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Abstract

In order to explore and understand the surrounding environment in an efficient manner, humans have developed
a set of space-variant vision mechanisms that allow them to actively attend different locations in the surrounding
environment and compensate for memory, neuronal transmission bandwidth and computational limitations in the
brain. Similarly, humanoid robots deployed in everyday environments have limited on-board resources, and are
faced with increasingly complex tasks that require interaction with objects arranged in many possible spatial
configurations.

The main goal of this thesis is to assess the viability and performance of biologically inspired, space-variant
human visual mechanism benefits, when combined with state-of-the-art algorithms for different visual tasks (i.e.
from detection, object recognition to 3D reconstruction and pose estimation), ranging from low-level hardwired
attention vision (i.e. foveal vision) to high-level visual attention mechanisms. We delve beyond the state-of-
the-art in biologically plausible space-variant resource-constrained vision architectures, for active recognition and
localization, volumetric reconstruction, pose estimation and multiple object tracking tasks.

Our contributions are fourfold. First, we propose an object recognition and localization framework that combines
Convolutional Neural Networks (CNNs) with smooth artificial foveal vision. An iterative foveation mechanism
that mimics the human saccadic eye movements, is used to improve recognition accuracy of non-centered objects
within an image, over time. Second, we developed a novel a probabilistic observational model for stereo binocular
systems that employes the Unscented Transform in order to propagate uncertainty in stereo matching, due to spatial
quantization in the retina (represented with log-polar distributed receptive fields), to the 3D Cartesian domain.
Third, we developed 3D orientation selectivity mechanisms for the incorporation of orientation-specific priors, in
resource-constrained egocentric object reconstruction and allocentric pose estimation. Namely, a novel versatile
structure whose topology is flexible, and may be biased according to the autonomous agent prior knowledge and
short-term tasks and goals, via the allocation of limited resources to important task-dependent directions. Finally,
we propose a framework inspired by divided focal attention andworkingmemory limitations in the human brain, that
poses the Multiple Object Tracking (MOT) problem as a resource-constrained decision making under uncertainty
process, that keeps computations tractable by dividing and constraining visual information processing to a limited
number of targets, at each time instant.

Keywords: Biologically Inspired Vision, Active Vision, Space-Variant Vision, Selective and Divided
Attention, Object Detection, 3D Reconstruction
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Resumo

A fim de explorar e compreender o ambiente circundante de maneira eficiente, os seres humanos desenvolveram
um conjunto de mecanismos de visão variante no espaço que lhes permite atender ativamente a diferentes regiões
do ambiente circundante e compensar limitações de memória, largura de banda de transmissão neuronal, e com-
putacionais no cérebro. Da mesma forma, robôs humanoides implantados em ambientes quotidianos têm recursos
limitados, e deparam-se com tarefas complexas que exigem interação com objetos dispostos numa infinidade de
configurações espaciais possíveis.

O objetivo principal desta tese é avaliar a viabilidade e o desempenho de mecanismos visuais variantes
no espaço com inspiração biológica no olho humano, quando combinados com algoritmos de última geração
para diferentes tarefas visuais (detecção, reconhecimento, reconstrução 3D e estimativa de pose de objectos),
replicando mecanismos de baixo nivel (i.e. visão foveal) com mecanismos de alto nível de atenção visual. Nesta
tese, vamos além do estado da arte em arquiteturas de visão activa biologicamente inspirada, para detecção,
reconstrução volumétrica, estimação de pose e seguimento de objetos. As nossas contribuições são as seguintes:
Primeiro, propomos uma framework para detecção de objetos que combina Redes Neuronais Convolucionais com
visão foveal artificial. Um mecanismo iterativo que imita os movimentos oculares sacádicos humanos, é usado
para melhorar a precisão de reconhecimento de objetos não centrados no campo visual, ao longo do tempo.
Em segundo lugar, desenvolvemos um novo modelo observacional probabilistico para sistemas binoculares que
emprega uma transformada Unscented de forma a propagar incerteza no matching stereo no dominio da retina,
devido a quantização espacial para o dominio 3D. Em terceiro lugar, desenvolvemos mecanismos de seletividade
de orientação, para tarefas de procura e reconstrução de objetos em referenciais egocêntricos, assim como para
estimativa de pose em referenciais alocêntricos. Nomeadamente, propomos uma estrutura para procura visual,
reconstrução 3D e estimação de pose, cuja topologia é flexível e, ao contrário de outras estruturas de memória
espacial existentes na literatura, pode ser enviesada de acordo com os objetivos a curto prazo e conhecimento a priori
do agente autónomo. Finalmente, propomos uma arquitectura inspirada em atenção focal dividida e limitações de
memória no cérebro humano, que coloca o problema de seguimento de múltiplos objectos como um processo de
tomada de decisão sob incerteza, restringindo o processamento de informação visual para um número limitado de
alvos, a cada instante temporal.

Palavras chave: Visão biologicamente inspirada, Visão activa, Visão variante no espaço, Mecanismos
de atenção selectiva e dividída, Detecção de objectos, Reconstrução 3D, Estimação de pose, Seguimento de
multiplos objectos
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Chapter 1

Introduction
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The present doctoral dissertation aims at improving the state-of-the-art in biologically inspired computer
vision solutions for robotics visual tasks,, including active recognition, volumetric reconstruction, pose estimation
and multiple object tracking. More specifically, this thesis studies and models space-variant visual attention and
constrained resource allocationmechanisms existent in humans, showing, in a set of visual tasks relevant to robotics,
the advantages and disadvantages of these mechanisms in comparison with the classic and modern computer vision
approaches. Unlike other studies that focused on developing hardware based retinas, we focused on software based
ones.

1.1 Motivation

Space-variant vision and attention mechanisms are the fundamental processes in biological systems, responsible
for prioritizing the elements of the visual scene to be attended, i.e., to control perceptual resources [6, 158] and
cope with the brain computational limitations. Humans rely on space-variant sensing (foveal vision), and on
stimulus-driven (bottom-up) and goal-driven (top-down) information processing mechanisms to define where in
the visual input the attentional foci should be oriented to [109]. This way, information processing is constrained
and directed towards salient or task-relevant stimuli.
Likewise, an important issue in many computer vision applications requiring real-time performance, resides in the
involved computational effort [26], especially in robotics where energy efficient, fast and accurate perception is a
fundamental requirement, e.g., in visual localization and servoing during grasping, manipulation and hand-over of
tools to human or machine collaborators. In humanoid robotics, in particular, real-time operation is conditioned
by physical limitations on on-board computational and power resources, as well as data transmission bandwidth if
one opts to outsource information processing to outside servers (see Figure 1.1).

(a) Vizzy

(b) iCub

(c) Chico

(d) Chica

Bandwidth

Power

Computational

(e) Resource Constraints

Figure 1.1: Humanoid robotic platforms available at VisLab (http://vislab.isr.ist.utl.pt/) (Left) and their main
resource limitations (Right)

Therefore much effort has been made towards understanding the underlying principles of biological attention
mechanisms and applying those mechanisms in robotics, in an attempt to build more efficient solutions, capable of
performing in real-time, under resource-constrained settings [17].

In the remainder of this chapter we overview the neurophysiology of the Human Visual System (HVS), and
review the state-of-the-art in biologically plausible space-variant vision models, focusing on artificial foveal vision
and visual attention mechanisms.
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1.2 Neural and Artificial Mechanisms of Visual Information Processing

The process of seeing starts with light entering the eye through the cornea. The eye has the ability to adapt to
different levels of brightness (adaptation) and to shape its lens and pupil size in order to focus objects at different
distances (accommodation). The light passing through the pupil, is focused by the lens, onto the retina, a sensory
membrane responsible for receiving and converting the visual stimuli into electric signals to be transmitted to the
visual cortex in the brain through the optic nerve [143].

The retina is mainly composed of two types of photo-receptors: rods which are mostly concentrated, at the
periphery and are sensitive to brightness and colorless low-light vision (scotopic vision) and the cones that are
concentrated mostly in the center of the eye, in a place called fovea, and are responsible for high acuity color vision
(see Figure 1.2). Finally, the visual signals entering through the optic nerve reach the back of the brain, where the
visual cortex is located and the stimuli interpreted.

1.2.1 Space-variant Foveal Vision

Unlike uniform vision provided by conventional imaging sensors, human vision is space-variant, due to the uneven
organization of the photo-receptors in the retina. Visual acuity, provided by the cones, is highest at the fovea, lo-
cated in the center of the retina, and declines monotonically towards the periphery, with increasing eccentricity (see
Figure 1.2). This space-variant resolution perception phenomenon - named foveation - is a hardwired mechanism
and a natural way of reducing the amount of information streamed to the brain, in order to cope with power, neuronal
transmission bandwidth limitations, and the brain machinery processing capacity. In fact, if foveal resolution visual
stimuli across the whole field of view was to be processed, the human brain weigh would be significantly increased
(to approximately 60 kg [14]). However this compression phenomenon introduces a space-variant uncertainty
in visual processes. In order to efficiently explore and understand the surrounding environment [162], humans
have developed a set of attention and oculo-motor mechanisms, namely saccades, that allow them to actively and
sequentially direct their eyes towards different regions of interest in the surrounding environment, and thus, to
cleverly compensate for the aforementioned limitations.

(a) Eye morphology (figure taken from [143])
(b) Photo-receptors density in the retina (figure
taken from [215])

Figure 1.2: Human Eye Physiology

Similar to humans, robots deployed in everyday environments, are faced with increasingly complex scenarios
where objects are arranged in many possible different spatial configurations. The problem of deciding which
regions in the visual field are to be attended during visual search tasks is computationally demanding or even
intractable if approximate solutions are not considered [206]. Therefore, like biological systems, humanoid robots
must be endowed with mechanisms to allow them to locate objects of interest and to sequentially build detailed
representations of the scene, while avoiding the potential overload of processing irrelevant sensory stimuli. Under
the assumption that biological systems perform quasi-optimally in their environment due to multiple generations of
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genetic improvement, researchers have been developing robotics systems [135] provided with biologically inspired
space-variant image processing [184, 202], gaze control models [175, 21] and attention systems [17, 26, 210]. These
implementations not only mimic the mechanisms observed in humans but, in general, also lead to more efficient and
effective behaviors under resource-constrained settings (bandwidth, computational and energetic). In the context
of robotics, and from a practical standpoint, unconventional space-variant sensing representations, in particular
human-like foveal vision, offermultiple advantageswhen compared to conventional uniform counterparts, including
reduced resolution with wide field-of-view, being suitable for real-time performance in active vision systems that
are able to manipulate the view-point.

1.2.2 Computational Foveal Vision Mechanisms

All levels of the visual system are highly regular and symmetric, from the photoreceptors distribution in the retina,
to higher-level cell organization in the striate cortex. Different digital sensing architectures exist in the literature
that attempt to mimic biological vision structures, namely adaptive and reconfigurable hardware-based ones [67,
12], in this thesis we focus on algorithmic-based human like vision ones.

Biologically plausible foveated digital image processing techniques attempt to mimic the space-variant phenom-
ena in the visual pathways, and have numerous applications, including video streaming in low-bandwidth networks
(e.g. teleoperation and remote surveillance) and scene understanding tasks (e.g. object detection [5], tracking [21,
74], and robot navigation [181]). The algorithms proposed in the literature, try to mimic foveal vision and can be
classified as geometric [202], multi-resolution [1], or filtering-based [68, 214].

Geometric-based Approaches

Studies from neurophysiology have shown that the receptive field spacing and size scale exponentially with
eccentricity in the retina, and that light stimuli produces activation displacements in the cortex that are inversely
proportional to the distance to the fovea.

Geometric-based approaches attempt to model the retinotopic mapping transformation, that occurs between
RFs in the retina and the Lateral Geniculate Nucleus (LGN) [95], where neighboring retinal locations are mapped
to neighboring cortical locations. This RFs mapping distribution can be mathematically approximated using the
log-polar transformation [183], which is given by the following mathematical expression:

(ρ,θ) =
(
log

(√
((x−xc)2− (y−yc)2)

))
,atan

(
(y−yc)
(x−xc)

)
(1.1)

and has attracted much interest within the robotics community (see Figure 1.3a (and Figure 1.3b). First, because it
allows trading-off field-of-view, resolution and data compression. Second, they provide some degree of invariance
to rotations and scaling transformations, as these become linear shifts in the cortical plane.

Many log-polar models have been proposed in the literature [24] and may be categorized as conformal non-
overlapping or overlapping, depending on the RF support radius (see Figure 1.3). Although being computationally
more intensive than their non-overlapping RFs counterparts, overlapping models are better at approximating the
space-variant averaging phenonema in the retina, and produce smoother retinal mappings. Still, the literature falls
short on works that attempt to model uncertainty in 3D reconstruction due to space-variant quantization phenomena
in the retina, and to leverage these uncertainty measures for Next-Best-View (NBV) planning during exploration
and visual search tasks. This is one of the contributions of the thesis, described in chapter 3.

While previous approaches attempt to capture the retina receptive field tessellation structure through analytic
geometric modeling, other approaches capture its underlying structure through exploration and learning strategies.
One example is the self-organized retina of [13] that unlike previous approaches can deal with sampling discon-
tinuities between the fovea and the peripheral region of the visual field. During the structure creation process,
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they use self-similar neural network units, whose weights undergo random transformations to produce randomized
tessalations (see Figure 1.3c)

y

x

θ

ρ

(a) Retinal (left) and cortical (right) log polar representations with non-overlapping superpixel RFs.

y

x

θ

ρ

(b) Retinal (left) and cortical (right) log-polar representations with overlapping circular RFs. Left: the x and y correspond to
Cartesian coordinates in the retinal plane. While ρ and θ correspond to coordinates in the cortical domain.

(c) Self-organized Gaussian receptive field tessellation produced with self-similar neural network units. Left: node tessella-
tion. Right: Gaussian receptive fields on top of a retina tessellation.

Figure 1.3: Log-polar transform.
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Multi-resolution Pyramids

Image pyramids [1] have been proposed for multi-resolution image processing and are particularly suited for multi-
scale image analysis, data compression, and as an intermediate step of key point extraction algorithms (e.g. Scale
Invariant Feature Transform (SIFT)). The basic principle resides on low-pass smoothing and downsampling.

Gaussian pyramids are the most common in the literature and utilize Gaussian kernels for the smoothing
operation. The first level in the pyramid (level 0) contains the original image g0 that is first low-pass filtered via
convolution with 2D isotropic and separable Gaussian filter kernels, and then downsampled by a factor of two,
yielding the image g1 at level 1. Successive images gk+1 are obtained from the previous levels gk, by iteratively
repeating the low-pass filtering and down-sampling procedures (see Figure 1.4a). Gaussian pyramids are useful for
many applications, in particular for recognizing patterns of unknown scale (e.g. scale invariant template matching),
and for fast foveated coarse-to-fine pattern localization (see Figure 1.4b).

The Laplacian pyramid (see Figure 1.4c) was first introduced in [32], for image compression, and is constructed
by computing differences of Gaussians. During the construction of the pyramid, each level of the Gaussian pyramid
gk is subtracted from an expanded version of gk+1, to ensure similar resolution and obtain a band-pass image Lk.
Data compression is achieved by storing the largely decorrelated Lk and the low-pass filtered image gk+1, instead
of gk.

(a) Gaussian pyramid (b) Foveated low-pass image pyramid

(c) Laplacian pyramid

Figure 1.4: Multi-resolution Pyramid Representations
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Filtering-based Methods

In the work of [68] the authors proposed a foveation mechanism for digital image streaming in low-bandwidth
communication channels, that allows the user to point the high spatial resolution focus to regions of interest,
with pointing devices (e.g. eye tracker or mouse), being also suitable for studies involving eye movements. The
method starts by building a Laplacian pyramid, then, each level is multiplied by an exponential kernel, centered
at the foveation point, upsampled and summed with the previous levels, to obtain an image that matches the
psychophysical space-variant contrast sensitivity of the HVS (see Figure 1.5). Matching the falloff resolution of
the HVS, makes optimal use of compression resources, by discarding only the details that cannot be resolved by
the human eye, via manipulation of the exponential kernel standard deviation.

Inspired by this model we developed a real-time implementation that was used to study the impact of artificial
foveal vision mechanisms in gaze sequence modelling. The contribution is overviewed in chapter 2.

Figure 1.5: Filtering-based foveation (figure adapted from [68]).

1.2.3 Visual Attention and Spatial Selectivity as Resource Constrained Perception

Visual attention is the process through which organisms select a sub-part of the visual stimuli to be processed
in detail, while suppressing the rest, to obtain an efficient perception and cope with limited brain computational
resources.

Thefirst studies on visual attention date back to themid 19th century, pioneered byHermannVonHelmholtz [211]
and motivated by the willingness to understand how humans attend stimuli at the periphery of the visual field. By
designing a device called tachistoscope Helmholtz demonstrated independence between the ocular attention focus
(i.e. gaze location) and the peripheral attentional foci.

The first model for visual attention was proposed by Broadbent [28, 167], in his filter theory, which introduced
the structural bottleneck concept (a limitation on the amount of information that the brain can process), that suggests
that selective filters are necessary to decide which stimuli to process and which to ignore. Nowadays, the literature
on visual attention is vast, and covers a wide range of scientific fields, including cognitive neuroscience [35] and
computer science [25], playing an important role in computer vision and robotics applications [17]. Attention
modeling is not just a multidisciplinary but also a challenging topic under active research due to its importance in
controlling the regions (where) and the features or objects (what) the observer should attend to, over time (when).
Attention mechanisms can be either selective or divided.

Seminal studies from Hubel and Wiesel [96, 97] suggest that the RFs in the mammalian visual cortex increase
in size along the visual stream, covering wider areas of the visual field. In parallel, information is selectively
processed and the abstraction level of the representations selected along the visual pathways, increase in complexity
and in a hierarchical tree manner. Selective attention mechanisms deploy resources to single features or locations,
in a serial manner, while divided mechanisms prioritize resources to multiple features or locations, in a parallel
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manner.

Selective Attention Mechanisms

Selective visual attention mechanisms are the processes through which biological organisms select only part of the
visual signal to be processed while suppressing and ignoring the rest to obtain an efficient perception, and cope with
limited neural resources in the brain, allocated to vision. It covers all factors that influence information selection
mechanisms, whether they are driven by visual stimuli (bottom-up) or by task-related expectations (top-down) [23].
In particular, spatial attention has been often compared to a spotlight that selectively discards information outside a
subarea of the field-of-view. Themore sophisticated zoom lens model of [50] suggests that the size of the attentional
spotlight is dynamic and object magnification inversely proportional to the lens power (i.e. the spotlight size).

Other selective attention theories attempt to explain feature integration [204], based on [203] the idea of
determining which visual features are detected preattentively and how the visual system makes the preattentive
processing [204]. To identify the preattentive features, [204] made experiments to detect targets and measuring
performance response time and accuracy. In the response time model, viewers were asked to complete the task as
quickly as possible and the number of distractors on the display varied. To understand how preattentive processing
is done, Treisman proposed a model (see Figure 1.6). where each feature map registers the activity of a specific
visual feature channel like contrast or size. When an image is shown, features are encoded in parallel into their
respective maps. These maps only provide us the activity log of each feature. If the target has a unique feature, we
just have to check if there is activity on the respective feature map. However, for conjunction target, one feature
map is not enough. Thereby, a serial search must be done in order to find the target that has the correct combination
of features. In this case, a focus of attention is used to increase the time and effort spent.

Figure 1.6: Treisman’s feature integration model of early vision — detection of activity in individual feature maps
can be done in parallel, but to search for a combination of features, attention must be focused. Figure adapted
from [80].

Ungerleider and Mishkin [140] proposed that the visual pathways can be functionally distinguished between
ventral and dorsal, both originating in the primary visual area (V1) (see Figure 1.7). The ventral stream mediates
feature extraction and object recognition (what) whereas the dorsal stream is specialized in motion and location
selectivity (where).

Recognition Pathway Visual stimuli entering the ventral pathway is foveal and neurons within the ventral stream
respond selectively to visual features that are important for recognition tasks. Input is grouped in increasingly
complex and meaningful visual elements along the pathway. Stimuli selectivity ranges from low-level orientation
and color contrast selectivity in V1 and V2, to aggregated contour features and complex shapes in V4 ending in
higher-level object representations in the inferior temporal (IT) cortex, which comprise category-specific cells.
Visual representations are encoded in allocentric or object-centric reference frames. Neurons involved in low-level
detection of disparity, were mainly found in the visual cortex, in areas V1, V2 and V3 [208], whereas neurons
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involved in high-level disparity processing facilitate computation of view-point invariant object-specific attributes,
to ease recognition functions.

Localization Pathway Neural circuits in the dorsal pathways are tuned for spatial location and motion detection,
playing an important role in visuomotor coordination (e.g. in visually guided reaching and grasping). The dorsal
stream processes both foveal and peripheral stimulus, and builds a detailed spatial map of object locations and
orientations in the field of view. High-level disparity processing, or the reconstruction of 3D surface orientation
through the computation of disparity gradients, were found mainly in the Caudal Intraparietal Sulcus (CIP), in the
dorsal stream.

In [176], the authors studied how 3D shape orientation is visually encoded in the brain. In particular, they
developed analytical methods to study neural encoding of 3D surface orientation features in the CIP, in the dorsal
stream. By varying the orientation of a planar chess pattern positioned frontoparallel with respect to human
subjects, the authors concluded that neurons in the CIP jointly encode pan and tilt orientation of 3D surfaces, and
that the distribution of preferences over orientations is statistically close to uniform. Nevertheless, it is still unclear
if other areas in the brain exhibit unbiased activation selectivity. It is known, however, that areas such as V4 are
tuned for specific 3D orientations [84], and that 3D features for grasping and manipulation are context-dependent
in the CIP area.

At last, although different neuro computational models have been proposed in the computer vision literature for
orientation selectivity in 2D (orientation, motion), it is scarce on works that attempt to model space-variant biases
for stimuli selectivity in 3D for enhanced pose estimation, which is one of the contributions of the thesis described
in chapter 4.

Divided Attention Mechanisms

In divided attention, the focus of attention is split between multiple stimuli at a time. Computational resources
are limited by a cognitive budget, and therefore attention mechanisms demand the separation of resources among
different tasks. Early psychology studies from George A. Miller summarized evidence that the number of objects
an average subject can hold in short-term memory is around ±7, and is occasionally referred to as Miller’s law
[139], representing a constraint on the humans’s capacity for holding objects in short-term and working memory.

Multi-focal parallel deployment of attention has been mostly associated to Multiple Object Tracking (MOT)
that deals with the problem of maintaining the location and identity of multiple dynamic targets. Pylyshin and
Storm [164] were the first to study humans ability to track multiple targets. They designed an experiment in
which 10 identical and independent moving targets are exhibited in a multi-element display, and subjects asked
to track a smaller subset, pre-defined at the begining of the trial. During the trial, all the items move randomly
and independently, and in the end subjects are asked which targets were selected at the begining of the trial. They
concluded that, unlike other aspects of attention that require serial scanning of the visual scene (e.g. visual search),
MOT involves parallel constrained processing that sustains spatial resource allocation to locations of around four
moving targets simultaneously. This finding is consistent with themagical number four in short-termmemory theory
which in constrast to [139], claims that an average individual can keep 4 items in the visual short-term working
memory [39]. Yantis and Jones [222] refined this theory by showing with supported experimental evidence, that
the limited number of attended targets, is dynamic and temporally modulated by priorities that depend on the nature
of the task.

Other theories suggest that MOT is not constrained to a discrete limited number of indices, but is rather an
analog phenomenon [36], in which the limited size attentional spotlight is divided between multiple spatial regions,
and performance affected by bottom-up influences such as targets’ proximity (crowding) and perceptual limitations
including visual acuity and uncertainty on target’s locations [61].

Neurological findings using fMRI data state, however, that the location of moving objects is represented in
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the Anterior Parietal Lobe (AIP) and the human motion brain area (V5) [92]. In this thesis we developed a MOT
algorithm that emulates the resource limitations of the human brain, in the number of attended objects and area of
the field-of-view at each time instant; and the proposed approach is thorougly described in chapter 5.

 

Ventral pathway

V1

V4V4
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V3

V2
LGN
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Retina

CIP

AIP

V5 V2

Figure 1.7: Human Visual System Pathways
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1.2.4 Computational Models of Visual Attention

William James [105] defined two modes of attention orienting that facilitate the processing and selection of infor-
mation: stimuli-driven (exogenous) and task-driven (endogenous). The observer attention can be stimuli-driven,
triggered by scene characteristics like color or orientation (bottom-up factors) or by specific visual characteristics
that depend on the current task or goal (top-down factors). On the one hand, bottom-up processing refers to the
involuntary mechanisms responsible for directing resources to salient regions based on differences from a region
and its surround (e.g. contrast). In this case, the stimuli directly triggers our attention and, thus, it is a data-driven
process. The exogenous system is responsible for orienting our attention, in an involuntary and reflexive manner, to
salient locations, features or to where sudden changes occur. For instance, when a light source flashes, ones reaction
will be to reflexively direct the gaze to the source [191]. On the other hand, top-down processing corresponds to
allocating attention voluntarily to features, objects or spatial regions based on prior knowledge and the agent current
goals [163]. Thus, prior knowledge and the task at hand are used to influence attention in a goal-driven manner.
The endogenous mechanisms are voluntary and responsible for directing the attentional resources to predetermined
locations, features or objects. Orienting of attention results from taking into account task-specific internal goals,
for example, when searching for specific objects or counting howmany people will pass through a door. By guiding
our attention to task-relevant places we make the counting process more efficient. Computational models of visual
attention attempt to mimic the behavioral aspects of the HVS. The proposed models in the literature may belong
to three different branches namely bottom-up, top-down, or hybrid models combining the previously.

