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Resumo

O meio submarino constitui um desafio à navegação autónoma de véıculos robóticos. Uma
solução comum para o problema da esimação de posição consiste no uso de faróis acústicos posi-
cionados com grande precisão, o que implica elevados custos de operação. Recentemente, o sensori-
amento baseado em Visão tem vindo a ser encarado como uma alternativa de baixo custo. Apesar
de apresentar um alcance limitado, devido a restrições de visibilidade e iluminação, o posiciona-
mento baseado em Visão pode ser usado para navegação se estiver associado a uma representação
adequada do meio ambiente. Neste contexto, os mosaicos v́ıdeo constituem uma solução natural
para o problema do campo de visão limitado, podendo ser usada como representação do fundo
marinho.

Esta tese aborda o problema da construção de mosaicos video capazes de servir de suporte à
navegação de véıculos autónomos, operando perto do fundo marinho. Os métodos desenvolvidos
estão vocacionadas para missões nas quais um véıculo é comandado para mapear uma região de
interesse aproximadamente plana e navegar posteriormente sobre a mesma.

Na primeira parte do trabalho apresenta-se uma metodologia para a criação automática de
mosaicos v́ıdeo, que possibilita a estimação tridimensional da trajectória da câmara. O processo
de estimação tira partido expĺıcito de trajectórias em loop, onde se visita a mesma área em instantes
distintos, de modo a obter mosaicos com elevada coerência espacial.

De seguida aborda-se o tema da estimação de pose a partir de um mosaico previamente criado.
Uma soluções algébrica é apresentada para o caso de conhecimento total dos parâmetros intŕınsecos
das câmaras. Esta solução é posteriormente refinada com estimadores de máxima verosimilhança.
A incerteza associada é calculada através da estimação da covariância dos parâmetros de pose
como função das observações de imagem.

A última parte do trabalho ilustra o uso de mosaicos como mapas, para a navegação autónoma
de uma plataforma robótica. Um conjunto de rotinas eficientes é usado para a localização precisa de
um véıculo em relação ao mosaico, levando em conta os requisitos operacionais de posicionamento
em tempo–real, erros limitados e baixo peso computacional. Um módulo de geração de trajectórias
é usado para guiar a navegação sobre zonas onde o posicionamento visual é mais fiável. A geração
dos sinais de controlo dos actuadores assenta numa estratégia de servoing visual.

De forma a validar a abordagem e caracterizar o desempenho dos vários métodos, um véıculo
submarino operado remotamente foi usado em condições reais de operação. Apresentam-se resul-
tados de testes realizados no mar, nos quais foi posśıvel efectuar navegação autónoma durante
extensos peŕıodos de tempo. Nesta tese mostra-se que, sem recurso a outro tipo de sensores, a
informação visual pode ser usada para criar representações do fundo marinho e suportar navegação.

Palavras Chave: Visão por Computador, Mosaicos Sub–aquáticos, Navegação baseada em
Mosaicos, Controlo Visual, Estimação de Pose, Estimação Robusta de Movimento
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Abstract

The underwater environment poses a difficult challenge for autonomous vehicle navigation.
Common positioning solutions require the deployment of precisely located acoustic beacons, which
typically implies high operating costs. Vision sensing is increasingly being regarded as a low
cost alternative, but is limited to short range due to visibility and lighting factors. However, it
can provide precise positioning if an adequate representation of the environment is found. Video
mosaicing presents itself as a suitable technique to overcome the limited underwater field–of–view.

This thesis addresses the problem of creating accurate video mosaics, capable of serving as
navigation maps for autonomous vehicles operating close to the sea–floor. It is devised for mission
scenarios where a robotic platform is required to map an approximately flat area of interest and
to navigate upon it afterwards.

The first part of this work presents a methodology for the simultaneous creation of mosaics
and the estimation of the camera trajectory. Mosaicing is performed in a fully automatic manner
and attains full spatial coherence by exploring time-distant superpositions, such as the ones arising
from loop trajectories or zig-zag scanning patterns.

Next, the problem of the pose estimation using a previously constructed mosaic is addressed.
A direct algebraic solution is presented the case of known camera intrinsics, which is refined with
a maximum likelihood estimator. The associated uncertainty is computed by propagating the
covariance from image measurements to the pose estimates.

The last part illustrates the use of mosaic maps for autonomous navigation. A set of efficient
routines is required for the accurate localization of the vehicle with respect to the mosaic, taking
into account the operating requirements of real-time position sensing, error bounding and low
computational load. A trajectory generation module is used to guide the navigation over well
defined areas of the mosaic, where the visual based positioning is most reliable. The control
signals are generated using a visual servoing strategy.

In order to assess the performance of the overall system, a Remotely Operated Vehicle was
used under real operating conditions. Extensive testing was performed at sea, where the vehicle
was able to autonomously navigate over previously created mosaics for large periods of time. This
work demonstrates that, without resorting to additional sensors, visual information alone can be
used to create environment representations of the sea bottom and support long runs of navigation.

Key Words: Computer Vision, Underwater Mosaics, Mosaic–based Navigation, Visual Ser-
voing, Pose Estimation, Robust Motion Estimation
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Chapter 1

Introduction

This thesis addresses the problem of creating accurate video mosaics, capable of serving

as navigation maps for autonomous vehicles operating close to the sea floor. It is devised

for mission scenarios where a robotic platform is required to map an approximately flat

area of interest and to navigate upon it afterwards.

1.1 Motivation

The autonomous navigation of underwater vehicles is a growing research and application

field. A contributing factor is the increasing need of underwater activities such as environ-

mental and industrial monitoring or geological surveying. Applications that require data

acquisition at precise locations usually resort to the use of unmanned underwater vehicles,

either in the form of human–piloted Remotely Operated Vehicles (ROVs), or unthetered

Autonomous Underwater Vehicles (AUVs).

Recent interest has been devoted to the development of smart sensors, where the data

acquisition and navigation are intertwined. These systems aim at releasing the human

operation from low-level requirements, such as the path planning, obstacle avoidance and

homing. By providing the platforms with such level of human independence, these systems

allow for the reduction of operating costs while broadening the potential end-users group.

The user main tasks are in the definition of mission primitives to be carried out and higher

level mission control.

3



4 CHAPTER 1. INTRODUCTION

1.1.1 Underwater position sensing

The underwater environment poses a difficult challenge for precise vehicle positioning.

The severe absorption of electromagnetic radiation prevents the use of long range radio

transponders. Aerial or land robot navigation can rely upon the Global Positioning System

to provide real-time updates with errors of just a few centimeters, anywhere around the

world. The underwater acoustic equivalent is limited both in range and accuracy. It

requires the previous deployment of carefully located beacons, and restricts the vehicle

operating range to the area in between. Sonar equipment provides range data and is

increasingly being used in topographic matching for navigation, but the resolution is too

low for precise, sub–metric navigation.

Vision can provide precise positioning if an adequate representation of the environment

exists, but is limited to short distances to the floor due to visibility and lighting factors.

However, for the mission scenarios where the working locations change often and are

restricted to relatively small areas, vision–based positioning appears as an inexpensive

and promising alternative.

There is a number of commercially available technologies and products capable of pro-

viding position or velocity information to underwater vehicles. These can be grouped into

two categories depending on whether the sensing relies upon the active emission and prop-

agation of acoustic waves in the water. The first group comprises long baseline transponder

networks, sonar-based altimeters and Doppler velocity logs. The second encompasses the

non-acoustic sensors such as gyroscopes, accelerometers, magnetic compasses and incli-

nometers.

In order to illustrate comparatively the advantages and limits of the vision–based

approach of this thesis, some of the distinctive features of these commonly used sensors

are now briefly discussed.

Acoustic Transponder Networks

Long Baseline (LBL) acoustic positioning constitute the standard technique for 3D nav-

igation in AUV applications [124]. It relies upon a network of 3 or more transponders

which need to be placed in fixed and accurately known locations.

Under typical operation, the position determination process is triggered by the vehicle

emitting a short duration pulse at a given interrogation frequency. Upon detection of
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such pulse, each transponder replies by emitting at a distinctive frequency, after a known

constant time delay. The vehicle senses the replies and measures the response time inter-

vals. Given the knowledge of the sound propagation velocity, the response intervals are

converted into distances. The vehicle position is obtained by triangulation, with respect

to the transponder locations. The position update rate is thus dependant on the distance

to the furthest transponder.

Long baseline transponder networks have been successfully used for several decades

and can be considered a mature technology in terms of reliability and commercial avail-

ability. However, in order to provide absolute 3D localization, they require the previous

deployment and calibration of the network. This bears high operating costs and is not

suitable for applications where the working area changes frequently.

The accuracy of the position measurements strongly depends upon the pulse frequency

and the geometric arrangement of the networks. These factors define the trade-off between

the size of the work area and measurement resolution. A typical 12kHz LBL has a range

of 5 to 10 km with 10 meters accuracy and an update rate of 0.1 Hz [124]. Using higher

frequency pulses attains better resolutions at the expenses of much lower ranges due to

the higher propagation attenuation. A shorter range 300kHz LBL can be used up to

100 meters and provide centimeter level accuracy under 1Hz update rates [124]. High

frequency LBL are suited for vehicle docking maneuvers into docking stations to which

the transponders are permanently attached.

Inertial Navigation Systems and other passive internal sensors

Inertial Navigation Systems (INS) are self–contained devices, comprising accelerometers

and gyroscopes.

Traditional mechanical gyroscopes rely on the momentum conservation of a fast rotat-

ing mass, which gives rise to reaction forces when the orientation is changed. Such forces

are measured and converted into angular velocity readings. High quality mechanical gy-

roscopes attain small angular drifts of less than 0.2 degrees/hour). However their large

size, cost and maintenance requirements precludes their use in AUVs and small ROVs.

Recently, lower cost gyros using technology that does not require rotating parts, have

become commercially available. The Ring Laser Gyros and Fiber Optics Gyros measure

the phase shift between two light beams travelling in opposite directions, from which the

angular velocity can be computed [20]. Such devices typically exhibit bias errors of 0.1 to
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0.01 degrees/hour and are commonly found in low cost vehicles.

Accelerometers use masses and springs to measure small mass displacements along

perpendicular axes, when the devices are subject to external forces. The displacements

are converted into acceleration readings.

For control purposes it is often required to have velocity (both linear and angular) or

position measurements. These can be obtained by single or double integration of the gyro

and accelerometers output. As such, the use of INS suffers from unbounded error growths,

typical of the dead reckoning operation, which requires periodic error resetting by means

of other sensors. However they can provide readings with fast updates and low latency

when compared to acoustic based position sensing.

Compasses obtain heading information by measuring the Earth’s magnetic field. This

sensor has the advantage of being drift free (i.e. does not accumulate errors over time)

and to provide information in a fixed world frame (the orientation of the Earth’s magnetic

field at that place). However, it can be severely affected by magnetic perturbations caused

either by on–board equipment or local environment variations [44].

Inclinometers provide roll and pitch information by taking angular measurements of

the gravity vector orientation with respect to the sensor frame. Depth sensors determine

the distance to the surface by measuring the hydrostatic pressure caused by the water

column. Compasses, inclinometers and depth sensors are inexpensive, passive sensors,

that constitute standard equipment even in low cost underwater vehicles.

Doppler Velocity Logs

Doppler Velocity Logs (DVL) are sonar based devices that measure the vehicle velocity

with respect to the sea bottom by taking advantage of the Doppler effect. A sonar pulse

is emitted at a known frequency. The frequency of the returned signal is measured and

compared to that of the original pulse. The rationale behind the method is that the

frequency shift is proportional to the vehicle velocity across the direction of the sonar

beam.

A typical DVL configuration uses 3 sonar beams with 120 degrees separation, or 4

beams at 90 degrees, which allow for determining the 3D velocity components in the

vehicle reference frame. These components can be integrated over time in order to obtain

displacement values.

The precision of the velocity measurements depends on factors such as the knowledge
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of the local sound propagation speed, the distance to the floor, and the pulse frequency

[61]. Errors in the assumed sound propagation speed (which varies with depth, salinity

and temperature) induce bias in the measured velocity. These can have large effects if the

DVL is used as position sensor due to the rapid growth of dead-reckoning accumulated

errors.

Vision

For several decades, the use of vision for navigation has been a topic of extensive research

for the land robotics community. This fact somehow contrasts with research in marine

robotics, where only recently has optical vision been regarded as a promising positioning

modality. The most important contributing factors are:

• Optical cameras are now standard equipment in underwater vehicles. Most ROVs

rely upon image feedback for human–assisted motion control and manipulation.

• Optical sensing requires inexpensive equipment. The most common configuration

comprises an analog video camera, a frame grabber board and a general purpose

host computer.

• It provides low level information (images) at a fast rate (25 or 30 Hz). The update

rate for higher level information, such as 3D position, is only limited by the computer

processing power.

• It allows for effective man–machine interfaces based on visual content. Here video

mosaics assume a predominant role as an intuitive representation of the environment,

that can be very efficiently interpreted by human operators.

• Optical sensing operates in a passive mode. It is not intrusive, apart from possible

artificial illumination requirements.

• It can provide 3D position and orientation information, in a fixed world coordinate

frame, without requiring the deployment of artificial landmarks or transponders.

This topic is addressed and illustrated in Chapters 4 and 5.

• It can be used for autonomous navigation, without requiring further sensors. This

is the core topic of the thesis. Navigation is illustrated in Chapter 6.
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However there are two main limiting factors, related with optical observability:

• The sensor range is limited by visibility conditions. Even under favorable conditions,

ocean water turbidity and absorption limit the sensor range to 7 to 10 meters.

Also, artificial illumination is required for deep waters, which can be very power

demanding.

• Optical sensing requires the presence of distinctive visual features (or cues). Video

processing for position sensing or mapping applications is based upon the analysis

of the image content. Therefore a minimal amount of texture must be observable.

The performance of a vision based positioning system is dependant on a large number of

factors which complicate the sensor characterization. Apart from optical–related factors,

such as visibility and texture content, a number of processing–related factors influence the

accuracy of position estimate. These include the choice of visual cues that are extracted

at low level, the geometric models underlying the position estimation process and, if

applicable, the way the spatial representation of the environment is created.

This topic constitutes an area of present–day active research. Rapid progress in com-

puter vision algorithms and underwater camera technology will eventually push optical

positioning solutions to a commercial level.

1.2 Overview of the Approach

This thesis describes a methodology for solving the problem of autonomous navigation for

underwater vehicles operating close to the sea floor. It is devised for mission scenarios

where an autonomous platform is first required to map an area of interest, and to navigate

upon it afterwards. This type of mission is common in salvaging operations, natural

habitat monitoring [89] or marine archeology [4].

The methodology is divided into two operation modes that are schematically repre-

sented in Fig. 1.1.

The first corresponds to the creation of extended visual representations of the sea floor.

For this, a high-quality video-mosaic is automatically built from a set of images that cover

the area of interest. The resulting mosaic will cover a much wider region than what is

covered by each of the single images.
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Figure 1.1: The operation modes for the proposed mosaic-based navigation system.

In the second part the mosaics are used as spatial representations to support au-

tonomous navigation. A visual servoing strategy is used to drive the vehicle along a

computed trajectory that avoid undefined regions of the mosaic. Position errors are com-

puted by comparing (registering) the instantaneous views acquired by the vehicle with the

mosaic. These errors are used to generate motion commands to the vehicle. The proposed

approach was tested at sea with a computer controlled ROV.

At a user level, this work provides extended navigation capabilities that are illustrated

in Fig 1.2. This image contains part of the man-machine interface that was built for issuing

the X-Y position commands during the field experiments. The estimated position and

orientation of the ROV with respect to the mosaic map is represented by the rectangular

frame in the lower part of the map. This frame corresponds to the area that is currently

being imaged by the live camera, on the right. After an initial mosaic lock–down procedure,

the operator can specify a location for the vehicle to move to, by clicking on the desired

position. A suitable trajectory is automatically generated which simultaneously minimizes

the total travel distance and avoids unmapped regions. The motor commands are then

issued.

This figure also illustrates one of the advantages, mentioned above, of optical vision in

underwater navigation. By providing the actual floor appearance, video mosaics allow for

man–machine interfaces based on visual content, that can easily be interpreted by human

operators.

1.3 Contributions

The work in this thesis contributes to the field of visual underwater navigation in several

ways:
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Figure 1.2: Screen capture of the man–machine interface used for navigation. It contains
the mosaic map (left) with the estimated position (red rectagular frame), specified end
position (arrow) and trajectory. The live camera feed is shown in the upper right window.

• A novel parameterization is devised for the accurate global registration of the images.

All the degrees of freedom arising from the mosaic geometry are taken into account

and parameterized as geometrically meaningful entities – pose parameters and world

plane description. As a result, we recover the 3D vehicle trajectory undertaken

during the mosaic image acquisition.

• The mosaic creation is approached in a fully automated and integrated way where

global spatial consistency is imposed by estimating the image neighboring topology.

• The mosaics are used as maps for localization. A maximum likelihood solution is

presented for estimating the full 3D pose with the associated uncertainty.

• An efficient real-time mosaic tracking strategy is proposed for the navigation. Effi-

ciency is achieved by devising different techniques of inter-image motion and image-

to-mosaic matching. These techniques make use of robust estimation methods to

attain the degree of accuracy and robustness required for long periods of operation.

• A new capability of mosaic servoing for ROVs is proposed and demonstrated by

successful experimental testing in the challenging, real–world conditions of the un-

derwater environment at sea.



1.4. THESIS ORGANIZATION 11

Part of this work was carried out under the European Project NARVAL [73], whose

main scientific goal was the design and implementation of reliable navigation systems for

mobile robots in unstructured environments. A strong emphasis was put on the ability

to navigate without resorting to global positioning methods. The algorithms and results

described in this thesis, where large mosaics are created and used for posterior navigation,

constitute a major achievement regarding this goal.

1.4 Thesis Organization

Chapter 2 introduces the notation used in the thesis. It reviews some specific background

in geometry and estimation. The first section describes the image formation basics and

details the relation between image projections of the same 3D planar surface. The second

presents robust sampling algorithms used in motion analysis.

Chapter 3 overviews the related work in motion estimation and mosaic creation. The

topic of mosaic–based navigation is also addressed.

Chapter 4 details the mosaicing approach proposed for the creation of visual maps.

The topics of sequential motion estimation, path topology and accurate global registration

are discussed in detail. Selected results are presented.

Chapter 5 addresses the use of a previously created mosaic for the localization of a

camera equipped vehicle. Both algebraic and maximum likelihood methods are presented

along with the covariance propagation of the produced estimated. Results are presented

and compared.

Chapter 6 deals with mosaic–based navigation. The topics of real–time visual tracking,

trajectory generation and visual servoing are detailed. The chapter concludes with results

from fully integrated mosaic navigation runs at sea, where the performance of the overall

positioning system is tested and discussed.

Finally, Chapter 7 summarizes the achievements of the work presented in this thesis,

and points out some directions for short–term interesting developments.
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Chapter 2

Background on Geometry and

Estimation

This chapter reviews some theoretical background in geometry and estimation that is used

in the following chapters.

Section 2.1 presents the geometric foundations of mosaic creation methods, and in-

troduces the notation that will be used throughout the thesis. Namely, it introduces the

collineation in the 2-D projective space, which is the backbone model for image motion in

the mosaicing process. Section 2.2 reviews a commonly used class of robust model-based

estimation techniques using random sampling.

2.1 Projective Geometry

This section is dedicated to well established geometry considerations. Some of the key

properties of projective geometry will be described, such as the notions of projective space

and collineation, followed by the perspective camera model. We then move on to the study

of the planar transformations. This class of transformations relates the image projections

of 3-D points lying on planes and constitutes the central model for the image motion

estimation. For an in–depth introduction to this subject the reader is referred to Faugeras

[21] and Hartley and Zisserman [42].

2.1.1 Basic Properties of the Projective Space

Definition 1 (Affine Space and Projective Space) The set of points parameterized

by the set of all real valued n-vector (x1, . . . , xn)
T ∈ IRn is called Affine Space.

13



14 CHAPTER 2. BACKGROUND ON GEOMETRY AND ESTIMATION

The set of points represented by a n+ 1 vector (x1, . . . , xn, xn+1)
T ∈ IRn+1 is called a

Projective Space IPn if the following condition and property are considered:

1. At least one of the n+ 1 vector coordinates is different from zero.

2. Two vectors (x1, . . . , xn, xn+1)
T and (λx1, . . . , λxn, λxn+1)

T represent the same point

for any λ �= 0.

The elements xi of a projective space vector are usually called homogeneous coordinates

or projective coordinates. The affine space IRn can be considered to be embedded in IPn

by the use of the canonical injection (x1, . . . , xn)
T → (x1, . . . , xn, 1)

T . Conversely, one can

recover the affine coordinates of a point from its homogeneous ones by the mapping,

(x1, . . . , xn+1)
T .=

(
x1

xn+1
, . . . ,

xn
xn+1

, 1
)T

→
(
x1

xn+1
, . . . ,

xn
xn+1

)T

for xn+1 �= 0 ,

where .= denotes the equality-up-to-scale property of the projective coordinates. From

this chapter on, we will be using the tilde symbol on top of a vector letter (ex. x̃) to

denote the projective coordinates of a given point. This notation will not be used if there

is no risk of confusion with the affine counterparts.

