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Abstract—The usage of Gaussian mixture models for video
segmentation has been widely adopted. However, the main
difficulty arises in choosing the best model complexity. High
complex models can describe the scene accurately, but they
come with a high computational requirements, too. Low com-
plex models promote segmentation speed, with the drawback
of a less exhaustive description. In this paper we propose
an algorithm that first learns a description mixture for the
first video frames, and then it uses these results as a starting
point for the analysis of the further frames. Then, we apply
it to a video sequence and show its effectiveness for real-time
tracking multiple moving objects. Moreover, we integrated this
procedure into a foreground/background subtraction statistical
framework. We compare our procedure against the state-of-
the-art alternatives, and we show both its initialization efficacy
and its improved segmentation performance.

Keywords-Real-Time Video Segmentation; Self-Adapting
Gaussian Mixtures; Online EM; Background Subtraction.

I. INTRODUCTION

Nowadays, the new computer generation enlarged scientist
opportunities of using more complex algorithms in image
processing. In the past decades, real-time video segmentation
has suffered from the low computational power of the
last generation machines. Segmentation of single frames
resulted too slow or with an acceptable frame rate, but
subjected to excessive restrictions. To this aim, the usage of
adaptive Gaussian mixture models had become a standard
in the recent years, due to their theoretical foundations and
analytical representation.

A. Related Work

Video segmentation techniques can be focussed on two
main categories, mainly: Those based on the content-based
video retrieval (CBVR), and those based on the Fore-
ground/Background (F/B) segmentation.

Some relevant exponents of CBVR are [1], [2], which con-
sider a segmentation of pixel volumes in the whole 3D set,
analyzing the content in the extended domain by combining
the information across all frames, and [3], [4], [5], which
perform a frame-by-frame tracking analysis. However, all of

these methods suffer of elevated computational complexity,
both for the amount of data they consider at each iteration,
and for the usual large number of Gaussian needed for
a precise segmentation, which together make them too
complicated and not suitable for real-time applications.

Foreground/Background (F/B) segmentation has received
many efforts in the last decade, due to their less compu-
tational burdensome requirements. In 1999, Stauffer and
Grimson [6] published what become the standard formula-
tion for the mixture approach in the field. Here, a recursive
filter is used to train a mixture background model together
with an K-means approximation. However, the adaptation
rate depends on a global parameter 𝛼, which ranges between
(0, 1), fixed experimentally. Moreover, a small amount for
𝛼 is required, therefore slowing the learning procedure. In
2002 Lee et Al. [7] proposed to segment the background in
a different way from Stauffer and Grimson [6]. Here, the
segmentation problem is decomposed as two independent
problems: The first one is to estimate the distribution of all
observations at a single pixel, as a Gaussian mixture, and the
second one is to estimate the probability that each Gaussian
in the mixture constitutes the background. However, the
issue of using experimental values for the learning rate still
remain unsolved, also for the F/B segmentation. In 2004
Zivkovic [8] proposed a method for adapting the scene to
light changes, by adding new samples and discarding the
old ones a reasonable time period. A constant 𝛼 describes
an exponentially decaying envelope that is used to limit the
influence of the old data. Nevertheless, this approach uses an
even higher number of heuristic thresholds featured by the
others, while featuring a slow convergence. Finally, in 2005
Lee [9] started from the base of Stauffer and Grimson [6],
i.e. considering a recursive filter for training the mixture,
introducing a new variable learning rate for each compo-
nents, as previously suggested by Lee et Al. [7] three years
before. However, the required computational complexity is
still high, together with the number of variables needed to
be set in order to perform the computation.

We chose to adopt a (F/B) approach. Nevertheless, a
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common problem influencing all the above discussed algo-
rithms is their initialization, regarded both as the number
of mixture components selection and their initial values.
Besides, despite all the efforts made in the last decade to
improve the original work of Stauffer and Grimson [6],
others problems still remain unsolved, such as the learning
rates decision, and the high computational complexity.