Bottom-up Bottom-up mechanisms are agnostic to the task at hand and have the purpose of extracting relevant
low-level features and finding the most salient regions where attention should be deployed.

The pioneering works of Itti [111, 102] combine multi-scale low-level features into a single saliency map. At
first, spatial feature maps are built by extracting prominent local features from different feature modalities (color,
intensity, orientation), using center-surround operations at different scales. Then, each map is normalized and
linearly combined in a single saliency map. Finally, the Winner Take All (WTA) principle is applied to select
the most salient locations to be sequentially analyzed, in order of decreasing conspicuity, using an Inhibition of
Return (IOR) mechanism [199].

Osberger’s approach [154] starts by performing image segmentation and then assigning perceptual importance
based on low-level image features - contrast, size, shape, color andmotion - and high-level features - location, people
and context. Osberger chose only 5 features to use in his algorithm and, per region, assigns an importance score to
each. Lastly, a combination of these features results in a map which represents important regions in an image. Kadir
et al. [108] identify salient regions based on entropy measures of image intensity while Gao [66] defined a salient
region considering how different this is from the surrounding background (center-surround mechanism [187]).

Top-down The top-down models take into account the observer’s prior knowledge, expectations and current
goals. The literature on visual attention suggests several sources of top-down influences [26] when the problem
is to decide which stimuli is important: attention can be drawn to specific object visual features in search models
to easily reach the goal or use the context or gist to constrain search locations. Whenever there is a search task,
top-down processes tend to dominate guidance and target-specific features are an essential source to draw attention
more effectively. Moreover, our attention is oriented to task-relevant features. This way, attentional resources are
not wasted and time and computational effort are saved for processing more pertinent/relevant parts of the visual
field. Under these conditions, one knows what is looking for (goal) and we know from a priori knowledge to
distinguish the features that we should be searching for. Thereby as defended by guided search theory [218] [219],
we are able to modulate the gains assigned to different features. If, for example, the task is to find a green object,
the gain assigned to green color will be higher.
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Hybrid Most visual attention approaches, model bottom-up and top-down processes independently. However,
there must be a trade-off between purely bottom-up models that typically miss to detect inconspicuous objects of
interest and top-down systems that confine object search according to prior expectations related to the task.

In recent years, a combination of bottom-up and top-down models, that we designate as hybrid models, have
been presented. For instance, Frintrop’s model [63] is compound by two saliency maps: one corresponding to
top-down influences and another related with bottom-up influences. The aggregated saliency map is computed as a
linear combination of those maps using a fixed weight which revealed to be a non-flexible approach. Rasolzadeh et
al. [170] presented a more flexible model where the combination of top-down and bottom-up saliency maps is done
dynamically, using entropy measures that provide information of how the linear combination of weights should
change over time. Conspicuity maps were created following Itti’s approach in [103] besides the extra parameters
used to weight the saliency map. They used a neural network to learn the bias of the top-down saliency map based
on information provided by contextual scene and the current task. These hybrid models suggest that the HVSs can
guide attention by applying top-down weights on bottom-up saliency maps allowing quicker target detections in
backgrounds full of distractors [170].

The authors in [224] proposed a probabilistic Bayesian framework for saliency learning using natural statistics
(SUN). The most salient features are the ones with the highest point-wise self-information from features prior
learned from a set of natural images, i.e., features that mostly differ from the learned average and are statistically
unexpected (bottom-up modulation), or have the highest mutual information when searching for a specified target
object (top-down modulation).

1.3 Objectives

The main goal of this dissertation is to study and to develop resource efficient computer vision algorithms for
autonomous robotics agents that are constrained by limited on-board resources and endowed with the ability of
manipulating the parameters of the visual sensor or algorithms to gracefully trade-off computational resources with
performance. By borrowing ideas from cognitive neuroscience and from neurophysiology literature, the present
dissertation intends to improve the state-of-the-art in resource-constrained active vision algorithms for robotics,
from the sensory level to higher-level cognitive functionalities. We focus on space-variant vision phenomena, not
only on the classical interpretation on the image plane (foveal vision and divided attention) but also at the level
of non-uniform representations of 3D space and orientation space. The main research goals can be enumerated as
follows:

Space-variant low-level vision To assess the performance advantages of low-level foveal vision sensing archi-
tectures when compared with conventional uniform Cartesian ones on recognition and visual search tasks. More
specifically, to study the characteristics of low-level foveal vision mechanisms in humans, with the goal of devel-
oping more efficient artificial foveal vision models inspired by non-uniform space-variant vision phenomena in
the early visual pathways of the HVS, while establishing formal relationships between computational savings and
performance accuracy on recognition, detection and 3D reconstruction tasks.

Space-variant orientation selectivity

• Space-variant selectivity models To investigate if high-level orientation selectivity mechanisms in the vi-
sual cortex can be used as priors for enhanced visual search and pose estimation in 3D. More specifically,
to develop algorithms inspired by 3D orientation selectivity mechanisms in the visual cortex, with the goal
of enhancing the state-of-the-art on NBV planning and object pose estimation approaches, under resource-
constrained settings. The developedmechanisms should allow incorporating environment and task-dependent
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priors, with the goal of improving the accuracy in visual search and pose estimation tasks.

• Space-variant divided attention: To develop resource-constrainedMOT algorithms, inspired by divided at-
tentionmechanisms andworkingmemory limitations in the brain, with the goal of reducing the computational
complexity of existing solutions in the literature.

1.4 Main Contributions

The main contributions of the dissertation illustrated in Figure 1.8, towards achieving the objectives enumerated
in 1.3 can be summarized as follows:

1. an implementation of a biologically plausible framework for object detection in 2D, that combines low-level
foveal vision with state-of-the-art Deep Convolutional Neural Networks (DCNNs).

2. a novel 3D orientation selectivitymechanism for the incorporation of orientation-specific priors, implemented
using GMM for egocentric object search and allocentric object pose estimation.

3. a probabilistic observational model for stereo systems that relies on the Unscented Transform in order to
propagate uncertainty in stereo matching, due to spatial quantization in the retina (represented with log-polar
distributed receptive fields), to the 3D Cartesian domain

4. a framework that poses the MOT problem as a resource-constrained Partially Observable Markov Decision
Process (POMDP), and keeps computations tractable by limiting the number of targets attended, at each time
instant, belonging to specific image subregions.

Throughout the rest of the thesis we overview in detail each contribution.
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Figure 1.8: Proposed Space-Variant Vision Mechanisms

1.5 Outline of the thesis

The remainder of this document is organized as follows. Chapter 2 presents a novel hybridmodel object classification
and localization framework that combines feedback and feed-forward mechanisms using Convolutional Neural
Networks (CNNs) and smooth artificial foveal vision, with the goal of studying the trade-off between performance
and accuracy obtained with different non-uniform foveal strategies. In chapter 3 we propose a novel visual search
framework for robotic systems provided with binocular foveal vision with the goal of studying the advantages of
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foveal mechanisms, sampled according to the log-polar transformation, when compared with conventional uniform
ones.

In chapter 4, we study the benefits of incorporating orientation selectivity priors in 6D pose estimation using
3D point cloud information. These benefits are addressed in the problem of detecting cylindrical shapes, that are
commonly found in household and industrial environments. Chapter 5 introduces a novel probabilistic framework
which poses the MOT problem as an on-line, resource-constrained decision making problem. The tracking
constraints are inspired by divided attention mechanisms in the brain. In particular, limitations in the number of
targets and size of the attentional focci. Finally, in chapter 6, we summarize our main contributions and suggest
ideas for future work.
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Chapter 2

Object Detection with Smooth Foveal
Vision

This chapter goal is to assess how foveal vision mechanisms affect the performance of state-of-the-art deep learning
approaches for object classification tasks, and investigate novel ways of compensating low visual spatial acuity with
artificial saccadic mechanisms. A set of experiments demonstrate that human-like foveal vision is more efficient and
compare its effectiveness on visual recognition tasks. More specifically, in this chapter we propose a biologically
inspired object classification and localization framework that combines DCNN with foveal vision. We study ways
of localizing objects in foveated images, where objects may lie in random locations in the visual field.

2.1 Introduction

In visual recognition tasks humans perform frequent saccadic movements in search of relevant items. This search
is not random, but guided by space elements that suggest the presence of certain features or objects. In this
direction we aim to develop methods that perform guided visual search tasks and not just random ones. The visual
information obtained during search tasks should suggest the presence of possible objects in the periphery of the
visual field that should guide the following saccades.

The work described in this chapter is inspired by the work of Cao et al. [34] that proposed to capture visual
attention through feedback DCNNs. The method called Look and Think Twice is utilized to locate an object, in a
top-down manner. He utilizes feedback CNNs pre-trained to classify objects from the ImageNet dataset comprising
more than 1000 classes, and performs two passages through the network. In the first feed-forward pass, the predicted
class labels are obtained, providing a notion of the most probable object classes that are presented in the input
image. Then, based on the top-ranked labels given by the network, the method extracts the saliency map of the
image with respect to each one of the top-5 class labels. In the second feed-forward pass, the original image is
cropped around the salient region, and re-classified, providing a new set of predicted class labels. The classification
results at the second pass are typically more accurate than at the first sight.

Similarly in spirit, we propose a biologically inspired hybrid attention model, that is capable of efficiently
recognizing and localizing objects in digital images, using human-like foveal vision. Our method also applies two
passes on the image, the first coarsely classifies which object is present in the field-of-view and the second localizes
where these objects may lie. However, we use a foveal image representation and, instead of cropping the salient
region, we simulate an actual saccade to redirect the fovea to the center. Our method also applies two passes on the
image, the first coarsely classifies which object is present in the field-of-view and the second localizes the region
where these objects may lie. However, we use a foveal image representation and, instead of cropping the salient
region, we simulate an actual saccade to redirect the fovea to the center.
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The main contributions of this work are the following: first, we establish a formal relationship between
performance and the different levels of information preserved by foveal sensing configurations. Then, we evaluate
the performance of our methodology for various well-known CNN architectures that are part of the state-of-the-art
in detection and localization of objects when combined with multi-resolution, human-inspired, foveal vision. The
remainder of this chapter is organized as follows: In section 2.2 we review themain concepts behind object detection
with an emphasis on deep learning approaches, in section 2.3 we describe in detail the proposed methodologies,
including a saliency-based selective attention mechanism for class-specific object localization. In section 2.4, we
quantitatively evaluate our contributions, and finally, in section 2.5, we wrap up with conclusions and draw ideas
for future work.

2.2 Theoretical Background

Object classification consists of assigning a single label to a given image. Localisation includes not only classifying
the subject of an image but also identifying its position, usually by means of a rectangular bounding box. Object
detection assumes the possibility that more than a single instance can exist in a single image, namely of different
classes. Thus the desired output consists of every instance’s class label and respective bounding box.

Classical methods for visual recognition tasks in the computer vision literature, extract key point features from
the image, using hand-crafted filters, namely Histogram of Gradients (HOG) [42] or SIFT [128]. During a training
phase, features are extracted from a set of different viewpoints, and stored in a database. In the online recognition
phase, extracted features are matched against the database, based on their Euclidean distance. The implementation
is typically a hash table and the Generalized Hough Transform (GHT) employed for fast and robust model matching.
One successful example in the literature is the Aggregated Channel Features (ACF) of [46] for pedestrian detection,
which employs a sliding window detection by classification approach, in which each window is binary classified as
“person” or “not a person”. Classification is performed using boosted decision trees, trained with labeled samples
of full body pedestrians, using the Adaboost algorithm [62]. The classification method relies on handcrafted
features that combine several image channels: LUV, Gradient Magnitude and HOGs channels aggregated in a
blockwise manner. For multi-scale detection, the method uses multi-channel pyramids. The computational burden
of constructing full pyramids is cleverly avoided by approximating in-between scales from interpolations of the
coarser scales. Finally, non-maximum suppression is applied to avoid multiple detections (only a few pixels apart)
that correspond to the same person (see Figure 2.1a).

Recently, Deep Neural Networks (DNN) which are potent machine learning tools for pattern recognition
inspired by neuronal network models in the brain, were developed to autonomously generate visual characteristic
hierarchies. These can implicitly learn highly non-linear and non-convex functions, in an end-to-end manner, and
hierarchical feature representations, optimized by training with large annotated datasets for recognizing complex
patterns, circumventing the need of explicit feature engineering and selection. Deep learning techniques have been
successful in different challenging visual tasks, not only on object detection [171, 124] (see Figure 2.1b), but also
on segmentation [78] and tracking [82, 141], having recently surpassed humans in some classification tasks [79]
(please, see Appendix A for technical details).

2.2.1 Object Detection with CNNs

The aforementioned network architectures show the progress in object classification tasks. However, we have not
yet addressed intuitively more challenging problems such as object detection.

Their proposed method entitled R-CNN [127] first extracts region proposals from the image, and then feeds
each region to a CNN with a similar architecture to that of AlexNet [116]. The output of the CNN is then evaluated
by a Support Vector Machine (SVM) classifier. Finally, the bounding boxes are tightened by resorting to a linear
regression model. This network produces the set of bounding boxes surrounding the objects of interest and the
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respective classification. The region proposals are obtained through selective search [209]. This method has a
major pitfall – it is very slow. This is due to requiring the training of three different models simultaneously, namely
the CNN to generate image features, the SVM classifier and the regression model to tighten the bounding boxes.
Moreover, each region proposal requires a forward pass of the neural network.

In 2015, the original author proposed Fast R-CNN [70] to address the above-mentioned issues. This network
has drastically faster performance and achieves higher detection quality. This is mainly due to two improvements:
the first leverages the fact that there is generally an overlap between proposed interest regions, for a given input
image. Thus, during the forward pass of the CNN it is possible to reduce the computational effort substantially by
using Region of Interest (RoI) Pooling (RoIPool). The high-level idea is to have several regions of interest sharing
a single forward pass of the network. Specifically, for each region proposal, we keep a section of the corresponding
feature map and scale it to a pre-defined size, with a max pool operation. Essentially this allows us to obtain fixed-
size feature maps for variable-size input rectangular sections. Thus, if an image section includes several region
proposals we can execute the forward pass of the network using a single feature map, which dramatically speeds up
training times. The second major improvement consists of integrating the three previously separated models into
a single network. A Softmax layer replaces the SVM classifier altogether and the bounding box coordinates are
calculated in parallel by a dedicated linear regression layer.

The progress of Fast R-CNN exposed the region proposal procedure as the bottleneck of the object detection
pipeline. A Region Proposal Network (RPN) is a fully convolutional neural network (i.e. every layer is convolu-
tional) [172] for simultaneously predicting objects’ bounding boxes as well as objectness score. The latter term
refers to a metric for evaluating the likelihood in the presence of an object of any class in a given image window.
Since the calculation of region proposals depends on features of the image computed during the forward pass
of the CNN, the authors merge RPN with Fast R-CNN into a single network, which was named Faster R-CNN.
This further optimises runtime while achieving state of the art performance in the PASCAL VOC 2007, 2012 and
Microsoft’s COCO [123] datasets. However, the method is still too computationally intensive to be used in real-time
applications, running at roughly 7 frames per second (FPS) in a high-end graphics card.

Our work is inspired by [34] which proposed to capture visual attention through feedback DCNN. Similarly

17



in spirit, we propose a biologically inspired hybrid attention model, that combines bottom-up and top-down
mechanisms and, additionally uses artificial human-like foveal vision, to efficiently locate and recognize objects in
foveal digital images. More specifically, our method is constituted by three steps: first, we perform a feed-forward
pass to obtain the predicted class labels. Second, a backward pass is made to create a saliency map that is used
to obtain object location proposals after applying a segmentation mask. Finally, a second feed-forward pass is
executed to re-classify the image with selective attention. With a non-uniform foveal visual sensor, the attention is
directed to the proposed locations using a foveal spotlight model, whereas for the uniform sensor, the attentional
spotlight is oriented in a covert manner to crop patches of the original image.

2.3 Methodologies

Our hybrid detection and localization methodology is depicted in Figure 2.3 and can be briefly outlined as follows:
in a first feed-forward pass, a set of object class proposals is computed (Section 2.3.2) and further analyzed via
top-down backward propagation to obtain proposals regarding the location of the object in the scene (Section 2.3.2).

More specifically, for a given input image I , we begin by computing a set of object class proposals by performing
a feed-forward pass. The probability scores for each class label (1000 in total) are collected by accessing the
network’s output softmax layer. Then, retaining our attention on the five highest predicted class labels, we compute
the saliency map for each one of the predicted classes (see Figure 2.4). Then, a top-down back-propagation pass is
performed to compute the score derivative of the specific class c. The computed gradient indicates which pixels
are more relevant for the class score [188]. In the remainder of this section, we describe in detail the components
of the proposed attentional framework.

2.3.1 Artificial Foveal Vision

Figure 2.2: A summary of the steps in the foveation system with four levels. The image G0 corresponds to the
original image and F0 to the foveated image.
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(a) f0 = 30 (b) f0 = 60 (c) f0 = 90

Figure 2.3: Example images obtained with our foveation system where fk = 2kf0 defines the size of the region
with highest acuity (the fovea), from a 227×227 uniform resolution image.

Our foveation system is based on themethod proposed in [31] for image compression (e.g. in encoding/decoding
applications) which, unlike themethods based on log-polar transformations, is extremely fast and easy to implement,
with demonstrated applicability in real-time image processing and pattern recognition tasks [16].

Our approach comprises four steps that go as follows: the first step consists on building a Gaussian scale-space
1 with increasing levels of blur, but similar resolution. The first level (level 0) contains the original imageG0 which
is then low-pass filtered with a Gaussian filter g1 (see 2.2 for the general form of this filter), yielding the image G1

at level 1.

More specifically, the image Gk can be obtained from the image G0 via convolution with 2D isotropic and
separable Gaussian filter kernels of the form

gk(u,v) = 1
2πσ2

k

e
−u

2+v2

2σ2
k with 0≤ k ≤K (2.1)

where σk = 2k−1σ1 for k ≥ 1, and σ0 is a small value (ε << 1) so that G0 ≈ I The Fourier transform of the
Gaussian filter kernels is given by

g̃k(ejwu ,ejwv ) = e−
σ2
k

2 (w2
u+w2

v) with 0≤ k ≤K (2.2)

where the wu and wv are, respectively, the horizontal and vertical spatial frequencies. Note that g̃0 ≈ 1.
Next, we compute a Laplacian scale-space from the difference between adjacent Gaussian levels. The Laplacian

scale-space comprises a set of error images where each level represents the difference between two levels of the
Gaussian scale-space (see Figure 2.2). Finally, exponential weighting kernels are multiplied by each level of the
Laplacian scale-space to emulate a smooth fovea. The exponential kernels are given by

Hk(u,v) = e
− (u−u0)2+(v−v0)2

2f2
k , 0≤ k ≤K (2.3)

where f0 represents the size of the kernel in the the level 0 of the scale-space, and fk = 2kf0 denotes the exponential
kernel standard deviation at the k-th level. These kernels are centered at a given fixation point (u0,v0) that defines
the focus of attention. Throughout the rest of this analysis, without loss of generality, we assume that u0 = v0 = 0.
Figure 2.2 exemplifies the proposed foveation model with four levels and Figure 2.3 depicts examples of resulting
foveated images.

1in the actual implementation we use a Gaussian pyramid that includes subsampling, but for the sake of the analysis we ignore that step,
since the subsampling is done according to Nyquist Sampling Theorem and, thus, has no significant influence in the information content of the
images.
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Information Reduction

The proposed foveal visual system is a result of a combination of low-pass Gaussian filtering and exponential spatial
weighting. To be possible to establish a relationship between signal information compression and task performance,
one must understand how the proposed foveation system reduces image information depending on the method’s
parameters (i.e. fovea and image size).

Low-pass Gaussian Filtering Let us define the original high-resolution image as I(u,v), with size2 (N +
1)× (N + 1) to which corresponds the discrete time Fourier Transform Ĩ(ejwu ,ejwv ). The Fourier transform
G̃k(ejwu ,ejwv ) of the filtered image Gk(u,v), at each level k is given by the convolution theorem as follows

G̃k(ejwu ,ejwv ) = Ĩ(ejwu ,ejwv )g̃k(ejwu ,ejwv ) (2.4)

Following the Parseval’s theorem that describes the energy of a signal, the signal energy of the original image
I(u,v) is given by

EI =
+N

2∑
u=−N2

+N
2∑

v=−N2

|I(u,v)|2 = 1
4π2

∫ π

−π

∫ π

−π
|Ĩ(ejwu ,ejwv )|2dwudwv. (2.5)

The Laplacian at each image level k is given by

Lk =Gk −Gk+1 (2.6)

The Fourier transform of Lk is given by

L̃k = G̃k − G̃k+1

= Ĩ(ejwu ,ejwv )
(
g̃k(ejwu ,ejwv )− g̃k+1(ejwu ,ejwv )

)
(2.7)

According to Parseval’s theorem, and since g̃k and g̃k+1 the energy of Lk is given by

ELk = 1
4π2

∫ π

−π

∫ π

−π
|Ĩ(ejwu ,ejwv )|2|g̃k(ejwu ,ejwv )− g̃k+1(ejwu ,ejwv )|2dwudwv with 0< k ≤K (2.8)

Assuming that Ĩ(ejwu ,ejwv ) has energy equally distributed across all frequencies of the spectrum with magnitude
M2, where M is the amplitude of Ĩ(ejwu ,ejwv ), in the extreme case, has a flat spectrum of magnitude M , the
energy ELk can be expressed as
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2without loss of generality let us assume N even
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Let us consider the following change of variables τk = tσk, τk+1 = tσk+1 and τ = t

√
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k

+σ2
k+1

2 . Knowing that
the Gaussion error function is given by

erf(z) = 2√
π
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Equation (2.9) becomes
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Since Lk is space invariant and stationary and the total energy can be equaly divided by all pixels, the expected
value of the energy per pixel (power), is given by

PLk =
ELk
N2 = 1

N2

∑
u

∑
v

L2
k(u,v) (2.12)

Then, by scaling each pixel value by the corresponding exponential kernel, we obtain the foveal image Fk(u,v),
at each level

Fk(u,v) = Lk(u,v)Hk(u,v) (2.13)

Assuming that the Laplacian levels Lk are uncorrelated, the energy EFk can be approximated by

EFk =
∑
u

∑
v

|Fk(u,v)|2 =
∑
u

∑
v

PLkH
2
k(u,v) (2.14)

and the total energy of F becomes

EF =
∑
k

EFk (2.15)

and the power of F is given by

PF = EF
N2 (2.16)

Assuming binary coding of pixel values, and according to Shannon-Hartley theorem [186], the maximum
transmission rate (channel capacity) of signal is given by

C =W log2

(
1 + P

Q

)
(2.17)

whereW is the bandwidth of the signal, P is the power of the signal, and Q is the power of the quantization noise.
In our case,W is equal to 1

2 cycles per pixel, so that the original image is not aliased. The power of quantization
noise, assuming 1 bit quantization with truncation is 1

3 , then the information of F can be approximated by

ZF = 1
2 log2 (1 + 3PF ) [bits] (2.18)
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2.3.2 Weakly Supervised Object Localization

In this subsection we describe in detail our top-down object localization via feedback saliency extraction.

Image-Specific Class Saliency Extraction

As opposed to Itti’s [103] that processes the image with different filters to generate specific feature maps, Cao [34]
proposed a way to compute a saliency map, in a top-down manner, given an image I and a class c. The class score
of an object class c in an image I , Sc(I), is the output of the neural network for class c. An approximation of the
neural network class score with the first-order Taylor expansion [34][188] in the neighborhood of I can be done as
follows

Sc(I)≥G>c I+ b (2.19)

where b is the bias of the model and Gc the gradient of Sc with respect to I:

Gc = ∂Sc
∂I

. (2.20)

Accordingly, the saliency map is computed for a class c by calculating the score derivative of that specific class
employing a back-propagation pass. In order to get the saliency value for each pixel (u,v) and since the images
used are multi-channel (RGB - three color channels), we rearrange the elements of the vector Gc by taking the
maximum magnitude of it over all color channels. This method for saliency map computation is extremely simple
and fast since only a back propagation pass is necessary. Simonyan et al. [188] shows that the magnitude of the
gradient Gc expresses which pixels contribute more to the class score. Consequently, one should expect that these
pixels provide us with the localization of the object pertaining to that class, in the image.

Bounding Box Object Localization

Considering Simonyan’s findings [188], the class saliency maps hold the object localization of the correspondent
class in a given image. Surprisingly and despite being trained on image labels only, the saliency maps can be used
on localization tasks. Our object localization method based on saliency maps goes as follow. Given an image I and
the corresponding class saliency mapMc, a segmentation mask is computed by selecting the pixels with saliency
higher than a certain threshold, th, and set the rest of the pixels to zero.
Considering the stain of points resulting from the segmentation mask, for a given threshold, we are able to define
a bounding box covering all the non-zero saliency pixels, obtaining a guess of the localization of the object (see
Figure 2.4).

22



Figure 2.4: Representation of the saliency map and the corresponding bounding box for each of the top-5 predicted
class labels of a bee eater image of the ILSVRC 2012 data set. The rectangles represent the bounding boxes that
cover all non-zero saliency pixels resultant from a segmentation mask with th= 0.75.

