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The core problem addressed in this article is the 3D position detection of a spherical object of known-
radius in a single image frame, obtained by a dioptric vision system consisting of only one fisheye lens
camera that follows equidistant projection model. The central contribution is a bijection principle
between a known-radius spherical object’s 3D world position and its 2D projected image curve, that
we prove, thus establishing that for every possible 3D world position of the spherical object, there exists
a unique curve on the image plane if the object is projected through a fisheye lens that follows equidis-
tant projection model. Additionally, we present a setup for the experimental verification of the principle’s
correctness. In previously published works we have applied this principle to detect and subsequently
track a known-radius spherical object.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

In recent years, omni-directional vision involving cata-dioptric
[1] and dioptric [2] vision systems has become one of the most
sought-after technology being employed in mobile robots. The pri-
mary reason of this success is a much wider field of view compared
to a perspective projection lens-based camera. A dioptric vision
system uses only a fisheye lens camera following equidistant pro-
jection model instead of a combination of a perspective projection
camera and a parabolic mirror arrangement, often found in
cata-dioptric vision systems. The calibration parameters of a
cata-dioptric system are susceptible to variations, owing to physi-
cal vibrations and impact force when such a system is installed on
a mobile robot platform and subjected to fast motion and
unexpected collisions. The dioptric system overcomes this problem
by having a more robust physical setup. Although we focus on a
dioptric vision system (DVS) in this article, the theory developed
here can be easily modified for cata-dioptric vision systems (CVS)
by using the appropriate projection model and following the steps
similar to the ones described further in this article.
1.2. Related work

Spherical object position detection is a functionality required by
innumerable applications in the areas ranging from mobile robot-
ics [1], biomedical imaging [3,4], machine vision [5] to space-
related robotic applications [6]. In biomedical imaging, often the
goal is to automatically detect spherical shaped anomalies that sig-
nify or precede a certain medical condition, e.g., detection of brain
microbleeds in Alzheimer’s disease [7]. Although in such applica-
tions the sphere detection usually assumes 3D image data (voxel
grid, etc.) enabling direct application of Hough transform-like
(HT) methods [3], the sheer amount of data that needs to be ana-
lyzed calls for faster methods of sphere detection. Authors in
[4,8] explore the property of rotational invariance of spherical
objects to develop highly precise and accurate sphere detection
methods. However, those are applicable only on 3D image data
as well as require considerable amount of training. On the other
hand, some researchers have focused on improving the generalized
HT-based methods in higher dimensional spaces. Authors in [5]
introduce a concept of axial discretization to detect parts of a
sphere in 3D image data using generalized HT but the proposed
method would still be infeasible for real-time systems that require
sphere detection at �10–20 Hz. An HT-based detection has also
been presented in [9] which utilizes Microsoft Kinect-generated
3D point clouds but it suffers similarly as [5] in computation time.

In mobile robotics, detection and tracking of spherical objects
has gained substantial attention [10,11], including the use of
omni-directional vision systems. In [1], the authors present a circu-
lar HT based spherical object detection using a CVS. Although they
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Fig. 1. 3D World frame to image frame transformation due to equidistant projection model. The camera lens is facing upwards in the positive Z direction in this figure.
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use a single camera to perform the detection in real-time, their
algorithm assumes that the object maneuvers on a fixed and
known ground plane hence the detection is performed in a 2D
world space. They extend the detection to the 3D space by using
a stereo vision system (SVS) on their robots consisting of a CVS
and a perspective camera installed on the same robot [12]. A sim-
ilar approach is taken by authors in [11], where an SVS comprising
of a CVS and a perspective camera looking in the forward direction
is used. Here, instead of using an HT-based detection, the authors
use a set of heuristics such as the color of the projected blobs in
the image, and the roundness of the blobs, to detect pixel position
in each individual image from both the cameras and later process
them using the SVS calibration parameters to obtain the spherical
object’s 3D position. The authors in [13] present an interesting
method of using the rotational invariance of the spherical object
in a structure tensor technique to remove the use of color in the
detection process. However, they still use a single perspective cam-
era and perform detection only in the 2D world space, assuming
that the spherical object is on a fixed and known ground plane.
Furthermore, in all these works, the radius of the spherical object
is known beforehand, which is an acceptable assumption for a vari-
ety of mobile robot tasks.

Most of the existing methods in literature make use of an SVS to
detect the spherical object’s position in 3D even when its radius is
known beforehand. Our work however shows that if the radius is
known, then it is possible to perform the detection in the 3D world
space using only a single camera image. Some of the authors of this
article have presented earlier such a method, using a color histo-
gram mismatch-based algorithm [14]. However, the concept of
uniquely detecting the 3D position using only a single camera
image was not theoretically proven and the method was
computationally heavy, often making it unsuitable for real-time
applications.
1 For interpretation of color in Fig. 1, the reader is referred to the web version o
this article.
1.3. Contribution

Since it is not obvious and to the best of our knowledge neither
proposed nor proved in the existing literature that the 3D position
of a known-radius sphere can be estimated using a single image
from a fisheye lens-based camera following the equidistant projec-
tion model, we propose and prove a bijection principle for it, which
is the novel contribution of this article. The bijection principle
proposes that for every given position of a known-radius spherical
object in the 3D world, there is a unique curve projected onto the
2D image plane obtained using the aforementioned camera sys-
tem. Hence, if in an image, obtained through such a camera system,
a curve satisfies the criteria of belonging to the family of spherical-
object projection curves, it is possible to uniquely identify the
spherical object’s 3D world position which was projected onto that
image curve. Additionally, in order to practically verify the bijec-
tion principle, we present simple experiments. Using the bijection
principle, a 3D sphere detection algorithm is implemented [15],
plugged in a particle filter-based tracker [15] and then applied
on a soccer robot to detect and track a FIFA size-5 ball. Note that
we have already applied this principle in some of our previous
works [15–17] with extensive experimental results establishing
its practical correctness and applicability. The experiments
described and separately developed for this article is included for
the sake of complete and clear understanding of the bijection
principle and its utility.

