cameras [236].

When a target is being tracked, its disparity in the images is
near to zero, i.e. there is a close match between the information
contained in the same retinal coordinates in both images. Some
authors have proposed the maximization of a binocular fusion
index measured by the correlation between the left and right
images [237,238]. The process involves the execution of some
exploratory motion on the vergence angle in order to obtain the
gradient of the fusion index, and then controlling the vergence
angle so as to maximize it. A correct vergence on the object would
be attained when the fusion index is at its maximum value. In [27],
this method is complemented by estimating the expansion and
contraction patterns from the optical flow of the image, velocity
feedback measurements being provided for vergence control.

Searching for the maximum fusion index requires active
vergence movements, which may lead to some problems in
the control loop. Other alternatives have been proposed that
attempt to overcome this problem. In [237], it is proposed to
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Fig. 17. Zero disparity filtering in log-polar images [236]. When objects are under fixation in both cameras, their disparity is close to zero. A zero disparity filter can thus
segment the points belonging to the object (right column). This process is illustrated for a hand (top row) and a face (bottom row). The input stereo images are in the left
and middle columns.

compute the dominant disparity in the images explicitly, by
evaluating the correlation between the images, where one of the
images is transformed according to certain disparity hypotheses.
The hypothesis with maximum correlation is taken as the true
disparity. This value is then input to a feedback PID filter in order
to control the vergence angle.

In [239], a similar approach is taken but using the concept of
virtual horopter [240] and the output of zero disparity filters [241].
The horopter is the locus of all points with zero disparity. Points
in the horopter can be segmented in the images by matching
left and right image patches at the same image coordinates, in a
process known as zero disparity filtering (ZDF). Such points are then
assigned to the target under vergence. Fig. 17 illustrates the ZDF
process by which points belonging to the target under vergence
are segregated from the background. A virtual horopter, tuned for
disparities other than zero, can be obtained by transforming one of
the images according to the required disparity. Oshiro et al. [239]
create several virtual horopters for a discrete set of disparity
hypotheses, and compute the output of zero disparity filtering for
each one. The disparity hypothesis leading to the greatest number
of segmented points is then fed back to control the vergence angle.

The segmentations provided by zero disparity filtering have
proven useful for rejecting points belonging to background
elements. Although the log-polar mapping attenuates background
elements in the periphery of the visual field in a hard-wired
manner, the output of zero disparity filtering has been exploited
to provide added robustness to tasks. In [27], affine optical flow
parameters are computed on the target region and used for
vergence control. In [236] the centroid of the segmented region
and the translational parameters of the optical flow are used for
tracking in the fronto-parallel directions, controlling the robot
head pan and tilt degrees of freedom.

In the above-mentioned works, the set of disparity hypotheses
is often distributed in a non-uniform fashion; it samples the small
disparity range densely and has a coarse representation of large
disparities. The purpose is to have simultaneously, and with lim-
ited computational resources, good precision in keeping the target
disparity close to zero and the ability to detect and compensate for
large disparities. In [242], an explicit rule to determine the set of

disparity hypotheses is proposed, and sub-pixel disparity estima-
tion is achieved by employing quadratic interpolation methods.

Methods based on testing disparity hypotheses have proven
to be fast and robust to environmental changes. In [2], it was
shown that vergence control with correlation measures in log-
polar images allows smaller objects to be tracked than its Cartesian
counterpart. The reason provided empirically is that global
disparity computation is dominated by the disparity with the
largest support, in terms of numbers of pixels. In Cartesian images
this is only the case when the object occupies a very large part of
the image (>50%). However, in log-polar images, objects can be
much smaller if they are centered in the retina, due to the larger
number of pixels assigned to the fovea. Fig. 18 shows a sequence
where a small object approaches the center of the image. While in
the periphery its influence on the global disparity is small and the
system does not change its vergence, as it approaches the fovea its
weight increasingly grows and the robot locks onto the target.

The global disparity computation in log-polar images using
correlation measures is theoretically equivalent to performing
the same computation in Cartesian images that are pre-weighted
by a function (the Jacobian of the log-polar transformation) that
attenuates the value of background pixels [2]. Although this
analysis in the Cartesian domain clarifies the advantage of using
log-polar images for centered objects, for computational reasons
it is preferable to perform the operations in log-polar images due
to the smaller number of image pixels to be processed. However,
as in the case of tracking, whether (and how) the scenario of non-
centered objects can be appropriately coped with remains an open
issue.