If the last coordinate of a point x̃ ∈ IPn is null, i.e., xn+1 = 0, then x̃ is called point at

infinity. The direction of such point is given in the affine space by (x1, . . . , xn)
T . Under

the framework of projective geometry, the set of all points at infinity behaves like any

other hyperplane, thus called hyperplane at infinity.

Definition 2 (Collineation) A linear transformation or collineation of a projective space

IPn is defined by a non-singular (n+ 1)× (n+ 1) matrix A.

The matrix A performs an invertible mapping of IPn onto itself, and is defined up to

a non zero scale factor. The usual representations for a collineation are λy = Ax or x∧y.

2.1.2 Image Formation

The most commonly used camera model in computer vision is the pinhole model, depicted

on Figure 2.1. This is a simple and effective way of modelling most of the modern CCD

cameras by considering the projection of rays of light passing through a small hole and

being projected on a flat surface.
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Figure 2.1: Perpective Camera Projection.

The image of the 3-D point M undergoes a perspective projection, passing through the

optical center O, and is projected on the image plane R. The distance f of the optical

center to the image plane is called the focal distance. The line passing through the optical

center and orthogonal to the retinal plane is called optical axis. The optical axis intersects

the image plane in the principal point. The use of projective geometry allows for the

perspective projection model to be described by a linear equation, which makes the model

much easier to deal with. A camera can be considered to perform a linear projective

mapping from the projective space IP 3 to the projective plane IP 2.

The Perspective Projection Matrix

The general form of the perspective camera, that maps 3–D world points
(
Wx,Wy,Wz

)
expressed in a world coordinate frame, into 2–D image points (u, v) is

λ


u

v

1

 = K ·
[

CRW
CtW

]
·


Wx
Wy
Wz

1

 . (2.1)

The (3 × 3) matrix CRW descries the rotation between the 3–D world and camera

frames. The (3×1) vector CtW contains the coordinates of the origin of the 3–D world frame

expressed in the camera frame. The (3×3) matrix K is upper triangular and depends only
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on parameters which are internal to the camera, thus called intrinsic parameter matrix:

K
.=


f · ku f · kθ u0

0 f · kv v0

0 0 1


This matrix accounts for the fact that the origin of the image coordinates is not usually

located at the principal point, but at the upper left corner of the image. Moreover, the

scaling along the u and v axis is not necessarily the same. The parameters ku and kv

are scaling factors (along u and v), (u0, v0) is the location of the principal point in the

image coordinate frame, and f is the focal distance. The additional parameter kθ gives

the skew between axes. For most CCD cameras kθ can be considered zero, on applications

not relying on high accuracy calibration.

Let us now introduce the notion of normalized coordinates of a 3-D point projection.

Let m̃ be a point projection such that m̃ .= PM̃ where P can be expressed in the form of

Eq. (2.1) ,as

P = K ·
[

CRW
CtW

]
·

Let P ′ be a camera matrix with the same extrinsic parameters but with intrinsic param-

eters such that K is the identity matrix. Then ñ .= P ′M̃ are the normalized coordinates

of m̃. It is easy to see that P ′ corresponds to a camera with unit focal length, principal

point coincident with the origin of the image frame and no scaling or skewing along the

axes.

Lens Distortion

The described camera model presents the useful property of being a linear projective trans-

formation from IP 3 into IP 2 thus allowing a simple mathematical formulation. However

the pinhole model is not accurate enough for applications requiring high accuracy, such as

photogrammetry and accurate metrology, as it does not model systematic non-linear im-

age distortion, which is present on most cameras. When performing lens modelling, there

are two main kinds of distortion to be taken into account [117]: radial and tangential.

For each kind, an infinite series of correction terms is theoretically required. However,

it has been shown that, for most off-the-shelf cameras1 and industrial applications, the

1By off-the-shelf, we consider the normally used general purpose cameras, as opposed to professional

metric cameras used in photogrametry.
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Figure 2.2: Geometry of two perspective projection cameras facing the same plane.

non-linearity can be dealt with just by using a single term of radial distortion. A four-step

camera calibration procedure allowing radial correction was presented by Tsai in [117].

2.1.3 Geometry of Two Cameras Looking at a Plane

We will now show that two different views of the same planar scene in 3-D space are

related by a collineation in IP 2, and how this collineation can be computed by the use

of at least four pairs of matched points on the two images. This is an extensively used

result (the reader is referred to [42] and the reference therein), that is here included for

completeness.

Let P1 and P2 be two perspective projection matrices corresponding to two cameras

imaging the same 3-D plane, as depicted in Figure 2.2. Without loss of generality, let us

assume the 3–D world coordinate frame to be the one of the first camera. In this case the

projection matrices can be written as

P1
.= K1

[
I3 0

]
P2

.= K2

[
2R1

2t1
]

where 2R1 and 2t1 are the rotation and translation between the camera frames, expressed

in the frame of the first camera. Let π be a plane not containing the cameras optical

centers and defined by its normal vector n and perpendicular distance d1 to camera 1

optical center. Also let u1 and u2 be coordinates of the image projections of the same
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3–D point, visible in both cameras. In this case, u1 and u2 are related by a collineation

in IP 2 represented by a 3× 3 matrix H21 such that

ũ2
.= H21 · ũ1

and

H21
.= K2

(
2R1 + 2t1

nT

d1

)
K−1

1 . (2.2)

The above equation is described in [23], but will be here compactly derived. Let X̃ be

the homogeneous representation of the 3–D point living in the plane and projected on the

two cameras as ũ1 and ũ2. Then X̃ satisfies simultaneously the projection equation

λ · ũ1 = K1

[
I3 0

]
· X̃

and the plane restriction [
nT −d1

]
· X̃ = 0 .

The two equalities can be grouped in the following system,[
λ ·K−1

1 · ũ1

0

]
=

[
I3 0
nT −d1

]
· X̃ .

Given the assumption that the plane does not contain the camera centers, the right hand

side matrix is invertible since d �= 0. Therefore,

X̃ =

[
I3 0
nT

d1
− 1

d1

]
·
[
λ ·K−1

1 · ũ1

0

]
= λ ·

[
I3
nT

d1

]
·K−1

1 · ũ1 .

By projecting X̃ on the second camera, one gets

ũ2 = λ ·K2 ·
[

2R1
2t1

]
·
[
I3
nT

d1

]
·K−1

1 · ũ1

from which is the collineation of equation (2.2) follows

ũ2
.= K2

(
2R1 + 2t1

nT

d1

)
K−1

1 · ũ1 .

Linear estimation of planar transformations

The computation of a planar collineation requires at least four pairs of corresponding

points. If we have more than four correspondences, then a least-squares solution can be

found in the following manner. Let H be the collineation relating two image planes from
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which we have a set of n correspondences such that ũ′
i
.= H · ũi, for i = 1, . . . , n. For each

pair we will have two linear constraints on the elements of H. An homogeneous system of

equations can thus be assembled in the form

L.hl = 0 (2.3)

where hl is the column vector containing the elements of H in a row-wise fashion, and L

is a (2n× 9) matrix

L =



u1 v1 1 0 0 0 −u′1u1 −u′1v1 −u′1
0 0 0 u1 v1 1 −v′1u1 −v′1v1 −v′1

...
un vn 1 0 0 0 −u′nun −u′nvn −u′n
0 0 0 un vn 1 −v′nun −v′nvn −v′n


. (2.4)

From Eq. (2.3) it can be seen that hl is the null space of L, thus defined up to scale.

To avoid the trivial solution hl = 0, one has to impose an additional constraint, usually

‖hl‖ = 12. Furthermore, real applications are prone to inaccuracies on the measurements

of point locations and L will not be rank deficient. In order to find a least-squares solution

for this equation, we can formulate the classical minimization problem:

pl = argmin
pl

‖L · pl‖ subjected to ‖pl‖ = 1 . (2.5)

By the use of the Lagrange multipliers it can be easily shown that the solution to this

problem is the eigenvector associated with the smallest singular value of H. A suitable

algorithm for finding the eigenvector is the Singular Value Decomposition (SVD) [87].

The most general collineation in IP 2 has eight independent parameters. As it has been

shown, it accounts for the perspective mapping of a planar scene to the image plane of a

camera. As explained above, it can be used to register two different images of the same

plane, from point correspondence data. If the scene is static but not planar, then there

will be image misalignments due to parallax, except for the case where the cameras have

the same optical center. This is the same as to say that the cameras are free to rotate

in any direction and to zoom, but not to translate. Table 2.1 summarizes the two cases

where the general collineation captures the exact mapping between point projections.
2Alternatively, one can remove the scale ambiguity by setting one of the entries of H to a non–zero

value (for example H33 = 1), rewrite equation 2.3, where L will be a (n×8) matrix and solve it accordingly.

However, this solution is more restrictive, as it fails to represent the case where H33 = 0.
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Scene assumptions Camera assumptions

Case 1 Arbitrary 3-D free to rotate on any directions and to zoom

Case 2 Planar no restrictions on camera movement

Table 2.1: The two parallax-free cases for static scenes.

2.1.4 Restricted Collineations

If the camera motion or intrinsic parameters are constrained, then the collineation may be

parameterized by less than eight independent parameters (of the general case), and still

accurately describe the image motion. An example is the case of a down–looking camera

attached to an underwater vehicle with stable pitch and roll motion, and observing an

horizontal seabed at a constant altitude. Under the assumption of equal intrinsic scaling

factors ku = kv and small perturbations in pitch and roll, the induced image motion is

simply described by a 2–D translation and rotation. If a simpler motion model can be

used, then there is a clear advantage to do so, in terms of estimation sensitivity to outliers

and noise in the data [113]. The use of several motion models for the same image sequence

is illustrated in Chapter 4, where the advantage of using the most adequate, instead of

the most general, is clear.

The restricted image motion models considered in this thesis are presented in Table

2.2. The models where the calibration matrix K is explicitly shown, assume constant

intrinsic parameters. In Chapter 4, the similarity and the 2–D rotation and translation

model are employed for the early stages of mosaic creation. Next, the 3D rotation and

translation is used to obtain an accurate final registration. Finally, a special case of the

3D pure rotation model is used to render a fronto–parallel view of the seabed. In Chapter

6, the similarity model is used for the real–time tracking of the live camera images on the

mosaic map.

The 2–D rotation and translation, the 3–D pure rotation and the 3–D rotation and

translation models require a iterative estimation algorithm due to the structure of the ro-

tation matrices. The 3–D rotations are parameterized by the X-Y-Z fixed angle convention

[12],

R3D (α, β, γ) =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ
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Motion Model Matrix form p Domain

2–D Rotation
and translation

H =


cosα sinα tu

sinα cosα tv

0 0 1

 3

Image plane parallel to the
planar scene at constant dis-
tance. Rotation on the cam-
era axis and translation per-
pendicular to it.

3–D Rotation H = K ·R ·K−1 3 3–D rotation but no transla-
tion. Known intrisics.

Similarity H =


t1 t2 t3

−t2 t1 t4

0 0 t5

 4

Image plane parallel to the
planar scene. Rotation only
on the camera axis but free 3–
D translation.

Affine
Transformation

H =


t1 t2 t3

t4 t5 t6

0 0 t7

 6 Distant scene and small field
of view.

3D Rotation
and translation

H = K
(
R+ tnT

d

)
K−1 6

Most general 3–D rotation
and translation. Known in-
trisics and plane inducing the
homography.

General Projective H =


t1 t2 t3

t4 t5 t6

t7 t8 t9

 8 Most general planar trans-
formation.

Table 2.2: Description of the models used for image merging, ordered by the number of
free motion parameters p.
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where s (.) and c (.) represent the sine and cosine functions of the rotation angles. The es-

timation is initialized with values obtained from the linear estimation, using the similarity

model for the 2–D rotation and translation and the full planar for the two other.

2.1.5 Recovering Camera Motion from the Collineation

One of the early references to the problem of recovering the 3–D motion from two images

of a planar surface is Tsai and Huang [118], where it is shown that the solution is not

unique. In the most general case there are eight different sets of solutions, as described by

Faugeras and Lustman in [23]. However, only two are feasible if one considers the world

plane to be non-transparent. A closed form relationship between the two solutions is given

by Negahdaripour in [74]. In our work we follow the method of Triggs [115], where the

two solutions are found using the SVD of M21 = K−1H21K.

It can easily be seen from Eq. (2.2) that, for the case where there is no translation, the

dependency of the collineation on the planar structure is lost. In practical terms, this is

also true for the case where the scene is distant enough for the ratio t
d1

to be close to zero.

This has motivated linear selfcalibration techniques, both for constant intrinsic cameras

[41], as well as for the case of varying intrinsics [14]. Such techniques do not require any

knowledge on the scene structure, nor the rotation of the camera frame between images.

Therefore, they are specially suited to applications where on-line calibration is required

and the camera can be rotated around its optical center.

The theory behind the method of self–calibration from cameras under pure rotation is

presented by Hartley in [41]. For the case of a constant intrinsic matrix K the homography

between corresponding points in two views is represented by

H21 = K · 2R1 ·K−1 . (2.6)

This homography can be computed directly from image measurements, and depends only

on the intrinsic parameter matrix and on the camera rotation 2R1 between the two images.

As noted in [41], H21 is only meaningfully defined up to scale, but taking into account

the fact that the product K · 2R1 ·K−1 has unit determinant, the exact equality H21 =

K · 2R1 ·K−1 will hold if H21 is scaled by an appropriate factor.

A linear system of equations, not depending on the rotation matrices, can be con-

structed on the elements of the symmetrical matrix C = KKT , and solved using the SVD

[41]. The recovery of K can be achieved by means of the Choleski decomposition[48] of
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C, if C is positive-definite, which is the case for noise-free or moderately noisy data. Also,

the decomposition is unique if K is assumed to have positive diagonal entries.

2.2 Robust Estimation

Model estimation (in the sense of model fitting to noisy data) is employed in computer

vision on a large variety of tasks. The most commonly used method is the least-squares

mainly due to the ease of implementation and fast computation.

The least-squares is optimal when the underlying error is additive and Gaussian [71].

However, in many applications the data are not only noisy, but also contain outliers, i.e.

data in gross disagreement with the assumed model. Under a least-square framework,

outliers can distort the fitting process to the point of making the fitted parameter arbi-

trary. As pointed out in [114], this can be particularly severe if the non-outlying data are

degenerate or near-degenerate with respect to the expected model. In such case outliers

can mask the degeneracy, making the adequacy of the postulated model hard to evaluate.

According to Meer et al. [71], there are three concepts usually employed in evaluation

a robust regression method: the relative efficiency, the breakdown point and the time

complexity. The relative efficiency is defined as the ratio between the lowest achievable

variance for the estimated parameters and the actual variance provided by the given

method. The breakdown point is the smallest proportion of outliers that can force the

estimated parameters outside an arbitrary range. For the least-squares estimation, the

breakdown point is 0 since just one outlier is required for corrupting the estimated values.

The time complexity can be defined from the number of arithmetic operations required by

the algorithm.

2.2.1 Random Sampling Algorithms

A robust regression method was proposed by Rousseeuw, called the least-median-of-squares

[91] (LMedS). Let us consider the generic unconstrained estimation problem, where we

want to obtain an estimate θ̂ from noisy observations X̂, using the observation equation

F (θ) = X that relates the noise–free parameter θ and data X vectors. Using the LMedS,

and estimate is obtained by solving

θ̂ = argmin
θ

med
i

(
Fi(θ)− X̂i

)2

where Fi(θ) and X̂i are the ith entry of vectors F (θ) and X̂ respectively.
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As pointed out in [71], this minimization problem cannot be reduced to a least-squares

based solution. The minimization on the space of all possible solutions is usually imprac-

ticable. Therefore it is common practice to use a Monte Carlo technique [54] and analyze

only randomly sampled subsets of points. The number of samples to be performed may be

chosen as to insure a high probability of selecting an outlier-free subset. The expression

for this probability Pf is

Pf = 1− (1− (1− ε)p)m (2.7)

for m samples of size p, taken from a data set where the fraction of outliers is ε. From

this expression, it can easily be seen that the number of samples is not directly linked to

the absolute number of outliers, but just with its proportion. Clearly, this is also true for

the time complexity of the sampling algorithm. The expression also implies that the less

data point are used for instantiating the model, the less samples will be required for the

same Pf .

The random sampling greatly reduces the time complexity of the basic LMedS, from

O(np+1 log n) to O(nm logn) [71] where n is the size of the data set, while keeping the

breakdown point of 0.5. In spite of the high breakdown point, the relative efficiency of the

LMedS method is low when Gaussian noise is present in addition to outliers. Therefore

an association of LMedS with weighted least-squares which has high Gaussian efficiency,

can be used, as proposed by Rousseeuw [91].

Another robust estimator, based on random sampling, is the Random Sampling Con-

sensus (RANSAC). It was proposed by Fishler and Bolles [25] in 1981, and originally

used in the context of computer vision, for automated cartography. The RANSAC is

based on the following paradigm. The estimation is performed on a subset of data points

sampled from all the available points, such that the subset has the minimum number of

elements required for instantiating the model. All the data is then evaluated according

to the instantiated model. For a given error threshold, the points are classified as being

part of the consensus group of the model if they are within the threshold. This process

is repeated until a sufficiently large consensus group is found (or a maximum number of

iterations is reached). The final estimation is performed on the largest consensus group

found. The RANSAC requires therefore, the specification of three algorithm parameters:

the error threshold for evaluating the compatibility with the model, an estimate of the

cardinality consensus set for checking if a sufficiently supported model has been found,

and a maximum number of samples to try.
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Although developed independently, LMedS and RANSAC are based on similar con-

cepts. According to Meer et al. [71], the main difference lies in the fact that the LMedS

generates the error measure during estimation, while RANSAC requires it beforehand. An

in depth comparison of LMedS and RANSAC can be found in [71]. The two methods are

also compared in [114], for the estimation of the fundamental matrix.

2.2.2 A Two-Step Variant of LMedS

Several variants to these random sampling algorithms have been proposed in the literature,

in the context of Computer Vision. As an example we can point out the ”empirically

optimal algorithm” presented in [114], which combines LMedS and M-estimators.

In the work presented in this thesis, we have used a two-step variant of LMedS, which

exhibits a similar breakdown point [71], but requires less random sampling in order to

achieve the same degree of outlier rejection. The algorithm comprises two phases of

random sampling LMedS. After the first phase, the data set is reduced by selecting the

best data points in the sense of the chosen cost function. Next, the reduced data undergoes

another random sampling LMedS phase.

Let Stotal be a set of N matched points projections possibly containing outliers Stotal =

{(u1,u′
1) , . . . , (uN ,u′

N )}. The computation of the homography H from Stotal is performed

by the following operations :

1. Randomly sample a set of p pairs taken from Stotal, where p is the minimum number

of matched points required to instantiate the model.

2. Estimate the H matrix and compute the median of the point squared distances for

Stotal,

med
i

[
d2 (ũi, H · ũ′

i

)
+ d2

(
ũ′
i, H

−1 · ũi

)]
The function d (·, ·) takes two point locations in homogeneous coordinates and returns

their (affine) distance on the 2–D image plane,

d
(
ũ, ũ′) =

√
(u− u′)2 + (v − v′)2 (2.8)

where ũ =
[
λu λv λ

]T
and ũ′ =

[
λ′u′ λ′v′ λ′

]T
with λ �= 0 and λ′ �= 0.

If the median is below a given threshold mT , return H and exit.

3. Repeat 1. and 2. for a specified number of samples m1.
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4. Select the Hbest1 for which the minimal median was found, and sort the matched

points by their sum of the point distance squares, using Hbest1.

5. Create the set Sbest with the elements of Stotal whose distance is below the median.

6. Repeat 1. and 2. on Sbest for a m2 number of samples.

7. Select the homography Hbest2 corresponding to the lowest median.

8. For Hbest2 select the matched points whose average distance,

1
2

[
d
(
ũi, Hbest2 · ũ′

i

)
+ d

(
ũ′
i, H

−1
best2 · ũi

)]
(2.9)

is less or equal to a specified distance threshold dT .

9. Compute and return the final H using simple least-squares with all the selected

matched points above.

The required parameters are the number of samplings on each part m1 and m2, the

median threshold, and the distance threshold. If the ratio of outliers in the data is known,

then m1 can be set according to Eq. 2.7 to ensure a specified probability of selecting

a outlier–free sample, during the first random sampling step of the algorithm3. For the

image registration application of our work, the ratio of outliers is not constant. It depends

upon factors such as image texture contents and degree of overlap, that vary to a large

extent. For this reason, we have opted to define m1 and m2 based on processing time

constraints. The real–time matching implementations for the results in Chapters 4 and 6

use 100 and 50 samplings, respectively.