Figure 2.5: Schematic of our iterative refinement model of object detection. First a foveated resized image is
loaded into the network to predict the top-5 class labels through a feed-forward pass. Then for each class label,
we compute each bounding box with a top-down back-propagation according to the selected threshold. We apply a
second foveation centered in each bounding box found and predict again the top 5 class labels with a feed-forward.
Given this 25 labels with confidences associated we sort them in descending order, not choosing repeated labels
and pick as final solution the top-5. Iteratively we do a re-localization according to those labels with a feedback
pass. In our work we only considered two iterations. The red rectangles represent the bounding boxes that contain
all pixels above the specified threshold, in this case the threshold was 0.75. The red circles represent the focused
area simulating the fovea, that was set to f0 = 60 in this case. The ground truth label of the input image is go-kart.

Given the center of the computed bounding box, we foveate again the original image in the center of the
bounding box and iteratively repeat the previous steps (see Figure 2.5).
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2.4 Experiments and Results

In this section, we begin by numerically quantifying the proposed non-uniform foveation mechanism information
compression dependence on the fovea size. Then, we quantitatively assess the classification and localization
performance obtained for the proposed feed-forward and feed-backward passes for various state-of-the-art CNN
architectures (section 2.4.2).

2.4.1 Information Compression
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Figure 2.6: Information and energy ratios in function of f0 for the proposed non-uniform foveal vision mechanism.

In order to quantitatively assess the performance of our methodology, it is important to first quantify the
amount of information preserved by the proposed non-uniform foveation mechanism to further understand the
fovea size influence in task performance. Through a formal mathematical analysis of the information compression
(see section 2.3.1) we can represent the relationship between fovea size (f0), image size (N ) and information
compression. In our experiments σ1 was set to 1, the original image resolution was set to N ×N = 227× 227
(the size of the considered CNN input layers) and the size of the fovea was varied in the interval f0 = [0.1;227] .
As depicted in Figure 2.6, the information and gain ratios grow monotonically and exhibit a logarithmic behaviour
for f0 ∈ [1;100]. Beyond f0 ≈ 100, the compression becomes residual (information ration of 94%), saturating at
around f0 ≈ 120. Hence, from this point our foveation mechanism becomes unnecessary since resulting images
contain practically the same information as the original uniform-resolution ones.

2.4.2 Attentional Framework Evaluation

In this chapter, our main goal was to develop a single CNN capable of performing, recognition and localization
tasks, taking into account both bottom-up and top-down mechanisms of selective visual attention and non-uniform
foveal vision. In order to quantitatively assess the performance of the proposed framework we used the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 data set, which comprises a total of 50K test images
with objects conveniently located in the images center. 3

Furthermore, we tested the performance of our methods with different pre-trained CNNs (ConvNet) models
which are publicly and readily available at Caffe Model Zoo [106], namely, CaffeNet [117], GoogLeNet [197]

3source: http://image-net.org/challenges/LSVRC/2012/ [as seen on June, 2017]
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and VGGNet [189]. As mentioned in Section 2.3.2, a feed-forward pass is executed originating a vector with the
probability distribution of the class label scores. These class labels are used to compute the classification error
which compares the ground truth class label provided in ILSVRC with the predicted class labels. Usually, two
error rates are commonly used: the top-1 and the top-5. The former serves to verify if the predicted class label with
the highest score is equal to the ground truth label. For the latter, we verify if the ground truth label is in the set of
the five highest predicted class labels. For a given image, the object location was considered correct if at least one
of the five predicted bounding boxes overlapped over 50% with the ground truth bounding box. This evaluation
criterion [179] consists on the intersection over union (IoU) between the computed and the ground truth bounding
box.

Classification Performance

The classification performance for the various CNN architectures combined with the proposed foveal sensing
mechanism are depicted in Figure 2.7a. The CaffeNet pre-trained model which presents the shallower architecture
had the worst classification performance. The main reason is that the GoogLeNet and VGG models use smaller
convolutional filters and deeper networks enhance the distinction between similar and nearby objects. Regarding
the impact of non-uniform foveal vision, a common tendency can be seen for all three pre-trained models. The
classification error saturates at approximately f0 = 70. This result is corroborated by the evolution of the information
and energy ratio curves, depicted in Figure 2.6, since after 50% ratio the energy ratio slope reduces significantly. This
means that on average and for this particular dataset, half of the information contained in uniform resolution images
is irrelevant for correct classification. Small size foveas exhibit extremely high error rates, which corresponds to a
very small region characterized by having high acuity. This is due to the fact that images that make up the ILSVRC
data set contain objects that occupy most of the image area, although the image has a region with high-resolution,
it may be small and not suffice to give an idea of the object in the image, which leads to poor classification
performance.

Localization Performance

The localization is considered correct if at least one of the five predicted bounding boxes for an image overlaps over
50% with the ground truth bounding box, otherwise the bounding box is considered wrong. The evaluation metric
consists on the intersection over union between the proposed and the ground truth bounding box.

As can be seen in Figure 2.7b, for thresholds smaller than 0.4, the localization error remains consistent and
stable at around 60%. From this point, the evolution of the error presents the form of a valley where the best
localization results were obtained for thresholds between 0.65 and 0.7. Overall, GoogLeNet presents the best
localization performance. We hypothesize that this is mostly due to CaffeNet and VGG models featuring two
fully-connected layers of 4096 dimensions that may jeopardize the spatial distinction of image characteristics.
Furthermore, GoogLeNet is deeper than the aforementioned models and hence can learn discriminant features at
higher levels of abstraction.

Sequential Fixations

Our final goal was to assess if there was a significant gain in performance for sequential fixations. In order to
understand how the foveation point of the first feed-forward pass influences the classification error, we made it vary
along a 8×8 grid. The threshold applied to the segmentation mask was fixed to θ= 0.7, the size of the fovea varied
between 0 and 180 and the classification error was calculated for each position over all considered f0 ∈ {0,100}.
In Figure 2.8 we compare the classification error between first and second feed-forward passes as a function of
the fixation point. Since the objects of the data set are mainly centered, the classification error is smaller in the
center, as expected. However, from the first to the second pass the accuracy improves, independently of the initial
foveation point, demonstrating the advantages of having a system capable of manipulating the fixation point.
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Figure 2.7: Classification and localization performance for various network architectures and sensing configurations.
Left column: Dashed lines correspond to top-1 error and the solid ones correspond to top-5 error. Righ column:
Dashed lines correspond to f0 = 80 and solid lines to f0 = 100.
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Figure 2.8: Classification performance in function of initial foveation point (u0,v0)where dark and bright represent
better and worse performance. The classification error was calculated over all f0 and fixing θ = 0.7

In order to better understand how the foveation size affects the classification error both for centered and non-
centered foveation points we fixed θ = 0.7 and varied f0 between 0 and 180. In Figure 2.9 we verify that the
accuracy improvement between the first and the second feed-forward classification is not significant when the
foveation is centered, corresponding to a maximum of 10%. However, when the foveation is non-centered (average
of all foveation positions) the maximum accuracy gain between the two passes is 43%.

To understand the effect of the threshold applied on the segmentation mask, on the localization performance,
we fixed the fovea size to f0 = 70 and varied the threshold in the interval θ ∈ {0, . . . ,1.0}. As observed in Figure
2.10(a) there is neither gain between backward passes nor differences between foveating in the center or elsewhere
in the image. Localization tasks depend mostly on the low frequency of the image signal, thus, when we foveate an
image we only remove high frequencies outside the fovea, however the location of the object remains detectable.
For mask thresholds smaller than 0.4, the localization error remains stable. From this point, the evolution of the
error presents the form of a valley obtaining the lowest localization error for thresholds of 0.65 and 0.7. This shows
that exists a sensitive trade-off for the threshold selection, for accurate bounding box selection. For this reason, we
chose θ = 0.7 to lead to minimum errors, when varying the fovea size as illustrated in Figure 2.10(b).

2.5 Conclusions

In this work we proposed a biologically inspired framework for object classification and localization that combines
human-like artificial foveal visionwith bottom-up and top-down attentionalmechanisms, usingDCNNarchitectures.
Through the analysis performed in our tests, we conclude that deeper neural networks present better performance
when it comes to classification.

The main experimental goals of this study were: first, to assess the performance impact of mimicking non-
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Figure 2.9: Classification Performance in function of the fovea size f0 with θ = 0.7. The baseline was computed
with f0 = 227 (the resolution of the input image) to simulate an input image without any blur corresponding to
minimum error
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Figure 2.10: Localization Performance: (a) in function of the threshold applied to the segmentation mask with a
fixed fovea size f0 = 70; (b) in function of the fovea size f0 where the threshold applied to the segmentation mask
was set to θ = 0.7 since it results in a minimum localization error.

uniform, human like, foveal vision mechanisms in recognition and localization tasks, when combined with state-
of-the-art CNN architectures. Second, to verify if a simple saliency-based fixation point control mechanism would
improve classification performance across fixations. We concluded that from a certain information compression
level, proportional to the fovea size, the performance in classification task saturates and that sequential fixations
using a saliency based saccadic mechanism improves task performance.

Furthermore, the results obtained for non-uniform foveal vision are promising. From a given fovea size (f0), the
performance in classification tasks saturates. On the one hand, when using a methodology that replicates human
visual behavior, it is necessary to use successive foveations (saccades). This is because in real scenarios, objects can
be located anywhere in the image, and the results show that the classification performance improves significantly
from the first to the second feed-forward passes while localization does not. Location only depends on lower image
frequencies and smoothing them with our foveation mechanism does not significantly affect performance. We
emphasize that the goal of this work was studying the impact of information reduction via space-variant blurring
of the original image, on classification and localization tasks using a state-of-the-art CNN classifier.

Also, the proposed approach does not directly affect computational performance, since the number of pixels
in the input images is fixed. Alternatively, one could leverage recently proposed retina-DCNNs [155] that are
capable of learning and inference in cortical domain, using more compact and computationally efficient log-polar
representations.

Although the proposed approach does not provide any computational complexity gains, when compared with
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methods based on log-polar transforms [155] we demonstrated that filtering-based foveation mechanisms have
similar performance to conventional uniform resolution methods, when combined with saccadic mechanisms, and
thus may be beneficial for image transmission in low-bandwidth communication channels, by reducing the amount
of transmitted data, when on-board computational resources are low..

Finally, the current system is memoryless and performance would benefit of integrating task-related evidence
accross saccades using probabilistic fusion approaches.

The main published contributions of our work are twofold:

1. The first published in P.I, lies in the evaluation of the performances obtained with different non-uniform
blurring. Wewere able to establish a formal relationship between classification and localization performance,
and the different levels of information preserved by each of the sensing configurations, for different CNN
architectures. A set of experiments with objects centered in the fovea, demonstrate that it is not necessary to
store and transmit all the information present on high-resolution images since, beyond a certain amount of
preserved information, the performance in classification and localization task saturates.

2. Second, we demonstrate that when mimicking the human visual foveation mechanism with the proposed
model, saccades are necessary to improve both recognition and localization performance, since we demon-
strate in P.II that for non-centered objects, the gain in classification performance between iterations is
significantly improved.

Future work The current limitations of the proposed methodologies are twofold. First, while the input images
of the DCNN network are non-uniform foveal images, the network was trained with conventional uniform ones. In
the future, we intend to enhance the pipeline by considering the following ideas:

• Foveal ImageNet: fine-tuning the network with foveated versions of the ImageNet dataset [118]. One
should expect to see large improvements, in particular for close objects whose overall characteristics become
unperceivable as the level of detail decays very rapidly towards the periphery.

• Mimicking human gaze patterns: our current gaze control mechanism is based on the simple idea of priori-
tizing ocular attention to task-dependent salient regions of the visual stimuli, without information integration
across fixations. Another research line in the literature frames saccadic eye movement modeling as a learning
problem, and use either human demonstrated gaze patterns gathered with eye tracking technologies [149]
or reinforcement learning techniques to learn task-specific gaze control policies (e.g. finding a specific
object) [141]. In the future we intend to learn from human demonstrations, to sequentially fixate image
sequences, given the task of finding a pre-specified object.
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Chapter 3

3D Visual Search with Foveal Vision and
Space-variant Spatial Representations
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(a) RGB-D - Cartesian (b) RGB-D - Foveal (c) Uncertainty (d) Uncertainty

Figure 3.1: A snapshot of the RGB-D point clouds and associated probabilistic measures obtained with the proposed
Cartesian and foveal stereo sensor models. Blue and purple colors correspond to higher precision measurements.

The goal of this chapter is to study and to develop biologically inspired 3D stereo vision mechanisms for 3D
object reconstruction tasks. More specifically, we study how information provided by foveated images sampled
according to the log-polar transformation can be integrated over time in order to build accurate world representations
and accomplish visual search tasks in an efficient manner. We focus on a specific visual information modality –
depth – and on how to store it in a flexible memory structure. We propose a probabilistic observational model for
a stereo system that relies on the Unscented Transform in order to propagate uncertainty in stereo matching, due
to spatial quantization in the retina, to the 3D Cartesian domain. Probabilistic depth measurements are integrated
in a novel Sensory Ego-Sphere whose topology can be biased with foveal-like distributions, according to the
autonomous agent short-term tasks and goals. Furthermore, we investigate an Upper Confidence Bound (UCB)
algorithm for the task of simultaneously finding the closest object to the observer (visual search) and learning
the surrounding environment 3D map (mapping). The performance of task execution is assessed both with a
foveated log-polar sensor and a classical uniform one. The advantage of foveal vision and customized ego-sphere
representations are illustrated in a series of experiments with a realistic simulator. The idea of using human like
stereo vision is novel within the robotics community, and beneficial when combined with saccadic mechanisms,
with demonstrated improved 3D reconstruction accuracy.

3.1 Introduction

In this work we propose a probabilistic selective attentional framework for artificial systems provided with binocular
foveal vision. Our framework relies on visual information and associated confidence measures (see Figure 3.1)
that are used to autonomously drive the agent’s gaze direction during search tasks. Our contributions are the
following. First, we model the stereo reconstruction uncertainty that arises as a result of spatial quantization
phenomena inherent in the retina. Our approach considers Gaussian Receptive Fields1 (RFs) distributed in space
following two different tessellations: (i) a classical uniform (Cartesian) arrangement and (ii) a log-polar one that
mimics the human retina. The RFs in the latter present a space-variant spatial distribution and support radius [157].
The Unscented Transform (UT) [107] is used to propagate belief from the 2D retina domain to 3D via stereo
reconstruction. When compared with previous approaches that also assume Gaussian quantization noise and that
rely on first order linearizations to approximate the non-linear transformations involved in 3D reconstruction [115],
our method based on the UT is more precise and hence improves 3D estimation quality. Second, the probabilistic
sensory measurements are integrated in a novel versatile randomized SES whose topology can be biased according
to the autonomous agent short-term tasks and goals. The proposed SES helps achieving the task, by allocating the
limited resources more densely to important surrounding regions according to the task. Finally, a decision-making
process, framed within a multi-armed bandit setting [10], acts as a mediating cognitive attentional process that
seeks to maximize expected task-related rewards. The proposed decision making algorithm relies on statistical

1Receptive fields are the fundamental visual processing units. Each corresponds to a specific region in the retina (image) and is represented
by the average value of the photo-receptors (pixels) within it (e.g. average color). For more details, we refer the interested reader to [49].
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measures to decide where to look next by selecting the most promising regions to attend. We investigate a simple
UCB algorithm [3] for the task of finding the closest object to the observer. The UCB algorithm controls the
exploration-exploitation trade-off typical of decision under uncertainty algorithms: to accomplish the task it is
necessary to explore the world, but too much exploration will delay the task execution.

The remainder of this chapter is organized as follows. In section 3.2 we conduct a brief overview of the
attentional frameworks available in the literature with a strong emphasis on probabilistic-based methodologies. In
section 3.3.2, we outline the proposed sensor observation model and the uncertainty propagation model from the
retinal domain to 3D. In section 3.3.3, we introduce a novel biologically inspired short-termmemory structure which
is egocentric, compact, and convenient for fast and efficient information update and retrieval. In section 3.3.4,
we endow our system with a decision-making process that actively drives the agent’s gaze direction, through
sequential saccadic eye movements. Finally, in section 3.4, we experimentally validate our model and compare
a conventional Cartesian camera against a space-variant vision system. The obtained results demonstrate that a
wider field of view at the cost of less peripheral resolution is advantageous in visual-search tasks. We show that
with our methodologies different gaze patterns emerge depending on the sensor characteristics and decisions on
confidence bounds. Furthermore, we demonstrate that spatial memory biases, reflecting prior knowledge about the
world structure and the task at hand, allow large performance improvements in visual search tasks.

3.2 Related Work

Probabilistic based active vision requires not only the characterization of the sensory-motor uncertainties, but also
the definition of memory structures that facilitate continuous recall and temporal fusion of probabilistic sensory
data. Therefore, we organize the present section in two distinct parts. At first we overview the state-of-the-art in
active vision with an emphasis on probabilistic models of overt attention. Afterward, we analyse the memory data
structures proposed in the literature suitable for applications related to attention.

3.2.1 Active Vision

It has been shown that visual search tasks are computationally prohibitive due to their combinatorial nature [207]
and that the attentional mechanisms are responsible to drive the perceptual search problems tractable by deciding
which stimuli to enter the cognitive apparatus through efficient resource allocation. In this work we focus on 3D
active sensing which is tightly coupled to the concept of overt attention. One goal of overt active vision mechanisms
is to direct the vision apparatus towards locations such that:

• the information about the surrounding environment is increased over time (exploration);

• the desired region is centered in the images of the stereoscopic system (e.g. eyes) and thus observed by the
retinal zone of maximum visual acuity (exploitation).

Next-Best-View Planning

One approach to the active vision problem is to sequentially compute the NBV in 3D space, according to some
criteria related to task performance (e.g. reduce entropy in 3D reconstruction) and then, move the sensor towards
that location. For example, [27] proposes a simple NBV algorithm which greedily targets the gaze of a humanoid
robot at points of maximum entropy along a trajectory. In the context of active 3D reconstruction [44], existing NBV
approaches belong to one of two main categories: frontier-based and information-driven planning. Frontier-based
planners [221, 47] guide the robot to boundaries between unknown and free space, which implicitly promotes
exploration. Information-driven methods back-project probabilistic volumetric information on candidate views via
ray casting, and select the views that maximize expected information gains [44]. Methods differ in the way they
define information gain. The approach leads to interleaved gazing and path planning that converges to a high
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confidence free-space robot trajectory plan. The authors of [114] propose to use the average depth information
theoretic entropy over all voxels traversed via ray casting. Instead of just considering the entropy, [100] proposes a
set of extensions to [114]’s information gain definition, including the incorporation of visibility probability as well
as the likelihood of seeing new parts of the object.

More sophisticated NBV planning models are framed within probabilistic paradigms that account both for
sensori-motor uncertainties as well as the world intrinsic stochasticity and unpredictability. A common idea behind
these models is that statistical objectives are the fundamental driving elements behind visual attention. From a
Bayesian standpoint, attention seeks to actively infer the future actions that maximize the expected information gain
given the spatio-temporal context. Therefore informational gain is itself the inner goal behind attention [64]. The
probabilistic-based saliency model proposed in [101] suggests that surprising events or stimuli attract attention.
The Kullback-Leibler (KL) divergence between prior and posterior beliefs is by convention used as a measure of
surprise. However, surprise models are purely exogenous by nature since they react to observed stimuli. Active
vision models based on optimal stochastic control principles pose the action selection problem within Bayes risk
minimization framework, and differ on the chosen policies. On one hand, infomax algorithms [33] seek tomaximize
the expected accumulated future informational gain in fixed time-horizon. On the other hand greedy MAP policies
consider only a one-step look ahead time window [148] and self-knowledge about the retinal acuity map to decide
the best location to attend. A recent work on active sensing accounted also for behavioral costs [4], such as the
energy and temporal costs incurred in choosing a given motor action.

Despite the demonstrated applicability of the previously mentioned approaches on target search tasks in monoc-
ular images, there are no works studying depth cues inferred by stereo vision, and the influence of foveal vision
in the search strategies on binocular setups. The stereo reconstruction problem using foveated images has been
addressed in the literature, namely in [20], where the authors have shown that it is possible to compute dense
disparity maps from log-polar images. Nevertheless, with foveal images, stereo matching accuracy degrades in
the image periphery. This motivates the need for modeling depth uncertainty in stereo reconstruction, due to
space-variant discretization in foveated images and use this uncertainty to decide where to look next.

In thisworkwe analise the ability of active foveal stereo systems to accuratelymap the environment and efficiently
execute visual search tasks. Some visual tasks are more naturally represented in 3D, for instance the search for
nearby objects, as illustrated in this work. Therefore, the main contribution of this work is the formulation of visual
search tasks in 3D and the development of novel methods for uncertainty propagation and spatial representations
required for this purpose. We show that adequate retinal topologies and 3D spatial representations play a role in
the speed of execution and accuracy on localization of targets in 3D search tasks while keeping the computational
resources under control.

3.2.2 Spatial Memory Data Structures

Among many different domains, cognition is focused on abilities to deal with spatial knowledge, namely with
relations between objects in space and has been widely studied in psychology and neuroscience [190]. These
abilities require remembering and encoding spatial information of everyday object locations, in different reference
coordinate frames, depending on the task [38].

In decision-making problems involving perception, autonomous agents rely on spatial memory structures to
continuously store and query probabilistic information in a robust and efficient manner. Spatial memory, thus plays
a key role and is a core component of any cognitive architecture and may belong to one of two main categories:
allocentric or egocentric, depending on the used frames of reference [72].

Allocentric Representations

Allocentric representations specify relative locations between objects in landmark or object centered reference
frames, independent of the agent location. The most common allocentric representations for spatial mapping
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available in the literature are occupancy grids. Such maps represent the environment as uniform blocks of
cells, each cell having a binary state (either occupied, or free). They are popular in the robotics community
since they simplify collision checking and path planning, access is fast and memory use can be made efficient
through octree-based geometric modeling [133], in particular, the 3D voxel-based OctoMap structure of [90] (see
Figure 3.2a). Elevation maps [83] is a compact 2.5D probabilistic representation that encodes continuous heights
on 2D grids [136], offering a convenient representation for legged locomotion [76]. However, they are unsuitable
for complex environments where the agent may have to navigate between objects at distinct heights (e.g. a ladder,
a structure with several levels or floors). To overcome this limitation, multi-level Surface maps [205] have been
proposed. These consider a list of surface patches for each grid cell. Still, their main setback resides on the
impossibility of modeling free space (see Figure 3.2b). Recently, the idea of using continuous representations in
mapping has also attracted great attention from the robotics community [152]. For example, the authors in [151]
proposed the use of Gaussian Proccesses (GPs) to encode interdependence between cells and thus correlations
between structures in the environment. While continuous mapping techniques based on GPs offer a convenient
framework for exploration via Bayesian inference they lack in computational efficiency, since they rely on Bayesian
Optimization (BO) techniques [185] in high-dimensional spaces. Recent work of [104] sets on the promising idea
of considering fewer observations for close to real-time inference. Still, GPs require intensive sampling during
collision checking for motion planners, which could be prohibitive for real-time applications.

(a) OcTree

µ

σ

(b) Multi-level Height Maps

Figure 3.2: Allocentric Representations

Egocentric Representations

Egocentric or viewer centric reference frames encode locations with respect to the agent body coordinates, and
are appropriate for planning and performing motor actions within the peripersonal space, namely for visuomotor
reasoning and coordination during reaching and manipulation of objects.

Egocentric representations [161] of space are convenient for cognitive attention modeling and multi-modal
sensory data fusion as a short-term memory, and have been extensively used in robotics [59, 178]. From a practical
stand point, egocentric spherical representations offer several advantages when compared to typical Cartesian
representations such as regular occupancy grids, point clouds or OcTrees [89]. Spherical representations based
on ego-centric polar coordinate systems, are typically more compact (low-memory requirements), by projecting
the surrounding 3D world on a 2D spherical manifold, and avoid the requirement of computationally expensive
ray-casting techniques to deal with visibility issues. However, these advantages come at the cost of expensive
updates every time the observing agent moves.

Different representations and data structures for spherical egocentric representations have been proposed in
the literature. Typically, 2D array type structures based on spherical coordinate systems are used to represent
the spherical surface [178] (see Figure 3.3a). These can be accessed in O (1) time hence being appropriate for
real-time applications. Yet, they are non-isotropic and therefore data is not stored uniformly over the surface
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(i.e. the resolution is higher near the poles) (see Figure 3.3b). On the other hand, the geodesic dome type data
structure [161] is isotropic and can better approximate 3D shape. However, indexing becomes less trivial and less
efficient due to its non-regular topology. To tackle this issue [86] proposed a hierarchical geodesic structure that
can significantly speed-up access times. In another work [53] the authors proposed an egocentric log-spherical
grid named Bayesian Volumetric map, that was proven suitable for probabilistic multi-modal sensor fusion. Other
less uniform spherical polyhedra include icosahedral tessellations of the sphere (see Figure 3.3c). All of the afore-
mentioned forms are highly regular and structured, limiting their flexibility to implement arbitrary tessellations.

(a) 2D Array (b) Geodesic Dome (c) Truncated Icosahedron

Figure 3.3: Egocentric Representations

Nevertheless, none of the previous allocentric and egocentric representations can be easily reconfigurable and is
suitable for the incorporation of task-dependent priors to enhance or impair storage and recall of information [41].
This fact motivates the need for developing more sophisticated and versatile spatial memory structures that should
facilitate giving more importance to particular regions or orientations, encoded in either allocentric or egocentric
frames of reference, depending on the nature of the task. For instance, while crossing a street people prioritize their
visual sensorimotor resources to antipodal lateral directions (car detection), while when climbing a stair, people
prioritize resources to bottom directions to detect the steps.