1.4. Organization of the article

The rest of the article is structured as follows. In Section 2, we
overview the fisheye equidistant projection model used in this
work, which is essential for the understanding of the bijection
principle and its proof presented in Section 3. In Section 4, we pres-
ent experiments and results including a comparison with the
ground truth. We conclude the article with final remarks in
Section 5.

2. Fisheye lens equidistant projection model

In Fig. 1, A is a point in the 3D world frame which after being
projected through the fisheye lens, falls on the point M which lies
on the image plane (blue1 color plane in Fig. 1). The projection fol-
lows a non-linear transformation function when expressed in the
Cartesian coordinate system, but is linear in the spherical coordinate
system (1) and is called the fisheye equidistant projection model. It
is expressed as

d ¼ fH; ð1Þ

where the 3D world frame follows a spherical coordinate system
with coordinate variables denoted by r; H and U and the 2D image
frame follows a polar coordinate system with coordinate variables d
f



Fig. 2. 3D object to 2D image projection.

Fig. 3. Cross-section of Fig. 2 along the plane perpendicular to X–Y plane and at an
azimuth of U0. m̂ is the vector along the azimuth of U0 on the reference plane of the
world frame in Fig. 2.
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and U. Since U remains unchanged after the transformation it is
denoted by the same variable. f denotes the focal length of the lens.

3. The bijection principle

In this section we propose and prove the 3D spherical object to
2D image bijection principle which states that the periphery of a
spherical object of known radius when observed through a fisheye
lens following the equidistant projection model (1), always pro-
jects into a unique curve in the image frame for each possible 3D
position of that object. Conversely, each curve in the image, which
satisfies the condition of being projected from the periphery of a
known-radius spherical object, back projects into a unique 3D
position of that spherical object.

In order to prove this principle, we first introduce the coordi-
nate reference frames for the 3D spherical object and the 2D image
and the transformation from one frame to the other. We then find
the expression for the curve (later referred as Cs) of the outer
periphery of the sphere in 3D in the world frame, which the camera
can observe. The projection model (1) is then applied to the curve
Cs to obtain the projected curve Ci on the image plane in the 2D
image coordinate frame. This is followed by the proof of unique-
ness of the curve Ci for any 3D position of the sphere’s (initial
spherical object which was observed) center and vice versa hence
proving the bijection principle.

3.1. Coordinates and transformations

The origin of both the image frame (polar) and the reference
plane of the world frame (spherical) is at O in Fig. 1. The camera’s
lens which faces upwards in the positive Z axis direction is centred
at the origin O in this figure. The Z axis is the zenith direction and
the X–Y plane is the reference plane of the world frame as well as
the plane which contains the image plane. M is the projected image
point of A in the image frame, the distance of which from O is given
by d ¼ fH where f is the focal length of the fisheye lens and H (in
radians) is the inclination angle, the angle which the ray joining the
point Aðr;H;UÞ in 3D world frame and the lens’ optical center (O in
Fig. 1) makes with the optical axis of the lens (Z axis in Fig. 1). The
azimuth angle U of the point A in the world frame is equal to the
polar angle of its projected point M on the image plane. The equi-
distant projection model (1) can also be written as a transforma-
tion equation in the matrix form (2).

0 f 0
0 0 1

� � r

H

U

2
64

3
75 ¼ d

U

� �
: ð2Þ
The rest of the equations and figures in this proof use these
coordinate frames and transformations consistently. ðr;H;UÞ are
henceforth used as the spherical coordinate variables (world
frame’s coordinate system in which the 3D object resides) and
ðd;UÞ are henceforth used as the polar coordinate variables (image
frame’s coordinate system). Note that the variable U is the same in
both coordinate systems because the equidistant projection model
(1) keeps it unchanged and hence a common variable can be used
without any loss of generality.
3.2. Projection model applied to a spherical object

In Fig. 2, a spherical object So of a known radius Ro is centred at
the point A, the coordinates of which are (ro;Ho;Uo) in the 3D
world frame. The outer periphery of So visible to the camera is
the circle Cs which is a circle formed by the contact of So’s tangen-
tial cone Q from O on to So itself (see Fig. 2). The visible periphery
Cs is a circle in 3D world frame which forms the base of the cone Q
and has a radius R1 (R1 < Ro) (see Fig. 3). According to the projec-
tion model (1), each point on Cs is projected onto the image plane
forming a curve Ci. In order to prove the proposed bijection princi-
ple, it is essential to find the equation of the curve Ci in terms of the
polar coordinate variables ðd;UÞ. The sphere So’s center’s 3D coor-
dinates ro; Ho; Uo will serve as the parameters for Ci’s curve equa-
tion. The lens’ focal length f and the So’s known radius Ro will be the
fixed constants in Ci’s curve equation. To do so we first find the
equation of Cs in terms of the world frame’s spherical coordinate



A. Ahmad et al. / Computer Vision and Image Understanding 125 (2014) 172–183 175
variables ðr;H;UÞ and then apply (1) on the coordinate variables in
its equation to find Ci. Next, in order to prove the bijection we will
show that for a given triplet of parameters (ro;Ho;Uo), i.e., for a
given position of the sphere So the curve equation Ci represents a
unique curve on the image plane. This is followed by proving the
converse, i.e., if there exists a curve of the form Ci in the image
plane, the coefficients of the terms in Ci’s expression will uniquely
represent a single point in the world frame’s 3D space at which the
original spherical object So is centred.

