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Resumo

Esta tese insere-se na �area da vis~ao por computador e trata o problema da estima�c~ao

robusta e autom�atica do movimento entre imagens. Um dos problemas fundamentais na

an�alise do movimento consiste na determina�c~ao de regi~oes correspondentes entre imagens.

Este problema �e por vezes subestimado, pelo que nesta tese s~ao aplicadas e desenvolvidas

t�ecnicas robustas de selec�c~ao de correspondências correctas.

Usando o formalismo da geometria projectiva, s~ao estabelecidos v�arios modelos de

movimento, que podem ser divididos em duas classes consoante o conte�udo de informa�c~ao

tridimensional presente nas imagens. Caso n~ao haja paralaxe pode-se estabelecer uma

rela�c~ao un��voca entre a localiza�c~ao dos pontos. Caso contr�ario, �e poss��vel recuperar a

estrutura projectiva da cena s�o por an�alise de correspondências. Um conjunto de t�ecnicas

estabelecidas de estima�c~ao robusta s~ao analisadas, incluindo o cl�assico Least Median of

Squares. Baseado neste, prop~oe-se um novo algoritmo que apresenta um ganho em termos

de peso computacional para desempenho equivalente.

O modelo de movimento de imagem para o caso de inexistência de paralaxe foi uti-

lizado no registo e composi�c~ao de sequências de imagens - os mosaicos v��deo. Exemplos de

mosaicos s~ao apresentados, cobrindo �areas de aplica�c~ao distintas, tais como a cartogra�a

a�erea e submarina, representa�c~ao e compress~ao de v��deo e realidade virtual. Para o caso

alternativo de existência de paralaxe, delineou-se um processo de recupera�c~ao da estru-

tura projectiva. A estima�c~ao da matriz fundamental �e tratada, comparando-se t�ecnicas

baseadas em crit�erios lineares e n~ao lineares, com parametriza�c~oes distintas. S~ao apresen-

tados resultados pr�aticos, com imagens sint�eticas e condi�c~oes controladas, e com imagens

reais.

Palavras Chave: Vis~ao por Computador, An�alise de Movimento, Estima�c~ao Robusta,

Mosaicos V��deo, Matriz Fundamental, Reconstru�c~ao n~ao Calibrada.



Abstract

This thesis, in the area of Computer Vision, deals with the problem of image motion

estimation in a robust and automatic way. One of the main problems in motion analysis

lies on the di�culty of the matching process between corresponding image areas. As this

is a commonly overlooked problem, this thesis evolves around the use and applications of

robust matching techniques.

Several motion models are established, under the projective geometry framework.

These can be divided into two main classes according to the 3-D information content

of the images. If there is no parallax then a one-to-one relation can be established be-

tween the point locations. Conversely, the presence of parallax allows the recovery of the

projective structure of the scene, just by the analysis of a set of point correspondences.

The most commonly used robust estimation techniques are reviewed and compared,

including the classic Least Median of Squares. Based on this method, a new algorithm

is proposed that compares favorably in terms of computational cost, while attaining the

same performance level.

The parallax-free motion models are used in the registration and composition of image

sequences for the creation of video mosaics. Results on mosaicing are given in the context

of di�erent applications such as aerial and underwater cartography, video coding and vir-

tual reality. For the alternative case, where there are parallax e�ects, a projective structure

recovery method is described. The estimation of the Fundamental Matrix is addressed by

comparing techniques based on linear and non-linear criteria, and di�erent parameterisa-

tions. Results are presented using synthetic images under controlled conditions, and real

images.

Key Words: Computer Vision, Motion Analysis, Robust Estimation, Video Mosaics,

Fundamental Matrix, Uncalibrated Reconstruction.
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Chapter 1

Introduction

Vision is one of the our most important sensing capabilities, and the one that provides

the highest information content to our brain.

It is used by many biological systems as the principal mechanism for perceiving the

surrounding space, and identifying items and phenomena essential for their survival. The

e�ectiveness illustrated by many animals of the use of visual sensing on the perception

and action, has become a source of inspiration for many problems in the �eld of robotics.

It comes as no surprise that in this �eld, vision is considered as the most promising and

the most challenging of the arti�cial senses.

Over the last decades, computer vision has emerged as discipline which focuses on

issues such as visual information extraction, representation and use. Since the real world

is in constant motion, the analysis of time-varying imagery can reveal valuable information

about the environment [56], and allow a machine or organism to meaningfully interact with

it. For this reason the analysis of image sequences for the extraction of three-dimensional

structure and motion has been at the core of computer vision from the early days [15].

The research on motion perception and analysis can be divided into three time periods

[61]. In the �rst period, research focused in trying to �nd whether it was possible to

infer three dimensional information on motion and structure from the analysis of image

projections. The subject was treated in the broadest terms. Once it was certain that a

solution existed, the next period was concerned with devising ways to �nd it and prove its

uniqueness. Researchers managed to achieve this on many sub-problems, by theoretical

analysis, usually dealing with the minimum required amount of data [31]. This 'minimal-

istic' approach, often leading to highly noise sensitive algorithms, gave rise to the idea

that the problem of structure and motion recovery was such an ill-posed problem that

only qualitative solutions were attainable [67]. Therefore, in the last period, research was

concerned in using as much information as possible in an optimal manner, in order to pro-

mote low error sensitivity through redundancy. The redundancy was achieved by using

1



2 CHAPTER 1. INTRODUCTION

more feature correspondences [60] or more image frames [61] than theoretically required

for noise-free situations.

By combining multiple observations, noise sensitivity can be reduced. This is tradi-

tionally performed under the least-squares framework. Contributing factors are the ease

of use, low algorithmic complexity and the availability of e�cient methods for �nding the

solution, such as the singular value decomposition. The major drawback, however, lies on

its inability to deal with gross errors. The errors in motion estimation can be informally

divided into two main classes. The �rst includes the errors due to image quantization

and limited resolution of the methods for the extraction of primitive information, such as

point features and matches. The second class includes the errors corresponding to data

in gross disagreement with the assumed underlying model. These outliers may have been

originated by model shortcomings in describing the data or by the ill-posed nature of some

of the problems being solved. When combining multiple observations, outliers are usually

included in the initial �t. Under least-squares, outliers can make the �tting process so

distorted as to have an arbitrary result.

A great deal of research e�ort is currently been put into the development of robust

methods for computer vision. It is with the goal of providing good performance for real

imaging in real applications that robust methods are studied and used in this thesis.

The main objectives of this thesis are:

� The use of projective geometry for the derivation of image motion models.

In the last few years, signi�cant progress has been made on fundamental problems

in computer vision due to the use of classical projective geometry. Projective ge-

ometry embeds our familiar Euclidean geometry and is better suited for describing

the relations between scene structure and its image projections. Its generality allows

irrelevant details to be ignored. By the use of projective geometry, image motion

models can be easily obtained.

� The development of a framework for model-based motion estimation. The

methods used for motion estimation should be able to cope with several motion

models in a similar way, thus allowing for the most appropriate model to be used.

� The creation of high quality video mosaics through the application of

the motion estimation to image registration. Models for parallax-free scenes

allow the creation of video mosaics. These mosaics can be used in a multitude of

applications ranging from visually elucidative panoramas to e�cient video coding

and cartography.

� The recovery of structure from uncalibrated images. When parallax is

present, then scene structure information becomes available. Projective geometry
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provides the adequate tools for the analysis of structure and for reconstruction,

even when no camera calibration is available. Three dimensional reconstruction is

still one of the cornerstones of robotics applications where spatial modelling of the

environment is required.

1.1 Related Work

A wide range of topics are covered in this thesis, such as robust estimation, feature match-

ing, image registration, mosaic rendering, fundamental matrix estimation and uncalibrated

reconstruction. These aspects are seldom treated in a uniform manner in the literature.

However, the work of some authors relates closely to various of the individual issues. We

will now brie
y describe selected work, bearing in mind that relevant related work will be

referred to throughout this thesis, when appropriate.

An in-depth study of robust estimation in the context of motion segmentation is pre-

sented by Torr in [67]. Here, corner features and matched correspondences are used as data

for the clustering of features consistent with rigid world objects. The constraints arising

from two and three views are considered. The detection of outliers and of data degeneracy

are treated simultaneously, and a method for dealing with both is implemented.

A system for image registration and mosaic creation of underwater sequences is pre-

sented in [45]. Mosaicing is performed in real-time, solely from visual information. This

is attained at the cost of using a very simple motion model, which restricts the range of

applications.

The issue of applying robust techniques for the estimation of the fundamental matrix

has been dealt with by a number of authors [42, 11, 21]. In this context, comprehensive

review of robust methods is given in [66]. In [75] an approach is proposed for the recovery

of the epipolar geometry from two uncalibrated views, which bears a close resemblance to

the work described in this thesis for the topic. However, the issue of structure recovery

is not tackled. The e�ect of the choice of the parameterization in the estimation of the

fundamental matrix is studied in [43].

Uncalibrated reconstruction is currently a topic of intensive research. A simple pro-

cedure for Euclidean structure recovery from two views using ground-truth information

was put forward by Hartley in [24]. This approach was further extended in [48]. Recent

work is now focused on Euclidean reconstruction using just image information [68, 29, 12].

One of the main di�erences of the work presented in this thesis is that no perfect feature

matching is assumed whereas most of these approaches consider the matching problem to

be solved.



4 CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

Chapter 2 introduces some concepts and properties of projective geometry. The projective

camera model is presented, together with its calibration process. For planar scenes, the

relation between image projections is analyzed and a class of motion models is presented.

Next, the two-view geometry for arbitrary scenes in introduced. Key issues are the epipolar

geometry and the fundamental matrix. An uncalibrated reconstruction procedure is shown

where Euclidean recovery is attained through the use of some ground-truth points.

Chapter 3 describes the two main approaches to motion estimation, namely feature-

based methods and optical 
ow. Robust estimators are reviewed, including the M-

estimators, case-deletion diagnostics and random sampling algorithms. A variant of the

least median of squares is proposed.

Chapter 4 is devoted to the application to video mosaicing. The two stages of mosaic

creation, registration and rendering, are described separately. On the registration stage

the motion parameters between frames are estimated, then individual frames are �t to

a global model of the sequence. The rendering stage deals with the creation of a single

mosaic, by applying a temporal operator over the registered and aligned images. Several

examples of mosaics are given and applications are discussed.

Chapter 5 reports the application of robust techniques to the estimation of the epipolar

geometry, and to 3-D structure recovery. The fundamental matrix is estimated under dif-

ferent minimization criteria and parameterization. Results of the reconstruction procedure

described in Chapter 2 are given and discussed, using both synthetic and real images.

Finally, Chapter 6 summarizes the work presented on this thesis and draws the main

conclusions. Directions for future developments are also given.



Chapter 2

Projective Geometry

In this chapter we will introduce some concepts and properties of projective geometry.

These will be required for the understanding of the formulas presented further on, when

we address the creation of video mosaics and 3-D reconstruction.

Some of the basic properties of projective space will be described in section 2.1, such

as the notions of projective space and collineation, followed by the perspective camera

model, widely used in the Computer Vision literature.

We then move on to the study of the planar transformations. Since these transforma-

tions can relate 3-D points lying on planes, they will be extensively used on the mosaicing

of planar scenes.

Finally section 2.4 considers the problem of 3-D reconstruction using uncalibrated

cameras. It introduces the fundamental matrix which encapsulates all the geometric in-

formation that can be extracted just by image analysis about a setup of two cameras.

2.1 Basic Properties of the Projective Space

De�nition 1 (A�ne Space and Projective Space) The set of points parameterized

by the set of all real valued n-vector (x1; : : : ; xn)
T 2 IRn is called A�ne Space.

The set of points represented by a n+ 1 vector (x1; : : : ; xn; xn+1)
T 2 IRn+1 is called a

Projective Space IPn if the following condition and property are considered:

1. At least one of the n+ 1 vector coordinates is di�erent from zero.

2. Two vectors (x1; : : : ; xn; xn+1)
Tand (�x1; : : : ; �xn; �xn+1)

T represent the same point

for any � 6= 0.

The elements xi of a projective space vector are usually called homogeneous coordinates

or projective coordinates. The a�ne space IRn can be considered to be embedded in IPn

5
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by the use of the canonical injection (x1; : : : ; xn)
T ! (x1; : : : ; xn; 1)

T . Conversely, one can

recover the a�ne coordinates of a point from its homogeneous ones by the mapping,

(x1; : : : ; xn; xn+1)
T :
=
�

x1
xn+1

; : : : ; xn
xn+1

; 1
�T

!
�

x1
xn+1

; : : : ; xn
xn+1

�T
for xn+1 6= 0,

where
:
= denotes the equality-up-to-scale property of the projective coordinates. From

this chapter on, we will be using the tilde symbol on top of a vector letter (ex. ex) to
denote the projective coordinates of a given point. Eventually this notation will not be

used if there is no risk of confusion with the a�ne counterparts.

If the last coordinate of a point x 2 IPn is null, i.e., xn+1 = 0, then x is called point at

in�nity. The direction of such point is given in the a�ne space by (x1; : : : ; xn)
T . Under

the framework of projective geometry, the set of all points at in�nity behaves like any

other hyperplane, thus called hyperplane at in�nity.

De�nition 2 (Collineation) A linear transformation or collineation of a projective space

IPn is de�ned by a non-singular (n+ 1)� (n+ 1) matrix A.

The matrix A performs an invertible mapping of IPn+1 onto itself, and is de�ned up to

a non zero scale factor. The usual representations for a collineation are �y = Ax or x^y.

De�nition 3 (Projective Bases) A projective basis of a n-dimensional projective space,

is a set of n+ 2 vectors of IPn such that n+ 1 of them are linearly independent.

Any point x of IPn can be described as a linear combination of a given basis ei:

x =
n+1X
i=1

xiei

Particularly, the set f(1; 0; : : : ; 0)T ; (0; 1; : : : ; 0)T ; : : : ; (0; : : : ; 1; 0)T ; (1; : : : ; 1)Tg forms

the canonical basis. It can easily be seen that this is indeed a basis, and that it contains the

points at in�nity along each of the n dimensions, plus the unit point with all coordinates

equal to one.

We will now present a proposition which characterizes the change of projective basis.

A proof for this can be found in [15] and in [55].

Proposition 1 Let x1; : : : ;xn+2 and y1; : : : ;yn+2 be two sets of vectors with at least n+1

linearly independent vectors each, thus forming two projective bases. Then, there exists a

non-singular (n+ 1)� (n+ 1) matrix A, such that �iyi = Axi for i = 1; : : : ; n+ 2 and a

set of scalars �i. The matrix A is a collineation, therefore unique up to a scale factor.

This proposition states an important property of the projective space: a collineation

on IPn is completely de�ned by a set of n + 2 pairs of corresponding points.



2.2. PERSPECTIVE CAMERA MODEL 7

Figure 2.1: Perpective Camera Projection

2.2 Perspective Camera Model

The most commonly used camera model in computer vision is the pinhole model. This a

simple and e�ective way of modelling most of the modern CCD cameras by considering

the projection of rays of light passing through a small hole and being projected on a 
at

surface.

A geometrical model is now presented, based on the system depicted on Figure 2.1. It

contains a plane R where the image is formed, called retinal or image plane. The image

of the 3-D point M undergoes a perspective projection, passing through the optical center

O, and is projected in m. The distance of the optical center to the retinal plane is called

focal distance. The line passing through the optical center and orthogonal to the retinal

plane is called optical axis. The optical axis intersects the image plane in the principal

point.

2.2.1 The Perspective Projection Matrix

We will now consider the origin of the 3-D reference frame to be at the camera optical

center O, and its ~z axis to be along the optical axis. For the retinal plane, we consider a

2-D reference frame as depicted on Figure 2.1, with the origin in the principal point. Let

(u; v) be the 2-D coordinates of m and (x; y; z) the 3-D coordinates of M. It can easily

be seen that the following equations hold.

u =
f � x

z
v =

f � y

z
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This can be written as a linear relation, by the use of homogeneous coordinates as

�

2664
u

v

1

3775 =

2664
f 0 0 0

0 f 0 0

0 0 1 0

3775
2666664
x

y

z

1

3777775 , fm :
= PfM

where P is usually referred as the perspective projection matrix.

