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Abstract. In this work we propose a clustering algorithm that learndioa a
finite gaussian mixture model from multivariate data basedhe expectation
maximization approach. The convergence of the right nurobeomponents as
well as their means and covariances is achieved withoutimequany careful
initialization. Our methodology starts from a single mbgicomponent covering
the whole data set and sequentially splits it incrementhilyng the expectation
maximization steps. Once the stopping criteria has beameehthe classical EM
algorithm with the best selected mixture is run in order ttrojze the solution.
We show the effectiveness of the method in a series of siedliltperiments and
compare in with a state-of-the-art alternative techniqoih lvith synthetic data
and real images, including experiments with the iCub hurithrabot.

Index Terms - Image Processing, Unsupervised Learnindf-f8kapting) Gaus-
sians Mixtures, Expectation Maximization, Machine LeagyiClustering

1 Introduction

Nowadays, computer vision and image processing are indalvenany practical ap-
plications. The constant progress in hardware technaddgaels to new computing ca-
pabilities, and therefore to the possibilities of explujtinew techniques, for instance
considered to time consuming only a few years ago. Image aegttion is a key low
level perceptual capability in many robotics related aggilon, as a support function
for the detection and representation of objects and regiétis similar photometric
properties. Several applications in humanoid robots [dgdcue robots [2], or soccer
robots [6] rely on some sort on image segmentation [15]. Aaldally, many other
fields of image analysis depend on the performance and tiontg of existing image
segmentation algorithms: video surveillance, medicalgimg and database retrieval
are some examples [4], [12]. Two main principal approacbesniage segmentation
are adopted: Supervised and unsupervised. The latter dhe @ne of most practical
interest. It may be defined as the task of segmenting an inmadjéférent regions based
on some similarity criterion among each region’s pixels.



One of the most widely used distributions is the Normal distion. Due to the
central limit theorem, any variable that is the sum of a langenber of independent
factors is likely to be normally distributed. For this reasthe normal distribution is
used throughout statistics, natural science, and sod@hse as a simple model for
complex phenomena. If we model the entire dataset by a neixtigaussians, the clus-
tering problem, subsequently, will reduce to the estimmatibthe gaussians mixture’s
parameters.

1.1 Related Work

Expectation-Maximization (EM) algorithm is the standapmpeoach for learning the
parameters of the mixture model [8]. It is demonstrateditteivays converges to a lo-
cal optimum [3]. However, it also presents some drawbaaisirstance, EM requires
an a-priori selection of model order, namely, the number of componenksetincor-
porated into the model, and its results depend on initiatina The higher the number
of components within the mixture, the higher will be the tdvg-likelihood. Unfortu-
nately, increasing the number of gaussians will lead tofitiag and to an increase of
the computational burden.

Particularly in image segmentation applications, wheeerthmber of points is in
the order of several hundred thousand, finding the best cammipe between precision,
generalization and speed is a must. A common approach tsettbe number of com-
ponents is trying different configurations before deteingrthe optimal solution, e.g.
by applying the algorithm for a different number of compoiseand selecting the best
model according to appropriate criteria.

Adaptive mixture models can solve the problem of the origiitd’s model selec-
tion. It was originally proposed in 2000 by Li and Barron [18hd subsequently ex-
plored in 2003 by Verbeek et al. in [14]. They developed ameit@stic greedy method
to learn the gaussians mixture model configuration [14]hatldeginning a single com-
ponentis used. Then, new components are added iterativeltha EM is applied until
it reaches the convergence.

Uedaet Al.proposed a split-and-merge EM algorithm to alleviate thodfam of lo-
cal convergence of the EM method [13]. Subsequently, Zleaid. introduced another
split-and-merge technique [16]. Merge an split criterigefficient in reducing number
of model hypothesis, and it is often more efficient than estiae, random or genetic
algorithm approaches. To this aim, particularly interggiis the method proposed by
Figueiredo and Jain, which goes on step by step until coevegusing only merge
operations [5].

1.2 Our contribution

We propose an algorithm that simultaneously determinesitimber of components
and the parameters of the mixture model with only split of@na. In [7] we previ-

ously proposed a split and merge technique for learningefi@aussian mixture mod-
els. However, the principal drawbacks were the initialaat with particular regards
to the beginning number of mixture classes, and the supesitipn of the split and
merge operations. The particularly of our new model is thatarts from only one



mixture component progressively adapting the mixture bigtegy components when
necessary.