Typical tessellations of the sphere include quasi-uniform icosahedral tessellations, less uniform spherical
polyhedra or non-uniform latitude/longitude grids. All these forms are highly regular and structured, which limits
their flexibility to implement arbitrary shapes. The method proposed in this work is based on projecting in the
sphere randomly generated points according to a mixture of 3D Gaussian distributed points with an arbitrary
number of components, focal points (means) and dispersions (covariances), representing sampled directions. This
generates an irregular grid but we can define more freely areas on the sphere with varying degrees of density and
dispersion. Our sampling scheme is easy to implement and allows for the creation of task-biased sensory ego-
spheres. As opposed to previously proposed deterministic counterparts, our SES relies on an easy to implement
random sampling scheme that allows for fast creation and real-time access of arbitrary re-configurable topologies.

3.3 Methodologies

In the proposed problem (see Figure 3.4), the observer’s goal is to select the oculomotor actions that maximize
task related rewards. On one hand we rely on a recursive Bayesian filter that sequentially accumulates sensory
inputs and extracts valuable information about the agent and the environment state, given noisy observations. On
the other hand, a decision-making algorithm predicts the best future locations to gather information, according to
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some statistical or behavioral criteria.

3.3.1 System Overview

The environment structure, i.e. 3D map, is a projection of the world structure W ⊂ R3 in the agent’s egocentric
reference frame E , internally represented by a discrete set of points, each associated to a specific observation
direction (see section 2.2). Let us denote the set of environment sample points by

Xt = {xit ∈ R3, i= 1, ...,Nx} (3.1)

where Nx is the total number of considered observation directions. These points are modeled as Gaussian
random variables, initialized with mean and covariance selected according to a priori knowledge about the type of
environment in which the robot operates. The egocentric reference frame E is head-centered, has three translational
degrees of freedom and fixed orientation with respect to the world frame of reference (see Figure 3.5).

p(Zt|Xt)

Utp(Xt|Z1:t)

Figure 3.4: General diagram describing the proposed probabilistic binocular active vision framework.

In order to execute visual search tasks, the proposed cognitive architecture is equipped with two sensory-motor
modalities:

• proprioception - provided by odometric and oculocephalic joint encoders;

• stereo vision - provided by a stereo camera system.

The observer is allowed to change its state, i.e. the observation view point, through base and oculocephalic
movements (see Figure 3.1). At each time instant, the proprioceptive modality reports the robot base location and
its internal kinematic state. More specifically, the robot position and orientation P ∈ R6 in the inertial frame of
referenceW , the agent’s eyes horizontal vergence (θvt ∈ R) and the head pan and tilt joint angles (θpt ,θtt ∈ R). Let
us denote the joint set of odometric and oculocephalic measured/controlled joint positions by

Ut = {Pt,θvt ,θ
p
t ,θ

t
t} (3.2)

We assume that the proprioceptive modality provides noise-free observations. In other words, we consider that the
measurement errors are negligible with respect to the visual sensor errors and therefore that the robot location and
kinematics, and thus, the transformations between the various reference frames involved in our system (see Figure
3.5), can be deterministically determined from Ut. Furthermore, we assume that the environmentW is static for
the duration of the search task and is not affected by the robot motor actions Ut (the base location and the posture
of the robot’s head). The preceding assumptions yield the following probabilistic simplification

p(Xt|W,Ut) = p(Xt|ERt,WW + Ett,W) = p(Xt) (3.3)
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where ERt,W ∈R3×3 and Ett,W ∈R3×1 are an orthogonal rotation matrix and a translation vector, respectively,
obtained by combining deterministic proprioceptive joint angle measurements with known forward kinematics.
The stereo sensor computes a list of 3D point estimates Zt defined in a cyclopean reference frame C, with origin at
the midpoint of the stereo baseline, from noisy point correspondences observed in the left and right retinal domain.
Let us denote the set of 3D points by

Zt = {zot ∈ R3,o= 1, ...,Nv,t} (3.4)

where Nv,t is the total number of observed independent and identically distributed (i.i.d.) measurements by the
stereo sensor at time t. The observation model described in section 3.3.2 explains how measurements Zt are
generated according to the environment 3D structure, egocentric projection Xt:

Zt ∼ p(Zt|Xt) (3.5)

B W

xw

yw

zw

E

C

N
θtt

θ
p
t

Cl

yl

θlt

fixation point

Il
Cr

yr

θrt

Ir

Figure 3.5: The various coordinate systems used by our system (best seen in color): The inertial world frame (W)
in which the environment is represented; the base frame (B) which is rigidly attached to the mobile robot base,
and permits determining the robot pose in the world, given the odometric readings; the neck frame (N ) which
allows representing pan and tilt cephalic movements; the egocentric frame (E), which is fixed and defined during
initialization time, in which spatial memory is defined and sensor fusion performed; the cyclopean frame (C) in
which stereo observations are represented; the convergent, non-parallel pair of camera frames (Cl,Cr), in which
monocular images are obtained.

3.3.2 Stereo Sensor Model

In stereo vision, a general stereo matching algorithm computes a set of one-to-one point correspondences between
two images [200]. However the precision of the measurements is finite and constrained by the fundamental image-
sensing units size and spacing. In order to model reconstruction uncertainty due to the limited sensing precision at
the retinal level we consider a probabilistic observation model for our stereoscopic sensor [160].
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Nonparallel Stereo System

Let us suppose that our stereoscopic system is composed by a convergent, non-parallel pair of pinhole cameras
Cl,Cr, allowed to rotate around their y optical-axis by θl = θv

2 and θr =−θ
v

2 , respectively, and are separated by a
fixed baseline b. Furthermore, let us assume that the stereo system is calibrated, and thus, the intrinsic Kl, Kr and
extrinsic Ry (θv), T(b), camera parameters are always known.

Gaussian Stereoscopic Retinal Observation Model

Let us consider that the cameras image planes Il,Ir ⊂ R2 comprise a finite set of RFs denoted by Sl,Sr ⊂ R2.
We assume that each RF has a non-uniform stimuli response, modeled by a two dimensional Gaussian profile [157],
with the support regions depicted in Figure 3.6. The mean µ = (µx,µy) defines the coordinates of the center of
the RF in the retinal plane, where response is maximal, and the standard deviation σ represents its support radius.

Thus, observing a correspondence at a given RF pair si ∈ Sl×Sr follows a conditional Gaussian distribution:

si ∼N (µsi ,Σsi) (3.6)

where

µsi =


µl,ix

µl,iy

µr,ix

µr,iy

 , Σsi = diag
(
σl,i

2
,σl,i

2
,σr,i

2
,σr,i

2) (3.7)

(a) Cartesian. (b) Log-polar.

Figure 3.6: Gaussian receptive fields with support plotted for 3 standard deviations

Stereoscopic Reconstruction

Given a point pair correspondence si found in the retinal domain, we determine the corresponding 3D position in
the cyclopean reference frame via stereo analysis. Since point pair correspondences are inherently corrupted with
precision errors, their projection lines may no longer satisfy the epipolar constraint and therefore not intersect in
3D space. Hence, one should rely on a triangulation method, denoted by τ , in order to compute a 3D Cartesian
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point estimate ẑ from a point correspondence in image coordinates si:

τ : Il×Ir −→ R3 (3.8)

Due to its simplicity and relatively low computational complexity, we use the mid-point method (for details please
refer to [213]).

Uncertainty propagation via the Unscented Transform

Since the transformation (3.8) involved in 3D reconstruction is non-linear, we employ the Unscented transform [107]
to compute the propagated mean and covariance up to the third order (by Taylor’s expansion). This is achieved by
approximating a multivariate Gaussian distributed variable with a set of meaningful and deterministically chosen
set of samples (usually named sigma points). For each receptive field pair si ∈ Sl×Sr we associate a set of sigma
points

U i = {X (i,j) ∈ I ×I ′ : j = 0, ...,2Ns} (3.9)

whereNs is the number of sigma points. The sigma points are pre-computed according to the following expressions

X (i,0) =µsi (3.10)

X (i,j) =µsi +
(√

(Ns+λ)Σsi
)
j
for j = 1, ...,Ns (3.11)

X (i,j) =µsi −
(√

(Ns+λ)Σsi
)
j
for j =Ns+ 1, ...,2Ns (3.12)

where (·)j denotes the j-th row of a matrix. Furthermore, we consider a set of weights

W = {w(j)
c ,w

(j)
m ∈ R : j = 0, ...,2Ns} (3.13)

which are computed as follows

w
(0)
m = λ

L+λ
(3.14)

w
(0)
c = λ

L+λ
+
(
1−α2 +β

)
(3.15)

w
(j)
m =w(j)

c = 1
2(L+λ) for j = 1, ...,2Ns (3.16)

where λ = α2(L+K)−L is a scaling factor, α controls the spread of the sigma points around the mean, K
is a secondary scaling parameter, and β is used to incorporate prior knowledge about the distribution of s (for
Gaussian distributions β = 2 is optimal). Then, for a given point correspondence in retinal domain, we first apply
the non-linear transformation τ to the sigma points associated with the corresponding RF pair, Z(i,j) = τ(X (i,j)),
and then re-estimate the mean and covariance in the 3D domain, according to

µ̂zi =
2Ns∑
j=0

w
(j)
m Z(i,j) (3.17)

Σ̂zi =
2Ns∑
j=0

w
(j)
c

(
Z(i,j)− µ̂zi

)(
Z(i,j)− µ̂zi

)T
(3.18)

The sigma points in retinal domain are computed offline and stored in a linear array in order to speed up on-line
uncertainty propagation.
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3.3.3 Randomized Sensory Ego-Sphere

In the proposed framework the SES plays an intermediate role between the stereo sensor and the decision planning
process. Probabilistic data arriving from the sensory stream is continuously fused and integrated over time in the
SES, by means of recursive Bayesian filtering. At the same time the available information is used to predict and
redirect gaze to the best expected location, in the light of new observations.

Definition

The proposed SES is composed of a set of cells P lying on a unit sphere, oriented according to the world reference
frame, and a map that assigns to each cell the 3D coordinates of the point observed by the robot at that orientation

M : P −→ R3 (3.19)

The proposed cell grid structure is analogous to a Voronoi diagram defined on a spherical 2-manifold S2 in 3D
space, as depicted in Figure 3.7. In practice the proposed SES comprises a set of 3D Cartesian sample points with
unit norm and centered in the observer egocentric reference frame E , aligned with the world reference frame

P = {pi ∈ R3, i, ...,Nx : ‖pi‖= 1} (3.20)

which are i.i.d. and randomly generated from a three dimensional GMM distribution

pi = vi

‖vi‖ where vi ∼ p(θ) =
M∑
m=1

φmN
(
µmp ,Σm

p

)
(3.21)

where M is the number of mixture components and where each pi ∈ P represents an orientation, allowing for
efficient data-alignment with observed 3D points, using inner products (equation 3.23). Each SES cell, represented
by pi ∈ P , stores one environment sample point estimate xi ∈X .

The statistics of the GMM distribution are chosen according to the observer goals. On one hand, in order to
produce uniform and unbiased memory structures, the surface should be sampled from a rotationally symmetric
distribution, i.e., from a single Gaussian with zero mean and variance equal in all dimensions [147] (Figure 3.7d).
On the other hand, non-uniform, task-dependent memory biasing can be achieved by manipulating the GMM
parameters, as can be seen in Figure 3.7. The proposed randomized representation offers a convenient mechanism
for encoding task and world prior knowledge. Memory biasing should lead to more efficient, flexible and adaptable
memory allocation and to more effective behaviours during task execution.

Hypothetical topologies that may be suitable for different tasks are depicted in Figure 3.7: If for instance the
task is to look for people, one should privilege areas at the equator rather than the poles. In this case, varying
the Gaussian mean is not sufficient. One could sample from a single-component zero mean GMM with larger
variance in the horizontal directions (Figure 3.7e). Each SES cell (represented by the point pi ∈ P) stores one
environment sample point estimate xi ∈ X . While crossing a street, the observer should prioritize attentional
resources to antipodal, lateral regions (Figure 3.7f). This can be achieved by sampling from a single-component
Gaussian with a larger variance in the lateral component, or from a two-component GMM with opposite lateral
means. More complex tasks can benefit from irregular topologies with multiple foci, obtained from GMMs with
many components (Figure 3.7g).

Data Alignment

For each observed world point estimate provided by our stereo observation model at time t, zot , we need to find
the associated memory cell in order to perform probabilistic data fusion. The association process goes as follows.
First, the observed random variable is transformed from the cyclopean to the egocentric reference frame, according
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(a) 2D array. (b) Geodesic dome. (c) Truncated icosahedron. (d) Unbiased.

(e) Equator-biased. (M = 1). (f) Antipodal. (M ≥ 1). (g) Non-trivial (M > 1).

Figure 3.7: Different Sensory Ego-Spheres, resulting from different tessellations: top row illustrates highly regular,
deterministic structures. The bottom row depicts our novel randomized structure for different task-dependent biases.

to the linear transformation Z′ : R3 −→ R3 of the form

Z′ = ERCZ+ EtC (3.22)

where ERC ∈ R3×3 is an orthogonal rotation matrix and EtC ∈ R3×1 a translation vector, obtained by combining
proprioceptive joint angle measurements with known forward kinematics.

Second, for each observation z′ot we find the associated memory cell co, which is the one that minimizes the
Euclidean distance, according to the mapping functionM, here defined as follows

co =M
(
µ̂z′ot

)
= argmin

j
< pj ,

µ̂z′ot
‖µ̂z′ot ‖

> (3.23)

After finding the associated cell we update its respective estimate according to equation (3.33). Moreover, we
assume that the transformed observations are conditionally independent, given Xt, and thus

p(Z′t|Xt) =
Nv∏
o=1

p(z′ot |xc
o

t ) (3.24)

Finally, the resulting probabilistic observation model p(z′ot |xc
o

t ) follows a Gaussian distribution

z′ot |xc
o

t ∼N
(
µ̂z′ot ,Σ̂z′ot

)
(3.25)

with statistics computed as follows

µ̂z′ot = ERCµ̂zot + EtC (3.26)

Σ̂z′ot = ERCΣ̂zotR
T
C (3.27)
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Probabilistic Sensor Fusion

In the sensor fusion perspective, the goal of the optimal Bayesian estimator is to determine the posterior proba-
bility distribution over X , given the accumulated visual sensory observations and the robot proprioceptive state
measurements up to time t ∈N. Sequential Bayesian filtering allows us to accumulate sensor inputs and update the
likelihood of X , at each time instant.

The posterior probability distribution at time t, of the set of internal environment sample points Xt given the
current and past visual and proprioceptive observations, is given by

p(Xt|Z1:t,U1:t) = p(Xt|Zt,Z1:t−1,U1:t) (3.28)

Furthermore, since we assume that the proprioceptive measurements are deterministic, then

p(Z′t|Zt,Ut) = p(ERCZt+ EtC) = p(Z′t) (3.29)

and equation (3.28) becomes

p(Xt|Z′1:t) = p(Xt|Z′t,Z′1:t−1) (3.30)

Since the world is static, at each iteration, the solution to the filter involves only one update step: in themeasurement
update step observations are used to update the current belief by applying the Bayes rule to the right hand side of
equation (3.30) and using the observation model (3.5) we get

p(Xt|Z′1:t) = ηp(Zt|X,Z′1:t−1)p(X|Z′1:t−1) (3.31)

where η is a normalizing constant. Since the current observations Z′t are conditionally independent of the past
observations Z′t:t−1 given the current environment projection in the egocentric frame, Xt, the previous equation
becomes

p(Xt|Z′1:t) = ηp(Z′t|Xt)p(Xt|Z′1:t−1) (3.32)

The a posteriori is independently determined for each cell, according to

p(xc
o

t |z′
o
1:t) = ηp(z′ot |xc

o

t )p(xc
o

t |z′
o
1:t−1) (3.33)

and follows a Gaussian distribution, with statistics given by

Σ̂xcot
=
(

Σ̂−1
xcot−1

+ Σ̂−1
z′ot

)−1
(3.34)

µ̂xcot
= Σ̂xcot

(
Σ̂−1

xcot−1
µ̂xcot−1

+ Σ̂−1
z′ot
µ̂z′ot

)
(3.35)

Each point estimate is initialized with large mean and covariance to reflect the high uncertainty due to non-existent
world prior knowledge.

3.3.4 Active Vision: Sequential Stochastic Decision Making

In the proposed framework, the decision making is responsible for sensory-motor coordination. Based on
probabilistic information stored in memory, the decision process selects where to look next and the associated
desired motor commands. Like other approaches that use uncertainty and task-related rewards to guide decision
making we frame our approach within the reinforcement learning domain [196]. As such, the agent selects the
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action that maximizes expected task related cumulative rewards.
The underlying framework for decision making under uncertainty, which assumes non-deterministic noisy

state observations, is known as POMDPs. In our particular problem formulation we have continuous states and
observations, as well as large discrete action spaces (i.e. each SES cell represents an action), which renders
intractable the computation of optimal policies. Even approximate methods for solving POMDPs would take
considerable time (e.g. hours or days). Moreover, if the environment changes the observer needs to recompute the
full policy. Hence, state-of-the-art methods for solving POMDPs are unsuitable for large problems, which require
real-time on-line decision making. Therefore, rather than framing our problem as a POMDP and relying on the
computation of Bayesian optimal policies which are typically intractable for large state spaces, we rely on simpler
and less costly tools from Bayesian Optimization, for reinforcement learning. More concretely, from Multi-Armed
Bandit (MAB) [174].

Saccadic Planning as a Multi-armed bandit Problem

In MAB problems, at each time instant the agent selects an action and collects a reward. The rewards are drawn
from a posterior probability distribution whose statistics are continuously updated over time. Typically, the goal of
the agent is to maximize the sum of collected rewards or, equivalently, minimize cumulative regret. In this work
the selected task was to find the closest object to the observer as fast (i.e. with minimum fixations) and precisely
(i.e. with minimum uncertainty) as possible. Within the MAB framework, this is commonly referred to as the
best-arm identification problem [9]. In our particular setting, each world sample point represented in memory is
a bandit whose statistics are not known in advance. The agent chooses actions, i.e. a fixation point, from the set
of alternatives a ∈ {1, ...,Nx} and collects payoffs from a reward distribution r(xa). Considering the task at hand,
we define the reward obtained when choosing a given action a as a function of the distance to the ego-frame

r(xa) =−‖xa‖2 (3.36)

Since xa follows a Gaussian distribution, then we consider a first order approximation for the reward distribution
such that

r(xa)∼N (µr(xa),σr(xa)) (3.37)

where µr(xa) and σr(xa) are computed as follows

µr(xa) = E [−‖xa‖2] =−‖µ̂xa‖2 (3.38)

σr(xa) = Var [−‖xa‖2]≈ JT Σ̂xaJ (3.39)

where E [·] and Var [·] denote the expectation and variance operators, respectively, and J is a Jacobian matrix,
defined as follows

J = ∂r(x)
∂x

∣∣∣∣
µ̂xa

=
[
xµ̂xa

‖µ̂xa‖2
yµ̂xa

‖µ̂xa‖2
zµ̂xa

‖µ̂xa‖2

]T
(3.40)

Acquisition Functions

In the Bayesian optimization framework, acquisition functions are responsible for defining the strategy when
searching for the optimum. The literature on acquisition functions used to guide stochastic optimization is vast and
includes many different heuristics that deal with the exploration-exploitation dilemma. On one hand, Probability
of Improvement (PI) [119] methods select the action that maximizes the probability of improving the current
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instantaneous reward. On the other hand, Expected Improvement (EI) [142] seeks for the action that maximizes
the expected improvement magnitude. More recently, the idea of using UCBs [120] to deal with exploration-
exploitation trade-offs inmachine learning problems has proven successful in robotics applications [126], exhibiting
increased preference for explorationwhen compared to the former approaches. Since the best performing acquisition
function is highly dependent on the objective at hand, the authors in [88] propose combining single acquisition
functions in mixed portfolio strategies.

In this work we compared three different action selection strategies:

1. a simple yet powerful UCB algorithm named "Sequential Design for Optimization" [40] that is easy to
implement and elegantly handles the trade-off between exploration (minimizing uncertainty) and exploitation
(maximizing rewards) that emerges in decision making under uncertainty [3]. At each time instant, the
observer selects the alternative with maximal upper confidence bound on the expected reward, given the past
observations, according to the following expression

at = argmax
a∈{1,...,Nx}

µr(xat ) +ασr(xat ) (3.41)

where α is a user selected parameter that controls the width of the confidence bound and thus the exploration
behaviour during task execution.

2. The probability of improvement, which at each time instant, selects the action with highest probability of
leading to an improvement upon the current best (x∗t ), as follows

at = argmax
a∈{1,...,Nx}

P(r(xat )> r(x∗t ))

(3.42)

3. The expected improvement, which tries to maximize the expected magnitude of the improvement upon the
so far best, according to

at = argmax
a∈{1,...,Nx}

E(r(xat )− r(x∗t )) (3.43)

(3.44)

Finally, the motor-action Ut corresponding to xatt is computed from known forward kinematics.

3.4 Experiments and Results

In order to demonstrate the applicability of the proposed framework and compare the performance of different visual
sensor topologies, we performed a set of experiments in simulation. In all of the experiments we constrained the
number of RFs - and hence the computational resources - to be always fixed and equal in the Cartesian and log-polar
cases (please refer to [157] for mathematical details on the log-polar distribution). We consideredNrf = 200×200
images in both cases.

The remainder of this section is organized as follows. We begin by characterizing and assessing the ability of
the different sensors to map the environment with low uncertainty. Then, we proceed to evaluating the performance
of the complete active task-oriented stereo sensing framework, in a realistic simulated environment.
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3.4.1 Sensor Characterization

To characterize the proposed sensor model, we assessed the average uncertainty in 3D reconstruction as a function
of depth, vergence angle and sensor type in the following manner: First, we generated a set of fronto-parallel planar
surfaces, with varying distance d ∈ [0,1] from the binocular system. Depth is constant for all points lying within
the same planar-surface. Then, for each planar surface we varied the vergence angle, in the interval θv ∈

[
0, π2

]
and computed the corresponding 3D reconstructions with associated uncertainties. Note that in this experiment we
are not characterizing a full environment but just single snapshots taken by the observer. Furthermore, we assumed
that an object can be approximated by a planar surface occupying the observing agent field of view. This allows for
comparing both sensors, under the same conditions.

Let us consider the log-determinant of the inverse covariancematrix (also known as precisionmatrix) to quantify
pointwise information:

I (Σ) =− log(|Σ|) (3.45)

Here we rely on the average information gathered with a single depth image to assess the quality of the sensors,
which is defined as folllows

TI = 1
Nrf

Nrf∑
i=1

I
(
Σ̂i
)

(3.46)

As depicted in Figure 3.8, the foveal outperforms the Cartesian sensor, in terms of gathered information which
is maximal if the fixation point coincides with the planar surface. Furthermore, the Foveal sensor information
reliability decays monotonically with increasing depth, and is more dependent on the vergence angle than on
the Cartesian one.. These results are directly in line and support previous findings [216] that suggest that foveal
distributions facilitate stereo vision in convergent systems. In foveated systems gaze acts like a focus of attention,
which when directed to the point of interest, improves dramatically the depth resolution around the fixation point.
Instead, optical vergence movements in Cartesian systems provide no gains in 3D resolution, resulting only in
unnecessary energetic costs.
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Figure 3.8: Numerical characterization of the sensor model for the Cartesian (dashed lines) and the Log-polar (solid
lines) sensors, as a function of distance and vergence. (a) Varying distance for diferent vergence angle curves. (b)
Varying vergence for different planar distance curves.

3.4.2 Active Vision

With the view of investigating how our methodology performs in simultaneous target searching and mapping, we
performed a set of experiments in the Gazebo simulator with the Vizzy robot [144] head (see Figure 3.9). For the
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(a) (b)

Figure 3.9: The simulation scenario created for evaluating the proposed active vision framework. The task to
perform was to find the nearest object from the robot ego frame. The evaluation scenario contained a non-trivial
global optimum which could only be attended if enough exploration was promoted. (a) The simulation scenario
created for evaluating the proposed active vision framework. (b) The global optimum was placed at a non-trivial
location which could only be attended with either sufficient exploration or a wide field of view.

sake of the experiments simplicity, the robot was fixed to the ground floor and hence the motion was restricted to
oculocephalic movements. However, note that our methodology is also applicable to scenarios in which the robot
platform can move. This would imply updating the 3D point estimates stored in memory taking into account the
uncertainty in robot base movements (odometry), and implementing a z-buffer technique to determine which point
to store in each cell, due to possible occlusions occurring after translations.

We created a static scenario with multiple objects (coke cans) displaced at arbitrary depths, in which a set
of objects (coke cans) were strategically displaced over a highly textured background, in order to facilitate stereo
reconstruction, which is highly dependent on the environment texture richness. The Gazebo simulator generates
pinhole camera images, with uniform resolution. Hence, for the log-polar sensor, we generated foveated images
from uniform resolution images by first applying the log-polar transformation and then converting back to Cartesian
domain via the inverse transformation. This operation has the effect of blurring the image in the periphery while
maintaining high resolution in the center. Finally, disparity maps were computed using a state-of-the-art dense
stereo matching algorithm named Semi-Global Block Matching (SGBM) [87].

