Chapter 1
Abstraction Levels for Robotic Imitation:
Overview and Computational Approaches

Manuel Lopes, Francisco Melo, Luis Montesano and Jaasntos-Victor

Abstract This chapter reviews several approaches to the problemaafitey by
imitation in robotics. We start by describing several ctigaiprocesses identified
in the literature as necessary for imitation. We then prddsesurveying different
approaches to this problem, placing particular emphasysethods whereby an
agent first learns about its own body dynamics by means eégeloration and then
uses this knowledge about its own body to recognize therecheing performed by
other agents. This general approach is related to the ntatory of perception, par-
ticularly to the mirror neurons found in primates. We digtiish three fundamental
classes of methods, corresponding to three abstractiefslatwhich imitation can
be addressed. As such, the methods surveyed herein exéfaviors that range
from raw sensory-motor trajectory matching to high-levestaact task replication.
We also discuss the impact that knowledge about the worltbatite demonstrator
can have on the particular behaviors exhibited.
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Fig. 1.1 Approaches to imitation at the three levels of abstractionudised in this chapter.

1.1 Introduction

In this chapter we study several approaches to the problemitstion in robots.
This type of skill transfer is only possible if the robots baseveral cognitive ca-
pabilities that, in turn, pose multiple challenges in tewhsnodeling, perception,
estimation and generalization. Throughout the chapteisureey several methods
that allow robots to learn from a demonstration. Severatiosurveys cover differ-
ent aspects of imitation, including [6,11, 16, 128].

Rather than providing another extensive survey of learfrimign demonstration,
in this chapter we review some recent developments in ifitah biological sys-
tems and focus on robotics works that consider self-modeléa fundamental part
of the cognitive processes involved in and required foraton. Self-modeling, in
this context, refers to the learning processes that allevdbot to understand its
own body and its interaction with the environment.

In this survey, we distinguish three fundamental classesethods, each ad-
dressing the problem of learning by imitation at differesudls of abstraction. Each
of these levels of abstraction focuses on a particular asgetbe demonstration,
giving rise to different imitative behaviors ranging fronotar resonance to a more
abstract imitation of inferred goals. This hierarchy of &eébrs is summarized in
the diagram of Fig. 1.1. It is interesting to note that therapphes at these different
levels of abstraction, rather than being mutually excleisactually provide a natural
hierarchical decomposition, in which approaches at theemabistracted levels can
build on the outcome of methods in less abstract levels {eeexample, [80, 84]
for an example of such integration).

Why Learn by Imitation?

The impressive research advances in robotics and autorsogsystems in the past
years have led to the development of robotic platforms aliasingly complex mo-

tor, perceptual and cognitive capabilities. These achieres open the way for new
applications that require these systems to interact witlkerotobots and/or human
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users during extended periods of time. Traditional prognémy methodologies and
robot interfaces will no longer suffice, as these systemd tedearnto execute new
complex tasks and improve their performance througholifétsme.

Learning by imitation is likely to become one primary form tekching such
complex robots [9, 127]. Paralleling the ability of humaifaints to learn through
(extensive) imitation, an artificial system can retrievargé amount of task related
information simply by observing other individuals, humamsobots, perform that
same task. Such a system would ideally be able to observertzuamal learn how
to solve similar tasks by imitation only. To be able to ackisuch capability there
are several other skills that must be developed first [84].

The ability to imitate has also been used in combination witter learning
mechanisms. For instance, it can speed up learning eitherdwding an initial
solution for the intended task that can then be improvedibjand-error [109] or
by guiding exploration [112, 114]. It also provides moreuitive and acceptable
human-machine interactions due to its inherent social corapt [20, 79]. Learning
by imitation has been applied before the advent of humanaidts and in sev-
eral different applications, including robotics [75],deperation [153], assembly
tasks [149], game characters [139], multiagent system3][Tbmputer program-
ming [49] and others.

What Is Imitation?

In biological literature, many behaviors have been ideedifinder the general label
of “social learning”. Two such social learning mechanismaseénraised particular
interest among the research community, these hieiitgtion andemulation[148].
In both the agent tries to replicate the effects achievechbydemonstrator but in
imitation the agent also replicates the motor behavior useatchieve such goal,
while in emulation only the effects are replicated (the agaieves the effect by
its own means).

In robotic research the worithitation is also used to represent many different
behaviors and methodologies. Some works seek to clarifydéstihguish several
such approaches, either from a purely computational pafiniew [84,89,104,127]
or taking inspiration in the biological counterparts [29, 740, 143, 146, 148, 154].
The taxonomy depicted in Fig. 1.2 provides one possiblesiflaation of different
social learning mechanisms that takes into account threeces of information,
namelygoals actionsandeffects

In this paper, we define imitation in its daily use meaning ase the designa-
tionsimitation andlearning/programming by demonstratiémerchangeably. Tak-
ing into account the previous taxonomy the works presenggdlye classified under
other labels. Roughly speaking we can consider the thred¢sles going from mim-
icking, through (goal) emulation and finally imitation. Bhilivision is clear if we
consider methods that make an explicit inference about tlaé @s imitation, but
not that clear in the cases where the trajectory generalizat performed using an
implicit goal inference.
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Fig. 1.2 Behavior classification in terms of goals, actions and effeefzr@duced from [25]).

Organization of the Chapter

In the continuation, and before entering into the diffe@rhputational approaches
to imitation, Section 1.2 briefly outlines relevant aspéiam psychology and neu-
rophysiology on the topic of imitation in biological systenSection 1.3 then dis-
cusses imitation in artificial systems, by pointing out th@mscientific challenges
that have been identified and addressed in the literatunmivation learning.

The remainder of the chapter is divided into three main sastieach addressing
imitation from a specific perspective:

e Section 1.4 addresses imitation from a motor resonance@etige, namelyra-
jectory matching and generalizatioit discusses approaches that work at the
trajectory level (either joint or task space). These apghiea can be interpreted
as performing regression (at the trajectory level) usirrgabserved demonstra-
tion, and including additional steps to allow the learnegéoeralize from it.
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e Section 1.5 discusses imitation plication of observe@world) eventsIn this
section, the learner focuses on replicating observedtsffeche world, mainly
effects on objects.

e Goal inferencas finally presented in Section 1.6. We survey approache$iohw
the learner explicitly tries to infer the goal of the demaeatir and then uses this
goal to guide its action-choice.

We note that such division is not strict and some of the agres share ideas
across several of the perspectives above. Also, dependirigeoapplication and
context, one particular perspective might be more appatgifior imitation than
the others. We conclude the paper in Sections 1.7 and 1.8sbysting other ap-
proaches to imitation and providing some concluding remark

1.2 Imitation in Natural Systems

The idea of learning by imitation has a clear inspiratiorhiemway humans and other
animals learn. Therefore, results from neurophysiology@sychology on imitation
in humans, chimpanzees and other primates are a valuabigesofinformation to
better understand, develop and implement artificial systante to learn and imitate.
Section 1.2.1 details information from neurophysiologg &ection 1.2.2 presents
evidence from psychology and biology. Such results ilatsttthe highly complex
task that imitation is. The brief literature review in thisction identifies some of
the the problems that must be addressed before robots cam(kfficiently) by
imitation and some works in the robotic literature that seeknodel/test cognitive
hypothesis.

1.2.1 Neurophysiology

Neurophysiology identified several processes involvedtiioa understanding that,
in turn, contributed differently to the development of leiag approaches in robotics.
For example, mirror neurons [51, 106] provided an significaativation for using
motor simulation theories in robotics. Similar ideas werggested in speech recog-
nition [50,77]. Also the existence of forward and backwabels in the cerebellum
gave further evidence that the production system is ineblaethe perception, al-
though itis not clear if it is necessary [152]. Most of thesstimods consider already
known actions and not the way such knowledge can be acquiredefer to [106]
for further discussion). For the case of novel actions tieegidence that the mirror
system is not sufficient to explain action understandingaarehsoning mechanism
must be involved [19]. We now discuss several of these viewsadre detail.
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Motor Theories of Perception

Several theories already claimed that the motor systemvavied in perception.
An example is the motor theory of speech perception [77].thhee main claims in
this theory are: “(a) speech processing is special, (b)gdeng speech is perceiving
gestures, and (c) the motor system is recruited for perwgispeech”. In [50], the
authors revisit such theory taking into account the regidta the last 50 years. The
authors argue that although claim (a) is likely false, ckiy) and (c) are still likely
to be true, although they admit that most of the findings scpmpsuch claims may
be explained by alternative accounts.

One evidence in favor of the theory that the motor systemvisived in percep-
tion is the existence of several mechanisms in the brairhiedan motor prediction
and reconstruction. One such mechanism depends on thereestf several pairs
of forward and backward models in the brain [152]. The fodvarodel codes the
perceptual effects of motor actions, while the backwardehoepresents the inverse
relation,i.e.,the motor actions that might cause a given percept. Theselspb-
vide the agent with “simulation capabilities” for its owndodynamics, and are
thus able to adapt to perturbations. They are also geneoalgénto take into ac-
count task restrictions.