B. Our Contribution

In this paper we propose an algorithm for real-time video
segmentation based of Gaussian mixture models (GMMs),
and foreground/background segmentation. Our approach first
learns a description mixture that best describes the first video
frames, and then it uses these results to describe the further
frames. To this aim, we make use of a previous work of ours
for the learning initialization procedure [10], [11]. The key
point is that instead of starting with fixed a-priori set mixture
complexity, we learn a proper one automatically. Then, we
apply a foreground/background segmentation procedure we
derived from the approach of Lee [9].

C. Outline

In sec. I-A we describe the current findings in this field. In
sec. II we introduce our technique for the mixture initializa-
tion. Subsequently, we propose our approach for the video
segmentation in sec. III, and for the foreground/background
segmentation in sec. IV. In sec. V we describe our validation
experiments. After that, in sec. VI we make some final com-
parisons and considerations regarding the tested approaches.
Finally, in sec. VII we conclude.

II. MIXTURE INITIALIZATION AND NUMBER OF

COMPONENTS SELECTION

It is worth noticing how none of the algorithms previously
described mention some approach for the selection of the
initial number of components. For instance, Stauffer and
Grimson [6] and Lee [9] sidestepped this problem by using
a compromise, i.e. by using always 3, 4, 5 components since
the beginning, during all the computation.

We initialize the description mixture by running an al-
gorithm that both learns the mixture distribution while
automatically select the best number of components, based
on [10] and [11]. However, we will consider a static input
data set, not a video sequence, i.e. the first video frame. In
this way, we will have a mixture that best approaches the
video segmentation initialization in some ways. Assuming
that the video scenario does not change too much during
first stage - the initialization the learned mixture resulting
from this stage can be assumed as a valid input for the
second stage - the video segmentation. Therefore, a fast
algorithm is essential, otherwise we cannot longer assume
the variance from the first video frame to the rest of the
sequence as negligible. This can be considered analogous
to the initial background learning process of [6] and [9],

while some identical frames representing the background are
processed in order to learn the mixture before starting the
process.

A. Learning a finite mixture model from static data

Different approaches for describing a static input data set
by means of Gaussian mixtures can be found in literature.
Here, the computational complexity is a strict requirement:
In fact, the longer the initialization procedure is, the less
unaltered the scenario will be, resulting in a mixture no
longer describing the video frames with accurately enough.
The number of components is what constrains the EM time
performance most.

B. Our Approach

We choose to adopt the technique we presented in [11].
This is a greedy algorithm for unsupervised learning a
mixture while selecting the best number of components at
the same time. Our methodology overcomes the previous
cited limitations solving the new component search with a
full binary thee that both takes only 𝑂(log 𝑛) and exploits
the whole possible solutions’ set. The structure we use
has the particularity that only the leaves contain a mixture
component.

The data structure organization is as follows:

∙ The initial tree starts with the root, only;
∙ Each node has no children (so that it is a leaf) or two

children;
∙ Only the leaves can contain the mixture components;

when a class is inserted by a leaf replication, the latter
was the father and now it becomes a child together with
the new inserted, creating a new parent without mixture
components.

∙ The nodes eligible for being replicated are those of the
last level only.

III. MIXTURE UPDATING: VIDEO SEGMENTATION

Once the initial mixture has been learned, it is necessary
to update it. Despite all the approached techniques, each
of them presents several similarities among them. The base
algorithm is that of Stauffer and Grimson [6]. Here, an on-
line K-means approximation is used against the the exact
EM, due to its major speed. None of the approaches present
in literature uses the exact EM formulation, while each of
them features different techniques for updating the mixture
as a recursive filter, considering the three color dimensions
as independent (for reducing the components’ covariance
matrix, and then the whole algorithm burden).