It is worth noting that the use of projective geometry allows the perspective projec-

tion model to be described by a linear equation, which makes the model much easier to

deal with. A camera can be considered to perform a linear projective mapping from the

projective space IP 3 to the projective plane IP 2.

Commonly, the origin of the image reference frame is not the principal point, but

the upper left corner of the image. Moreover, the scaling along the u and v axis is not

necessarily the same. We can account for this, by performing a coordinate transformation

on the image and rewriting the camera mapping as:

�

2664
u

v

1

3775 =

2664
ku k� u0

0 kv v0

0 0 1

3775
2664
f 0 0 0

0 f 0 0

0 0 1 0

3775
2666664
x

y

z

1

3777775
where ku and kv are scaling factors (along u and v), and (u0; v0) is the location of the

principal point in the new image referential. The additional parameter k� gives the skew

between axes. For most CCD cameras k� can be considered zero, on applications not

relying on high accuracy calibration.

When the 3-D reference frame (world frame) is not the camera frame, the above equa-

tion holds if we consider the 3-D points undergo a rigid transformation, i.e., rotation and

translation. This transformation that can be easily expressed as a collineation relating the

two coordinate systems:

�

2666664
x0

y0

z0

1

3777775 =

"
R t

0 0 0 1

#2666664
x

y

z

1

3777775, ex0 := Gex

The matrix R is a (3 � 3) rotation matrix and the (3 � 1) vector t contains the

coordinates of the origin of the world frame expressed in the camera frame.

We can now express the general form of the perspective camera mapping as:



2.2. PERSPECTIVE CAMERA MODEL 9

�

2664
u

v

1

3775 =

2664
ku k� u0

0 kv v0

0 0 1

3775
2664
f 0 0 0

0 f 0 0

0 0 1 0

3775
"

R t

0 0 0 1

# 2666664
x

y

z

1

3777775
or equivalently,

�

2664
u

v

1

3775 =

2664
f ku f k� u0

0 f kv v0

0 0 1

3775
2664
1 0 0 0

0 1 0 0

0 0 1 0

3775
"

R t

0 0 0 1

# 2666664
x

y

z

1

3777775

�

2664
u

v

1

3775 = A

2664
1 0 0 0

0 1 0 0

0 0 1 0

3775G
2666664
x

y

z

1

3777775 (2.1)

The A matrix depends only on parameters internal to the camera, thus called intrinsic

parameters. Conversely, the Gmatrix depends only on the chosen external reference frame.

The transformation parameters are called the extrinsic parameters.

Let us now introduce the notion of normalized coordinates of a 3-D point projection.

Let m be a point projection such that fm :
= PfM where P can be expressed in the form of

equation (2.1). Let P 0 be a camera matrix with the same extrinsic parameters but with

intrinsic parameters such that A is the identity matrix. Then en :
= P 0fM are the normalized

coordinates of fm. It is easy to see that P 0 corresponds to a camera with unit focal length,

principal point coincident with the origin of the image frame and no scaling or skewing

along the axes.

For a given camera matrix, the determination of the camera optical center in world

coordinates is straightforward, as the following proposition shows.

Proposition 2 (Coordinates of the camera optical center) Let P be a �nite focal

length camera matrix. Let L be the (3� 3) matrix formed by the �rst three columns of P ,

and p its last column, such that P can be written as P = [L p]. Then the null space of P

gives the world coordinates of the camera optical center. The coordinates are o = �L�1p.

Proof. Can be found in [15].

Using this proposition, it easy to see that P can also be expressed as P = [L � Lo].

Restricted camera models

The camera model that we have described in this subsection is the commonly used general

projection model of 11 independent parameters. However it is worth saying that, on
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some applications such as the estimation of scene structure from image motion, restricted

camera models should be considered. The restricted models may be better suited if the

data are degenerate [74]. For a discussion on camera models and their appropriateness,

refer to [74].

2.2.2 Camera Calibration

The process of �nding the intrinsic and extrinsic parameters of a cameras is called camera

calibration. This process can be divided in two major steps[15]:

1. Estimating the matrix P .

2. Recovering the explicit intrinsic and extrinsic parameters from P .

In this thesis we will only deal with the �rst, as it is all that is required for the 3-D

reconstruction procedures presented on chapter 5.

A simple linear calibration procedure will now be presented, based on least-squares

minimization. We assume that a set of 3-D points xi are available together with their

projections on the retinal plane mi. The perspective camera mapping can be written as:

�

2664
u

v

1

3775 =

2664
pT1
pT2
pT3

3775 ex
where pT1 , p

T
2 and pT3 are the row vectors of each of the lines of P , and ex = (x; y; z; 1)T.

Let us re-arrange the equations as:

� = pT3 � ex )

pT3 � ex � u = pT1 � ex
pT3 � ex � v = pT2 � ex

For each point xi and projection mi, we have two of the above equations. Let pl =

(pT1 p
T
2 p

T
3 )

T be the column vector containing all the 12 parameters of P . The following

homogeneous system can be formed:

H � pl = 0 (2.2)

For a set of n points, H is the (n� 12) matrix:

H =

2666666664

�x1 �y1 �z1 �1 0 0 0 0 x1u1 y1u1 z1u1 u1

0 0 0 0 �x1 �y1 �z1 �1 x1v1 y1v1 z1v1 v1
...

�xn �yn �zn �1 0 0 0 0 xnun ynun znun un

0 0 0 0 �xn �yn �zn �1 xnvn ynvn znvn vn

3777777775
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If six or more 3-D points are on a general con�guration, and their projections are

known with su�cient high accuracy, then H will have exactly rank 11. By a general

con�guration we mean that no four of the points are coplanar, nor they all lie on a twisted

cubic as described Faugeras in [15], although this later situation is very unlikely to occur

on practical setups.

From Equation (2.2) it can be seen that pl is the null space of H , thus de�ned up to

scale. To avoid the trivial solution pl = 0, one has to impose an additional constraint

on P , usually kplk = 11. Furthermore, real applications are prone to inaccuracies on

the measurements of point locations and H will not be rank de�cient. In order to �nd

a least-squares solution for this equation, we can formulate the classical minimization

problem:

min
pl

k H � pl k constrained to k pl k= 1 (2.3)

By the use of the Lagrange multipliers it can be easily shown that the solution to this

problem is the eigenvector associated with the smallest singular value of H . A suitable

algorithm for �nding the eigenvector is the Singular Value Decomposition (SVD)[51]. This

solution has the advantage of being non iterative, thus allowing the implementation of a

fast calibration procedure. For a short description of the SVD, refer to Appendix A.

2.3 Planar Transformations

This section is devoted to the presentation of 2-D projective transformations. The im-

portance of the study of these collineations is emphasised by the fact that they can be

used as models for image motion with an enormously vast �eld of application in Computer

Vision. We will now show that two di�erent views of the same planar scene in 3-D space

are related by a collineation in IP 2, and that this collineation can be computed by the use

of four pairs of matched points on the two images.

Proposition 3 Let P and P 0 be two camera projection matrices. Let n be the (4 � 1)

coe�cient vector of a plane exP 2 IP 3 not containing the cameras optical centers, such that

the plane can be expressed as the inner product nT :exP = 0. Then the coordinates of P exP
and P 0exP in the two image frames are related by a projective transformation in IP 2.

We will not formally prove this proposition, but present just a proof outline. Let us

start by explicitly expressing the set of points which project on a single point u of retinal

plane. The locus of all theses points is a 3-D line called the optical ray of u.

1Alternatively, one can set p34 = 1 and rewrite equation 2.2, where H will be a (n� 11) matrix and

solve it accordingly.
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Consider eu :
= P ex. The projection matrix can be written as P = [L p], where L is the

square matrix formed by the �rst three columns of P , and p is the fourth column. It can

be shown [24, 15]that if a camera is not located at in�nity, then L is non-singular. The

equation for the optical ray can now be found:

�eu = [L p]

2666664
x

y

z

1

3777775
�eu = Lx+ p

x = �L�1eu�L�1p (2.4)

For each value of �, a point of the ray is de�ned. We can write an homogeneous

equation for ex by the use of N =

"
L�1

0 0 0

#
and q =

"
�L�1p

1

#

ex :
= �N eu+ q

The vector q is the null space of P , thus containing the optical center homogeneous

coordinates, as seen earlier. For notation simplicity we will now replace � in the following

equations, by the parameter ', such that � = �'�1.The above equation is equivalent to

ex :
= N eu� 'q

The equation of the plane in the world frame can be written as the inner product

n � exP = 0. The intersection of the optical ray and the plane imposes

nTN eu� 'nTq = 0

' = nTNeu
nTq

The point of intersection therefore is

ex :
= N eu� nTN eu

nTq
q =

 
I �

q nT

nTq

!
N eu

This point is projected on the other camera as

eu0 := P 0ex = P 0

 
I �

q nT

nTq

!
N eu = T2Deu

From this we can conclude that the coordinates of the two camera frames are related

by the (3� 3) collineation T2D.
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2.3.1 Linear computation of planar transformations

According to proposition 1, the computation of a planar collineation requires at least four

pairs of corresponding points. If we have more than four correspondences, least-square

minimization can then be accomplished in a way close to the one outlined above, in the

camera calibration subsection. Let T2D be the collineation relating two image planes from

which we have a set of n correspondences such that fu0i := T2Dfui, for i = 1; : : : ; n. For each

pair we will have two linear constraints on the elements of T2D. An homogeneous system

of equations can thus be assembled in the form H:tl = 0, where tl is the column vector

containing the elements of T2D in a row-wise fashion, and H is a (2n� 9) matrix

H =

2666666664

u1 v1 1 0 0 0 �u01u1 �u01v1 �u01
0 0 0 u1 v1 1 �v01u1 �v01v1 �v01

...

un vn 1 0 0 0 �u0nun �u0nvn �u0n
0 0 0 un vn 1 �v0nun �v0nvn �v0n

3777777775
The system can now be solved by the means of the Singular Value Decomposition,

after imposing the additional constraint of unit norm for tl, i.e., ktlk = 1.

The use of planar transformations on the correction of radial distortion

The camera model presented in section 2.2 is a linear perspective projection model, which

is su�ciently accurate for most commercially available and computer vision applications.

Even so, for some applications such as high-accuracy metrology a more complex model is

required, capable of dealing with the real-world camera non-linearities.

During the experimental part of the work reported in this thesis, we came to realize

that some of the wide-angle lenses that were used for image acquisition caused noticeable

radial distortion. For this reason a radial distortion calibration technique was developed.

It is based on the estimation of the planar transformation between a planar calibration grid

and its projection the image plane. The equations used for the distortion modelling are

given on appendix B, together with a description of the algorithm and some test images.

2.3.2 Restricted planar transformations

The most general collineation in IP 2 has eight independent parameters. As it has been

shown, it accounts for the perspective mapping of a planar scene to the image plane of a

camera. It can therefore be used to merge two di�erent images of the same plane, just by

using a set of point correspondences. The subject of image composition will be addressed

in chapter 4, where an in-depth discussion will be presented. For now on let us say that if

the scene is static but not planar, then there will be image misalignements due to parallax,
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except for the case where the cameras have the same optical center. This is the same as to

say that the cameras are free to rotate in any direction and to zoom, but not to translate.

For this later case, the relation between camera rotation and the collineation can be found

in [63]. Table 2.1 summarizes the two cases where the general collineation captures the

exact coordinate transform.

Scene assumptions Camera assumptions

Case 1 Arbitrary 3-D free to rotate on any directions and to zoom

Case 2 Planar no restrictions on camera movement

Table 2.1: The two parallax-free cases for static scenes.

If additional information is available on the camera setup, such has camera motion

constraints, then the coordinate transformation fu0i :
= T2Dfui might not need the eight

independent parameters of the general case to accurately describe the image motion. As

an example we can point out the case where the camera is just panning, thus inducing

a simple sideways image translation. If we know beforehand which is the simplest model

that can explain the data equally well, then there will be no reason for using the most

general. Table 2.2 illustrates some restricted models. These are used in chapter 4 for the

construction of video mosaics.

2.4 Projective Stereo Vision

In this section we will present some concepts and methods useful for the analysis of a static

scene using a pair of cameras. We will describe the important epipolar constraint by giving

a geometric interpretation and an algebraic interpretation, that leads to the presentation

of the Fundamental Matrix. It will also be shown how the structure of the scene can

be recovered up to a projective transformation by the use of pairs of matched projected

points. Furthermore, we illustrate how to �nd this transformation from additional metric

information about the scene, namely some 3-D points with known coordinates in some

world frame. A special emphasis is put on the fact that explicit camera calibration is

avoided.

The �eld of projective stereo vision deals with what can be done with completely

uncalibrated cameras. The importance of this lies on the fact that, for some applications,

full knowledge of the camera parameters is not required. As an example we can cite

the work of Beardsley et al. [6], where robot navigation is accomplished without metric

recovery of environment structure.
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Image Model Matrix form p Domain

Translation T2D =

2664
t1 0 t2

0 t1 t3

0 0 t1

3775 2 Image plane is parallel to

the planar scene. No

rotation.

Translation and zoom T2D =

2664
t1 0 t2

0 t1 t3

0 0 t4

3775 3 Same as above but with

variable focal length.

"Semi-Rigid" T2D =

2664
t1 t2 t3

�t2 t1 t4

0 0 t5

3775 4 Same as above but with

rotation and scaling along

the image axes.

A�ne Transformation T2D =

2664
t1 t2 t3

t4 t5 t6

0 0 t7

3775 6 Distant scene subtending a

small �eld of view.

Projective Transformation T2D =

2664
t1 t2 t3

t4 t5 t6

t7 t8 t9

3775 8 Most general planar

transformation.

Table 2.2: Description of the models used for image merging, ordered by the number of

free parameters p.
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Figure 2.2: The epipolar geometry

2.4.1 Basic considerations on epipolar geometry

The epipolar geometry is the basic constraint which arises from the existence of two

projective cameras. Consider the case of two images of a rigid scene, as depicted in Figure

2.2. Let M be a 3-D point projected on m and m0 on the two retinal planes R and

R0, respectively. The optical centers for the cameras are the points C and C0. The line

de�ned by two centers CC 0 intersects the retinal planes on e and e0. These points are the

projections of each of the optical centers on the other camera, and are called the epipoles.

The epipolar plane � is de�ned by the point M and the two optical centers. It intersects

the image planes on the epipolar lines lm0 and l0m.

The epipolar geometry provides very useful information about a stereo rig: it relates

the projections of the same 3-D point, since these projections are always bound to be on

the corresponding epipolar lines. Therefore, an important application of epipolar geometry

is in the search of point correspondences between images. For a given point projection on

one image, one can reduce the search for its correspondence from 2-D to a 1-D. Instead of

seeking on the other whole image, the search can be performed only on the corresponding

epipolar line.

The epipolar geometry can be obtained by calibrating the two cameras. However, as

we shall see on the next section, it can also be found just by the use of image information,

provided that some correspondences are known.

2.4.2 The Fundamental Matrix

From now on let us consider image projective coordinates (u; v; 1). As it is pointed out in

[43], the relationship between a point u and its epipolar line l0u is projective linear because
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the relations between u and the 3-D line UC, and the relation between UC and l0u are

both projective linear. In other words, the projective linearity comes from the fact that

l0u is the projection of the optical ray of u on the second image. This correspondence can

be written has

l0u = Fu (2.5)

where F is a (3� 3) matrix called the fundamental matrix.

A great deal of research has been devoted to the study of fundamental matrix in the

last few years[14, 43, 40, 10]. It can be shown[43, 49] that the matrix F is rank de�cient

and, for a non-degenerate case it has exactly rank 2. Since it is also de�ned up to scale, it

has seven independent parameters. From Figure 2.2 one can check that all epipolar lines

go through the epipoles. Therefore it is easy to see that the epipoles e and e0 are the right

and the left null spaces of F .