3.3. Derivation of the equation of curve Cs

Observing from Figs. 2 and 3, Cs is a circle which lies on the
intersection of the plane PQ (observed as a line in the cross section
Fig. 3) and the sphere So. The equation of the sphere So (3) in the
world reference frame’s spherical coordinate system is obtained
by transforming a sphere’s standard equation in the Cartesian
coordinate system into spherical coordinate system.

Soðr;H;UÞ ¼ ðr;H;UÞ : r2 þ r2
o � 2rroðsin H sin Ho cosðU�UoÞ

�
þ cos H cos HoÞ � R2

o ¼ 0
o
: ð3Þ

Since the cone Q is tangential to the sphere So, all points on the
curve Cs are at the same distance (denoted by l) from the apex O of
the cone Q (see Fig. 3). As per this argument, in Eq. (3), where r is
the coordinate variable denoting the distance of any point on So

from the origin O, substituting r with the value of l will generate
the equation of the curve Cs. From Fig. 3, the value of l in terms
of the sphere’s parameters and constants is derived as:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q
: ð4Þ

Note that one must assume that the radius of the sphere Ro is
less than the distance of its center to the origin ro. Performing
the substitution of r with the value of l in the equation of So (3),
we obtain the equation of the curve Cs as follows:

Csðr;H;UÞ ¼ Soðr;H;UÞjr¼l

) Csðr;H;UÞ ¼ ðl;H;UÞ : r2
o

�
� ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q
ðsin H sin Ho cosðU�UoÞ

þ cos H cos HoÞ � R2
o ¼ 0

o
:

ð5Þ
2 Note that here and later in this article the symbol C is not a notation for the
complex plane. It only represents the set as defined in (9).
3.4. Obtaining Ci from Cs

Applying (1) on the coordinate variables of the equation of Cs

we obtain

Ciðd;UÞ ¼ ðd;UÞ : r2
o � ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q
sin

d
f

� �
sin Ho cosðU�UoÞ

��

þ cos
d
f

� �
cos Ho

�
� R2

o ¼ 0
	

ð6Þ

which is expressed in the image’s polar coordinate variables d and
U, the parameters ro; Ho; Uo which are the spherical coordinates
of the sphere So’s center and the fixed constants f (lens’ focal length)
and Ro (sphere So’s known radius). We represent the curve Ciðd;UÞ
as a function Fðd;UÞ with constraints on the variables and param-
eters in the following way:

Fðd;UÞ¼ ðd;UÞ : r2
o � ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o �R2
o

q
sin

d
f

� �
sinHo cosðU�UoÞþcos

d
f

� �
cosHo

� ��

�R2
o ¼0;0<d6 f

p
2

;�p6U6p
o
: ð7Þ

where Ro; f > 0; ro > Ro; 0 6 Ho <
p
2 ; �p 6 Uo 6 p and d; U; ro;

Ho; Uo; f ; Ro 2 R.
The restricted positive limit of d in (7) is due to the fact that
the image projection of any real point in the 3D world frame can
attain a maximum value of d ¼ f p

2 due to the projection model
(1). The limits of Ho in (7) are due to the fact that only the
points on the positive side of the Z axis can form a real image
if the camera’s lens is placed at the origin O and is pointing in
the positive Z axis direction. The fixed constants: camera lens’
focal length f and the sphere’s radius Ro, represent positive val-
ued quantities by definition. The distance ro from the principal
point of the image (which is also the origin of the spherical
coordinate system) to the center of the sphere is greater than
the radius of the sphere implying that the camera is always out-
side the sphere So. The rest of the limits on the variables and
parameters in (7) are simply equivalent to the limits of the coor-
dinate variables in a standard polar or spherical coordinate system.

3.5. Proof of bijection

Principle 1 (3D spherical object to 2D image bijection principle). The
periphery of a spherical object of known radius, when observed
through a fisheye lens that follows the equidistant projection model
(1), always projects into a unique curve in the image frame for each
possible 3D position of that object. Conversely, each curve in the
image, which satisfies the condition of being projected from the
periphery of a known sized spherical object, back projects into a
unique 3D position of that spherical object.
3.5.1. Mathematical formulation
The bijection principle, as stated above, can be mathematically

formulated in the following way: A map G : S! C is bijective2

where

S¼ ðro;Ho;UoÞ : ro >Ro;06Ho <
p
2
;�p6Uo6p;ro;Ho;Uo 2R

n o
;

ð8Þ

C ¼ fCi : Ci � Fðd;UÞg; ð9Þ

for fixed values of f and Ro.
In order to prove the bijection principle, we need to establish

the following two statements:

� The map G : S! C is injective.
� The map G : S! C is surjective.