We follow a different approach. In our formulation, we
want to balance the accuracy of estimation with the com-
putational complexity in an opposite way. Starting from the
assumption that each frame is correlated with the previous
one, like the other techniques, an upgrade of the current
mixture description rather than a completely new one would
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be adopted. However, instead of using a recursive filter,
we prefer running a fixed number of the EM algorithm
iterations. Scene can vary abruptly, therefore instead of
waiting until full convergence for a single frame, we adapt
the current mixture in order to follow the video. Moreover,
the likely lack of accuracy lost by stopping the EM before
some iterations can be compensated by both using the EM
algorithm and the full covariance matrix for each component,
i.e. by considering the statistical dependence among each
color dimension. However, despite the assumption that the
frame do not chance one from another sensibly, we found
experimentally that our approach is robust to sudden changes
in the scene, like the appearance of new objects.

The image is then modeled as a Gaussian mixture distri-
bution in the spatial and color space space, i.e. each pixel is
represented as �̄�𝑖 ∈ [𝑥, 𝑦, 𝑅, 𝐺, 𝐵] or �̄�𝑖 ∈ [𝑥, 𝑦, 𝐻, 𝑆, 𝑉 ],
depending on the employed color space, being 𝒳 ={

�̄�1, �̄�2, ⋅ ⋅ ⋅ , �̄�𝑘
}

the input data set for each frame, with 𝑘
the total number of each frame pixel (supposing this to not
change for different frames). We briefly describe next the
basic steps of the EM algorithm for the case of Gaussian
mixture model. For a single pixel �̄�𝑖 ∈ ℝ

𝑑, with 𝑑 = 5 in
our case, the probability of being observed is:

𝑝(�̄�𝑖) =

𝑛𝑐∑
𝑐=1

𝑤𝑐 ⋅ 𝑝𝑐(�̄�
𝑖) (1)

where 𝑛𝑐 being the number of Gaussian components, and
𝑝𝑐(�̄�

𝑖) the probability of the pixel �̄�𝑖 given the Gaussian
component 𝐶𝑐, expressed as:

𝑝𝑐(�̄�
𝑖) = 𝑝(�̄�𝑖∣𝐶𝑐)

=
1

(2𝜋)
𝑑

2 ∣Σ𝑐∣
1

2

⋅ 𝑒−
1

2
(�̄�𝑖−�̄�𝑐)

𝑇
∣Σ𝑐∣

−1(�̄�𝑖−�̄�𝑐)

= 𝜂
(
�̄�𝑖, �̄�𝑐,Σ𝑐

)
(2)

Each Gaussian is described by a parameter set 𝜃 =
{𝑤𝑐, �̄�𝑐,Σ𝑐}, where:

∙ 𝑤𝑐 > 0, with
∑𝑛𝑐

𝑐=1 𝑤𝑐 = 1, represents the a-priori
probability of the class 𝐶𝑐;

∙ �̄�𝑐 represents the mean of the class 𝐶𝑐;
∙ Σ𝑐 represents the full covariance matrix of the class

𝐶𝑐.
Given a set of 𝑛𝑐 feature vectors 𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑛𝑐, the

maximum likelihood estimation of 𝜃 is:

𝜃𝑀𝐿 = argmax
𝜃

𝐿
(
𝜃∣𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑛𝑐

)

= argmax
𝜃

𝑛𝑐∑
𝑐=1

log 𝑝𝑐(𝒳∣𝜃)
(3)

The EM algorithm is proven to converge to an estimation
of the optimum (thought local and not global) for 𝜃 after
a certain number of iterations. Each iteration of the EM
algorithm re-estimates the parameter set 𝜃, according to the
following two steps:

∙ E-step: for each data sample evaluate the probability
that the input sample �̄�𝑖 belongs to the class 𝑐, i.e. that
𝑃
(
𝐶𝑐 = 1∣�̄�𝑖

)
for each class 𝑐 ∈ [1, 𝑛𝑐], as:

𝑃
(
𝐶𝑐 = 1∣�̄�𝑖

)
= 𝑃

(
𝐶𝑐∣�̄�

𝑖
)