In a sense, we approach the problem in a different way thanTl3y start the
computation with the maximum possible number of mixture porrents. Although that
work is among the most effective to date, it becomes too cdatipmally expensive for
image segmentation applications, especially during tseifarations. It starts with the
maximum number of components, decreasing it progressivgi/the whole space of
possibilities has been explored, whereas our method stdhis single component and
increases its number until a good performance is attained.

1.3 Outline

The paper is organized as follows. In sec. 3 we introduce tbegsed algorithm.
Specifically, we describe its formulation in sec. 3.1, thiédlization in sec. 3.2, the
component split operation in sec. 3.4, and the decisiorstiulds update rules in sec.
3.5. Furthermore, in sec. 4 we describe our experimentalgébr testing the validity
of our new technigque and in sec. 5 we discuss our resultsllfimesec. 6 we conclude.

2 Expectation Maximization Algorithm

2.1 EM Algorithm: The original formulation

A common usage of the EM algorithm is to identify tfircomplete, or unobserved
data” o = (Y1,y2,...,¥¥) given the coupléx , 7 ) - with xdefined asc = {x},x?,..., %X},
also called’complete data”, which has a probability density (or joint distribution)
p(x,79) = pg(x,7) depending on the parame®@r More specifically, thécom-
plete data”are the given input data s&tto be classified, while th&ncomplete data”
are a series of auxiliary variables in the getindicating for each input sample which
mixture component it comes from. We defifg(-) the expected value of a random
variable, computed with respect to the dengifyx, y).

We defineQ(9™, 81 = E'L(9), with L(9) being the log-likelihood of the ob-
served data:

L(9) =logps(x,) 1)
The EM procedure repeats the two following steps until cogerce, iteratively:
— E-step: It computes the expectation of the joint probghilensity:
Q™9™ Y) =Eflogp(x, |8 Y)] (2)
— M-step: It evaluates the new parameters that maxiQize

9(MD — argmaxQ(9",8("Y) 3)
9

The convergence to a local maxima is guaranteed. Howewelitained param-
eter estimates, and therefore, the accuracy of the mettezdlgdepend on the initial
parameter$?©.



2.2 EM Algorithm: Application to a Gaussians Mixture

When applied to a Gaussian mixture density we assume tteiol model:

nc
P(X) = 3 We-pe(¥)
o=
1 o = \Tis 1 ~li T )
D= = a3 () e X e)
d 1
(2m)2 ||
wherep¢ (X) is the component prior distribution for the classand withd, . andZ
being the input dimension, the mean and covariance matthxeofaussians component
¢, andncthe total number of components, respectively.

Consider that we havec classe$yc, with p(X|C¢) = pc(X) andP (C¢) = w being
the density and tha-priori probability of the data of the clag%, respectively. In this
setting, the unobserved data set= (y1,y2,...,yN) contains as many elements as data
samples, and each vectgr="[y;,yb, - ,¥h,--yho] | is such thaty; = 1 if the data
samplex' belongs to the clags; andy. = 0 otherwise. The expected value of i@
component of the random vectpis the clas<C, prior probabilityE’ (yc) = We.

Then theE andM steps become, respectively:

E-step

P(X|Cc)-P(Cc)  we-pe(X)

— __ 5
o (%) ST We - Po () ®)

>
A

For simplicity of notation, from now on we will refer B’ (yc|xi) astt.. This is proba-
bility that thex* belongs to the claga..

M-step
Gy _ T meX
Yie1T ©)
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Finally, a-priori probabilities of the classes, i.e. the probability thatdae belongs to
the clasg, are reestimated as:

N
1 1o , _
We' = i;n‘c, with c={1,2,...,nc} (7

3 FASTGMM: Fast Gaussian Mixture Modeling

Our algorithm starts with a single component and only in@ets its number as the
optimization procedure progresses. With respect to ther@thproaches, our is the one
with the minimal computational cost.



The key issue of our technique is looking whether one or maresgjians are not
increasing their own likelihood during optimization. Olgerithm evaluates the current
likelihood of each single componenas (8):

N
Ncurr(c) (B) = _;Iog (We - Pe (%)) (8)

In other words, if their likelihood has stabilized they Wik split into two new ones
and check if this move improves the likelihood in the long.rEar our algorithm we
need to introduce a state variable related to the state gfahssian component:

— Its age, that measures how long the component’s own ligetiftdoes not increase
significantly (see sec. 3.1);

Then, the split process is controlled by the following adeagdlecision thresholds:

— One adaptive thresholity for determining a significant increase in likelihood
(see sec. 3.5);

— One adaptive thresholry for triggering the split process based on the compo-
nent's own age (see sec. 3.5);

— One adaptive threshokgt for deciding to split a gaussian based on its area (see
sec. 3.4).