Mirror and Canonical Neurons

The discovery ofmirror neurons[51, 96, 106] fostered a significant interest on
the brain mechanisms involved in action understanding.s@hseurons are lo-
cated in the F5 area of the macaque’s brain and dischargegdtive execution
of hand/mouth movements. In spite of their localization jpre-motor area of the
brain, mirror neurons fire both when the animal performs aifipegoal-oriented
grasping action and when it sees that same action beingrpertbby another in-
dividual. This observation suggests that the motor systmpansible for triggering
an action is also involved in the recognition of the actionother words, recog-
nition may also involve motor information, rather than guréisual information.
Furthermore, by establishing a direct connection betwesstuges performed by a
subject and similar gestures performed by others, mirrarores may be related to
the ability to imitate found in some species [117], estdddtig an implicit level of
communication between individuals.

Canonical neurong96] have the intriguing characteristic of responding when
objects that afford apecifictype of grasp are present in the scene, even if the grasp
action is not performed or observed. Thus, canonical neunoaly encode object
affordances, as introduced in [55], and may help distifgngambiguous gestures
during the process of recognition. In fact, many objectsgaasped in very precise
ways that allow the object to be used for specific purposeerigpusually grasped
in a way that affords writing and a glass is held in such a way We can use it to
drink. Hence, by recognizing an object that is being maitad, it is also possible
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to attain information about the most likely grasping po#isiéss (expectations) and
hand motor programs, simplifying the task of gesture reitamm

Reasoning Processes

Even if there is strong evidence that the motor system idwebin perception, it is
not clear how fundamental it is and many claims on the mirystean are unlikely to
hold [56]. For instance, mirror neurons are not strictlyessary for action produc-
tion as their temporal deactivation does not impair gragpontrol but only slows
it down [47,106]. On the other hand, more complex mechantbars mirroring are
necessary to understand unexpected behaviors of an agdf®]lan experiment
is presented where a person turns a light on using its knegla®idemonstrations
are shown where the person has the arms occupied with a,foldery folders or
none. Results from &iMRI scan showed that the mirror mechanism is active during
the empty arms situation (expected behavior) but it is nav@during the other
situation (unexpected behaviour). This and other siméauits suggest that action
understanding in unexpected situations is achieved by feneince-based mecha-
nism taking the contextual constraints into account. In tthis indicates that there
may exist a reasoning mechanism to understand/interg@ettiberved behaviors.

1.2.2 Psychology

Studies in behavioral psychology have evidenced the whafitboth children and
chimpanzees to use different “imitative” behaviors. Indiaals of both species also
seem to switch between different such behaviors dependipgieived cues about
the world [54, 62]. These cues include, for example, theriefipurpose of the ob-
served actions [13, 14, 67] even when the action fails [6718%]. Other social
learning mechanisms are analyzed in [154] under the morergkdesignation of
social influence/learningn the continuation, we discuss some examples of behav-
ior switching identified in the literature.

Imitation Capabilities and Behaviour Switching

Imitation andemulationare two classes of social learning mechanisms observed in
both children and apes [138, 146, 148h imitation, the learning individual adheres

to the inferred goal of the demonstrator, eventually adgptiie same action choice.

In emulation, on the other hand, the individual focuses erotiserve@ffectsof the
actions of the demonstrator, possibly reaching these wsiifferent action choice.
The predisposition of an individual to imitate or emulate ¢us be confirmed in

1 Other species, such as dogs, have also been shown to switch strafegji¢mving observed a
demonstration, as seen in [118].
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tasks where the same effect can be achieved using diffecdahs/motor patterns.
For example, both chimpanzees and children are able to t@pghoice of a push
or twist movement in opening a box [147].

Children, in particular, can be selective about which pafts demonstration to
imitate [54, 150], but are generally more prone to imitatentbo emulate. For ex-
ample, children can replicate parts of a demonstrationatectlearly not necessary
to achieve the most obvious goal — a phenomenon knoweoveasimitation[62].
Over-imitation can be diminished by reducing the socialscoieby increasing the
urgency of task completion [21, 85, 88]. It has also beenedghat over-imitation
can occur for a variety of social reasons [103] or becauséntiieiduals interpret
the actions in the demonstration as causally meaningfil [85

Sensitivity to Task Constraints

Social animals also exhibit some sensitivity to the congxtrounding the task
execution, particularly task constraints. For exampld90] 14-month-olds were
shown a box with a panel that lit up when the demonstratortteddt with his fore-
head.The results showed that most infants reproduced éheftise forehead rather
than using their hand when presented with the object a week This experiment
was further extended in [54] by including a condition in whithe demonstrator
was restricted and could not use her hands. It was obseraedrity 21% of the in-
fants copied the use of the forehead, against the 69% oluseraecontrol condition
replicating the [90] study. It was argued that, in the latiendition, infants recog-
nize no constraints upon the demonstrator and thus encedeséof the forehead as
a specific part of the intention. In the restricted case, teepgnize the constraint
as a extraneous reason for the use of the forehead and docuuteethe specific
action as part of the intention.

We return to this particular experiment in Section 1.6, m¢bntext of computa-
tional models for social learning.

Imperfect Knowledge

Several experiments were conducted to investigate how ribevlledge about the
world dynamics influences social learning mechanisms. lamhetypical exper-
iment, an individual observes a sequence of actions, natfallhich are actually
necessary to achieve the outcome. For example, in [62]clpoeders and chim-
panzees were presented with two identical boxes, one opatiene transparent.
A demonstrator then inserted a stick into a hole on the top@bbx and then into
another hole on the front of the box. It was then able to redri a reward from the
box. In this experiment, the insertion of the stick into tbp hole was unnecessary
in order to obtain the reward, but this was only perceivabléhe transparent box.
The results showed that 3 and 4-year-old children tendedwaya imitate both
actions. On the contrary, chimpanzees were able to switthelem emulation and
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imitation if causal information was available: after hayimbserved demonstrations
in a transparent box, the chimpanzees were much less pransett the stick into
the upper (useless) hole.

Goal Inference

Finally, it has been showed that some species exhibit iivétdiehavior beyond
simple motion mimicry. For example, primates tend to intetjand actually repro-
duce observed actions in a teleological manner — that iring of the inferred

goals of the action [33]. In an experiment designed to tasthipothesis, 3 to 6-
year-old children observed a demonstrator reaching atmsbkody to touch a dot
painted on a table to one side of her, using the hand on her site [13]. When

prompted to reproduce the observed demonstration, chitéreled to copy the dot-
touching action, but not the use of the contra-lateral hbdodvever, when the same
demonstration was performed without a dot, children tertdeichitate the use of
the contra-lateral hand. It was argued that, in the first,castgdren interpreted the
dot touching as the intention, choosing their own (easiey W achieve it, while

in the second case there was no clear target of the actioméuwtdtion itself. As

such, children interpreted the use of the contra-latenadilzes the intention and imi-
tated it more faithfully. Results in experiments adaptedider children infants are
similar [28].

1.2.3 Remarks

The experiments described above show that imitation betgwésult from several
complex cognitive skills such as action understandingsoeing and planning. Each
of them depends on the physical and social context and a¢skrtbwledge of the

agent. Partial world knowledge and contextual restriciath influence the way an
action is understood and replicated. A robot that is ablenitate in a flexible way

should thus be able to consider all of such aspects.

1.3 Imitation in Artificial Systems

Imitation learning brings the promise of making the task aiggamming robots
much easier [127]. However, to be able to imitate, robotsinedave several com-
plex skills that must be previously implemented or devetbj@2].

In Section 1.2 we discussed some of the complexities indoiwehe process of
learning by imitation in natural systems, as well as all tbatextual information
taken into account when interpreting actions. Now, we ogpdi this discussion for
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artificial systems, outlining some of the issues that mustdzdt with when devel-
oping an artificial systeme(g.,a robot) that can learn by imitation.

In [151], the authors identified three subproblems (or esagtkereof) to be ad-
dressed in developing one such system:

e Mapping the perceptual variables.g., visual and auditory input) into corre-
sponding motor variables;

e Compensating for the difference in the physical propewdiss control capabili-
ties of the demonstrator and the imitator; and

e Understanding the intention/purpose/reason behind &raEtg.,the cost func-
tion to be minimized in optimal control that determines tk&an to be taken in
each situation) from the observation of the resulting maets

If we further take into account that the perceptual varialftem the demonstra-
tor must also be mapped from an allo- to an ego- frame of meferethe first
of the above subproblems further subdivides into two otlsrEroblems: view-
point transformation and sensory-motor matching [8, 22882123]. The second
of the problems referred above is usually known asiibey correspondence prob-
lem[4,99,100] and is, in a sense, closely related and depewndeht first problem
of mapping between perception and action.