=
𝑝
(
�̄�𝑖∣𝐶𝑐

)
⋅ 𝑃 (𝐶𝑐)

𝑝 (�̄�𝑖)
=

𝑤𝑐 ⋅ 𝑝𝑐
(
�̄�𝑖
)

∑𝑛𝑐
𝑐=1 𝑤𝑐 ⋅ 𝑝𝑐 (�̄�𝑖)

≜ 𝜋𝑖
𝑐

(4)

∙ M-step: re-estimate the parameter vector 𝜃, which at
the 𝑛 + 1 iteration will be 𝜃(𝑛+1). This, in case of a
gaussians mixture distribution, the means and the co-
variances are evaluated by weighting each data sample
by the degree in which it belongs to the class as:

�̄�(𝑛+1)
𝑐 =

∑𝑘
𝑖=1 𝜋𝑖

𝑐�̄�
𝑖∑𝑘

𝑖=1 𝜋𝑖
𝑐

Σ(𝑛+1)
𝑐 =

∑𝑘
𝑖=1 𝜋𝑖

𝑐

(
�̄�𝑖 − �̄�

(𝑛)
𝑐

)(
�̄�𝑖 − �̄�

(𝑛)
𝑐

)𝑇

∑𝑘
𝑖=1 𝜋𝑖

𝑐
(5)

Finally, re-estimate the a-priori probabilities of the
classes, i.e. the probability that the data belongs to the
class 𝑐 as:

𝑤(𝑛+1)
𝑐 =

1

𝑘

𝑘∑
𝑖=1

𝜋𝑖
𝑐, 𝑤𝑖𝑡ℎ 𝑐 = {1, 2, . . . , 𝑛𝑐} (6)

Using EM, the parameters representing the Gaussian
mixture are found. In this study we use a fixed number
of iterations. Usually the bigger gradient in the mixture
components learning occur within the fist iterations, while
as long as the EM reaches its convergence only small
refinements occur. Then, it is possible to maintain a real-
time process, without relying on the unknown convergence
time of the original EM, with a negligible lack of accuracy.

A. Modified EM

As noted in [12], the EM formulation presents several
drawbacks. Particularly, methods that require mixture esti-
mates for various number of components may converge to
the boundary of the parameter space. This means that, e.g.
for Gaussian mixtures, the covariance matrixes may became
singular. A way to address this problem is to use adequate
priors for the parameters.

We use the negative Dirichlet prior, because it promotes
configurations where the prior probability is either 0 or 1,
[12]. Besides, it also speeds-up the components’ adaptation
process also, due to its ”sharped characteristics” with respect
to other priors, e.g. the Jeffrey’s prior or the minimum
entropy prior, therefore leading to a faster convergence.

This results in a modified EM procedure. Following [12],
we considered the cost function as a posterior density due
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to the adopting of improper Dirichlet priors for the classes
probabilites [13]:

𝑝 (𝜗) ∝ 𝑒(−
𝑁

2

∑
𝑐

𝑖=1
ln𝑤𝑖) (7)

where 𝑤𝑖=1,2,...,𝑐 are the prior probabilities of each class 𝐶𝑐.
Therefore, the EM that minimizes the cost function - with
a fixed number of component 𝑐 - in our case results being
[10]:

∙ E-step:

�̃�𝑧(𝑡 + 1) =
max

{(∑𝑘
𝑖=1 𝜋𝑖

𝑧

)
− 𝑁

2

}
∑𝑐

𝑗=1 max
{(∑𝑘

𝑖=1 𝜋𝑖
𝑗

)
− 𝑁

2

} (8)

where 𝜋𝑘
𝑧 is given by the E-step in eq. (17).

∙ M-step:

˜̄𝜗(𝑛+1)
𝑧 = 𝑎𝑟𝑔 max

𝜗𝑧

𝑄
(

𝜗𝑛, ˜̄𝜗(𝑛−1)
)

(9)

both for 𝑧 = 1, 2, . . . , 𝑐, with 𝑁 being the number of
parameters specifying each component.