3The extention of Eq. 2.7 to deal with both m1 and m2 of our algorithm is not trivial, and was not

carried out.



Chapter 3

Previous Work in Mosaic–based

Navigation

This chapter reviews some of the most relevant Computer Vision techniques related with

mosaic–based navigation. The main purpose is to provide comparative information on the

contributions from other authors to this area. This allows for the better understanding of

this thesis work with respect to what has been accomplished before.

The chapter is divided into three sections. The first addresses the techniques related to

image registration and mosaic construction. The second specializes on the use of mosaics

for robot navigation, both in land and underwater applications. Finally, a closing section

discusses the most important features that are desirable on a mosaicing system intended

for navigation.

3.1 Mosaic Construction

Over the last decade there has been a growing interest in video mosaicing techniques, as

a way of creating useful scene representations. Current applications cover diverse areas

such as video coding for low bit-rate transmission, super-resolution for forensic video

enhancement, environmental representations for robot navigation and wide field-of-view

panoramas for commerce and tourism over the internet.

A central problem to the mosaicing process is image matching, which can be stated as

follows.

Given two images of the same scene, for each point projected in one image, find a

corresponding point in the other such that they relate to the same 3–D scene point.

27
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This problem closely relates to the image motion estimation, in which a parametric

representation is used to model the motion of the point projections from one frame to the

other. This parametric representation usually employs a small number of parameters to

represent the global image motion, and is adapted to the particular camera motion and

scene structure constraints. The image motion estimation constitutes an important step

in mosaicing applications, as it allows for images to relate spatially over a common frame.

3.1.1 Motion Estimation

The commonly used methods for estimating the motion between frames can be categorized

according to several criteria. One is the representation domain, which distinguishes the

methods that operate either on frequency or on spatial representations. Another criterion

separates continuous from discrete approaches [123] depending on the temporal assumption

for the time instants of the image capture. This criterion is associated with the common

division between feature–based and optic flow methods. Recently, a detailed taxonomy of

stereo matching techniques was presented in [99], where the most widely used algorithms

are evaluated and compared.

i) Frequency Domain Methods

Frequency–based methods take advantage of the properties of the 2–D Fourier Transform

regarding translation, rotation and scale. As an example, for images that are simply

shifted, the estimation of the translation can be attained by locating the peak of the

inverse Fourier Transform of the cross–power spectrum phase [60]. This approach has

been extended to deal with rotation and scaling [88], and full affine transformations [59]

by aligning the images Fourier spectra over several resolution levels.

Since this class of methods use frequency information over the complete spectrum, they

are well suited for applications where the images are corrupted with narrow bandwidth

noise. However, for cases where the noise is spread across the spectrum, area cross-

correlation methods are more adequate [7].

ii) Spatial Domain Methods

The set of techniques that explicitly use the spatial (geometric) relations are commonly

referred to as spatial domain methods. These can be further divided into two groups,
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depending on whether explicit image points are singled out in the motion estimation

process.

Correlation–based methods The first group of correlation–based methods usually in-

volves the extraction of a set of features from the images, such as object corners, line

segments or curves. These features are usually sparse, when compared with the extent of

the underlying images, but are representative of the objects appearance or shape.

The choice of the type of feature to use is usually dependant on the availability of

such features in the images and on the reliability of their measurement. As an example,

straight lines are difficult to observe in underwater scenes whereas they are very common

in man–made environments. The estimation of lines is typically less sensitive to image

noise when compared to points, but since lines have an extra degree of freedom, more

correspondences are required to uniquely determine image motion. As an example, it has

been shown in [123] that 3–D motion cannot be recovered from line correspondences of

just two views.

A wide variety of corner point detectors can be found in the literature [100]. These

can be divided into three categories: contour based, intensity based and parametric model

based methods.

After the feature extraction process, this class of methods requires the establishment

of correspondences over the images. In practical applications, this matching step is very

prone to gross errors and has been at the core of intense research over the last decade.

Successful approaches to deal with this problem include the use of robust methods over

geometric constraints [114], or concave minimization over rigidity [63]. A commonly used

match metric for point features is the normalized cross-correlation [52], which serves as a

similarity measure between image patches around the selected points.

This group of correlation–based methods also includes the case of dense correlation,

for applications where a very large number of points need to be matched, such as dense

tri–dimensional reconstruction [2].

Optical flow methods The second class of methods, commonly referred to as the optical

flow approach [47, 46, 5], is based on the computation of the velocity field of brightness

patterns in the image plane.

As opposed to the feature-based approach, the optical flow does not require a matching
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process, but suffers from the generalized aperture problem [3, 6, 53]. According to Black

and Anandan [6], most of the current techniques for the estimation of the optical flow are

based on two image motion constraints: data conservation and spatial coherence. The

first arises from the observation that the intensity patterns of the surfaces of the world

objects remain constant over short intervals of time, although their image position may

change. The second assumes that the surfaces have spatial extent, thus making neighboring

pixels likely to belong to the same surface. This is usually implemented in the form of a

smoothness constraint on the motion of spatially close pixels.

The generalized aperture problem refers to the dilemma of choosing the appropriate size

for the area of analysis (aperture) R. In order for the motion estimation to present some

insensitivity to noise and be constrained [6], a large R is desirable. However, the larger

the aperture is, the less realistic the data conservation and the spatial coherence become.

One other problem with optical flow techniques lies on the fact that it is only possible to

determine the flow in the direction of the image brightness gradient. The optical flow along

this direction is therefore perpendicular to the image contour, hence called normal flow.

The flow component along the contour cannot be established directly from the brightness

patterns, without resorting to additional constraints such as smoothness or second order

derivatives. This condition is referred to as the aperture problem [47, 46, 5].

The original formulation of optical flow as defined by Horn and Shunck in [47] was

extended by Negahdaripour [75] to take into account both geometric and radiometric

models.

For some applications, the choice of the approach, either feature-based or optical flow,

is not trivial. This statement is supported by the large amount of research in the last

few years using the two approaches as a starting point for higher level image interpre-

tation. Optical flow has successfully been used on tasks such as egomotion estimation

[103, 104], motion segmentation [3] and image registration [96, 109], whereas feature-based

approaches have proven adequate for 3-D reconstruction [22, 66] and image registration

as well [128].

3.1.2 Motion Models

As detailed in Chapter 2, the most general model for image motion of planes has eight

degrees of freedom (dof). However, under certain assumptions such as simplified image

motion or unitary pixel aspect ratio in the cameras, a restricted model may be sufficient.
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In such cases, the motion estimation with a restricted model is less sensitive to noise.

Also, it may lend itself to a faster implementation by using, for instance, an FFT-based

correlation [7]. Examples of restricted model applications are a 4 dof model to register

high altitude aerial images [128] and document scanning.

Different motion models with 8 or more parameters have been used in the mosaicing

literature. An example of such are the bilinear and biquadratic models [65, 69]. The later

has 12 dof and can be obtained by taking the second order polynomial approximation of

the most general projective mapping. It can be written as

u′ = q1 · u2 + q2 · uv + q3 · v2 + q4 · u+ q5 · v + q6
v′ = q7 · u2 + q8 · uv + q9 · v2 + q10 · u+ q11 · v + q12

where (u′, v′) and (u, v) are corresponding point projections. Although the biquadratic has

more degrees of freedom than the full projective, it fails to correctly model the most general

projective mapping. The use of the biquadratic has been justified as being computationally

less demanding when used with optical flow techniques, while being able to model (to some

extent) the effect of converging lines and chirping [65].

3.1.3 Global Registration

Some applications require the registration of a large set of views of the same scene. This is

the case of the underwater video mapping described in this thesis. Most commonly the im-

age registration is performed by pair–wise image registration in chronological order. This

is motivated by typical high overlap between time-adjacent image frames, which provides

a large region of support for the motion estimation. The estimates are then concatenated

to infer the relation between any pair of images. However, even small amounts of noise

in the estimation process may result in large accumulated error. This is most noticeable

if the image sequence contains regions of the scene that have been captured some time

before, such as loop camera trajectories.

A number of authors have tackled the problem of registration for camera loop trajec-

tories in order to create spatially coherent mosaics.

Topology Estimation

Sawhney et al. [97] proposed an end–to–end solution for image mosaicing where the image

topology (i.e. the spatial relations between overlapping frames) is iteratively estimated.
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Spatial consistency is improved by identifying and registering images with large superpo-

sition. Their formulation allows for the creation of planar and spherical mosaics, given the

appropriate parametric mapping models from the mosaic surface to the image surface.

A simpler approach is followed by Davis [13] for registering images captured with no

translation. Under small rotation and some assumptions on the camera intrinsic param-

eters, phase-correlation methods are used for pair-wise registration. A system of linear

equations is defined for the elements of all the homographies relating each image with

a reference image for which a least-squares solution is obtained. However, no adequate

parameterization is used on these elements to take advantage of the special structure of

the rotation-induced homography. Duffin and Barrett [16] use a homography parameteri-

zation for global registration that imposes constant camera skew and aspect ratio. Other

constraints on the camera and scene geometry are not taken into account.

Recently Unnikrishnan and Kelly [120, 119] addressed the problem of efficiently dis-

torting strip mosaics in order to close loops in a smooth way. The proposed solution has

low computational complexity and is best suited for the case where the number of tem-

porally distant overlaps is small compared to the adjacent ones. The problem of finding

correspondences at the extremities of mosaic segments, required for imposing end–pose

constraints, was not addressed.

Bundle Adjustment

Bundle adjustment techniques from the photogrammetry literature have been successfully

adapted to image registering applications. In the context of camera self–calibration, Hart-

ley [41] used a bundle adjustment technique to simultaneously estimate the homographies

arising from several views. The homographies were meaningfully parameterized for pure

rotation which required a non-linear estimation algorithm. McLaughlan and Jaenicke [70]

illustrated the use of these optimization techniques for mosaicing, using both matched

points and lines in a semi-automatic system. No topology is performed, which limits ap-

plicability to small, high overlapping mosaic. A related approach is followed by Capel [8]

who presents a complete mosaicing system with topology estimation and global registra-

tion, by extending a Maximum Likelihood estimation for the 2-view homographies to the

case of multiple views.
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3.1.4 Notable Mosaicing Approaches and Applications

Early applications of image mosaicing were primarily interested in developing visualiza-

tion tools, capable of providing extended views. An example is the composition of aerial

images [128]. Recently these techniques started being regarded as efficient representa-

tion, on applications such as video compression, enhancement and search. In [51, 107]

and more recently in [83], the idea of using mosaics for complete scene representation is

addressed with the intent of fully recovering the video sequence from a dynamic mosaic.

This dynamic mosaic is an extension to the usual static mosaic, comprising three elements:

• a (static) background mosaic. Static mosaics have also been called salient stills

[109, 69].

• the set of frame transformations relating each frame to the mosaic frame.

• the image residuals containing the brightness differences of each frame to background

mosaic.

Further details on mosaic classification can be found in [51], where a detailed taxonomy

is proposed in the context of video applications.

High compression video coding can be attained by creating and coding the dynamic

mosaic. Most video sequences tend to have a large amount of image overlap, and much of

the image redundancy is due to a static background. In such cases, the dynamic mosaic

residuals are small, when compared to the residuals between consecutive frames, even if

motion compensation is performed [51]. Mosaic-based video coding requires, however,

that whole sequence be available for the estimation of the background. For this reason it

is suited for off-line coding and storage.

Mosaicing techniques can be helpful in creating compact visual representations of the

complete surroundings of a particular viewpoint. Hemispherical mosaics have been used by

Kang and Szeliski [57] to represent the views in any direction in order to perform wide–

baseline 3–D reconstruction. A similar application was addressed by Coorg and Teller

[11]. Shum and Szeliski [102] present an end–to–end solution for creating panoramas,

where global alignment is imposed and the camera focal length is estimated.

A general Bayesian framework was used by Dellaert et al. [15], capable of producing

a maximum a posteriori estimate of the mosaic image. During the mosaicing process the

camera intrinsic parameters are estimated together with the globally–optimized motion
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Figure 3.1: Two common sources of underwater image degradation: Scattering and Ab-
sortion.

parameters. The used observation equation takes into account the camera lens distortion

and permanently occluded image regions.

3.1.5 Underwater Mosaicing

The subsea medium constitutes a challenging environment for computer vision. When

compared with land and aerial applications, the light underwater is subjected to intense

scattering and attenuation. Scattering refers to the angular spread of the light rays due

suspended particles in the water, while attenuation is the power loss in the medium. These

phenomena are schematically illustrated in Figure 3.1.

Another contributing difficulty is illumination. Most often, artificial lighting is required

for depths above 10 to 20 meters, depending on the water turbidity. The light source

is usually assembled close to the imaging devices. This condition creates strongly non-

uniform lighting and affects the visual appearance of the scene as the camera moves around

[81].

These factors severely limit underwater imagery in terms of contrast, definition and

range. Under such conditions, video mosaicing presents itself as the natural solution to

obtaining large visual representations of the sea floor. This is achieved by registering many

close–range images.

Intense research on automatic mosaic creation for underwater applications has been



3.1. MOSAIC CONSTRUCTION 35

conducted in the last few years. One of the early references is the work of Haywood [43]

where a setup is described for the creation of sea–floor mosaics. The problem of image

registration is completely avoided by capturing images at precisely known locations. Image

composition can thus be performed straightforwardly, since image motion is computed

directly from the camera positions.

A real–time system for the creation of ocean floor mosaics was jointly developed by the

Stanford University and the Monterey Bay Aquarium Research Institute. The problem

of non-uniform lighting and marine snow was addressed by an image pre–processing step

prior to image correlation. The processing consists in computing the image of the sign of

the Laplacian of the original images, after being low–pass filtered by a Gaussian kernel

[67]. This results in a binary images which can be registered at frame rates using special–

purpose correlation hardware. Real-time operation was achieved for the creation of ”single

column” mosaics [68]. A very restrictive motion model is assumed, accounting just for

image translation. This work is extend by Fleischer [26] to deal with loop trajectories,

by detecting trajectory crossover in previous mosaiced areas. In such cases the mosaic

is re–aligned using an augmented–state Kalman filtering. However, the same registering

method is used, thus implicitly restricting the visually sensed motion to 2 dof, without

rotation nor scale change.

The topic of motion estimation has been extensively addressed at the Underwater

Vision and Imaging Laboratory of the University of Miami. Among other capabilities

such as automatic station keeping [80], a mosaicing approach was developed using direct

methods. These methods allow for the incremental estimation of 3D motion directly

using the spatio–temporal derivatives of images captured closely in time [77]. Also a

generalized dynamic image motion model [75] is used which accounts for variations in the

scene radiance due to lighting and medium conditions. This is of particular importance

when using flow–based methods in underwater imagery. Results on mosaicing are reported

which real–time operation is achieved using standard computing hardware for motion

models of 3 dof [75] and 4 dof [125]. The need for assessing the performance of the most

common mosaicing approaches was addressed by Negahdaripour and Firoozfam in [76].

In here, comparative results are reported for both feature–based and direct methods for

long image sequences with ground–truth.

Research in underwater mosaicing has been conducted at the Woods–Hole Oceano-

graphic Institution, primarily as a visualization tool for the oceanic floor [105]. In [19],
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Eustice et al. perform image registration by searching for the motion parameters that

minimize the intensity differences between warped version of the images. This method

mirrors the approach of Sawhney and Kumar [98], but uses some additional photometric

processing such as histogram equalization.

Work on feature tracking with applications on underwater image registration and mo-

saicing, has been conducted at Heriot-Watt University. In [28], Fusiello et al. extended the

feature tracker proposed by Tomasi and Kanade [101], by introducing an automatic scheme

for detecting and discarding spurious features. An illustrative application to mosaicing is

presented in [86].

A feature based approach has been developed at Girona University, in which texture

cues are used to improve the matching efficiency [30]. The problem of looping trajectories

is dealt with using a Kalman Filter approach with an augmented state vector [31].

Frequency domain methods have been applied to underwater image registration at the

University of New Hampshire [93]. In order to increase the lighting homogeneity in the

captured image frames, a filtering step is used to enhance the high frequency content, thus

equalizing the background pixel intensity. The Fourier–Mellin transform [92] is used to

register image frames, assuming no perspective distortion effects.

3.2 Mosaic Navigation

3.2.1 Land applications

One of the early references to the idea of using mosaics as visual maps is the work of

Zheng and Tsuji [127], where panoramic representations were applied to route recognition

and outdoor navigation. However the visual representations do not preserve geometric

characteristics nor correspond to visually correct mosaics. This constitutes a drawback

as the representation is not fit for human perception, which is important for mission

definition.

A tour–guide robot is described by Thrun et al. [110, 111] which combines the use of

previously created occupancy maps and ceiling mosaics for localization. The occupancy

maps are used to measure and compensate for the error in the odometry, and provide a

global (coarse) position estimate. Such estimate is refined by the up–looking vision sensor.

The map building and localization are addressed under the probabilistic framework of the

concurrent mapping & localization [112] approaches. Details on the mosaicing algorithm
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are given by Dellaert et al. in [15].

Recently, Kelly [58] has addressed the feasibility and implementation issues of using

large mosaics for robot guidance, predicting a large impact of these techniques on industrial

sites. These environments are usually structured enough to allow for restricted motion

models to be used. Experiments are reported for long strips of linear mosaics where it is

assumed that the image plane is parallel to the mosaic areas and the motion of the vehicles

is restricted to the ground plane.

3.2.2 Underwater applications

In the context of real-time concurrent mapping and localization, Xu [125] investigated the

use of seafloor mosaics, constructed using temporal image gradients. Although there is

a careful compensation of systematic errors [78], possible loops in the camera path are

not exploited for reducing the accumulated error, which limits the use for covering large

areas. Mosaic navigation as an extension of station–keeping is presented in [79] for a 3 dof

floating robot.

Huster [49] described a navigation interface using live-updated mosaics, and illustrated

the advantages of using it as a visual representation for human operation. However, as

the mosaic is not used in the navigation control loop, there is no guaranty the vehicle is

driven to the desired position.

Fleischer [26] combined spatially consistent mosaic with underwater ROV navigation.

However, in their approach, the navigation system requires additional sensors to provide

heading, pitch, yaw and altitude information, whereas our work relies solely upon vision

to provide information for all the relevant degrees of freedom.

Regarding navigation, our approach differs from the concurrent mapping and localiza-

tion approaches (CM&L [112], SLAM) in the sense that the map is totally created prior

to its use. Some authors have successfully implemented (and extended) CM&L for the

underwater navigation with mosaics [125, 26], which has the advantage of using the mo-

saic while it is being constructed. However this leads to less accurate mosaics due to the

simpler motion models and algorithms, motivated by the real–time constraints.
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3.3 Discussion

From what is presented above, it can be seen that motion estimation and image mosaicing

constitute two topics of intense and increasing research interest.

In the last few years, the methodologies associated with image mosaicing have been

maturing rapidly, both in terms of robustness and speed. This is allowing the application

domain to expand from simple proof–of–concept to the larger scale of real–world problems.

In this thesis we are interested in exploring mosaics as environment representations capable

of supporting autonomous navigation. This creates a set of requirements for the image

mosaicing algorithms, that needs to be met in the overall system. The important features

for a mosaicing system for navigation can be pointed out:

• Fully automatic – Early applications of image mosaics required the human–assisted

selection of control points in correspondence. This has been effectively addressed,

with high rates of success, using automated image registering and matching tech-

niques both for feature-based approaches (e.g. [128]) as well as flow–based (e.g.

[3]).

• Capable of dealing with the visual information content of the application scenario

and extracting reliable information – Challenging environments such as underwater

require the use of adequate visual cues. As an example, line extraction has been

extensively used in indoor navigation but its use underwater is limited to man-made

structures such as cable following [84]. Image texture also contains useful information

that helps the matching process [30].

• Robust to limited departures from the assumptions – A standard underlying assump-

tion is on the planar structure of the scene. In practical applications this is hardly the

case, specially for natural environments where there is 3–D structure with non–rigid

and non–static objects. Again, techniques from robust statistics can help overcom-

ing such effects in order to accurately recover the most representative motion and

identify outlying features or regions.

• Capable of handling large areas – Useful practical application scenarios require mo-

bility over large areas, such as the debris area of a shipwreck. Current underwater

mosaicing research publications report on much smaller results, with the exception

of [19].
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• Capable of producing accurate results in useful time – The accuracy on the mosaic-

ing process is strongly dependant on two main factors: the appropriateness of the

selected motion models and the computational resources available.

• Capable of producing a statistical characterization of the results and detecting fail-

ures – In order to use vision as a position sensor in an integrated, multi-sensor

autonomous robot, the motion or pose estimation algorithms must also provide in-

formation on the associated uncertainty. Typically, this is presented in the form of

a covariance estimate.

Almost all of the above requirements have been addressed separately in the literature.