Let u0 be the correspondence of u. Since u0 lies on l0u we have u0T l0u = 0. This leads

to the fundamental equation:

u0TFu = 0 (2.6)

In the case where the cameras intrinsic parameters are known the fundamental matrix re-

duces to the essential matrix E, given by the Longuet-Higgins equation[41]. This equation

relates the normalized coordinates m and m0 of the projections u and u0 of a given 3-D

point U , for some rotation R and translation t between the two camera frames, as

m0(t�Rm) =m0TEm = 0 (2.7)

where � denotes the cross product of two vectors.

LetA1 andA2 be two non-singular matrices containing the intrinsic parameter matrices

of two cameras, as described in 2.1. Then,

m = A�1
1 u

m0 = A�1
2 u0

The relation between the fundamental and the essential matrix can be easily derived:

m0TEm = 0 , u0TA�T
2 E A�1

1 u = 0

) F = A�T
2 E A�1

1

(2.8)

By the use of the �rst part of the Longuet-Higgins equation, F can also be written as

F = A�T
2 [t]

�
R A�1

1 (2.9)

where [t]
�

is a skew-symmetric matrix that performs a cross product of the vector t

when left-multiplied by some vector p, i.e., [t]
�
p = t � p. This explicitly shows how F
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is a�ected by camera translation and rotation. Therefore, it can be used for imposing

additional constraints on the structure of F for particular camera setups, such as stereo

rigs with known baseline. Examples can be found in [40, 11].

2.4.3 Estimation of the Fundamental Matrix

We shall now brie
y address the problem of computing the fundamental matrix using im-

age information, namely some point correspondences. A simple linear procedure, similar

to the one presented above for the camera calibration will be outlined. A deeper expla-

nation on this subject is given on chapter 5, where several methods for estimating F are

presented and compared.

Given a set of image point correspondences, one can see from equation (2.6) that each

pair of matched points between two images provides a singular linear constraint on the

parameters of F . This allows linear estimation up to scale from 8 correspondences on a

general con�guration2, by the use of the eight point algorithm introduced by Longuet-

Higgins[41] and extensively studied in the literature[26, 43, 71, 6]. In practice using 8

correspondences proves to be extremely sensitive to noise. For more correspondences, a

least-squares method follows. Each linear constraint on the parameters of F for a pair of

correspondences, u =(u; v; 1) and u0 = (u0; v0; 1), can be expressed as

hT f = 0

where hT = (uu0; vu0; u0; uv0; vv0; v0; u; v; 1) and f is a vector containing the elements of

F such that f = (F11; F12; F13; F21; F22; F23; F31; F32; F33). We can now formulate the

problem

min
f
kHfk constrained to kfk = 1

that can be solved using the SVD.

However, since F has 7 independent parameters, it can be estimated just from 7 pairs

of corresponding points, by the use of a non-linear iterative method. Linear estimation

has the major advantage of being non iterative, but it does not explicitly force the rank 2

condition of F . This condition has to be imposed afterwards. Otherwise, for experimental

matches with localization inaccuracies, the epipolar lines will not all meet at a single

point[43].

2.4.4 Reconstruction from calibrated cameras

We will now address the problem of recovering 3-D point locations. Consider the image

points u and u0 from the same object point U , obtained from cameras with projection

2In this thesis we will not investigate degenerate con�gurations for the F matrix. A discussion on this

topic can be found on [77]. However it is worth stating that matches corresponding to 3-D points lying on

the same epipolar plane impose the same redundant constraint on the elements of F .
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matrices P1 = [M1 p1] and P2 = [M2 p2], respectively. The corresponding optical rays

are given by equation 2.4:

x = �M�1
1 eu�M�1

1 p1

x0 = �0M�1
2
eu0�M�1

2 p2
(2.10)

The above equations impose 6 constraints on 5 unknowns: the 3 coordinates of U plus �

and �0. The intended U point will be the intersection of the two rays. However, on practical

situations, the rays may not intersect due to limited camera resolution and inaccuracies on

the estimation of the camera matrices. Therefore, a vector bU = (bx; by; bz)T can be computed

that minimizes the distance to the rays, corresponding to midway between the points of

their closest approach.

2.4.5 Uncalibrated reconstruction

In many practical situations it is not possible to perform camera calibration, which en-

ables straightforward reconstruction for given matched projections and camera matrices.

However if some geometric information is available on the structure of the scene (such as

knowledge of parallel lines, segment mid-points or 3-D point locations), then some sort of

reconstruction can be accomplished. In order to clarify what is meant by sort of recon-

struction we will brie
y discuss an hierarchy of geometric groups for reconstruction and

then describe a method for computing 3-D point locations from uncalibrated cameras.

We have seen in section 2.1 that there is a standard mapping from the usual Euclidean

space to the projective space. The question now is, given only structure information on the

projective space, what additional information is required in order to get back to Euclidean

space. There are four main groups of transformations that de�ne four di�erent geometries.

These are arranged hierarchically as

Projective � A�ne � Similarity � Euclidean

in the sense that they can be considered strata overlaid one after another. The projective

stratum is the most general and therefore the one with less geometric invariants[15]. In

projective space there is no notion of rigidity, distance or points at in�nity3. The a�ne

space is obtained from the projective space by considering an arbitrary hyperplane as the

hyperplane containing the points at in�nity. The similarity space is invariant under the

group of rigid motions (translation and rotation) and uniform scaling. It can be obtained

from the a�ne space by establishing a conic in the hyperplane at in�nity to be the absolute

conic[16]. Under the similarity group there is no notion of scale or absolute distance. By

�xing the scale, the usual Euclidean space is found.

3In the projective space, the usual Euclidean notion of a point at in�nity corresponds to a point with

the last coordinate equal to zero, and is treated in a similar way to any other point.
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As it is shown in [48] the projective structure of a scene can be recovered just by

establishing point correspondences over two images. As it would be expected, structure

is recovered up to a projective transformation. In the work reported on this thesis, we

recover the Euclidean structure by means of �nding a perspective transformation G of

IP 3, that linearly transforms the projective structure (obtained directly from the point

correspondences) back into the Euclidean space.

We will now present a method for Euclidean reconstruction using point correspondences

and known 3-D point locations without explicit camera calibration. The theory behind this

method is supported by a lemma and a theorem by Hartley, whose proofs can be found in

[23] and [24] respectively.

Lemma 1 The fundamental matrix corresponding to the pair of camera matrices P1 =

[L1 � L1o1] and P2 = [L2 � L2o2] is given by

F
:
= L�2L

T
1 [L1 (o2 � o1)]� (2.11)

where L�2 represents the adjoint of L2. If L2 is invertible then L�2
:
= L�T2 .

Theorem 1 Let fP1; P2g and fP 0

1; P
0

2g be two sets of camera projection matrices. Then

fP1; P2g and fP 0

1; P
0

2g correspond to the same fundamental matrix F if and only if there

exists a (4� 4) non-singular matrix G, such that P1G
:
= P 0

1 and P2G
:
= P 0

2.

Let us consider now any two projection matrices P 0

1 and P
0

2 agreeing with an estimated

F . Using P 0

1 and P
0

2, it is easy to compute the coordinates of 3D points x0i from the image

projections. In a general case these points di�er from the original 3D points xi, by the G

transformation,

P 0

1x
0

i = P1Gx
0

i = P1xi ) xi = Gx0i (2.12)

The G matrix is a collineation in IP 3 performing a general perspective transformation

[4]. Therefore it accounts for linear geometric rigid (rotation and translation) and non-

rigid operations (scaling and skewing). According to proposition ??, it can be recovered

from a set of 5 pairs of points fxi; x0ig where x
0

i are ground-truth points with known 3D

coordinates. We can now present an Euclidean reconstruction procedure, based on the

use of ground-truth points:

1. Estimate the fundamental matrix F from a set of matched points.

2. Determine some P 0

1 and P 0

2 agreeing with F .

3. Recover the projective 3D structure using P 0

1 and P 0

2.

4. Estimate the G matrix by the use of ground points.
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5. Apply G to the points determined in 3, to recover the Euclidean structure.

The problem remaining to be solved is to determine a pair of camera projection ma-

trices agreeing with the estimated F . We will now present a lemma which can be used

directly to obtain such pair. In [24, 25] a method is presented to recover two projection

matrices in accordance to an estimated fundamental matrix, F . Although not stated

clearly, there is the assumption that such cameras have normalized intrinsic parameters

and thereby the matrix L, described in equation (2.11) is a rotation matrix. In this section

we generalize these results for the case of arbitrary cameras.

Lemma 2 Let F be a fundamental matrix with SVD decomposition F = Udiag(r; s; 0)VT ,

and r � s > 0. Let P1 = (L1 j �L1o1) be an arbitrary camera matrix with det(L1) 6= 0.

Then the matrices,

P1 = (L1 j �L1o1) P2 = (L2 j �L2o2)

correspond to the fundamental matrix F , where M2 and T2 are given by :

L2 = [Udiag(r; s; 
)EVT ]�TL1 
 2 <+

o2 = L�11 V [0; 0; 1]T + o1 E =

2664
0 �1 0

1 0 0

0 0 1

3775
Proof.

It is known that the null space of the columns of F is a 3x1 vector corresponding to

the projective coordinates of the right epipole. According to equation (2.11),

F
:
= L�T2 LT

1 [L1 (o2 � o1)]�

F
:
= Udiag(r; s; 
)EVTL�T1 LT

1 [L1(L
�1
1 V [0; 0; 1]T + o1 � o1)]�

:
= Udiag(r; s; 
)EVT [V [0; 0; 1]T]�

By construction of the SVD, the last column of V is a base vector for the null space

of UDV T , i.e., the null space of F , as required. The columns form a orthonormal basis

spanning the 3D space. Bearing this is mind, it is easy to verify by inspection that

[V [0; 0; 1]T ]� = V ZV T with Z =

2664
0 �1 0

1 0 0

0 0 0

3775
Performing this replacement, we will have,

F
:
= Udiag(r; s; 
)EV TV ZV T :

= Udiag(r; s; 0)EV T = SVD(F )
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thus validating the lemma.

A simpler version of this lemma, on which this was based, is presented in [24] where L is

a rotation matrix, hence simplifying the derivation process. Results on the implementation

of the Euclidean reconstruction procedure are presented in chapter 5.



Chapter 3

Robust Motion Estimation

Robust parameter estimation is an essential part of many computer vision algorithms.

The attempt of minimizing the e�ects of noise and uncertainty leads to the use of as much

data as possible. Traditionally the combination of the data is accomplished under the

least-squares framework. However, real world applications require the awareness to data

in gross disagreement with the assumed model. The main drawback of the least-squares

framework is that these outliers can make arbitrarily the result of the estimation process.

The organization of this chapter is as follows. Section 3.1 brie
y presents the two main

approaches used in the literature for the computation of motion from image sequences.

These are the feature-based approach and the optical 
ow approach. The comparative ad-

vantages and disadvantages are outlined. Since this thesis evolves entirely around feature-

based techniques, which can be used both for mosaicing and reconstruction under the same

framework, the rest of the chapter will deal only with this class of methods. In section

3.2 we review some of the most commonly used model estimation techniques, including

unconstrained optimization and robust estimation. An introductory explanation is given

for orthogonal and re-weighted least squares, M-estimators, case deletion diagnostics, and

random sampling techniques. This section ends with the proposal of a new algorithm

based on the least median of squares which is extensively used in this thesis.

3.1 Motion Estimation Techniques

There are two main approaches to the problem of motion estimation from multiple images.

The �rst feature-based involves the extraction of a set of features from the sequence,

such as image corners, line segments or curves. These features are usually sparse, when

compared with the extent of the underlying images. After the feature extraction process,

this approach requires establishing correspondences between features over the images.

One of the drawbacks of this approach, as pointed out by Ayer[3], lies on the di�culty of

23
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the matching process which is prone to gross error. However, recent progress on robust

methods applied to geometric constraints such as the fundamental matrix[66], has been

able to lighten this di�culty.

The second method, commonly referred to as the optical 
ow approach [32, 30, 5], is

based on the computation of the velocity �eld of brightness patterns in the image plane.

As opposed to the feature-based approach, the optical 
ow does not require a matching

process, but su�ers from the generalized aperture problem[3, 8, 35]. According to Black

and Anandan[8], most of the current techniques for the estimation of the optical 
ow are

based on two image motion constraints: data conservation and spatial coherence. The

�rst arises from the observation that the intensity patterns of the surfaces of the world

objects remain constant over time, although their image position may change. The second

assumes that the surfaces have spatial extent, thus making neighboring pixels likely to

belong to the same surface. This is usually implemented in the form of a smoothness

constraint on the motion of spatially close pixels.

The generalized aperture problem refers to the dilemma of choosing the appropriate

size for the area of analysis (aperture) R. In order for the motion estimation to present

some insensivity to noise and be constrained[8], a large R is desirable. However, the larger

the aperture is, the less realistic the data conservation and the spatial coherence become.

One other problem with optical 
ow techniques lies on the fact that it is only possible to

determine the 
ow in the direction of the image brightness gradient. The optical 
ow along

this direction is therefore perpendicular to the image contour, hence called normal 
ow.

The 
ow component along the contour cannot be established directly from the brightness

patterns, without resorting to additional constraints such as smoothness or second order

derivatives. This condition is referred to as the aperture problem [32, 30, 5].

For some applications, the choice of the approach, either feature-based or optical 
ow,

is not trivial. This statement is supported by the large amount of research in the last few

years using the two approaches as a starting point for higher level image interpretation.

Optical 
ow has successfully been used on tasks such as egomotion estimation[58, 57, 59],

motion segmentation[3] and image registration[54, 64], whereas feature-based approaches

have proven adequate for 3-D reconstruction[17, 44] and image registration as well[76].

3.2 Robust Model Estimation

In this section we will present some established methods for model-based estimation with

emphasis on robust techniques. The methods are drawn from the principal categories of

estimators: M-estimators, case-deletion methods and random sampling. The application

and comparison of these methods in the context of the fundamental matrix estimation has

been investigated by Torr et al. in [66], where an in-depth analysis and discussion can be
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found.

Model estimation (in the sense of model �tting to noisy data) is employed in computer

vision on a large variety of tasks. The most commonly used method is the least-squares

mainly due to the ease of implementation and fast computation. The least-squares is

optimal when the underlying error distribution of the data is Gaussian[47]. However, in

many applications the data are not only noisy, but it also contains outliers, i.e. data in

gross disagreement with the assumed model. Under a least-square framework, outliers

can distort the �tting process to the point of making the �tted parameter arbitrary. As

pointed out in [66], this can be particularly severe if the non-outlying data are degenerate

or near-degenerate with respect to the expected model. In such case outliers can mask the

degeneracy, making it hard to evaluate the adequacy of the postulated model.

According to Meer et al.[47], there are three concepts usually employed in evaluation

a robust regression method: the relative e�ciency, the breakdown point and the time

complexity. The relative e�ciency is de�ned as the ratio between the lowest achievable

variance for the estimated parameters1 and the actual variance provided by given method.

The breakdown point is the smallest proportion of outliers that can force the estimated

parameters outside an arbitrary range. For the least-squares estimation, the breakdown

point is 0 since just one outlier is required for corrupting the estimated values. The time

complexity can be de�ned from the number of arithmetic operations performed by the

algorithm.

3.2.1 Orthogonal and Iterative Re-weighted Least-Squares

In Section 2.4.3, a simple least-squares procedure was presented, for the estimation of

the fundamental matrix. The singular value decomposition is used for solving a set of

equations for the elements of the F matrix,

min
f
kHfk constrained to kfk = 1

One can consider this problem as �tting an hyperplane

f = (F11; F12; F13; F21; F22; F23; F31; F32; F33)

to a set of n points hi 2 IR9, where hTi = (uiu
0

i; viu
0

i; u
0

i; uiv
0

i; viv
0

i; v
0

i; ui; vi; 1) is a vector

containing the coordinates of a pair of matched points ui=(ui; vi; 1) and u0i = (u0i; v
0

i; 1).