IV. BACKGROUND SUBTRACTION

Background segmentation can be interpreted at each sin-
gle pixel level as a binary classification problem, where a
probability function is used to determine how much that
pixel belongs to the background or foreground. Considering
that being part of the background or the foreground can be
assumed complementary for each generic pixels �̄�𝑖 at the
time 𝑡, we can write:

𝑝(𝐹 ∣�̄�𝑖) + 𝑝
(
𝐵∣�̄�𝑖

)
= 1 (10)

where 𝐹 and 𝐵 are the foreground and background
classes, respectively.

The probability 𝑝
(
𝐵∣�̄�𝑖

)
can be expressed as [9]:

𝑝
(
𝐵∣�̄�𝑖

)
=

𝑛𝑐∑
𝑐=1

𝑝(𝐵∣𝐶𝑐)𝑝(𝐶𝑐∣�̄�
𝑖) (11)

Then, we adopted the same Bayesian derivation as in eq.
(4), obtaining:

𝑝(𝐶𝑐∣�̄�
𝑖) =

𝑝(�̄�𝑖∣𝐶𝑐)𝑝(𝐶𝑐)

𝑝(�̄�𝑖)
= 𝜋𝑖

𝑐 (12)

When applied to 𝑝
(
𝐵∣�̄�𝑖

)
, this results in:

𝑝
(
𝐵∣�̄�𝑖

)
=

𝑛𝑐∑
𝑐=1

𝑝(𝐵∣𝐶𝑐)𝑝(�̄�
𝑖∣𝐶𝑐)𝑝(𝐶𝑐)

𝑝(�̄�𝑖)
(13)

Then, being:

𝑝(�̄�𝑖) = 𝑝(�̄�𝑖∣𝐶𝑐)𝑝(𝐶𝑐) (14)

we have:

𝑝
(
𝐵∣�̄�𝑖

)
=

∑𝑛𝑐
𝑐=1 𝑝(𝐵∣𝐶𝑐)𝑝(�̄�

𝑖∣𝐶𝑐)𝑝(𝐶𝑐)∑𝑛𝑐
𝑐=1 𝑝(�̄�𝑖∣𝐶𝑐)𝑝(𝐶𝑐)

(15)

There have been proposed different approaches for deter-
mining 𝑝(𝐵∣𝐶𝑐) in literature. For instance, Friedman and
Russel [14] manually labeled the Gaussian components,
maintaining them fixed during all the computation. Two
years later, Stauffer and Grimson [6] considered to segment
the background not as a single pixel formulation, but as a
component formulation. They first ordered the Gaussians by
the value of 𝑤𝑐/∣Σ𝑐∣, and then they selected the components
that represent the background as the first 𝐵 ones such that
𝐵 = argmin𝑏 (

∑𝑛𝑐
𝑐=1 𝑤𝑐 > 𝑇 ), where 𝑇 is an empirical

threshold determined experimentally.
We followed the approach of [9], i.e. training a sigmoid

function on 𝑤𝑐/∣Σ𝑐∣ to approximate 𝑝(𝐵∣𝐶𝑐) using logistic
regression:

𝑝(𝐵∣𝐶𝑐) = 𝑓

(
𝑤𝑐

∣Σ𝑐∣
, 𝑎, 𝑏

)
=

1

1 + 𝑒(−𝑎
𝑤𝑐

∣Σ𝑐∣
+𝑏)

(16)

Then, we choose to identify the background at each single
pixel level as a binary classification problem, i.e. selecting
the Gaussian components representing the background as
those that:

𝑝
(
𝐵∣�̄�𝑖

)
> 𝑇 ℎ (17)

Here, 𝑇 ℎ is still heuristic, although not defined an a fixed
default value remaining unaltered during all the computation,
e.g. as 𝑇 = 0.5 in [9], but varying on 𝑝