8. A look to the future

The research on log-polar imaging, with emphasis on the robot
vision community, has been reviewed in this article. In the past few
years, fundamental properties of this image representation have
been studied and exploited in appropriate algorithms.

One criticism that can naturally be posed is whether, taking
all into account, it is really worth adopting log-polar images.
Regarding the computational advantages, it could be argued
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Fig. 18. Active vergence control using log-polar images [237]. Global disparity computation in log-polar images weighs objects in the center more favorably. Four images
of an active tracking sequence are shown. Each color image codes both images of the stereo pair: the right image in the red channel and the left image in the green channel.
The first image (left) corresponds to the binocular system verging on the background. No other objects are present. In the second image, an object appears in the periphery,
but it is still far from the center and the system keeps fixating the background. In the third image, the object approaches the fovea and the system starts moving the cameras
in order to gaze at the target. Finally, in the fourth image (right) the object is in the fovea and the system verges perfectly on the target. (Figure to be seen in color).

that, after all, almost any task solved with log-polar images
can be (and in many cases has been) approached successfully
using conventional images. This is possible due either to the
use of special-purpose, high performance equipment or to the
advances in hardware technology, which make a reduction in
image processing times affordable. While this is certainly true, it
should be noted that, in any case, under equal conditions (same
computer resources), performance can always be better with log-
polar images. We like to compare the computational benefits of
log-polar image sensors with those offered by algorithmics. It may
be the case that a quadratic cost O(n2) algorithm exists to solve
some known and useful problem. If a novel algorithm is devised
that allows this same problem to be solved in logarithmic cost
O(log n), this is seen as an outstanding achievement because the
order of magnitude of the speed-up has a more profound and
significant impact than those allowed by advances in hardware
technology. This is also the scenario with logarithmic polar images,
where, as a function of the field width ρ, the spatial complexity
would be logarithmic, O(log ρ), in contrast to the quadratic cost,
O(ρ2), exhibited by the uniform resolution images [76].

Like the design of a new algorithm that outperforms existing
ones, which may be a rather contrived, intellectually demanding
task, the design of retinal sensors faces its own challenges too.
Furthermore, having a good sensor does not, by itself, guarantee
that any visual task will be performed efficiently and successfully.
On the contrary, appropriate algorithms and mechanisms should
be conceived to exploit the advantages of such a sensor and to deal
with its difficulties.

As described in Section 2, some properties of log-polar imaging
such as scale and rotation invariance, the selective data reduction
or the implicit focus-of-attention have been widely explored,
while others have only been slightly considered (or still remain
undiscovered!). One example is the better numerical behavior that
log-polar images offer for eye-in-hand visual servoing, as revealed
by an analysis of the Jacobian matrix condition number [243,244],
and its comparison with polar images.

Finally, as in many algorithmic achievements, the log-polar
geometry offers a trade-off solution. Compromises of some kind
are at the core of many new discoveries in any field, and
particularly in computer science. Benefits are often possible only at
the cost of something else. Indeed, progress in scientific research
is in many respects determined by well-engineered trade-off
solutions. Log-polar sensors are, to ourmind, one of such solutions.

The geometric and sampling properties of log-polar images
have been emphasized throughout the paper. It has become clear
that polar-logarithmic sampling provides interesting benefits in a
number of scenarios. But it has also been shown that more general
or customizable mappings could be more generally useful.

While log-polar vision is one of themost popular foveal sensing
models being used, some works consider the simultaneous use of
wide- and narrow-field cameras so that their coordination makes
it possible to have both rough visual data from large field of view
and detailed information from a narrow part of the scene. Most
of these arrangements use conventional Cartesian images [245],
but recently log-polar images have been considered in a system
inspired by the eyes of birds of prey [103] for easier detection
and tracking of objects in a wider visual scene. In their approach,
Melnyk and Messner use a driving simulator to illustrate how
two images from two cameras of different fields of view can be
seamlessly integrated into a single log-polar imagewhere the over-
sampling problem (Section 3) is somehow solved.