3.5.2. Proof of injection
Simplifying (7) we get:

Fðd;UÞ¼ ðd;UÞ : 1�asin
d
f

� �
cosðUÞ�bsin

d
f

� �
sinðUÞ�ccos

d
f

� �
¼0

� 	
;

ð10Þ

where

a ¼ ro sin Ho cos Uoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q ;

b ¼ ro sin Ho sin Uoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q ;

c ¼ ro cos Hoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � R2
o

q ;

ð11Þ

assuming the restrictions on the variables and the parameters to be
the same as in (7).



3 Not to be confused with the camera image mentioned elsewhere in this article. In
is paragraph image refers to the image (also called ‘range’) of a mathematical
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In order to prove that the map G is injective, we need to show
that any given triplet ðro;Ho;UoÞ, for all ro > Ro; 0 6 Ho

6
p
2 ; �p 6 Uo 6 p, maps to a unique curve of the form Ci which

implies that the mapping is one to one. Since a curve is a set of
points, it implies that we need to show that a given triplet
ðro;Ho;UoÞ maps to a unique set of points in the polar space of
ðd;UÞ for all 0 < d 6 f p

2 ; �p 6 U 6 p.
The forward mapping of G is trivial. Considering the simplified

Eq. (10), we can find a set K of all the points in the polar space
ðd;UÞ which satisfy (10) for a given triplet ðro;Ho;UoÞ. A given trip-
let ðro;Ho;UoÞ implies that the values of the coefficients a; b and c
are given.

The mapping G is one to one, i.e., injective if and only if the set of
points K maps back to the unique triplet ðro;Ho;UoÞ. For the
inverse mapping of G, assume that we are given the set of points
K such that all the points ðd;/Þ 2 K satisfy the equation of the form
(10). Let us pick three distinct points ððd1;U1Þ; ðd2;U2Þ;
ðd3;U3ÞÞ 2 K. In order to show that three distinct points exist on
the curve (10), we will first prove that at least four distinct points
exist on (10).

Notice that in (10), in the family of equations represented, the
function equated to 0 can be seen in two forms; either U as a
function of d or d as a function of U. By differentiating such
representations of this function w.r.t. d in the first form and
w.r.t U in the other and then separately equating both differen-
tials to zero, we can obtain the values for d and U at which the
function has the maxima and minima. Eqs. (12)–(15) represent
these extrema.

dmax ¼ f Ho þ arcsin
Ro

ro

� �
ð12Þ

dmin ¼ f Ho � arcsin
Ro

ro

� �
ð13Þ

Umax ¼ Uo þ arcsin
Ro

ro sin Ho
ð14Þ

Umin ¼ Uo � arcsin
Ro

ro sin Ho
ð15Þ

At the extrema of d, the corresponding value of U and at
the extrema of U, the corresponding value of d can be obtained by
plugging the values of the extrema back into (10). These points in

polar coordinates will be given by Ho þ arcsin Ro
ro


 �
;Uo


 �
;

f Ho� arcsin Ro
ro


 �
;U0


 �
; f arccos ro cosHoffiffiffiffiffiffiffiffiffi

r2
o�R2

o

p
� �

;Uoþ arcsin Ro
ro sinHo

��
and

f arccos ro cos Hoffiffiffiffiffiffiffiffiffi
r2

o�R2
o

p
� �

;Uo � arcsin Ro
ro sin Ho

� �
.

It can now be verified that these represent four distinct points
assuming the constraints on the constants of (10) explained earlier
in this section.

Proceeding with the proof of injection, since by initial assump-
tion all the points in the set K satisfy the curve Eq. (10), the follow-
ing three equations are true:

a sin
d1

f

� �
cosðU1Þ þ b sin

d1

f

� �
sinðU1Þ þ c cos

d1

f

� �
¼ 1 ð16Þ

a sin
d2

f

� �
cosðU2Þ þ b sin

d2

f

� �
sinðU2Þ þ c cos

d2

f

� �
¼ 1; ð17Þ

a sin
d3

f

� �
cosðU3Þ þ b sin

d3

f

� �
sinðU3Þ þ c cos

d3

f

� �
¼ 1: ð18Þ
In the case of inverse mapping of G; K is given and hence
known but the triplet ðro;Ho;UoÞ is unknown, hence a; b; c
become variables. Eqs. (16)–(18) can now be seen as a system of
3 equations in 3 variables: a; b; c. Expressing this system in matrix
form:

Aq ¼ 13; ð19Þ

where

A ¼

sin d1
f


 �
cosðU1Þ sin d1

f


 �
sinðU1Þ cos d1

f


 �

sin d2
f


 �
cosðU2Þ sin d2

f


 �
sinðU2Þ cos d2

f


 �

sin d3
f


 �
cosðU3Þ sin d3

f


 �
sinðU3Þ cos d3

f


 �

2
66664

3
77775; ð20Þ

q ¼ a b c½ �T and 13 ¼ 1 1 1½ �T .

The system in (19) has a unique solution for q if and only if A is
invertible. Also, from (11) it can be easily verified that the triplet
ðro;Ho;U0Þ can be uniquely obtained from the triplet ða; b; cÞ.
Hence in order to show that the map G�1 will map from a set K
to a unique triplet ðro;Ho;U0Þ and therefore prove that the map G
is injective, it will suffice to show that A is invertible under the
initial assumptions of the problem.