However, to the best of our knowledge, no attempt has yet been made in using large1

mosaics for 3–D underwater navigation at sea. Previous reports on sea–bed testing have

been restricted to illustrative proof–of–concepts on very small mosaics [26, 125]. More

importantly, the algorithms employed for the mosaic creation seriously hinder their appli-

cation to larger mosaics. The accuracy of Fleischer’s approach [26] is strongly dependant

on external sensors, since the vision–related processing is only capable of 2 dof transla-

tions. The method by Xu [125] cannot take advantage of looping trajectories with are

essential to creating large, spatially coherent mosaics. Furthermore, the special structure

of the image collineations that arise from having the same camera imaging one plane has

not been used.

It is worth noting that the integration of several different sensors can be of great benefit

for the robustness of the overall navigation system. This implies realistic measurement

and modeling of the uncertainty associated with each sensor. However, it is of scientific

relevance to know how far can underwater vision systems go when used alone, and have

ways of computing the uncertainty of the pose. The work presented in this thesis is also

directed towards this goal.

1by large we refer to larger than 10 square meters
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Chapter 4

Mosaic Map Creation

This chapter addresses the problem of constructing high quality mosaics of the sea bed.

An algorithm is presented for the simultaneous creation of mosaics and the estimation of

the camera trajectory. Special attention is taken to the processing of long image sequences

with time-distant superpositions, such as the ones arising from loop trajectories, or zig-zag

scanning patterns.

The main novel aspect of this approach is the use of an adequate parameterization

for the homographies that takes into account all the geometric degrees of freedom of the

problem. Another aspect is the separation of the mosaicing algorithm in different stages,

with distinct objectives.

4.1 Overview and Application Domain

The method for mosaic creation is here summarized, and detailed the next sections. The

complete algorithmic flow of the process is shown in Figure 4.1.

The method comprises four major stages:

1. Image motion between consecutive frames is computed by robustly matching point

features across pairs of images. This results in a set of sequentially ordered homogra-

phies. These homographies are cascaded in order to infer the approximate topology

of the camera movement. The topology information will be used to predict the areas

where there is image overlap resulting from non-consecutive images. This overlap is

valuable in the sense it allows to further refine the motion estimation and the spatial

correctness of the final mosaic.

41
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Figure 4.1: Flow–chart for the complete mosaic creation algorithm.
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2. Topology estimation of the neighboring relations between all images in the sequence

is performed by iteratively executing the following two main steps.

(a) Point correspondences are established between non-adjacent pairs of images

that present enough overlap. This is a time consuming operation but is alle-

viated by the fact that prior information exists on the location of the image

correspondences, computed at the first stage.

(b) The topology is refined, by searching for the set of homographies that minimize

the overall sum of distances in the point matches.

3. Trajectory estimation is carried out using all degrees of freedom involved. An opti-

mization problem is defined to search for the best set of pose parameters (describing

the 3D positions and orientations of the camera) and for the best fitting description

of the world plane.

4. Finally, a mosaic rendering step creates a fronto–parallel mosaic image. A 3–D world

coordinate frame is associated with it.

The underlying assumptions for the method are those typical of single–plane mosaic-

ing, i.e. the sea bottom is essentially flat, static and subject to small changes in the

illumination. This is seldom the case in underwater mapping applications. However, the

use of robust estimation over point feature matching greatly alleviates the damages of

violating these assumptions and allows for the consistent recovery of image motion.

An example where some of the mosaicing assumptions are violated is given in Figure

4.2. The two images were captured in shallow waters under a short time interval, and

cover approximately the same region of the sea bed. The scene is not planar and has dif-

ferent brightness patterns due to fast illumination changes. The image matching methods

described in this chapter were able to successfully cope with this image pair.

4.2 Initial Motion Estimation

The first part of the algorithm consists on the sequential estimation of inter-frame homo-

graphies [32]. This is achieved by performing pair–wise image registration. For each pair

of images, a set of highly textured feature points is extracted from one image and corre-

lated over the other. The position where the correlation attains the maximum is taken as

the match location. A robust estimation technique is used to discard false matches.
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Figure 4.2: Two sequential frames, illustrating fast changes in the illumination conditions
in shallow waters.

The implemented algorithm attains real–time operation and is executed during image

acquisition. Therefore, the live video frames can be selected or discarded, based on a

superposition criteria. This promotes large memory savings.

4.2.1 Feature selection

The image registration procedure evolves from the analysis of point projections and their

correspondence between image frames. In order to improve the correspondence finding, a

number of points are selected corresponding to image corners or highly textured patches.

The selection of image points is based on a simplified version of the well-known corner

detector proposed by Harris and Stephens [39, 116]. This detector finds corners in step

edges by using only first order image derivative approximations. Further details on the

implemented detector are presented in [37].

The extracted features will be matched over two images, and used for motion estima-

tion. Since motion estimation is more noise sensitive to location errors when the features

are close to each other [126], it is convenient to select features not just on the ‘amount of

texture’, but also using some inter-feature distance criterion. Bearing this in mind, the

implemented algorithm selects the features by finding the peaks of the ‘texture’ image and

excluding the subsequent selection on a circular neighborhood. This process is repeated

iteratively, up to the point where no peaks can be found, above a defined texture level.

This texture level is set so that
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Figure 4.3: Search area selection: image I1(left) with selected feature, search area on
I2(center) and cross-correlation image(right)

4.2.2 Matching

The pointmatching, in the sense of associating the image projections of the same 3–D

point, is a challenging task. Contributing factors to the difficulty include acquisition

noise and low image texture and contrast, which are frequent in underwater imaging

applications.

In this work, a correlation-based matching procedure was implemented. It takes a list

of features selected from the first image I1, and tries to find the best match for each, over

a second image I2. The cost criterion, that drives the search on the second image, is the

sum of squared differences (SSD) [1]. For a given feature fi = (ui, vi), it is defined as

SSD(x, y) =
∑

(u,v)∈Wi

[I1 (u, v)− I2 (u− x, v − y)]2 (4.1)

where Wi is an image patch around fi. A modified version of the above criterion was

proposed by Santos–Victor [94, 95] in the context of underwater point matching of 3–D

scenes, where a term is added to penalize deviations from the epipolar constraint.

The assumption of large overlap of image content between the two frames can be

used to significantly reduce the computational burden of the matching. This is achieved

by limiting the search area in I2. In order to compute the appropriate limits, the two

images are cross-correlated and a global displacement vector dG is obtained. By applying

a threshold to the cross-correlation image, we can estimate a bounding box around dG,

that can be loosely interpreted as a confidence area for the global displacement. Then,

for a given feature fi the search area on I2 is constrained to the rectangular area with the

size of the bounding box and centered on fi + dG. Figure 4.3 illustrates the procedure.

A similar procedure is applied if we have prior information on the expected image

motion. This information is representable in the form of an expectable homography matrix,
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hereafter referred to as a pre–homography. When processing a sequence of images captured

at a high rate, most often we can assume some degree of motion constancy between frames.

Under such conditions, the motion of the features in the current images will be similar to

that of the previous pair. Thus, the last estimated homography is used as the current pre–

homography. The use of the pre–homography in the matching is twofold. First, it serves

to define the location of the areas to search for the features in I2. Second, is allows for

prewarping the image areas around each feature, such that the appearance of the feature

is closer to what expected in I2. The feature prewarping is particularly important in the

case of large rotation or perspective distortion between the images.

4.2.3 Robust Motion Estimation

In this section we will describe a procedure for the estimation of the motion parameters

for a sequence of images.

The images are processed as shown on the diagram of Figure 4.4. For each image Ik, a

set of features is extracted and matched directly on the following image Ik+1, as described

above. The result of the matching process are two lists of coordinates of corresponding

points. Due to the error prone nature of the matching process, it is likely that a number

of point correspondences will not relate to the same 3-D point thus calling for the use of

robust motion estimation methods.

Let ui be a point on frame i, and ui+1 be its correspondence on frame i + 1, where

ui and ui+1 are projections of the same world point U living in a 3–D plane Π. If Hi,i+1

is the homography matrix induced by Π which relates frames i and i+ 1, then the point

coordinates are related by

ũi .=Hi,i+1 ũi+1 .

Let ui
n be the location of the nth feature extracted from image i, and matched with

ui+1
n on image i + 1. The homography Hi,i+1 is robustly estimated by minimizing the

median of the square distances,

Hi,i+1 = argmin
H

med
n

[
d2

(
ũi
n, H · ũi+1

n

)
+ d2

(
ũi+1
n , H−1 · ũi

n

)]
(4.2)

where d (·, ·) takes two point locations in homogeneous coordinates and returns their

(affine) distance. The minimization is performed by random sampling, using the two-

step variant of the least-median-of-squares (LMedS), described in Section 2.2.2.
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Figure 4.4: Block diagram of the sequence of operations on the images Ik for the motion
parameter estimation. The output is the set of planar transformation matrices Tk,k+1.

Figure 4.5 shows the robust matching result for the image pair of Figure 4.2. Approx-

imately 120 features were selected from the first image, where each feature is a square

patch of 9 × 9 pixels. In order to avoid the extraction of closely separated features, a

minimum distance of 15 pixels was imposed during the extraction process between any

pair of features. The 4 d.o.f. similarity motion model was used for the homography es-

timation. The two steps of random sampling were run with a maximum of 100 and 50

iterations, respectively. After the random sampling, the set of 32 inliers were selected

using a threshold of 3 pixels. All the inliers were used to estimate the final homography,

under least–squares.

As mentioned above, the computed homography for the current pair of images is used

to restrict the correlation search over the next pair. If, after the random sampling LMedS,

the image matching is not successful then it is repeated with larger correlation areas. The

sequence of correlation areas is 1
4 ,

1
2 and the full area of the image.

4.2.4 Frame Selection during Acquisition

In underwater vision applications it is very common for the image acquisition rate to be

high when compared to the camera motion. This results in video sequences with high

image redundancy between consecutive frames.
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Figure 4.5: Robust feature matching example. A set of features is extracted from one
image (upper left) and matched over the other image (upper right). From a set of 120
extracted and matched features, 32 were selected as inliers, using a similarity motion model
and a distance threshold of 3 pixels. The inliers are marked as circles while the outliers
are marked as crosses. The apparent feature motion is shown in the matching disparity
(lower centre). The outliers are shown as dashed lines.
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This condition motivated the use of a frame selection procedure, which allowed for the

reduction of the memory and processing requirements in the following stages of the mosaic

creation process. The frames are selected such that their superposition is the smallest

above a given minimum acceptable overlap percentage. This threshold was chosen based

on the results of preliminary matching trials. Under these trials, a set of representative

underwater video sequences was used to infer the minimum superposition level which is

still able to support adequate motion estimation1. The overlap threshold was found to be

around 55%.

The implemented pair–wise robust image matching algorithm can process 7 images

pairs per second, on a 800MHz Pentium PC. The frame selection step is performed on-line

during the mosaic image acquisition. As a by product, it allows for the real-time creation

of simpler strip mosaics, without global constraints. This proves to be very useful for the

maneuvering of the vehicle during the acquisition, as it provides visual information on the

approximate trajectory of the vehicle.

4.3 Iterative Topology Estimation

The previous section described the estimation of consecutive homographies Hi,i+1 from

an image sequence. With it, one can find the transformation Hj,k that relates any two

images j and k with k > j, by appropriately cascading the homographies as

Hj,k =
k−1∏
i=j

Hi,i+1 . (4.3)

If the camera revisits a previously imaged region of the sea floor (for example by performing

a loop), then there will be superposition between non time–consecutive images. Since

small registration errors tend to accumulate during the sequential motion estimation,

one should exploit such superpositions in order to reduce the accumulated error. This is

done by matching non–consecutive images that overlap, and readjusting the homographies

between the images.

We start by presenting the notion of mosaic topology (or simply topology) to refer to

the undirected graph, comprising nodes and edges, that describes the connections between

images that are matched. In this graph, nodes represent the location of the image centers,

1The criterion for considering a successful matching was the selection of at least 10 correct matches,

confirmed by human inspection. The average total number of features was around 100 per image.
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while the edges connect the image pairs that overlap and have been successfully matched.

This concept was introduced by Shawney et al. in [97]. Similar concepts are used in [8]

and [56] for global mosaic creation.

The topology is estimated by performing consecutive steps of image matching and

global adjustment. The first step establishes correspondences between non-consecutive

images, while the second updates the topology by taking into account the information

from the new image matches. This cycle is repeated until no new image pairs can be

matched. The two steps are now described.

Image matching — A matrix of the superposition level between every frame is con-

structed. For the image pairs whose predicted overlap is large, the image matching is

attempted using the algorithm described in Section 4.2. Here, the pre–homography

is computed by cascading the homographies over the loop.

Global adjustment — Upon finding new matches, the topology is adjusted by means

of a global optimization procedure. The cost function to be minimized is the sum

of distances between each correctly matched point and its corresponding point after

being projected onto the same image frame,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[
d2

(
xin, H(Θi,Θj) · xjn

)
+ d2

(
xjn, H

−1(Θi,Θj) · xin
)]

, (4.4)

where Ni,j is the number of correct matches between frame i and j, and H(Θi,Θj) is

the homography constructed using the motion parameter vectors Θi and Θj . These

vectors contain the parameters that relate frames i and j with a reference frame

(the first frame). The minimization is carried out using a non-linear least squares

algorithm [9], based on the interior trust–region method described in [10], which

obtains a local minimizer

Θ̂ = argmin
Θ
F (X,Θ) .

4.3.1 Efficient estimation

The above algorithm is computationally heavy. The total number of parameters p to be

estimated depends upon the number of images nimg and the number of free parameters in

the homography npar as

p = (nimg − 1)npar . (4.5)
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For a typical set of 150 images, using the most general homography model with 8 degrees

of freedom requires the estimation of 1192 parameters. This precludes the use in appli-

cations requiring very fast mosaic creation. Nonetheless, the efficiency of the algorithm

is significantly improved by taking into account algorithmic and parameterization issues,

discussed below.

In underwater mosaicing applications, most often the imaging setup allows for the use

of restricted motion models. An example of this is the covering of the region of interest

at an approximately constant altitude [108], or having the camera image plane parallel

to the sea–floor plane [76, 29, 90]. If the image motion constraints can be adequately

modelled by a restricted homography (for example the ones described in Table 2.2), then

such parameterization should be used. The main contributing reasons are :

• The reduction of the total number of parameters involved in minimizing Eq. (4.4).

• The reduction of the effects of fitting noisy data to an over–parameterized motion

model.

The later reason is particularly important in the topology estimation process. The

use of a over–parameterized motion model promotes the fitting of the error in the noisy

data over the excessive degrees of freedom. When such homographies are cascaded, the

accumulated error grows comparatively faster than with an adequately constrained model.

Since the topology estimation algorithm depends upon the composition of homographies

to predict superpositions, the accumulated errors may prevent such prediction.

Error accumulation due to excessive degrees of freedom in the motion model is il-

lustrated in Figure 4.6. The same underwater sequence was used to estimate the set of

homographies using four different parameterizations. This image sequence is a subset of a

larger set (the rock sequence) and comprises a single closed loop with superposition. The

images were captured in very shallow waters at an approximately constant altitude to

the sea–bed, so that no large scale changes are observed. Therefore, an adequate motion

model is the 2–D image translation plus rotation, with 3 degrees of freedom. The use

of this model is shown in the first figure. The other models account for similarity, affine

and full planar transformations, and are arranged in the order of increasing number of

parameters.

The spatial arrangement of the frames which most accurately describes the actual

image positions is given by the figure at the bottom. It contains the result of the full
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mosaicing algorithm, after the topology estimation and the accurate registration step

described in the next Section.

For every diagram in Figure 4.6, the corresponding superposition tables are shown in

Figure 4.7. These tables were obtained by computing the superposition level for every

pair of images using the sequential inter–frame homographies, and arranging the results

as a matrix. The lighter colors correspond to the images where the superposition level is

high. The homography model that better approximates the ”ground–truth” table (lower

right) is the 2D translation and rotation (upper right), closely followed by the similarity

transform. For the results presented in this thesis, both models were implemented.

In addition to the use of restricted models, the size of the estimation problem is also

reduced by using a sub-mosaic aggregation scheme. At the start of each iteration, the

complete sequence is initially divided into sets of consecutive images that form small

rigid sub-mosaics. Inside each sub-mosaic the homographies are considered static and

only the inter-mosaic homographies are taken into account in the optimization algorithm.

For selecting the number of images for of each sub–mosaic, a simple and effective rule–

of–thumb is used. Under this, the sub-mosaic comprises 2 frames if those frames have

overlap with any other non time–consecutive frame. Otherwise, longer sub-mosaic of 5

images are used. This scheme provides more degrees of freedom to the regions where there

is more superposition. The use of sub–mosaics significantly improves the speed of the

cost function evaluation, and does not affect the capability for inferring the appropriate

topology.

On an algorithmic level, it should be noted that the minimization in Eq. (4.4) requires

the computation of the residuals of point projections that depend only on a small number

of parameters. The cost function can be written in an alternative form, as the squared

norm of a vector v,

F (X,Θ) = vTv (4.6)

where v is the vector of distance residuals,

v =

[
d
(
xin, H(Θi,Θj) · xjn

)
d
(
xjn, H

−1(Θi,Θj) · xin
) ]

i,j,n

. (4.7)

The notation [·]i,j,n represents the (vertical) stacking of the elements inside the bracket,

obtained by iterating in i, j, and n under the appropriate limits. The dependency of each
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Figure 4.6: Sequential motion estimation using different motion models. The figures
illustrate the spatial distribution of the images frames for motion estimation using a 2–
D Translation and Rotation (3 dof) (a), similarity (4 dof) (b), affine (6 dof) (c) and full
planar (8 dof) (d) motion model. Figure (e) presents the result obtained after the complete
mosaicing algorithm, and serves as ”ground–truth”.



54 CHAPTER 4. MOSAIC MAP CREATION

Image index

Im
ag

e 
in

de
x

10 20 30 40

10

20

30

40

S
up

er
po

si
tio

n 
Le

ve
l

0   

0.25

0.5 

0.75

1   

Image index

Im
ag

e 
in

de
x

10 20 30 40

10

20

30

40

S
up

er
po

si
tio

n 
Le

ve
l

0   

0.25

0.5 

0.75

1   

(a) (b)
Image index

Im
ag

e 
in

de
x

10 20 30 40

10

20

30

40

S
up

er
po

si
tio

n 
Le

ve
l

0   

0.25

0.5 

0.75

1   

Image index

Im
ag

e 
in

de
x

10 20 30 40

10

20

30

40

S
up

er
po

si
tio

n 
Le

ve
l

0   

0.25

0.5 

0.75

1   

(c) (d)
Image index

Im
ag

e 
in

de
x

10 20 30 40

10

20

30

40

S
up

er
po

si
tio

n 
Le

ve
l

0   

0.25

0.5 

0.75

1   

(e)

Figure 4.7: Sequential motion estimation using different motion models. This figure shows
the matrices containing the superposition level for all images, corresponding to the image
motion estimation cases of Figure 4.6. The matrices are arranjed in the same order.
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Figure 4.8: Example of the sparse structure of the Jacobian matrix used in the topology
estimation process. This matrix relates the vector of homography parameters with the
cost vector formed by the distances between matched points. The non–zero entries are
represented in black.

element of v in a small number of parameters means that, for a given set of matched points

and parameters (X,Θ), the Jacobians of v and Θ with respect to X are sparse with a

predictable sparsity structure. This structure allows for very efficient implementations of

the commonly used algorithms for non–linear least-squares. Examples of this are described

by Capel [8] in mosaicing applications, or Hartley [40] in rotating camera calibration. The

sparse structure of the Jacobian of v is illustrated in Figure 4.4 and is used in our algorithm.

A complete example of the topology estimation for the whole rock sequence is given in

Figure 4.9, containing several loops. The graphs on the upper row illustrate the spatial

arrangement of the images before (a) and after (b) the topology estimation step. The

lower row shows a close–up of the corresponding mosaics. In order to emphasize the

registration errors, the mosaics were rendered by stacking the images on the order of

acquisition, so that the most recent are placed on top. The effects of the accumulated

error from the sequential motion estimation are visible on the repeated pattern of algae

and rocks in Figure 4.9(c). The same area is shown in Figure 4.9(d), where the matching

of time–distant images allowed for the reduction of the registration error.

4.4 Accurate Global Registration

The main objective of the final stage of the algorithm is attaining a highly accurate

registration. A more general parameterization for the homographies is therefore required,
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Figure 4.9: Topology estimation example for the complete rock sequence containing sev-
eral loops – The graphs illustrate the spatial arrangement of the mosaic images before (a)
and after (b) the topology estimation step. The graph nodes represent the image centers
(marked as dots). The edges link the images that were successfully matched.
The lower row displays a close–up of the corresponding mosaics. The effects of the accu-
mulated error (c) have been reduced by registering non-consecutive images (d).
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capable of modelling the warping effects caused by wave-induced general camera rotation

and changes on the distances to the sea floor. A parameterization was thus chosen in

which all the 6 degrees of freedom of the camera pose are explicitly taken into account.