Data Acquisition

The way to address the issues discussed above will largelgndieon the context
in which imitation takes place. When used for robot prograngnit is possible to
usedata acquisitionsystems that simplify the interpretation and processinthef
input data, thus reducing partial observability issues TEtter is important since
the learner will seldom be able to unambiguously observihaltelevant aspects of
the demonstration. In particular, this can allow more rolbnsl efficient algorithms
to tackle the allo-ego transformation, the perceptiodtion mapping and the body
correspondence. Examples of such systems include extshg|eptical trackers or
kinesthetic demonstrations [16].

Other applications of imitation occur in less controlledvieonments, for ex-
ample as a result of the natural interaction between a ratiashuman. In such
contexts, perceptual problems must be explicitly adddesSeme authors address
this problem adopting a computer vision perspective [82jdeling partial observ-
ability [40] or being robust to noise in the demonstratio6, 20, 116].

Mapping of Perceptual Variables and Body Correspondence

Many approaches do not consider a clear separation betvataradquisition and
learning by demonstration. One way to deal with the lack &drimation/data is to
use prior knowledge to interpret the demonstratidation interpretationstrongly

depends on the knowledge about how the world evolves as welhdhe capabil-
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ities of both the learner and the demonstrator to interatt wi[54, 62, 79]. This

process is closely related with the two first issues pointedro[151], since it pro-

vides a way to map external inputs to internal motor reprsiems €.g.,to robot

actions). Therefore, imitation learning algorithms wylptcally benefit from prior

knowledge about the environment, specially when data aitgpri cannot provide a
full description of the demonstration.

Knowledge about the agent’s own body and its interactioh tié world simpli-
fies some of the difficulties found in imitation. On one harat,the perception-to-
action mapping, the recognition of others’ actions can oglythe learner’'s model
of the world dynamicse.g.,by inferring the most probable state-action sequence
given this model. This idea draws inspiration from psyclatal and neurophysi-
ological theories of motor perception, where recognitiod aterpretation of be-
havior are performed using an internal simulation mectmari 51, 83]. As seen
in Section 1.2, mirror neurons are one of such mechanisnijs4bil a significant
amount of research in imitation learning in robotics flolned from this particular
discovery.

On the other hand, this type of knowledge also allows actemognition and
matching to occur with an implicit body correspondence nef¢he bodies of the
learner and demonstrator are different. Several works bap®red this idea. For
example, in [82, 83,99, 100, 130, 132], action matching tresked at a trajectory
level. In these works, the demonstration is interpretethtakto account the differ-
ent dynamics of the learner and the demonstrator. In [7B43the same problem
is addressed at a higher level of abstraction that consibeeffectson objects.

Goal/Intention Inference

Understanding actions and inferring intentions genenadtyuires a more explicit
reasoning process than just a mirror-like mechanism [18].dscussed in Sec-
tion 1.2, by further abstracting the process of learningrhitation totask level
it is possible to additionally include contextual cues [B4,79]. At this level of
abstraction the third issue identified in [151] becomesipalerly relevant.

Identifying the goal driving a demonstration is a particlyyaomplex inference
process, indeed an ill-defined one. What to imitate dependsweral physical, so-
cial and psychological factors (see Section 1.2.2). Onsiplesway to answer this
guestion relies on the concept iofitation metrics These metrics evaluate “how
good” imitation is. Imitation metrics were first explicitiytroduced in [101] in
order to quantify the quality of imitation, to guide leargiand also to evaluate
learned behavior. However, it is far from clear what “goodtation” is and, per-
haps more important, how variable/well-defined the leatredthvior can be. Some
studies along this direction have characterized the guafitmitation in humans.
In [111], subjects were asked to perform imitation tasks guodntitative results
were obtained to assess the effect of rehearsal during\atiger and repetition of
the task.
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In any case, it is often not clear whether imitation concénesnotor intention or
the underlying goal of that motor intention [17, 23, 79, 12iJother words, it is of-
ten the case that the agent cannot unambiguously identigéghen it should imitate
the action, its outcome, or the reason driving the demastrado it. In each of the
following sections we we discuss in detail each of theseetlgproaches to imita-
tion learning. In particular, we refer to Section 1.6 for arendetailed discussion on
the problem of inferring the goal behind a demonstratiorihat section we survey
several recent works in which a learner does infer the gotiietilemonstrator and
adopts this goal as its own [2,10, 64,80, 119].

The Role of Self-Observation

Itis interesting to note that most of the necessary infoionadbout the robot’s body
and the world dynamics can be gathered by self-observad®84]. Although slow
in many situations, it often allows a greater adaptatiorhinging scenarios.

Many different techniques can be used by the robot to leaontats own body
[41,84,108, 129, 144]. For example, several works adophialiphase of motor
babbling [57, 76, 83, 84]. By performing random motions, aagramount of data
becomes available, allowing the robot to infer useful fefet about causes and
consequences of actions. These relations can then be ulsinia body schema
useful in different application scenarios. The specifichnds used to learn body
models vary, and range from parametric methods [27, 61fah@etwork methods
[76,82,83] to non-parametric regression [41,84,144] aaglgical models [57,135].
As for learning about the world dynamics, this is closelyatetl to the concept
of learning affordances. Repeated interaction with theldvalows the robot to
understand how the environment behaves under its actién84495, 122]. As seen
in the previous section, the knowledge about the world dyosand the capabilities
of others strongly influences how actions are understood.

¢

So far in this chapter we presented insights from neuroplygy, psychology
and robotics research on the problems involved in learninddmonstration. The
next sections will provide an overview of methods that harsdich problems. We di-
vide those methods according to the different formalismsooirces of information
used, namely (a) trajectory matching and generalizatidvgres sample trajectories
are the main source of information from which the learneregalizes; (b) object
mediated imitation, where effects occurring on objectslaeaelevant features of a
demonstration; and (c) imitation of inferred goals, whéeré is an explicit estima-
tion of the demonstrator’s goal/intention.
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Fig. 1.3 Imitation architecture. Observed actions are first transformedego frame of reference
(VPT), where segmentation and recognition take place. Agerding on how to imitate, a corre-
spondence between the two different bodies must be done byisgléut corresponding SMM.
Finally, imitation is enacted.

1.4 Imitating by Motor Resonance

This section presents several methods that learn by deratiostby first mapping
state-action trajectories to the learner’s own body and femeralizing them.

Following what is proposed in [83, 151], the imitation preseconsists of the
steps enumerated below and illustrated in Fig. 1.3:

(i) The learner observes the demonstrator's movements;
(ii) A viewpoint transformation (VPT) is used to map a deptidn in the demon-
strator’s frameallo-imageto the imitator’s framesgo-image
(i) Action recognition is used (if necessary) to abstréx observed motion; and
(iv) A sensory-motor map (SMM) is used to generate the motonroands that
have the higher probability of generating the observedifeat

In this section we survey several methods that adopt thiergéapproach. In
these methods not all steps enumerated above are exptiegly with, but are still
implicitly ensured by considering different simplifyingsumptions.

1.4.1 Visual Transformations

The same motor action can have very distinctive percepésallts if one considers
different points-of-view. For example when a person gestgoodbye, she can see
the back of her hand, while when someone else is doing the shewill see the
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Fig. 1.4 Perceptual difference between the same gesture having anregoatio- perspective.

palm of the other’s hand. This poses a problem when mappitignacfrom the
demonstrator to the learner, as already identified in [28]depicted in Fig. 1.4.

The typical solutions for this problem is to perform a conpliaree-dimensional
reconstruction. However, several works proposed alteenaipproaches that con-
sider simplifications to such problem. In [8,12, 52, 82, 88}esal transformations
are discussed, ranging from a simple image transformaéan, nirroring the im-
age) to a partial reconstruction assuming an affine camergharfull three dimen-
sional reconstruction. These works also point out that stastsformations can be
seen as imitation metrics, because the depth informati@ome gestures can in-
deed change the meaning of the action. Such transformatimnalso be done using
neural networks [123].

1.4.2 Mimicking Behaviors and Automatic | mitation

Several works on imitation seek to transfer behaviors byngpk motor reso-
nance process. The observation of perceptual consequefirgiegple motor actions
can elicit an automatic mimicking behavior, and severdlahivorks on imitation
adopted this approach [34, 35,53, 59]. In these works, thdaa between changes
in perceptual channels caused by a demonstrator are gireethped into motor
actions of the learner. Particularly in [34], the oriergatbf a mobile robot is con-
trolled according to the observed position and orientadiba human head.

In these approaches the model about the own body is not &xfie relations
between action and perception is learned without conceontahe true geometry
and dynamics of the body.

Using the visual transformations introduced earlier itdsgible to generate more
complex behaviors. In [82,83], the learner starts by adogiia correspondence be-
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tween its own perceptions and actions. The mimicking befraeisults from map-
ping the perception of the demonstrator to its own using geint transforma-
tion, and then activating an inverse sensory-motor magei®ift visual transforma-
tions result in different types of behavior.