As previously pointed out, the task at hand was to find the nearest world point to the observer. Points on the
ground floor are easily excluded by thresholding the zw coordinate. In all experiments we fixed the number of
memory sample points toNx = 20000. In each experiment we let the observer performT = 50 saccadicmovements,
with initial (t = 1) pan, tilt and vergence angles equal to zero. Each experiment was repeated 20 times in order
to average out variability in different real-time simulations. Non-repeatability was influenced by multiple factors
including separate threads for Gazebo’s physics and sensor generation, as well as stochastic delays involved in
higher level inter-process communication. Furthermore, in order to deal with motion blur and visuo-proprioceptive
delays that arise during saccadic eye movements, we used the visual suppression mechanism proposed in [11],
which temporarily blinds the observer during saccades.

Evaluation Metrics

In order to quantitatively assess the performance of our methodologies we considered the following evaluation
metrics:

• the gap reduction metric [93] which is a quality measure that evaluates how effectively the algorithm is at
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finding the global maximum:

gt = µr(x+)−µr(x̂a1
1 )

µr(x∗)−µr(x̂a1
1 ) (3.47)

where µr(x∗) is the true global maximum

µr(x∗) = max
i
µr(xi) (3.48)

and µr(x+) is the best obtained reward up to time t

µr(x+) = max
t
µr(x̂att ) (3.49)

The gap is defined between 0, meaning no improvement over the initial fixation, and 1 for the optimal
improvement. In order to measure the speed for task completion and thus performance efficiency we also
assess the average gap reduction per saccade which implicitly represents the average progress towards the
optimum per saccade:

G/S = 1
T

T∑
t=1

gt (3.50)

• the cumulative regret which is a standard metric, here suitable to evaluate the convergence behaviour during
the search for the optimum:

Rt = µr(x∗)−
1
t

t∑
k=1

µr(x̂akk ) (3.51)

Notice that herewe are not interested inminimizing the total regret, i.e. the incurred losses during exploration,
but instead on finding the global optimum.When normalized by the number of saccades it represents the
temporal cumulative regret gain per saccade:

R/S = 1
T

T∑
t=1

Rt (3.52)

• the average global gathered information which is a quality performance measure of the global knowledge
gathered about the world up to time t (exploratory behaviour):

GIt = 1
Nx

Nx∑
i=1

I
(
Σ̂i
t

)
(3.53)

When normalized by the number of saccades it represents the temporal average global information gain per
saccade:

GI/S = 1
T

T∑
t=1

GIt (3.54)

• the nearest object gathered information, which is a target reconstruction quality measure that benefits high
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precision (i.e. low uncertainty) in target reconstruction:

LIt = I
(
Σ̂i
t

)
∀i:‖µ̂x∗

t
−µ̂xi

t
‖<RNN (3.55)

where Σ̂∗t is the true known global maximum estimated covariance at time t and RNN is a user-selected
nearest-neighbor radius. We considered RNN = 0.1m in all the experiments described below.

When normalized by the number of saccades it represents the temporal average local information gain per
saccade:

LI/S = 1
T

T∑
t=1

LIt (3.56)

Foveal vs Cartesian

Our first aim was to compare the behaviour of the foveal against the Cartesian sensor during task execution, for
different upper confidence bound parameter values α ∈ {0,0.01,1,100,∞} and different sensing field of views
fov ∈ {90ž,135ž}. The sensor field of views were selected such that in one of the cases (fov = 90ž) the global
optimum was not in the field of view of the observer at t= 1. The SES cells were generated from a unbiased, zero
mean Gaussian distribution at initialization (see Table 3.1).

A global analysis of the results depicted in Figure 3.11 shows that the foveal sensor outperforms the Cartesian
both in terms of the quality of the gathered information, as well as the task execution speed and effectiveness, as
demonstrated by the gap reduction plot. We hypothesize that the best performance of the foveal sensor is due to
the fact that the uncertainty in the periphery implicitly promotes more peripheral (lateral) exploration whereas the
Cartesian promotes longitudinal (depth) search. This statement is clearly supported by the cumulative regret plots
which exhibit lower losses for the Cartesian sensor, and thus a greedier behaviour. Moreover, for the foveal sensor
case, a larger FOV allows the agent to attend the target more quickly at the cost of reduced information gain. A
wider FOV, despite having less peripheral resolution, is advantageous in the speed of execution during visual search
tasks.

In Figure 3.11a we assess the performance of our method for the different acquisition functions referred in
section 3.3.4. On one hand, in the UCB case, a larger confidence bound parameter α increases exploration and, on
average, improves performance in the particular task of finding the nearest object. However, too much exploration
incurs in large cumulative regrets, and thus in high energy costs due to large oculocephalic movements incurred
when attending objects further from the observer. Nevertheless, purely exploratory behaviours (α =∞) lead to
better results in the average reconstruction quality as shown by the information metrics, since on average more
memory sample locations are fixated. On the other hand, the tested improvement-based policies (PI and EI) seek
to improve on the current best and have the advantage of being parameter free. For our particular setting, and
similarly to UCB with α= 0, PI tends to be excessively greedy and get trapped in local minima. On the contrary, EI
deals well with the exploration-exploitation trade-off, as demonstrated by the average gap reduction and cumulative
regret per saccade metrics due to the fact that it implicitly accounts for the improvement magnitude of each saccadic
action, which allows for choosing distant, with high variance, fixation points.

An in-depth analysis of the temporal evolution metrics (Figure 3.11b) for a fixed α = 100, allows us to assess
convergence times for a fairly exploratory behaviour. The temporal evolution of the gap reduction metric shows
that, in all cases, no more than 20 saccades are necessary to perform the task of finding the nearest object for both
sensor types. Howbeit, as indicated by the accumulated regret temporal evolution, convergence is only achieved
after no less then 30 saccades. We further note that, after convergence, the cumulative regret is on average higher
for the foveal case, as a consequence of having a more exploratory nature. Other than the Cartesian sensor with a
FOV of 135ž, all cases were successful on average in the task of finding the nearest object and did not get trapped
in local minima. We believe that the poor performance of the Cartesian sensor, in this particular setting, is a result
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Bias µp Σp

x y z xx yy zz
unbiased 0 0 0 0.5 0.5 0.5
top 0 0 1 0.5 0.5 0.5
down 0 0 -1 0.5 0.5 0.5
target 0.61 0.43 -0.67 0.05 0.05 0.05

Table 3.1: Memory biasing parameters.

of prioritizing points that are further from sensor, and not necessarily in the periphery, where the optimum lies.
The gathered information exhibits an asymptotically convergence behaviour and has a faster transient time for the
Cartesian sensor, again, supporting the idea that the Cartesian sensor is more greedy, myopic, and thus more prone
to get trapped in local minima. We further note that the average cumulative regret is on average lower for the
Cartesian case, again, as a consequence of having a more exploratory nature.

Memory Biases

(a) Uniform. (b) Top bias. (c) Bottom bias. (d) Target bias.

Figure 3.10: SES sample point distribution according to different topological memory biases and kinematic
constraints.

Here our goal was to investigate the effect of different spatial memory topological biases imposed from a priori
knowledge regarding the environment structure and the task at hand. At the present, experiments were performed
with a foveal sensor with fov = 135◦, and for the UCB with α = 100. We intended to demonstrate that a careful
displacement of the memory patches considering prior knowledge about the surrounding environment and the task
at hand should incur in large performance gains. Therefore, we considered four different prior belief distributions
with parameters defined in Table 3.1 and resulting SES topologies depicted in Figure 3.10:

• a "neutral" (unbiased) distribution reflecting the absence of a priori knowledge about the target location.

• a "bad" (top) prior belief distribution based on the wrong assumption that the object is above the observer.

• a "good" (down) prior belief distribution that assumes that the object is on the ground

• a "very good" (target) prior belief considering the true location of the target object.

In the Figure 3.12 we can observe that the "target" case had the best performance and the "top" the worst
performance according to all metrics. In fact, as demonstrated by the gap reduction and the accumulated regret
time evolution plots, the method was successful in finding the global optimum and converged with only 2 saccades.
All the other cases were still able to find the optimum with less than 10 saccades and converge to the optimum
within the first 20 saccades.

As expected, the gathered average local information metric indicates that increasing the memory sample density
around the object of interest improves the target’s gathered information. These experiments demonstrate that
translating task-related priors in clever memory allocation to regions of higher reward yields faster task execution
times and faster convergence rates. This results in an increase in the time spent on reducing the uncertainty on
the target and therefore in improved reconstruction quality. On the one hand, promoting higher resolution in
spatial memory to the most important surrounding regions according to the task, allows for more accurate target
reconstruction. On the other hand, less fixations are needed to find the target, since less memory cells, and thus
possible fixations, will reside outside of the target vicinity.
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3.5 Conclusions

In this work we investigated the impact of uncertainty due to quantization phenomena in the retina and on how
to take advantage of it to guide gaze shifts for two distinct retinal topologies: Cartesian and log-polar. With our
approaches different gaze patterns emerge depending on the sensor topology and field of view and on exploration-
exploitation confidence bounds parameters. The obtained results demonstrate that a wider field of view, despite
less peripheral resolution is advantageous in visual search tasks execution speed. Furthermore, we showed that a
task-biased SES allows for simultaneously coping with limited memory resources (i.e. limited number of memory
cells) while improving performance, both in terms of target reconstruction quality and task execution speed.

We have proposed in P.III a novel visual search framework for robotic systems provided with binocular foveal
vision. Our framework combines visual information and associated probabilistic 3D measures that are used to
autonomously drive the agent’s gaze direction during search tasks. Our contributions are the following:

1. First, we model the stereo reconstruction uncertainty that arises as a result of spatial quantization phenomena
inherent in the retina. Our approach considers Gaussian RFs distributed in space following two different
tessellations: (i) a classical uniform (Cartesian) arrangement and (ii) a log-polar one that mimics the human
retina. The RFs in the latter present a space-variant spatial distribution and support radius.

2. The UT is used to propagate belief from the 2D retina domain to 3D via stereo reconstruction. When
compared with previous approaches that also assume Gaussian quantization noise and that rely on first order
linearizations to approximate the non-linear transformations involved in 3D reconstruction [115], our method
is based on the more precise, third order approximations of the UT.

3. Probabilistic sensory measurements are integrated in a novel versatile randomized SES whose topology,
unlike previously proposed structures in the literature, may be biased according to the autonomous agent
short-term tasks and goals. The proposed SES, helps achieving the desired search goal, by allocating the
limited memory resources more densely to important egocentrically encoded directions, according to the task
while allowing for continuous sensory fusion via Bayesian estimation. The method proposed for generating
a SES is based on projecting in the sphere randomly generated points according to a mixture of 3D Gaussians
of arbitrary number of components, focal points (means) and dispersions (covariances). This generates
an irregular grid but one can define more freely areas on the sphere with varying degrees of density and
dispersion. The proposed randomized representation offers a convenient mechanism for encoding task and
world prior knowledge. Memory biasing leads to more efficient, flexible and adaptable memory allocation
and to more effective behaviours during task execution. Hypothetical topologies that may be suitable for
different tasks are depicted in Figure 3.13: If for instance the task is to look for people, one should privilege
areas at the equator rather than the poles. In this case, varying the Gaussian mean is not sufficient. One
could sample from a single-component zero mean GMM with larger variance in the horizontal directions
(Figure 3.13b). While crossing a street, the observer should prioritize attentional resources to antipodal,
lateral regions (Figure 3.13c). This can be achieved by sampling from a single-component Gaussian with a
larger variance in the lateral component, or from a two-component GMMwith opposite lateral means. More
complex tasks can benefit from irregular topologies with multiple foci, obtained from a GMM with many
components (Figure 3.14b).

4. Finally, the decision-making process is framed within a MAB setting, that seeks to maximize expected
task-related rewards. The proposed decision algorithm relies on statistical measures to decide where to look
next by selecting the most promising regions to attend. We tested different stochastic optimization techniques
to deal with the exploration-exploitation trade-off typical of decision making under uncertainty algorithms.

With our approaches different gaze patterns emerge depending on the sensor topology and field-of-view and
on exploration-exploitation confidence bound parameters. The obtained results demonstrate that a wider
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field-of-view, despite less peripheral resolution is advantageous in task execution speed (see Figure 3.14a).
Furthermore, we showed that a task-biased SES allows for simultaneously coping with limited memory
resources (i.e. fixed number of memory cells) while improving performance, both in terms of target
reconstruction quality and speed of execution (see Figure 3.14a).

Future work The main limitations of the proposed framework for 3D visual search tasks are due to the fact that
they solely rely on depth information and associated uncertainty measures. One could benefit from RGB cues to
incorporate recognition abilities and speed-up localization. The framework can be further enhanced with other
ideas from the literature, namely:

• Multi-modal visual search for improved target 3D reconstruction accuracy: applying the previously proposed
foveal vision with DCNNs framework for RGB object dection, as a prior step to improve target localization,
3D local reconstruction, pose estimation accuracy, and to speed-up visual search tasks. Software integration
and experiments would be prepared and designed to run on a real robotic platform available in the laboratory
(see Figurere 1.1). Experiments could include assessing the performance on a visual-search, reconstruction
and pose estimation task, in a robot grasping and manipulation application.

• Faster memory access: one could improve the proposed SES run-time performance by implementing a
nearest neighbour data alignment scheme. A kd-tree could be built during initialization time and used for
storing the ego-sphere cells. Then, for each observed 3D point, searching for the closest cell on the sphere
would be performed in O(log(Nx)), instead of O(Nx). Also, reconstruction quality and efficiency can be
further improved by restricting stereo matching to biologically plausible volumes of interest [2].

• Dynamic spatial memory: one limitation of the proposed SES stems from the fact that it is static, and defined
before run-time. Adaptive re-sampling techniques (e.g. particle filters [8]) may be beneficial for improved
target reconstruction accuracy, and dealing with dynamic tasks and environments (e.g. locating moving
targets).

• Egocentric planning and allocentric mapping: another drawback of the current framework is the use of a
SES for mapping the surrounding environment, which requires constant expensive updates as the observing
agent moves, and the implementation of z-buffers to deal with occlusions and state’s partial observability.
Instead, in the future one can combine the benefits of the proposed egocentric flexible SES structure for
NBV planning, with the more appropriate allocentric representations, e.g. the memory efficient voxel-based
OctoMap structure [90], for environment mapping, path planning and navigation.

• Learning task-dependent priors: currently the most important directions for a specific task are encoded
using GMM priors whose parameters are manually provided by humans. Instead one could directly learn
task-specific priors, from data gathered from human demonstrations.
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(a) Average per saccade performance plots.
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(b) Time evolution plots.

Figure 3.11: Performance results for the assessed sensor topologies, field of views and upper confidence bound
parameter.

51



uni. top down target

0

50

100

150

200

250

300

350

a
v
e
ra

g
e
 c

u
m

u
la

ti
v
e
 r

e
g
re

t 
p
e
r 

s
a
c
c
a
d
e

uni. top down target

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
v
e
ra

g
e
 g

a
p
 r

e
d
u
c
ti
o
n
 p

e
r 

s
a
c
c
a
d
e

uni. top down target

0

10

20

30

40

50

60

70

80

m
e
a
n
 a

v
e
ra

g
e
 l
o
c
a
l 
in

fo
rm

a
ti
o
n
 p

e
r 

s
a
c
c
a
d
e

uni. top down target

0

10

20

30

40

50

60

70

80

m
e
a
n
 a

v
e
ra

g
e
 g

lo
b
a
l 
in

fo
rm

a
ti
o
n
 p

e
r 

s
a
c
c
a
d
e

(a) Average per saccade performance plots. α= 100
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(b) Time evolution plots.

Figure 3.12: Performance results for the assessed memory biases.

(a) Unbiased. (b) Equator-biased. (c) Anti-podal. (d) Non-trivial.

Figure 3.13: Examples of SES tesselations obtained with the proposed GMM

52



(a) Time evolution plots for the assessed sensor topologies and field of views.

(b) Time evolution plots for the assessed memory biases.

Figure 3.14: Performance results for the proposed 3D object reconstruction with space-variant binocular and
memory mechanisms.
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Chapter 4

Pose Estimation with Space-Variant
Orientation Selectivity Priors
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In this chapter, a complete solution is provided for detecting and identifying parametric shapes, more specifically
cylindrical, which are convenient object shapes for studies regarding selectivity to orientations, and which are
commonly found in household and industrial environments. Most standard approaches to detect and identify
cylinders are not robust to detection of points that lie on the top base, i.e. outliers, which limits their applicability
in realistic scenes. In addition, these methods fail to benefit from environmental constraints, e.g. the fact that
cylinders often lie or stand on flat surfaces. To tackle the aforementioned limitations, we introduce a novel soft
voting scheme that incorporates curvature information in the orientation voting phase. For each potential point
on a cylinder, the principal curvature direction is combined with the normal vector to disambiguate candidate
orientations. Furthermore, we propose a pre-attentive learning mechanism to selectively discard irrelevant shapes
before further processing to avoid time-consuming parametric fitting of wrong detections, thus increasing the
efficiency of the whole pipeline. A set of experiments with synthetically generated data are used to assess the
robustness of our fitting method with different levels of outliers and noise.

The results demonstrate that incorporating the principal curvature direction within the orientation voting
process allows for large improvements on cylinders parameters estimation. Furthermore, we demonstrate that
combining bottom-up 3D segmentation with top-down shape-based attention allows for large speed-up and accuracy
improvements on cylinder identification. The qualitative and quantitative results with real data acquired from a
consumer RGB-D camera, confirm the advantages of the proposed framework.

4.1 Introduction

Due to recent technological advances in the field of 3D sensing, range sensors have become financially affordable to
the average consumer, boosting the proliferation of robotics applications requiring accurate 3D object recognition
and pose estimation capabilities. More specifically, in tasks that involve interaction with the surrounding environ-
ment, an artificial agent would require to accurately recognise objects and estimate their pose. These tasks include
successful manipulation and grasping, obstacle avoidance and self localization with respect to known landmarks,
to name a few.

Efficiency is another important requirement in robots with power limitations [145], where fast and accurate
perception is required, e.g. for the manipulation of kitchenware objects [57]. Therefore, it is of the utmost
importance to build efficient perceptual systems that are not only robust to sensory noise, but also to occlusion and
outliers. A key aspect behind the success of a grasping solution resides in the choice of the object representation,
which can deal with incomplete and noisy perceptual data and is flexible enough to cope with inter and intra-
class variability, allowing the generalization to never-seen objects. Furthermore, in order to cope with limited
computational processing capacity limitations, efficient and fast perception is an essential requirement for real-time
performance. In thiswork, we propose a computationally efficient attention framework for the task of simultaneously
detecting, recognizing and identifying particular object shapes.

We focus on cylindrical shaped objects which are commonly found in domestic (e.g. cups, bottles) and industrial
environments (e.g. pipes, pillars, scaffolds), and identifying them plays an important role in many robotic grasp
applications [57, 138]. The proposed framework relies on the tabletop assumption, i.e., objects are placed on
flat surfaces, which is another widely adopted scenario in robotics [43, 132]. In order to deal with cluttered
environments which are often populated with multiple non-cylindrical shapes i.e. distractors, we take advantage of
the recent advances in deep learning architectures to introduce an efficient recognitionmodule that learns to filter out
irrelevant object candidates. More specifically, we incorporate a pre-attentive shape-based selection mechanism,
that avoids the need of time-consuming, top-down cylinder parameter identification at an early stage, on irrelevant
salient candidate objects. Furthermore, the most successful cylinder fitting approaches in the 3D shape fitting
literature are based on a computationally efficient 2-step Generalized Hough Transform (GHT) [168]. We extend
this method with a set of improvements that allow coping with large levels of outliers, mainly residing on bases of
cylinders, which often introduce problematic biases during the orientation estimation. The cylinder fitting approach
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described in this work was originally proposed in [56], but the reviewed literature and experimental evaluation here
is significantly expanded. Also, one of the most successful cylinder fitting approaches in the state-of-the-art [168]
is based on a computationally efficient 2-step Generalized Hough Transform (GHT). We extend the former method
with a set of improvements that allow coping with large levels of outliers, mainly residing on flat surfaces of
cylinders, which often introduce problematic biases during the orientation estimation.

Our main contributions are threefold: first, and unlike previous approaches that are solely based on 3D
depth information, we combine a state-of-the-art [168, 56] cylinder fitting approach which is based on a robust
and computationally efficient 2-step Generalized Hough Transform (GHT) with a 2D image-based top-down
proposal rejection mechanism to increase the quality and speed of correct estimations. Since gathering a large
dataset, required for deep learning based recognition techniques is laborious and time consuming, we provide a
semi-automatic data gathering procedure, using 3D information, which greatly facilitates acquiring and labeling
relatively large amounts of data. Second, we propose a novel randomized sampling scheme for the creation of
orientation Hough accumulators.

Our sampling method allows incorporating prior structure knowledge to improve accuracy with fixed computa-
tional resources. And finally, as our third contribution, we introduce a novel soft-voting scheme, which considers
surface curvature information, in order to cope with points that exist on flat surfaces and that vote for erroneous and
arbitrary tangential orientations. We perform a systematic and thorough quantitative assessment of the influence
of noise and outliers on detection and pose estimation error of cylinder fitting methods, comparing our proposed
method with that of [168]. Our ROS [166] and Caffe [106] C++ implementation can identify multiple cylinders
under a second, allowing an easy and straightforward integration in general robotics systems, e.g. in grasping
and manipulation pipelines. The code and dataset of our experiments will be released when the final version of
this manuscript is prepared. The remainder of this chapter is structured as follows. In section 3.2 we overview
previous related work available in the literature. In section 4.3 we describe in detail the various steps involved in the
proposed cylinder detection and identification methodology. In section 4.4 we quantitatively evaluate the benefits
of the proposed contributions. Finally, in section 4.5 we draw our conclusions and propose promising future work
ideas.

4.2 Related Work

As described in the previous section, successful identification of objects in an environment requires not only
the development of robust and efficient object detection architectures, but also the definition of flexible shape
representations that should facilitate generalization to never-seen-objects, via the integration of different visual
sensing modalities. Therefore, we organize the present section in two distinct parts. First, an overview of the state-
of-the-art methods in visual attention, with an emphasis on shape-based models of selective attention is presented.
Afterward, we analyse various object identification paradigms proposed in the literature, suitable for applications
that require identification and localization of parametric shapes.

4.2.1 Shape-based Selective Attention

Visual attention plays a central role in biological and artificial systems to control perceptual resources [6, 158].
The classic artificial visual attention systems use salient features of the image, benefiting from the information
provided via hand-crafted filters. Recently, deep neural networks have been developed for recognizing thousands of
objects and autonomously generate visual characteristics that are optimized by training with large data sets. Besides
their application in object recognition, these features have been very successful in other visual problems such as
object segmentation [78], tracking [82] and visual attention [223]. Evidence from neurophysiology studies [65]
suggests that people consider oject shape as an important feature dimension among other low-level visual features
(e.g. texture and color). In [194] the authors found that subjects looking for a particular shape (e.g. flowers
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or pillows) are more accurate in reporting other features of that object (e.g. color) meaning that people have
attention mechanisms for shape features. Furthermore, infants rely more on shape than on color when learning new
objects, which in turn allows them to generalize to other objects with similar visual features while interacting with
them [60]. This fact motivates the need of developing more sophisticated, shape-biased and bottom-up attentional
architectures [198].

4.2.2 Object identification in robotics

Object recognition and pose estimation with 3D depth data is an important subject in computer vision with many
applications in robotics. There are two main approaches to this problem that depend on the availability of 3D object
models: 3Dmodel based and learning based. If one has a description of the 3D shape of the object, either given by a
parametric surface representation or by a CADmesh representation, the 3Dmodel-based methods are often used for
simultaneous object recognition and 3D pose estimation [75]. If such representations are not available, the dominant
approaches rely on machine learning techniques that “learn a model” given a set of image samples of the object,
acquired by the robot sensors [165]. Despite being flexible and capable of generalizing to novel objects in detection
and classification tasks, these methods are often unsuitable for estimating some shape properties, such as 3D pose
or size of the object. In this work we leverage the accuracy and generalization capabilities of state-of-the-art deep
learning techniques in recognition tasks, with robust 3D model-based fitting approaches to develop a multi-modal,
fast, and robust cylinder identification pipeline. These representations are often unsuitable, when flexibility and
generalization to novel objects is a requirement. The dominant strategies rely in machine learning techniques that
are able to generalize to similar objects using a set of sample images acquired by the robot sensors. We focus
on cylindrical shapes and, thus, we will combine the generalization capabilities of state-of-the-art deep learning
techniques with robust 3D model-based fitting approaches. One of the most successful approaches for model-based
3D object recognition using point clouds are based on [48, 55] where a global descriptor for a given object shape
model is created, using point pair features. The CAD model of the object is used to create a large database of
features. At run-time, the matching process is done locally using an efficient and robust voting scheme similar to
the Generalized Hough Transform [91]. Each point pair detected in the environment casts a vote for a certain object
and 3D pose. However in unstructured environments, existing Computer-Aided Design (CAD) based methods tend
to suffer from outliers and occlusion. In semi-structured environments (e.g. industrial pipelines), strategies based
on the detection and estimation of parametric shapes are generally more robust and flexible [201][150][98]. For the
extraction of simple geometric shape primitives like planes, cylinders, cones and spheres, the two most common
paradigms are the Hough transform [91] and Random Sample Consensus (RANSAC) [58], which are robust to
outliers and noisy data.