A�1 ¼

sin
d3
f


 �
sinð/1 Þ

tan
d2
f


 � �cos
d3
f


 �
sinðU2Þ

sin
d1�d3

f


 �
sinðU1�U2Þ

sinð/1Þ

sin
d2
f


 �
sinðU1�U2Þ

�
sin

d1
f


 �
sinð/1 Þ

tan
d2
f


 � þcos
d1
f


 �
sinðU2Þ

sin
d1�d3

f


 �
sinðU1�U2Þ

�sin
d3
f


 �
cosð/1 Þ

tan
d2
f


 � þcos
d3
f


 �
cosðU2Þ

sin
d1�d3

f


 �
sinðU1�U2Þ

� cosð/1Þ

sin
d2
f


 �
sinðU1�U2Þ

sin
d1
f


 �
cosð/1 Þ

tan
d2
f


 � �cos
d1
f


 �
cosðU2Þ

sin
d1�d3

f


 �
sinðU1�U2Þ

�
sin

d3
f


 �

sin
d1�d3

f


 � 0
sin

d1
f


 �

sin
d1�d3

f


 �

2
666666666666666666664

3
777777777777777777775

:

ð21Þ

In the expression of A�1 (21), the inverse of matrix A, it can be
verified that under the previously mentioned variables and con-
stants limits, all elements of A�1 will have a finite value thus prov-
ing its existence. Hence the map G is injective.

3.5.3. Proof of surjection
The proof of surjection is now trivial. A function is surjective if

its image3 is equal to its codomain. We have already shown that any
set of points K ¼ fðd;UÞg in the polar coordinate space which satis-
fies the equation of the form (10) (i.e., K is in the codomain C of the
mapping G) maps back to a unique triplet ðro;Ho;UoÞ 2 S, implying
that K is also in the image of G. Therefore, the codomain of the
map G is equal to its image. Hence the map is surjective.

A mapping is bijective if and only if it is injective and surjective
at the same time. By establishing that the map G is injective and
surjective, we conclude that it is bijective. Hence, proving the pro-
posed bijection principle. h

3.6. Inference

Concluding from all the previous subsections in this section, it is
possible to uniquely identify the position of a known-radius spher-
ical object in 3D using a single fisheye equidistant projected image.
Using this bijection principle, in [15] we described a fast algorithm
to (i) detect the curves of the form Ci (referred in [15] as tear-drop
nction/mapping.

th
fu



Fig. 4. Side view of the robot used in the experiments and an example image acquired from the robot’s fisheye lens-based camera, with an orange soccer ball, landmarks and
other robots in the field of view. The bijection principle is applied in real-time on such images which are continuously acquired by the robot’s camera. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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curves because of their visual appearance) in the image and, (ii)
find the parameters of those curves. Subsequently, the 3D position
of the center of the spherical object could be found using those
parameters in a straightforward manner.

The detected position can then be used for various next-level
tasks based on the required application, e.g., tracking the spherical
object, recovering the trajectory of the object and thus experimen-
tally finding out the motion model of the object, etc. In this paper,
we utilize the position detection to perform spherical object
tracking.
4. Experiments and results

In order to highlight the bijection principle’s practical correct-
ness, applicability and usability we present results from two sepa-
rate real-robot experiments. These experiments were done using
the same soccer robot tracking a FIFA size-5 ball (which is a spher-
ical object of known radius) in two different environments. Here,
different environments mean separate robotics laboratories with
different lighting conditions, density of occlusions between the
robot and the ball within the environment, etc. While the first
environment was situated at the LSA lab facility of ISEP, Porto,
the second was at Mobile Robotics Laboratory (LRM) at ISR, Lisbon.
For both the experiments described further, a 3D sphere detector
was implemented using the optimized model-fitting approach
[15], which in turn uses the bijection principle. A particle filter-
based (PF) tracker was constructed involving the standard PF’s pre-
dictor and resampler [18] along with the model-fitting approach as
the classifier. The model-fitting approach-based 3D sphere detec-
tor is used to assign weights to the particles in the update step
of the PF.

One of the primary requisites for any robot to be able to play
soccer is to continuously track the soccer ball. In robotic soccer’s
dynamic environment the ball maneuvers in a 3D space, which
makes the robot soccer scenario an interesting and suitable testbed
for the experimental validation and performance check of the
bijection principle. After a brief overview of the robot used in these
experiments and the robot’s vision system, we describe the ground
truth system used to compute the accuracy of the tracking. This is
followed by an analysis of results of both the experiments. Related
to these experiments a self-explanatory evidence Video is also
attached with this article.
4.1. Robot and its vision system

The robot used here, as depicted in Fig. 4a, is from the RoboCup
Middle Sized League (MSL) team SocRob. It is characterized by a 3-
wheeled omni-directional drive and a dioptric vision system con-
sisting of a fisheye lens-based camera facing downwards. The robot
is also equipped with a laptop (Quad Core Intel (R) Core (TM) i3
CPU M350 @ 2.27 GHz, 2.9 GB RAM), which runs the 3D detection
and tracking in realtime.

The robot’s vision system is based on an AVT Marlin F-033C fire-
wire camera, which is equipped with a fisheye lens providing a
field-of-view of 185�, facing downwards. This dioptric system
endows the robot with omnidirectional vision, capable of detecting
relevant objects (e.g., the ball and other robots) at a distance of up
to 3.5 m in all directions. An example image from this vision sys-
tem is presented in Fig. 4b.