Examples of other methods posing imitation within this eisomatic perspec-
tive include [7,53]. An interesting approach is proposefd 8] where facial expres-
sion are learned by interacting with a person and creatirgsanance of expres-
sions.

1.4.3 I mitation through Motor Primitives

All previous approaches consider a simple perceptioreadtiop in imitation. How-
ever, when considering a learner equipped with several mpotmitives, it is pos-
sible to achieve more complex interactions. The “recognitiblock in Fig. 1.3
represents the translation of observed trajectories md@f such motor primitives.
A motor sequence is perceived, maybe after some visual gsogg and recognized
as a specific motor primitive [86, 87]. This general approzat be used to perform
human-machine interaction [20] or to learn how to sequench primitives [23].

In [23] a string parsing mechanism is proposed to explain hpes are able to
learn by imitation to process food. The string parsing maidm is initialized with
several sequences of primitives. Learning and gener@izate performed by ex-
tracting regularities and sub-sequences. This approatheaeen as a grammatical
inference process.

Other approaches use hidden Markov models to extract sgataréies and filter
behavior, usually in the context of tele-operation. Themgaial of such approaches
is to eliminate sluggish motion of the user and correct aridfe refer to [153] for an
application of one such approach to the control of an Orbgi&=eable Unit. In this
work, a robot observes an operator performing a task anddaihidden Markov
model that describes that same task. In [63], a similar ambrds used in assembly
tasks. Such models can also be used to detect regularitiesrian motion [24].

Regularities of human motion can be represented in low-dgioas using prin-
cipal component analysis [29], clustering [74] or other4tioear manifold learning
techniques [65].

Some authors rely on completely separated methods to rezeogind to generate
motor primitives. Others combine both processes, thusoexyl the self-modeling
phase [37, 38,66, 83]. As seen in Section 1.2.1, this praz@sbe explained by the
use of motor simulations of some kind. For example in both g8l [151], action
recognition is performed using the idea of coupled forwaadkward models dis-
cussed in [152]. The former decouples each of the actionifives and is thus able
to deal with a larger variety of tasks, while the latter iseatiol combine several prim-
itives and deal with complex motor skills in a robust way.48,[44] dynamic neural
networks are used to recognize actions goals taking intowstd¢ask restrictions. A
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single neural network able to encode several behaviorsntresluced in [137] and
performs similar computations.

1.4.4 Learning of New Task Solutions

In some cases the learner has an explicit goal. Howevergitinie very difficult to
plan how to reach such goal. This is specially important imglex environments
or in situations involving highly redundant robotsg.,humanoid robots). One of
the main motivations behind imitation learning is that ibyides an easy way to
program robots. Therefore, most approaches to imitatiorsider the learning of
new actions. In such approaches two main trends have begtealdone considers
many demonstrations of the same task and tries to find imtaria the observed
motions [17,119]. The other uses only the observed trajest@s an initialization
and then improves and generalizes furtleeg (using reinforcement learning) [109].

In [112], imitation is used to speed up learning and sevekritios were defined
for evaluating the improvement in learning when using itiota Imitation is used
in [129] to learn dynamic motor primitives. As argued in thisrk, “Movement
primitives are parameterized policies that can achievempglete movement behav-
ior”. From this perspective, motor primitives can be seen agadyoal systems that
generate different complex motions by changing a set ofrpaters. The authors
also suggest the use of data from a demonstration to izitiglich parameters. The
parameters can then be optimized using, for example, pgliagient [109]. We
point out that these methods consider classes of parametdgyolicies, namely the
parameters of the dynamical system.

One of the few approaches taking uncertainty into accouptaposed in [57].
The approach in this work starts by learning a Gaussian me@xnhodel as a forward
model, using self-observation [130]. The demonstratidaken as observation of a
probabilistic process and the goal is to find a sequence iofrecthat maximizes the
likelihood of such evidence. The work focuses on copyingiomst taking into ac-
count the dynamics of the robot and, as such, uses as obisas/ite estimated state
trajectory and ignores the dynamic information. It achgelvedy correspondence by
inferring the most probable trajectory using the imitadybdy. Extra task restric-
tions can also be included. In [29] walking patterns aresfemed from humans to
robots after adapting it for different kinematics using llewel representations.

Finally, several other methods are agnostic as to what istlgxde goal of the
demonstrated task and aim only at learning the observedeafiaction. For exam-
ple, in [31], learning from demonstration is formulated adassification problem
and solved using support-vector machines. These methodsense, disregard the
effects and social context of the demonstration, and fonlysan replicating in each
situation the demonstrated course of action (see Sectfofola more detailed dis-
cussion on this). One disadvantage of this general appisddt it places excessive
confidence on the demonstrator. Furthermore, the coursgtiohdearned is specific
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to the context and environment of the learner and, as suctatigeneralizable to
different environments.

1.5 Object Mediated Imitation

In the previous section, we have discussed imitation fronotonperspective. From
this perspective, context is mainly provided by the bodytgpand corresponding
motion. In this section we discuss a more abstract appraadhmitation, where
the context is enlarged to accommodate objects. In othedsydine learner is now
aware of the interaction with objects and, consequentkgddhis information into
account during learning. The most representative exaniplesctype of behavior is
emulation(see Fig. 1.2). In contrast with the motor resonance meshandiscussed
previously, which could perhaps be best described as mypgorulation focuses on
copying (replicating) the results/effects of actions.

This abstraction from low-level control to higher-levepresentations of actions
also facilitates reasoning about causality of actidres, how to induce specific
changes to the environment. Consider the simple case nfio objects. To learn
this task, motor resonance alone does not suffice, as theeleust take into ac-
count which object can be placed on top of which dependindnein sizes, shapes
and other features. Another illustrative example is opgmildoor, where the shape
of the handle provides meaningful information about howedqm the action. In
the motor-resonance-based approaches, body corresmendddressed problems
such as different number of degrees of freedom, or diffdtgr@matics and dynam-
ics. In this section we discuss correspondence in termseofifage that different
objects have to different agents.

A biologically inspired concept related to the previousdission is that ofiffor-
danceg55]. Developed in the field of psychology, the theory of affances states
that the relation between an individual and the environnestrongly shaped by
the individual’s perceptual-motor skills. Back in the 7@ss theory established a
new paradigm where action and perception are coupled ay éxezl. Biological
evidence of this type of coupling is now common in neurostéefbl] and sev-
eral experiments have shown the presence of affordancel&dges based on the
perception of heaviness [141] or traversability [69].

Affordances have also been widely studied in robotics. imgbction we discuss
this concept of affordances in the context of imitation héag in robots, as well as
the inclusion of object information and properties in tharieng process. A thor-
ough review on these topics can be found in [122], with specighasis placed in
affordance-based control.

We generally define affordances as mappings that ratdtens objectsandcon-
sequencegeffects). This very general concept can be modeled usiffeyelnt for-
malisms including dynamical systems [131], self-orgargzinaps [32], relational
learning [58] and algebraic formulations [100].
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However, independently of the selected representatiommndlism, there are
two core challenges to achieve affordance-based imitatioquiring the model of
affordances and exploiting this model. The latter deperdsily on the representa-
tion, but usually resorts to some type of action selectioniistance, if a dynamical
system is used to encode a forward model, then the agent embhaselecting the
action that best matches the desired effect. It is worth ioeimg that the approaches
in this section are strongly dependent on a self-modeliragelas the concept of af-
fordances is strictly a self-modeling idea.

The required data to infer the affordances model may be ssdjgither byob-
servationor by experimentationin the case of self-experimentation there is no body
correspondence or visual transformation required, but sapability is important
when interacting with other agents. When learning by obsenvauch problem is
immediately present. An advantageaifject mediated imitatiois that the match
only occurs in the effects on object and so the specific bodgrkiatics and action
dynamics are not considers, thus simplifying several @islin imitation.

Affordances as Perception-Action Maps

A simple way of describing effects is to learn mappings frosea of predefined
object features to changes in these features. This appveasiised in a manipula-
tion task to learn by experimentation the resulting motimaations as a function of
the object shape and the poking direction [46]. Once the inggdras been learned,
emulating an observed motion direction can be achievedrbplgiselecting the ap-
propriate poking direction for the object. A similar appcbavas proposed in [71],
where the imitation is also driven by the effects. In thisecabe demonstrator’s
and imitator’s actions are grouped according to the effeyf produce in an object,
irrespectively of their motor programs. Given an observbpat and effect pair,
the appropriate action (or sequence of actions) can theadily eetrieved. Another
example is the use of invariant information [32, 48, 133]tHis case, the system
learns invariant descriptions across several trials os#ee action upon an object.
Depending on the parameterization, the learned invariestriptors may represent
object characteristics or effects. Although this type débimation has been usually
applied in robot control, it is possible to use the invargdior emulation under the
assumption that they are invariant to the viewpoint andttiet capture the effects.

