
PERCEPTION, CONTROL AND PLANNING FOR

(SELF-)RECONFIGURABLE MODULAR ROBOTS

THIS IS A TEMPORARY TITLE PAGE

It will be replaced for the �nal print by a version

provided by the service academique.

Thèse n. 1234 2019
présenté le 20 Juin 2019
à la Faculté des Sciences de Base
laboratoire de Biorobotique (BIOROB)
programme doctoral EDRS
École Polytechnique Fédérale de Lausanne

Institute for Systems and Robotics
The Computer and Robot Vision Laboratory (VisLab)
programme doctoral RB-Cog
Instituto Superior Técnico in Lisbon

pour l'obtention du grade de Docteur ès Sciences
par

Mehmet Mutlu

acceptée sur proposition du jury:

Prof Dario Floreano, président du jury

Prof Auke Ijspeert, directeur de thèse

Prof Alexandre Bernardino, (co-)directeur de thèse

Prof Daniela Rus, rapporteur

Prof Michael Rubenstein, rapporteur

Prof Alcherio Martinoli, rapporteur

Lausanne, EPFL, 2019

E! Lunch?

— Certain Biorobian everyday at 11:30

To my parents and Ay se Nur. . .

Acknowledgements
I would like express my utmost gratitude to Fundação para a Ciência e Tecnologia (FCT) agency

of Ministry for Education and Science of Portugal for offering the PhD program “Robotics,

brain and cognition” and the “IST-EPFL” joint degree which lead to this thesis. FCT (via the

PhD grant PD/BD/105781/2014 and project grant UID/EEA/50009/2013) and EPFL financed

most of this thesis. I would like to thank Swiss National Science Foundation and National

Centre of Competence in Research for their financial support in various projects (SNSF-NCCR,

project 153299) that lead to this thesis.

First of all I would like to thank both of my advisors Prof. Auke Ijspeert and Prof. Alexandre

Bernardino for their limitless support, understanding and guidance. I particularly appreciate

the right amount of freedom they both provided that let me explore many different ideas.

I would like particularly highlight Prof. José Santos-Victor for managing to fit high quality

supervision in super short time he has.

I also would like to thank to the members of this thesis committee Prof. Daniela Rus, Prof.

Michael Rubenstein, Prof. Alcherio Martinoli and the president Prof. Dario Floreano for their

time and willingness to participate in my defense.

A big hurray goes to Simon Hauser for shouldering Roombots with me since the very beginning

until the very end. High quality time we had together not only in the lab, but also at every

single opportunity such as conferences, travels, picnics and parties created a special bond

that will last way longer than this PhD.

A special gratitude goes to Massimo Vespignani who introduced me to Roombots, lifted my

spirits at hardest times and became my gateway to fun through skiing, drinking and fooling

around.

Further, I would like to thank both Biorob family: Tomislav Horvat, Robin Thandiackal,

Stéphane Bonardi, Peter Eckert, Behzad Bayat, Alessandro Crespi, Shravan Ramalindagetty,

Johnathan Arreguit, Kamilo Melo, Laura Paez, Mostafa Ajallooeia, Hamed Razavi, Jessica

Lanini, Luca Colasanto, Alexandre Tuleu, Florin Dzeladini, Amy Wu, Tadej Petric, Nicolas Van

der Noot, Sylvie Fiaux, François Longchampl...;

and Vislab family: Ricardo Ribeiro, Atabak Dehban, Mihai Andries, Nino Cauli, Giovanni

Saponaro, Moreno Coco,Plinio Moreno, João Avelino, João Martins, Pedro Vicente, Sofija

Spasojević, Mirko Raković, Hugo Simão, Paul Schydlo, Rui Figueiredo, Prof. José Gaspar, Ana

Santos, Ricardo Nunes...

I gratefully acknowledge the help of Ahmet Safa Öztürk, Stéphane Bussier, Quentin Golay and

Théo-Tim Denisart for their contribution to the Roombots project. Special thanks to Jérémy

v

Acknowledgements

Blatter for the development of the GUI. Further, we are enormously thankful to François

Longchamp for his technical support in the design of the modules. I would like to thank to

Ayşe Nur Sunal and Olguta Robu for creating Play-Doh structures and providing alternative

construction materials for Ch. 4. I would like to thank anonymous user study participants.

