
Unsupervised Learning of Finite Gaussian Mixture
Models (GMMs): A Greedy Approach

Nicola Greggio1,2,∗, Alexandre Bernardino1, and José Santos-Victor1

1 Instituto de Sistemas e Robótica, Instituto Superior Técnico
1049-001 Lisboa, Portugal

2 ARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

∗nicola.greggio@ieee.org

Abstract. In this work we propose a clustering algorithm that learns on-line a
finite gaussian mixture model from multivariate data based on the expectation
maximization approach. The convergence of the right numberof components as
well as their means and covariances is achieved without requiring any careful
initialization. Our methodology starts from a single mixture component covering
the whole data set and sequentially splits it incrementallyduring the expectation
maximization steps. Once the stopping criteria has been reached, the classical EM
algorithm with the best selected mixture is run in order to optimize the solution.
We show the effectiveness of the method in a series of simulated experiments and
compare in with a state-of-the-art alternative technique both with synthetic data
and real images, including experiments with the iCub humanoid robot.

Index Terms - Image Processing, Unsupervised Learning, (Self-Adapting) Gaus-
sians Mixtures, Expectation Maximization, Machine Learning, Clustering

1 Introduction

Nowadays, computer vision and image processing are involved in many practical ap-
plications. The constant progress in hardware technologies leads to new computing ca-
pabilities, and therefore to the possibilities of exploiting new techniques, for instance
considered to time consuming only a few years ago. Image segmentation is a key low
level perceptual capability in many robotics related application, as a support function
for the detection and representation of objects and regionswith similar photometric
properties. Several applications in humanoid robots [11],rescue robots [2], or soccer
robots [6] rely on some sort on image segmentation [15]. Additionally, many other
fields of image analysis depend on the performance and limitations of existing image
segmentation algorithms: video surveillance, medical imaging and database retrieval
are some examples [4], [12]. Two main principal approaches for image segmentation
are adopted: Supervised and unsupervised. The latter one isthe one of most practical
interest. It may be defined as the task of segmenting an image in different regions based
on some similarity criterion among each region’s pixels.

2

One of the most widely used distributions is the Normal distribution. Due to the
central limit theorem, any variable that is the sum of a largenumber of independent
factors is likely to be normally distributed. For this reason, the normal distribution is
used throughout statistics, natural science, and social science as a simple model for
complex phenomena. If we model the entire dataset by a mixture of gaussians, the clus-
tering problem, subsequently, will reduce to the estimation of the gaussians mixture’s
parameters.

1.1 Related Work

Expectation-Maximization (EM) algorithm is the standard approach for learning the
parameters of the mixture model [8]. It is demonstrated thatit always converges to a lo-
cal optimum [3]. However, it also presents some drawbacks. For instance, EM requires
an a-priori selection of model order, namely, the number of components to be incor-
porated into the model, and its results depend on initialization. The higher the number
of components within the mixture, the higher will be the total log-likelihood. Unfortu-
nately, increasing the number of gaussians will lead to overfitting and to an increase of
the computational burden.

Particularly in image segmentation applications, where the number of points is in
the order of several hundred thousand, finding the best compromise between precision,
generalization and speed is a must. A common approach to choose the number of com-
ponents is trying different configurations before determining the optimal solution, e.g.
by applying the algorithm for a different number of components, and selecting the best
model according to appropriate criteria.

Adaptive mixture models can solve the problem of the original EM’s model selec-
tion. It was originally proposed in 2000 by Li and Barron [10], and subsequently ex-
plored in 2003 by Verbeek et al. in [14]. They developed a deterministic greedy method
to learn the gaussians mixture model configuration [14]. At the beginning a single com-
ponent is used. Then, new components are added iteratively and the EM is applied until
it reaches the convergence.

Uedaet Al.proposed a split-and-merge EM algorithm to alleviate the problem of lo-
cal convergence of the EM method [13]. Subsequently, Zhanget Al. introduced another
split-and-merge technique [16]. Merge an split criterion is efficient in reducing number
of model hypothesis, and it is often more efficient than exhaustive, random or genetic
algorithm approaches. To this aim, particularly interesting is the method proposed by
Figueiredo and Jain, which goes on step by step until convergence using only merge
operations [5].

1.2 Our contribution

We propose an algorithm that simultaneously determines thenumber of components
and the parameters of the mixture model with only split operations. In [7] we previ-
ously proposed a split and merge technique for learning finite Gaussian mixture mod-
els. However, the principal drawbacks were the initialization, with particular regards
to the beginning number of mixture classes, and the superimposition of the split and
merge operations. The particularly of our new model is that it starts from only one

3

mixture component progressively adapting the mixture by splitting components when
necessary.

In a sense, we approach the problem in a different way than [5]. They start the
computation with the maximum possible number of mixture components. Although that
work is among the most effective to date, it becomes too computationally expensive for
image segmentation applications, especially during the first iterations. It starts with the
maximum number of components, decreasing it progressivelyuntil the whole space of
possibilities has been explored, whereas our method startswith a single component and
increases its number until a good performance is attained.