Grasping is a paradigmatic example of affordance knowletigé has been
widely studied in the literature. Perception-action mapsehappeared in sev-
eral forms such as th@-function of a reinforcement learning algorithm [155]; a
pure regression map from object features to image pointscbkbelled exam-
ples [125, 126] and self-experimentation [39, 92]; or as dbgect position of a
mobile robot to trigger a particular grasping policy [134].
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Affordances as Dynamical Models

An alternative approach consists in modeling the dynanmsgatem composed by
the agent (demonstrator or imitator) and the environmerji.31], a hidden Markov
model is used to encode the state of the agent and objectedénto train the for-
ward model, reflective markers were placed on the demoosiat on the objects
and tracked by a capture system. Viewpoint transformatiem uses linear trans-
formations between the demonstrator’s and the imitatadytposes. Emulation is
casted as a Bayesian decision problem over the Markov moeglselecting the
maximum a posteriori action for each transition of the Markbain. Interestingly,
the model is able to modify the selected behavior with its experience and refine
the model previously learned solely by observation. Agtirs is due to the fact
that emphasis is placed on achieving the same effects thefempying the action.

Dynamical systems have also been used for goal directedtionitin [43, 44].
The proposed architecture contains three interconneayedd corresponding to dif-
ferent brain areas responsible for the observed actiorgdtien primitives and the
goal. Each layer is implemented using a dynamic field thalivegowith experience
and its able to incorporate new representations using alation learning rule be-
tween adjacent neurons.

1.5.1 Bayesian Networks as Models for Affordances

Affordances can be seen as statistical relations betwe&magcobjects and effects,
modeled for example using Bayesian networks. One such apipreas proposed
in [94], in which the nodes in the network represent actiobgect features or mea-
sured effects. As in standard Bayesian networks, the absena vertex between
two nodes indicates conditional independence. Self-éxgertation provides most
of the data necessary to learn such relations. If a roboteksractions upon dif-
ferent objects, it can measure the effects of such actioven i the presence of
noise the robot is able to infer that some actions have cegtéécts that depend on
some of the object features. Also, the existence of irrelfeaad redundant features
is automatically detected.

Based on such prior experience, structure learning [60bearsed to distinguish
all such relations. Once these dependencies are knownaorwiery the network to
provide valuable information for several imitation betwasi Table 1.1 summarizes
the different input-output combinations. In particulast Emulation purposes, the
ability to predict the effect conditioned on a set of avdiatibjects and the possible
actions directly provides the robot with a way to select thprapriate action in a
single-step Bayesian decision problem. It is interestimpte that at this abstraction
level the same mechanism is used for prediction and corgiahg a mirror-like
behavior.

This approach is halfway between learning specific maps dotl dynamical
system description. If specific maps are learned, it is nsy éa consider demon-
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Table 1.1 Affordances as relations between actioA$, bjects O) and effects [E) that can be
used for different purposes: predict the outcome of an acti@n pttions to achieve a goal or
recognize objects or actions

Inputs  Outputs Function

(O,A) E Predict effect

(O,E) A Action recognition and planning
(AJE) e} Object recognition and selection

strators with different dynamics nor to explicitly considask restrictions. This
approach is not as applicable as learning a full dynamicstiesy description, be-
cause it is does not easily allow encoding long-term plangtdvides predictions
for incremental state changes. For a more detailed dismusse refer to [80].

1.5.2 Experiments

In this section we provide several experimental resultsiobd with a Bayesian
network model for affordances. In particular, we describéhthow the model of
affordances can be learned by the robot and then used ta affardance-based
emulation behaviors.

For all experiments we usedABTAZAR [78], a robotic platform consisting of
a humanoid torso with one anthropomorphic arm and hand andoguar head
(see Fig. 1.5). The robot is able to perform a set of diffepamameterized actions,
namelys/ = {a; = graspA),a; =tap(A ), a3 =touch(A)}, whereA represents the
height of the hand in the 3D workspace when reaching an objette image. It
also has implemented an object detector that extracts d feitares related to the
object properties and the effects of the action.

Affordance Learning

We now describe the process by which the robot learned tloedaffice network
used in the emulation behaviors. We recorded a total of 3@ tfollowing the
protocol depicted in Fig. 1.6. At each trial, the robot wassented with a random
object of one of two possible shapes (round and square),possible colors and
three possible sizes (see Fig. 1.5 for an illustration ofihjects used). BLTAZAR
then randomly selects an action and moves its hand towardhjeet using pre-
learned action primitives [84, 94]. When the reaching phas®impleted, the robot
then performs the selected actigmgspA ), tap(A) ortouch(A)) and finally returns
the hand to the initial position. During the action, objegatures and effects are
recorded.

Visual information is automatically clustered using ¥eneans algorithrfil 07].
The resulting classes constitute the input for the affocddearning algorithm. The
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Fig. 1.5 Robot playground used in the experiments.

Fig. 1.6 Protocol used in the experiments. The object used in each tsalésted manually and
the robot then randomly selects an action to interact with life€t properties are recorded from
thelnit to theApproach states, when the hand is not occluding the object. The effeet®aorded
in the Observe state.Init moves the hand to a predefined position in open-loop.

features and their discretization are shown in Table 1.2rBarizing, shape de-
scriptors €.g.,compactness and roundness) provided two different clasizesvas
discretized in 3 different classes and color in four. Basedhis data, the robot
adjusted the parametarfor each action and then learned an affordance model as
described above.

The learned model is shown in Fig. 1.7. The network was |lehusing Monte
Carlo sampling with BDeu priors for the graph structure amadrelom network ini-
tialization. The dependencies basically state that cslarélevant for the behavior
of the objects under the available actions. In addition is, t successful grasp re-
quires the appropriate object size, while the velocity @ tibject depends on its
shape and the action. We refer the reader to [94] for furtbtil$ on the affordance
learning.
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Table 1.2 Random variables in the network and possible values.

Symbol Description Values
A Action grasp, tap, touch
C Color green,green, yellow, blue
Sh Shape ball, box
S Size small, medium, large
oV Object velocity ~ small, medium, large
HV Hand velocity small, medium, large
Di Object-hand velocity small, medium, large
Ct Contact duration  none, short, long

ONOCRORO

Fig. 1.7 Affordance network representing relations between actiolnject features and the corre-
sponding effects. Node labels are shown in Table 1.2.

Emulation

We now present the results obtained in several basic iteragames using the af-
fordance network. The games proceed as follow. The robarebs a demonstrator
performing an action on a given object. Then, given a speicifiation metric, it
selects an action and an object to interact with so as totienjeanulate) the demon-
strator. Figure 1.8 depicts the demonstration, the diffeobjects presented to the
robot and the selected actions and objects for differentioset

In the experiments we used two different demonstrationapaoh a small ball
(resulting in high velocity and medium hand-object disegrand a grasp on a small
square (resulting in small velocity and small hand-objéstiashce). Notice that con-
tact information is not available when observing others.

The goal of the robot is to replicate the observed effecte fitst situation
(Fig. 1.8a) is trivial, as only tapping has a non-zero prdigtof producing high
velocity. Hence, the emulation function selected a tap ersthgle object available.
In Fig. 1.8b the demonstrator performed the same actionthieutobot now has to
decide between two different objects. Table 1.3 shows thbaghilities for the de-
sired effects given the six possible combinations of astiand objects. The robot
selected the one with highest probability and performeghatathe ball.
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One object Two objects Three objects

Demonstration

Selection of action

Emulation

Matching effect Matching effect Matching effect Matching effect and shape
@ (b) (© (d)

Fig. 1.8 Different emulation behaviors. Top row: Demonstration; Middbev: Set of potential
objects; Bottom row: Emulation. Situations (a) through (d)resent: (a) emulation of observed
action, (b) replication of observed effect, (c) replicatafrobserved effect, and (d) replication of
observed effect considering the shape of the object.

Table 1.3 Probability of achieving the desired effect for each actiod the objects of Fig. 1.8b.

Obj\ Action Grasp Tap Touch

Large blue ball 0.00 0.20 0.00
Small yellow box 0.00 0.06 0.00

Figures 1.8c and 1.8d illustrate how including the objeetdees in the metric
function produce different behaviors. After observing tinasp demonstration, the
robot has to select among three objects: large yellow baglisyellow ball and
small blue box. In the first case the objective was to obtainséime effects. The
probability of grasping for each of the objects i88, 092 and 052, respectively,
and the robot grasped the small yellow ball even if the sanjecbis also on the
table (Fig. 1.8c). Notice that this is not a failure, sincenéximizes the probability
of a successful grasp which is the only requirement of theioieinction.
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We conclude by noting that other criteria can include moreglex information,
such as similarly shaped objects. When also taking this nerion into account,
the robot selected the blue box instead (see Fig. 1.8d).