It is worth noticing that even though we consider three thoégs to tune, all of
them are adaptive, and only require a coarse initialization
These parameters will be fully detailed within the next gst.

3.1 FASTGMM Formulation
Our algorithm’s formulation can be summarized within thseps:

— Initializing the parameters;
— Splitting a gaussian;
— Updating decision thresholds.

Each mixture componeutis represented as follows:
5c =p (Wc, He, Zazc;/\last(c)v/\curr(c),ac) 9)

where each element is described in tab. I. In the rest of tpermthe index notation
described in tab. | will be used.

Here, we define two new elements, the area (namely, the eovaimatrix deter-
minant) and the age of the gaussians, which will be desciéied

During each iteration, the algorithm keeps memory of th&iptes likelihood. Once
the re-estimation of the vector paramefehas been computed in the EM step, our
algorithm evaluates the current likelihood of each singieponent as:

If & overcomes the age threshdigy (i.e. the gaussiarigloes not increase its own
likelihood for a predetermined number of times significaltywver Aty), the algorithm
decides whether to split this gaussians depending on whétbé& own single area
overcometTy.

The whole algorithm pseudocode is shown in Algorithm 1.



[Symbol| Element
We a-priori probabilities of the class
He mean of the gaussian component
2 covariance matrix of the gaussian component
&c area of the gaussian component

Niast(c) |l0g-likelihood at iteratiort — 1 of the gaussian componexjt
Acurr(¢)| log-likelihood at iteratiort of the gaussian component

ac ageof the gaussian component
c single mixture component
nc total number of mixture components

i single input point

N total number input points

d single data dimension

D input dimensionality

Table 1: Symbol notation used in this paper

3.2 Parametersinitialization

The decision thresholds),,r will be initialized as follows:

ETH-INIT = &datas
LtH-inT = KiTh; (10)
ATH-INIT = KaTH

with k1 andkaty (namely, the minimum amount of likelihood difference betwe
two iterations and the number of iterations required foirtghnto account the lack of
a likelihood consistent variation) relatively low (i.e.than the order of 10, or 20). Of
course, higher values fdq 4 and smaller folkkat give rise to a faster adaptation,
however adding instabilities.

At the beginning, before starting with the iteratiofsy will be automatically ini-
tialized to the Area of the whole data set - i.e. the determntin&the covariance matrix
relative to all points, as follows:

N
l"data,d = szN (11)

Zdata,i = <)?|* l-_ldata> <)?|* Hdata}T

Zl -

whereN is the number of input data vectotsandD their dimensionality.

3.3 Gaussian componentsinitialization

The algorithm starts with just only one gaussian. Its medib&ithe whole data mean,
as well as its covariance matrix will be that of the whole dsga

That leads to a unique starting configuration.



Algorithm 1: FASTGMM: Pseudocode

1 Parameter initialization;

2 while (stopping criterion is not metjo

3 Acurr (), €valuation, for = 0,1,. -.,NG;

4 Whole mixture log-likelihood. (8) evaluation;

5 Re-estimate priorar, forc=0,1,...,nc;

6 Recompute centgd™ " and covariances™ Y, forc=0,1,....nc,

- Evaluation whether changing the gaussians distributimncture;

7 for (c=0tonc)do

8 if (ac > Atn) then

9 if (Acurr(¢) — Niast(c)) < Atw) then

10 a+=1,

- General condition for changing satisfied; now checking
those for each component

11 if (Z¢c > &rn) then

12 if (c < maxNumComponentt)en

13 split gaussians- split;

14 nc+ =1;

15 reseffry — LH;(':N'T ;

16 reset\ty < LrpoiniT:

17 resetaa, ag < 0 - with A, B being the new two
gaussians

18 return;

19 | &u=&n (1+a-&);

20 | Optional: Optimizing selected mixture;

3.4 Splitting a Gaussian

When a component’s covariance matrix area overcomes th@maxarea threshold
&ty it will split. As a measure of the area we adopt the matrix'®dainant. This, in
fact, describes the area of the ellipse represented by asigawmponentin 2D, or the
volume of the ellipsoid represented by the same componeéidin

It is worth noticing that the way the component is split gheaffects further com-
putations. For instance, consider a 2-dimensional casehiich anelongatedyaussian
is present. Depending on the problem at hand, this compenaytpproximating two
components with diverse configurations: Either covering smaller data distribution
sets, placed along the longer axis, or two ovelapped setatafwith different covari-
ances, etc. A reasonable way of splitting is to put the newnsied the two major
semi-axis’ middle point. Doing so, the new components witlpote non overlapping
components and, if the actual data set reflects this assomjitiwill result in faster
convergence.