It should be noted that the estimation of the homographies for the 6 degrees of free-

dom model does not impose, per se, the condition of a single world plane from which the

homographies are induced. This condition is therefore imposed by augmenting the overall

estimation problem with additional parameters that describe the position and orientation

of the world plane. The common world plane description is included in the parameteriza-

tion of the homographies.

An important advantage of the following parameterization is that it allows for the full

3–D camera trajectory and world plane to be recovered during the process.

4.4.1 General parameterization

The overall parameterization scheme is the following. One of the camera frames (usually

the first) is chosen as the origin for the 3–D coordinate frame, where the optical axis is

coincident with the Z–axis. The world plane is parameterized with respect to this frame

by 2 angular values that define its normal. As the trajectory and plane reconstruction can

only be attained up to an overall scale factor, this ambiguity is removed by setting the

plane distance to 1 metric unit2, measured along the Z-axis.

Let Θi and Θj be the pose 6–vectors containing 3 rotation angles and 3 translations

with respect to the reference 3–D frame of the first camera. Let n (Θp) be a 3-vector

containing the normal to the world–plane (also in the 3–D reference frame), which is

parameterized by the 2-vector Θp of angles. The homography relating frames i and j with

the reference image frame is given by Eq. (2.2):

Hi,1 = K ·
[
R (Θi) + t (Θi) · nT (Θp)

]
·K−1

Hj,1 = K ·
[
R (Θj) + t (Θj) · nT (Θp)

]
·K−1

where R (Θi) and R (Θj) are rotation matrices, tT (Θi) and tT (Θj) are the translation

components, as defined in Section 2.1.3. The homography relating frames i and j is given

2If additional information is available on the real distance to the sea floor (for example, from an

altimeter), then it can be straightforwardly used here.
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by

Hi,j = Hi,1 ·H−1
j,1 = K ·

[
R (Θi) + t (Θi) · nT (Θp)

]
·
[
R (Θj) + t (Θj) · nT (Θp)

]−1 ·K−1

(4.8)

4.4.2 Cost Function

The global registration is performed by bundle adjustment with a cost function similar to

the one previously used in the topology adjustment in page 50, but using the parameters

for the most general motion model. The distances between matched points are measured

in their respective image frames, and summed over all pairs of correctly matched images,

i.e.,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[
d2

(
xin, Hi,j · xjn

)
+ d2

(
xjn, H

−1
i,j · xin

)]
(4.9)

For a set of M images, the total number of parameters to be estimated is (M − 1)× 6+2,

comprising 6 parameters per camera (excluding the reference camera) plus the 2 angles of

the normal to the world plane. As before, the cost function is minimized using non-linear

least squares, to obtain

Θ̂ = argmin
Θ
F (X,Θ)

The initial values for the parameter set are computed from the homographies obtained

at the end of the topology estimation step (Section 4.3) which relate each image to the first

camera. To do this, we use the general homography decomposition of Eq. 2.2, and the

method described by Triggs in [115]. However, for each homography there is, in general,

two distinct and valid solutions for the rotation, translation and plane orientation. This

ambiguity can be solved by combining the information from two or more views [62]. Under

the assumption of a single plane in the scene (as we do in this work), the ambiguity can be

removed by choosing the solutions which correspond to the same plane orientation [24].

Our approach is to find the plane orientation which has the largest consensus from the

group of all orientations. Given N homographies relating each images frame to the first

image frame, let Sn be the set of all 2N plane normals obtained from decomposing each

homography. Let ni and nj be vectors from Sn. We seek the most representative plane

orientation n̂, such that

n̂ = argmin
i

med
j

[
(ni − nj)T (ni − nj)

]
.
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Given n̂, the criterion for removing the ambiguity is to select the set of rotation plus

translation whose associated plane normal is closer to n̂.

4.5 Map Rendering

The final operation consists of blending the images, i.e., choosing the representative pixels

to compose the mosaic image, that are taken from the spatially registered images.

A common method for image blending is to use the last contributing image. However,

considering the intended application for navigation, an alternative method was used. Un-

der this, the mosaic is created by choosing the contributing points which were located the

closest to the center of their frames. In underwater applications it compares favorably

with other commonly used rendering methods, such as the average or the median. This is

due to the fact that it better preserves the textures and minimizes the effects of unmodeled

lens distortion, which tends to be larger near the image borders.

The orientation of the world plane has been explicitly taken into account and estimated.

Therefore, it is easy to compute a planar projective transformation that yields a fronto-

parallel view of the mosaic. As we are interested in creating a navigation map, the fronto-

parallel projection is the most appropriate in the sense it minimizes the perspective image

distortions in the image-to-mosaic matching for vehicle configurations where the camera

is pointing downwards.

A homography H1,fp, relating the image frame of the reference camera with a virtual

fronto–parallel camera, can be found just by applying an appropriate 3–D camera rotation,

as illustrated in Figure 4.10. Let n be the 3-vector containing the normal to the world

plane expressed in the 3–D camera reference frame. Then H1,fp is given by

H1,fp = K ·R1,fp ·K−1

where R1,fp is any rotation matrix whose last column is −n. This family of matrices

corresponds to 3–D rotations that align the optical axis of the reference frame with the

normal of the plane, and is defined up to a rotation around the vertical axis.

For the navigation, we are interested in establishing a Euclidean 3-D world reference

associated with the mosaic. As its location is purely arbitrary, it was chosen to have the

origin in the intersection of the optical axis of the first image with the plane of the mosaic.

The orientation is such that the mosaic plane has null z coordinate, and the x axis is
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Figure 4.10: Rotation of the reference camera frame to yield a fronto–parallel view of the
floor.

parallel to the first camera frame x axis. If the information about overall scale is available

from a sensor such as an altimeter, it can be used here.

4.6 Results

The results on globally consistent mosaics were obtained from image sequences captured

by a custom modified ROV [34]. Details on the platform setup are given in Appendix A.

An illustrative example of the mosaic creation process is given in Figure 4.11. The

image sequence was acquired in shallow waters of about 2 meters depth, while the vehicle

was manually driven around a squared shaped rock. During the acquisition, the inter-

frame motion estimation was performed on-line, which allowed for the selection of 98

images based on a 60% superposition criteria. This resulted in the upper–left mosaic,

where the effects of error accumulation are visible near the image top in the form of a

repeated white stone. After 4 steps of topology estimation, 285 distinct pairs of non-

consecutive images (combined from the selected image set) where successfully matched.

The final topology of the upper-right mosaic was obtained. Next, the global optimization

was carried out using full 3-D pose parameters for all cameras and world plane description.

The outcome of this step allows for the creation of a fronto-parallel view of the mosaic,

which can be used as the navigation map.

Another image sequence was obtained over a flat sandy area, fully surrounded by algae.
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(a) (b)

(c) (d)

Figure 4.11: Mosaic creation example with intermediate step outcome – Consecutive image
motion estimation (a), topology estimation and and non-consecutive image matching (b),
high accuracy global registration (c) and final fronto-parallel view of the mosaic after
global optimization (d). The first three mosaics were rendered using the pixels from the
last contributing image, while the last was created with the contribution from the image
whose pixels were closer to the frame center.
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During the acquisition, the vehicle was manually driven to follow a zig-zag trajectory that

covered most of the area. The sequence comprises 1000 images, corresponding to 6 minutes

and 40 seconds of video. After the initial matching, a set of 129 images was selected

using the criterion of minimal overlap above 50%, which resulted in an average overlap of

54.4%. The topology estimation was completed in 13 iterations, resulting in 322 pairs of

images that were successfully matched. The evolution of the topology estimation is given

in the four graphs of Figure 4.12. The graph (a) shows the spatial arrangement of the

image centers as obtained by the first step of the mosaicing process, described in Section

4.2 (sequential motion estimation). The following graphs (b) and (c) correspond to the

intermediate outcome and final result (d) of the topology estimation of Section 4.3. In

each graph, line segments are used to link the centers of images that have been matched.

Another graphical representation for the final result of the topology estimation is given

in Figure 4.13. The image on the left is obtained from the superposition matrix, which

contains the superposition level of each image with respect to all images. The image on

the right illustrates the number of matches found for all pairs of images.

The mosaic obtained from the last stage of the algorithm, is shown in Figure 4.14. It

was created by choosing the contributing points which were located the closest to the center

of their frames. The chosen rendering operator uses the image intensity contributions of

just one image, as stated above. The resulting mosaic exhibits a Voronoi–type space

division for the borders of contributing images. The high quality of the final mosaic is

illustrated by the fact that algae leafs, lying on the predominant ground plane are not

disrupted along the visible boundaries of the contributing images.

A small section of the rendered mosaic is displayed in Figure 4.15 along with one of the

original frames for the same area. The quality of the registration can be assessed from the

fact that the visual features (such as small algae leafs) are not disrupted along the visible

boundaries of the contributing images. The recovered 3D camera paths are illustrated in

Figure 4.16.

The upper mosaic of Figure 4.17 was created from a set of 70 selected images. The

image sequence was acquired approximately over the same sandy area as the previous

sequence, but after a period of several months. For this experiment, the distance of the

vehicle to the sea floor was measured by the on-board altimeter, during the acquisition

of the first sequence image. After taking into account the displacement between the

altimeter and the camera 3–D reference frames, the distance of 5.0 meters was obtained,
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Figure 4.12: Topology estimation for the bottle sequence – The graphs illustrate the spatial
arrangement of the images used for creating the mosaic of Figure 4.14. The first graph
(a) refers to the initial motion estimation, in which the images are matched sequentially
by the order of the frame aquisition. The following graphs were obtained after the 4th (b),
9th, and 13th (final) topology iterations (d).
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Figure 4.13: Superposition level (a) and number of matched points (b), for the all the
images of the set, after the final iteration of the topology estimation process.

from the camera frame of the first image to the seabed. The overall mosaic map scale

was set accordingly. The mosaic covers approximately 92 square meters, from which 40

correspond to sand. Each pixel on the mosaic corresponds to a sea floor area of about 2×2

centimeters. The rectangular region that contains the mosaic area measures 14.2 × 14.3

meters. The lower part of the figure presents a similar mosaic, created from a set of 46

images. As before, the scale was set using the altimeter to measure the distance of 4.29

meters from the first camera frame to the floor. The mosaic covers approximately 64

square meters and is inscribed in a 10.8× 9.5 meter rectangle.

It should be noted that the mosaic process was able to successfully cope with image

contents that clearly departs from the assumed planar and static conditions. This is visible

in the large percentage of the mosaic area used by moving algae.

4.7 Discussion

This chapter presented a method for the creation of mosaics comprising four main algo-

rithmic steps. These are the sequential estimation of camera motion, topology inference,

high accuracy trajectory estimation and fronto-parallel mosaic rendering.

Illustrative results were obtained from a sequence of shallow water images taken by a

ROV. The images present some of the common difficulties of underwater mosaicing, such as

non planar sea-bottom, moving objects and severe illumination changes. These challenging
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Figure 4.14: Final mosaic created using 129 images selected from the original set of 1000
and rendered with the closest operator. The seafloor area covered is approximately 42
m2.

Figure 4.15: Area detail of the mosaic (left), and one of the original images (right).
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Figure 4.16: VRML stereogram of the camera path and mosaic. The world referential is
illustrated by the system of axis, which is coincident with the first camera frame. The
views are arranged for crossed eye fusion.

sequences are used to illustrate the robustness and good performance of the complete

algorithm. The approach seamlessly integrates the problems of trajectory estimation and

mosaic construction. Also, it provides the means of finding a geometric description of

sea-bottom plane, and is able to reconstruct the camera path taking into account all the

involved degrees of freedom.

The success of the global mosaicing process depends upon the accurate estimation of

the motion, during the first step. Inaccurate results will hinder the ability to predict (and

exploit) the non time–consecutive overlaps. As illustrated in Section 4.3, such overlaps

are required to create spatially coherent mosaics.

When predicting the superposition, two types of errors can be considered:

• Type I – Detection of superposition when there is none. This is illustrated in Figure

4.6 (c) where the last frame erroneously overlaps with the first.

• Type II – No detection of superposition when there actually is. This is illustrated

in Figure 4.6 (d) where the loop was not closed.

Under the our approach, only the first type of error can be detected. Such errors are

signaled by the failure to match successfully the images involved.

However, the dependency on the accurate initial motion estimation can be alleviated
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Figure 4.17: Perspective view of two of the mosaics used for the underwater navigation
tests, with original camera path reconstruction. The small dots mark the 3–D position of
the camera centres for the image set selected to create the mosaic. The world referencial
is represented by the 3 perpendicular axes on the upper right of the image. Vertical lines
were added to ease the perception of the 3–D trajectory. The upper mosaic comprises 70
images and the lower 46.
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by insuring the presence of several overlapping regions in the video sequence. An example

of such is the bottle sequence of Figure 4.12, where the large displacement between the

last four frames and the rest of the mosaic was successfully corrected.



Chapter 5

Mosaic–based Pose Estimation

In this chapter we address the problem of using a previously created mosaic map for the

3–D localization of a vehicle. We assume the mosaic map has been built, and that a world

coordinate frame has been associated with it. Having such map enables a camera-equipped

autonomous vehicle to locate itself by finding point matches between the mosaic and the

image frame.

The problem of pose estimation is addressed under the assumption of known camera

intrinsic parameters. Two methods are presented which differ on the estimation accuracy

and computational cost. The first is an well–known algebraic method to recover the pose

parameters directly from the elements of the image–to–mosaic homography. Since it leads

to a direct, non–iterative solution, it is suitable for real-time operation on setups of limited

computing resources. The second method is a maximum likelihood estimator that recovers

the pose by minimizing a cost function using the coordinates of matched points between

the mosaic and the camera image. This method is optimal when the uncertainty in the

coordinates of the matched points is modelled as additive Gaussian noise. However, it is

computationally more demanding than the algebraic method, as it requires an iterative

implementation to solve a non–linear least squares problem.

For both the algebraic and maximum likelihood methods, a first–order covariance

propagation is performed. The validity and accuracy of covariance prediction is confirmed

using statistical simulation. This chapter concludes with pose estimation results using an

image sequence with known ground truth.

69
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5.1 Pose Parameterization

In this chapter we will consider the most general parameterization for the pose, accounting

for all the degrees of freedom in rotation and translation.

Let Θ =
[
α β γ W

Ctx
W
Cty

W
Ctz

]T
be the 6-vector containing the camera pose

in the form of 3 camera rotation angles and the location of the camera centre in world

coordinates. The 3-D rigid transformation that relates points in the world and camera

frames is given by


Cx
Cy
Cz

 =CRW




Wx
Wy
Wz

−


W
Ctx
W
Cty
W
Ctz


 , (5.1)

where CRW is a rotation matrix. This matrix is parameterized by the X-Y-Z fixed angle

convention [12],

CRW =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 ,

where s (.) and c (.) represent the sine and cosine functions of the rotation angles.

Without loss of generality, we assume that a world coordinate frame was set such that

all the world points belong to the plane defined by Wz = 0. Therefore, a camera–to–world

collineation can then be defined as

Ti,W (Θ) .= K ·CRW ·


1 0 −W

Ctx
0 1 −W

Cty
0 0 −W

Ctz

 , (5.2)

where K is the 3 × 3 intrinsic parameter matrix1. The collineation Ti,W (Θ) relates the

metric coordinates of the points in the world plane
[

Wx Wy
]T

with the pixel coordinates

of their projections in the image
[
u v

]T
, in the form


u

v

1

 .= Ti,W (Θ) ·


Wx
Wy
1

 .

1Althought related, this equation cannot be directly obtained from Eq. (2.2), because we are now

dealing with only two 3–D planes (the world plane and the image plane) whereas in Eq. (2.2) three plane

are involved. Furthermore, we are now considering the 3-D reference frame to be on the world plane.
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Since the mosaic is stored as a bitmap, establishing a world coordinate frame in the

mosaic corresponds to defining a collineation that relates the mosaic image pixel coor-

dinates with their metric counterpart. Let WNm be the 3 × 3 matrix representing such

collineation. Then the camera–to–mosaic homography can be written as

Ψ(Θ) .= Ti,W (Θ) ·WNm . (5.3)

5.2 Algebraic Method

We will now review a fast algebraic solution to recover the camera pose from the homog-

raphy relating the camera image with the calibrated mosaic (i.e. a mosaic bitmap with an

associated coordinate frame). Using the knowledge on the intrinsic parameter matrix, a

useful decomposition can be obtained for the collineation Ti,W which relates planar world

points with their camera projections. This solution is based on the method described by

Sturm in [106]. Similar approaches are reported in [23, 21].

Let L be a (3×3) matrix constructed from the rotation matrix C
WR, and the vector, C

Wt,

L =
[

C
WR

C
Wt

]
,

where, for a (3 × 3) matrix A, the notation A denotes the (3 × 2) submatrix comprising

the first two columns. The homography Ti,W can be written as

Ti,W = λKL , (5.4)

where λ is an unknown scale factor. In order to recover the pose information embedded

in L, the unknown scale factor λ has to be determined. The absolute value of λ can be

obtained by noting that the first two columns of L have unit norm. By denoting M as

M = Ti,W
T ·K−T ·K−1 · Ti,W =

[
λ2 0
0 λ2

]

we have λ2 = M (1, 1) = M (2, 2). The two possibilities for the sign of λ result in valid

solutions for Eq.(5.4). However, only one corresponds to the camera height being above

the sea floor.

The last column of C
WR can obtained by computing the cross product of the first two

columns. Let C
WR1 and C

WR2 be the two candidates for C
WR, corresponding respectively to
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the scaling by + |λ| and − |λ|. The matrices C
WR1 and C

WR2 are related by

C
WR1 =C

WR2 ·


−1 0 0
0 −1 0
0 0 1

 .

The corresponding optical centre locations are given by

W
Ct1= − 1

|λ|
C
WR

T
1


t1

t2

t3

 and W
Ct2=

1
|λ|

C
WR

T
2


t1

t2

t3

 ,

where
[
t1 t2 t3

]T
is the last column of λL. The locations of the optical centres

differ by the last coordinate which is symmetric. Both solutions for C
WR and W

Ct are in

accordance with Ti,W , and are geometrically valid. In the application of this work, we are

only interested in the positive −→z axis solution for W
Ct, which corresponds to the camera

being above the plane of the floor.

Due to the limited resolution of the matching process, the measured value T̂i,W will not

exactly follow the structure of Eq. (5.4). In order to recover the pose, we are interested

in finding the Ti,W which best approximates the noisy measurement T̂i,W , while keeping

the noise-free structure.

Using the Frobenius norm to measure the distance between matrices, the problem can

be formulated as

λ, L = argmin
λ,L

∥∥∥λL−K−1T̂i,W
∥∥∥2

frob
subject to LT

L = I2 . (5.5)

Since the last column of L is not restricted, the above problem can be solved by

dividing it into two independent subproblems. The first problem corresponds to the first

two columns of L which are constrained, which is formulated as

λ, L = argmin
λ,L

∥∥∥λL−K−1T̂i,W
∥∥∥2

frob
subject to LT

L = I2 . (5.6)

As pointed out in [106], the solution of Eq. (5.6) can be solved using the Singular

Value Decomposition, in the following manner. Let U · Σ · V T be the SVD of K−1T̂i,W .

Then L is given by

L = U · V T .

The scale factor can be found independently. By imposing the condition of null derivative

at the minimum,
d

dλ

∥∥∥λL−K−1T̂i,W
∥∥∥2

frob
= 0 ,
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one gets

λ =
tr(LT ·K−1T̂i,W )

tr(LT · L)
which, taking into account the SVD of L and K−1T̂i,W , is simply

λ =
tr(Σ)

2
.

Once L is known, the second problem of finding the last column of L is solved directly

by

C
Wt =K−1 · T̂i,W ·


0
0
1
λ


and

L =
[
L

C

W
t
]

.

The method presented in this section illustrates the use of the image–to–mosaic ho-

mography for estimating the pose. However, the pose information is embedded in the

coordinates of the matched points. This has motivated an estimator for recovering the

pose directly from the coordinates, that is presented in the following section.

5.3 Maximum Likelihood Estimation

We will now present a maximum likelihood estimator for the pose. The underlying as-

sumptions are of independent additive Gaussian noise on the image the coordinates of the

matched points.

After the matching process, we consider the following observation equation[
xin
1

]
=

Ψ(Θ)
λn

[
xmn
1

]
+

[
εn

0

]
, (5.7)

where xin and xmn are the coordinates of point correspondences in the camera frame and

in the mosaic image respectively, and εn is a Gaussian random vector of zero mean and

known covariance. The 3 × 3 matrix Ψ contains the camera–to–mosaic homography as

described in Section 5.1. The scale factor λn is given by

λn =
[
0 0 1

]
·Ψ(Θ) ·

[
xmn
1

]
.
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By stacking all the observations in the vector xi =
[
xi1 ... xiN

]T
we can write the

observation equation for all points as

xi = Q(xm,Θ) + ε .