The hyperplane can be approximated by the minimum of the sum of the Euclidean dis-

tances of the points to the plane[52],

min
f

nX
i=1

�
hTi f

�2
= min

f

nX
i=1

r2i constrained to kfk = 1 (3.1)

1This can be given by the Cramer-Rao bound[39], although there are other lower bounds.
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The distances are taken perpendicularly to the plane. Therefore, this method is called

orthogonal least squares[52]. If the noise on all elements of hi is Gaussian, independent

and has equal variance, then the equation (3.1) represents a maximum likelihood estimator

(MLE) for the hyperplane. Since this is not the case (due to the structure of hi) this

estimator is an approximation of the MLE.

Bearing in mind the way the fundamental matrix relates the point correspondences,

given by equation (2.6), it has been suggested in [66, 43] that we should consider its

estimation as �tting the quadric surface represented by F to features on the 4-dimensional

image coordinate space2, rather than an 9-dimensional hyperplane �tting. In fact, the

orthogonal least squares will produce a sub-optimal estimate of F , because the residuals

ri do not follow a Gaussian distribution, even if the image points do. These residuals are

usually referred as the algebraic distances, as opposed to the geometric distances measured

perpendicularly to the quadric surface in the image coordinate space.

As discussed in [36], it has been shown that the maximum likelihood quadratic curve

is the one that minimizes the sum of the squares of the geometric distances. However

there is no closed form solution for a general case, due to the fact that the perpendicular

distance segments are not unique nor parallel. Weng et al.[73, 72] have adopt a �rst order

approximation to the distance for the computation of the fundamental matrix, in the form

fmin = min
f

nX
i=1

�
wSih

T
i f
�2

This method requires the computation of the weights wSi corresponding to the inverse

of the �rst order approximation of the standard deviation of the residual. An iterative

procedure is thus required for the estimation of both f and wSi . Slightly modi�ed versions

of this method have been proposed by Kanatani[37] and Torr et al.[66].

A di�erent iterative method was put forward by Luong et al.[42]. Instead of the

weighted residuals, the error criterion to be minimized is the distance of each image point

to the corresponding epipolar line. Unlike the previous method, the points on the two

images do not play a symmetric role under this criterion. Therefore the minimization

must account for the distances on both images for each pair of correspondences. The

criterion is

min
F

nX
i=1

�
d2
�
u0i; Fui

�
+ d2

�
ui; F

Tu0i

��
(3.2)

where d (�; �) represents the point to line orthogonal distance. It is assumed that point

localization errors on the image have a Gaussian distribution. As noted in [66], this

2also called the cyclopean retina[42].
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minimization is equivalent to the minimization of the algebraic residuals weighted by

wEi
=

0@ 1

r2ui + r2vi
+

1

r2
u0

i

+ r2
v0

i

1A2

being rui ; rvi; ru0

i
; rv0

i
the corresponding partial derivatives of ri.

This epipolar distance method will be used on chapter 5, blended with a parameter-

ization for F using 7 independent parameters, and yielding good results. A comparison

with the orthogonal least squares is also presented. A more extensive comparison covering

the three methods, is given in [65] where it is shown that the two iterative methods have

similar performance, and are superior to the orthogonal, unweighted. It is worth noticing

that these methods make assumptions on the error distributions and perform poorly in

the presence of outliers.

3.2.2 M-Estimators and Case Deletion

The M-estimators are a class of robust methods with generalized use. In computer vision,

M-estimators and have been used by Olsen[50] and Deriche et al.[11] for epipolar geometry

estimation, and by Bober and Kittler[9] and Black and Anandan[8] for robust estimation

of the optical 
ow. These estimators minimize
nX
i=1

� (ri) (3.3)

where � (ri) is a positive-de�nite function of the residuals [47] with a single minimum at

ri = 0. Several of these functions have been proposed in the literature in order to reduce

the in
uence of large residual in the estimated �t, such as square error for small residual

and linear for large residuals. Equation (3.3) reduces to the usual least-squares if we

consider � (ri) = r2i . Although the M-estimators are robust for various error distributions,

these methods present a breakdown point of less than 1= (p� 1) where p is the number

of parameters to be estimated[47]. The M-estimators perform poorly in the presence of

outliers, when compared with the sampling techniques presented on the next subsection

which attain a breakdown point of 0:5.

Case deletion methods are based on the analysis of the e�ects of removing data in the

estimation process [65, 66, 47]. More speci�cally, these methods aim at identifying and

removing the data points whose in
uence on the estimation suggest them to be outliers.

We will not give a comprehensive explanation on this category of methods, which can be

found in [66], but just present some important topics for the sake of completeness of this

chapter. By extending the work of Cook and Weisberg, Torr[66] has derived a formula for

the in
uence of a data point in the case of orthogonal regression and used it for the F

matrix estimation. This in
uence is a scalar measure Ti(L) in the form

Ti(L) = (fi � f)T L (fi � f) (3.4)
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where L is the positive de�nite, symmetric (p�p)moment matrix L = HTH , and f , fi are

the least-squares estimates of the parameter vector, taken with all data points and with

all data points except the ith element, respectively. It is shown that Ti can be written as

the product of the squared residual of the ith data point by a leverage factor li, scaled by

the variance �2 of the data noise, assumed Gaussian.

Ti(L) =
r2i
�2

li (3.5)

As reported by Torr, the leverage factor is a measure of the e�ect of each data point,

being large for outliers even if the outliers residuals are small. The high leverage points

should be removed and the parameters re-estimated iteratively, until the data falls bellow

a �2 threshold determined by �. Experimental results[66] indicate a superior convergence

and accuracy of case deletion diagnostics when compared to the M-estimators, due to the

fact that the latter use all the data points in the estimation whereas the former completely

discard some outliers. The main disadvantage of case deletion methods is the sensitivity

to the variance �2 assumed, as they required a good estimation of �2.

3.2.3 Random Sampling Algorithms

A non-linear minimization method was proposed by Rousseeuw, called the least-median-

of-squares [52] (LMedS). The parameters are estimated by solving

minmed
i
r2i

As pointed out in [47], this minimization problem cannot be reduced to a least-squares

based solution, unlike the M-estimators. The minimization on the space of all possible

solutions is usually impracticable. As an example, if the LMedS is used for the estimation

of the fundamental matrix, and 8 correspondence sets are used for model instantiantion

from a population of 100, the number of combinations is

100!

92! 8!
� 1:861� 1011

which is too large. Therefore it is common practice to use a Monte Carlo technique and

analyze only randomly sampled subsets of points. The number of samples to be performed

may be chosen as to insure a high probability3 of selecting an outlier-free subset. The

expression for this probability Pf is

Pf = 1� (1� (1� ")p)m (3.6)

for m samples of size p, taken from a data set where the fraction of outliers is ". From

this expression, it can easily be seen that the number of samples is not directly linked to

3tipically 95%
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the absolute number of outliers, but just with its proportion. Clearly, this is also true for

the time complexity of the sampling algorithm. The expression also implies that the less

data point are used for instantiating the model, the less samples will be required for the

same Pf . The random sampling greatly reduces the time complexity of the basic LMedS,

from O(np+1 logn) to O(nm logn)[47], while keeping the breakdown point of 0:5. In spite

of the high breakdown point, the relative e�ciency of the LMedS method is low when

Gaussian noise is present in addition to outliers. Therefore an association of LMedS with

weighted least-squares which has high Gaussian e�ciency, can be used, as proposed by

Rousseeuw[52].

Another robust estimator, based on random sampling, is the Random Sampling Con-

sensus (RANSAC). It was proposed by Fishler and Bolles[18] in 1981, and originally used

in the context of computer vision, for automated cartography. The RANSAC is based on

the following paradigm. The estimation is performed on a subset of data points sampled

from all the available points, such that the subset has the minimum number of elements

required for instantiating the model. All the data is then evaluated according to the in-

stantiated model. For a given error threshold, the points are classi�ed as being part of the

consensus group of the model if they are within the threshold. This process is repeated

until a su�ciently large consensus group is found (or eventually a maximum number of

iterations is reached). The �nal estimation is performed on the largest consensus group

found. The RANSAC requires therefore, the speci�cation of three algorithm parameters:

the error threshold for evaluating the compatibility with the model, an estimate of the

cardinality consensus set for checking if a su�ciently supported model has been found,

and a maximum number of samples to try.

Although developed independently, LMedS and RANSAC are based on similar con-

cepts. According to Meer et al.[47], the main di�erence lies on the fact that the LMedS

generates the error measure during estimation, while RANSAC requires it beforehand. An

in depth comparison of LMedS and RANSAC can be found in [47]. The two methods are

also compared in [66], for the estimation of the fundamental matrix.

3.2.4 A Two-Step Variant of LMedS

Several variants to these random sampling algorithms have been proposed in the literature,

in the context of Computer Vision. As an example we can point out an "empirically

optimal algorithm" presented in [66], which combines LMedS and M-estimators.

In the work presented on this thesis, we have used a two-step variant of LMedS, which

we will refer to as MEDSERE4. It exhibits a similar breakdown point but requires less

random sampling in order to achieve the same degree of outlier rejection. Up to this

point, no extensive testing has been performed for evaluating its relative e�ciency or

4MEDSERE stands for MEDian SEt REduction.
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precise breakdown point. However, the results presented on chapter 5 testify its good

performance, when compared to LMedS.

The MEDSERE algorithm comprises two phases of random sampling LMedS. After

the �rst phase, the data set is reduced by selecting the best data points in the sense of the

chosen cost function. Next, the reduced data undergoes another random sampling LMedS

phase. For the computation of the fundamental matrix the algorithm is illustrated by the

following operations :

1. Randomly sample the complete set of matched points Stotal for a set of p pairs.

2. Estimate the F matrix and compute the median of the point-to-epipolar line distance

for Stotal,

med
i

�
d2
�
u0i; Fui

�
+ d2

�
ui; F

Tu0i

��
where d (�; �) is the orthogonal distance. If the median is below a given threshold dT ,

return F and exit.

3. Repeat 1. and 2. for a speci�ed number of samples m1.

4. Select the F matrix for which the minimal median was found, and sort the matched

points by their point- to-epipolar line distance, using F .

5. Create the set Sbest with the elements of Stotal whose distance is below the median.

6. Repeat 1. and 2. on Sbest for a m2 number of samples.

7. Return the minimal median matrix found.

The required parameters are the number of samplings on each part m1 and m2, and

the median threshold. Since the �rst two directly determine the number of operations,

they can be de�ned by processing time constraints.



Chapter 4

Application to Video Mosaics

In this chapter we deal with the problem of creating mosaics from a sequence of video

images. The creation of video mosaics is accomplished in two stages: registration and

rendering. On the registration stage we estimate the parameters of point correspondence

between frames, then �t individual frames to a global model of the sequence. The rendering

stage deals with the creation of a single mosaic, by applying a temporal operator over the

registered and aligned images.

This chapter is organized as follows. Section 4.1 describes the selection of features,

namely image points with high intensity variation in several directions. These points

usually correspond to object corners or highly textured surfaces, and allow e�cient cor-

respondence �nding. The matching procedure is presented on section 4.2. Section 4.3

describes the estimation of the image registration parameters. The following section deals

with image merging, namely creating a single mosaic from a collection of images. Finally,

section 4.5 presents several di�erent examples of video mosaics along with a discussion on

their applications.

4.1 Feature selection

The work presented on this thesis evolves around the analysis of point projections and their

correspondence between image frames. In order to improve the correspondence �nding, a

number of points are selected corresponding to image corners or highly textured patches.

Image edges are de�ned in the literature as sets of contiguous points of high intensity

variation. Corner pixels can be de�ned as the junction points of two or more edge lines.

Corners are second order entities of a surface, and can be detected by using second order

derivatives. However, di�erentiation is a very noise sensitive operation. A simple example

illustrating noise ampli�cation is given in [15], which points the fact that di�erentiation

is an ill-posed problem. An ill-posed problem [7] refers to the condition of non existence

31



32 CHAPTER 4. APPLICATION TO VIDEO MOSAICS

of solution, or non-uniqueness, or the solution not depending continuously on the data.

This last condition a�ects the robustness to noise and numerical stability of the solution.

The methods for converting ill-posed problems into well-posed ones, usually resort to

regularization, imposing additional constraints, namely on the smoothness of the data.

The selection of image points is based on a simpli�ed version of the well-known corner

detector proposed by Harris and Stephens[22]. This detector �nds corners in step edges

by using only �rst order image derivative approximations. Regularization is performed

by smoothing the image using a 2-D Gaussian �lter, before edge extraction. A trade o�

condition is therefore created by the �lter mask size. Large masks promote better noise

exclusion but reduce the accuracy of the corner localization. Conversely, small masks

achieve higher accuracy at the cost of higher noise sensitivity.

Let I(u; v) be the image intensity level at point u = (u; v). The autocorrelation

function may be de�ned as

RI(�u; �v) =
X
u;v

(I (u+ �u; v + �v)� I (u; v))2

The �rst order Taylor series expansion will be

RI(�u; �v) = [�u; �v]G (Iu; Iv) [�u; �v]
T

where Iu and Iv represent the �rst order derivatives of the intensity function and

G (Iu; Iv) =

"
I2u IuIv

IuIv I2v

#

The eigenvalues of matrix G are useful in corner detection. If an image point has high

intensity variation on adjacent pixels in all directions, then the eigenvalues of matrix G

will be both large. For this detector, the smallest eigenvalue is usually used as an indicator

of a point "cornerness".

The di�erence between the Harris corner detector and the one implemented, lies on

the fact that no Gaussian �ltering is performed on the implemented one. Instead, the

regularization is achieved by using the Sobel operator[15] when computing the �rst order

derivative approximations, and by computing the G matrix over an image area W such

that,

G (Iu; Iv) =

2664
P

(u;v)2W
I2u

P
(u;v)2W

IuIvP
(u;v)2W

IuIv
P

(u;v)2W
I2v

3775
The Sobel operator is implemented by convolving the image with two (3�3) masks, one

for each image axis direction. The derivative estimation is performed taking into account

the intensity values of the central point plus its 8-neighborhood. Figure 4.1 illustrates the
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Figure 4.1: Feature Selection: original image (left), sum of the squared derivatives (center),

smallest eigenvalue of G with features marked (right)

feature extraction process. The middle image was obtained from the original on the left,

by summing the squared derivatives for each point. On the right, one can see the image

of the smallest eigenvalues of G, for an area patch W of (3 � 3). The intensity peaks of

this 'texture' image correspond to image corners or small highly textured surfaces, and

are selected as point features.

The extracted features will be matched over two images, and used for motion estima-

tion. Since motion estimation is more noise sensitive to location errors when the features

are close to each other, it is convenient to select features not just on the basis of the

smallest eigenvalues of G, but also using some inter-feature distance criterion. Bearing

this in mind, the implemented algorithm selects the features by �nding the peaks of the

'texture' image and excluding the subsequent selection on a circular neighborhood. This

process is repeated iteratively, up to the point where no peaks above a de�ned threshold

can be found.

A comparative study on some of the most used grey level corner detectors can be found

in [13].

4.2 Matching

The �rst step towards the estimation of the image registration parameters, consists of

�nding point correspondences between images. This is referred to as the matching prob-

lem, which is considered a challenging task due to its di�culty. Contributing factors to

this di�culty include the lack of image texture, object occlusion and acquisition noise,

which are frequent in real imaging applications. Several matching algorithms have been

proposed over the last two decades, usually based on correlation techniques or dynamic

programming. For a comparative analysis of stereo matching algorithms dealing with pair

of images, refer to [2].
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In this work, a correlation-based matching procedure was implemented. It takes a list

of features selected from the �rst image I1, and tries to �nd the best match for each, over

a second image I2. The cost criterium, that drives the search on the second image, is

known in the literature as the sum of squared di�erences (SSD) [1]. For a given feature

fi = (ui; vi), it is de�ned as

SSD(x; y) =
X

(u;v)2Wi

[I1 (u; v)� I2 (u� x; v� y)]2

where Wi is an image patch around fi.