To implement this split operation we make use of the singedlire decomposition.
A rectangulan x p matrixA can be decomposed As=USV', where the columns &f
are the left singular vectorS,(which has the same dimensionAdss a diagonal matrix
with the singular values arranged in descending order\anthas rows that are the
right singular vectors. However, we are not interested éwhole set of eigenvalues,
but only the bigger one, therefore we can save some computafievaluating only the
first column ofU and the first element &.



More precisely, A gaussian with paramet8es p will be split in two new gaussians
A andB, with means:

Sop =USV'
uvax =U. 1, Svax =S11 (12)

_ _ 1 _ _ 1 _
Ha = HoLp + ESMAXUMAX; M8 = HoLp — ESMAXUMAX

whereuyax is the first column o), andsyax the first element o$.
The covariance matrices will then be updated as:

1
Si1= 25VAX: Sa=3g=USV (13)

while the newa-priori probabilities will be:

1 1
WA = 5WoLD;  Wg = 5WOLD (14)

The decision thresholds will be updated as explained inEé&c.
Finally, their agesaa andag, will be reset to zero.

3.5 Updating decision thresholds

The decision thresholds are updated in two situations:

A. When a mixture component is split;
B. When each iteration is concluded.

These two procedures will be explained in the following.
- Singleiteration: The thresholdéty, and€ty vary at each step with the following
rules:

A A
AH=ATH——= NMH=AtH |1-—
nc? nc (15)

& =&rH— ar';ﬂch &TH=2¢&TH- (1* GXCAZ\X)
with nc is the number of current gaussians,andauax are the coefficients for the
likelihood and area change evaluation, respectively. @bkigh values foA, andamax
results in high convergence speed. However, a faster copenee is often associated
to instability around the optimal point, and may lead to aedijence from the local
optimum. We can say thatyax can be interpreted as ttspeedthe mixture compo-
nents are split. In normal conditior;y will become closer to thareaof the bigger
component’s determinant step-by-step at each iteratibenTit will approach the split
threshold, allowing the splitting procedure.

Following an analog rulel\ty will decrease step by step, approaching the current
value of the global log-likelihood increment. This will el the system to avoid some
local optima, by varying its configuration whether a stagignsituation occurs. More-
over, dividingA andayax by the square ofic consents to reduce the variation of the



splitting threshold according to the number of componemisdases with a parabolic
curve. This favorites the splitting when a low number of coments is present, while
avoiding a diverging behavior in case of an excessive amafisylitting operations.
Finally, every time a gaussians is added these thresholdsanieset to their initial
value (see next section).
- After gaussian splitting: The decision thresholds will be updated as follows:

ETH-INIT
ETH="— Ntu=Lrnnir (16)
nc
wherencop andncare the previous and the current number of mixture compsneit
spectively. Substantially, this updates the splitting#imold to a value that goes linearly

with the initial value and the actual number of componenégidfer the computation.

3.6 Optimizing the selected mixture

This is an optional procedure. Once the best, or chosenumaixs saved, there are two
possibilities:

1. Keeping the chosen mixture as the final result;
2. Optimizing the chosen mixture with the original EM algbm.

The first one is the fastest but less accurate, while the semoa introduces new com-
putations ensuring more precision. It may happen that FA8VGlecides to increase
the number of components even though the EM has not reacheda maximum, due
to the splitting rule. In this case current mixture can stélimproved by running the
EM until it achieves its best configuration (the log-likedibd no longer increases).
Whether applying the first or second procedure is a matteihatt wredominates in
the”number of iterations vs. solution precisiorompromise at each time.

3.7 Computational complexity evaluation

We refer to the pseudocode in algorithm 1, and to the notatiegented in sec. 3.1.The
computational burden of each iteration is:

the original EM algorithm (steps 3 to 6) tak@gN - D - nc) for each step, for a total

of O(4-N-D - nc) operations;

our algorithm take® (nc) for evaluating all the gaussians (step 7 to 7);

our split (step 13) operation requir@gD).

the others tak®(1).

the optional procedure of optimizing the selected mix{step 20) take® (4-N-D - nc),
being the original EM.

Therefore, the original EM algorithm takes:

— O(4-N-D-nc), while our algorithm add® (D - nc) on the whole, 00 (4-N-D - nc),
givingrisetoO(4-N-D-nc)+O(D-nc)=0(4-N-D-nc+D-nc)=(nc-D- (4N+1))
in the first case;
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— 2:0(4-N-D-nc)+0O(D-nc)=0(8-N-D-nc+D-nc)=(nc-D- (8N+1)) inthe
second case, with the optimization procedure.