The vector Q(xm,Θ) contains the projections of mosaic points in a camera with pose Θ,

Q (xm,Θ) =


Q(xm1 ,Θ)

...
Q(xmN ,Θ)


where, for a generic point xmn in the mosaic, Q(xmn ,Θ) represents the 2-vector of its

projection in the image, i.e.,

Q (xmn ,Θ) =

[
1 0 0
0 1 0

]
·Ψ(Θ)

[
xmn
1

]
[

0 0 1
]
·Ψ(Θ) ·

[
xmn
1

] .

The error term ε is assumed to be a vector of independent, equally distributed, Gaus-

sian random variables of zero mean and covariance given by

R = cov(ε) = σ2I2N . (5.8)

This hypothesis will be tested empirically in Section 5.5.1.

Given the observation equation and the error distribution, the conditional probability

of observing xi, given the pose parameters Θ, is

Like (Θ) = P
(
xi | Θ

)
=

1

(2π · σ2)
N
2

e−
1

2σ2 (xi−Q(xm,Θ))T (xi−Q(xm,Θ)) . (5.9)

The expression above is referred to as the Likelihood function since it quantifies the

”likelihood” of Θ being the sought parameters.

Given xi and xm, we are interested in finding the pose Θ that best explains the data.

This can be carried out by maximizing P
(
xi | Θ)

with respect to Θ or, in an equivalent

manner, minimizing the logarithm of the inverse of P
(
xi | Θ)

,

l (Θ) = N
2 log(2π) +N log(σ)
+ 1

2σ2

(
xi −Q (xm,Θ)

)T (
xi −Q (xm,Θ)

) . (5.10)
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The first two terms of l (Θ) do not depend on Θ, and can thus be removed in the

minimization process. The maximum likelihood estimate of Θ is thus,

ΘML = argmin
Θ
l (Θ) = argmin

Θ

∥∥∥xi −Q (xm,Θ)
∥∥∥2

. (5.11)

This minimization is carried out using a non–linear least squares algorithm [87]. The

initial value for Θ is provided by the algebraic solution.

5.4 Uncertainty Propagation

The method used for estimating the uncertainty is based on the first order approximation

of the Taylor series of a cost function. This cost function is minimized by estimated

parameters and the data used in the estimation process. The method, overviewed in

Appendix B, allows for the computation of the covariance of the noise on the estimates as

a linear function of the covariance of the additive noise in the data.

5.4.1 Propagation for the Algebraic Method

For the algebraic method, the covariance in the pose estimate is computed in two steps.

The first step propagates the covariance from the noise in the matched points to the

elements of the image–to–mosaic homography Ψ. The second step propagates from these

elements to the pose.

Matched points to homography

The computation of the image–to–mosaic homography is performed using the most general

model, with 8 degrees of freedom. More specifically, the elements of the homography are

computed by using the SVD to solve the constrained minimization

Ψ = argmin
Ψ

‖H (X) · vec (Ψ)‖2 subject to ‖vec (Ψ)‖ = 1 , (5.12)

where H (X) is a matrix comprising the matched point coordinates as defined in Eq.(2.4)

in Chapter 2, and vec (Ψ) is a column vector containing the 9 elements of homography in a

row-wise fashion. To simplify the notation, we will denote the elements of the homography

arranged as a column by Ψ, for the remaining of this section.

An alternative method would be the computation of Ψ by fixing one of the elements

to a non-zero scalar (typically Ψ3,3 = 1), and performing unconstrained minimization
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over the remaining 8 elements. However this will lead to numerical instability if the fixed

element turns out to be close to zero2.

To help us obtain an expression for the covariance in the estimate of Ψ, we will intro-

duce some additional notation. This notation is required for representing the entities in

the estimation process which are affected by noise (both data and parameters). Let X0 be

the noise-free 4n × 1 vector containing the coordinates of the n matched points. Due to

the limited resolution in the matching process, we can only observe a noisy version X̂ of

X0. We assume that the noise can be described as a vector of small amplitude zero–mean

additive perturbations ∆X, such that X̂ = X0+∆X, where the 4n×4n covariance matrix

Σ∆X of ∆X is known.

By solving the problem in Eq.(5.12) using the observed data vector X̂, we obtain

an estimate Ψ̂ for the homography elements. This estimate is also perturbed due to

the unknown ∆X. We further assume that Ψ̂ can be expressed (by a first order Taylor

expansion) as Ψ̂ = Ψ0 + ∆Ψ, where Ψ0 would be obtained using X0 in Eq.(5.12).

Let F be a positive scalar function relating Ψ and X, such that F attains a minimum

at F (X̂, Ψ̂)

F (X,Ψ) = ‖H (X) ·Ψ‖2 = ΨT [H (X)]T H (X)Ψ ,

and s (Ψ) be a function such that s (Ψ) = 0 encompasses the constraint in Ψ,

s (Ψ) =
(
ΨT ·Ψ

)
− 1 = 0 .

Having introduced the perturbed versions of both data and parameters, the minimiza-

tion problem in Eq.(5.12) can be written in the following equivalent form,

Ψ̂ = argmin
Ψ
F (X̂,Ψ) subject to s (Ψ) = 0 . (5.13)

Using the second order derivatives of F , a linear approximation can be found to relate

∆Ψ and ∆X, around (X̂, Ψ̂). This derivation is detailed in Appendix B. The predicted

covariance Σ∆Ψ of the elements of Ψ is given by

Σ∆Ψ = E ·A−1 ·B · Σ∆X ·BT ·A−1 · ET (5.14)

2Imposing Ψ3,3 = 1 fails to represent the case where the vector connecting the world referential to the

optic center is perpendicular to the optic axis. Under such condition Ψ3,3 = 0.
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where
E =

[
I9×9 09×1

]
9×10

,

A =

 ∂2F
∂Ψ2

(
∂s
∂Ψ

)T
∂s
∂Ψ 0


10×10

and

B =

 −
(

∂2F
∂Ψ∂X

)T
0


10×4n

.

Both the Hessian matrix of F and the Jacobian of s (inside matrix A) have a special

structure, that is used to speed up the calculation of A, namely
∂2F
∂Ψ2 = HT (X) ·H (X) and

∂s
∂Ψ = 2 ·ΨT .

The second derivative of F with respect to Ψ and X (in B) cannot be written as a compact

expression, due to the structure of H (X). For this reason, it was evaluated numerically

using symmetric differences [87], for the expression

∂2F

∂Ψ∂X
=

∂

∂X

[
2 [H (X)]T H (X)Ψ

]
.

It should be noted that the covariance propagation given above does not assume any

particular distribution for the noise ∆X in the observations. The only assumptions are

that ∆X should be sufficiently small to allow a first order approximation of F (X,Ψ) and

that F (X,Ψ) has finite second order derivatives, so that Eq.(5.14) holds. This is detailed

in Appendix B.

Homography to pose

The following step consists in propagating the covariance of the noise from the 9 elements

of the homography to the pose vector.

As described above, given an image–to–mosaic homography, the pose can be recov-

ered by solving the problem of Eq. (5.5). The solution is obtained by computing the

singular value decomposition of a 3 × 3 matrix, which is a very fast process. Therefore

it is computationally inexpensive to numerically estimate the Jacobian that relates small

perturbations ∆Ψ in the elements of Ψ with the corresponding perturbations ∆θ in the

pose vector Θ. An estimator for the covariance Σ∆θ in the pose is given by

Σ∆θ = JT · Σ∆Ψ · J ,
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where J = ∂Θ
∂Ψ (Ψ,Θ) is the 9×6 Jacobian matrix. This matrix is computed by a numerical

approximation.

In practical applications, it might be useful to also take into account the uncertainty

on θ due to the uncertainty on the camera intrinsic parameters. If the uncertainty is

modelled as small perturbations of zero mean around the nominal value, then the data

vector (and associated covariance matrix) can be extended to include the elements of K

that are affected by noise. In this case, care should be taken in properly scaling such values,

to avoid the potential numerical problems related to having very disparate magnitudes in

the entries of the (extended) data covariance matrix. An effective normalization is the

division of intrinsic parameters by their largest value.

5.4.2 Propagation for the Maximum Likelihood Estimator

The pose estimates for the maximum likelihood estimator are obtained directly from the

coordinates of the matched point in the mosaic and in the image. This is achieved by

solving the unconstrained minimization problem of Eq. (5.11). The covariance Σ∆θ of the

pose estimates is predicted using the same approach as in Section 5.4.1. Since there are

no constraints on Θ, the expression for Σ∆θ is a simplified version of Eq. (5.14),

Σ∆θ =

(
∂2F

∂θ2

)−1

·
(
∂2F

∂θ∂X

)T

· Σ∆X · ∂
2F

∂θ∂X
·
(
∂2F

∂θ2

)−1

,

where the function F , which implicitly relates X and Θ, is

F (X,Θ) = ‖X −Q (xm,Θ)‖2 = [X −Q (xm,Θ)]T · [X −Q (xm,Θ)] .

The covariance estimation involves the computation of second derivative matrices, that

are evaluated numerically. Similarly to what was stated above, if we want to include

the effects of the uncertainty from the intrinsic parameters, then the data vector and

covariance matrix are extended to include the uncertain intrinsics.

5.4.3 Statistical simulation

A Monte Carlo [54] validation was carried out to test whether the error propagation could

be satisfactorily estimated by the first order methods described above.

A reference pose was chosen, from which two lists of noise-free coordinates were ob-

tained, comprising 34 point matches between the image and the mosaic. The points in the



5.4. UNCERTAINTY PROPAGATION 79

image are contaminated with independent identically distributed additive Gaussian noise

of 1 pixel standard deviation, for an image size of 320 × 240. This noise level is set as

conservatively higher value than what was obtained by measuring the residuals resulting

from feature matching between sets of underwater images with distinct visual content. To

simulate the matching process as described in Section 4.2, we consider that only the point

projections in the image are affected by noise, whereas the mosaic point coordinates are

noise–free. It is assumed the noise is caused by the limited resolution of the matching

procedure and from slight non-planarities in the scene.

For each noisy instance of the matched coordinates, the corresponding pose was es-

timated using both the algebraic method and the maximum likelihood estimator. The

statistics of 1500 pose instances where then compared to the predicted values. The pre-

dicted covariance was computed around the mean value of the pose estimates.

For the algebraic method, the histograms for the elements of Ψ are illustrated in

Figure 5.1. The diagonal entries of the predicted covariance Σ∆Ψvec , corresponding to the

variance of each element of Ψ, were used to draw a Gaussian distribution curve which was

superimposed as a full line. This covariance matrix was used as the input for predicting

the covariance Σ∆θ associated with the pose parameters. The corresponding histograms

for the elements of Θ are shown in Figure 5.2, where the predicted covariance on the

parameters was used to superimpose a Gaussian curve. The two figures show that the

prediction is accurate for the amount of noise involved.

For the maximum likelihood method, the histograms for the elements of Θ are illus-

trated in Figure 5.3. The covariance prediction is also accurate.

An additional test was conducted, with different levels of noise, to gain insight on

the limits of the approximation validity. In order to compare the real and the predicted

covariance matrices, a distortion measure was devised based on the normalization of the

real covariance matrix. By using the singular value decomposition, one can find the linear

transformation on the parameter space that maps the empirical covariance matrix onto

the identity3. By applying the same transformation, both on the empirical and on the

predicted covariance matrices, the measure returns the Frobenius norm of their difference.

The results for maximum likelihood estimator are presented in Figure 5.4. The noise

levels ranged from 0.25 to 10 pixel standard deviation. For each noise level, 500 instances

of the pose and predicted covariance were calculated. The orientation and translation

3provided the uncertainty spans all the parameter space.
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Figure 5.1: Results from Monte Carlo trials for testing the validity of the method for
propagating the covariance from matched points to the elements of the image–to–mosaic
homography Ψ. The histograms where created from 1500 instances of noise contamined
coordinates, with a noise level of 1 pixel (standard deviation) and are arranged in accor-
dance to the corresponding elements of Ψ.
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Figure 5.2: Histograms for the six pose parameters, obtained from the elements of the
image–to–mosaic homography. The superimposed lines represent Gaussian distributions
whose variances were obtained from the predicted covariance matrix.
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Figure 5.3: Histograms of the Monte Carlo simulations for the maximum likelihood es-
timator, where 1500 instances of the pose where obtained from the noisy coordinates of
image points. The predicted covariance is represented as a full line. The graphs have the
same scales as Figure 5.2.
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Figure 5.4: Differences in the predicted and empirical covariances with increasing noise
levels for the orientation (left) and translation (right).

components of each predicted uncertainty were compared to the corresponding ones of

the empirical covariance. The plot illustrates the average distortion with the standard

deviation envelope. Although the average distortion grows in a smooth way, it can be

inferred from the envelope that, for this pose, the prediction becomes unreliable for noise

levels above 5 pixel standard deviation

5.5 Results

In order to evaluate the performance of the pose estimation algorithms, accurate ground-

truth is required. For this reason we have used the mosaic of Figure 5.5 and synthesized

new views according to a specified camera matrix and trajectory. These images are then

used to retrieve the camera and position parameters. The mosaic was set to cover an area

of 6 by 14.5 meters. The sequence comprises 40 images of 320 × 240 pixels taken by a

camera on a moving vehicle combining 3D motion and rotation. The camera is pointing

downwards and slightly forward, with a tilt angle of approximately 150 degree with respect

to the horizontal. The used intrinsic parameters matrix K accounts for a skewless camera

with

K =


480 0 160
0 480 120
0 0 1

 .

The uncertainty on the intrinsic parameters was also taken into account. Such uncer-

tainty was modelled as a zero mean perturbation on the 4 elements of the skewless camera
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Figure 5.5: Underwater mosaic used for ground–truth, yielding a top view of the sea floor.

matrix, namely the scaling factors fku and fkv, and the principal point location uo and

v0, with the following variances

σ2
fku

= σ2
fkv

= 25.0 and σ2
uo

= σ2
vo

= 12.9 .

These variances were estimated from the calibration data of the ROV camera (Appendix

A.2).

To simulate the vehicle drift induced by water currents a perturbation was added to

the nominal forward motion of 0.23 meters/frame and to a nominal height above sea floor

of 3 meters. The perturbations account for periodic drifts of around 0.4 meters in position

and 15 degrees in orientation. For each frame, the combined movement of the camera is

depicted in Figure 5.6, where the camera is represented with its optical axis.

5.5.1 Pose Estimation Results

The images from the created sequence were registered directly on the mosaic, using the

robust point matching algorithm described in Chapter 4. For each frame, the number of

selected inliers ranged from 16 to 39 pairs of points.

The maximum likelihood estimator was derived under the assumption of approximately

Gaussian error on the observations (Eq. (5.8)). This assumption was tested by gathering

the residues of all the point matches, and computing the empirical probability density

function. The histogram for the set of 2208 residues is presented on the left hand side

of Figure 5.7, with a superimposed normal density fit. The acceptably good fit indicates
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Figure 5.6: 3–D view of the camera positions and corresponding optical axes used for gen-
erating the sequence with available ground–truth. The origin of the 3–D world referential
is represented by the system of three axes on the lower right, where each axis is drawn at
1 meter length.

Method Position Errors (meters) Angular Errors (degrees)
Avg. Norm Avg. Unc. (×10−3) Avg. Norm Avg. Unc. (×10−3)

Algebraic 0.026 2.723 0.488 0.025

Max. Like. 0.016 0.874 0.254 0.008

Table 5.1: Trajectory recovery results for the algebraic and maximum likelihood methods.
The average norm refers to the mean value of the error distance norm, while the average
uncertainty refers to the mean value of the 50% uncertainty volume.

that the assumed probability model is justified. The isotropy on the projections errors is

apparent on the right hand side of the same figure. Here, each dot represents the pair of

residues associated with the (u, v) image coordinates of each image point.

For the covariance prediction, the uncertainty in the image projections was modelled as

additive Gaussian noise, independent for each coordinate, with 1 pixel standard deviation.

Statistics on the reconstruction errors are presented in Table 5.1. The position errors

were measured by taking the Euclidean distance between the ground-truth position and

the estimated position. As for the orientation, the error was measured by computing the

angle between the true and estimated camera frame orientations.

As expected, the lowest position and orientation errors are achieved with the maxi-

mum likelihood estimator. The difference in the methods performance can be explained

by the fact that the two methods are not imposing the same constraints during the esti-

mation process. The maximum likelihood estimator retrieves the pose directly from point
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Figure 5.7: Distribution of the residues for the maximum likelihood pose estimator. The
histogram on the left was created from the 2208 residues of all the selected point matches
during the registration of the ground–truth sequence on the mosaic. A fitted Gaussian
probability density function is superimposed. On the right, the spatial distribution of the
pairs of residuals associated to each image point is plotted.

coordinates whereas the algebraic method uses the image–to–mosaic homography as an

intermediate representation. The homography can model the mosaic view of any camera

with arbitrary upper triangular intrinsic parameter matrix. As parameterized, it has 8

degrees of freedom, thus exceeding by 2 the number of pose parameters. Since the homog-

raphy estimation (in the algebraic method) does not impose the particular structure due

the projection camera intrinsics, the fit of the noisy image coordinates is worse than the

maximum likelihood method.

The 3-D views of the recovered trajectories are depicted in Figure 5.8, where the larger

uncertainty ellipsoids of the algebraic method are clearly visible.

The execution times were compared, to illustrate the differences in the numerical com-

plexity of the methods. The results for a typical set of 34 matched points are presented

in Table 5.2. Since no iterative minimization is required for estimating the pose in the

algebraic method, the execution speed is more than an order of magnitude faster than

the maximum likelihood estimator. For the case of the covariance prediction, the differ-

ence between the two methods is not as impressive. This is due to the derivatives of the

cost function with respect to the coordinates of the matched point being computed by a

numerical approximation, for both methods.
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Figure 5.8: 3–D views of the estimated trajectory positions and uncertainty ellipsoids for
the pose recovery. The upper image corresponds to the pose estimated from the image–
to–mosaic homography Ψ, while the lower was obtained directly from the point match
coordinates. The original camera axes are drawn in a darker colour (blue), while the
recovered camera axes are drawn in a lighter colour (red). The size of the ellipsoids are
set for a 50% probability, and only one out of two camera poses is plotted.
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Method Pose Estimation Covariance Prediction

Algebraic 0.061 sec. 2.62 sec.

Max. Likelihood 0.767 sec. 4.44 sec.

Table 5.2: Execution times for the pose estimation and covariance prediction. The same
set of 34 matched point coordinates was used for both methods. The methods were coded
in Matlab (using built-in functions such as the SVD) and executed on a 800 MHz PC.

5.5.2 Pose from inter-image homographies

An additional experiment was conducted in order to compare the following image regis-

tration schemes:

- Image-to-mosaic homographies computed by direct mosaic registration

- Image-to-mosaic homographies computed by cascading inter-images homographies

The first scheme refers to the algebraic method using known intrinsic parameters.

In the second, the true camera position and orientation is used for computing the first

image-to-mosaic homography Ψ1. The subsequent homographies are calculated by,

Ψi =

(
i∏

k=2

Tk,k−1

)
·Ψ1 i > 1 ,

where Tk,k−1 are the inter-images homographies and the matrix product is computed by

right-multiplying for each increment of the index k. The set of Tk,k−1 was estimated from

the same sequence of images, and the number of used matched points varied from 10 to

76 pairs, with an average of 60.

Figure 5.9 and Figure 5.10 present, respectively, the plot of the positions errors for each

frame, and a 3-D reconstruction of the two trajectories. It can be seen that the second

scheme produces much less accurate results, due to the fact that small errors, inherent to

the inter-image homography estimation, are accumulated. This phenomenon is in many

ways comparable to the positioning errors arising from the use of dead-reckoning during

navigation.

5.6 Discussion

This chapter presented two methods for solving the problem of recovering the 3D position

and orientation of a camera, from a view of a previously created mosaic. An algebraic
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Figure 5.9: Position error for the pose recovery methods using direct mosaic registration,
and inter–image homography cascading.

Figure 5.10: Estimated trajectory positions and uncertainty ellipsoids for pose recovery
using inter–image homographies. Only one, out of every two recovered camera positions,
is plotted. The ellipsoids are set for a 50% probability, but due to their rapid growth, only
the first half are drawn.



5.6. DISCUSSION 89

solution was presented in which an intermediate image–to–mosaic homography was explic-

itly computed as a first step. In a second step, the pose was estimated directly from the

9 elements of the homography. This solution has the advantage of allowing for a very fast

non–iterative implementation, since each step resorts to a single singular value decomposi-

tion. However, the special structure of the projective camera is not fully exploited during

the homography estimation, since this would destroy the linear nature of the estimation

problem (and imply an iterative optimization procedure).

For the cases where higher accuracy is required, an iterative estimator was devised,

that uses directly the coordinates of point matches. By defining an observation equation

and a model for the observation noise, a maximum likelihood solution was obtained.