1.3 Outline

The paper is organized as follows. In sec. 3 we introduce the proposed algorithm.
Specifically, we describe its formulation in sec. 3.1, the initialization in sec. 3.2, the
component split operation in sec. 3.4, and the decision thresholds update rules in sec.
3.5. Furthermore, in sec. 4 we describe our experimental set-up for testing the validity
of our new technique and in sec. 5 we discuss our results. Finally, in sec. 6 we conclude.

2 Expectation Maximization Algorithm

2.1 EM Algorithm: The original formulation

A common usage of the EM algorithm is to identify the”incomplete, or unobserved
data” Y = (ȳ1, ȳ2, . . . , ȳk) given the couple(X ,Y) - with x̄defined asX = {x̄1, x̄2, . . . , x̄k},
also called”complete data”, which has a probability density (or joint distribution)
p(X ,Y |ϑ̄) = pϑ̄(X ,Y) depending on the parameterϑ̄. More specifically, the”com-
plete data”are the given input data setX to be classified, while the”incomplete data”
are a series of auxiliary variables in the setY indicating for each input sample which
mixture component it comes from. We defineE

′
(·) the expected value of a random

variable, computed with respect to the densitypϑ̄(x̄, ȳ).
We defineQ(ϑ̄(n), ϑ̄(n−1)) = E

′
L(ϑ̄), with L(ϑ̄) being the log-likelihood of the ob-

served data:

L(ϑ̄) = logpϑ̄(X ,Y) (1)

The EM procedure repeats the two following steps until convergence, iteratively:

– E-step: It computes the expectation of the joint probability density:

Q(ϑ̄(n)
, ϑ̄(n−1)) = E

′
[logp(X ,Y |ϑ̄(n−1))] (2)

– M-step: It evaluates the new parameters that maximizeQ:

ϑ̄(n+1) = argmax
ϑ̄

Q(ϑ̄n
, ϑ̄(n−1)) (3)

The convergence to a local maxima is guaranteed. However, the obtained param-
eter estimates, and therefore, the accuracy of the method greatly depend on the initial
parameterŝϑ0.

4

2.2 EM Algorithm: Application to a Gaussians Mixture

When applied to a Gaussian mixture density we assume the following model:

p(x̄) =
nc

∑
c=1

wc · pc(x̄)

pc(x̄) =
1

(2π)
d
2 |Σc|

1
2

e−
1
2 (x̄−µ̄c)

T |Σc|
−1(x̄−µ̄c)

(4)

wherepc(x̄) is the component prior distribution for the classc, and withd, µ̄c andΣc

being the input dimension, the mean and covariance matrix ofthe gaussians component
c, andnc the total number of components, respectively.

Consider that we havenc classesCnc, with p(x̄|Cc) = pc(x̄) andP(Cc) = wc being
the density and thea-priori probability of the data of the classCc, respectively. In this
setting, the unobserved data setY =

(

ȳ1, ȳ2, . . . , ȳN
)

contains as many elements as data

samples, and each vector ¯yi =
[

yi
1,y

i
2, · · · ,y

i
c, · · ·y

i
nc

]T
is such thatyi

c = 1 if the data
samplexi belongs to the classCc andyi

c = 0 otherwise. The expected value of thecth

component of the random vector ¯y is the classCc prior probabilityE
′
(yc) = wc.

Then theE andM steps become, respectively:
E-step:

P
(

yi
c = 1|x̄i) = P

(

Cc|x̄
i)

=
p
(

x̄i |Cc
)

·P(Cc)

p(x̄i)
=

wc · pc
(

x̄i
)

∑nc
c=1wc · pc(x̄i)

, πi
c

(5)

For simplicity of notation, from now on we will refer toE
′ (

yc|xi
)

asπi
c. This is proba-

bility that thexk belongs to the classCc.
M-step:

µ̄(n+1)
c =

∑N
i=1 πi

cx̄
i

∑i
i=1 πi

c

Σ(n+1)
c =

∑N
i=1 πi

c

(

x̄i− µ̄(n+1)
c

)(

x̄i− µ̄(n+1)
c

)T

∑N
i=1 πi

c

(6)

Finally, a-priori probabilities of the classes, i.e. the probability that thedata belongs to
the classc, are reestimated as:

w(n+1)
c =

1
N

N

∑
i=1

πi
c, with c= {1,2, . . . ,nc} (7)

3 FASTGMM: Fast Gaussian Mixture Modeling

Our algorithm starts with a single component and only increments its number as the
optimization procedure progresses. With respect to the other approaches, our is the one
with the minimal computational cost.