According to the official rules of the MSL, the robots cannot
exceed a height of 80 cm above the ground plane. Accommodating
with this rule, in addition to the fact that we place the camera fac-
ing downwards (to have the full field view at once), and consider-
ing other components associated with our camera system, the
camera placement on the robot is such that it can detect objects
up to a height of � 70 cm above the ground plane. From a theoret-
ical standpoint (concerning the proposed bijection principle), the
position of the camera w.r.t. the ground plane does not concern
the principle itself. Making the camera position higher would only
change the distance of the detected object from the camera and
therefore the area of the projected blob on the image plane. It will
not affect the ‘family of curves’ (referred to as tear-drop curves in
the Section 3) that defines those projected blobs based on the
bijection principle. Moreover, by keeping the same camera place-
ment as described above and not increasing its height, we ensure
fairness when comparing our work with other similar works from
the MSL community [1,10,13].
4.2. Ground truth system

In order to evaluate the implementation results of our
approach, we compare the estimated positions of the orange ball
with its ground truth (GT). To obtain the GT, an overhead stereo
vision system was used which estimates the exact 2D world posi-
tions of the robot and the 3D world positions of the soccer ball



Fig. 5. Snapshot from the stereo vision system installed for ground-truth estimation of the robot’s 2D and the ball’s 3D positions. LSA lab facility of ISEP, Porto, Portugal (Top).
Mobile Robotics Laboratory (LRM) at ISR, Lisbon, Portugal (Bottom).
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which the robot in our testbed is detecting and tracking. The robot
and the GT system were time-synchronized using the open-source
software named Chrony.4 Chrony was installed on all the robot lap-
tops and the computer connected to the GT system. Moreover, all
robot laptops and the GT system’s computer were on the same local
area network. Chrony synchronizes the clocks of all the systems on
the same network on which it is installed. It implements the net-
work time protocol (NTP) and guarantees clock synchronization
accuracy in the order of microseconds.

Our GT system is based on the concepts presented in [19]. The
hardware and software implementation of our GT system was
done separately from the one used in [19]. It consists of 2 gigabit
ethernet cameras in a stereo baseline. The GT system’s cameras
were positioned looking towards the testbed with a baseline of
�13 m in LSA, Porto, and �12 m in LRM, Lisbon. They are con-
nected to a machine with Quad Core Intel (R) Core (TM) i5 CPU
750 @ 2.67 GHz, 8 GB RAM, running a Linux operating system.
The model of the camera is Basler acA1300–30gc with a maximum
limit of �25 frames per second (fps) and a resolution of 1294� 964
pixels (1.2 megapixels). Both environments have the same GT sys-
tem (meaning, the camera make and model) except for the differ-
ent lengths of the baseline. The top row in Fig. 5 shows the right
and left camera images from the GT system installed at LSA, Porto,
while the bottom row images are from the GT system at LRM,
Lisbon.

Before we set out to use the above described GT system to eval-
uate the performance of our proposed methods (presented in the
later subsection), it becomes essential to explore and characterize
the errors within the GT system itself. As the GT system employs a
color-based blob-detection technique to locate the ball’s/robot’s
position in the stereo camera images, it is natural that errors in
color segmentation due to different lighting throughout the field,
noise in blob detection, etc., will corrupt the GT values of the
ball’s/robot’s position. In order to characterize this error in the
GT system we followed the following procedure.

At 40 known locations on the field (see Fig. 6), five 1-meter
intervals in the X-axis and eight 1-meter intervals in Y-axis, small
4 Webpage of the software Chrony: http://chrony.tuxfamily.org/index.html.
white markers were fixed. On each of these locations the ball was
kept at 3 different heights (Z-axis of the field). First, directly on the
field surface, putting the ball’s center at 0:10 m in the positive
Z-axis direction, while the rest two on known-height stands of
0:35 m and 0:5 m, as depicted in the second and third images of
Fig. 6. Each of these 120 placements of the ball was kept for
approximately 1 min. During each of those 1 min intervals, images
from the stereo cameras of the GT system were saved at � 20 Hz in
order to compute the GT X, Y, Z position values of the ball. Error in
each dimension of GT is then calculated as the absolute value of the
difference between (i) the GT estimated ball position in that partic-
ular dimension and (ii) actual5 known value of the ball position in
that dimension. Subsequently, mean and variance of the error in
the GT X, Y, Z position estimates for each of the 120 placements
was obtained.

In order to describe how the error in GT estimation varies over
each of the three coordinate dimensions of the field, we present a
set of plots in Fig. 7. For each plot, we fix one of the coordinates and
average the mean error over all the ball placements (in the other
two dimensions) at that fixed coordinate. For example, to describe
how the X component of the GT varies over the Y-axis of the field,
at each Y coordinate of the field we obtain the average of the mean
errors in GT’s X component for all ball placements at that Y coordi-
nate. Overall, we observe that the errors in the GT estimation of the
ball does not vary significantly over the field in any of the dimen-
sions. The mean error in all dimensions remains between 0:01 m
and 0:04 m with an average close to 0:02 m indicating a good accu-
racy for 1.2 megapixel cameras observing the ball up to 9 m away
from the center of the stereo baseline, while the variance of error
remains extremely low (in the order of 10�5 m2 to 10�6 m2) indi-
cating high precision in the GT estimation. In the evidence Video
attached with this article, one can also visually verify the precision
and accuracy of the GT system. Considering the fact that the GT
estimates for the robots were made using an exact same method
as that of the ball (by placing colored plates on top of the robots
and employing similar color-based blob-detection technique), we
5 Here, actual values refer to the 40 fixed placements of the white markers and the

3 separate fixed heights as explained in the paragraph.

http://chrony.tuxfamily.org/index.html
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Fig. 7. Mean and standard deviation of the errors in the GT estimates of the ball position. The plots describe how the errors in X, Y and Z components of the GT vary over each
of the field dimensions. Units for both X and Y axis in the above plots is meter.