1.6 Imitating by Inferring the Goal

So far in this chapter we have discussed learning by imitagiothe motor level

and at the effect level. The former focuses on replicatirgekact movement ob-
served, in a sense disregarding the effect on the environamehthe social context
in which the movement is executed. The latter addresseatioitat a higher level

of abstraction, focusing on replicating the effects pratliby the observed action
in the environment, ignoring to some extent the exact mo&jettory executed. As
seen in Section 1.2, knowledge about the world, the demetostand the learner’s
own body all influence the way a goal is inferred.

In this section we discuss imitation learning at a yet higheel of abstraction,
approaching the concept of “imitation” according to thesaamy in Fig. 1.2. Con-
cretely, we discuss the fundamental process by which adeaan infer theaask
to be learned after observing the demonstration by anottdévidual €.g.,a hu-
man). We discuss several approaches from the literatuteattthess the problem
of inferring the goal of a demonstration at different levéie then discuss in de-
tail a recent approach to this problem that provides a clelsgion and potentially
interesting insights into imitation in biological context

1.6.1 Goal I nference from Demonstration

Inferring the goal behind a demonstration is, in generalaw Iproblem, as it re-
quires some form of common background for the learner andi¢n@onstrator. In
social animals, this common background greatly dependbhesdcial relation be-
tween the demonstrator and the learner. For example, sngasl were found im-
portant in promoting imitation in infants [21, 91]. Seveadher studies address the
general problem of understanding the process of infertieggbal/intention behind
a demonstration [14, 67, 91]. Most such studies also adthes®lated problem of
understanding the process of perceivirdulfilled intentions

Translating this complex social learning mechanism intdieial systems usu-
ally requires the common background to be provided by thégdes who “im-
prints” in the system whatever of her own background knogteid determines to
be relevant for the particular environmental context of sggstem. As such, it is
hardly surprising that different researchers addressiihiglgm of “goal inference”
from perspectives as distinct as their own backgrounds iaed bf work. For ex-
ample, in [17] goal inference is cast as an optimization famwb Motor theories of
perception are used in [38] to build better imitation systeithese works essen-
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tially seek to determine which specific elements of the destration are relevant,
seeking ehard answer to the fundamental problem of “What to imitate” diseas
in Section 1.3.

Other recent works have adopted a fundamentally differpptaach, in which
the learning agent chooses among a library of possible goalsne most likely to
lead to the observed demonstration. For example, in [64ptbblem of imitation
is tackled within a planning approach. In this setting, #s&rher chooses between
a pool of possible goals by assessing the optimality of theatestration (viewed
as a plan). Evaluative feedback from the demonstrator ésueed to disambiguate
between different possible goals.

One significant difficulty in inferring the goal behind a demstration is that
the same observed behavior can often be explained by s@gsible goals. Goal
inference is, therefore, an ill-posed problem, and manyagaihes adopt a proba-
bilistic setting to partly mitigate this situation [10, 111912]. For example, in [10],
the authors address the problem of action understandindpityren. To this pur-
pose, they propose the use of a Bayesian model that matckesvet inferences
in children facing new tasks or environmental constraiBimilar ideas have been
applied to robots in different works [80, 119, 142]. In [1,18]e goals of the robot
are restricted to shortest-path problems while in [80, I#2jeral goals are consid-
ered. In [156], a maximum entropy approach is used to infeigital in navigation
tasks. The paper computes a distribution over “paths to tlad’ ghat matches the
observed empirical distributions but otherwise being e ffcommitted” as possi-
ble. Optimization is performed by a gradient-based approAlt these approaches
handle the body correspondence problem by performing tegretion in terms of
a self-world model.

In a sense, all the aforementioned approaches interprdethenstration as pro-
viding “implicit” information about the goal of the demonator, asoftanswer to the
problem of “What to imitate”. In other words, while the appcbas in [17,38] seek
to single out a particular aspect of the demonstration thoate, the latter assumes
that the actual goal of the demonstration drives the actimice in the demonstra-
tion, but needs not be “contained” in it. This makes the tafgroach more flexible
to errors in the demonstration and non-exhaustive dematisis. Another way of
looking at the distinction between the two classes of apgres outlined above
is by interpreting the latter as providing models and meshibat allow the agent
to extract a generdahsk descriptiorfrom the demonstration, rather than a specific
mapping from situations to actions that may replicate, tosextent, the observed
behavior. This approach is closer to imitation in the bidday sense, as defined
in [25]. Finally, several recent works have proposed gdneels that contrast
with those referred above in that they are able to genenatléple social-learning
behaviors [79, 89].

In the remainder of this section we describe in detail the@ggh in [79]. Fol-
lowing the taxonomy in [25], our model takes into accounesal/possible sources
of information. Concretely, the sources of influence on oodet's behavior are:
beliefs about the world’s possible states and the actionsiieg transitions between
them; a baseline preference for certain actions; a variddency to infer and
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share goals in observed behavior; and a variable tenderast &fficiently to reach
the observed final states (or any other salient state).

1.6.2 Inverse Reinforcement Learning as Goal | nference

We now introduce the general formalism used to model thedot®n of both the
learning agent and the demonstrator with their environmiEmis approach shares
many common concepts with those in [10,119, 142], in thaiférs a goal from the
behaviors using bayesian inference to deal with noise adisémbiguate the set of
possible goals.

Environment Model

At each time instant, the environment can be described by state a random
variable that takes values in a finite set of possible stétessate-space). The tran-
sitions between states are controlled to some extent byctiena of the agent (the
demonstrator during the demonstration and the learnerwi$e). In particular, at
each time instant the agent (be it the learner or the denatogstichooses an action
from its (finite) repertoire of action primitives and, degérg on the action par-
ticular action chosen, the state evolves at timel according to some transition
probabilitiesP X1 | X, A

We assume that the learner has knowledge of its world, inghsesthat it knows
the set of possible states of the environment, its actioertejpe and that of the
demonstrator, and the world dynamié®,., how both his and the demonstrator’s
actions affect the way the state changes (the transitiobgibties). Note that we
do not assume that this world knowledgesrect in the sense that the agent may
not know (or may know incorrectly) the transitions induceddertain actions. In
any case, throughout this section we assume this knowlesidixed — one can
imagine the approach described herein eventually to taleelfter a period of self-
modeling and learning about the woRdn this section, the modeled agent does not
learn new actions, but instead learns how to combine knowarecin new ways.
In this sense, it is essentially distinct from the approasieyed in Section 1.4.

Finally, in a first approach, we assume that the agent is abtedognize the
actions performed by the demonstrator. In this section waataliscuss how this
recognizer can be built, but refer that it can rely, for ex@mpn the affordance
models discussed in Section 1.5. Toward the end of the seatiobriefly discuss
how the ability to recognize the demonstrator’'s actionedff the ability of the
learner to recover the correct task to be learned (see &0§p [8

In our adopted formalism, we “encode” a general task as atifamc mapping
states to real values that describes the “desirability”aafheparticular state. This

2 To our knowledge, no work exists that explores knowledge isitipn simultaneously with learn-
ing by imitation, but we believe that such approach could yieleresting results.
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functionr can be seen asrawardfor the learner and, ongeis known, the problem
falls back into the standard framework of Markov decisioog@sses [115]. In fact,
given the transition probabilities and the reward functipihis possible to compute
a functionQ; that, at each possible state, provides a “ranking” of albastdetailing
how useful each particular action is in terms of the overa#ligencoded im. From
this functionQy(x, ) it is possible to extract an optimal decision rule, hendéfor
denoted byrt and referred as theptimal policy for reward r that indicates the
agent the best action(s) to choose at each state,

7E() = argman: (x,2)

The computation ofz, or equivalentlyQy, givenr, is a standard problem and can
be solved using any of several standard methods availalte iliterature [115].

Bayesian Recovery of the Task Description
We consider that the demonstration consists of a sequgrafestate-action pairs

7 ={(x1,a1),(X2,a2),...,(%n,an)}.

Each pair(x;,a) exemplifies to the learner the expected actiai ih each of the
states visited during the demonstratiay).(In the formalism just described, the goal
inference problem lies in the estimation of the functidrom the observed demon-
strationZ. Notice that this is closely related to the problenirsierse reinforcement
learningas described in [1]. We adopt the method described in [89] ik a basic
variation of theBayesian inverse reinforcement learnig®/RL) algorithm in [116],
but the same problem could be tackled using other IRL metfrods the literature
(see, for example, [102, 136]).