For each method, the associated uncertainty in the pose parameters was implemented

using a first order approximation. For the levels of noise involved, the approximation

was validated by the good fit between the predicted and measured statistics. The pose

estimation methods were evaluated using an image sequence with ground-truth. Their

performance was compared both in terms of pose error and in terms of predicted estimate

covariance.

The importance of the uncertainty estimation is twofold. Firstly, it provides quanti-

tative measures for the comparison of different pose estimation algorithms. Secondly, for

practical setups, it allows the on-line monitoring of the quality of trajectory reconstruc-

tion. This last aspect is of extreme importance in situations where there is a high cost

associated with the risk of loosing a vehicle, due to poor positioning.
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Chapter 6

Visual Navigation

This chapter presents an approach for vision–based autonomous navigation using mosaics.

The main purpose is the validation of the mosaicing process presented in Chapter 4 as a

way of creating navigation maps.

A navigation system is presented for an underwater robot, navigating close to the sea

floor. As a design option, only visual information is used as sensor input for the generation

of the motor commands. Such feature increases significantly the requirements on the

reliability of the localization process. This contrasts with sensor fusion approaches, where

a high degree of reliability is achieved by using information from several complementary

sensors1.

Using visual information alone also raises the issue of map adequacy in supporting

localization. Different regions of the mosaic may have very different image content and will

not support localization with the same level of accuracy. As an underwater example, in an

area with slowly moving algae, the scene may be static enough for mosaicing. However,

the appearance may change over time, making it useless for posterior localization. A

similar problem occurs near the mosaic borders, including not only the outer perimeter of

the mosaic, but also the vicinity of internal unmapped regions (i.e. mosaic ”holes”). In

such areas, the region of support for the localization may be reduced. A convenient way

of overcoming this problem by forcing the vehicle to navigate along the areas where it can

easily locate itself.

The proposed approach for mosaic–based navigation is schematically illustrated in

1It should be clear that, in terms of robustness, multi–sensor solutions are preferable provided adequate

sensor characterization. Nonetheless, it is of scientific relevance to know how far can vision sensing go,

when used by itself.
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Figure 6.1. It comprises 3 distinct modules [36]:

Mosaic map

Localization
(Mosaic Matching)

MosImg

Guidance
(waypoint generation)

Control

Figure 6.1: Overall visual servoing control scheme.

Localization – This module deals with real–time position sensing. It uses a previously

created mosaic and the current image from the vehicle camera to provide all the

information needed for navigation.

Guidance – A trajectory generation module defines a set of intermediate waypoints be-

tween the current vehicle position and the goal point. The resulting trajectory is

optimized with respect to a criteria penalizing the total distance and favoring the

regions that support accurate positioning.

Control signal generation – A control strategy, based on visual servoing is employed.

A control law is devised using error measurements in the sensor space, i.e. image

coordinates.

6.1 Localization

The first step of mosaic localization consists of finding the initial match between the current

camera image and the corresponding area on the mosaic. Once the current image has been

successfully registered, the on-line tracking of the vehicle position can be performed at a

high update rate.
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6.1.1 Initial Mosaic Matching

In order to avoid an exhaustive search over all the mosaic area, an estimate of the vehicle

3D position and orientation is desirable. This can be provided by some other modality

of autonomous navigation in which a coarse global position estimate is maintained, such

as beacon-based navigation or surface GPS reading. From this estimate, a corresponding

homography Htry is computed and used for searching for point matches. In the experi-

mental setup used in this thesis, no external positioning modality was available to provide

an initial pose estimate. Therefore, this pose was computed from a very coarse matching

of 3 points, that were manually provided.

Searching the vicinity

If the matching is not successful on the first attempt, then subsequent tries are performed

around the vicinity of the first try. The matching attempts are performed using the same

image, but over slightly different areas of the mosaic. Therefore, this process does not

require moving the vehicle to acquire a new image at a different position.

A simple search strategy was implemented by considering different versions of the Htry

matrix, corresponding to rotations around the image center or translations along one of

the image axes. The rotations comprise −10, 0 and 10 degrees, while the translations

are of a quarter the size of the image (along the respective axis). The matching with the

rotated versions is attempted before translating. The translations follow a spiral-shaped

search pattern around the original location. This pattern insures that the locations closer

to the position of the original attempt are tried first. The sequence of matching tries is

schematically illustrated in Figure 6.2. This process is repeated until a reliable match is

found, or the search region is completely covered without success.

Limiting the search region

The uncertainty information on the external pose estimate can be used to limit the search

region on the mosaic. This is achieved by propagating the uncertainty on the pose param-

eters Θ to the point υ where the optical axis intersects the world plane.

As defined in Section 5.1, the pose parameters Θ =
[
α β γ W

Ctx
W
Cty

W
Ctz

]T
contain the 3 angles and 3 translation values that describe the camera frame in 3–D world

coordinates. The point of intersection is given by the 3–D rigid transformation relating
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1 2 3

4 5 6

7 8 9

Figure 6.2: Sequence of attempts for the initial image–to–mosaic matching. Three rotated
version are tried, before each translation. The translations follow a spiral pattern.

points in the world and camera frames
Cx
Cy
Cz

 =CRW




Wx
Wy
Wz

−


W
Ctx
W
Cty
W
Ctz


 ,

with the additional constraints specifying the optical axis and the world surface
Cx = Cy = 0
Wz = 0

.

This system is easily solvable for the intersection coordinates,

υ =

[
Wx
Wy

]
=W

C tz ·
 sinβ

cosβ cos γ

− sin γ
cos γ

+

[
W
Ctx
W
Cty

]
.

For small perturbations around Θ, υ can be approximated by its first-order Taylor ex-

pansion. Under the condition of small additive noise, the covariance matrix Σ∆υ associated

with υ, is given by

Σ∆υ = J (Θ) · Σ∆Θ · J (Θ)T ,

where J (Θ) is the partial derivatives matrix of υ with respect to Θ,

J (Θ) =

 0
W
Ctz

cos2 β cos γ

W
Ctz sinβ sin γ

cosβ cos2 γ
1 0 sinβ

cosβ cos γ

0 0 − W
Ctz

cos2 γ
0 1 − sin γ

cos γ

 .
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For a given probability P , υ and Σ∆υ define the ellipse over the mosaic whose inner

region has a probability P of containing the actual intersection of the optical axis with

the world plane.

A simulated example of using the pose uncertainty for setting the bound of the search

area is given in Figure 6.3. In this example the pose estimate is such that the camera is

fronto–parallel at the distance of 1 meter from the sea floor. The covariance matrices for

the pose and intersection coordinates are

Σ∆Θ =



0.015 0 0 0 0 0
0 0.015 0 0 0 0
0 0 0.015 0 0 0
0 0 0 0.075 0.010 0
0 0 0 0.010 0.075 0
0 0 0 0 0 0.075


, Σ∆υ =

[
0.089 0.010
0.010 0.089

]
.

The ellipse is set for a 0.85 probability.

Uncertainty ellipse
Field of View for first attempt
Matching positions

Figure 6.3: Example of the search area over the mosaic bounded by an error ellipse.

6.1.2 On–line tracking

This tracking comprises two complementary processes which run in parallel, at very dis-

tinct rates.
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Absolute localization – The current image is matched directly over the mosaic, in order

to have an absolute position estimate. This procedure is similar to the initial match,

in the sense it uses the current position estimate to restrict the search area, and the

spiral search pattern in case of the initial matching failure. This is a slow process.

Incremental tracking – This process measures the image motion by matching consec-

utive frames of the incoming video stream. This motion is integrated and used to

update the vehicle position. The matching is performed using the same algorithm as

described in Section 4.2 for the first part of the mosaic creation. The used motion

model is the 4 d.o.f. similarity homography. The success of the image matching is

assessed by the amount of point that are selected as correctly matched. In the case

of unreliable measures, occurring when the number of selected matches is close to

the minimum required for the homography computation, the resulting homography

is discarded and replaced by the last reliable one2. This tracking is a fast process.

The complementary nature is illustrated by the fact that the two processes address

different requirements of the position estimation needed for control and navigation: real-

time operation and bounded errors. The absolute localization is a time-consuming task

mainly due to the fact that a successful mosaic matching might not be achieved on the

first attempt. However it provides an accurate position measurement.

Conversely, the incremental tracking is a much faster process but tends to accumulate

small errors over time eventually rendering the estimate useless for our control purposes.

It is also worth noting that this scheme is well fit for multiprocessor platforms, as the two

processes can be run separately.

The contributions from the two processes are combined by simply cascading the image-

to-image tracking homographies over the last successful image-to-mosaic matching. A

typical position estimation update rate of 7 Hz is attained, on a dual–processor machine.

6.2 Trajectory Generation

As referred to before, the main purpose of generating trajectories is to guide the vehicle into

avoiding the map areas in which the mosaic matching is more prone to failure. Examples

of such are the areas of non-static algae, the mosaic borders or regions that were not

2This is valid under the assumption that the vehicle motion does not change abruptly between frames.
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imaged during the mosaic acquisition phase.

For the results of this thesis, only the distance to the mosaic borders was considered,

but the method can straightforwardly be used to avoid any region defined in the map.

The trajectory generation is achieved by creating a cost map (offline) defining the regions

to avoid, and by searching for a minimal cost path (online).

6.2.1 Cost Image

The first step consists of the creation of a cost map. The cost map is an array which

contains the cost associated with navigating over every elementary region of the map

image. The regions to be avoided will have higher cost than the others. The cost map is

created using the Distance Transform [72] on a reduced size binary image of the non–valid

region of the mosaic map.

The outcome of this operation is a cost image in which each pixel of the valid mosaic

region contains a positive value that decreases with the distance to the border of the valid

region.

6.2.2 Minimal Cost Path

Given the current position of the vehicle on the mosaic and the desired end position,

we want to find the path that minimizes the accumulated cost over the cost map. This

minimization problem can be formulated as a minimal path cost problem, where a path

is defined as an ordered set of neighboring locations on the mosaic map. An efficient way

to solve it is using Dijkstra’s algorithm [82], which attains the optimal solution with a

complexity of O
(
m2

)
, where m is the number of pixels in the cost image. An example of

the generation of trajectories using this method is presented in Figure 6.4.

The computation of the cost image is performed off-line, during the mosaic creation

phase. Conversely, the generation of a new trajectory must be performed on-line during

the mosaic servoing, whenever a new end-point is specified. For the purpose of avoiding

the mosaic edges, a relatively small number of trajectory waypoints is required. Therefore

the size of the cost image can be reduced, so that the computation of the trajectory does

not compromise the on-line nature of the mosaic servoing.
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Start

End

Figure 6.4: Trajectory generation example – Valid mosaic region in white (left), cost image
(center) and mosaic with superimposed trajectory (right). In the cost image, the darker
regions have lower cost.

6.3 Vision Based Control

The geometry of the vehicle thrusters, with two horizontal and one vertical propeller,

motivated the design of two decoupled controllers. The vehicle is controlled separately in

the horizontal plane (over the sea floor to desired location), and in the vertical (maintaining

a constant altitude). The heading is not controlled. The design is addressed within the

framework of visual servoing strategies [50].

The implemented controllers were developed for visual station keeping and docking

applications [122, 121], and are based on the approaches of Espiau et al. [18] and Malis

et al. [64]. As the purpose of this chapter is the illustration of the navigation ability, only

kinematic relations were used for the controllers. Also, no stability analysis is performed.

Details on the modeling, identification and low-level control of the platform can be found

in [27].

6.3.1 Servoing over the Mosaic

The objective of servoing over the mosaic is regulating to zero an error function relating

the current position of the vehicle and the desired end–point (reference) in the mosaic,

while rejecting external disturbances such as currents.

The coordinates of the end–point in the mosaic are initially defined in the mosaic

bitmap image frame (for instance, by the human operator clicking over desired position).

These coordinates can be translated into the vehicle’s current image frame, since we assume

the on–line tracking process to be operating, thus providing the current image–to–mosaic
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homography.

In the following derivation we use normalized image coordinates, in order to simplify

the equations. The normalized image coordinates relate to the standard image coordinates

by a collineation. This collineation is defined by the intrinsic parameter matrix K, which

is assumed to be known.

Let sd = [xd, yd]T be the desired reference point, in normalized image coordinates, and

s = [xc, yc]T be the point in the image to be driven to the reference, as illustrated in Figure

6.5.

reference position

ey

ex

Figure 6.5: Definition of error measures on the mosaic. The current image frame is
represented by the frame rectangle and the reference is marked by the cross.

The image error function is defined as

e = s− sd .

The instant velocity vector ṡ of a projected 3D point in the image, is related with

the velocity of the camera. This kinematic relationship is represented by a matrix often

referred to as the image Jacobian or the interaction matrix [50, 18] which satisfies

ṡ = Lvcam (6.1)

where L is the image Jacobian and vcam is the 6× 1 camera velocity screw [18],

vcam =
[
vx vy vz ωx ωy ωz

]T
containing the linear and angular velocity components of the world frame with respect to

the camera, expressed in the camera 3D coordinate frame.
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For a generic [x, y]T image point, the image Jacobian defines a motion field [46] which

is dependant on the depth Z to the originating 3D point, measured along the camera

optical axis, [
ẋ

ẏ

]
=

[
− 1

Z 0 x
Z xy −(1 + x2) y

0 − 1
Z

y
Z (1 + y2) −xy −x

]
vcam . (6.2)

As design option for the derivation of a control law, it is often desirable to impose an

exponential decrease of the error function [64] along the time, such that

ė (t) = −λ · e (t) ,

where λ is a positive constant that serves as a tuning parameter.

Using Eq.(6.2), we can then solve for the camera motion that guarantees this conver-

gence,

v∗
cam = −λ · L(s,Z)† · (s− sd) , (6.3)

where v∗
cam is the camera velocity that comprises the control objective and L† is the

pseudo-inverse of the image Jacobian.

It is now useful to relate the camera frame to the frame associated with the actuators

(the vehicle frame). As we are dealing with velocity vectors, this relation can be expressed

as a Jacobian Jr2c relating the two 3–D coordinate frames. If the camera is fixed with

respect to the vehicle, the two frames do not change in time and Jr2c can be computed

beforehand. For the case of our testbed ROV, the vehicle frame is a pure translated version

of the camera frame.

The relation between velocities is

vcam = Jr2c · vrobot .

Given the underactuated nature of the platform, only a subset of the velocities in vrobot

can be controlled by commanding the propellers. These refer to the surge (translation

along the −→x axis), and yaw motion (rotation around the vertical −→z axis). The controllable

degrees of freedom define a reduced velocity vector vrrobot

vrrobot =
[
vx ωz

]T
,

and a corresponding reduced Jacobian Jrr2c such that

vcam = Jrr2c · vrrobot . (6.4)
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It is now possible to re-formulate the control objective in terms of desired vehicle

velocity components, such that the image center is driven towards the reference point in

the mosaic. Substituting (6.4) into (6.1), we obtain an expression that relates the image

motion to the vehicle velocity:

ṡ = L·Jr2c · vrrobot . (6.5)

With this expression, we can solve for the vehicle velocity in the horizontal plane,

necessary to guarantee the convergence of the image error function:

vr∗robot = −λ · (L(s,Z)Jr2c)
† · (s− sd) . (6.6)

Figure 6.6 illustrates the structure of the complete visual servoing controller for the hor-

izontal plane. The term B−1 was obtained from a dynamic model of the vehicle thrusters,

and allows for the computation of the motor commands (PWM signals) that correspond

to the required steady–state velocities [122].

Guidance +
-

+

e

- ·(L(s,Z) ·Jr2c)
+

sd

s

× B-1 u

Mosaic

matching

Figure 6.6: Control block diagram.

6.3.2 Altitude control

The controller for the vertical plane aims at maintaining the camera at a fixed altitude

during navigation. This is achieved by regulating to zero the difference in scale between

the current image–to–mosaic homography and a reference value.
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The image scaling induced by applying a affine transform (defined in Table 2.2) can

be recovered from the determinant of the upper left 2× 2 submatrix [42]:

s =
√
|Ψ2×2| . (6.7)

This does not hold for general projective homographies (as the scale changes along the

image), due to the projective distortion. However this is a suitable approximation if the

camera is approximately fronto–parallel to the ground floor.

For the altitude controller, we consider the current image-to-mosaic homography and

reconstruct its scaling factor. This is then compared to a reference scaling, taken from the

initial image–to–mosaic homography, as to generate the control error

e = s− sd .

A PID control action is used,

urobot = −(Kp · e+Kd · ė+Ki ·
∫
e dt) , (6.8)

in which the gains were manually tuned.

6.4 Results

An extensive set of mosaic servoing experiments were conducted at sea [35]. Some of the

most illustrative are now presented.

As stated above, in Section 6.1.2, the on-line tracking comprises two complementary

processes of position estimation, running simultaneously but at distinct rates. The mosaic

matching was triggered in fixed intervals of 5 seconds, typically requiring 3 seconds to

be complete if it was successful on the first attempt. The image–to–image tracking ran

permanently over consecutive pairs of incoming images, and was used to update the current

position estimate at approximately 7Hz. The image processing and servoing was run

on a dual–processor 800MHz computer. The platform was not required to be fixed (i.e.

motionless) during the mosaic matching since the image–to–image tracking was performed

independently.

6.4.1 Visual Servoing

An illustrative underwater servoing experiment is presented in Figure 6.7 where a top-

view of the ROV trajectory and references are plotted. The ROV completed several loop
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trajectories and travelled for 165 meters, during a 11.8 minute run.

A more detailed view of part of the run is given in Figure 6.10, corresponding to 136

seconds and 3 end points. During this part, the platform took respectively 12, 22 and 20

seconds to navigate each of the 3 legs. The remaining 82 seconds were spent in keeping

station at the end points3.

Start

End

Figure 6.7: Underwater mosaic servoing experiment. This plot shows a top–view of the
ROV trajectory for the complete run with the reference positions marked with crosses.
The ROV trajectory was recovered for the on–line image–to–mosaic matching with updates
from the image–to–image tracking, and is marked by the full line.

Another experiment is presented in Figure 6.9, where the ROV travelled for 159 meters,

during a 7 minute run. Figure 6.10 details a 42 second part of the run. Here, the benefit

of the path planning is clearly visible. During the second leg of the run (on the left), the

vehicle avoids the undefined region in the center of the mosaic.

The end points were manually specified through a simple user interface, where the

operator was required to click over the desired end position, directly over the mosaic map.

A screen capture of the interface is shown in Chapter 1, Figure 1.2.

3Here, station keeping refers to sustaining the end point inside the camera field of view.
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Figure 6.8: Trajectory detail comprising two endpoints – The generated path connecting
the endpoints is marked by the dashed line. In order to allow the sense of speed, a set of
arrows is superimposed. The arrows are drawn every 2 seconds and sized proportionally
to the platform velocity. A sense of overall scale can be gained by noting the size of the
car tyre on the left.
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Start

End

Figure 6.9: Underwater mosaic servoing experiment. This plot shows a top–view of the
ROV trajectory for the complete run with the reference positions marked with crosses.
The ROV trajectory was recovered for the on–line image–to–mosaic matching with updates
from the image–to–image tracking, and is marked with the full line.
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Figure 6.10: Trajectory detail comprising two endpoints – The generated trajectory, that
connects the endpoints, is marked by the dashed line. The intermediate waypoints are
circled. The arrows are drawn every 2 seconds and sized proportionally to the platform
velocity.
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During the run of Figure 6.9, 80 images were matched over the mosaic to obtain an

absolute localization. More than 3000 images were used by the image–to–image tracking,

to provide the fast position updates.

6.4.2 Uncertainty estimation

During the servoing experiments all the images that were matched over the mosaic, were

also recorded on disk. As an off-line processing step, these images were re-matched over

the mosaic, and the point correspondences were used to estimate both the full 6 d.o.f.

pose and the associated uncertainty. For this computation, the following assumptions

were considered:

• the only source of uncertainty was the limited accuracy on the point matching,

• point matches were affected with Gaussian noise, uncorrelated over the two coordi-

nates,

• the standard deviation was 0.5 pixels for all coordinates. This value was experimen-

tally measured from the residuals of the homography estimation[33].

The ellipsoidal uncertainty volumes associated with the translational part of the pose

parameters, are represented in Figure 6.11. From the relatively flat, horizontally-levelled

ellipsoids, it can be seen that the uncertainty on the camera position is larger along the
−→x and −→y axes than along the −→z .

6.4.3 Offline Matching

During the sea trials, the set of images used by the image–to–image tracker were recorded

on disk for later processing. This allowed for the off-line matching of the whole sequence

over the mosaic, using the same algorithms as the on-line mosaic matching.

It was therefore possible to recreate the trajectory using the 4 d.o.f. fronto-parallel

parameterization for the pose. This trajectory was then used as ground truth, to evaluate

the on-line estimates, which combined the incremental image–to–image tracking estimate

with the last available mosaic matching.