Underlying the use of the SSD is the hypothesis of image brightness constancy, where

one assumes that the brightness patterns around the features do not change signi�cantly

between images. This assumption is plausible if there is no signi�cant object pose or

light condition changes, which is often the case for time consecutive frames on sequences

acquired with short time intervals.

The SSD de�nes a mismatch energy, whose minimum has a high probability of being

the true match. To achieve the minimum, it is su�cient to maximize the cross-correlation,

c(x; y) =
X

(u;v)2Wi

I1 (u; v)I2 (u� x; v � y) (4.1)

where Wi is a rectangular area around each feature fi = (ui; vi).

Using the Cauchy-Schwartz inequality, it can easily be shown [34] that c(x; y) attains

the maximum when the feature patch coincides with some area on the second image. The

implemented matching procedure computes c(x; y) directly from the previous equation,

and searches for its peak. The peak coordinates are taken to be the displacement vector,

which relates the coordinates of the same feature on both images. An alternative to the

direct implementation of equation (4.1) is to compute the cross-correlation by means of

the Fourier transform. However this second method is only computationally less expensive

if the areas being correlated are both large, as pointed out in [34].

The assumption of large overlap of image contents between the two frames can be

used to signi�cantly reduce the computational burden of the matching. This is achieved

by limiting the search area in I2. In order to compute the appropriate limits, the two

images are cross-correlated and a global displacement vector dG is obtained. By applying

a threshold to the cross-correlation image, we can estimate a bounding box around dG,

that can be loosely interpreted as a con�dence area for the global displacement. Then,

for a given feature fi the search area on I2 is constrained to the rectangular area with the

size of the bounding box and centered on fi + dG. Figure 4.2 illustrates the procedure.

It is worth noting that image motions that cannot be described by simple translations

cause the features to be warped. This warping can severely degrade the performance of

the correlation matching if large rotation, zooming or perspective e�ects are present. A

method for dealing with this limitation is now presented.
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Figure 4.2: Search area selection: image I1(left) with selected feature, search area on

I2(center) and cross-correlation image(right)

4.2.1 Sub-pixel accuracy

In order to improve the accuracy of the matching procedure, an additional re�nement

method was implemented. The localization of the feature correspondences can be com-

puted with subpixel resolution by one of the following two methods. Let cmax be the

(integer) coordinates of the maximum of c(x; y): Firstly, the peak location of the cross-

correlation can be re-estimated by �tting a parametric surface, usually a paraboloid or a

cubic curve, to the neighborhood of cmax. The improved peak location is obtained directly

from the surface parameters. Secondly, one can use an optical 
ow technique, as discussed

in section 3.1, applied the patches around each feature. We have opted for the use of

optical 
ow estimation, for reasons that will become clear after the following explanation.

We will use a notation close to the one presented in [9]. Let us de�ne the transformed

pixel di�erence as

�
�
�!a ;u

�
= I1 (u)� I2

�
u+ du

�
�!a
��

where I1 (u) and I2
�
u+ du

�
�!a
��

are the image intensities at pixel locations u and

u+ du
�
�!a
�
, and du

�
�!a
�
is the displacement vector de�ned by the motion parameter

vector �!a . Several motion models can be considered for the displacement, ranging from

a simple translation (two parameters) to a general projective transformation (eight pa-

rameters). We have implemented a four parameter model that accounts for translation,

rotation and independent scaling along the image axes, de�ned by

du
�
�!a
�
= (a1u+ a2v + a3;�a2u+ a1v + a4)

This model is also used in [9], and was found to be a good compromise between matching

accuracy and convergence speed. The cost functional to be minimized is the sum of the
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squared pixel di�erence over the feature patch W ,

H
�
W;�!a

�
=
X
u2W

�
�
�
�!a ;u

��2
This function is well behaved on the vicinity of the minimum [9], and therefore a steepest

descent minimization method can be applied. The starting value for �!a is set to corre-

spond to pure translation given by the result of the correlation based matching procedure

described above, i.e.,
�!a0 = (a1; a2; a3; a4) = (1; 0; x; y)

As a stopping condition, the implemented method uses a criterion based on the norm

of the gradient of H and a maximum number of iterations. The resulting values for

translation components are taken to be the location of the feature correspondence. The

main advantage of using this method lies on the fact that feature rotation is accounted,

thus enabling a more accurate matching, at the expense of the use of an iterative method.

4.3 Motion Parameter Estimation

In this section we will describe a procedure for the estimation of the motion parameters

for a sequence of images. The images are processed as shown on the diagram of Figure

4.3. For each image Ik, a set of features is extracted and matched directly on the following

image Ik+1, as described in the previous sections. The result of the matching process are

two lists of coordinates of corresponding points. Due to the error prone nature of the

matching process, it is likely that a number of point correspondences will not relate to the

same 3-D point. For this reason, the next subsection is devoted to the robust estimation

of the motion parameters taking into account the existence of mismatches.

4.3.1 Frame-to-frame motion estimation

The �rst step in image registration is to �nd the motion parameters for the image mo-

tion, between consecutive frames. On the work reported on this thesis, no automatic

selection for the motion model is performed. The most appropriate model is assumed to

be known. On the following subsections, the most general planar tranformation model

(performing a collineation between planes), will be considered. For the restricted motion

models presented on Table 2.2 the following considerations and equations are also valid.

Let (k)u be a point on frame k, and (k+1)u be its correspondence on frame k + 1. If

Tk;k+1 is the planar transformation matrix relating the frames k and k + 1, then

(k)eu=Tk;k+1 (k+1)eu
and

(k+1)eu=T�1k;k+1
(k)eu
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Figure 4.3: Block diagram of the sequence of operations on the images Ik for the motion

parameter estimation. The output is the set of planar transformation matrices Tk;k+1.

A robust estimation method is required for the estimation of Tk;k+1. For this, the

MEDSERE algorithm was used, but with a di�erent criterion from the one presented in

section 3.2.4. Let (k)ui be the location of the ith feature extracted from image Ik, and

matched with (k+1)u on image Ik+1. The criterion to be minimized is the median of sum

of the square distances,

med
i

�
d2
�
(k)ui; Tk;k+1

(k+1)ui
�
+ d2

�
(k+1)ui; T

�1
k;k+1

(k)u
��

(4.2)

where d (�; �) stands for the point-to-point Euclidean distance.

Relating the frames of the image sequence

The transformations between non-contiguous frames can be computed by sequentially mul-

tiplying the transformation matrices of the in-between frames. The planar transformation

relating the frame k and l, such that k < l is

Tk;l =
Yl�1

i=k
Ti;i+1

4.3.2 Global registration

After estimating the frame-to-frame motion parameters, these parameters are cascaded

together to form a global model. The global model takes the form of a global registration,

where all frames are mapped into a common, arbitrarily chosen, reference frame. With
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t

u

v

Figure 4.4: Three-dimensional space-time volume formed by the globally aligned frames.

it, each individual image frame is mapped to the same frame as any of the others. Let

TRef;1 be the transformation matrix relating the frames of the chosen reference and the

�rst image frame. The global registration is de�ned by the set of transformation matrices

fTRef;k : k = 1 : : :Ng, where for 2 � k � N ,

TRef;k = TRef;1
Yk�1

i=1
Ti;i+1

The globally aligned frames can be considered to form a three-dimensional space-time

continuum, as depicted on Figure 4.4. The spacial dimensions are the image axes u and

v, and the time evolves along the t axis. The main particularity of this volume is that if

the images are captured so that there is no parallax, then a vector perpendicular to the

image planes will correspond to the same world point on each image.

4.4 Mosaic Rendering

After global registration, the following step consists in merging the images. As pointed in

[46], there are several issues to consider in the mosaic rendering such as the choice of the

reference frame, which frames to be used, the temporal operator to be applied and how

moving objects on the scene will be handled. We will now brie
y discuss these issues and

present examples illustrating the e�ects of some of the choices.

As referred above, the global registration establishes the mappings between each frame

and an arbitrary frame. For the creation of the mosaic an absolute frame has to be chosen,

to which the images will be mapped. The choice of the reference frame can drastically

a�ect the appearance of the resulting mosaic. In most of the mosaics presented on this

thesis, the reference frame is the one of the �rst image. However, on some applications a

useful reference frame can be set, which may not correspond to any of the images. Figure

4.5 depicts two mosaics created from a soccer game sequence of 43 images, using the

temporal median �ltering, that will be explained further on. The top image was rendered
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using the �rst frame as the reference. On the lower, a reference frame was selected which

allows a better perception of the playing �eld. This frame was set by computing the

planar transformation that relates the four corners of the goal area to a vertically aligned

rectangle whose sides are proportional to the ones of a real playing �eld.

Some applications such as real-time mosaicing impose important constraints on the

computational cost of mosaic creation. Therefore, some of the acquired images may be dis-

carded before the mosaic rendering process. The discarding criteria is clearly application-

dependent. For instances, if the mosaic being created depicts an aerial scene captured by

a moving plane, then the frames can be selected such that the amount of image overlap is

kept roughly constant. Furthermore, if the frame-to-frame motion estimation is performed

while the images are being captured, then the selection process can be done on the 
y,

thus resulting in memory saving.

It is to expect that some of the selected frames will overlap. On ovelapping regions

there are more multiple contributions for a single point on the output image, and some

method has to be established in order to determine the unique intensity value that will

be used. As we have seen, the contributions for the same output point can be thought

of as lying on a line which is parallel to the time axis, in the space-time continuum of

Figure 4.4. Therefore, the referred method operates on the time domain, and is thus

called a temporal operator. Some of the commonly used methods are the use-�rst, use-

last, mean and median. The �rst two use only a single value from the contributions

vector, respectively the �rst and the last entries of the timely ordered vector. Intuitively,

the rendering of a mosaic using the use-last method can thought of as placing the frames

on top of each other in the order that the images were captured. Each point of the �nal

mosaic contains the pixel value of the last image that contributed to that point.

The mean operator takes the average over all the point contributions. It is therefore

e�ective in removing temporal noise inherent in video. If the sequence contains moving

objects on a static background, they will appear motion blurred, in a similar way to

a long exposure photography. The median operator also removes temporal noise but

is particularly e�ective in removing transient data, such as fast moving objects whose

intensity patterns are stationary for less than half the frames. In a informal way, one

can consider that moving objects are treated as outliers, because their intensity values

are forced out of the central region of the intensity-ordered vector of contributions, which

corresponds to the prevailing background.

The e�ects of the four operators described can be seen on Figure 4.6. The top row

contains two of the original frames of an aerial sequence taken by a high altitude plane


ying over the Arlington district, in Washington. The frames have a superimposed time-

stamp and a horizontally shifted lower scan-line. Their intensity patterns do not follow the

dominant upwards image motion, therefore allowing for the di�erences on the operators
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Figure 4.5: Soccer �eld mosaic constructed from a TV sequence, using the median temporal

�ltering. The rendering of the top image was performed using the �rst image as the

reference frame. For the lower image, an usefull reference frame was chosen, corresponding

to none of the image frames.
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results to became noticeable. The middle row contains the use-�rst (left) and use-last

(right) methods. On the lower row are the mean (left) and median (right). Note the time-

stamp which is faded but visible on the central region of the left mosaic, as opposed to the

median mosaic where it completely disappears. The maximum number of superimposed

frames is 9, in the central region.

Other temporal operator have been used on the literature, such as the mode [46] and

the weighted median [64, 46]. The weighted median is a re�nement over the simple median,

in order to account with the contributions from frames taken with di�erent zoom settings.

The higher the zoom of a frame, the higher is the resolution of its contribution. Therefore,

in order to make full use of the available resolution, larger weights are associated with

high zoom frames.

4.4.1 Direct mosaic registration

So far, we have described the mosaic creation process divided into two major sequential

steps: modelling and rendering. Now we will present an alternative method in which

modelling and mosaic rendering are accomplished simultaneously, therefore better suited

for real-time mosaic creation. However, our main motivation for the alternative scheme is

not real-time applications, but quality enhancement in motion estimation.

The frame-to-frame motion estimation procedure allows the construction of mosaics

by the analysis of consecutive pairs of frames. In the global registration step, the frame-

to-mosaic transformation for the last frame is computed by sequentially cascading all the

previous inter-frame transformations. It is easy to realize that, small errors on the motion

estimation due to the limited matching accuracy and image resolution, will accumulate

and produce noticeable misalignment from the �rst to the last frame. This is notorious

on cycled sequences, where the camera returns to previously captured parts of the scene.

Let us now consider an image sequence with a large number of overlapping frames. An

explicit way to exploit this condition is to match and estimate the transformation parame-

ters of each new image with the mosaic constructed with the all the previous ones. Figure

4.7 illustrates the required operations. A major drawback of this approach lies on the

fact that great care has to be taken in estimating the correct motion parameters. Failling

to do so will result in creating a mosaic with 
aws, in which the features are spacially

inconsistent with the next frame being registered. Since the robust matching selection

assumes feature location consistency under the chosen motion model, this condition will

lead to poor results.

In order to test the e�ectiveness of the scheme, a test sequence of 67 images of a road

map was used. It was captured at close range by a translating and rotating camera, thus

inducing noticeable perspective distortion. The map was scanned following an inverted

S-shape, starting from the map upper left corner and �nishing on the diagonally opposite
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Temporal operators: First (a) and last (b) frames of the original aerial se-

quence, use-�rst method (c), use-last (d), mean (e) and median (f).
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Figure 4.7: Block diagram of the sequence of operations for the direct mosaic registration

procedure.

corner. Figure 4.8 shows two mosaics of the same sequence, constructed using the two

alternative methods for motion estimation of the planar transformation model. The top

image was created using the frame-to-frame motion estimation. The accumulation of small

errors on the transformations has visible e�ects, which can be seen on the left edge and on

the lower right corner of the map. Conversely, direct mosaic registration was used for the

bottom image. In this case, no error accumulation e�ects are noticeable. However, the

discontinuities on the lower edge of the map indicate some image misalignement. This is

probably due to inconsistencies on the center area of the map, where the bottom row of

images were registered.

4.5 Results and Applications

This section is devoted to the presentation of some results in video mosaicing obtained

with the techniques described above. Several test sequences were used, containing various

type of scenes, ranging from simple static planar scenes to sequences containing moving

objects and noticeable depth variations. Sample frames from the original sequences are

given in appendix C.
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Figure 4.8: Example of direct mosaic registration. The top mosaic was created using

the frame-to-frame motion estimation whereas direct mosaic registration was used for the

lower one.
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Aerial image composition

Examples of early use of image mosaicing are on aerial and satellite imaging applications

[38]. The composition of images taken on a plane by a camera facing down is alleviated

because of the minimal perspective distortion. The motion model can be as simple as

the two parameter translation model, for an aeroplane with constant heading. However a

more adequate motion model for aerial sequences should also account for rotation. The

mosaic on Figures 4.9 and 4.10 were created from a sequence of aerial pictures taken by

a US plane on high altitude surveillance operations. The original frames are 160 � 120

pixels and exhibit moderate image quality due to the fact that they where extracted from

a highly compressed MPEG stream.

No information is available on the most adequate motion model. For this reason four

di�erent motion models were used, namely translation plus zoom, semi-rigid, a�ne and

full planar. However, considering the fact that the camera appears to be facing down

(thus making the image plane parallel to the ground plane), and that there is a slight

rotation near the middle of the sequence, it can be argued that the semi-rigid is the most

appropriate. This model is the simplest that accounts for rotation. The importance of the

choice of the most appropriate model is apparent on Figure 4.10. The use of a too general

model (right) allows for small registration errors to produce poor results.The semi-rigid

model was used for the creation of the mosaic on Figure 4.11. Again, the test images

where captured by a high altitude plane, 
ying over an urban scenario.

Ocean Exploration

Another important area for video mosaicing is ocean 
oor exploration. Here, mosaics

can be useful for many applications such as site exploration, navigation and wreckage

visualization [45]. Furthermore, due to the underwater limited visual range, registration

of close range images is often the only solution for obtaining large visual areas of the 
oor.