Considering that usuallf) << N andnc << N, and that the optimization proce-
dure is not essential, our procedure does not add a conkidénarden, while giving an
importantimprovement to the original computation in tewhself-adapting to the data
input configuration at best. Moreover, it is worth noticihgteven though the optimiza-
tion procedure is performed, this starts very close to thargh mixture configuration.
In fact, the input mixture is the result of the FASTGMM comgtiin, rather than a
generic random or k-means initialization (as it happenh tie simple EM algorithm,
generally).

4 Experiments

Since now we use the following notation:

— FASTGMM: Our algorithm;
— FIGJ: [5].

4.1 Synthetic data

We tested it by classifying different input data sets ranlyogenerated by a known
gaussians mixture. The same input sets have been propo§eld Each distribution
has a total of 2000 points, but arranged with different nritdistributions, with 3, 4,
8, and 16 Gaussian components.

The output of the two algorithms is shown in Fig. 1. Each sabgét is composed
by the graphical output representation for the 2-D pointritligtion (top) and the 3-
D estimation mixture histogram (bottom). The data plotsastite generation mixture
(blue) and the evaluated one (red). On the left the datatrésuh our approach is
shown, while on the right those of [5], relative to the sanmuirdata set. Moreover, the
3D histograms at the bottom in each subfigure represent: €hergted mixture, our
algorithm’s estimated one, and that estimated by [5], rethyedy.

We can see that our algorithm is capable to learn the inpuat ohitture starting
from only one component with an accuracy comparable witkeha [5].

4.2 Colored real images

We segmented the images as 3-dimensional input in the (RgpdRe. The colorimage
segmentation results are shown in Fig. 2.The set of imagdigided into two groups:

Some general images, on the left (from (1) to (6)), and sonag@r taken by the iCub’s
cameras, on the right (from (7) to (12)). For each group wevsthe original images,

those obtained with [5], and those obtained with our algaribn the left, in the middle,
and on the right, respectively.
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Fig. 1: For each plot set: Generation mixture (blue) and tlzuated one (red) for FASTGMM
and FIGJ on the same input sets. Moreover, the 3D histogrartise dottom in each subfig-
ure represent: The generated mixture, our algorithm'snedéid one, and that estimated by [5],
respectively.

Table 2: Experimental results on 2D synthetic data.

Inpuf Algorithm _ # Initital |[# DetectefActual gaussial# IterationsElapsed TImDiff ime FASTGMM|Log :ﬁiﬂ‘ lik FASTGMM L2 Di I L2 Dist: he
gal number [s] with opt vs FIGJ% with opt vs FIGJ without ization with izati
FSAEM 3 76 3.99716 -8420.917867
3 [ Optii 1 3 3 130 6.151567 -53.89844289 |-8379.161274 0.495867477 5.770135 3.918034 no
FSAEM + Opt. 3 206 10.148727 -8379.161274
FIGJ 16 3 277 29.433288 -9524.692099 3.670464 3.670464 no
FSAEM 4 101 5.615204 -7573.101881
4 | O izati 1 4 4 186 12.531248 -123.166389 | -7405.078438  2.218687212 10.670613 0.07519 no
FSAEM + Opt. 4 287 18.146452 -7405.078438
FIGJ 16 4 205 13.52505 -8729.761818 0.076403 0.076403 no
FSAEM 9 276 5.750431 -8599.51
8 [0 1 9 8 199 4.428076 22.99575458 -8598.17 0.015582283 0.196817 1.971166 no
FSAEM + Opt. 9 475 10.178507 -8598.17
FIGJ 16 7 333 48.156629 -9798.154848 0.14491 0.14491 no
FSAEM 16 501 26.667825 -8165.436422
16 | Optimization 1 16 16 202 12.848394 51.82061529 |[-8160.778985 0.057038433 0.251515 1.033934 no
FSAEM + Opt. 16 703 39.516219 -8160.778985
FIG) 20 13 363 63.740854 -9540.91802 2.98916 2.98916 no

5 Discussion

5.1 Synthetic data
In table 2 the results of FASTGMM and FIGJ applied to the gelanages are shown.

5.1.1- Evaluated number of components: There are substantially no differences in
the selected number of components. Both our approach angeffrm well on low
mixture components, while having the tendency of underegtng the best number
when it increases, with exception for our approach that estemates it with the 8-
component synthetic data and acting exactly with the 16pmrants. However, it is
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worth considering that even though it approaches the antuaber correctly, this not
necessary means that the components are in the right placagtance, two compo-
nents may be regarded as only one, while a single one can &leoed as a multiple
one. Nonetheless, it happens for both algorithm (see Fjgufgesting that a perfect
algorithm is hard to find.