5

The key issue of our technique is looking whether one or more gaussians are not
increasing their own likelihood during optimization. Our algorithm evaluates the current
likelihood of each single componentc as (8):

Λcurr(c) (ϑ) =
N

∑
i=1

log(wc · pc(x̄i)) (8)

In other words, if their likelihood has stabilized they willbe split into two new ones
and check if this move improves the likelihood in the long run. For our algorithm we
need to introduce a state variable related to the state of thegaussian component:

– Its age, that measures how long the component’s own likelihood does not increase
significantly (see sec. 3.1);

Then, the split process is controlled by the following adaptive decision thresholds:

– One adaptive thresholdΛTH for determining a significant increase in likelihood
(see sec. 3.5);

– One adaptive thresholdATH for triggering the split process based on the compo-
nent’s own age (see sec. 3.5);

– One adaptive thresholdξTH for deciding to split a gaussian based on its area (see
sec. 3.4).

It is worth noticing that even though we consider three thresholds to tune, all of
them are adaptive, and only require a coarse initialization.

These parameters will be fully detailed within the next sections.

3.1 FASTGMM Formulation

Our algorithm’s formulation can be summarized within threesteps:

– Initializing the parameters;
– Splitting a gaussian;
– Updating decision thresholds.

Each mixture componentc is represented as follows:

ϑ̄c = ρ
(

wc, µ̄c,Σc,ξc,Λlast(c),Λcurr(c),ac
)

(9)

where each element is described in tab. I. In the rest of the paper the index notation
described in tab. I will be used.

Here, we define two new elements, the area (namely, the covariance matrix deter-
minant) and the age of the gaussians, which will be describedlater.

During each iteration, the algorithm keeps memory of the previous likelihood. Once
the re-estimation of the vector parameterϑ̄ has been computed in the EM step, our
algorithm evaluates the current likelihood of each single componentc as:

If ai overcomes the age thresholdATH (i.e. the gaussiansi does not increase its own
likelihood for a predetermined number of times significally- overΛTH), the algorithm
decides whether to split this gaussians depending on whether their own single area
overcomeξTH.

The whole algorithm pseudocode is shown in Algorithm 1.

6

Symbol Element

wc a-priori probabilities of the classc
µ̄c mean of the gaussian componentc
Σc covariance matrix of the gaussian componentc
ξc area of the gaussian componentc

Λlast(c) log-likelihood at iterationt−1 of the gaussian componentc
Λcurr(c) log-likelihood at iterationt of the gaussian componentc

ac ageof the gaussian componentc
c single mixture component
nc total number of mixture components
i single input point
N total number input points
d single data dimension
D input dimensionality

Table 1: Symbol notation used in this paper

3.2 Parameters initialization

The decision thresholds(·)INIT will be initialized as follows:

ξTH−INIT = ξdata;

LTH−INIT = kLTH;

ATH−INIT = kATH

(10)

with kLTH andkATH (namely, the minimum amount of likelihood difference between
two iterations and the number of iterations required for taking into account the lack of
a likelihood consistent variation) relatively low (i.e. both in the order of 10, or 20). Of
course, higher values forkLTH and smaller forkATH give rise to a faster adaptation,
however adding instabilities.

At the beginning, before starting with the iterations,ξTH will be automatically ini-
tialized to the Area of the whole data set - i.e. the determinant of the covariance matrix
relative to all points, as follows:

µdata,d =
1
N

N

∑
i

xN
d

Σdata,i = 〈x̄i− µ̄data〉〈x̄i− µ̄data〉
T

(11)

whereN is the number of input data vectors ¯x, andD their dimensionality.

3.3 Gaussian components initialization

The algorithm starts with just only one gaussian. Its mean will be the whole data mean,
as well as its covariance matrix will be that of the whole dataset.

That leads to a unique starting configuration.

7

Algorithm 1: FASTGMM: Pseudocode
1 Parameter initialization;
2 while (stopping criterion is not met)do
3 Λcurr (c) , evaluation, forc = 0,1, . . . ,nc;
4 Whole mixture log-likelihoodL

(

ϑ̄
)

evaluation;
5 Re-estimate priorswc, for c = 0,1, . . . ,nc;

6 Recompute center ¯µ(n+1)
c and covariancesΣ(n+1)

c , for c = 0,1, . . . ,nc;
- Evaluation whether changing the gaussians distribution structure;

7 for (c = 0 to nc)do
8 if (ac > ATH) then
9 if ((Λcurr (c)−Λlast(c)) < ΛTH) then

10 ac+ = 1;
- General condition for changing satisfied; now checking
those for each component;

11 if (Σc > ξTH) then
12 if (c < maxNumComponents)then
13 split gaussians→ split;
14 nc+ = 1;

15 resetξTH ←
ξT H−INIT

nc ;
16 resetΛTH ← LT H−INIT ;
17 resetaA,aB← 0 - with A, B being the new two

gaussians;
18 return;

19 ξTH = ξTH · (1+α ·ξ);

20 Optional: Optimizing selected mixture;

3.4 Splitting a Gaussian

When a component’s covariance matrix area overcomes the maximum area threshold
ξTH it will split. As a measure of the area we adopt the matrix’s determinant. This, in
fact, describes the area of the ellipse represented by a gaussian component in 2D, or the
volume of the ellipsoid represented by the same component in3D.