Research on automatic mosaic creation for underwater applications has been conducted

in the last few years. In [27] a setup is proposed for creating mosaics by taking images

at locations whose coordinates are known with high precision. Image merging can thus

be performed without image analysis, because the frame-to-frame motion parameters can

be computed directly from the camera positions. Marks et al. [45] have developed a

system for ocean 
oor mosaic creation in real-time. In this work, the authors use the

four-parameter semi-rigid motion model, and assume rotation and zooming on the image

frames to be small. This allows fast processing algorithms, but restricts the scope of

applications to the case of a images taken by a camera whose retinal plane is parallel to

the ocean 
oor.

An example of a sea bed mosaic is given in Figure 4.12. It was composed with 101



46 CHAPTER 4. APPLICATION TO VIDEO MOSAICS

Figure 4.9: Aerial sequence example: translation and zoom motion model(left), and semi-

rigid motion model (right).
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Figure 4.10: Aerial sequence example: a�ne motion model(left), and full planar motion

model (right).
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Figure 4.11: Aerial sequence example using the semi-rigid motion model.
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frames, registered under the semi-rigid model and rendered with the median operator. The

original sequence was obtained by a manually controlled underwater vehicle, and depicts

a man-made construction. This scene is not planar nor static. The camera is moving

along a fracture inside which some rocks can be seen. In the fracture there are noticeable

depth variations as opposed to the almost planar surrounding sea bed. Even so, the sea

bed is mostly covered with algae and weeds, which provide good features for the matching

process, but violate the underlying planar scene assumption. Another assumption violation

is due to some moving �sh. Figures 4.13 (a) and (b) show two sub-mosaics in which the

motion of the �sh can be clearly noticed. Although constructed from the same sequence,

these sub-mosaics were rendered using the use-last temporal operator.

The mosaic in Figure 4.12 is a good example of the performance of the implemented

matching and registration methods. Even with notorious violations of the assumed model,

the algorithm can still �nd the motion parameters as to create a mosaic with small mis-

alignments to the human eye.

Video coding and enhancement

Video mosaics can be very useful in the visualization of video sequences, but can also be

used as an e�cient representation, on applications such as video compression, enhancement

and search. Recent work [33, 62] has addressed the idea of using mosaics for complete

scene representation as to fully recover the video sequence from a dynamic mosaic. This

dynamic mosaic is an extension to the usual static mosaic, comprising three elements:

� a (static) background mosaic, just like the ones presented in this section. Static

mosaics have also been called salient stills [64, 46].

� the set of frame transformations relating each frame to the mosaic frame.

� the image residuals containing the brightness di�erences of each frame to background

mosaic.

Further details on mosaic classi�cation can be found in [33], where a detailed taxonomy

is proposed in the context of video applications.

High compression video coding can be attained by creating and coding the dynamic

mosaic. Most video sequences tend to have a large amount of image overlap, and much of

the image redundancy is due to a static background. In such cases, the dynamic mosaic

residuals are small, when compared to the residuals between consecutive frames, even if

motion compensation is performed[33]. Mosaic-based video coding requires, however, the

whole sequence to be available for the background estimation. For this reason it is suited

for o�-line coding and storage.
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Figure 4.12: Sea bed mosaic example. The images were registered using the semi-rigid

motion model and rendered using the median operator.
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Figure 4.13: Example of mosaic creation where the static scene assumption is violated by

the presence of moving �sh.

Although no residual estimation has been implemented in this thesis, we have made

used of the knowledge of the global registration model of section 4.3.2. The frame regis-

tration parameters together with the background mosaic allow the video sequence to be

resynthesize using di�erent camera motion, or no motion at all. An example, with no cam-

era motion, is given on Figure 4.14. The background, rendered using the median operator,

is shown in Figure 4.5. A new sequence was created with the original frames warped and

superimposed on the background. The resulting e�ect is a better understanding of the

player locations as compared to the original sequence, since the captured ground mark-

ings are visible from the �rst to the last image. Another use of this technique is in image

stabilization for video sequences captured with a shaky camera. In this case the image

motion can be low-pass �ltered, removing the unwanted trembling. An interesting visual

e�ect can also be obtained for sequences with moving objects. Selected frames from the

sequence can be emphasized in the rendering stage of the mosaic creation in order to make

the position of the moving objects notorious. Therefore, the resulting mosaic may allow a

better perception of the object movement in the sequence. A similar e�ect can be acheived

in traditional photography by making several exposures on the same photographic plate.

This is commonly referred to as a cronophotography [46]. Figure 4.15 presents an example

of this. The original sequence depicts a stunt motobike driver jumping from a platform

and getting closer to the camera. The camera follows the driver, presumably from the

same point of view, without inducing noticeable image rotation. The background for the

sequence of 56 images was hence estimated using the image translation and zoom motion

model (top). The cronophotography (bottom) was created by computing the intensity dif-

ferences of three individual registered frames. The three di�erence images are then added

to the background.
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Figure 4.14: Static camera example: Frames 1 and 32 of a new sequence created with

the original frames of the soccer sequence warped and superimposed on the median back-

ground.
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Figure 4.15: Cronophotography example: for a sequence of 56 images, the median back-

ground was estimated (top). Three selected frames are used for the creation of the

cronophotography (bottom), allowing the perception of the bike's motion.
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Panoramic views

An intuititive use of video mosaics is in the creation of panoramic images. Here we refer

to panoramic images or panoramas as stills of wide �eld-of-view, which surpass the human

eyesight beyond the boundary of peripheral vision. These images allow a rich perception of

the surrounding space because they depict the environment in several directions. A simple

setup for panoramic acquisition using conventional photography consists in a photo camera

rotation around the vertical axis. This rotation is synchronized with the �lm movement

across a narrow vertical slit creating a scanning e�ect. Commercial cameras are available,

such as the Globuscope, which allows a horizontal �eld-of-view of more than 360 degrees.

Video mosaicing can easily be applied to the creation of panoramic imaging, provided that

a set of overlapping images is captured from the same view-point.

As applications for panoramas, we can point out scenic representations for outdoors

environments (such as landscapes) or the recreation of indoor environments for virtual

reality modelling. We will now provide examples for both. The panorama of Figure 4.16

was created from a sequence of 90 images captured by a hand held camcorder. For the

image registration a simple motion model accounting just for translation and zoom was

used. It depicts a landscape of Serra da Peneda in the north part of Portugal. The

camera followed the hill tops inducing vertical motion, while panning for more than 360

degrees. In fact, the regions on the sides of the mosaic overlap by approximately 65

degrees. Conversely, an indoor scene is presented in Figure 4.17, describing the interior of

the Vision Laboratory at the Institute for Systems and Robotics in Lisbon. In this case the

camera was set atop a tripod and rotated around the vertical axis. The residual vertical

motion was removed by zeroing the corresponding component on the motion parameters

before the mosaic rendering. By combining selected portions of the mosaic with a virtual

reality model of the laboratory1 comprising six vertical walls, new views of the room can

be created. Three of such views are shown in Figure 4.18. Although not entirely realistic,

this example illustrates the application of mosaics as a way of providing real texture to

virtual environments.

Panoramic representations for robot navigation

Mosaicing techniques can be valuable for robot navigation, as a way of providing visual

maps for robot navigation. We will �nish this chapter by presenting an example where

mosaicing and image registration can be used by a robot in order to locate and orientate

itself.

The mosaic of Figure 4.19 was created from a sequence of 45 images captured by a cam-

1This model was created using the VRML 2.0 modelling language. The author kindly thanks Etienne

Grossman for the programming.
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Figure 4.16: Panoramic mosaic example: Outdoor scene of a landscape in Serra da Peneda.

The mosaic was created using 90 images.
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Figure 4.17: Panoramic mosaic example: Indoor scene of the computer vision lab created

using 83 images.
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Figure 4.18: Three synthetic views generated with a virtual reality model.
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Figure 4.19: Indoor wall mosaic, used for robot localization during navigation.

era on a mobile platform, while moving along a corridor wall. During image acquisition,

the platform kept approximately the same heading and distance to the wall. Therefore, it

allowed for the simplest motion model - image translation - to be used during the image

registration step. A second set of images, depicting a smaller area of the same corridor,

was captured afterwards by the same setup. In this second travelling, the platform was

allowed to change both its heading and its distance to the wall. Since the image plane is no

longer parallel to the corridor wall, some perspective distortion is thus induced. Therefore,

an appropriate motion model for registering these images on the mosaic is the full planar

transformation model. Figure 4.21 shows the central part of the corridor mosaic, with the

superimposed frame outlines of 5 images.

A more suitable motion model can be devised by taking into account some geometric

constraints arising from the camera setup. Two of these constraints are the constant height

to the 
oor and the single degree of freedom for the platform rotation. Furthermore,

this constrained model can be put in the form of a function of some useful navigation

parameters, such as the distance of the optical center to the corridor wall. In the example

presented here, the following parameterization for the planar transformation matrix was

used:

Timage;mosaic =

2664
fkuc� � u0 s� 0 fku (s�d� ue0c�) + u0 (ue0s� + s�d)

�v0s� fkv �fkvve0 + v0 (ue0s� + s�d)

�s� 0 ue0s� + s�d

3775
c� = cos(�)

s� = sin(�)

where d is the perpendicular distance of the optical center to the corridor wall, � is the

angle between the camera optical axis and the normal to the wall, and (ue0; ve0) are the
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Figure 4.20: Useful parameters for navigation: perpendicular distance to the wall d, angle

between the camera optical and the normal to the wall, �, and the distance to the left side

of the mosaic, ue0.

Frame d (meters) � (deg) ue0 (meters)

1 0.9931 -3.26 2.6182

2 0.9370 -6.16 2.2819

3 0.8874 -7.14 1.9744

4 0.8136 -11.73 1.6743

5 0.7092 -17.56 1.3031

Table 4.1: Estimated parameters for navigation.

coordinates of the perpendicular projection of the optical center on the wall (Figure 4.20).

The remaining parameters are the camera intrinsic parameters, as described in section 2.2.

Due to the non-linearity of this parameterization, the linear computation of the planar

transformation using the SVD is no longer possible. Therefore an iterative minimization

procedure, the Downhill Simplex method [51], was used to estimate d, �, and (ue0; ve0).

The results for a 5 image sequence are presented on table 4.1. Figure 4.22 shows the

frame outlines for the constrained model. The platform trajectory can be recovered in

straightfoward manner and is shown in Figure 4.23.
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Figure 4.21: Corridor mosaic with superimposed frame outlines for 5 images, registered

using the full planar motion model.

Figure 4.22: Corridor mosaic with superimposed frame outlines for 5 images, registered

using the constrained motion model.

Figure 4.23: Camera trajectory reconstruction. The camera focal point and optical axis

are indicated by the circles and the small lines, respectively.



Chapter 5

Application to 3-D Reconstruction

This chapter presents an application of robust techniques to the estimation of the epipolar

geometry, and to 3-D structure recovery.

It is organized as follows. Section 5.1 describes two distinct minimization criteria

for the computation of the fundamental matrix, namely linear least-squares, and a non-

linear criterion based on the distance of each point to the corresponding epipolar line.

In section 5.2, two di�erent parameterizations, suited for the non-linear criterion, are

discussed. An experimental comparison is undertaken in section 5.3 dealing separately

with localization errors and mismatches. Some robust techniques discussed in chapter

3 have been implemented and compared. These are RANSAC, LMedS, MEDSERE and

two methods based on case deletion diagnostics. The last section of the chapter presents

examples of Euclidean reconstruction with both synthetic and real images. The e�ect of

image correction is also addressed.

5.1 Minimization Criteria for the Fundamental Matrix

5.1.1 Linear Criterion

In section 2.4.3 we have presented an estimation criterion for the fundamental matrix,

which is a direct use of the eight point algorithm introduced by Longuet-Higgins[41]. For

a set of point correspondences ui = (ui; vi; 1) and u
0

i = (u0i; v
0

i; 1), the epipolar geometry

imposes a constraint in the form of equation (2.6). An intuitive minimization criterion is

therefore

min
F

X
i

�
u0Ti Fui

�2
(5.1)

which is equivalent as to minimize

min
f
kH fk (5.2)

61
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where H and f are the correspondences observation matrix and the vector form of the

elements of F , as de�ned in section 2.4.3. In order to avoid the trivial solution f = 0, an

additional constraint has to be imposed, usually kfk = 1. Alternatively, one can set one of

the elements of F to 1, and reformulate the H matrix in the expression (5.2) accordingly.

However, this second approach has the disadvantage of not allowing all elements of F to

play the same role, as noted in [43]. A convenient way to solve (5.2) is to used the SVD.

This criterion does not explicitly enforce the F matrix to be of rank 2. On practical

applications, the F matrix will not be rank de�cient, even if large numbers of point

correspondences are use. Moreover, this condition is severally aggravated if it is used in

the presence of mismatches.

Since most applications of the fundamental matrix require it to be rank 2, this condition

can be enforced after the linear estimation. A convenient way to correct F , is to replace

it [26] by the rank 2 matrix F 0 that minimizes the Frobenius norm kF � F 0k. A suitable

algorithm for the computation of F 0 is again the SVD, in the way described in appendix

A.

From what has been said, one can summarize the estimation of the fundamental matrix

by this criterion, as consisting of two steps[26] :

� Linear solution, by minimizing the expression (5.2). The solution in the least-

square sense is the eigenvector of HTH corresponding to the smallest singular value

of H .

� Constraint enforcement, by approximating the solution by a rank 2 matrix.

5.1.2 A criterion based on the distance to the epipolar lines

We have also used a non-linear approach which is based on a geometric interpretation of

the criterion (5.1). It can be easily shown that the Euclidean distance on the image plane

of a point u = (u; v; 1) to a line l = (l1; l2; l3) is given by

d (u; l) =
ju � ljq
l21 + l22

(5.3)

Therefore an intuitive criterion can be put forward, by minimizing the distances of the

points to the corresponding epipolar lines,

min
F

X
i

d2
�
u0i; Fui

�
As noted in [43], the two images do not play a symmetric role, as it did in the case of the

linear criterion. This is apparent from the fact that in this last expression we are only

minimizing the distances taken on the second image. A way to solve the problem is to
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incorporate the distances taken on the �rst image, and to note that by exchanging the

coordinates of the correspondences, the fundamental matrix is changed to its transpose,

i.e.,

u0TFu = uTFTu0

The extended criterion is therefore

min
F

X
i

d2
�
u0i; Fui

�
+ d2

�
ui; F

Tu0i

�
(5.4)

and can be written using equation (5.3) as

min
F

X
i

 
(u0i; Fui)

2

(Fui)
2
1 + (Fui)

2
2

+
(u0i; Fui)

2

(FTu0i)
2
1 + (FTu0i)

2
2

!
(5.5)

One can easily see from (5.3) that the minimization is independent of the scale factor of

F , thus not requiring the additional constraint on the elements of F used in the linear

criterion. Even so, the rank 2 condition still has to be imposed afterwards.

The main drawback of the criterion is that it is non-linear on the elements of F .

Therefore, a non-linear minimization technique has to be used, which is much more com-

putationally expensive than the least-squares solution presented earlier.

5.2 Fundamental Matrix Parameterizations

When using criterion (5.4) the need for the subsequent rank 2 enforcement can be avoided

if we use a structure for the fundamental matrix in which the rank condition is implicit.

Following a proposal by Luong [43], we have implemented the following parameterization:

F =

2664
a1 a2 a3

a4 a5 a6

a7a1 + a8a4 a7a2 + a8a5 a7a3 + a8a6

3775
It is easy to check that a matrix de�ned by this equation is rank 2, at the most, for a

general con�guration of the parameters. Due to the non-linearity of this parameterization,

it is not suited to be used with the criterion (5.2) as the solution would no longer be linear.