We would like to point out two potential areas of application
where foveal vision is now absent, but could fit in well. In sensor
networks, there are four resources that can be limited: power,
sensing, communication and computation [246]. In the case of
vision networks, all of these resource requirements can benefit
from using log-polar sensors. Indeed, we found that our idea about
the challenges imposed by the resolution-variant images and the
need for proper algorithms addressing these visual limitations
finds support in the following quote:

‘‘Finally, tiny inexpensive sensor nodes are often limited in
computational capability, so developers may need to imple-
ment computationally lightweight algorithms that sacrifice
sensing quality but take advantage of the distributed compu-
tation resources of the sensor network.’’ [246, p. 38]

While its authors did not seem to have had foveal vision in
mindwhen they wrote it, we find an appropriate link between this
statement and the issues raised by foveal sensing.

A second class of domains where foveal sensing might prove
beneficial is in applications involving control loops that require
very low latencies. This is the case not only in robot control,
but also in perceptual user interfaces (PUIs) [247], and visual-
based interfaces in particular [248]. One key problem in PUIs is to
guarantee low reaction times to user commands captured through
cameras as the input signal. Latencies that are too high may lead
to unstable behavior and low usability of the interface and, in the
end, low user acceptability of the system. Log-polar images might
be an advantageous sensing device for these perceptual interfaces,
which may include human–robot interaction [249].

Algorithmic, computational and geometric issues aside, still
another insight on why log-polar vision can deserve study and
investigation lies in its biological inspiration, for two reasons. One,
because nature is wise and we, scientists and engineers, can try to
introduce some of this wisdom into the artificial systems we build.
And two, because these very artificial agents can provide us with
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Table 1

Summary of achievements and open research issues.

Sensor Design

Past achievements:

• Hardware sensors prototypes in both CCD and CMOS technologies
• Commercial-level camera (Giotto) developed
• Special-purpose hardware cards built
• Influence of sensor parameters on performance of visual tasks studied
• Framework to automate sensor design from design criteria
Research agenda:

• Faster software-based log-polar mapping implementations

• Parallel/GPU-based efficient mapping implementations

• More flexible and customizable hardware-based silicon retinas

• Autonomous task-dependent reconfigurable log-polar sensor

Visual Attention

Past achievements:

• Bottom-up salience computation
• Top-down biasing algorithms and experiments
• Multiresolution analysis (cortical pyramids)
Research agenda:

• Proper combination of salience-based algorithms with eye and head movements

• Demonstration of the actual benefits of visual attention in realistic contexts

• Integration of visual attention algorithms with practical and useful visual tasks

• Devise specialized methods to process peripheral information

• Develop space-invariant image descriptors

Visual Tracking

Past achievements:

• Implicit focus-of-attention property studied and exploited
• Translation-invariant motion estimation and tracking
• Off-line (object-dependent) learning-based motion estimation
Research agenda:

• Estimation of parametric motion (affine or higher models) with better exploitation of the log-polar space, without relying on Cartesian coordinates

• Higher robustness when tracking small, occluded and/or non-centered objects

• Exploit fovea–periphery dichotomy or geometry arrangement to segment the object or improve tracking efficiency or accuracy

• Dealing with the multi-target tracking problem

3D Cues and Vergence Control

Past achievements:

• Computation of sparse and dense disparity maps
• Demonstration of the advantages of log-polar images in stereo depth resolution
• Depth from motion with fixation at a static point in the environment
• Vergence control with static and dynamic depth cues, and demonstration of advantages in dealing with small objects under fixation
• Zero disparity filtering and object segmentation
Research agenda:

• Object segmentation in disparity maps

• Integration of multiple cues (motion, color, edges, etc.)

• High resolution depth maps by active scanning

• Detection of occlusions and object boundaries

cues for widening our still limited understanding of human vision
and related brain processes.

In conclusion, while some work has been done on log-polar
artificial vision in the past, this can be seen only as the germ of
future work addressing new challenges. Table 1 is intended to be a
brief guide to identify both problems that have already been solved
and some open research issues. We would like the review offered
in this article to be of some help for those looking back to the past
in order to head into the future.
Note: Matlab code for the (direct and inverse) log-polar mapping
can be found at http://www.isr.ist.utl.pt/~alex/resources.html.
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