It is worth noticing that the way the component is split greatly affects further com-
putations. For instance, consider a 2-dimensional case, inwhich anelongatedgaussian
is present. Depending on the problem at hand, this componentmay approximating two
components with diverse configurations: Either covering two smaller data distribution
sets, placed along the longer axis, or two ovelapped sets of data with different covari-
ances, etc. A reasonable way of splitting is to put the new means at the two major
semi-axis’ middle point. Doing so, the new components will promote non overlapping
components and, if the actual data set reflects this assumption, it will result in faster
convergence.

To implement this split operation we make use of the singularvalue decomposition.
A rectangularn x p matrixA can be decomposed asA=USVT , where the columns ofU
are the left singular vectors,S(which has the same dimension asA) is a diagonal matrix
with the singular values arranged in descending order, andVT has rows that are the
right singular vectors. However, we are not interested in the whole set of eigenvalues,
but only the bigger one, therefore we can save some computation by evaluating only the
first column ofU and the first element ofS.

8

More precisely, A gaussian with parametersϑ̄OLD will be split in two new gaussians
A andB, with means:

Σ̄OLD = USVT

ūMAX = U∗,1; sMAX = S1,1

µ̄A = µ̄OLD +
1
2

sMAXūMAX; µ̄B = µ̄OLD−
1
2

sMAXūMAX

(12)

whereūMAX is the first column ofU , andsMAX the first element ofS.
The covariance matrices will then be updated as:

S1,1 =
1
4

sMAX; ΣA = ΣB = USVT (13)

while the newa-priori probabilities will be:

wA =
1
2

wOLD; wB =
1
2

wOLD (14)

The decision thresholds will be updated as explained in sec.3.5.
Finally, their ages,aA andaB, will be reset to zero.

3.5 Updating decision thresholds

The decision thresholds are updated in two situations:

A. When a mixture component is split;
B. When each iteration is concluded.

These two procedures will be explained in the following.
- Single iteration: The thresholdsΛTH, andξTH vary at each step with the following

rules:

ΛTH = ΛTH−
λ

nc2 ·ΛTH = ΛTH ·

(

1−
λ

nc2

)

ξTH = ξTH−
αMAX

nc2 ·ξTH = ξTH ·
(

1−
αMAX

nc2

)

(15)

with nc is the number of current gaussians,λ, andαMAX are the coefficients for the
likelihood and area change evaluation, respectively. Using high values forλ, andαMAX

results in high convergence speed. However, a faster convergence is often associated
to instability around the optimal point, and may lead to a divergence from the local
optimum. We can say thatαMAX can be interpreted as thespeedthe mixture compo-
nents are split. In normal conditions,ξTH will become closer to theareaof the bigger
component’s determinant step-by-step at each iteration. Then, it will approach the split
threshold, allowing the splitting procedure.

Following an analog rule,ΛTH will decrease step by step, approaching the current
value of the global log-likelihood increment. This will allow the system to avoid some
local optima, by varying its configuration whether a stationary situation occurs. More-
over, dividingλ andαMAX by the square ofnc consents to reduce the variation of the

9

splitting threshold according to the number of components increases with a parabolic
curve. This favorites the splitting when a low number of components is present, while
avoiding a diverging behavior in case of an excessive amountof splitting operations.

Finally, every time a gaussians is added these thresholds will be reset to their initial
value (see next section).

- After gaussian splitting: The decision thresholds will be updated as follows:

ξTH =
ξTH−INIT

nc
; ΛTH = LTH−INIT (16)

wherencOLD andncare the previous and the current number of mixture components, re-
spectively. Substantially, this updates the splitting threshold to a value that goes linearly
with the initial value and the actual number of components used for the computation.

3.6 Optimizing the selected mixture

This is an optional procedure. Once the best, or chosen, mixture, is saved, there are two
possibilities:

1. Keeping the chosen mixture as the final result;
2. Optimizing the chosen mixture with the original EM algorithm.

The first one is the fastest but less accurate, while the second one introduces new com-
putations ensuring more precision. It may happen that FASTGMM decides to increase
the number of components even though the EM has not reached its local maximum, due
to the splitting rule. In this case current mixture can stillbe improved by running the
EM until it achieves its best configuration (the log-likelihood no longer increases).

Whether applying the first or second procedure is a matter of what predominates in
the”number of iterations vs. solution precision”compromise at each time.

3.7 Computational complexity evaluation

We refer to the pseudocode in algorithm 1, and to the notationpresented in sec. 3.1.The
computational burden of each iteration is:

– the original EM algorithm (steps 3 to 6) takesO(N ·D ·nc) for each step, for a total
of O(4 ·N ·D ·nc) operations;

– our algorithm takesO(nc) for evaluating all the gaussians (step 7 to 7);
– our split (step 13) operation requiresO(D).
– the others takeO(1).
– the optional procedure of optimizing the selected mixture(step 20) takesO(4 ·N ·D ·nc),

being the original EM.