Fig. 6. Characterization of error within the ground truth (GT) estimation of the ball. Each of the above images show a different X, Y and Z coordinate placement of the ball from
the right camera of the GT system at ISR, Lisbon. The origin of world-frame coordinates is at the center of the soccer field with positive X axis towards the yellow colored goal.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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can safely assume a similar accuracy and precision in the GT esti-
mation of the robot positions.

4.3. Results

In both of the experiments presented in this subsection, the PF-
based tracker runs on the robot and estimates the 3D position of
the ball in its local frame of reference. Subsequently, the robot uses
its own pose (2D position and orientation) estimate in the world-
frame to transform the ball’s position estimate from its local frame
to the world frame. This transformation is essential for the error
calculation of the ball position estimates w.r.t. its GT due the fol-
lowing two reasons:

� The GT system provides the world frame GT of the ball’s 3D
positions.
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Fig. 8. Experiment 1 (in LSA, Porto): World frame trajectory plots (individual plots for each dimension: X, Y and Z dimensions for the ball; X and Y for the robot) of the
estimated values by the robot plotted in green. Corresponding ground truth trajectories plotted in red. In all of the above plots, each time-step in the X-axis corresponds to
� 0:1 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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� The GT system provides only the 2D position GT of the robot
and not the orientation GT. Hence, geometrically, it is impos-
sible to compute the GT of the ball’s local frame position
estimates (in local frame’s X and Y dimensions, separately).

For estimating its own pose, the robot runs a Monte Carlo self-
localization algorithm, separately from the PF-based object tracker.
As this self-localization is also prone to errors, when the ball posi-
tion is transformed from local frame to world frame using the
robot’s pose, the self-localization error gets combined with the
PF-based object tracking error in the final world frame ball position
estimates. Note that the local Z coordinate position estimate of the
ball is independent of the robot’s pose because the robot maneuvers
on fixed X–Y plane. Consequently, the local and world Z coordinates
of the ball’s position estimates are the same.

On the other hand, if one considers the radial distance estima-
tion of the ball from the robot, the orientation of the robot itself
becomes irrelevant. Therefore, given that the GT system is
restricted to only 3D position GTs of the ball and the 2D position
GTs of the robot, the GT of the radial distance between the robot
and the ball can be easily obtained. Using this additional GT, we also
compare the radial distance estimation of the ball from the robot.

For both experiments we present world frame trajectory plots
(Figs. 8 and 9) for the robot and the ball in each coordinate axis
(X, Y and Z for the ball; X and Y for the robot). On each plot, the
estimates provided by the robot of its own pose and of the ball’s
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Fig. 9. Experiment 2 (in LRM, Lisbon): World frame trajectory plots (individual plots for each dimension: X, Y and Z dimensions for the ball; X and Y for the robot) of the
estimated values by the robot plotted in green. Corresponding ground truth trajectories plotted in red. In all of the above plots, each time-step in the X-axis corresponds to
�0.05 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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world frame position is plotted in green color against their corre-
sponding GT in red color. Error in each coordinate axis is computed
as the absolute value of the difference between the value estimated
by the robot and its corresponding GT. Error in radial position esti-
mate of the ball is calculated similarly: absolute value of the differ-
ence between the following two items:

� Euclidean distance between (i) the estimated X–Y position of
the robot through its own self-localization mechanism and
(ii) the estimated world frame X–Y position of the ball
through the PF-based tracker running on the robot, and

� Euclidean distance between (i) the X–Y GT position of the
robot (ii) the X–Y GT position of the ball.
The mean and variance of all the above described errors
for the full duration of each experiment is presented in Tables 1
and 2.

Experiment 1: In the first experiment the robot tracks an
orange-colored ball and autonomously moves towards it while
the ball is manually moved around in the 3D space around the
robot on an MSL field. This experiment was conducted in the
LSA lab facility of ISEP, Porto. In this experiment only a single
robot was present and moving in the field, in addition to the per-
son who was manually moving the ball tied to a thin string. A
snapshot of this environment is presented in the top row
images of Fig. 5. Fig. 8 and Table 1 present the results of this
experiment.



Table 2
Experiment 2 (in LRM, Lisbon): Mean and variance of the errors calculated w.r.t. the
corresponding GT values.

Table 1
Experiment 1 (in LSA, Porto): Mean and variance of the errors calculated w.r.t. the
corresponding GT values.

6 Offline means that the robot initially collects the raw odometry measurements
nd images while it is moving physically and post-processes these measurements
ter in a realtime scenario. For a more detailed description, please refer the

xperimental results section in [15], where the same concept of offline processing is
sed.
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During this experiment, both the robot’s self-localization and
the PF-based object tracker ran at approximately 30 Hz, therefore
producing ball’s global position estimates at the same frequency.
However, the GT system captured images at a frequency of only
10 Hz. Therefore, error computation was made only at this lower
frequency. Consequently, X-axis time-step in all the trajectory
comparison plots of Fig. 8 correspond to approximately 0.1 s. Note
that these values are slightly different for the second experiment.