(
𝐵∣�̄�𝑖

)
at each

iteration:

𝑇 ℎ(𝛾) =min
𝑐

𝑝
(
𝐵∣�̄�𝑖

)
+ 𝛾 ⋅

(
max

𝑐
𝑝
(
𝐵∣�̄�𝑖

)
−min

𝑐
𝑝
(
𝐵∣�̄�𝑖

))
(18)

with 𝛾 being an experimental value in the range [0, 1]. The
latter can be interpreted as a decision balance that shifts
the threshold 𝑇 ℎ more toward the 𝑝 (𝐵∣𝐶𝑐) lowest values
(𝛾 < 0.5), or higher values (𝛾 > 0.5), with regard to
the 𝑝 (𝐵∣𝐶𝑐) average among all the components (i.e. with
𝑇 ℎ(𝛾 = 0.5)). This allows to adjust the F/B classifica-
tion during all the process, adapting to the new Gaussian
components automatically. We found that the mere usage
of 𝑇 = 0.5 did not work while using our modified EM
computation instead of the recursive filter proposed in [9].
In this work we adopted 𝛾 = 0.1 as the best compromise.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental set-up

1) Experiments: We applied the proposed algorithm to
a video sequence registered in a in-door contexts (objects
handling and manipulation). This is common situations for
e.g. robotics object tracking and grasping. Then, we applied
the approaches of [6] and [9] to the same video sequence in
order to compare them and validate our approach.

Our first aim is to test whether our technique can perform
faster than the reference state of the art approaches [6] and
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Figure 1. Image segmentation in the 𝑅𝐺𝐵 color space. We considered an in-door (a) and a out-door (b) situation. For each image we have: From left
to right: the source image, the Gaussian segmented one, the Log-likelihood of the whole computation as function of the number of iterations, the cost
function as function of the number of iterations, and the cost function as function of the number of components.

[9], intended as both learning speed (valuable with a log-
likelihood faster increase) and higher image segmentation
accuracy (valuable by visual images inspection). Then, our
second aim is to evaluate a possible hybrid technique, which
combines our mixture learning algorithm, FSAEM together
with the recursive filters mixture learning procedure in [6]
and [9].

In the followings we then illustrate the behavior of our
mixture learning algorithm [10], the comparison of the video
and F/B segmentation among our approach, [6] and [9], and
finally our hybrid technique.

2) Parameters selection: Unfortunately, [6] and [9] do
not have a unique initialization criterion, relying on the
user’s model complexity selection. Therefore, in order to
make the experiments the fairest as possible, we adopt the
same number of components detected by FSAEM also for
[6] and [9], so that to not have disparities regarding the
image segmentation and the whole Log-likelihood due to
different mixture models complexity.

Our technique selected a model with 3 Gaussian for the
first video, and 4 for the other one. Then, we set the logistic
regression parameters in eq. (16) as 𝑎 = 20 ⋅107 and 𝑏 = 10,
respectively. The same values have been employed for the
algorithm in [9], together with the value of 𝛾 = 0.014 in eq.
(18). Our approach does not have other parameters, while [6]
and [9] also need to set the learning ruler and the threshold
for the matching function, which we set as 𝛼 = 0.0001 and
𝑇𝛼 = 2.5, respectively.

B. Mixture Learning Initialization: Image segmentation by
means of Gaussian Mixture

In this section we show the results of the mixture learning
initialization on the first video frame. We use a previous
work of ours, called FSAEM [10].

Fig. 1 shows some examples of color image segmentation,
obtained by processing real images. These represent an in-
door and a out-door contexts. For each row, from left to right,
there are the source image, the Gaussian segmented one, the
Log-likelihood of the whole computation as function of the
number of iterations, the cost function as function of the
number of iterations, and the same as function of the number
of components.

For a more exhaustive FSAEM description together with
its application to synthetic distributions see [10].