Figure 6.12 plots the horizontal metric distance between the camera centres for the

on-line and off-line estimates, during a selected period of 60 seconds. The duty cycle of

the mosaic matching is represented as a square wave, where the rising edge corresponds
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Figure 6.11: Mosaic servoing trajectory reconstruction – The two views show the camera
positions associated with the images that were directly matched over the mosaic during the
servoing run. The ellipsoids mark the estimated camera centers and convey the uncertainty
assotiated with the translation part of the pose. The ellipsoid dimensions are set for a
50% probability. However, for clarity reasons, the ellipsoid axes sizes were enlarged by a
factor of four, and only 143 seconds of the run are represented.
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to the acquisition of a new image to be matched over the mosaic, and the falling edge

corresponds to the instant when the mosaic matching information becomes available and

the position is corrected. It can be noticed that the error does not fall to zero at the

position correction instant. The reason behind this is that the mosaic matching position

estimate is only available some time after the corresponding image was acquired. During

such time interval (of around 3 seconds), the image–to–image tracker is integrating the

incremental vehicle motion and therefore accumulating small errors.

This plot illustrates the need and importance of the periodic mosaic matching, which

is apparent from the fast error build-up between mosaic matches, and in its fall once

the matching is successful. This approach also presents the advantage of allowing the

monitoring of the accumulated error during the on-line run, which can be directly measured

immediately after a successful mosaic match. Although not taken into account in this set

of tests, the magnitude of the accumulated error can be used to adjust the image–to–

mosaic matching frequency, thus adapting to cases where the image–to–image tracking

performance changes.

6.5 Discussion

The mosaic based servoing results show the feasibility of using vision as a single positioning

modality for relatively large distances, and extended periods of time. The devised methods

allow for the positioning for servoing, where the errors are bound by periodic mosaic

matching, and for the uncertainty propagation, where the pose estimation quality can be

assessed.

For the initial localization over the mosaic, an external pose estimate is used. As

an alternative, one could resort to visual information alone to provide such estimate. A

simple solution is performing area correlation of the image on the mosaic, over several

orientations and scales. Such procedure was implemented in an early phase of this work,

but proved too computationally heavy and inaccurate to be of practical interest for the

sea trials.

During the navigation the pose estimate is maintained by combining mosaic matching

with inter–frame tracking. The reason for not doing exclusively image–to–mosaic match-

ing is the processing time involved. As stated above the image–to–mosaic matching for

this sea trial conditions requires typically 3 seconds if the matching is successful in the
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Figure 6.12: Difference between the online position estimate, using mosaic matching with
inter–image tracking updates, and the offline estimate, obtained by maching all the images
over the mosaic. The upper figure shows the horizontal (XY) distance error as a line with
dots. On the lower figure the online trajectory is plotted as solid line, while the offline is
marked by the dots. Each dot represents one image, acquired at 7 Hz.
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first try. Otherwise it can take longer. Conversely the image–to–image can run at 7Hz.

The difference in the processing times has to do with the dissimilarity between the on-

line camera images and the corresponding areas of the mosaic. This is mainly due to

illumination changes between the time the mosaic was acquired and the time it is used,

and non-planarity and non-rigidity of the scene. To a lesser extent, the disparity of the

processing times is also due to implementation issues, as we try to match a much larger

number of correspondences and apply feature warping prior to the correlation. Even if the

intervals between mosaic matches were reduced and a smaller number of correspondences

were searched for, it would be difficult to achieve a position update frequency suitable for

the visual servoing. However, being a computational issue, this trade-off between precision

and availability is much dependant on the computing resources available.
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Chapter 7

Conclusions

This chapter summarizes the work and contributions of this thesis. A set of interesting

directions for some short term future developments is presented and discussed.

7.1 Summary and Achievements

This thesis addressed the problem of creating visual maps capable of supporting au-

tonomous navigation.

Chapter 1 introduced the subject and overviewed the approach. The problem of under-

water sensing for navigation was addressed. The most commonly used sensing modalities

were presented and discussed, which allowed for pointing out the relative benefits and

limitations of using vision. Chapter 2 reviewed some essential geometric and algorithmic

aspects of the mosaic creation methods. Particularly important are the collineations in the

2–D projective space and robust model-based estimation which constitute the backbone

of our mosaicing approach.

Chapter 3 discussed the most relevant techniques related with mosaic creation in

robotics. Such techniques include image registration and the use of mosaics for robot

navigation, both in land and underwater applications. Comparative information on the

state–of–the–art was provided for a clearer understanding of the work in this thesis with

respect to what has been accomplished before. A closing section discussed the most im-

portant features that are desirable on a mosaicing system intended for navigation.

In Chapter 4 a complete mosaicing approach was proposed with the purpose of creating

accurate visual maps. The approach is able to deal with general 3–D camera motion and

to exploit the time-distant superpositions due to loop trajectories. Such superpositions

113
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are used to find new image matches. As a consequence, additional spatial constrains can

be imposed thus promoting the accuracy and coherence of the resulting mosaic. The

mosaicing algorithm is able to simultaneously create the mosaic, and to estimate the

3–D camera trajectory undertaken during the image acquisition, up to a scale factor.

As a final step, a fronto–parallel view of the sea floor is obtained, since a geometric

description of the world plane is also estimated. Illustrative results were obtained from

image sequences acquired by a ROV in shallow waters. The images presented some of

the common difficulties of underwater mosaicing, such as non planar sea-bottom, moving

objects and illumination changes. The good performance and robustness of the complete

algorithm was demonstrated.

The use of a mosaic as a map for localization is illustrated in Chapter 5. Two methods,

addressing different requirements in precision and computation resources, were presented

for recovering the complete 3–D pose from an image captured in a previously mosaiced

area. An algebraic method provides a computationally inexpensive solution, by estimating

the image–to–mosaic homography as an intermediate representation of the pose. This

homography is then used to recover the 6 parameters that describe the position and

orientation of the camera with respect to a world coordinate frame. For the cases where

a pose estimate is required to have higher accuracy, a maximum likelihood solution was

derived and illustrated.

An important feature of any sensor for navigation is the ability to provide not only

accurate readings but also to provide an uncertainty measure associated with those read-

ings. Taking this in mind, a first order propagation of the uncertainty in the pose (as a

function of the uncertainty in the point matches) was illustrated. Such propagation was

shown to be accurate to a conservatively high level of noise in the point matches. The

uncertainty propagation is also useful in providing a way to compare the performance of

the estimators.

Chapter 6 presented an approach for autonomous mosaic–based navigation. This ap-

proach served two main purposes. The first purpose was validating the mosaicing process

of Chapter 4 as way to provide maps capable of sustaining navigation for periods of sev-

eral minutes. The second purpose was assessing if visual sensing could be used alone to

provide all the real–time information required for controlling the position of a underwater

platform. The implementation and testing of the approach successfully demonstrated the

feasibility and performance of both objectives.



7.2. DISCUSSION 115

The navigation system comprises 3 distinct modules. These modules account for the

localization with respect to the map, the guidance through the creation of a suitable tra-

jectory to the goal position, and the generation of control signals by performing visual

servoing. Typical localization requirements for navigation and control are limited errors

and fast update rate in the measurements. Taking this into account, a set of efficient visual

routines were used for localizing the vehicle with respect to the mosaic. The routines com-

bine inter–frame and image–to–mosaic matching, to successfully meet such requirements.

A real–time path planning method was applied to ensure that the vehicle avoids nav-

igating near the borders of the valid regions of the mosaic, thus increasing the chances

of correctly positioning itself. A visual control scheme, based on image measurements,

was proposed to drive the vehicle. It attained good overall performance for the trajectory

following, given the underactuated nature of the test bed, and the fact that no dynamic

model of the vehicle motion was used.

The complete methodology was tested at sea, under realistic and adverse conditions.

It showed that it is possible, and practical, to navigate autonomously over the previously

acquired mosaics for large periods of time, without the use of any additional sensory

information.

7.2 Discussion

This thesis dealt with a number of issues related to the appropriateness of mosaicing

techniques for underwater robots. Some of the key subjects are formulated in the following

questions.

• Why use vision sensing underwater?

Reverting to Chapter 1 where this topic was addressed, the main advantages of

using optical vision sensing are the purveying of position information in world fixed

reference frame, with fast updates, using inexpensive and readily available hardware.

In our work, these advantages were illustrated by the mosaic servoing capability.

Such capability was demonstrated, in sustained operation, using a comparatively

inexpensive underwater inspection platform and off–the–shelf processing hardware.

• Are video mosaics an adequate representation of the underwater environment?

Mosaics are not only useful per se as extended views, easily interpreted by human
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operators in common tasks such as initial site exploration using manually driven

ROVs, but can also play an important role as spatial representations in automated

operations such as habitat mapping and periodic monitoring, in the near future.

By registering and blending images captured near the seabed, video mosaicing is

effective in overcoming the short range nature of underwater optics which prevents

long range imaging. We have illustrated this using image sequences from approxi-

mately planar sea floors. In our mosaicing process, apart from the step where the

single plane constraint is enforced to promote the accuracy of the of the global regis-

tration, there is no fundamental shortcoming in applying the same image registration

and topology estimation techniques to non-planar but locally smooth areas of the

sea floor. However care would have to be exercised in selecting the most adequate

motion model for the pair wise image registration, which is strongly dependant on

the pose of the camera with respect to the floor. This is a topic for future work.

From the navigation autonomy point of view, there is a growing belief that the de-

velopment of truly autonomous underwater vehicles of moderate cost must avoid ex-

ternal position systems. These systems, such as acoustic long baseline transponders

or underwater GPS, are currently expensive and may require complicated logistics.

By contrast, autonomous vehicles should be able to observe and interact with the

environment in order to extract all the relevant natural cues for navigation. Such

information may consist of visual, acoustic or magnetic features (to name but a few),

that need to be combined and organized into useful navigation representations.

The subsea medium can be highly unstructured, specially in the coastal regions.

Most often, the presence of natural features, capable of being used for navigation,

will vary strongly from place to place. An example of this is the succession of sand

banks, algae covered areas and rocky slopes that were present in our test location.

Clearly, different types of sensors will be better suited for the different environments.

Bearing this in mind, video mosaics can have an important role as a local represen-

tation for the regions where the video mosaicing is best suited, namely in relatively

smooth and textured areas. By contrast, acoustic bathymetry is better fitted for

mapping rocky slopes and may be used as a local representation for those regions.

Such local maps are the building blocks of a larger global representation where the

geometric arrangement (or topological structure) of the local maps is maintained.
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• Can vision alone provide enough reliable information for navigation?

Within the scope of this thesis, this point was considered a design option, and

was successfully validated under the specific testing conditions. However, there

is no doubt on the benefit in fusing data from other sensors. Even restricting our

considerations to low cost sensors, a clear advantage is obtained from using a compass

or a depth sensor, which provide drift-free orientation and scale information. As an

example, such information can assist the initial pair–wise image motion estimation,

thus making it less prone to the dead reckoning accumulated error.

7.3 Directions for Future Work

A number of directions can be set for future work.

As illustrated, robust feature matching allows for the adequate creation of mosaic

maps even in the presence of small non-planarities and moving algae, on regions that

are predominantly planar. However, alternative scene representations may be helpful in

extending the sea–bed area to be mapped. One of such representations is obtained by re-

laxing the single plane assumption. Instead of considering just one plane, a more general

representation would be obtained by approximating the sea-bed by a piece–wise planar

surface. Such representation raises the challenging problem of the automatic surface seg-

mentation, which may, for example, be treated under a maximum a posteriori framework,

after imposing a convenient regularization prior on the number or extent of the planar

faces. The coplanarity test for noisy data given by Kanatani in [55] can be used for de-

tecting non-planar surfaces. Alternatively one can consider the approach of Peleg [85] to

mosaic smooth surfaces as manifolds.

Another issue is the real–time construction of the maps. In this work, it was opted

for the higher quality attainable by batch methods, which are inherently computationally

heavy. Still, it is of obvious advantage to have the mosaicing scheme operating as fast

as possible, ideally in real–time, without sacrificing the accuracy. During the mosaicing

process, the phase which is more time–consuming is the topology estimation, due to the

matching and optimization iterations. Upon loop closure, faster propagation of the effects

of the newly found neighboring relations, may be attained using the smoothing technique

described in [120].

The issue of adequate area covering was not addressed, since the original sequences for
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the sea-bed mosaics were acquired while the vehicle was being hand–driven. An area cov-

ering strategy is important to insure that all the region of interest is covered, thus avoiding

creating mosaics with gaps, and guaranteeing the existence of sufficient area overlap be-

tween swaths for the topology estimation. This is a commonly overlooked aspect in the

underwater mosaicing literature, mainly because the mosaic creation has been tradition-

ally regarded as a passive process. This contrasts with more active vision approaches,

common in the land robotics literature, where perception and action are directly inter-

twined. In our work, consecutive image matching and motion estimation was performed in

real–time, during acquisition. These measurements can be used under closed loop control,

which is the first step towards trajectory following.

Another interesting development would be the real–time analysis of the scene structure

in order to decide whether it is suitable for mosaicing. Under specific environments such

as shallow waters, texture analysis can be successful in detecting algae boundaries [108],

thus delimiting the areas adequate for mosaicing.



Appendix A

Underwater Experimental Setup

The video sequences acquisition and navigation experiments were conducted using a com-

mercial grade ROV. The platform was provided by Deep Ocean Engineering [17] and was

based on the Phantom 500 class of inspection robots. Custom modifications were per-

formed during factory assembly, to allow for closed–loop control by a standard personal

computer.

A.1 Vehicle Description

The ROV is illustrated in Figure A.1. The standard vehicle comprises a open frame

structure which houses a single water–tight hull. The metal crash–protection frame is

approximately 1 meter long by 0.65 meter wide and 0.65 meters high.

Figure A.1: Computer controlled Phantom ROV with the on–board camera. The camera
housing is visible in the lower right, attached to the crash frame.

The vehicle is equipped with 2 horizontal propellers for surge and yaw motion. A

119
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third propeller is mounted vertically near the center of mass, and provides heave motion.

By construction, the platform is passively stable for roll and pitch motion, which are

not actuated. Also, there is no lateral (sideways) actuation. The vehicle is therefore

underactuated, which creates non-holonomic motion constraints.

The total weight of the vehicle (including fitted equipment and additional weights) is

approximately 85 Kg in the air. In water, a set of weights was attached to the lower part

of the frame to provide horizontal balance and slight positive buoyancy.

A set of standard sensors are fitted in the vehicle. These include an inertial navigation

system with a rate gyro and accelerometer, flux–gate compass, a pressure depth sensor,

a scanning sonar profiler (mounted on a controllable tilt head) and an acoustic altimeter.

Custom sensors include a video camera and incremental encoders on the thrusters, for

closed loop control of the propeller speed.

The ROV is linked to the surface by a flexible umbilical 120 meter cable, with neutral

buoyancy. The cable provides electric power to the thrusters, an analog video link and a

bi-directional serial communication link for the sensor triggering and data reception.

A large part of the experimental testing was conducted in the Mediterranean Sea, in

France. The vehicle was deployed from a pier, and operated from shore (Figure A.2). For

this range the water depth varied between 2 and 7 meters. The working area was fairly

flat, with no abrupt depth changes. A large percentage of area was covered with non-static

algae. This clearly departs from the general assumptions on static background. However,

some sandy pits proved adequate for the map construction and navigation tests.

Figure A.2: View of the testing area in the Mediterranean sea.
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A.2 Camera Calibration

The video camera is a Sony EVI equipped with a controllable pan–and–tilt head, zoom

and focus. The image acquisition was performed in a Matrox Meteor II frame grabber.

Although not used in this thesis, the control of the pan and tilt head may be used to

extend the visual field of the camera, thus compensating for the holonomic constraints of

the platform when performing active visual tracking. The importance of this ability has

been illustrated in visual station keeping [122] when tracking the same region of the sea

floor during long intervals.

A special housing was constructed for the camera, comprising the spherical glass dome

shown in Figure A.3. The camera is mounted so that the optical centre is approximately

coincident with the dome centre. This configuration has the advantage of reducing the

image distortion effect caused by refraction, since the optical rays are always cross the

different medium interfaces perpendicularly to the interface surface.

Figure A.3: Close–up on the video camera housing with spherical dome.

The camera was calibrated underwater, in order to take into account the combined

effects of lens distortions and dome refraction. The method of Heikkilä and Silvén [45]

was used in the form of a publicly available MatLab toolbox. This method uses, as input,

the coordinates of known scene 3D points and their point projections on several images.

This method can be used with either planar or non-planar calibration grid. However, more

accurate results are obtained with non-planar structure, given the same number of images.

The method estimates the coefficients for both tangential and radial distortion, as well

as the linear projective intrinsic parameters for a distortion–free equivalent camera. Two

underwater images of a calibrations grid are shown in Figure A.4.
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Figure A.4: Two underwater images of the grid used for camera calibration.



Appendix B

First Order Covariance

Propagation

The method used for the uncertainty propagation follows that of Haralick in [38]. In that

paper, a general method is presented for propagating the covariance matrix through any

kind of linear or non-linear calculation. The method is devised for the case where the data

and the parameters are implicitly related, through the minimization of a cost function. A

similar derivation is given by Faugeras in [21].

Let X̂ be the n×1 data vector of noisy measurements, such that X̂ = X0+∆X, where

X0 indicates the noise–free quantities and ∆X is random additive noise. Both X0 and

∆X are unobservable vectors. Let Θ̂ be a k × 1 vector of parameters that are estimated

from the calculation using the data X̂, such that Θ̂ = Θ0 +∆Θ, where Θ0 is the vector of

ideal noise–free estimates and ∆Θ is the associated random perturbation induced by ∆X.

Similarly, both Θ0 and ∆Θ are unobservable.

For the case of constrained estimation of Θ, let s (Θ) be a IRk → IRm function describ-

ing the m constraints on Θ0 such that s (Θ0) = 0, and Λ0 be the vector of the Lagrange

multipliers associated with the constraints.

Let F (X,Θ) be a scalar function, that implicitly relates the data and the parameters

such that F (X,Θ) ≥ 0. For the unperturbed vectors, F (X0,Θ0) = 0. Additionally the

computed noisy estimates Θ̂ are obtained by

Θ̂ = argmin
Θ
F
(
X̂,Θ

)
The method for covariance propagation assumes the following two conditions:

• The function F (X,Θ) has finite second partial derivatives.
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• The random perturbations ∆X are small enough, so that F (X0,Θ0) and F
(
X̂, Θ̂

)
can be well related by a first order Taylor series expansion.

Let g(X,Θ) be the gradient of F with respect to Θ,

g (X,Θ) =
∂F

∂Θ
(X,Θ) ∈ IRk

For the noise–free values of X0 and Θ0, the following relation holds

∂

∂Θ

[
F (X0,Θ0) + s (Θ0)

T · Λ0

]
= 0

Since F (X0,Θ0) = 0, we have g (X0,Θ0) = 0 and[
∂s

∂Θ
(Θ0)

]T
· Λ0 = 0

which implies Λ0 = 0, since ∂s
∂Θ (Θ0) is expected to be full rank.

Let S (X,Θ,Λ) be defined as

S (X,Θ,Λ) =

 g (X,Θ) +
[
∂s
∂Θ (Θ)

]T · Λ
s (Θ)


Writing the first–order Taylor series S (X,Θ,Λ) at (X0,Θ0,Λ0), one gets

S (X0 + ∆X,Θ0 + ∆Θ,Λ0 + ∆Λ)−S (X0,Θ0,Λ0) �
[
∂S

∂X

]T
∆X+

[
∂S

∂Θ

]T
∆Θ+

[
∂S

∂Λ

]T
∆Λ

(B.1)

where the derivatives of S are evaluated at (X0,Θ0,Λ0). Both terms on the left hand side

of Eq.(B.1) are equal to zero, which leads to

−
[
∂S

∂X

]T
∆X �

[
∂S

∂Θ

]T
∆Θ+

[
∂S

∂Λ

]T
∆Λ

Writing the above equation in terms of g (X,Θ) and s (Θ), the following approximated

equality is obtained

A ·
[

∆Θ
∆Λ

]
� B ·∆X

where

A =

 ∂g
∂Θ

(
∂s
∂Θ

)T
∂s
∂Θ 0

 and B =

 −
(

∂g
∂X

)T
0

 (B.2)
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Given the covariance matrix Σ∆X of the additive noise in X, the first order approxi-

mation to the covariance of the perturbations in Θ is given by

Σ∆θ,∆Λ � A−1 ·B · Σ∆X ·BT ·A−1 (B.3)

where A and B are evaluated at (X,Θ). An estimator of the covariance Σ̂∆θ,∆Λ of the

noisy parameters is obtained by evaluating Eq.(B.3) A and B at
(
X̂, Θ̂

)
.

For the case of unconstrained estimation, the above derivation simplifies to

A =
∂g

∂Θ
and B = −

(
∂g

∂X

)T

An estimator for the covariance Σ̂∆Θ of the noise in Θ̂, is given by

Σ̂∆Θ =
(
∂g

∂Θ

)−1

·
(
∂g

∂X

)T

· Σ∆X · ∂g
∂X

·
(
∂g

∂Θ

)−1

(B.4)
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