Therefore, the original EM algorithm takes:

– O(4 ·N ·D ·nc), while our algorithm addsO(D ·nc) on the whole, orO(4 ·N ·D ·nc),
giving rise toO(4 ·N ·D ·nc) + O(D ·nc) = O(4 ·N ·D ·nc+D ·nc)= (nc·D · (4N+1))
in the first case;

10

– 2·O(4 ·N ·D ·nc) + O(D ·nc) = O(8 ·N ·D ·nc+D ·nc) = (nc·D · (8N+1)) in the
second case, with the optimization procedure.

Considering that usuallyD << N andnc<< N, and that the optimization proce-
dure is not essential, our procedure does not add a considerable burden, while giving an
important improvement to the original computation in termsof self-adapting to the data
input configuration at best. Moreover, it is worth noticing that even though the optimiza-
tion procedure is performed, this starts very close to the optimal mixture configuration.
In fact, the input mixture is the result of the FASTGMM computation, rather than a
generic random or k-means initialization (as it happens with the simple EM algorithm,
generally).

4 Experiments

Since now we use the following notation:

– FASTGMM: Our algorithm;
– FIGJ: [5].

4.1 Synthetic data

We tested it by classifying different input data sets randomly generated by a known
gaussians mixture. The same input sets have been proposed to[5]. Each distribution
has a total of 2000 points, but arranged with different mixture distributions, with 3, 4,
8, and 16 Gaussian components.

The output of the two algorithms is shown in Fig. 1. Each subplot set is composed
by the graphical output representation for the 2-D point distribution (top) and the 3-
D estimation mixture histogram (bottom). The data plots show the generation mixture
(blue) and the evaluated one (red). On the left the data result from our approach is
shown, while on the right those of [5], relative to the same input data set. Moreover, the
3D histograms at the bottom in each subfigure represent: The generated mixture, our
algorithm’s estimated one, and that estimated by [5], respectively.

We can see that our algorithm is capable to learn the input data mixture starting
from only one component with an accuracy comparable with those of [5].

4.2 Colored real images

We segmented the images as 3-dimensional input in the (R,G,B) space. The color image
segmentation results are shown in Fig. 2.The set of images isdivided into two groups:
Some general images, on the left (from (1) to (6)), and some images taken by the iCub’s
cameras, on the right (from (7) to (12)). For each group we show the original images,
those obtained with [5], and those obtained with our algorithm on the left, in the middle,
and on the right, respectively.

11

Non-Overlapping mixtures

3-gaussians 4-gaussians
FASTGMM FIGJ FASTGMM FIGJ

−10 −8 −6 −4 −2 0 2 4 6 8 10

−6

−4

−2

0

2

4

6

8

Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6 8 10

−6

−4

−2

0

2

4

6

8

Reference (blue) and estimated (red) covariances

−4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

4

5

Reference (blue) and estimated (red) covariances

−4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

4

5

Reference (blue) and estimated (red) covariances

Overlapping mixtures
8-gaussians 16-gaussians

FASTGMM FIGJ FASTGMM FIGJ

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6
Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6
Reference (blue) and estimated (red) covariances

Fig. 1: For each plot set: Generation mixture (blue) and the evaluated one (red) for FASTGMM
and FIGJ on the same input sets. Moreover, the 3D histograms at the bottom in each subfig-
ure represent: The generated mixture, our algorithm’s estimated one, and that estimated by [5],
respectively.

Table 2: Experimental results on 2D synthetic data.
Input Algorithm # Initital # DetectedActual gaussian# IterationsElapsed TimeDiff time FASTGMM Log-likelihood Diff lik FASTGMM Normalized L2 DistanceNormalized L2 DistanceCrashed

gaussiansgaussians number [s] with opt vs FIGJ% with opt vs FIGJ % without optimization with optimization
FSAEM 3 76 3.99716 -8420.917867

3 Optimization 1 3 3 130 6.151567 -53.89844289 -8379.161274 0.495867477 5.770135 3.918034 no
FSAEM + Opt. 3 206 10.148727 -8379.161274

FIGJ 16 3 277 29.433288 -9524.692099 3.670464 3.670464 no
FSAEM 4 101 5.615204 -7573.101881

4 Optimization 1 4 4 186 12.531248 -123.166389 -7405.078438 2.218687212 10.670613 0.07519 no
FSAEM + Opt. 4 287 18.146452 -7405.078438

FIGJ 16 4 205 13.52505 -8729.761818 0.076403 0.076403 no
FSAEM 9 276 5.750431 -8599.51

8 Optimization 1 9 8 199 4.428076 22.99575458 -8598.17 0.015582283 0.196817 1.971166 no
FSAEM + Opt. 9 475 10.178507 -8598.17

FIGJ 16 7 333 48.156629 -9798.154848 0.14491 0.14491 no
FSAEM 16 501 26.667825 -8165.436422

16 Optimization 1 16 16 202 12.848394 51.82061529 -8160.778985 0.057038433 0.251515 1.033934 no
FSAEM + Opt. 16 703 39.516219 -8160.778985

FIGJ 20 13 363 63.740854 -9540.91802 2.98916 2.98916 no

5 Discussion

5.1 Synthetic data

In table 2 the results of FASTGMM and FIGJ applied to the selected images are shown.