Synthetic or generic images

Original Image Original Image

FSAEM

®

3

iCub Camera’s images

FSAEM Original Image FIGJ FSAEM

9) &l (12)
Fig. 2: Color images segmentation. From image (1) to (6) vetetethe algorithms on well-
known images, or synthetic ones, and from (7) to (12) we eéxfile algorithms possibilities on
real images captured by our robotic platform iCub’s camexége: FIGJ has not been able to
segment image (13) also starting with merely 2 componenis,td some internal covariances
ill-posedness problems.
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Inpu Algorithm # Initial |# Detecte{ﬁ IterationsElapsed TimeDiff time FASTGMMTLog-IikeIihoodDiff lik FASTGMM |Diff lik FASTGMM Crashe#
gaussianisgaussian: [s] with opt vs FIGJ % with opt vs FIGJ | with opt vs FIGJ
FASTGMM 9 551 71.460507 -235130.6216
1 Optimization 1 9 23 22.131293 130.9699636 |-234692.3977 0.186374662 17.03330409 no
FASTGMM + Opt. 9 700 93.5918 -234692.3971
FIGJ 16 16 422 307.454885| -274668.2675 yes, 17|
FASTGMM 9 426 68.31949 -301594.6385
2 Optimization 1 9 3 1.950391 2.854809074 |[-301594.6384 6.29984E-09 39.70671245 no
FASTGMM + Opt 9 429 70.269882 -301594.6384
FIGJ 19 19 308 441.170848| -421347.9543 yes, 20|
FASTGMM 14 426 80.365553 -314931.44
3 Optimization 1 14 374 88.057387 109.5710584 |-314551.5352 0.120630946 11.16531396 no
FASTGMM + Opt. 14 800 168.422941] -314551.5352
FIGJ 30 25 572 1611.816189 -349672.2017 no
FASTGMM 12 451 75.660802 -235735.0604
4 Optimization 1 11 103 21.39836 28.28196296 [-235729.2834  0.00245062 28.67314092 no
FASTGMM + Opt. 11 554 97.059162 -235729.2834
FIGJ 18 19 329 500.708511] -303320.2731 yes 19
FASTGMM 13 451 80.165239 -311585.805!
5 Optimization 1 13 246 57.748543 72.03688746 [-311167.304 0.134313369 10.60749104 no
FASTGMM + Opt. 13 697 137.913782] -311167.304!
FIGJ 30 27 611 2110.02013 -344174.348 no
FASTGMM 7 276 34.977055 -226138.149.
6 Optimization 1 7 36 5.860168 16.7543208 -226138.073! 3.34203E-05 17.57803149 no
FASTGMM + Opt. 7 312 40.837223 -226138.073:
FIGJ 16 16 420 272.227272) -265888.6956 yes, 17|
FASTGMM 7 576 72.744922 -281176.5478
7 Optimization 1 7 14 2.610093 3.588007146 |[-281176.5441 1.30736E-06 15.72288044 no
FASTGMM + Opt 7 590 75.355015 -281176.5441
FIGJ 11 11 267 106.453566| -325385.5959 yes, 12|
FASTGMM 8 426 54.119749 -205718.9337
8 Optimization 1 8 46 6.478271 11.97025322 |-205718.779 7.50364E-05 26.47107115 no
FASTGMM + Opt. 8 472 60.59802 -205718.7793
FIGJ 11 11 228 90.200195 -260174.743§ yes, 12|
FASTGMM 4 251 25.685892 -211551.64
9 Optimization 1 4 3 1.341008 5.220795914 -211551.64 0 15.41441064 no
FASTGMM + Opt 4 254 27.026901 -211551.64
FIGJ 13 13 313 137.77516 -244161.0785 yes, 14
FASTGMM 3 201 18.822216 -230138.836
10 Optimization 1 3 63 6.427956 34.15089913 -230136.557|  0.000990588 14.70275567 no
FASTGMM + Opt 3 264 25.250172 -230136.557
FIGJ 14 13 275 106.626624] -263972.9721 yes, 14|
FASTGMM 11 451 67.534808 -210899.0185
11 Optimization 1 10 180 31.981125 47.35502469 [-210657.4353  0.114549212 17.68706256 no
FASTGMM + Opt. 10 631 99.515933 -210657.4353
FIGJ 24 22 514 624.913104| -247916.5471 no
FASTGMM 3 151 16.899695 -218447.7912
12 Optimization 1 3 23 2.27548 13.4646217 -218447.784: 2.96364E-06 16.0195988 no
FASTGMM + Opt 3 174 19.943671 -218447.784
FIGJ 12 12 260 130.416222| -253442.243 yes, 13

Table 3: Experimental results on real images segmentation.