C. Video and F/B segmentation

In this section we compare our F/B segmentation with
those of [6] and [9]. As reported by Lee in his original
work [9], its improvement with respect to [6] regards the
first learning phase, mainly. In fact, it is possible to see
how [9] adapts faster to the video. Then, the performances
of the two algorithms are quite similar. Fig. 2 shows the
Log-likelihood of the three approaches, [6], [9] and our,
namely. Our technique is drawn in blue, while [6] in green,
and [9] in red. Fig. 3 shows the results of the comparison.
Rows (a) and (b), are composed by the segmentation of the
approaches in [6] and [9], respectively, row (c) shows our
segmentation technique outcomes, and row (d) represents
the original images with our object detection superimposed.
It is possible to see how [6] learns slower than [9] in
the first frames, while performing equally after the initial
stabilization. Nevertheless, our approach demonstrates to
behave better since the first images, maintaining this during
the whole video processing. More specifically, the table
is almost all recognized as background, together with the
glass on the left. The other two algorithms perform worse.
It is worth noticing that we experimentally tried the best
parameters for [6] and [9], and the best 𝛼 specifically. The
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Figure 2. Log-Likelihood of the objects handling and manipulation video: Comparison among our approach and [6] and [9]. The proposed algorithm is
showed in blue, while [6] in green and [9] in red.
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Figure 3. Video segmentation in the 𝑅𝐺𝐵 color space. Row (a) shows the results obtained applying [6], rows (b) those obtained with [9], rows (c) show
our outcomes, and the last ones (d) the original frames with the object detection superimposed..

latter greatly affects the table recognition (e.g. see the top
left of each image). Higher values lead to a faster learning,
but with instability and worse detection of the table as
foreground at the end, and viceversa.

D. Hybrid Structure: Our Initialization with Lee’s procedure

Finally, we want to make another test: Comparing Lee’s
formulation with our initialization. This will bring about to
an hybrid approach.

We tested it on the same previous videos. Fig. 4 shows
the results. After the first mixture learning by means of
the FSAEM procedure, the two algorithms work equally
well, though our approach returns a slightly higher Log-
likelihood.

Actually, the [9] performance does not change with
respect to the previous section results once the mixture
has been learned sufficiently. This is obvious, since the
learning phase determines the succeeding iterations. We do
not mention [6] here because its behave really similar to
[9], with the solely difference of a slower initial learning
procedure.

VI. FINAL CONSIDERATIONS

One can ask which one between our technique and [9]
learns faster. This depends on the image to be segmented. It
may happen that the best compromise between the number
of components goes toward a small value, therefore ending
FSAEM earlier, or viceversa. Therefore, on one hand our

988 2010 10th International Conference on Intelligent Systems Design and Applications



0 20 40 60 80 100 120
−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4
x 10

5 LogLikelihood

Iteration number

L
o
g
L
ik

e
lih

o
o
d

Our Approach
Our initialization with Lee formulation

Figure 4. Log-likelihood of the in-door video situation. The hybrid
approach (red) versus our technique (blue) is employed for the video
segmentation. The mixture learning at the beginning is the same for both
methods, while during the further computations a slightly higher Log-
likelihood is achieved with the proposed algorithm.

method would result in a slower initial performing.
Nevertheless, it is worth noticing that we tested [9] giving

it a-priori the same model complexity we estimated using
our technique. Since this value greatly affects both the
computational complexity (the more components there are,
the longer the computation is) and the Log-likelihood (the
more components there are, the higher the Log-likelihood
results) it is not possible asserting that [9] is better. In fact,
we give [9] a fundamental parameter that it a-priori does
not known, needing to be decided by the user heuristically
before each analysis. Finally, with technique does not require
the user imposing the learning rate decision a-priori. This
is a great advantage, since the latter affects the further
computations and video analysis considerably.