5.1.1 - Evaluated number of components: There are substantially no differences in
the selected number of components. Both our approach and [5]perform well on low
mixture components, while having the tendency of underestimating the best number
when it increases, with exception for our approach that overestimates it with the 8-
component synthetic data and acting exactly with the 16-components. However, it is

12

worth considering that even though it approaches the actualnumber correctly, this not
necessary means that the components are in the right place. For instance, two compo-
nents may be regarded as only one, while a single one can be considered as a multiple
one. Nonetheless, it happens for both algorithm (see Fig. 1), suggesting that a perfect
algorithm is hard to find.

Synthetic or generic images

Original Image FIGJ FSAEM Original Image FIGJ FSAEM

(1) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120 (5) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

(2) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(4) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(3) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160 (6) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

iCub Camera’s images

Original Image FIGJ FSAEM Original Image FIGJ FSAEM

(7) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120 (10) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

(8) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120 (11) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(9) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120 (12) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

Fig. 2: Color images segmentation. From image (1) to (6) we tested the algorithms on well-
known images, or synthetic ones, and from (7) to (12) we exploit the algorithms possibilities on
real images captured by our robotic platform iCub’s cameras. Note: FIGJ has not been able to
segment image (13) also starting with merely 2 components, due to some internal covariances
ill-posedness problems.

13

Input Algorithm # Initial # Detected# IterationsElapsed TimeDiff time FASTGMM Log-likelihood Diff lik FASTGMM Diff lik FASTGMM Crashed
gaussiansgaussians [s] with opt vs FIGJ % with opt vs FIGJ with opt vs FIGJ

FASTGMM 9 551 71.460507 -235130.6216
1 Optimization 1 9 23 22.131293 130.9699636 -234692.3977 0.186374662 17.03330409 no

FASTGMM + Opt. 9 700 93.5918 -234692.3977
FIGJ 16 16 422 307.454885 -274668.2675 yes, 17

FASTGMM 9 426 68.31949 -301594.6385
2 Optimization 1 9 3 1.950391 2.854809074 -301594.6384 6.29984E-09 39.70671245 no

FASTGMM + Opt. 9 429 70.269882 -301594.6384
FIGJ 19 19 308 441.170848 -421347.9543 yes, 20

FASTGMM 14 426 80.365553 -314931.44
3 Optimization 1 14 374 88.057387 109.5710584 -314551.5352 0.120630946 11.16531396 no

FASTGMM + Opt. 14 800 168.422941 -314551.5352
FIGJ 30 25 572 1611.816189 -349672.2017 no

FASTGMM 12 451 75.660802 -235735.0604
4 Optimization 1 11 103 21.39836 28.28196296 -235729.2834 0.00245062 28.67314092 no

FASTGMM + Opt. 11 554 97.059162 -235729.2834
FIGJ 18 19 329 500.708511 -303320.2731 yes 19

FASTGMM 13 451 80.165239 -311585.8059
5 Optimization 1 13 246 57.748543 72.03688746 -311167.3045 0.134313369 10.60749104 no

FASTGMM + Opt. 13 697 137.913782 -311167.3045
FIGJ 30 27 611 2110.020131 -344174.3484 no

FASTGMM 7 276 34.977055 -226138.1494
6 Optimization 1 7 36 5.860168 16.7543208 -226138.0738 3.34203E-05 17.57803149 no

FASTGMM + Opt. 7 312 40.837223 -226138.0738
FIGJ 16 16 420 272.227272 -265888.6956 yes, 17

FASTGMM 7 576 72.744922 -281176.5478
7 Optimization 1 7 14 2.610093 3.588007146 -281176.5441 1.30736E-06 15.72288044 no

FASTGMM + Opt. 7 590 75.355015 -281176.5441
FIGJ 11 11 267 106.453566 -325385.5959 yes, 12

FASTGMM 8 426 54.119749 -205718.9337
8 Optimization 1 8 46 6.478271 11.97025322 -205718.7793 7.50364E-05 26.47107115 no

FASTGMM + Opt. 8 472 60.59802 -205718.7793
FIGJ 11 11 228 90.200195 -260174.7438 yes, 12

FASTGMM 4 251 25.685892 -211551.64
9 Optimization 1 4 3 1.341008 5.220795914 -211551.64 0 15.41441064 no

FASTGMM + Opt. 4 254 27.026901 -211551.64
FIGJ 13 13 313 137.77516 -244161.0785 yes, 14

FASTGMM 3 201 18.822216 -230138.8367
10 Optimization 1 3 63 6.427956 34.15089913 -230136.557 0.000990588 14.70275567 no

FASTGMM + Opt. 3 264 25.250172 -230136.557
FIGJ 14 13 275 106.626624 -263972.9727 yes, 14

FASTGMM 11 451 67.534808 -210899.0185
11 Optimization 1 10 180 31.981125 47.35502469 -210657.4353 0.114549212 17.68706256 no

FASTGMM + Opt. 10 631 99.515933 -210657.4353
FIGJ 24 22 514 624.913104 -247916.5477 no

FASTGMM 3 151 16.899695 -218447.7912
12 Optimization 1 3 23 2.27548 13.4646217 -218447.7848 2.96364E-06 16.0195988 no

FASTGMM + Opt. 3 174 19.943671 -218447.7848
FIGJ 12 12 260 130.416222 -253442.2435 yes, 13

Table 3: Experimental results on real images segmentation.