An alternative parameterization has been used in [43, 75], expliciting the dependency

of F some epipolar geometry entities. The structure of F is

F =

2664
b a �ay � bx

�d �c cy + dx

dy0 � bx0 cy0 � ax0 �cyy0 � dy0x + ayx0 + bxx0

3775
where (x; y) and (x0; y0) are the coordinates of epipoles on the image plane and a, b,

c, d are coe�cients of the homography between the sets of epipolar lines [43]. This

parameterization always implies �nite epipoles, and for this reason it was not used in

the �nal implementation.
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5.3 Experimental Comparison For Robust Matching Selec-

tion

This section describes the implemented algorithms and tests for the estimation of the

fundamental matrix. A comparison on the robustness under the presence of feature lo-

calization errors and gross mismatches is presented. Di�erent strategies are used to deal

with the two types of errors. For this reason we will treat it separately.

5.3.1 Feature localization errors

This class of errors refers to the image point location inaccuracy, due to the limited

resolution of the feature extractors and matching procedures.

We assume that these errors exhibit Gaussian behavior. This assumption is reasonable

since the errors are small on practical situations, typically within two or three pixels.

On the experiments described in this subsection no mismatch errors are considered.

Each pair of point correspondences is correct in the sense that they are projections of the

same 3D point.

Normalization of the Input

The error sensitivity of the linear criteria can be reduced by applying an input coordinate

transformation, prior to the computation of F . Traditionally, on image analysis appli-

cations, the coordinate origin of the image frame is often placed on the top- left corner

of the image. This does not promote coordinate homogeneity, and frequently leads to

large magnitude di�erences on the elements of matrix H in expression (5.2), thus creating

numerical instability.

A simple procedure of coordinate transformation is presented in [25] which performs

coordinate translation and scaling. By moving the origin to the point mass centre on each

image, and by scaling the axes so to have unitary standard deviation (�gure 5.1), one

can improve the problem condition and stability. Moreover, the transformation has the

advantage of better balancing the elements of F . The singularity enforcement is therefore

less disruptive.

Experimental evidence reported in [25] indicates that the normalized version of the

least-squares criterion can sometimes outperform iterative techniques, while maintaining

a much lower level of algorithmic complexity. All the results based on the linear criterion

were obtained using input normalization, unless stated otherwise.
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Figure 5.1: Coordinate normalization: The origin of the image plane frame is moved to

the points centroid, and the axis are scaled.

Results on synthetic data

In order to evaluate the performance of the estimation algorithms we have used both

synthetic and real images. The experimental method, using synthetic images for testing

feature localization errors, is now described.

A set of 50 randomly scattered 3-D points are projected using two camera matrices P1

and P2. The cameras have the same intrinsic parameters and are positioned so that both

optical axes meet at the points centroid. The synthetic images are 256� 256 pixels, and

the projected points are spread over a large part of the image area. For a set of 100 trials,

the following operations are carried:

1. Add Gaussian noise to the point projections,

2. Estimate the fundamental matrix F ,

3. Compute the mean distance of each noise-free point to the corresponding epipolar

line.

Results for the linear and the distance criteria are shown in Figures 5.2 and 5.3 . The

evolution of the mean distance to epipolar line is plotted against the standard variation

of the localization noise, ranging from 0 to 3 pixels.

The minimization procedure for the linear criterion was the SVD, whereas for the

distance criterion the Downhill Simplex method [51] was used. Although not particularly

fast in terms of convergence speed, this method does not require cost function derivatives

and is usually very robust.

Figure 5.2 illustrates the e�ect of coordinate normalization on the linear criterion. In

fact, without normalization the noise sensitivity is very high and the performance degrades

much faster when compared to the normalized version or to the non-linear criterion. A
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Figure 5.2: Sensitivity to feature localization errors, for the linear criterion, without data

normalization (None), translating the data centroid to the origin (Translation), and trans-

lating and scaling the point coordinates (Translation and Scaling)
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Figure 5.3: Sensitivity to feature localization errors, for the non-linear distance criterion,

without normalization (None), translating the data centroid to the origin (Translation),

and translating and scaling (Translation and Scaling)
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somehow unexpected result is found in 5.3. Here the normalization degrades the per-

formance of the distance criterion. Although not thoroughly investigated, a plausible

explanation for this condition is the fact that normalization is very important in making

the rank de�cient matrix approximation less disruptive. Since no singular condition has

to be enforced for the distance criterion, the normalization does not pay for the associated

round-o� errors due to the increase of numerical operations.

5.3.2 Mismatch errors

We will now consider the e�ect of mismatched points on the estimation of the fundamental

matrix. This type of error happens frequently when real data is used, and is usually due to

occluding objects or severe changes on the light conditions. For the applications dealt with

in this thesis, methods robust to mismatches are essential. Therefore we have extensively

used a random sampling technique, namely the two step variant of the LMedS described

in section 3.2.4, for both mosaicing and 3-D reconstruction. However, for performance

comparison purposes, two other methods for motion model estimation were implemented

which do not use random sampling. These methods are based on simple and intuitive case

deletion diagnostics. In the context of the fundamental matrix estimation, these are:

LSRes: F is estimated using the linear criteria on all point correspondences; then we

select the 8 pairs of points that correspond to the smallest elements of the residuals

vector r =H f of Equation (5.2) and re-estimate the fundamental matrix.

CDDist: For a set of N matched pairs, this method consists of N �8 iterations where we

estimate F using the linear criteria. In each iteration we discard the correspondence

pair that correspond to the largest distance to the epipolar line.

As described in chapter 3 we have also used an algorithm based on the Random Sam-

pling Consensus (hereafter referred as RANSAC), implemented by the following steps:

1. Sample all the matched points for a set of the minimum number of pairs required for

the model instantiation (thus 8 for a linear computation), and compute the matrix

F .

2. For a given distance threshold dT , select all the pairs whose distance to the respective

epipolar lines is smaller than dT . This is the consensus group for this F .

3. If the number of selected pairs is greater than an initial estimate of the number of

correct data points, then compute the F matrix based on all the selected pairs, using

the linear criterion.
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Figure 5.4: Performance of the algorithms under mismatch error conditions

4. Otherwise, repeat steps 1 to 3 up to a speci�ed number of iterations, and return F

computed with the largest consensus group found.

Figure 5.4 shows the performance of the described algorithms on the presence of mis-

match errors, ranging from 0 to 60% of the total number of pairs. The images used are

projections of a synthetic shape with 100 3D points. Averages of 30 runs for each algorithm

were taken.

The evaluation criteria on the �rst plot is the median distance of each pair of points to

the corresponding epipolar lines, for the whole set including mismatched data. To better

assess the performance, the second and third plots show the mean (b) and the variance

(c) of the point-to-epipolar line distance, for the original error-free data set.

One can see that the algorithms with best performance are MEDSERE and LMedS.

MEDSERE is capable of good results even under conditions as severe as 60% of mis-

matches, slightly outperforming LMedS. The RANSAC also presents good results up to
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Figure 5.5: Evolution of the computational cost for the LMedS and MEDSERE algorithms

50% mismatches, but fails shortly afterwards. The other methods perform poorly.

Another relevant aspect when comparing the performance of di�erent algorithms is to

characterize the required computational e�ort. Figure 5.5 show the approximate number

of 
oating point operations of LMedS and MEDSERE in the presence of a variable number

of mismatched points. The maximum number of samples and the median threshold are the

same for the two methods. In this aspect, MEDSERE compares favorably with LMedS.

5.4 Uncalibrated Reconstruction

In this section we will report some results on the recovering of scene structure from images

captured by uncalibrated cameras. From what has been presented in chapters 2 and 5,

we are now able to outline a projective reconstruction procedure which uses just a pair

of images as the input. If we know the real world coordinates of at least �ve of the

reconstructed points, then we are able to accomplish Euclidean reconstruction for all the

3-D points. In the scope of this thesis, we are interested in Euclidean reconstruction for the

purposes of visualization and to access the accuracy of the reconstruction implementations.

5.4.1 Euclidean reconstruction

The Euclidean reconstruction comprises the following steps:

1. Robustly estimate the fundamental matrix F from a set of matched points.

2. Determine some P 0

1 and P 0

2 agreeing with F . For this, the formulas of lemma 2 are

used.

3. Recover the projective 3D structure using P 0

1 and P 0

2. For each matched pair, the

intersection of the optical rays is computed using equations (2.10).
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4. Estimate the G matrix by the use of ground points. This matrix embodies the

collineation in IP 3 which relates the projective frame with the Euclidean one.

5. Apply G to the points recovered in 3, to recover the Euclidean structure.

The estimation of the collineation G from a set of n corresponding 3-D points can be

performed using a simple linear procedure. As a collineation, it is completely de�ned by

�ve pairs of points. For more than �ve correspondences a least-squares method is used, in

a similar way to the linear estimation of planar transformations described in section 2.3.1.

For each pair of 3-D points xi = (x; y; z; 1) and x0i = (x0; y0; z0; 1), the equation

xi = Gx0i

imposes three independent constraints on the elements of G. We can now assemble an

homogeneous system of equations in the form H:gl = 0, where gl is the column vector

containing the elements of G in a row-wise fashion, and H is a (3n� 16) matrix

H =

2666666664

x01 y01 z01 1 0 0 0 0 0 0 0 0 �x1x01 �x1y01 �x1z01 �x1

0 0 0 0 x01 y01 z01 1 0 0 0 0 �y1x01 �y1y01 �y1z01 �y1

0 0 0 0 0 0 0 0 x01 y01 z01 1 �z1x
0

1 �z1y
0

1 �z1z
0

1 �z1
...

0 0 0 0 0 0 0 0 x0n y0n z0n 1 �znx
0

n �zny
0

n �znz
0

n �zn

3777777775
The system is solved using the SVD, after imposing the additional constraint of unit

norm, kglk = 1. In order to avoid numerical problems due to large magnitude di�erences

on the elements of H , the data is normalized prior to the estimation of G.

5.4.2 Experimental results

A number of tests were conducted, using the reconstruction procedure on synthetic and real

data. The synthetic data consists of a set of 3-D points that are projected on two images

given a pair of camera projection matrices. Gaussian noise is then added to the image

coordinates, as localization noise. Then the fundamental matrix is estimated as described

in the previous sections; P1 and P2 are computed and the 3D points reconstructed.

Figures 5.6(a) and (b) show the 3D shape used for tests, with superimposed recon-

structed points. The left image was obtained with no noise, and the right one with added

zero-mean, 1.2 pixel standard deviation Gaussian noise. The e�ects of increasing amounts

of point location noise are shown in Figure 5.6(c), again using zero mean Gaussian noise.

Part of the real data experiments were conducted on the images of Figure 5.7. Theses

images where taken with the robotic stereo head Medusa [69, 53], whose cameras have

common elevation and are approximately 160mm apart. The toy house in the center of the
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(a) (b)

(c)

Figure 5.6: Euclidean reconstruction examples, with no added noise(a) and with additive

Gaussian noise(b). The + marks indicate the original shape points. In (c) we show the

e�ect of the noise in the reconstructed points.
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Figure 5.7: Toy house setup used for reconstruction with real images. The matched points

are shown with the corresponding epipolar lines.

images measures 160�80�120mm and is approximately 1 meter away from each camera.

A calibration grid was used to provide 21 ground truth points with known locations, which

are used for the computation of the H matrix, and for computing the reconstruction error.

In the results given below the error measure is the Euclidean distance of the recovered

ground points to the correct locations.

Accounting for radial distortion

In order to gain insight on the e�ect of the inherent radial distortion of the images, some

tests have been conducted after image correction.

For the toy house image set, the correction was performed using the calibration pro-

cedure described in [28]. This procedure makes use of the Levenberg-Marquardt mini-

mization method [51] for estimating both the projection matrix and the radial distortion

parameters. Alternatively, by assotiating a 2-D referential to the points in one of the

facets of the calibration grid, one can also use the method described in section 2.3.1. The

advantage of the former is that it does not require the calibration points to be on a plane.

Since all the grid points are used, the accuracy of the distortion parameters is increased.

Although the camera projection matrix is computed, only the distortion parameters are

used for radially correcting the image points.

A di�erent set of images was also used, picturing a model castle. The depth in this

scene ranges between 40 and 400mm. The images were obtained from the CMU image

archive, and are part of a dataset that includes accurate information about object 3-D
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Estimation Method Average Error (Max) in mm

Standard Calibration 4.3 (9.5)

Linear 18.4 (42.9)

Non{linear 6.2 (14.7)

Standard Calib. with Radial Corr. 4.0 (9.0)

Linear with Radial Corr. 17.0 (34.5)

Non{linear with Radial Corr. 5.2 (12.83)

Table 5.1: Average and maximum errors on the reconstruction of the toy house scene for

the two criteria, before and after image correction.

locations, thus providing ground-truth. Figure 5.8(a) shows one of the images of the used

stereo pair, with marked ground-truth points. Although the images are not corrected for

radial distortion, the parameters for the correction are provided with the dataset.

The Euclidean reconstruction using the linear criterion for the toy house scene is

presented on Figure 5.9(b), where some of the corner points have superimposed lines for

visualization purposes. In order to better evaluate the quality of the two criteria, Figure

5.10 presents top views for the linear criterion before (b) and after radial correction (d),

and for the non-linear for the original uncorrected images (c)1. When compared with the

standard calibration (a) for which the minimum reconstruction error is attained, one can

see that the non-linear criterion compares favorably to the linear. Quantively results for

the reconstruction error on the ground-truth points are given in table 5.1. It can be seen

that image correction improves the results for both criteria.

Similar conclusions can be drawn from the castle scene. Figure 5.11 presents top views

with the same con�guration as Figure 5.10. The non-linear criterion performs superiorly

when compared to the linear, for the uncorrected images. From table 5.2, one can no-

tice that the reconstruction using the linear criterion improves considerably with image

correction, when compared with the toy house example. In fact, the errors for the two

criteria after image correction are very close and quite low. This can be explained by the

fact that the ground-truth data is taken very accurately, and the main source of location

uncertainty is lens distortion. Therefore, after image correction, similarly accurate results

are attained. This example also shows the higher noise sensitivity of the linear criterion

that was discussed in subsection 5.3.1.

1The top views of the use of image correction for the standard calibration and non-linear criterion are

visually undistinguishable from (a) and (d) respectively, therefore not depicted.
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Figure 5.8: Castle scene test images: original image with marked ground-truth points(a)

and reconstruction using the linear criterion(b).
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Figure 5.9: Euclidean reconstruction with real images: disparity(a) and reconstruction(b)

with superimposed lines.

Estimation Method Average Error (Max) in mm

Standard Calibration 2.8 (8.1)

Linear 17.3 (43.2)

Non{linear 4.4 (13.4)

Standard Calib. with Radial Corr. 0.05 (0.15)

Linear with Radial Corr. 0.05 (0.16)

Non{linear with Radial Corr. 0.06 (0.19)

Table 5.2: Average and maximum errors on the reconstruction of the castle scene for the

two criteria, before and after image correction.
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Figure 5.10: Top view of the toy house with superimposed lines: reconstruction from

standard calibration(a), linear criterion(b), non-linear criterion(c) and linear criterion after

radial correction(d). The scale is in mm.
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Figure 5.11: Top view of the castle scene: reconstruction from standard calibration(a),

linear criterion(b), non-linear criterion(c) and linear criterion after radial correction(d).

The scale is in mm.
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Chapter 6

Conclusions

This chapter concludes this dissertation with a summary and a discussion of the work

presented. In section 6.3 some directions for future developments are given.

6.1 Summary

Chapter 1 presented the goal of this work, the study and implementation of motion esti-

mation algorithms and their application to video mosaicing and 3-D reconstruction.

Chapter 2 was devoted to the presentation of some concepts, de�nition and models used

throughout the thesis. Many of the key concepts can be concisely and elegantly described

under the framework of projective geometry. For this reasons the basic properties of

projective spaces were explained, preceding a detailed description of the projective camera.

This camera model is widely used in computer vision applications not requiring high

accuracy modelling of real cameras. A simple method for �nding the camera projection

matrix was outlined, based on least-squares and solvable using the SVD. Next, it was

shown that, for two views of the same planar scene, there exists a simple one-to-one relation

between the locations of the corresponding image points. This relation has the form of

a collineation and is also referred to as a planar transformation. It de�nes a model for

image motion. Furthermore, it can be computed just from a set of 4 pairs of corresponding

image points, again using least-squares. The importance of planar transformations comes

from the fact that it can be used to map several images of the same planar scene into

a common reference frame. This allows the creation of enhanced panoramic views. A

di�erent use of planar transformation is also illustrated, in the correction of the camera

lens radial distortion. Radial distortion is not modelled by the projective camera model

and constitutes the main source of geometric errors due to the shortcomings of this model.