RANSAC-based approaches are typically preferred over the former since they are more general and do not
require the definition of complex transformations from 3D input to parametric spaces. In the RANSAC paradigm,
the data is used directly to compute best-fit models. Despite their proven applicability for the extraction of geometric
primitives in noisy 3D data [182] [73], in particular in tabletop object segmentation, RANSAC-based techniques
have high memory requirements. Being a non-deterministic iterative algorithm, computational time is greatly
dependent on the allowed iterations to produce reasonable results, hence becoming impractical for scenarios with
large levels of outliers [125]. In other words, the large number of random selections in large-scale point clouds
may compromise the method applicability in applications with real-time constraints. Furthermore, their lack
of flexibility hinders the incorporation of model-specific heuristic knowledge, that enables the creation of more
effective and efficient specialized methodologies.

The problem of detecting and estimating the pose of cylinder structures using 3D range data and Hough
transform is naturally formulated on 5-dimensional parametric spaces, but this results in prohibitive computational
complexity due to the curse of dimensionality (the size of the Hough accumulator is exponential in the number of
dimensions). A more efficient approach [168] uses a 2D Hough transform to estimate orientation followed by a
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3D Hough transform to simultaneously detect radius and position. Though reducing the exponential complexity
factor, this approach still lacks speed and robustness in dense point cloud data. In [195] the authors proposed a
coarse-to-fine voting procedure that speeds-up the former method by several orders of magnitude [159]. Another
interesting idea is the incorporation of environment structural constraints (e.g. cylinders are standing vertically or
horizontally on the floor) to reduce the search space [125] to a small subset of possible orientations.

The problem of detecting and estimating the pose of cylinder structures using 3D range data and Hough
transform is naturally formulated on 5-dimensional parametric spaces (2 orientations, 2 locations plus the radius),
but this results in prohibitive computational complexity due to the curse of dimensionality (the size of the Hough
accumulator is exponential in the number of dimensions). The most efficient parametric shape fitting methods
are based on Hough transforms that estimate cylinder parameters, i.e. orientation, position and radius, in two
sequential voting steps [168, 56]. More specifically, they rely on a 2D Hough transform to estimate orientation,
i.e. the direction of the cylinder axis, followed by a 3D Hough transform to simultaneously detect radius and
position. Though reducing the exponential complexity factor, this approach still lacks speed in dense point cloud
data. In [195] and [159] the authors proposed a coarse-to-fine voting procedure that speeds-up the former method
by several orders of magnitude. Another interesting idea is the incorporation of environment structural constraints
(e.g. cylinders are standing vertically or horizontally on the floor) to reduce the search space [125] to a small subset
of possible orientations.

Despite the improvements on computational complexity of the previous approaches, their lack of robustness to
outliers still sets the main draw back to their usage in real applications. Palánz et. al. [156] introduces a method
that finds the cylinder that fits better in a point cloud, modeled as a mixture of two Gaussians. One Gaussian models
the data samples belonging to the cylinder and the other Gaussian models the outliers. The random variable of the
model is the fitting error, which is lower for the inliers and larger for the cylinder outliers. The error considered
in their work is the sum of the perpendicular distance from the point to the estimated cylinder, and its parameters
are estimated using the Expectation Maximization algorithm for the mixture of Gaussians. Although they show a
large robustness to outliers, the method is computationally demanding and not parallelizable. Tran et. al. [201]
propose an algorithmic approach that starts from individual cylinder detection, followed by a mean shift clustering
in the cylinder space parameters. The individual cylinder detection algorithm finds promising cylinder hypotheses
based on weighted point cloud normal estimation and an inlier point selection. The normals are utilized to find the
cylinder axis orientation by selecting the eigenvector corresponding to the smallest eigenvalue of the covariance
matrix C of normal vectors of inliers. The inliers are selected by projecting the cylinder points to a plane normal
to the cylinder axis orientation and fitting the projected points to a circle. This approach is robust to outliers and
finds multiple cylinders, but is computationally more expensive than [168], which is the baseline of our approach.
Nurunnabi et. al. [150] propose an algorithmic approach that relies on Robust Principal Component Analysis
(RPCA) to find the cylinder orientation and Robust Least Trimmed Squares (RTLS) regression to remove outliers
from the RPCA cylinder parameter estimation. The RTLS removes outliers that do not fit the projected circle from
the cylinder points. This approach is limited to find just one cylinder in the point cloud.

In this work we propose a novel fitting approach that leverages an efficient implementation of the Hough-based
method of [168] with the increased robustness of using statistical models to encode domain-specific knowledge.
More specifically, the focus and the main contributions of our work are: a novel randomized sampling scheme for
the creation of orientation Hough accumulators which allows the incorporation of environment structural priors to
improve orientation estimation accuracy with the same computational resources; a voting scheme that significantly
improves the robustness of Hough methods in cylinder detection and pose estimation.

Still, all the aforementioned fitting approaches are incapable of filtering, at an early stage, different object shapes
that act as irrelevant visual distractors. The time consuming process of fitting shapes to distractors, marks another
limitation of fitting approaches, which hinders their applicability in real world scenarios.

Kostavelis et al. [113] have incorporated Graph-Based Visual Saliency algorithm (GBVS) as a pre-processing
step in training a biologically inspired Hierarchical Temporal Memory (HTM) network. According to these results,
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Figure 4.1: General diagram describing our framework for efficient detection and identification of cylindrical
shapes using multiple visual sensing modalities: color and depth. The proposed architecture, is an integration of
different cognitive blocks which are responsible for object segmentation, shape recognition, and fitting.

the introduction of a bottom-up attention mechanism significantly improves the efficiency and performance of
down-stream tasks, however, it is not clear how much their approach can generalise to the detection of occluded
objects. Similarly, we incorporate a mediating shape-based pre-attention bottom-up mechanism to reduce the space
of possible cylindrical shapes to a small subset of prominent objects in the field of view, in a bottom-upmanner. The
2D image patches, coming from 3D segmentation are first classified using a Deep Convolutional Neural Network
(DCNN), which is robust to occlusion. Object classes of interest (i.e. cylinder), are further considered for parameter
identification, which results in faster and more accurate estimates.

4.3 Methodologies

In this section we describe in detail the multiple components and contributions of our pipeline (see Figure 4.1).

4.3.1 System Overview

We start by detecting tabletop objects using 3D point cloud information, since points above tables are considered to
belong to potentially graspable objects. Therefore, the first component of our cylinder detection and identification
pipeline is a bottom-up segmentation module that is triggered by salient objects laying on flat surfaces [146].
First, we use a RANSAC-based fitting approach, which efficiently operates on downsampled organized point cloud
data [180], in order to detect planes on the scene and segment objects above these planes. We rely on Euclidean
clustering [180] to identify individual objects. Afterwards, these objects are projected on the 2D camera plane
to extract bounding boxed 2D focused images from a stream of monocular images, which are used to recognize
cylindrical shapes via a deep artificial neuronal network classifier. The proposed CNN is trained offline via transfer
learning, and acts as a shape-based mediating pre-attentive selective mechanism that filters out non-cylindrical
shapes. Finally, the parameters of the identified cylindrical shapes are estimated in 3D Cartesian space, using an
efficient and robust top-down depth-based Hough transform.

4.3.2 Transfer learning for early shape-based attention

In order to reject region proposals and avoid parametric identification of non-cylindrical objects, we propose to
use deep neural networks. Inspired by recent advances of deep learning in achieving state of the art performance
in recognition tasks, we use a deep CNN as a binary classifier to decide if a particular object is a cylinder or
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not. However, using a DNN for the task at hand can pose several challenges. Firstly, most DNN architectures
are notoriously data-hungry, usually trained on millions of labeled images. Secondly, designing a neural network
architecture for a new task is time consuming and involves a large amount of trial and errors. And last, storing
and using them on most embedded systems are impractical due to the substantial size and the computations they
require.

Data acquisition and training

To solve the first problem, we propose a fast and convenient procedure for semi-automatic gathering of labeled
data, which does away with the need of manual labeling. The procedure relies on the 3D tabletop segmentation
method and the 3D bounding box projection to 2D approach described in the previous subsection. For the creation
of positive samples, we first place many different cylindrical shaped objects on tabletops and acquire data, from
multiple views, using an hand-held RGB-D camera. Then for the creation of the negative examples dataset, we
repeat the same procedure with all the non-cylindrical objects, commonly found in the testing environment.

Cylindrical-shapes recognition

For the second problem, i.e. architecture design, we propose to use transfer learning [217]. More specifically, we
have used a network previously trained on imagenet dataset [179] and fine-tuned it as a cylinder classifier. This
way, the architecture of the network is pre-defined and it is only necessary to change the last layer such that instead
of predicting probability classes of 1000 objects, it only outputs the probability that an input image is a cylinder
or not. Moreover, it is generally assumed that if a network performs well on a recognition task, it means it has
learned informative features which are useful for different tasks. As a result, it is possible to train the network on
significantly smaller datasets and only slightly change the previously learned features.

Performance speed-ups

In order to have a small network which performs reasonably fast even in the absence of powerful GPUs, we used a
relatively small neural network called SqueezeNet [99]. This network achieves AlexNet accuracy score on imagenet
while being 50 times smaller. Taking advantage of this reduction in parameters of the network, it is possible to
have a fast and reliable classifier which is more suited towards real-time applications. However, although we have
chosen Squeezenet as our object classifier since, at the time, it was the one that offered the best trade-off between
performance and efficiency, our method is flexible enough to easily incorporate any other object classifier.

4.3.3 Cylinder parametric fitting

Our approach is based on the former work of Rabbani et al. [168] that splits the cylinder detection and pose
estimation problem in two independent Hough transform stages. In the first stage, 3D point normals cast votes
for possible cylinder orientations, in a 2D orientation accumulator. In the second stage, the point cloud is rotated
according to the determined orientation and each point votes for a position and radius of the cylinder in a 3D
Hough accumulator. In that work the unit sphere of orientations is uniformly and deterministically sampled at a
predefined number of points [130], to generate a discrete Hough accumulator space, in which voting is subsequently
performed. A larger number of cells on the unit sphere improves the accuracy of the orientation estimate, at the
cost of increased computational effort. In the present work, we propose several improvements to the orientation
voting stage of [168].

In this section we describe in detail our methodology for improved orientation estimation during cylinder
detection. First, we introduce a novel randomized sampling scheme which enables the creation of non-uniform,
problem-specific orientation Hough accumulators. Then we present a novel and more efficient Hough voting
scheme that relies on simple inner products. As opposed to [168], we avoid the computational burden of explicitly
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(a) Unbiased. (b) Polar biased (M = 1).

(c) Equator biased (M = 1) (d) Non-trivial (M ≥ 1)

Figure 4.2: Different sampled unitary spheres, where each point on the unit sphere represents the center of a
candidate Voronoi cell orientation.

voting in spherical coordinates, which requires the computation of rotationmatrices and, consequently, of inefficient
trigonometric functions. Furthermore, our voting scheme is richer than the one of [168] since it allows incorporating
curvature information. When compared with the work of [168], the proposed methodology is able to cope with
higher levels of outliers, including flat surfaces such as ground planes, hence avoiding the need of prior plane
detection and removal.

Randomized Orientation Hough Accumulator

The proposed orientation Hough accumulator space is composed of a set of cells D lying on a unit sphere. The
center of each cell corresponds to a unique absolute orientation. The accumulator is analogous to a Voronoi diagram
defined on a spherical 2-manifold S2 in 3D space, as depicted in Figure 4.2, and is represented by a set of Nd 3D
Cartesian sample points with unit norm, centered in the reference frame origin (center of the sphere) E ,

D = {di ∈ R3, i, ...,Nd : ‖di‖= 1} (4.1)

which are i.i.d. and randomly generated from a three dimensional GMM distribution

di = vi

‖vi‖ where vi ∼ p(θ) =
M∑
m=1

φmN (µmd ,Σm
d ) (4.2)

whereM is the number of mixture components and where each di ∈D represents an absolute orientation, allowing
for efficient voting with observed surface normals.

The parameters of the GMM components are chosen according to task at hand (e.g. find vertically aligned
cylinders) or prior knowledge on how likely specific orientations are (e.g. cylinders are unlikely to be in relative
diagonal orientations). On one hand, in order to produce uniform and unbiased accumulator structures, the surface
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should be sampled from a rotationally symmetric distribution, i.e., from a single Gaussian with zero mean and
variance equal in all dimensions [147] (Figure 4.2a). On the other hand, non-uniform, task-dependent sampling
biasing can be achieved by manipulating the Gaussian Mixture Model parameters (see Figure 4.2).

Hypothetical accumulator spaces that may be suitable for different priors are depicted in Figure 4.2. In the
absence of prior information or task definition, one should sample from a single component Gaussian, with zero
mean and standard deviation equal in all dimensions (Figure 4.2a). If for instance the task is to find cylinders that
are vertically aligned with the reference frame (e.g. table reference plane), one should privilege orientations at
the pole (Figure 4.2b) rather than the equator (Figure 4.2c). In the latter case, varying the Gaussian mean is not
sufficient. One could sample from a single-component zero mean GMM with larger variance in the horizontal
directions. Finally, prior knowledge or more complex detection tasks (e.g. locating diagonal pipes or machine
handles) can benefit from a GMM with many components (Figure 4.2d).

Our randomized sampling scheme offers several advantages over the one of [168], namely:

• it is easier to implement than its deterministic counterpart [130] and allows for the fast creation of biased
orientation voting spaces.

• the non-deterministic nature of the representation offers a convenient mechanism for encoding task-related
biases or probabilistic prior knowledge about possible orientations, depending on the environment (e.g. cups
are typically oriented vertically on tables). Biasing the orientation Hough accumulator space leads to more
efficient, flexible and adaptable resource allocation and to more accurate orientation estimation, for the same
memory and computational resources.

Fast Robust Orientation Voting Scheme

At run-time time, the input of our algorithm is a scene input point cloud which comprises a finite set of 3D Cartesian
points P ⊂ R3 , where P = {ps,s= 1, ...,Ns}.

First, we estimate the surface normals at each scene point ps ∈ P using the Principal Component Analysis
(PCA) [52] of the covariance matrix created from its k-nearest neighbors. Let N = {ns,s= 1, ...,Ns} denote the
set of surface normals. Then, we proceed with the computation of the principal curvatures as follows. For each
scene point ps, we compute a projection matrix for the tangent plane given by the associated normal ns. After,
we project all normals from the k-neighborhood onto the tangent plane. Finally, we compute the centroid and
covariance matrix in the projected space. We finally employ eigenvalue decomposition of this covariance matrix
to obtain the principal curvature direction csmax ∈ R3 and the corresponding eigenvalue kmax ∈ R (see Figure 4.3).
Let C = {csmax,s= 1, ...,Ns} denote the set of principal curvature directions and K = {ksmax,s= 1, ...,Ns} the set
of the corresponding eigenvalues.

The orientation voting procedure goes as follows: For each direction celldi in the orientationHough accumulator
A, we compute the inner product with all the scene surface normals ns ∈N and their associated principal curvature
directions csmax ∈ C to cast continuous votes in the accumulator according to the function

A(i) =
Ns∑
s=1

ksmax
∣∣(1−dicsmax

)∣∣ ∣∣(1−dins
)∣∣ (4.3)

This soft voting function gives more weight to directions that are simultaneously, orthogonal to the normal
and the principal curvature directions. Moreover, the eigenvalue ksmax works as a curvature high-pass filter, that
suppresses low curvature candidates, since points belonging to flat surfaces have very low ksmax.

After determining the cylinder orientation we proceed with the estimation of the cylinder position and radius,
as detailed in [168]. First, we align the estimated cylinder axis with the camera z-axis. Then, we project the inlier
points on the camera xy plane and use a Circular Hough Transform (CHT) [110] to estimate the cylinder position
and radius.
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csmax

csmin
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Figure 4.3: Normal (ns) and principal curvatures’ directions (csmax and csmin) for a cylinder surface point.

Goodness-of-fitting criterion

Finally, the goodness of the fitting of a cylinder is evaluated using the following conditional confidence measure:

p(cylinder|object) = Nmodel
Ncluster

(4.4)

where Nmodel represents the number of points that fit the estimated cylinder parametric model (i.e. inliers) and
Ncluster the total number of 3D points belonging to the object. Estimations below a user-defined quality threshold
are discarded and considered as non-cylindrical shapes. We have used this criterion as a baseline for cylinder
detection.

4.4 Experiments and Results

Several experiments were conducted in order to quantitatively evaluate the quality of the cylinder parameters
recovered by the method of Rabbani et al. [168] and by our proposed method, when dealing with increasing levels
of outliers and noise.

4.4.1 Synthetic Data

In all experiments, we generated 200 synthetic scenes, each containing a single instance of a cylinder. By using
synthetically generated scenes, we were able to compare the algorithm pose results with a known ground truth. The
selected parameters for both methodologies were the following: The radius was fixed to r = 0.3m and the height
was uniformly sampled from the interval [0.05,2.0]m. The number of cylinder surface points was fixed and set to
900 and the number of orientation sample points in the Hough accumulator space was set to Nd = 450.

In order to demonstrate the advantages of incorporating prior knowledge in the creation of orientation Hough
accumulators, in all generated scenes the orientation of the cylinder was fixed and aligned with the z-axis of the
frame of reference, ignoring other directions, e.g. horizontal, to also facilitate the estimation error statistics (i.e.
averages and standard deviations). We considered and compared the following different sampling distributions for
creating the orientation Hough accumulator space (see Table 4.1):
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• an unbiased distribution reflecting the absence of prior knowledge about the cylinder orientation.

• a mildly and a strongly biased distribution that favour vertical orientations.

Robustness to outliers

In order to assess the performance gains of the proposed strategies in the presence of flat surfaces (i.e. outliers)

outliers = 1− cylinder surface points
total scene points

(4.5)

we added synthetically generated planar extremities to cylinders, that simulate realistic cylindrical shapes such as
containers/cans with lids. Surface points on cylinder tops are problematic for orientation estimation since they vote
for orthogonal directions, and in this experiment were considered as planar clutter (i.e. statistical outliers). The
surfaces were generated with a total of 10, increasing point density levels, to each previously generated cylinders’
bottom and top extremities (see Figure 4.4). Moreover, each cylinder was set at a random pose. The quantitative
results illustrated in Figure 4.9 (left column) demonstrate the advantage of considering both the surface curvature
and the surface normal in the orientation voting step. When dealing with flat surfaces that belong to real-life
cylinders, our method estimates better the cylinder orientation, as shown by the absolute orientation errors in Figure
4.9a and Figure 4.9b. According to our implementation, the original method of Rabbani et al. can deal with cases
where up to 50% of the points are outliers, without failing. When the number of outliers exceed 150% of the
relative number of candidate points belonging to the cylinder surface, the method exhibits an orientation error of
90 degrees, since points belonging to flat surfaces (i.e. outliers) vote for orthogonal directions to the ground truth
cylinder orientation. The linear transition in between can be justified by the fact that the error increases linearly
with the number of outliers voting for orthogonal, wrong orientations. This is an artifact of the soft-voting scheme,
resulting in consistent response to small and large amount of outliers. In between, the response exhibits a linear
decrease in the pose estimation accuracy. As expected, these improvements have a direct and positive impact in
the quality of the position and radius estimations, depicted through the absolute radius and position errors plots in
Figure 4.9d and Figure 4.9c. As opposed to [168], our method is able to cope with large amounts of outliers, while
keeping the performance at the levels of uncluttered scenes.

(a) Ours (b) Rabanni et al.

Figure 4.4: Our method against Rabbani et al. when dealing with flat surfaces.
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(a) σnoise = 1% (b) σnoise = 10%

Figure 4.5: Estimated cylinder parameters with our method, from a point cloud corrupted with different levels of
additive Gaussian noise.

(a)

(b)

Figure 4.6: Qualitative assessment of our framework with data acquired with an Asus Xtion 3D camera. (a) Testing
scene samples. (b) Cylinder identification for an example scene from the collected 200 frame dataset. Detection:
Good and bad classifications in green and red, respectively. Parameter identification: green represents correct
parameter estimation; blue represents correct non-cylindrical shape objects identified by the baseline quality of
fitting criterion; red represents wrong estimations without the classifier.
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Bias µp Σp

x y z xx yy zz
Unbiased 0 0 0 0.5 0.5 0.5
Mildly Top-biased 0 0 1.0 0.5 0.5 0.5
Strongly Top-biased 0 0 1.0 0.05 0.05 0.05

Table 4.1: Orientation Hough accumulator biasing parameters used for the creation of the orientation Hough
accumulators in the experiments with synthetic data.

Figure 4.7: Sample examples from the training dataset after rotation augmentation. (a) Cylindrical samples (b)
Non-cylindrical samples.

Robustness to noise

In pursuance of quantifying the behavior of the Rabbani el al. algorithm [168] and our proposed extensions in
the presence of noisy visual sensors, each of the 200 generated scenes was corrupted by 10 different levels of
additive Gaussian noise, with standard deviation proportional to the cylinder radius (see Figure 4.5). Figure 4.9
(right column) depicts the cylinder parameters estimation errors for both methodologies in the presence of noise.
The results show that both methodologies have similar robustness to noise, hence, demonstrating the benefit of our
approach when considering the superior performance of our method in cluttered scenes. Additionally, biasing the
orientation accumulator in the face of prior structural knowledge significantly improves the estimation accuracy.
Overall, our extensions result in dramatic improvements regarding robustness to clutter, without sacrificing robust-
ness to noise. Furthermore, a simple qualitatively assessment of our method with data acquired from a RGB-D
camera demonstrates its applicability to real-scenarios, as exemplified in Figure 4.6, and its superior robustness to
planar clutter.
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Figure 4.8: Evaluation of the performance of the binary classifier: (a) Loss and accuracy evolution of the classifier
on training and validation data. (b) Precision-Recall curves of the Cylinder class for baseline and SqueezeNet
classifier on the test data, AUC: Area Under Curve.
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Figure 4.9: Robustness of our method against the method of Rabbani et al. Left: different levels of noise. Right:
different levels of flat surface outliers.

Avg. Objects Number Avg. Processing Times (ms)
Cylinders Distractors Segmentation Classification Identification Total

F-RCNN 3 8 402 73 475
no classifier 3 8 15 - 213 228
with classifier 3 8 15 64 70 149

Table 4.2: Quantitative analysis of the time performance of the proposed pipeline in a set of multiple tabletop
scenarios, with 200 RGB-D frames acquired with an Asus Xtion camera.
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4.4.2 Real Data

In order to assess the behavior of the proposed framework with real data acquired from a low-cost consumer
RGB-D sensing device, we created multiple tabletop scenarios, each containing various different shapes including
cylindrical objects (see Figure 4.6a for an example view). We quantitatively and qualitatively evaluated our
attentional framework’s computational time improvements, in the presence of salient visual distractors.

Classifier Performance Analysis

As described in the previous section, we fine-tune the final layer of SqueezeNet with our newly gathered dataset
which contains about 11000 train images (out of which, we used 10% for validation) and 1200 test images.
Figure 4.7 shows a few samples that were used to train the network. The original dataset contained less than 3000
samples and, in order to gain more robustness to different orientations, they were mirrored in vertical and horizontal
directions, effectively quadrupling the amount of available data. The learning rate for fine-tuning the network was
empirically selected as 0.0005 and we kept other parameters as their proposed values by [99]. Figure 4.8 shows
the performance of the classifier at various points during training. Our initial experiments with the neural network
classifier suggests a generalization to unseen cylindrical and non-cylindrical objects. However, not surprisingly, it
is more reliable in classifying seen cylinders. Introducing more unique cylinders can help mitigating this effect.
In order to quantitatively evaluate the performance of the 2D image-based deep neural network classifier, it is
compared with a baseline indicator of the fit quality criteria. Figure 4.8 compares the precision–recall curves of
the two classifiers.

4.4.3 Overall Framework Assessment

In order to qualitative evaluate our framework when dealing with real data we acquired 200 RGB-D frames with
resolution 640x480 provided by an Asus Xtion camera. Figure 4.6 depicts the cylinder parameters estimation
quality for the proposed cylinder fitting methodology in the presence of noisy 3D point cloud data. The use of
prior classification, results not only in temporal gains (see Table 4.2), but also on early filtering of non-cylindrical
distractors, hence improving the reliability of the 3D cylinder fitting approach. Overall, dramatic improvements
on detection speed and robustness to visual distractors can be achieved by incorporating the of shape-based pre-
attention mechanism, results in dramatic improvements on detection speed and robustness to visual distractors
without sacrificing robustness to noise. Furthermore, the evaluation of our method with data acquired from a
consumer RGB-D camera demonstrates our method applicability to real-scenarios and its advantages in scenes
populated with salient visual distractors. In order to better ground the time complexity of this pipeline, we have also
experimented with an off-the-shelf state-of-the-art object detector (F-RCNN) [173], which similar to SqueezeNet
was also fine-tuned to detect cylinders in RGB images [173]. This detector uses ResNet50 as the classifier and
we have reduced the number of region proposals to decrease the inference time. Using the detector, one can
achieve a constant run-time with respect to the number of objects in a scene, however, according to Table 4.2, the
proposed pipeline is more then twice times faster even with an average of 8 visible objects. Furthermore, unlike
off-the-shelf object detectors, 3D tabletop segmentation allows the definition of a table coordinate frame and, hence,
the incorporation of prior knowledge in the fitting process.