5.1.2 - Elapsed time: It is important to distinguish the required number of iterations
from the elapsed time. FASTGMM employs fewer iterations than FIGJ without making
use of the optimization process, while more in the other case. At a first glance, this
may suggest a whole FASTGMM slower computation than FIGJ. However, the whole
elapsed time that occurs for running our procedure is generally less than FIGJ’s. Nev-
ertheless, we made FIGJ starting with a reasonable number ofcomponents, just a few
more than the optimum, so that they do not affect its performance negatively. FAST-
GMM’s better performance is due to the fact that our approach, growing in the number
of components, computes more iterations than FIGJ but with asmall number of com-
ponents per iteration. Therefore it runs each iteration faster, while slowing only at the
end due to the augmented number of components.

5.1.3 - Mixture precision estimation: It is possible to see that FASTGMM usually
achieves a higher final log-likelihood than FIGJ. This suggests a better approximation

14

of the data mixture. However, a higher log-likelihood does not strictly imply that the
extracted mixture covers the data better than another one. This is because it is based on
the probability of each component, which may be more or less exact, being not deter-
ministic. Nevertheless, it is a good index on the probability that such mixture would be
better.

A deterministic approach is to adopt a unique distance measure between the genera-
tion mixture and the evaluated one. In [9] Jensenet Al.exposed three different strategies
for computing such distance: The Kullback-Leibler, the Earh Mover, and the Normal-
ized L2 distance. The first one is not symmetric, even though asymmetrized version
is usually adopted in music retrival. However, this measurecan be evaluated in a close
form only with mono-dimensional gaussians. The second one also suffers analog prob-
lems of the latter. The third choice, finally is symmetric, obeys to the triangle inequality
and it is easy to compute, with a comparable precision with the other two. We then used
the last one. Its expression states [1]:

zcNx
(

µ̄c, Σ̄c
)

= Nx
(

µ̄a, Σ̄a
)

·Nx
(

µ̄b, Σ̄b
)

where

Σ̄c =
(

Σ̄−1
a + Σ̄−1

b

)−1
and µ̄c = Σ̄c

(

Σ̄−1
a µ̄a + Σ̄−1

b µ̄b
)

zc = |2πΣ̄aΣ̄bΣ̄−1
c |

1
2 e−

1
2 (µ̄a−µ̄b)

T Σ̄−1
a Σ̄cΣ̄−1

b (µ̄a−µ̄b)

= |2π
(

Σ̄a + Σ̄b
)

|
1
2 e−

1
2 (µ̄a−µ̄b)

T(Σ̄a+Σ̄b)
−1

(µ̄a−µ̄b)

(17)

5.2 Colored real images

It is salient to report that in [5] it has not been performed any experiment on real images
segmentation. In fact, their result only concern differentfamilies of synthetic data. Con-
trariwise, we want to focus more on image processing, due to its relevant importance in
several different scientific fields, like robotics and medicine, as mentionned within the
introduction.

As we pointed out in the previous section (sec. 4.2), to compare a detected mixture
versus a generic image is not possible quantitatively, onlyqualitatively. This is due to
the high number of colors present within the image. It is obvious that with more com-
ponents the image is better reconstructed. However, it is possible to visually recognize
a pattern even with fewer components, although with less accuracy. Therefore, what
algorithm gives the best result is again a matter of what compromise is better, in terms
of computational complexity and result accuracy.

Moreover, we have to report a problem that has not been addressed in the original
work [5]. This crashes with some images when the number of components increases too
much. Than means that it is not able to finish the computation.Therefore, as reported on
tab. 3 we had to start it with a relatively low number of gaussians. However, even though
it is able to finish the computation, it very often returns a mixture having the same
starting number of components as the best one. Moreover, it explores the whole solution
space, from the input mixture to one with only one element. This makes pointless the
usage of such approach: Segmenting an image with the original EM instead of [5] will
give the same result in less time.

15

5.3 FASTGMM Optimization Procedure

We reported our results both using the optimization procedure, and not. Since one of
the most prominent key feature of our approach is its fast computation, together with
its simple implementation, the optimization process may seem worthless or too much
time demanding. However, by comparing its performances against those of [5], our
algorithm still remain faster (see sec. 5.1.2). The difference in terms of final mixture
precision is not so evident at a first glance, both referring to the final log-likelihood and
to the normalized L2 distance, although present. Nevertheless, the required time for
the EM optimization step is important, since sometimes it approaches (and overcome)
the splitting part. Here, selecting whether optimizing or not is merely a question of
performance requiring. If one claims for the fastest algorithm it is advisable to not use
the optimization, even though it may lead to some improvements to the final mixture.
Otherwise, FASTGMM gives a good precision maintaing a better computational burden
than FIGJ.