For a given reward function, we define thdikelihood of a state-action pair
(x,a), as

enQr(x,a)

Spe1 D’

wheren is a user-definedonfidence parametehat we describe further ahead. The
valueL,(x,a) translates the plausibility of the choice of actiarin statex when
the underlying task is described byTherefore, the likelihood of a demonstration
sequence? can easily be computed from the expression above. We use MCMC
to estimate the distribution over the space of possible mviianctions given the
demonstration (as proposed in [116]) and choose the maxienposteriori

We note that it may happen that the transition model availaihaccurate In
this situation, the learner should still be able to perc#igedemonstrated task, given
that the “errors” in the model are not too severe. We also ti@t in the process
of estimating this maximum, the learner uses the knowledgeerning the action
repertoire and world dynamiay the demonstratorAfter the task description (the
reward functiorr) is recovered, the learning agent then uses its own worldaitod

Lr(x,a) = P[(Xaa) | r] =
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Follow baseline
preferences
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t

Non-social behaviour
Social behaviour

A =1
Imitation Emulation
Adhere to inferred . Replicate observed
o . . . Mixed
intention”, replicate R effect
. imitative
observed actions and .
behaviour
effect

Fig. 1.9 Combination of several simple behaviors: Non-social behavioraion and imitation.
The line separates the observed social vs non-social behaubri@es not correspond to the
agent’s reasoning (reproduced with permission from [79]).

compute the right policy for the recovered task in terms®bitvn world dynamics
and action repertoire.

A Model for Social Learning Mechanisms

Following the taxonomy in Fig. 1.2, we include in our modelsaftial learning
three sources of information to be used by the learner immehteng the behavior
to adopt [79]. The sources of influence on our model’s behasi® baseline prefer-
ences for certain actions; a tendency to infer and shares goabserved behavior;
and a tendency to act efficiently to reach rewarding statesh Bf the three sources
of information is quantified in terms of a utility functiori@,, Q; andQg, respec-
tively. The learner will adhere to the decision-rule ob&giby combining the three
functions. In particular, the learner will adhere to theidien-rule associated with
the function

Q" =2AaQa+AeQe +AQy, (1.1)

with Aa+ A + Ag = 1. By resorting to a convex combination as in Eq. 1.1, there is
an implicit trade-off between the different sources of mfiation (see also Fig. 1.9).
It remains to discuss ho®a, Q; andQg are computed from the demonstration.
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e The first source of information is the learnepseference between actiaribhis
preference can be interpreted, for example, as repregempreference for “eas-
ier” actions than “harder” actions, in terms of the respecéinergetic costs. This
preference correspondsniatural inclinationsof the learner, and is independent
of the demonstration. The preference is translated in theesponding utility
functionQa, whose values are pre-programmed into the agent.

e The second source of information corresponds to the defdine Gearner to repli-
cate theeffectoobserved in the demonstration. For example, the learnemisdy
to reproduce the change in the surroundings observed dilméndemonstration,
or to replicate some particular transition experiencedheytéacher. This can be
translated in terms of a utility functioQg by considering the reward function
that assigns a positive value to the desired effect and tbieing the obtained
Markov decision process for the correspond@wunction. The latter is taken as
QE.

e The third and final source of information is related to theirdesf the learner to

pursue the samgoal as the teacher. Given the demonstration, the learner uses

the Bayesian approach outlined before, inferring the Uyithgy intention of the
teacher. Inferring this intention from the demonstratierttius achieved by a
teleological argument [33]: the goal of the demonstratgeceived as the one
that more rationally explains its actions. Note that thel gaanot be reduced to
the final effect only, since the means to reach this end efifiest also be part of
the demonstrator’s goal. We denote the correspondingyutiinction byQ .

Itis only to be expected that the use of different valuestiergarameteraa, Ag
andA,; will lead to different behaviors from the learner. This iswdly so, as illus-
trated by our experiments. We also emphasize@agreatly depends on the world
model of thdearnerwhile Q; also depends on the world model of tieacher*

1.6.3 Experiments

In this section we compare the simulation results obtairs#tour proposed model
with those observed in a well-known biological experimentchildren. We also
illustrate the application of our imitation-learning framork in a task with a robot.

3 The exact values D, translate, at each state, how much a given action is preferattother.
The values are chosen so as to lie in the same range as the otityefuridtions,Q; andQg.

4 Clearly, the world model of the learner includes all necessafgrination relating the action

repertoire for the learner and its ability to reproduce dipalar effect. On the other hand, the
world model of the teacher provides the only information iatathe decision-rule of the teacher
and its eventual underlying goal.
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Occurrence of different actions (restricted teacher)

Replication of demonstrated use of head (hands-free teacher)

0 01 0203 0405 0607 08 09 1
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Fig. 1.10 Percentages of replication of demonstrated action. (a) Rege of runs in which the
learner replicates the demonstrated use of head. Whenevettibie was not performed with the
head, it was performed with the hand. (b) Rates of occurrefibe different actions. When none of
the two indicated actions is performed, no action is perforriretoth plots, each bar corresponds
to a trial of 2000 independent runs.

Modeling Imitation in Humans

In a simple experiment described in [90], several infantsewgresented with a
demonstration in which an adult turned a light on by presgimgth the head. One
week later, most infants replicated this peculiar behavwimtead of simply using
their hand. Further insights were obtained from this expent when, years later, a
new dimension to the study was added by including task cainssr[54]. In the new
experiment, infants were faced with an adult turning thatlign with the head but
having the hands restrained/occupied. The results shdva¢dn this new situation,
children would display a more significant tendency to usér thends to turn the
light on. The authors suggest that infants understand thkegnl the restriction and
so when the hands are occupied they emulate because theyeasgat the demon-
strator did not follow the “obvious” solution because of thetrictions. Notice that,
according to Fig. 1.2, using the head correspondsitation while using the hand
corresponds to (goadmulation

We applied our model of social learning to an abstractedmersf this experi-
ment, evaluating the dependence of the behavior by thedeanthe parameters,
Ag andA; in two distinct experiments. In the first experiment, we fixked weight
assigned to the baseline preferencées,(ve setAa = 0.2) and observed how the be-
havior changed as as goes from 0 to li(e.,as the learner increasingly adheres to
the inferred goal of the demonstration). The results aréctkgbin Figure 10(a). No-
tice that, when faced with a restricted teacher, the leawéches to an “emulative”
behavior much sooner, replicating the results in [54].

On a second experiment, we disregarded the observed efeepivé setAg = 0)
and observed how the behavior of the learner changes agghassore importance
to the demonstration and focuses less on its baseline prefes i(e., asA; goes
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Fig. 1.11 lllustration of the recycling game. (a) The setup. (b) Transiticagrams describing the
transitions for each slot/object.

from O to 1). The results are depicted in Figure 10(b). Notied, in this test, we
setAg to zero, which means that the agent is not explicitly coridethe observed
effect. However, when combining its own interests with theerved demonstration
(that includes goals, actions and effects), the learneistesreplicate the observed
effectand disregard the observed actions, thus displaying eiveila¢havior. This
is particularly evident in the situation of a restricteddieer.

We emphasize that the difference in behavior between theates and non-
restricted teacher is due only to tperceived difference on the ability of the teacher
to interact with the environmeniVe refer to [79] for further details.

Robot Learning by Imitation

We now present an application of our imitation learning made sequential task
using BALTAZAR [78]. To test the imitation learning model in the robot we €on
sidered a simple recycling game, where the robot must stepdiiferent objects
according to their shape (Figure 1.11). We det= Ap = 0 and used only the im-
itation module to estimate the intention behind the denratien. In front of the
robot are two slots (Left and Right) where 3 types of objeets loe placed: Large
Balls, Small Balls and Boxes. The boxes should be droppedanrasponding con-
tainer and the small balls should be tapped out of the tableldrge balls should be
touched upon, since the robot is not able to efficiently malaiie them. Every time
a large ball is touched, it is removed from the table by anregleuser. Therefore,
the robot has available a total of 6 possible actions: Towsfh ([T'cL), Touch Right
(ThR), Tap Left (TpL), Tap Right (TpR), Grasp Left (GrL) anda&Sp Right (GrR).
For the description of the task at hand, we considered a spatee consisting of
17 possible states. Of these, 16 correspond to the possifleications of objects in
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the two slots (including empty slots). The 17th state is aalid state that accounts
for the situations where the robot’s actions do not succéwdekample, when the
robot drops the ball in an invalid position in the middle of tlable).

We first provided the robot with an error-free demonstratibthe optimal be-
havior rule. As expected, the robot was successfully abtedonstruct the optimal
policy. We also observed the learned behavior when the measprovided withwo
different demonstrations, both optimal. The results asedeed in Table 1.4. Each
state is represented as a p@r, S) where eacly can take one of the values “Ball”
(Big Ball), “ball” (Small Ball), “Box” (Box) or @ (empty). The second column of
Table 1.4 then lists the observed actions for each statehenthird column lists the
learned policy. Notice that, as before, the robot was abtedonstruct an optimal
policy, by choosing one of the demonstrated actions in tistetes where different
actions were observed.