4.5 Conclusions

In thiswork, we proposed a complete, robust and efficient cylinder detection and parameter identification framework,
that leverages prior knowledge regarding the likelihood of certain object orientations, to improve accuracy with
constrained computational resources. Furthermore, and unlike previous approaches that are solely based on 3D
depth information, our methodology incorporates RGB information by means of a novel shape-based pre-attentive
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attentional mechanism to filter out visual distractors at an early stage. Finally, we have developed a robust soft-
voting scheme based on the GHT [15] for the detection and pose estimation of arbitrary cylindrical structures from
3D point clouds. In this work we focused on cylindrical shapes, since they are convenient for studies involving
orientation selectivity mechanisms, but the same principles can be easily extended to other types of shapes.

The proposed method incorporates curvature information in the voting scheme, that improves the rejection of
outliers, mainly those arising from planar surfaces that pollute the orientation voting space and introduce erroneous
biases in cylinder orientation estimation. The results demonstrate significant detection accuracy and time speed-ups
as well as major improvements on the detection rates and pose estimations with respect to previous schemes. A
systematic quantitative analysis of robustness to clutter and noise validates our approach and sets a benchmark for
future research.

The proposed contributions can be summarized as follows:

1. we propose a novel randomized sampling scheme, that allows incorporating allocentric or object-centric
structural priors in the creation of orientation Hough accumulators using a GMM. The incorporation of these
priors allow improving estimation accuracy with fixed resources, i.e., fixed number of cells in the parameteric
orientation acummulator space P.IV.

2. we introduce a novel soft-voting scheme, which considers surface curvature information to cope and increase
robustness to flat surfaces that vote for erroneous and arbitrary tangential orientations P.IV.

3. we take advantage of recent advances on deep learning architectures to introduce an efficient image-based
recognition module which learns in a supervised and data-efficient manner to selectively discard irrelevant
shapes before further processing 1. We used a relatively small neural network called SqueezeNet [99]. This
network achieves AlexNet [118] accuracy score on imageNet while being 50 times smaller. Taking advantage
of this reduction in parameters of the network, it is possible to have a fast and reliable classifier.

4. A set of experiments with synthetically generated data were used to compare the robustness of our method,
for different levels of outliers, noise and missing data, against the one of [168]. The results demonstrated
that the proposed randomized sampling approach for creating Hough orientation accumulators, as well as
the incorporation of the principal curvature directions within the orientation voting procedure allows for
large improvements on cylinders’ parameters estimation. Qualitative results with point clouds acquired from
consumer RGB-D cameras, confirmed the advantages of using a cylinder CNN classifier prior to fitting, both
in terms of speed and accuracy P.VI.

Future work The limitations of the current work include being agnostic to information integration across time
(via recursive Bayesian filtering), the generalization of the shape detection method and extension of the Hough
orientation estimation to other shape types. The proposed methods for object pose estimation can be improved as
follows:

• Sequential Bayesian Filtering: robustness to noise can be enhanced via temporal integration of cylinder
detections by means of sequential Bayesian filtering [54] techniques.

• Generalizing to Multiple Shapes: The idea of combining a generic multi-label classifier with the proposed
randomized Hough accumulator and the soft voting scheme, can be extended to other parametric shape types
(e.g. cuboids, ellipsoids, cones).

• Dynamic coarse-to-fine orientation estimation: Currently, our method relies on single GMM priors, whose
parameters are provided before run-time. Pose estimation accuracy would improve if multiple GMM with
increasing resolution, and decreased dispersion were considered, and the voting procedure carried out in a
coarse-to-fine manner.
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We have focused on cylindrical shapes but the proposed core ideas can be easily extended to other shape types,
depending on training data availability. Combining a generic multi-label classifier with the proposed randomized
Hough accumulator and the soft voting scheme, paves theway to extend the current cylinder identification pipeline to
various shapes (e.g. cuboids, ellipsoids, cones). As a final remark, we emphasise that the computational complexity
of the proposed solution scales linearly with the number of objects in the scene, which may become problematic
in highly cluttered environments. However, all components of the pipeline are parallelizable and, depending
on the application requirements, one can benefit from an increase in the available hardware resources to further
improve run-time performance. Finally, complex objects such as cylindrical containers require more elaborate
representations such as semantic or relational. In the case of cylindrical containers one can consider that containers
have two object primitives: planes and cylinders. Future work should consider these type of representations through
the use of Probabilistic Graphical Models [81] to further improve the pipeline performance.
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Chapter 5

Multiple Object Tracking with Resource
Constraints
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In this chapter we address the multiple person tracking problem with resource constraints, which plays a
fundamental role in the deployment of efficient mobile robots for real-time applications involved in Human Robot
Interaction (HRI).

5.1 Introduction

We pose the multiple target tracking as a selective attention problem in which the perceptual agent tries to optimize
the overall expected tracking accuracy. More specifically, we propose a resource-constrained POMDP formulation
that allows for real-time on-line planning. Using a transition model, we predict the true state from the current
belief for a finite-horizon, and take actions to maximize future expected belief-dependent rewards. These rewards
are based on the anticipated observation qualities, which are provided by an observation model that accounts for
detection errors due to the discrete nature of a state-of-the-art pedestrian detector. Finally, a Monte Carlo Tree
Search (MCTS) method is employed to solve the planning problem in real-time. The experiments show that
directing the attentional focci to relevant image sub-regions allows for large detection speed-ups and improvements
on tracking precision.

The remainder of this chapter is structured as follows. In section 5.2 we overview some related work available
in the literature. In section 5.3 we describe the various components involved in the proposed adaptive tracking
pipeline. In section 5.4 we assess the proposed methodology performance by evaluating the balance between
efficiency (low computational requirements) and effectiveness in multiple object tracking task-execution. Finally,
in section 5.5 we wrap up with some conclusions and future work.

5.2 Related Work

MOT deals with the challenging computer vision problem of jointly estimating object identities and motion
trajectories in video sequences and has a variety of uses in various application domains. Developing efficient
adaptive MOT systems that are capable of dealing with computational and power limitations as well as timing
requirements is of the utmost importance in a wide range of fields, including automatic surveillance [192], sports
analysis [212] and HRI [137].

Tracking can be framed within different paradigms, depending on the tracklets initialization (detection-based
vs detection-free), and processing mode (online vs offline) [129].

Detection-based or tracking-by-detection approaches assume that candidate detections are provided at each
time instant, and the goal of the tracking methodology is to associate detections over time. Detection-free methods,
on the other hand, assume tracklets are manually initialized and localization performed in each subsequent frame,
in a top-down manner. The former approaches can easily handle appearing and disapearing targets, but require
pre-training an object classifier for task-specific objects. As opposed, the latter does not require a priori knowledge
regarding the objects to be tracked, but require learning online the targets’ appearance.

Online tracking approaches employ recursive inference techniques, for sequentially arriving images, while
offline techniques optimize trajectories and identities for image batches (past and future). Computational effort
in detection-free tracking depends on the number of attended targets at each time instant. In MOT with resource
constraints scenarios, the observer’s goal is to predict the best regions in the visual field to attend, in the quest to
evaluate if they pertain to a given set of persons of interest, and thus to prune the visual search space by filtering
out irrelevant image locations.

Classical object detection algorithms are based on exhaustive search, sliding window approaches, which
operate over the full image space, in a sliding window manner and are typically inefficient and agnostic to top-down
temporal context. When combined with fast bottom-up saliency-based approaches that generate object bounding
box proposals, the overall detection process becomes more efficient [225], since regions that are unlikely to contain
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objects are discarded for further processing. However, these approaches are agnostic to object dynamics, and are
solely based on low-level visual features.

Resource-constrained adaptive sensing, is within a different line of research, and accounts for dynamical
uncertain environments and noisy sensors for sequential decision making. The temporal integration of continuously
gathered noisy detections is used to predict future environment states and decide, in a top-down manner, where
to allocate the limited sensing resources, according to some task-related goal. It has been shown that adaptive
sensing improves not only processing efficiency but also estimation robustness when compared to non-adaptive
approaches [131]. Adaptive sensing problems can be formulated as POMDPs [4][33][37] that, depending on the
way they compute the policies, belong to two different paradigms: Offline methods compute full policies before run
time. Despite achieving remarkable performance in visual search tasks, these often require the evaluation of many
possible situations, via backward induction, and hence take a considerable amount of time (e.g. hours). Online
decision approaches avoid the computational burden of computing full policies for many situations, by departing
from the current belief state and simulating future rewards for a finite planning horizon [177]. Within the online
POMDP domain, the work closest to ours is the one in [37], which proposed a formulation for general adaptive
sensing problems. The authors applied rollout techniques which are guaranteed to improve upon a provided base
policy, that may be hard or impossible to compute. Rollout techniques evaluate the candidate actions, by running
many Monte-Carlo simulations and returning the action with the best average outcome. In this work we rely on
a different, widely known algorithm named MCTS [29], which has recently been given much attention by the
Artificial Intelligence community due to its outstanding performance in the game Go [69]. MCTS combines tree
search with randomized rolllout simulations, being ideal for decision making under uncertainty.

In this work, we propose a probabilistic framework which poses the multiple object tracking-by-detection
problem as an on-line, resource-constrained decision making, aimed at minimizing the combined targets’ state
uncertainty, while coping with computational processing limitations (see Figure 5.1). Our framework relies on
object detections with associated confidence measures, obtained from visual information, that are used to drive the
observer’s attentional focus during multiple object tracking. More specifically, we pose our decision framework
within the POMDP domain in order to account for non-deterministic dynamics and partially observable states. The
derived dynamic resource allocation decision process combines prior knowledge about the targets’ state dynamics
with accumulated probabilistic information provided from sequentially gathered observations, in order to optimize
multiple target location estimation precision (i.e. minimize tracking uncertainty). In the proposed formulation,
actions are taken from a low dimensional binary space. This allows for finding decision policies in real-time using
on-line, tree-based, planning algorithms for finite horizon POMDPs [177].

The main contribution of this thesis in this topic is a novel framework for dynamic and resource-constrained
target selection attended at each time instant, during MOT. The proposed approach is formulated as a resource-
constrained POMDP and inspired by brain limitations in the number of targets and the total area of the visual
field to be attended. More specifically, first we model the state-dependent uncertainty that arises during detection
due to the discrete nature of the sliding window based detector. Then, we apply an online MCTS method to
solve the planning problem in real-time. To our knowledge we are the first to apply an online tree-based POMDP
solver in a probabilistic resource-constrained multiple object tracking scenario. The computational benefits of
our methodology are demonstrated in a multiple person tracking scenario, by combining it with a state-of-the-art
pedestrian detection algorithm [45]. However, we note that the proposed decision making pipeline can be combined
with any general object detection algorithm.

5.3 Methodologies

A POMDP for general active sensing can be defined as a 6-element tuple (X ,A,Y,T,O,R) where X , A and Y
denote the set of the possible environment states, perceptual actions and observations, respectively. State transitions
are modeled as a Markov process and represented by the probability distribution function (pdf) T (xt,xt−1) =

73



 Search Regions Proposals
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Sliding Window-Based DetectionsProbabilistic Multiple Pedestrian Tracking

...

Figure 5.1: The proposed resource-constrained multiple pedestrian tracking pipeline. Given a set of persons being
tracked, our decision making algorithm decides which sub-regions of the visual scene to attend. Then, a sliding
window-based detector is applied to the selected search regions, instead of the whole image. For each region
a winning candidate is obtained via maximum suppression and fed to the associated tracker with probabilistic
measures queried from the observation model.

p(xt|xt−1). Observations are generated from states according to the pdf O(xt,at,yt) = p(yt|xt,at). Under the
resource-constrained adaptive sensing domain, the goal of the planning agent is to devise control strategies that
generate perceptual actions from belief states, such that some intrinsic cumulative reward is maximized, while
accounting for perceptual limitations. In the rest of this section we describe our resource-constrained POMDP
formulation for multiple pedestrian tracking scenarios.

Let us consider a set of targets indexed by K = {1, ...,K}, being tracked in a 2D image plane I, with state
xk ∈ X ⊂ R3 given by

xkt =
[
xk,ct
xk,st

]
(5.1)

where xk,c = (u,v) and xk,s represent the bounding box centroid image coordinates and scale, respectively.
Moreover, let us assume a stationary Markov chain p(xkt |xkt−1) in order to model the object’s state transition
between consecutive frames. Similarly to [22] we assume sparsity-in-space and independence among targets, and
linear constant-velocity dynamics model, which is a good approximation for targets that move with low acceleration
in 3D and are not too close to the image plane. Finally, we assume that the targets’ states are partially observable
and statistically explained by the observation model distribution p(ykt |xkt ).

5.3.1 Recursive Bayesian Estimation

Object tracking can be achieved by means of recursive Bayesian estimation, according to

bkt
def=p(xkt |yk1:t)

=ηp(ykt |xkt )b̄kt (5.2)

where bkt represents the belief posterior probability over the target state xkt , given the set of all gathered observations
yk1:t taken up to time t, η is a normalizing factor and

b̄kt =
∫
p(xkt |xkt−1)bkt−1dxt−1 (5.3)
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represents the belief after the prediction step. Furthermore, we assume Gaussian state transition and observation
noises and hence tracking is optimally performed using K independent Kalman filters. At each time instant, each
Kalman filter provides a parametric posterior probability distribution function (pdf) over the target state

bkt =N (x̂kt ,Σkt ) (5.4)

where

x̂kt =
[
x̂k,ct
x̂k,st

]
(5.5)

is the estimated state and

Σkt =
[
σk,ct 0

0 σk,st

]
(5.6)

is the error covariance matrix. Note that here we consider a diagonal covariance matrix and aggregate the centroid
components in order to ease the notation.

5.3.2 Observation Model

The observations provided by the object detector are localized bounding boxes, obtained with a pedestrian detection
algorithm. More specifically, at each time instant the agent collects a set of observations

Yt =
{
ykt ,k = 1, ...,K

}
(5.7)

each corresponding to a noisy projection of the k target state.
Detection noise has several origins, the easiest to model being the one originated by the discrete nature of the

detector. The noise affecting the center of a bounding box ε
x
k,c
t

has two origins, both depending on the scale of the
bounding boxes: εsl, the error due to the sliding window process and εsci , the error due to the uncertainty of the
size of the bounding box. The value of sliding window jumps Qsl depends on the scale of the detection:

Qnsl = snQsl(0) (5.8)

whereQnsl is the number of pixels between two consecutive sliding window positions at scale n and sn is the value
of scale n, defined as:

sn = 2
n
N (5.9)

where N is the number of scales per octave. The present implementation of the detector has N = 8.
The value of the jumps of the bounding box center-bottom due to scale change, depend on the scale. The

number of pixels is given by Qscx and Qscy , for the x and y coordinates, respectively. In the worst case scenario,
a jump from the actual scale to the coarsest one, these values are given by:

Qnscx = w0(2
n+1

8 −2
n
8 )/2 (5.10)

Qnscy = h0(2
n+1

8 −2
n
8 )/2 (5.11)

where w0 and h0 are the width and the height of the smallest bounding box (n = 0). Assuming a Gaussian
distribution for these quantization errors, the statistics of εsl are given by

µnsl =
[

0
0

]
, Σn

sl =
[

(Qnsl)2 0
0 (Qnsl)2

]
(5.12)
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Regarding εsci , we approximate the statistics of these errors by the worst case which is given by

µnsc,

[
0
0

]
, Σn

sc ≈

[
(Qnscx)2 0

0 (Qnscy)2

]
(5.13)

Since both sources of noise are independent but not additive, our observation model considers the largest one
at each time. This yields the final image observation error εn:

εn ∼N (0,Σn) (5.14)

where
Σn = max(Σnsl,Σnsc) (5.15)

5.3.3 Dynamic Search Regions

Let us now consider different time-varying (dynamic) regions of interest (i.e. bounding boxes) to be attended, each
delimiting a target instance hypothesis

ut =
⋃
k∈K

ukt where ukt ⊂X (5.16)

Search regions are deterministically and analytically determined from beliefs according to the following mapping
function

f : x̂kt ,Σkt → ukt (5.17)

which is defined as follows

ukt =
[
x̂k,ct −αcσ

k,c
t , x̂k,ct +αcσ

k,c
t

]
× (5.18)[

x̂k,st −αsσ
k,s
t , x̂k,st +αsσ

k,s
t

]
(5.19)

where αs and αc are user selected parameters that control the width of the confidence bounds and thus the size of
the search regions. This definition accounts for the confidence level of the true target state being within the search
region. The user selected parameters permit balancing the trade-off between accuracy and allocation effort (larger
vs smaller regions).

Furthermore, we assume that each region has a deterministic, time-varying binary activation state

A= {ak ∈ B,k ∈ K}= BK (5.20)

where B = {0,1} with 0 and 1 meaning "not processing" and "processing", respectively. Decision making is
therefore performed in a finite multi-dimensional binary action space and involves selecting which sub regions of
the image space to apply the sliding window detector to perform measurement update steps. The belief becomes
dependent on actions as follows

bkt (akt ) =

b̄kt if akt = 0

ηp(ykt |xkt )b̄kt if akt = 1
(5.21)

where η is a normalizing constant. For attended regions, the predicted belief is approximated by the expected
observation uncertainty given by the observation model, over a finite set of space points corresponding to detection
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Figure 5.2: Monte Carlo Tree Search (image taken from [29]).

windows Yk ⊂X in the search region k, according to

bkt (akt )≈ c
|Yk|∑
i=1

p(ykt |x
k,i
t )b̄k,it if akt = 1 (5.22)

where c is a normalizing constant, |Yk| is the number of detection windows and b̄k,it = p(xit|b̄kt ). Each p(ykt |x
k,i
t )

is queried on-line from the learned observation model. Assessing multiple xit ∈ ukt instead of just x̂t should better
approximate the error distribution.

5.3.4 Resource constrained POMDP with belief-dependent rewards

As previously noted the decision making involved in resource constrained multiple target tracking scenarios can
be formulated within the POMDP framework. The perceptual agent tries to minimize tracking uncertainty by
prioritizing its limited attentional resources to promising image regions. The instantaneous reward function should
thus reflect the action contribution to maximizing the information regarding the targets’ states. Similarly to [7]
let us define the instantaneous reward at time t as the negative entropy of the belief state, given by the following
expectation

r(bkt (akt )) =
∫
bkt logbkt dxt (5.23)

For Gaussian beliefs this reward becomes simply given by

r(bkt (akt ))≈− log(|Σkt |) (5.24)

Inspired by the evidence of visual processing capacity limitations in humans [220], we formulate the proposed
resource constrained information maximization as follows:
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maximize
a

RT = E

[
T∑
τ=1

γτ
K∑
k=1

r(bkt+τ (akt+τ ))
]

subject to
K∑
k=1

akt+τ ≤Kmax ∀τ∈{1,...,T}

K∑
k=1

akt+τ |ukt+τ |≤ SmaxAp ∀τ∈{1,...,T}

where T is the planning horizon, E [·] is the expectation operation, r(·) is the reward function, γ ∈ ]0,1] is a
discount factor, |ukt+τ | is the area of the k search region, Kmax is the maximum region-based activation capacity,
Ap is the image pixel area and Smax is the relative maximum image area that the visual system may process per
time-instant. The first constraint reflects short-term memory limitations and allows reducing the action space
(assuming Kmax <K), and thus the branching factor during planning. The second is motivated by computational
effort and timing limitations that arise during visual processing and contributes to prune infeasible planning tree
branches, by prioritizing resources to higher uncertainty targets.

5.3.5 Monte Carlo Tree Search (MCTS)

The MCTS algorithm relies on Monte-Carlo simulations to assess the nodes of a search tree in a best-first order,
by prioritizing the expansion of the most promising nodes according to their expected reward. In a nutshell, the
algorithm runs Monte Carlo simulations from the current belief state (i.e. input root node), and progressively builds
a tree of belief states and outcomes. In the end, the most promising action is returned. Each run comprises four
phases (see Figure 5.2):

1. Selection: In the selection step a sequence of actions are chosen within the search tree. Tree descending
is performed from the root until a leaf node is reached. Action selection is typically carried out using an
algorithm named UCB[112], which elegantly balances the exploration-exploitation trade-off, during action
selection. On the one hand, based on the current accumulated simulated knowledge, the planning agent
should select actions that may lead to the best immediate payoffs (exploitation). On the other hand, the agent
should select unexplored actions since they may yield better long-term outcomes;

2. Expansion: an action that leads to an unvisited node is selected and the resulting expanded leaf node is
appended to the tree;

3. Simulation: From the expanded node, actions are taken randomly in a Monte-Carlo depth-first manner, until
a predefined horizon or a terminal state is reached. Simulation depth (i.e. time horizon) is typically fixed, to
deal with real-time constraints. Since sampling from a uniform distribution over actions may be suboptimal,
problem specific knowledge should be incorporated to give larger sampling probabilities to more promising
actions. In our specific problem, we bias this sampling distribution such that regions with higher entropy are
prioritized.

4. Back-propagation: Finally, the simulation rewards are back-propagated to the root node. This includes
updating the reward rate stored at each node along the way.

Finally, runs are repeated until a computational budget (i.e. a triggering timeout or amaximum number of iterations)
is reached, and the best action from the root node is selected.

Upper Confidence Bounds for Trees (UCT)

The idea of using Upper Confidence Bounds [10] on rewards to deal with the exploration exploitation dilemma in
the face of uncertainty, has been widely applied to reinforcement learning problems. In MCTS, Upper Confidence
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Bounds for Trees (UCT) are typically employed in the selection phase, while descending the tree. The upper
confidence bound accounts for the currently estimated value of the action, and the estimated UCT variance,
according to

UCT (a) = r+ c

√
lognv
na

(5.25)

where r is the estimate for the value of the action based on the simulated payoffs, nv is the number of times the
node has been visited, and na is the number of times an action a has been tried from that node. The constant c is a
problem-dependent parameter that balances the exploration-exploitation trade-off.

5.4 Experiments and Results

In order to evaluate the proposed resource-constrained tracking approach we performed a set of experiments on the
TUD-Stadtmitte MOTChallenge dataset [121], which allows to evaluate tracking performance with the CLEAR
MOT metrics and known ground truth [19]. This dataset comprises a video sequence of 179 images, acquired with
a static camera with 640×480 image resolution. An average of 8 pedestrians are present in the visual field, during
the video. To quantitatively assess the performance of our methodologies we focused our evaluation in the time
speed-up gains and in the multiple object tracking precision (MOTP), which is the total error in estimated position
for matched object-hypothesis pairs over all frames, averaged by the total number of matches:

MOTP =
∑
i,t d

i
t∑

t ct
(5.26)

where dit ∈ [0,100] quantifies the amount of overlap (in percentage) between the true object oi and its associated
hypothesis bounding boxes, and where ct is the number of matches found for time t. The Multiple Object Tracking
Precision (MOTP) shows the ability of the tracker to keep consistent trajectories.

Our aim was to investigate the performance of the proposed methodologies dependency on the resource-
constraints. We considered the following activation capacitiesKmax ∈ {1,2,3,4} and maximum processing image
areas Smax ∈ [0.1,1.0]. Since the MCTS method is randomized, we performed 100 trials for each combination of
parameters.

The region size parameters where found empirically and were set to αc = αs = 1. At each time step, the
MCTS planning root node was set to the current tracking belief, and the algorithm was allowed to run for 10ms.
Finally, the simulation step depth was set to 3 and γ was set to 0.9. The association between detections and
trackers was performed with the Hungarian Algorithm [30] using the Mahalanobis distance. The tracking process
is bootstrapped in the first frame, by applying the pedestrian detector to the whole image and instantiating a tracker
for each detection. These trackers are kept during the entire video sequence, and every non-assigned detection is
discarded, i.e., trackers are not further created.

The results presented in figure 5.3 demonstrate that planning future resource allocations in a constrained setting,
improves simultaneously detection times and tracking precision, when compared with the baseline, full-window
detector. As illustrated by the temporal gain plots (first row of Figure 5.3), our method achieves detection times
around 12 times faster than the baseline detector applied to the full-window (0.02 against 0.24 seconds, for
Smax = 0.1), with comparable tracking performance. Furthermore, the MOTP metric results demonstrate that, on
the one hand, constraining the attention to regions with high probability of pertaining a person, allows to improve
detection accuracy and to reduce the possibility of erroneous detections in the targets’ vicinities, which may lead to
bad detection-tracker associations and hence degrade tracking precision. On the other hand, ignoring regions that
are unlikely to contain a person allows to reduce the number of spurious wrong detections (i.e. false positives) that
may also contribute to tracking performance degradation.
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In conclusion, in the constrained setting the allocation of more computational resources yields better tracking
precision, at the cost of increased computational effort. Therefore, depending on the application requirements, this
trade-off can be easily balanced by carefully selecting theKmax and Smax resource-constraints.

K
max

1 2 3 4

G
a
in

0

2

4

6

8

10

12

14
S

max
=1.0

S
max

=0.7

S
max

=0.4

S
max

=0.1

S
max

0.2 0.4 0.6 0.8 1

G
a
in

0

2

4

6

8

10

12

14
K

max
=4

K
max

=3

K
max

=2

K
max

=1

K
max

1 2 3 4

M
O

T
P

 (
%

)

62

64

66

68

70

72

S
max

0.2 0.4 0.6 0.8 1

M
O

T
P

 (
%

)

62

64

66

68

70

72

Figure 5.3: Speed-up gains and resulting Multiple Object Tracking Precision (MOTP). Bottom-row: Dashed black
line represents the baseline full-window detector.

5.5 Conclusions

In this work we have addressed the MOT problem with constrained resources, which plays a fundamental role in
the deployment of efficient mobile robots for real-time applications involved in HRI.

The tracking constraints are inspired by divided attention mechanisms in the brain. In particular, limitations in
the number of targets and size of the attentional focci. We have framed theMOTwithin the POMDP domain in order
to account for non-deterministic dynamics and partially observable states, and proposed a problem formulation that
allows for on-line, real-time, planning with a state-of-the-art MCTS methodology.