5.1.2- Elapsed time: It is important to distinguish the required number of itevas
from the elapsed time. FASTGMM employs fewer iterationsitREGJ without making
use of the optimization process, while more in the other .cAsea first glance, this
may suggest a whole FASTGMM slower computation than FIGWvéler, the whole
elapsed time that occurs for running our procedure is géipdeas than FIGJ’s. Nev-
ertheless, we made FIGJ starting with a reasonable numblmemabonents, just a few
more than the optimum, so that they do not affect its perfolceanegatively. FAST-
GMM’s better performance is due to the fact that our approgaiwing in the number
of components, computes more iterations than FIGJ but wimall number of com-
ponents per iteration. Therefore it runs each iteratiotefasvhile slowing only at the
end due to the augmented number of components.

5.1.3- Mixtureprecision estimation: It is possible to see that FASTGMM usually
achieves a higher final log-likelihood than FIGJ. This sugigi@ better approximation
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of the data mixture. However, a higher log-likelihood does strictly imply that the
extracted mixture covers the data better than another diigigbecause it is based on
the probability of each component, which may be more or laastebeing not deter-
ministic. Nevertheless, it is a good index on the probaphiliat such mixture would be
better.

A deterministic approach is to adopt a unique distance nmedmiween the genera-
tion mixture and the evaluated one. In [9] JenseAl.exposed three different strategies
for computing such distance: The Kullback-Leibler, thetEstover, and the Normal-
ized L2 distance. The first one is not symmetric, even thoughnametrized version
is usually adopted in music retrival. However, this measarebe evaluated in a close
form only with mono-dimensional gaussians. The second tstesalffers analog prob-
lems of the latter. The third choice, finally is symmetricegb to the triangle inequality
and it is easy to compute, with a comparable precision wighother two. We then used
the last one. Its expression states [1]:

ZcNy (LTC, fc) =Ny (l-_1a7 ia) Ny (L_lb, fb)
where

_ o o
.= (Za 1 + Zb 1) and e = e (Za ll-laJF Zb l“b) (17)
P TS e L e R (Y

= |21n(Za+2) | Jo 3(ai)" (ZatZn)  (Hab)

5.2 Colored real images

Itis salient to report that in [5] it has not been performedaxperiment on real images
segmentation. In fact, their result only concern diffeffantilies of synthetic data. Con-
trariwise, we want to focus more on image processing, dus telievant importance in
several different scientific fields, like robotics and méuc as mentionned within the
introduction.

As we pointed out in the previous section (sec. 4.2), to compaletected mixture
versus a generic image is not possible quantitatively, qonblitatively. This is due to
the high number of colors present within the image. It is obsithat with more com-
ponents the image is better reconstructed. However, itssipte to visually recognize
a pattern even with fewer components, although with lessracy. Therefore, what
algorithm gives the best result is again a matter of what comfse is better, in terms
of computational complexity and result accuracy.

Moreover, we have to report a problem that has not been agkttés the original
work [5]. This crashes with some images when the number opoomants increases too
much. Than means that it is not able to finish the computafibarefore, as reported on
tab. 3 we had to start it with a relatively low number of gaassi However, even though
it is able to finish the computation, it very often returns atmie having the same
starting number of components as the best one. Moreovgplites the whole solution
space, from the input mixture to one with only one elements Tilakes pointless the
usage of such approach: Segmenting an image with the origManstead of [5] will
give the same result in less time.
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5.3 FASTGMM Optimization Procedure

We reported our results both using the optimization proogdand not. Since one of
the most prominent key feature of our approach is its fastmdation, together with
its simple implementation, the optimization process mansevorthless or too much
time demanding. However, by comparing its performancesagose of [5], our
algorithm still remain faster (see sec. 5.1.2). The diffieein terms of final mixture
precision is not so evident at a first glance, both referrinpé final log-likelihood and
to the normalized L2 distance, although present. Nevaztiselthe required time for
the EM optimization step is important, since sometimes ftrapches (and overcome)
the splitting part. Here, selecting whether optimizing ot is merely a question of
performance requiring. If one claims for the fastest altponiit is advisable to not use
the optimization, even though it may lead to some improveamtmthe final mixture.
Otherwise, FASTGMM gives a good precision maintaing a bettenputational burden
than FIGJ.