Table 1.4 Demonstration 1: Error free demonstration. Demonstration 2cumate and incomplete
demonstration, where the boxed cells correspond to the statefemmnstrated or in which the
demonstration was inaccurate. Columns 3 and 5 present the depafiey for Demo 1 and 2,
respectively.

State Demo 1 Learned Pol. Demo 2 Learned Pol.
(0, Ball) TcR TcR ] TcR
(0, Box) GrR GrR GrR GrR
(0, ball) TpR TpR TpR TpR
(Ball, 0) TcL TcL TcL TcL

(Ball, Ball)  TcL,TcR TcL,TcR TelL
(Ball, Box) TcL,GrR GrR TcL TcL
(Ball, ball) TcL TcL TcL TcL
(Box, 0) GrL GrL GrL GrL
(Box, Ball) GrL,TcR GrL GrL GrL
(Box, Box) GrL,GrR GrR GrL GrL
(Box, ball) GrL GrL GrL GrL
(ball, 0) TpL TpL TpL TpL
(ball, ball) TpL,TcR TpL TpL TpL
(ball, Box) TpL,GrR GrR TpL TpL
(ball, ball) TpL TpL TpL TpL

We then provided the robot with amcomplete and inaccuragiemonstration. As
seen in Table 1.4, the action at state (0, Ball) was nevepdstrated and the action
at state (Ball, Ball) wasvrong The last column of Table 1.4 shows the learned
policy. Notice that in this particular case the robot waséblrecover theorrect
policy, even with an incomplete and inaccurate demonstration.

In Figure 1.12 we illustrate the execution of the optimakteal policy for the
initial state (Box, SBally.

To assess the sensitivity of the imitation learning modaléhe action recogni-
tion errors, we tested the learning algorithm for differembr recognition rates. For

5 For videos showing additional experiences isge//vislab.isr.ist.utl.ptbaltazar/demos/
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(©) TapR. (d) Final state.

Fig. 1.12 Execution of the learned policy in state (Box, SBall).
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Fig. 1.13 Percentage of wrong actions in the learned policy as theracécognition errors in-
crease.

each error rate, we ran 100 trials. Each trial consists oftdie-sction pairs, corre-

sponding to three optimal policies. The obtained resuidapicted in Figure 1.13.
As expected, the error in the learned policy increases asiuthier of wrongly

interpreted actions increases. Notice, however, thatfadiserror rates€ 15%) the
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robot is still able to recover the demonstrated policy withegror of only 1%. In
particular, if we take into account the fact that the erroesaf the action recogni-
tion method used by the robot are between 10% and 15%, thisresEigure 1.13
guarantee a high probability of accurately recovering thtinaal policy.

We conclude by remarking that a more sophisticated modebearsed in which
observation noise is taken into account. This may allow niesensitivity to the
noise, by including it explicit in the inference module tlestimates the reward
representing the goal of the demonstrator.

1.7 Other Imitation Settings

Imitation learning goes far beyond programming a singleotab perform a task,
and has been used in many other settings.

For example, in [120], learning from demonstrated behasdonewhat resembles
transfer learning, in which an agent observes demonstsatiodifferent scenarios
and uses this knowledge to recover a reward function thabearsed in yet other
scenarios. This problem is addressed as a max-marginwgteddearning problem
to recover a reward function from a set of demonstrationsrdter to simplify the
problem and to leverage fast solution methods, the papewnates the problem as
a non-linear (non-differentiable) unconstrained optatian problem, that is tackled
using subgradient techniques that rely on the solutiorctira of the (embedded)
constraints.

In [45,97], robots able to imitate have been used to intevibtautistic children.
On a related application, the Infanoid project [70, 72] demith gesture imitation
[71], interaction with people [73], and joint attention [98he robots in this project
are used in human-robot interaction scenarios with pdaticemphasis on people
with special needs. Although the results seem promising,iaishort term people
seem to react well, care must be taken in ensuring that tledégale used to promote
socialization with other people, and not a stronger focugemmachine itself [121].

Some authors have also addressed imitation in multiagemtasios, consid-
ering multiple demonstrators [132], multiple learners][@a@d human-robot joint
work [42]. In the presence of multiple demonstrators, theag be performing dif-
ferent tasks and the agent must actively select which onellmnf In [132], this
observation led the authors to call their approactive imitation Active learning
approaches applied to imitation are very recent [81, 132jichlly, the burden of
selecting informative demonstrations has been completelthe side of the men-
tor. Active learning approaches endow the learner with thegp to select which
demonstrations the mentor should perform. Several aiteave been proposed:
game theoretic approaches [132], entropy [81] and riskmmization [40].

Computational models of imitation have also been proposashtierstand bi-
ology by synthesis. Examples include models of languagecatidre [3, 15], cu-
riosity drives resulting in imitation behaviors [68], befi@ switching in children



1 Abstraction Levels for Robotic Imitation: 35

and chimpanzees [79]. There have also been studies of ipnitégficits relying on
models of brain connections [110, 124]

We also note that there are other social learning mechanish&ll outside the
“imitation realm” in biological research. Often imitatios seen as a fundamental
mental process for acquiring complex social skills but othechanisms, although
cognitively simpler, may have their own evolutionary adwayes [89, 104, 105].

1.8 Discussion

In this chapter we presented an overview of imitation leagrfrom two different
perspectives. First, we discussed evidence coming froemarek in biology and
neurophysiology and identified several cognitive processquired for imitation.
We particularly emphasized two ideas that have a direct éngaimitation: 1) the
action-perception coupling mechanisms involved, fordnsg, in the mirror system;
and 2) the different social learning mechanisms found iaritd and primates, not all
of which can be classified as “true imitation”. We also poihoeit the importance of
contextual cues to drive these mechanisms and to intefelgmonstration. As the
bottom line, we stress that social learning happens atrdiffdevels of abstraction,
from pure mimicry to more abstract cognitive processes.

Taking this evidence into account, we then reviewed ingtain artificial sys-
temsi.e., methods to learn from a demonstration. As a result of the razbson
this topic, there is currently a vast amount of work. Follogvthe three main chal-
lenges identified in [151], we surveyed several methodstttat advantage of the
information provided by a demonstration in many differemtys: as initial condi-
tions for self-exploration methods (including planninag,exploration strategies, as
data from which to infer world models, or as data to infer wieg task is. These
methods are being used with many different goals in mintigeito speed up robot
programming, to develop more intuitive human-robot irdeés or to study cogni-
tive and social skills of humans. In addition to this, we pdavexperimental results
of increasing abstract imitation behaviors, from motooresce to task learning.

An open question, and one we only addressed in an empiricglisvdiow all
these methods are related or could be combined to achievplexmmitation be-
haviors. Indeed, different approaches usually tailorrtf@imalisms to a particular
domain of application. It is still not clear how differentetghare and if they can be
used in several domains. If it becomes clear that they aeeihdifferent, it would
be interesting to understand how to switch between eachanésrh, and eventually
understand if there is a parallel in the brain.

Another important aspect that requires further researcélaged to perception.
Although this is not specific to imitation, it plays a cruaiale when interpreting the
demonstration. Currently, robots are still unable to priypextract relevant infor-
mation and perceive contextual restrictions from a gerrgbose demonstration.
Due to this difficulty, having a robot companion that leargdrhitation is still be-
yond our technological and scientific knowledge.
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Nevertheless, most of these problems can be somewhat rbadihes robot pro-
gramming is conducted by skilled people that can handle rimgresive sensory
modalities. In the chapter, we analyzed more in detail armditive path to imita-
tion which relies on previously learned models for the ro@od the environment
that help the understanding of the demonstration.

Using prior knowledge may simplify the interpretation oéttlemonstration, but
requires the acquisition of good motor, perceptual and desicriptions. Most ap-
proaches consider predefined feature spaces for each efehéties. When con-
sidering object-related tasks, this problem is even momgomant than when ad-
dressing pure motor tasks. A given world state may be desttiibterms of object
locations, object-object relations, robot-object rela, among many others, but it
is not easy to automatically extract, or choose, among theciorepresentations.

Finally, a recent trend in imitation learning tries to leaask abstractions from
demonstrations. The rationale is that, once the robot hderatood a task in an
abstract manner, it can easily reason about the contextigal that drive imita-
tion behaviors, include them in future plans and, as a regalteralize better to
other situations. In our experimental results, we showed ttocombine multiple
task descriptions to switch between different social legyrbehaviors through a
biologically-inspired computational imitation model.sdl, having such a represen-
tation opens the door to more general cognitive imitatiahiectures for robots.

Future applications of imitation will handle human-robotlaboration in coop-
erative settings (with several robots or people) and actikategies for interaction
with the demonstrator.

We conclude this review by stating our belief that imitatiand learning by
demonstration will become one of the capabilities that reitfully autonomous
robots will extensively use, both to acquire new skills amddapt to new situations
in an efficient manner. The path to this objective is still fofl exciting research
challenges and fascinating links to the way we, humans|loand learn.
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