From the mean values of the error estimates, it is clear that an
accuracy of approximately 0:05 m is achieved in the Z-dimension
of the ball’s position estimate by the PF-based tracker. In the X
and Y dimensions of the ball’s world frame position estimates,
there is a higher mean error. Simultaneously, it must be noted that
the error’s in the X and Y dimensions of the robot’s self-localization
are high as well, but less than that of the ball’s world frame posi-
tion errors in X and Y dimensions. This clearly suggests the additive
influence of the robot’s self-localization errors on the world frame
ball position estimation. Although the local frame ball position
error is impossible to calculate in the X and Y dimensions of the
robot considering our current GT system, mean of the radial dis-
tance error estimate (� 0:09 m) does suggest that in local frame
the estimated ball position’s mean error in X and Y dimensions of
the robot should be less than � 0:09 m. This, eventually, is close
to the accuracy obtained in the Z coordinate estimates of the ball.
Experiment 2: In the second experiment, 4 similar robots are
randomly moved around in an MSL field through remote control.
The reason for having 4 robots is to create dynamic obstacles in
the field increasing the chances of occlusions for the one robot that
tracks the ball. Additionally, a person carries around an orange-col-
ored ball (and also another blue-colored ball which is not analyzed
in this experiment) tied to a string. One of four robots run the PF-
based tracker (which in turn is using the bijection principle) and
the MCL-based self-localization in an offline6 manner. Another
key difference in this experiment, as compared to the previous
one, is in the MCL-based localization. Here, several differently col-
ored and known landmarks are put in the environment which facil-
itate a more accurate self-localization. In the previous experiment,
MSL field lines were used for this purpose, which, given the field’s
large size and robot camera’s low resolution, leads to a poorer local-
ization. This experiment was conducted in the Mobile Robotics Lab-
oratory (LRM) at ISR, Lisbon. A snapshot of this environment is
presented in the bottom row images of Fig. 5. Fig. 9 and Table 2 pres-
ent the results of this experiment.

During this experiment, both the robot’s self-localization and
the PF-based object tracker ran at approximately 21 Hz. The GT
system also captured images at a similar frequency. Therefore, it
was possible to compute the errors at approximately 21 Hz. Due
to the same reason, X-axis time-step in all the trajectory compari-
son plots of Fig. 9 correspond to approximately 0.05 s.

The effects of better self-localization of the robot is evident in
the results of this experiments. The mean error of the robot’s
self-localization in the X and Y dimensions have approximately
reduced to one half of what was achieved in the previous experi-
ment. Consequently, the mean error in the X and Y dimensions of
the ball’s world frame position estimation have reduced by the
same order. The accuracy in the Z dimension of the ball position
estimation (mean error of approximately 0.05 m) remains the
same as that of experiment 1. This was expected because the
robot’s self-localization is irrelevant for the Z-coordinate position
estimation of the ball. It also confirms the fact that the PF-based
tracker behaved consistently through different environmental set-
ups. However, the mean error in the radial distance estimate of the
ball from the robot has almost doubled (0:17 m) in experiment 2 as
compared to that of experiment 1 (0:09 m). The reason is as fol-
lows. It is expected that as the spherical object goes further away
from the robot’s camera, the number of pixels projected on the
image due that object rapidly decreases causing a higher inaccu-
racy in the overall process of object detection. In experiment 2,
the ball was often carried away as far as 3–4 m from the robot.
On the other hand, in experiment 1 the ball was always quite close
to the robot itself (on an average, it was within � 1 m of the robot’s
center). In addition to the evidence Video, this is also clearly visible
from the trajectory plots. In the plots of experiment 1 (Fig. 8), it can
be observed that the robot and the ball’s X, Y trajectories (in the
right and left columns, respectively) are very close to each other.
In experiment 2 (Fig. 9), however, these trajectories are completely
disparate.
5. Conclusions and future work

In this article we proposed a bijection principle which states
that the 3D position of a spherical object of known radius, when
projected onto an image through a fisheye lens-based camera fol-
lowing equidistant projection model, can be uniquely determined
a
la
e
u
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using only a single image frame. We presented a detailed mathe-
matical proof for this principle which is the central contribution
of this work. In order to verify the bijection principle’s correctness
as well as applicability in detecting spherical objects in 3D, we pre-
sented experiments to detect and track a soccer ball of known
radius through a robot consisting of a single, fisheye lens-based
camera. The experiments were performed under different environ-
mental conditions, e.g., lighting conditions, occlusion densities, etc.
Results highlight the accuracy and precision of tracking, which in
turn experimentally verify the bijection principle and signify its
practical utility. On the other hand, it must be noted that the errors
in tracking occurred due to various uncontrollable factors, such as,
low resolution of the camera (caused reduced visibility of the
object when it is moved far from the camera), and imperfect color
segmentation method involved within the detection process. These
errors are not related to the bijection principle itself, which is a
purely mathematical concept. Moreover, the experiments pre-
sented in this paper were in addition to the ones in our previous
works where we have successfully tested detection and tracking
of spherical objects in 3D using this bijection principle.

Our ongoing and future work w.r.t. the detection techniques in
3D include algorithms to detect generic objects with more complex
3D geometry than that of spheres. Applying a similar idea of bijec-
tion to objects than need to be described in a higher dimensional
space is one of the directions which we intend to explore. Another
aspect that we are currently investigating involves using this bijec-
tion principle to study the change in the object’s projection geom-
etry during motion blur. Furthermore, we also intend to explore
the possibility of characterizing motion models of randomly mov-
ing spherical targets using the 3D sphere detection.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2014.04.004.
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