5.4 Limitation of the proposed algorithm

The bigger issue with our approach is th@ax parameter tuning. This cause FAST-
GMM being less general than FIGJ in input domainajfax is too small the input
description may be underestimated, or overestimated & ib® high. This does not
mean that it cannot perform in general purposes, but onlyitheas to be tuned for
getting precise results. However, this makes FASTGMM blstdor a first data de-
scription due to its great velocity. Once a first input analyss been performed, it can
be fine tuned to have a better data description. Moreoverarnedstrated that if well
tuned, FASTGMM is able to segment the input data even bétser FIGJ.

6 Conclusion

In this paper we proposed a unsupervised algorithm thatdeafinite mixture model
from multivariate data on-line. The algorithm can be appt®any data mixture where
the EM can be used. We approached the problem from the oppeait of [5], i.e. by
starting from only one mixture component instead of seven&s and progressively
adapting the mixture by adding new components when neges3ar algorithm starts
from a single mixture component and sequentighgwing both increases the number
of components and adapting their means and covariancesefohe its initialization is
unique, and it is not affected by different possible starfioints like the original EM
formulation. Moreover, by starting with a single compontrg computational burden
is low at the beginning, increasing only whether more congpdsare required. Finally,
we presented the effectivity of our technique in a seriesrofilted experiments with
synthetic data, artificial, and real images, and we compéedesults against [5].

Acknowledgements

This work was supported by the European Commission, Prt§de004370 RobotCub
and FP7-231640 Handle, and by the Portuguese Governmentiaaio para a Ciéncia



16

e Tecnologia (ISR/IST pluriannual funding) through the BAIC program funds and
through project BIO-LOOK, PTDC / EEA-ACR / 71032/ 2006.

References

1. Ahrendt, P.. The multivariate gaussian probability risition. Tech. rep.,
http://www2.imm.dtu.dk/pubdb/p.php?3312 (January 2005

2. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapger Bridging the gap between
simulation and reality in urban search and rescue”. In: Rap®006: Robot Soccer World
Cup X (2006)

3. Dempster, A., Laird, N., Rubin, D.: Maximum likelihoodtiasation from incomplete data
via the em algorithm. J. Royal Statistic Soc. 30(B), 1-3&{9

4. Dobbe, J.G.G., Streekstra, G.J., Hardeman, M.R., Inc&@nbergen, C.A.: Measurement
of the distribution of red blood cell deformability using antomated rheoscope. Cytometry
(Clinical Cytometry) 50, 313-325 (2002)

5. Figueiredo, A., Jain, A.: Unsupervised learning of fimtexture models. IEEE Trans. Patt.
Anal. Mach. Intell. 24(3) (2002)

6. Greggio, N., Silvestri, G., Menegatti, E., Pagello, Em&ation of small humanoid robots
for soccer domain. Journal of The Franklin Institute - Eeginng and Applied Mathematics
346(5), 500-519 (2009)

7. Greggio, N., Bernardino, A., Santos-Victor, J.: A preatimethod for self-adapting gaussian
expectation maximization. International Conference dormatics in Control, Automation
and Robotics (ICINCO 2010), Funchal, Madeira - Portugah€Ji5-18 2010)

8. Hartley, H.: Maximum likelihood estimation from inconepé data. Biometrics 14, 174-194
(1958)

9. Jensen, J.H., Ellis, D., Christensen, M.G., Jensen,: E¥hluation distance measures be-
tween gaussian mixture models of mfccs. Proc. Int. Conf. asiMInfo. Retrieval ISMIR-07
Vienna, Austria pp. 107-108 (October, 2007)

10. Li, J., Barron, A.: Mixture density estimation. NIPS, MPress 11 (2000)

11. Montesano, L., Lopes, M., Bernardino, A., Santos-Vicfo: earning object affordances:
From sensory motor maps to imitation. IEEE Trans. on Rob@#(1) (2008)

12. Shim, H., Kwon, D., Yun, I., Lee, S.: Robust segmentatibrterebral arterial segments
by a sequential monte carlo method: Particle filtering. CatapMethods and Programs in
Biomedicine 84(2-3), 135-145 (December 2006)

13. Ueda, N., Nakano, R., Ghahramani, Y., Hiton, G.: Smenorélgn for mixture models.
Neural Comput 12(10), 2109-2128 (2000)

14. Verbeek, J., Vlassis, N., , Krose, B.: Efficient greedyriing of gaussian mixture models.
Neural Computation 15(2), 469—-485 (2003)

15. Vincze, M.: Robust tracking of ellipses at frame ratdté?a Recognition 34, 487—498 (2001)

16. Zhang, Z., Chen, C., Sun, J., Chan, K.: Em algorithms &msgian mixtures with split-and-
merge operation. Pattern Recognition 36, 1973 — 1983 (2003)