5.4 Limitation of the proposed algorithm

The bigger issue with our approach is theαMAX parameter tuning. This cause FAST-
GMM being less general than FIGJ in input domain. IfαMAX is too small the input
description may be underestimated, or overestimated if it is too high. This does not
mean that it cannot perform in general purposes, but only that it has to be tuned for
getting precise results. However, this makes FASTGMM suitable for a first data de-
scription due to its great velocity. Once a first input analysis has been performed, it can
be fine tuned to have a better data description. Moreover, we demonstrated that if well
tuned, FASTGMM is able to segment the input data even better than FIGJ.

6 Conclusion

In this paper we proposed a unsupervised algorithm that learns a finite mixture model
from multivariate data on-line. The algorithm can be applied to any data mixture where
the EM can be used. We approached the problem from the opposite way of [5], i.e. by
starting from only one mixture component instead of severalones and progressively
adapting the mixture by adding new components when necessary. Our algorithm starts
from a single mixture component and sequentiallygrowingboth increases the number
of components and adapting their means and covariances. Therefore, its initialization is
unique, and it is not affected by different possible starting points like the original EM
formulation. Moreover, by starting with a single componentthe computational burden
is low at the beginning, increasing only whether more components are required. Finally,
we presented the effectivity of our technique in a series of simulated experiments with
synthetic data, artificial, and real images, and we comparedthe results against [5].

Acknowledgements

This work was supported by the European Commission, ProjectIST-004370 RobotCub
and FP7-231640 Handle, and by the Portuguese Government - Fundação para a Ciência

16

e Tecnologia (ISR/IST pluriannual funding) through the PIDDAC program funds and
through project BIO-LOOK, PTDC / EEA-ACR / 71032 / 2006.

References

1. Ahrendt, P.: The multivariate gaussian probability distribution. Tech. rep.,
http://www2.imm.dtu.dk/pubdb/p.php?3312 (January 2005)

2. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between
simulation and reality in urban search and rescue”. In: Robocup 2006: Robot Soccer World
Cup X (2006)

3. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data
via the em algorithm. J. Royal Statistic Soc. 30(B), 1–38 (1977)

4. Dobbe, J.G.G., Streekstra, G.J., Hardeman, M.R., Ince, C., Grimbergen, C.A.: Measurement
of the distribution of red blood cell deformability using anautomated rheoscope. Cytometry
(Clinical Cytometry) 50, 313–325 (2002)

5. Figueiredo, A., Jain, A.: Unsupervised learning of finitemixture models. IEEE Trans. Patt.
Anal. Mach. Intell. 24(3) (2002)

6. Greggio, N., Silvestri, G., Menegatti, E., Pagello, E.: Simulation of small humanoid robots
for soccer domain. Journal of The Franklin Institute - Engineering and Applied Mathematics
346(5), 500–519 (2009)

7. Greggio, N., Bernardino, A., Santos-Victor, J.: A practical method for self-adapting gaussian
expectation maximization. International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2010), Funchal, Madeira - Portugal (June 15-18 2010)

8. Hartley, H.: Maximum likelihood estimation from incomplete data. Biometrics 14, 174–194
(1958)

9. Jensen, J.H., Ellis, D., Christensen, M.G., Jensen, S.H.: Evaluation distance measures be-
tween gaussian mixture models of mfccs. Proc. Int. Conf. on Music Info. Retrieval ISMIR-07
Vienna, Austria pp. 107–108 (October, 2007)

10. Li, J., Barron, A.: Mixture density estimation. NIPS, MIT Press 11 (2000)
11. Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J.: earning object affordances:

From sensory motor maps to imitation. IEEE Trans. on Robotics 24(1) (2008)
12. Shim, H., Kwon, D., Yun, I., Lee, S.: Robust segmentationof cerebral arterial segments

by a sequential monte carlo method: Particle filtering. Computer Methods and Programs in
Biomedicine 84(2-3), 135–145 (December 2006)

13. Ueda, N., Nakano, R., Ghahramani, Y., Hiton, G.: Smem algorithm for mixture models.
Neural Comput 12(10), 2109–2128 (2000)

14. Verbeek, J., Vlassis, N., , Krose, B.: Efficient greedy learning of gaussian mixture models.
Neural Computation 15(2), 469–485 (2003)

15. Vincze, M.: Robust tracking of ellipses at frame rate. Pattern Recognition 34, 487–498 (2001)
16. Zhang, Z., Chen, C., Sun, J., Chan, K.: Em algorithms for gaussian mixtures with split-and-

merge operation. Pattern Recognition 36, 1973 – 1983 (2003)