Our framework relies on object detections and associated confidence measures, obtained from visual informa-
tion, that are used to drive the observer’s covert attentional foci during MOT. The derived process of decision
making under uncertainty process combines prior knowledge about the targets’ state dynamics with accumulated
probabilistic evidence provided by sequentially gathered observations, in order to optimize multiple target location
estimation precision (i.e. minimize tracking uncertainty). In the proposed formulation, actions are taken from a
low dimensional binary space. This allows finding decision policies in real-time using on-line, tree-based, planning
algorithms for finite horizon POMDPs. The results presented in this work show that directing the attentional
focci to important image sub-regions allows for large detection speed-up improvements on tracking precision. Our
contributions are the following:

1. to our knowledge, our work, published in publication , is the first to frame MOT as a resource-constrained
POMDP problem, aimed at minimizing the combined targets’ state uncertainty, while coping with computa-
tional processing limitations. The optimization constraints reflect experimental evidence on divided attention
limits in the number and size of attended targets during MOT.
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2. the results presented in this work demonstrate that constraining the attentional foci, in a top-down manner
(in our case, a sliding window pedestrian detector) to image sub-regions and limiting the number of attended
targets per time instant, allows for large tracking speed-ups and improvements on MOT precision.

Future work The major limitation of our approach is still its incapacity of dealing with non-sparse targets. In the
future, data association should also be considered during planning by integrating data association methodologies
such as Joint Probabilistic Data Association (JPDA) [77]. Another shortcoming of our methodology is its incapacity
of locating new pedestrians appearing on the scene, in an efficient manner. However, this can be easily overcomed
by considering proposals generated by bottom-up saliency methods. Finally, we note that the targets’ dynamics
and the observation distributions are extremely non-linear and non-Gaussian. Therefore, a mixture of particle
filters [153] would be more appropriate for our particular problem, and hence improve tracking accuracy at the cost
of some additional computational effort. Future research directions, may include:

• Multi-object visual search, 3D pose estimation and tracking with biologically inspired binocular vision:
Extending the previously proposed target reconstruction pipeline with the ability of detecting and tracking
the pose of multiple objects, using foveated stereo vision.

1. Resolving overlapping targets with foveated binocular disparity: Target bottom-up detection overlaps
could be resolved and tracklets initialized using real-time binocular disparity information.

2. Faster decision making: in our current formulation, probabilistic state transition dynamics and ob-
servation models are known and assumed Gaussian, hence cheaper alternatives to MCTS look-ahead
techniques, including greedy and beam search could be employed, and tracking performed in 3D.

3. Non-linear dynamic models for robust pose tracking: the target dynamics and observation distributions
are extremely non-linear and non-Gaussian when backprojected to 2D. Performing MOT in 3D using
a mixture of particle filters [153] with particle proposals provided by our object detection and pose
estimation approach, could be a more appropriate and robust choice for our particular problem to
improve tracking accuracy, at the cost of some minor additional computational effort.

81



Chapter 6

Conclusions
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In this thesis we have proposed approaches for biologically inspired artificial vision, ranging from low-level
hardwired attention vision (i.e. foveal vision) to high-level visual attention mechanisms for robotics applications.
More specifically, we delved beyond the state-of-the-art in biologically plausible space-variant resource-constrained
vision methods (foveal vision, selective attention, active vision), for 2D recognition, 3D reconstruction, pose
estimation and multiple object tracking tasks (see Table 6.1).

2D recognition 3D reconstruction Pose estimation MOT
Foveal Vision Chapter 2 Chapter 3
Selective Attention Chapter 2 Chapter 4 Chapter 4
Active Vision Chapter 2 Chapter 3 Chapter 5

Table 6.1: The biologically inspired vision mechanisms applied in this thesis to robotics relevant problems.

6.1 Foveal Vision

We have shown that foveal vision mechanisms are important both for monocular (2D) and binocular (3D) visual
search tasks.

Monocular Vision We assessed the impact of mimicking non-uniform, human like, foveal vision mechanisms
in recognition and localization tasks, when combined with state-of-the-art CNN architectures. In Chapter 2 we
concluded that it is not necessary to store and transmit all the information present in high-resolution images.
Although in the thesis we have not fully exploited the image compression effect of foveation, we have related the
amount of information contained in foveal images to the size of the fovea. After a certain fovea size, roughly
corresponding to half of the energy content of the original image, the performance in classification task saturates.
The methodology is suitable for robotics agents that have the ability of moving the camera fixation point (i.e.
pan and tilt), with low onboard computational resources, but with the ability to outsource processing, over low-
bandwidth communication channels. When combined with saccadic mechanisms, our foveal representation can
reach a recognition accuracy similar to the baseline high resolution image, with lower transmission bandwidth per
saccade, than the original image.

Binocular Vision We demonstrated that foveal sensor topologies combined with stereo vision can be used to
improve overall object reconstruction performance, at the cost of delayed task execution (i.e. target finding), when
compared to conventional Cartesian counterparts (Chapter 3). We developed a novel way of characterizing the 3D
stereo reconstruction error on foveal stereo setups.

6.2 Selective Attention

We have showed that biologically inspired selective attention mechanisms improve task execution and speed, in
object detection and pose estimation problems. Namely, we addressed two types of selective attention mechanisms:
shape-based attention and orientation selectivity.

Shape-Based Selective Attention We have proposed a biologically inspired pre-attentive architecture that filters
out visual object distractors by smartly combining 3D saliency information with 2D appearance features extracted
with neural networks optimized to filter task-irrelevant (e.g. ungraspable) object distractors (Chapter 4). Our
experiments show that the proposed approach doubles the speed of object detection tasks in scenarios, with an
average of 75% visible object distractors.
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3D Orientation Selectivity We have developed a novel method to sample non-uniformly the orientation space.
The application of this method to tasks such as 3D visual search (Chapter 3) and pose estimation (Chapter 4)
has shown advantages with respect to the uniform resolution analogues in terms of coping with limited working-
memory resources (i.e. limited number ofmemory cells) while improving performance. We have shown that biasing
the sampling of the orientation space in accordance to prior task knowledge leads to more efficient, flexible and
adaptable memory allocation and to more effective behaviours during task execution, namely a speed up of 30× in a
target reconstruction task (Chapter 3). We also showed that task-based orientation representations, implemented as
randomized Hough orientation voting spaces, dramatically improve estimation robustness and accuracy on cylinder
identification tasks, using 3D depth information. A systematic quantitative analysis of robustness to outliers and
noise, validated our approach. In comparison to the state-of-the-art method of Rabbani [168], our method is able
to cope with more than 150% data points not belonging to the object of interest (i.e. outliers), and more than 100%
sensory noise levels (% with respect to object size) (Chapter 4).

6.3 Active Vision

We have applied active vision concepts to multiple problems, namely, for object recognition and 3D reconstruction,
with foveal vision, and divided attention for MOT tasks.

Object Recognition In the case of 2D recognition, we developed neural saliency mechanisms to center objects
within the fovea through saccades, and demonstrated similar recognition accuracy can be achieved with artificial
foveal images when compared to full, high-resolution images (Chapter 2).

3D Object Recognition In 3D reconstruction, we have showed that by actively selecting the NBV point, using
probabilistic evidence encoded in the proposed working-memory structure (i.e. SES), we were able to improve
object reconstruction accuracy (Chapter 3). We showed that a MAB formulation using probabilistic 3D measures
for NBV in 3D allows dealing effectively with exploration-exploitation trade-offs during 3D object reconstruction
tasks, and also that different gaze patterns emerge depending on the sensor topology (i.e. Cartesian and Foveal)
and field of views. The obtained results demonstrated that log-polar setups improve target reconstruction accuracy,
at the cost of delayed task execution.

Multiple Object Tracking In MOT (Chapter 5), active vision was used to select the targets, and update their
state over time, considering that at each frame there is a limited number of targets to track, and a limited budget for
the targets and visual input to process. We have showned that we can reach similar tracking accuracy, while being
12 times faster than the baseline sliding-window based trackers.

6.4 Future Work

Although the proposedmethodologies presented in this thesis are biologically plausible and exhibitmany similarities
with phenomena found in the human visual system, their main limitations, relies in the fact that they are purely
model-based and do not apply learning principles. However, it is known that many processes in biological systems
are driven by data and involve learning mechanisms that allow the agent to adapt to the environment.

Future work should target data-driven mechanisms that learn from brain and eye-tracking data to performe
biomimetic saccadic ocular-motor control, in particular models that learn from human demonstrations how to
explore the surrounding environment. In particular, the statistics of our reconfigurable short-term memory and
orientation selectivity structures (Chapters 3 and 4) could be learned, using contextual data gathered from real-world
scenarios (e.g. tabletop grasping scenarios).
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While the proposed NBV planning methods allows to easily integrate task-dependent priors through biased
sampling of the sphere of directions, we believe that its combination with conventional allocentric environment
representions for localization and mapping, may be more appropriate for artificial agents that have the ability of
moving their stereo apparatus freely in 6D space.

Finally, we also suggest extending and incorporating the developed divided attention mechanisms for MOT,
within more sophisticated data-driven learning frameworks, such as [82], for real applications, such as surveillance
and HRI.
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Appendix A

Artificial Neural Networks

ANN are computational models inspired by the central nervous system of mammals, that try to mimic the way the
brain solves problems. A neural network is an approximator that receives stimuli inputs, andmaps them to an output.
Its key element is its ability to learn implicit mapping functions between inputs and outputs, making it capable of
recognizing complex patterns, and a powerful machine learning tool. Neural networks are organized in layers that
establish connections between neurons. Each connection between two neurons has a weight that controls how the
activation of the first neuron influences the second. at controls how the activation of the first neuron influences the
second. The input units receive information from the outside world and communicate with one or more hidden
layers where actual processing takes place. In classification networks, the hidden layers apply a distortion of the
input data in a non-linear way with the aim of having linearly separable categories at the end [122]. The last hidden
layer links the output layer where items are assigned to the believed belonging class (see Figure A.1). All neurons
in the hidden layers are processed by an activation function that can be a linear, threshold or sigmoid function.

Figure A.1: Neural network basic structure.

There are two main learning algorithms for training neural network based classifiers:

• Supervised learning - requires a large labeled data set with labeled input samples. The network produces an
output in the form of a vector of scores, one score for each category. Then, an objective function is computed
to measure the error, i.e. the difference between the output scores and the desired pattern of scores. With
this knowledge, all internal weights are adjusted with the goal of minimizing the error. To correctly perform
these adjustments, the learning algorithm computes a gradient vector that, for each weight, indicates what
would be the error value variation if the weight was increased by a small amount [122]. Finally, the weight
vector is adjusted in the opposite direction to the gradient vector.

• Unsupervised learning - The network learns intrinsic relations about the data without specifying a target or
label. It exploits only the statistical distribution of the input data to associate samples to groups of related
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elements.

In supervised learning, there are mainly three steps to follow: the training set used to build the model by finding
relationships between data and pre-classified targets (labeled data), the validation set is used to tune the hyper
parameters such as the number of hidden units or the depth of the neural network and finally, the test set is used to
estimate the performance of the model on never-seen data.

Deep Neural Networks

DNN are a subclass of ANN that are characterized by having several hidden layers between the input and output
layers. Before 2006, most neural networks typically used one hidden layer, two at the most, due to the expensive cost
of computation and the scarce amount of available data. The deep breakthrough occurred exactly in that year, 2006
when Hinton [85], Bengio [18] and Ranzato [169], three researchers brought together by the Canadian Institute
for Advanced Research (CIFAR) were capable of training networks with much more layers for the handwriting
recognition task. They used unsupervised learning methods to create layers of feature detectors without the need
of labelled data. The deep breakthrough occurred in 2006 when Hinton [85], Bengio [18] and Ranzato [169],
researchers brought together by the Canadian Institute for Advanced Research (CIFAR) were capable of training
networks with much more layers for the handwriting recognition task [122].

Then, they pre-trained some layers with more complex feature detectors providing enough information to
initialize the network weights with reasonable values. This method allowed researchers to train networks 10
or 20 times faster [122]. In recent years, DNNs are becoming deeper which resulted in a performance boost.
However, very wide and shallow networks exhibit very weak performance at generalization despite being good
at memorization. As opposed, deeper networks can learn features at several levels of abstraction and present
much better results in generalization because they learn all the intermediate features between the raw data and
the high-level classification. Note that using wider and deeper networks lead to an increase in the number of
the parameters that the network will have to learn. Following the tendency to work with deeper networks and
considering the overfitting problem that occurs when the model fits too closely to the data set, a recent technique
called Dropout has been successfully implemented. The dropout technique consists on randomly dropping out
(i.e. ignoring) neurons during the training phase [193] which enforces the network to learn more robust features
and decrease co-dependency between neurons, improving the generalization of the neural network. One attempt
to speed up the network by decreasing the number of parameters has been done by substituting large convolutions
with the combination of smaller ones. Researchers replaced a large 7× 7 convolution by a cascade of several
small convolutions like 3× 3 convolutions with the same depth [134]. In-between each of these small convo-
lution layers, a ReLU layer is placed to increase the number of non-linearities. Therefore, we end up with a
similar network but with fewer weights that result in fewer computations and a faster network. However, this type
of substitution can not be done on the first layer because it will result in an enormous consumption of memory [134].

Convolutional Neural Networks

There are several types of DNNs but as far as visual classification and object detection is concerned, the most
commonly used are the CNNs, that are feed-forward ANNs that take into account the spatial structure of the input.
They have the ability to learn discriminative features from raw data input and have been used in several visual tasks
including object recognition and classification. This type of neural networks is named convolutional since they
perform the mathematical operation convolution. The mathematical formula for convolution of discrete signals is
defined in (A.1) where x is the input signal and h is the impulse response. This operation has several applications
on signal processing such as filtering signals (2D - image processing) or finding patterns between them.

102



y[n] = x[n]∗h[n] =
∞∑

k=−∞
x[k]h[n−k]. (A.1)

A CNN is constituted by multiple stacked layers that filter (convolve) the input stimuli to extract useful and
meaningful information depending on the task at hand. These layers have parameters that are learned in a way that
allows filters to automatically adjust to extract useful information without feature selection so there is no need to
manually select relevant features. The general architecture of a CNN is shown in Figure A.2.

Figure A.2: Convolutional Neural Network architecture. Figure adapted from [94].

Convolutional layer: Each neuron receives a sub-region from a previous layer as input and these local inputs
are multiplied by the weights. These filters are applied throughout the input space with the purpose of looking for
specific features. Their weights are shared and their output is a feature map.

To configure a convolution layer, it is necessary to set some hyper parameters [134] such as:

• Kernel size - size of the filters;

• Stride - number of pixels that the kernel window will slide (usually, 1 for convolution layers);

• Number of filters - number of patterns that the convolution layer will look for.

Pooling layer: Is generally placed in-between convolutional layers and their goal is to downsample the input,
reduce the dimensionality and produce a single output from the local region. It also decreases the amount of
computation in the upstream layers by reducing the number of parameters to learn and provides basic translation
invariance. A commonly used down-sampling function is the max-pooling which determines the maximum value
within each sub-region (see Figure A.3.)

Figure A.3: Representation of max-pooling operation.1

1source: https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks [seen in December, 2016]
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Fully-connected layer: Is the upper layer and computes the class scores to be consistent with training set labels.
The input of the fully-connected layers corresponds to the set of all feature maps from the previous layer. Since
they are not spatially located, there may be only be a convolutional layer after a fully-connected one.

In a CNN, the neurons are arranged in a 2D structure (width, height) in a way that allows spatial relations
between neurons and original data to be preserved. However, with the use of colored images specially RGB images,
an additional dimension for separate color channels is required. In this way, we have a 3D input (width, height and
depth). The number of input neurons residing in the first network layer is equal to the input size. In essence, if an
image is presented as input, the number of neurons at the first layer will be the same as the number of pixels of the
input image. Therefore, if an image was used as input of a fully-connected network, it would require a combinatorial
number of connections between neurons and hence the training of this network would be unmanageable. CNNs
are capable of dealing with the computational complexity issues by connecting sub-region of previous layers to
neurons and the weights and bias are shared allowing to look for the same feature in several regions. In the second
layer, each neuron is connected to a subset of neurons from the previous layer, called receptive field. This way,
receptive fields of neurons in deeper layers involve a combination of receptive fields from several neurons from the
previous layers.

ImageNet Data Set

ImageNet is a large public visual data set of over 15 million labeled images taking part of about 22 thousand
categories. The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) started in 2010 and uses
a subset of ImageNet formed by roughly 1000 images in each of the 1000 categories2. The ILSVRC 2012 data
set [179] was previously divided into training, validation and test images. The validation and test data consist of
50000 and 100000 annotated images but only validation labels data were released. The remaining images (test data)
were released without label and will be used to evaluate the algorithm. Since this data set was part of a competition,
the participants had to submit their results on the available test images and only at the end of the competition they
knew the results and the respective winner. These 150000 images (validation and test) were not part of the training
data that is formed by 1.2 million images containing the 1000 categories. The challenge consisted of three tasks
and the data set [179] was already divided and publicly available.

Pre-trained Models

Train a network from scratch using a large amount of color images is computationally expensive and time consuming.
Thereby, there are some pre-trained Convolutional Network (ConvNet) models available at Caffe [106] Model Zoo.
In this section, an explanation is given on the different architectures of several pre-trained models and some
preliminary results available on Model Zoo are shown3.

CaffeNet/AlexNet Krizhevsky’s work [117] presents a DCNN constituted by five convolutional and three fully-
connected layers called AlexNet model. The convolutional layers are followed by a ReLU layer, then the neurons
are normalized by a Local Response Normalization (LRN) layer and finally a down-sampling is performed by a
max-pooling layer. The fully-connected layers are followed by a ReLU and a Dropout layer with dropout ratio of
0.5.

Two techniques were proposed to deal with overfitting: first, to artificially increase the data set by applying
small transformations to the original images like translations and horizontal reflections or change intensity of color
channels during training and secondly, use the dropout technique.

2source: http://image-net.org/challenges/LSVRC/2012/browse-synsets [seen in November, 2016]
3source: http://caffe.berkeleyvision.org/model_zoo.html [seen in November, 2016]
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Caffe [106] provides a reference CaffeNet4model which is a modification of AlexNet where the order of Pooling
andNormalization (LRN) layers are switched. Besides this, all the rest remains the same including all the parameters
of all layers. The change originates a slight computational advantage to CaffeNet since the max-pooling operation
is done before the normalization which will use less memory and calculations. Yet, there is not a significant
performance difference between both models.

A pre-trained version of both models is available and both were tested to check for performance differences
(see Table A.1). Both models were trained without the data-augmentation used to prevent the overfit mentioned
on [117] and the AlexNet model was initialized with non-zero biases of 0.1 instead of 1.5 Results released at
[117] show a top-1 classification error of 40.7% and a top-5 classification error of 18.2% of AlexNet model while
public replication of AlexNet presented a top-1/top-5 classification error of 42.9% / 19.8%. The results of CaffeNet
differed by less than 0.5% from the AlexNet but once it requires less memory, the CaffeNet was the chosen model
to perform the tests.

GoogLeNet GoogLeNet is a deep convolutional neural network with 22 weight layers proposed by Szegedy et
al. [197] for classification and detection tasks which improved the use of computational resources. It has nine
Inception modules that allow parallel pooling and convolution operations. For classification, it uses the spatial
average of the feature maps from the last convolution layer as the confidence of categories via a global average
pooling layer. The resulting vector is then used as input into the softmax layer. The most direct form of improving
the performance of deep networks is by increasing their size including depth (more layers) and width (more units
at each layer). Even with a bigger network, a constant computational budget was managed by using additional
1×1 convolutions as dimension reduction method [134] before the expensive 3×3 and 5×5 convolutions and by
replacing fully connected layers by sparse ones. A replication of the model in [197] was trained and the weights
file is publicly available6. However, there are some training differences that should be highlighted: the replication
uses "xavier" to initialize the weights instead of "gaussian"; the learning rate decay policy is different allowing a
faster training and training was done without data-augmentation. Xavier initialization is characterized by setting
the weights with a Gaussian distribution with zero mean and a weight variance equal to the inverse of the number
of input neurons ensuring faster convergence [71].
On one hand, the original model [197] achieved a top-5 classification error of 10.07% in the validation data and
a localization error of 38.02%. The top-1 classification error was not disclosed. On the other hand, replication
model obtained a top-1 error of 31.3% and a top-5 error of 11.1%. The localization error was not published. Once
the weights file of the replication model was the one used, the results obtained on this project were compared with
theirs (see Table A.1).

VGGNet It is a DCNN for object recognition developed and trained by Oxford’s renowned Visual Geometry
Group (VGG)7 [189]. This architecture was developed with the purpose of exploring the effect of the ConvNet
depth on its accuracy. Different configurations were used that goes from a ConvNet with 11 weight layers to a
ConvNet with 19 weight layers and the performance of individual ConvNet models were evaluated. For localization
task, the 16 weight layers architecture was used where the last fully connected layer predicts the bounding box
location instead of the class scores.

In comparison with the state-of-the-art at the time, an evident improvement was reached with a deeper network
achieving the optimal configuration at 16-19 weight layers. Since usually deeper networks mean more parameters
and more chance to overfit, Simonyan et al. used small 3×3 filters in all convolutional layers. Besides this
improvement, a demonstration of the generalization power of their model was done by achieving the state-of-the-art
results with other image recognition data sets such as PASCAL Visual Object Classes (2007 and 2012) [51]. The

4source: https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet [seen in December, 2016]
5source: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet [seen in December, 2016]
6source: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet [seen in December, 2016]
7source: https://github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014 [seen in December, 2016]
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16 weight layer configuration achieved a top-1/top-5 classification error of 25.6% / 8.1% and a localization error
of 26.9%. The 19 weight layer configuration decreased only 1% of the previous classification error which proved
to be the best results achieved so far. In this project, the pre-trained model VGGNet that was used has 16 weight
layers.

Table A.1 has a compilation of the classification and localization errors disclosed by the current state-of-the-art.
There are some fields of the table that contain a line which means that these results have not been published. As
explained on Section A, AlexNet pre-trained model is not used in our tests once there is no significant difference
of performance between AlexNet and CaffeNet pre-trained model and CaffeNet requires less memory.

Table A.1: ConvNet performance following the state of the art.

Number of Classification Error Localization Error
Model weight layers Top-1 [%] Top-5 [%] Error [%]

CaffeNet [117] 8 42.6 19.6 —-
AlexNet [117] 8 42.9 19.8 —-

GoogLeNet [197] 22 31.3 11.1 38.02
GoogLeNet Feedback [34] – 30.5 10.5 38.80

VGGNet [188] 8 39.7 17.7 44.60
VGGNet [189] (16 layers) 16 25.6 8.1 26.90
VGGNet [189] (19 layers) 19 25.5 8.0 —-

106


	List of Tables
	List of Figures
	List of Publications
	1 Introduction
	1.1 Motivation
	1.2 Neural and Artificial Mechanisms of Visual Information Processing
	1.2.1 Space-variant Foveal Vision
	1.2.2 Computational Foveal Vision Mechanisms
	1.2.3 Visual Attention and Spatial Selectivity as Resource Constrained Perception
	1.2.4 Computational Models of Visual Attention

	1.3 Objectives
	1.4 Main Contributions
	1.5 Outline of the thesis

	2 Object Detection with Smooth Foveal Vision
	2.1 Introduction
	2.2 Theoretical Background
	2.2.1 Object Detection with CNNs

	2.3 Methodologies
	2.3.1 Artificial Foveal Vision
	2.3.2 Weakly Supervised Object Localization

	2.4 Experiments and Results
	2.4.1 Information Compression
	2.4.2 Attentional Framework Evaluation

	2.5 Conclusions

	3 3D Visual Search with Foveal Vision and Space-variant Spatial Representations
	3.1 Introduction
	3.2 Related Work
	3.2.1 Active Vision
	3.2.2 Spatial Memory Data Structures

	3.3 Methodologies
	3.3.1 System Overview
	3.3.2 Stereo Sensor Model
	3.3.3 Randomized Sensory Ego-Sphere
	3.3.4 Active Vision: Sequential Stochastic Decision Making

	3.4 Experiments and Results
	3.4.1 Sensor Characterization
	3.4.2 Active Vision

	3.5 Conclusions

	4 Pose Estimation with Space-Variant Orientation Selectivity Priors
	4.1 Introduction
	4.2 Related Work
	4.2.1 Shape-based Selective Attention
	4.2.2 Object identification in robotics

	4.3 Methodologies
	4.3.1 System Overview
	4.3.2 Transfer learning for early shape-based attention
	4.3.3 Cylinder parametric fitting

	4.4 Experiments and Results
	4.4.1 Synthetic Data
	4.4.2 Real Data
	4.4.3 Overall Framework Assessment

	4.5 Conclusions

	5 Multiple Object Tracking with Resource Constraints
	5.1 Introduction
	5.2 Related Work
	5.3 Methodologies
	5.3.1 Recursive Bayesian Estimation
	5.3.2 Observation Model
	5.3.3 Dynamic Search Regions
	5.3.4 Resource constrained POMDP with belief-dependent rewards
	5.3.5 Monte Carlo Tree Search (MCTS)

	5.4 Experiments and Results
	5.5 Conclusions

	6 Conclusions
	6.1 Foveal Vision
	6.2 Selective Attention
	6.3 Active Vision
	6.4 Future Work

	Bibliography
	A Artificial Neural Networks