VII. CONCLUSIONS

In this work we presented a real-time video segmentation
algorithm based on a modified EM procedure. The main
feature of our approach is an automatic technique, based on
a previous work of ours, that learns the starting best mixture
from the first frame, subsequently speeding-up the further
learning procedure with respect to the state-of-the-art. Then,
a fixed number of our modified EM is performed for each
frame, in order to adapt the mixture to the new image, while
maintaining the property of real-time computation, without
requiring the employment of a heuristic learning rate to be
decided a-priori. Finally we proposed our technique for the
foreground/background segmentation, based on a statistical
framework. We tested our method against the conventional
procedures, [6] and [9].

ACKNOWLEDGEMENTS

This work was supported by the European Commission,
Project IST-004370 RobotCub and FP7-231640 Handle, and
by the Portuguese Government - Fundação para a Ciência
e Tecnologia (ISR/IST pluriannual funding) through the

PIDDAC program funds and through project BIO-LOOK,
PTDC / EEA-ACR / 71032 / 2006.

REFERENCES

[1] H. Greenspan, J. Goldberger, and A. Mayer, “Probabilistic
space-time video modeling via piecewise gmm,” IEEE Trans.
Patt. Anal. Mach. Intell., vol. 26, no. 3, pp. 384–396, 2004.

[2] C. Fowlkes, S. Belongie, and J. Malik, “Efficient spatiotem-
poral grouping using the nystrom method,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), vol. 1, pp.
231–238, 2001.

[3] G. Iyengar and A. B. Lippman, “Videobook: An experiment
in characterization of video,” Proc. IEEE Int Conf. Image
Processing, vol. 3, pp. 855–858, 1996.

[4] S.-F. Chang, H. Chen, W. Meng, H. Sundaram, and Z. D., “A
fully automated content-based video search engine supporting
spatiotemporal queries,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 8, no. 5, pp. 602–615, 1998.

[5] B. Duc, P. Schroeter, and J. Bigun, “Spatio-temporal robust
motion estimation and segmentation,” Proc. Sixth Int Conf.
Computer Analysis Images and Patterns, pp. 238–245, 1995.

[6] C. Stauffer and W. Grimson, “Adaptive background mixture
models for real-time tracking,” Proc. Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 246–252, June 1999.

[7] D.-S. Lee, E. Berna, and J. J. Hull, “Segmenting people in
meeting videos using mixture background and object models,”
Advances in Multimedia Information Processing — PCM
2002, no. ISBN 978-3-540-00262-8, pp. 393–401, 2002.

[8] Z. Zivkovic, “Improved adaptive gaussian mixture model for
background subtraction,” Proc. ICPR, 2004.

[9] D.-S. Lee, “Effective gaussian mixture learning for video
background subtraction,” IEEE Trans. Patt. Anal. Mach. In-
tell., vol. 27, no. 5, May 2005.

[10] N. Greggio, A. Bernardino, and J. Santos-Victor, “Sequen-
tially greedy unsupervised learning of gaussian mixture mod-
els by means of a binary tree structure.” 11-th International
Conference on Intelligent Autonomous Systems (IAS-11) 2010
- Aug 30, Sept 1, 2010.

[11] N. Greggio, A. Bernardino, C. Laschi, J. Santos-Victor, and
P. Dario, “Unsupervised greedy learning of finite mixture
models.” IEEE 22th International Conference on Tools with
Artificial Intelligence (ICTAI 2010), Arras, France, October
27-29 2010.

[12] A. Figueiredo and A. Jain, “Unsupervised learning of finite
mixture models,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 24, no. 3, 2002.

[13] B. J. and A. Smith, Bayesian Theory. Chichester UK: John
Wiley and Sons, 1994.

[14] N. Friedman and S. Russel, “Image segmentation in video
sequences: A probabilistic approach,” Proc. 13th Conf. Un-
certainty in Artifical Intelligence, August 1997.

2010 10th International Conference on Intelligent Systems Design and Applications 989



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