Next, a class of restricted planar transformations was presented. If the image motion is

constrained, then a restricted model may better suited in the sense that it explains the
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motion equally well, but requiring fewer parameters.

An important section on projective stereo vision is included in this chapter. It presents

some concepts and methods useful for the analysis of a static scene using a pair of cameras.

The fundamental matrix is introduced in the context of the epipolar geometry. It is shown

how it can be computed using least-squares on a set of point correspondences. The topic

of uncalibrated reconstruction is discussed, followed by the description of a procedure for

Euclidean structure recovery. The presented method uses, as input, a set of matched

points for which at least �ve of the corresponding 3-D points have known coordinates.

Chapter 3 dealt with the issue of robust motion estimation. The purpose of this chapter

was twofold. Firstly, it described the two main approaches for motion estimation, namely

feature matching and optical-
ow. Secondly, it reviewed some of the mostly used robust

estimation techniques. Due to the practical orientation of this thesis a strong emphasis was

put on the use of robust methods. We are speci�cally interested in using motion estimates

obtained from matched features. Since the matching process is quite error prone on

real images, robust matching selection becomes essential. The described methods include

iterative re-weighted least squares, M-estimators, case deletion diagnostics and random

sampling algorithms. A variant of the Least Median Squares, MEDSERE, was proposed.

Experimental testing on both synthetic images under controlled conditions and real images

was conducted and was presented on chapter 5. It shown that this algorithm performs

favorably when compared to the LMedS. For this reason it was the method of choice for

the experimental work of the thesis.

Chapter 4 was devoted to the presentation of results in video mosaicing. It started by

a description of the implemented method for corner features detection and area match-

ing. The matching is performed in two steps. A correlation based technique is used for

initial location �nding. Then, this location is further re�ned by means of an optical 
ow

technique capable of dealing with feature warping, to attain sub-pixel accuracy. The cre-

ation of video mosaics was described in two separate stages. On the registration stage,

the MEDSERE algorithm was used for estimating the motion parameters, in the form of

a planar transformation matrix. On the rendering stage the e�ects of the choice of the

reference frame and temporal operator were shown.

In order to obtain high-quality, seamless mosaics, an alternative sequence of operations

for mosaic creation was also illustrated. Instead of dealing with registration and rendering

separately for the entire sequence, the mosaic can be created iteratively, by registering and

rendering each individual image. It was found that this procedure reduced the e�ects of

the accumulation of small motion estimation errors, but was very sensitive to the spatial

coherence of the mosaic being created.

This chapter �nished with several results on video mosaicing and a discussion on their

applications.
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Chapter 5 reported the application of robust techniques to the estimation of the epipo-

lar geometry, and to 3-D structure recovery. Linear and non-linear minimization criteria

were compared using two di�erent parameterizations for the fundamental matrix. The in-


uence of small localization errors and gross mismatches was treated separately. For small

localization errors, the non-linear criterion based on the Euclidean distance of each point

to the corresponding epipolar line performed better that the linear criterion. The issue of

data normalization was addressed, and found to be e�ective on the linear criterion. As for

mismatch errors, several robust algorithms were compared. The proposed MEDSERE al-

gorithm showed very promising results on both outlier rejection and computational e�ort.

The procedure for Euclidean structure recovery, described on chapter 2, was imple-

mented and tested on both synthetic and real images.

6.2 Discussion

In this thesis we dealt with a number of issues related with image motion estimation using

point features. Two main issues are:

� Robustness. The e�ect of noise and outliers on robust and non-robust estimators

was studied. It was shown that non-robust techniques have poor results and are

completely inadequate for dealing with real image applications. Robust methods

were implemented and compared. In the presence of outliers, the random sampling

algorithms presented the best results in terms of high breakdown point.

� Model-based estimation. Image motion was estimated using motion models de-

rived from geometric considerations of both scene structure and camera locations.

The models can be divided into two main classes according to the 3-D information

content of the images.

{ If there is no parallax then a one-to-one relation can be established between

matched point locations. The most general model is the 8-parameter planar

transformation. Image registration can be accomplished.

{ If parallax is present then a relation can be set between points on one of the

images and corresponding epipolar lines on the other. The most general model

is the fundamental matrix. The recovery of the projective structure of the scene

can be performed, just by the analysis of a set of point correspondences.

Based on these two classes, two distinct application areas were considered, namely the

creation of video mosaics and the recovery of 3-D structure.

For the creation of video mosaics a method was described which only requires the

selection of the most adequate motion model. Feature point selection, matching and
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global registration are performed automatically and present robustness to violations of

the underlying assumptions of scene planarity and static content. The usefulness of video

mosaicing was illustrated with selected mosaic examples for the applications such as aerial

imaging, ocean exploration, video coding and enhancement, and panoramic views for

virtual reality. Mosaics tend no longer to be considered just as simple visualization tools.

By relating the image frames with a common referential, both global spatial and temporal

information become easy available. A direct exploitation of this is in video compression

and enhancement.

The estimation of the fundamental matrix is currently an area of intensive research.

By conveniently encapsulating all the available information on the camera geometry that

can be extracted from two views, it is an essential tool in the analysis of uncalibrated

images, and the �rst step towards uncalibrated reconstruction. The impact of the choice

of minimization criterion, parametrization, data normalization and radial distortion were

issues addressed and studied in this thesis.

6.3 Future Work

Directions for improvement can be pointed out for many of the topics addressed in this

thesis.

In the motion analysis presented in this thesis it was assumed that the most suitable

motion model was known. Naturally, an important improvement would be the automatic

model selection just from image motion analysis. This problem has been addressed in the

literature [67, 65] in the context of the fundamental matrix estimation under degeneracy.

One of the main problems arises from the fact that the presence of outliers can make

degenerate cases appear non-degenerate, which di�cults the model selection process.

The proposed MEDSERE algorithm, although it presented good results, was not fully

evaluated. A more theoretical analysis of the assessment of the breakpoint is still required.

Also, following a rule of thumb [19] on the time relation for new algorithm evaluation,

theory : implementation : testing = 1 : 10 : 100, further testing is due.

A multitude of improvements can be considered for the mosaic creation:

� In this thesis, only planar retinas have been considered. It can be easily seen that,

for image registration for sequences comprising a very wide �eld of view, cylindrical

or spherical retinas are better suited.

� The direct mosaic registration method was found to be very sensitive to spatially

incoherent features. A paradigm for reducing the sensitivity may be the introduction

of 'elastic' terms on the motion models. By the use of loaded spring models for the

elastic terms, a potential energy can be associated with the set of planar transfor-
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mations from the previously registered and rendered images. The minimization of

the potential energy would change all transformations towards a better image �t-

ting. The main drawback of this approach is the fact that it implies complete mosaic

re-rendering for each new image.

� An alternate procedure for mosaic creation can be devised for exploiting the fact that

frames with large amount of overlap allow more accurate registration. As an initial

step, these frames can be grouped together forming sub-mosaics. A subsequent step

is to register and merge the sub-mosaics.

The Euclidean reconstruction was illustrated by the use of ground-truth points. In

practical situations this information might not be available. Therefore, it would be quite

pro�table to be able to incorporate other type of geometric information, thus extending the

range of applications. Useful 3D information includes distances between points, parallel

lines and angles between coplanar lines. For cases where there is enough information to

provide redundancy, a relevant issue is the best choice of geometric restrictions so as to

minimize reconstruction uncertainty.
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Appendix A

Singular Value Decomposition

The Singular Value Decomposition is a powerful tool for dealing with sets of equations and

matrices. It reveals valuable information about the structure of a matrix, and is extremely

useful in the analysis of matrix conditioning, and round-o� errors in linear equation sys-

tems. The SVD is cited[20] as a method with increasing use by many statisticians and

control engineers who are reformulating established theoretical concepts under its "light".

De�nition 4 (Singular Value Decomposition) If A is a real (m � n) matrix then

there exists orthogonal matrices U and V ,

U = [u1; : : : ; um] 2 IRm�m

V = [v1; : : : ; vn] 2 IRn�n

such that
UTAV = diag (�1; : : : ; �p) 2 IRm�n p = min fm;ng

�1 � �2 � : : : � �p � 0

Proof. Can be found in [20].

The scalars �i are the singular values of matrix A. These are the lengths of the semi-

axes of the hiperellipsoid Ax where x is a unitary norm vector. The SVD can, therefore,

be used to �nd the directions mostly "ampli�ed" or "shortened" by the multiplication of

A. It is also used for obtaining orthonormal bases for the range and the null-space of A.

If �r is the smallest non-zero singular value, then A has rank r, its range is spanned by

fu1; : : : ; urg and the null-space by fvr+1; : : : ; vng.

A.1 Lower rank matrix approximation

The SVD provides a covinient way of approximationg a given matrix, by one of lower rank.

The Frobenius norm of a real (m� n) matrix A is de�ned as the square root of sum of all
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squared components,

kAkFrob =

vuut mX
i=1

nX
j=1

jaij j
2

A simple expression for this norm can be found, using the singular values:

kAkFrob =
q
�21 + : : :+ �2p p = min fm;ng

Let R be a square (n�n) non-singular matrix (thus having all singular values positive)

with singular value decomposition:

R = U diag (�1; : : : ; �n) V T

It has been proven [26] that the (n � n) matrix R0 of rank n � 1 which minimizes the

Frobenius distance kR� R0kFrob can be found by zeroing the smallest singular value of R.

Thus R0 is given by:

R0 = U diag (�1; : : : ; �n�1; 0) V
T



Appendix B

Radial Image Correction

The pinhole camera model described on section 2.2 is an approximation of the projec-

tion mapping for real cameras. This model presents the useful property of being a linear

projective transformation from IP 3 into IP 2 thus allowing a simple mathematical formula-

tion. However the pinhole model is not valid for applications requiring high accuracy, such

as photogrammetry and accurate metrology, as it does not model systematic non-linear

image distortion, which is present on most cameras. When performing lens modelling,

there are two main kinds of distortion to be taken into account [70]: radial and tangential.

For each kind, an in�nite series of correction terms is theoretically required. However,

it has been shown that, for most o�-the-shelf cameras1 and industrial applications, the

non-linearity can be dealt with just by using a single term of radial distortion. A four-

step camera calibration procedure allowing radial correction was presented by Tsai in [70].

However, radial distortion can be corrected without full camera calibration. Using Tsai's

formulation, a non-linear mapping can be found which relates the observed distorted point

projections with the ideal undistorted counterparts for which the pinhole model is valid.

The undistorted coordinates for a given distorted image point
�
ud; vd

�T
are,

"
uu

vu

#
=

 "
ud

vd

#
�

"
u0

v0

#!
� r2 � k1 +

"
u0

v0

#

r =

r
(ud�u0)

2

s2u
+ (vd � v0)

2

(B.1)

where (u0; v0)
T is the location of the principal point, k1 is the �rst term of the radial

correction series and su is a scale factor accounting for di�erences on the image axes

scaling. If these parameters are known then image correction for radial distortion can be

performed.

1By o�-the-shelf, we consider the normally used general purpose cameras, as opposed to professional

metric cameras used in photogrametry.
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Figure B.1: Example of a planar calibration grid used for radial correction.

An algorithm was implemented for the estimation of the image correction parameters.

It uses a planar calibration grid with a set of equally spaced black dots, such as the

one depicted on Figure B.1. The centers of the dots are automatically extracted, and

a list of the distorted grid point projections is formed. By associating these projections

to corresponding undistorted points measured on the referential of the planar grid, the

planar transformation between the image plane and the grid plane can be computed.

For a set of N grid points, let
�
udi ; v

d
i

�T
be the image projection of the ith grid point

(Ui; Vi)
T , and T be the planar transformation computed from all grid points and projec-

tions. Let
�
uti; v

t
i

�T
be the mapping of (Ui; Vi)

T on the image plane, using T . Due to the

radial distortion,
�
uti; v

t
i

�T
and

�
udi ; v

d
i

�T
will not, in general, be coincident. For a set of

radial correction parameters (u0; v0; k1; su), a corrected version (uui ; v
u
i )

Tof
�
uti; v

t
i

�T
can

be computed, and a cost function can be devised, based on the distances measured on the

image plane,

c (u0; v0; k1; su) =
X
i

q
(uui � uti)

2 + (vui � vti)
2 (B.2)

In order to �nd the appropriate correction parameters, a non-linear minimization tech-

nique is required for minimizing equation (B.2). On the implemented algorithm this is

accomplished by means of the Simplex-Downhill method [51].

An example of an image where radial distortion is easily seen is given on Figure B.2

(top). This image was captured by a wide angle camera on top of a Khepera robot, and

shows the regions near the frame corners to be bent inwards. The bottom images illustrates

the result of the algorithm. The corrected image was created by linearly interpolating the

intensity values at the points mapped onto fractional coordinates. After correction, the

central region kept the original size, while the remaining area was gradually zoomed.
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Figure B.2: Example of radial correction: original image (top) and corrected (bottom).
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Appendix C

Original Sequences
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Figure C.1: The map sequence comprises 67 frames of a street map. It was captured at

close range by a translating and rotating camera, thus inducing noticeable perspective

distortion. The map was scanned following an inverted S-shape, starting from the map

upper left corner and �nishing on the diagonally opposite corner. The original images are

336� 276.



93

Figure C.2: The Qn aerial sequence was captured by a high altitude plane 
ying over an

urban scenario. The 50 frames have a superimposed time-stamp and a horizontally shifted

lower scan-line. The images are 160� 120.
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Figure C.3: The Arli aerial sequence was captured by a high altitude plane 
ying over the

Arlington district, in Washington. The 59 frames have a superimposed time-stamp and a

horizontally shifted lower scan-line. The images are 160� 120.
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Figure C.4: The draf1 underwater sequence was captured by manually controlled ROV,

and depicts a man-made construction. The camera is moving along a fracture inside which

some rocks can be seen. The fracture provides noticeable depth variations as opposed to

the almost planar surrounding sea bed. Some moving �sh can be seen. The sequence

comprises 101 images of 320� 240 pixels.
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Figure C.5: The football sequence was captured from a TV broadcast, and shows 8 seconds

of a football game during the goal. The camera is rotating and zoomming in towards the

end of the sequence. It comprises 43 images of 320� 240 pixels.
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Figure C.6: The bike sequence shows a stunt bike driver moving closer to the camera. The

sequence is part of the �lm Terminator 2 and was obtained from a public domain archive.

It comprises 56 images of 352� 240 pixels.
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Figure C.7: The peneda sequence was captured by a hand held camcorder following the hill

tops, in Serra da Peneda in the north part of Portugal. It contains 90 images of 340� 240

pixels.
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Figure C.8: The VisLab sequence was recorded by a camera on top of a tripod and rotating

around the vertical axis, thus inducing simple sideways image motion. It contains 84

images of 336� 276 pixels.
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Figure C.9: The LabMate sequence contains two sets of images captured by a camera on

top of a TRC LabMate mobile platform. During the acquisition of the �rst set (comprising

45 images) the platform moved along a corridor, keeping constant heading and distance

to the wall (top row). On the second set of 5 images depicturing part of the same scene,

the camera rotated and got closer to the wall (bottom row). All the images are 192� 144

pixels.
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Figure C.10: The toyhouse stereo pair was captured by two cameras of a stereo head with

horizontal baseline. The cameras are 160mm apart and the toy house is approximately 1

meter away from both. The images are displayed for cross-eye fusion.

Figure C.11: The castle stereo pair is part of a sequence where a static model castle is

captured by a moving camera. The depth in this scene ranges between 40 and 400mm.

The images were obtained from the CMU image archive, and are part of a dataset that

includes accurate information about object 3-D locations. The images are displayed for

cross-eye fusion.
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