I would like to thank all of my students who did a project with me: I. Youssef, H. Khodr, F.

Efremov, M. Dujany, E. Klauser, R. Fong, H. Kohli, R. Vasconcelos, Pol Banzet, V. Nigolian, A.

Häfliger, F. Freundler, A. Vardi, R. Dryzner, M. Moret.

Lausanne, 20 May 2019 M. M.

vi

Abstract
Modular robots (MRs) consist of similar modules that can be configured into different shapes.

MRs introduce a number of benefits over conventional robots specifically designed for a

task. Self-reconfigurable modular robots (SRMRs) are a sub-category of MRs that can perform

complex morphological changes by making use of autonomous attachments and detachments.

This thesis is pointing out various aspects of MRs with particular interest in SRMRs (but

not exclusively). First of all, designs of SRMRs are studied and improvements have been

demonstrated in Roombots (RB), a SRMR designed in the Biorobotics Laboratory. The design

improvements involve both electromechanical hardware, control and planning aspects. After

all improvements, complex scenarios can be studied involving more than 10 modules adding

up more than 30 DOF system. Such SRMRs are not intuitive for humans to operate. To

overcome this issue, three different user interfaces (UIs) are proposed covering different

aspects to simplify use of SRMRs. The first UI is used for conveying shape information to

SRMRs using a tangible interaction interface as a proxy. The second one does not have

any interaction medium and user directly control SRMRs via gestures that are tracked by

external vision systems. The last UI shows possibility of assembling SRMRs in a virtual reality

environment using a head mounted display and a hand gesture tracking system. All three

of proposed UIs are novel and first of their kind for SRMRs. The final focus is locomotion

with modular morphologies and presented in three major studies. Initially, one of the most

simplest modular structures, a parallel chain structure, is studied to develop a goal driven

neuro-visual locomotion model of a swimming lamprey robot. It is followed by a slightly

more complex chain structure. A snake robot is simulated during different serpentine gaits to

evaluate implications of different on-board camera placement strategies for such robots. In

the last phase, the importance of compliance in legged locomotion is experimentally assessed

for quadrupedal modular structures. Compliance of legs as well as a control scheme that acts

as a compliant element is taken into consideration for a comparative evaluation. Locomotion

is a fundamental part of all mobile robots. Three biologically inspired methods are offered

to tackle locomotion of MRs that present performance improvements on multiple aspects as

well as better understanding of certain concepts. Although the idea of modularity is widely

used in industrial production and common daily items, MRs still don’t find much use in daily

lives. This thesis brings MRs one step closer to wide daily use by addressing such systems from

multiple perspectives.

vii

Zusammenfassung
Modulare Roboter (MR) bestehen aus ähnlichen Modulen, die in unterschiedliche Strukturen

zusammengebaut werden können. MR besitzen einige Vorteile gegenüber konventionellen

Robotern, die speziell für eine Aufgabe konzipiert wurden. Selbst-rekonfigurierbare modulare

Roboter (SRMR) formen eine Unterkategorie der MRn, welche komplexe Modifikationen an

ihrer Morphologie durch dynamische Verbindungen autonom vornehmen können. Diese

These behandelt einige Aspekte von MRn mit Fokus auf SRMRn (aber nicht exklusiv). Als

erstes werden verschiedene Designs von SRMRn untersucht, gefolgt von Verbesserungen an

dem System Roombots (RB), einem SRMR des Biorobotics Laboratory. Diese Verbesserungen

beinhalten elektromechanische Komponenten, Regelung und Bewegungsplanung, worauf

komplexe Szenarien mit mehr als 10 Modulen und mehr als 30 Freiheitsgraden studiert wer-

den konnten. Solche komplexen Strukturen erschweren eine intuitive Bedienung. Deshalb

werden im zweiten Teil drei verschiedene Bedienoberflächen (UI) vorgeschlagen, welche die

Bedienung von SRMR vereinfachen. Die erste UI verwendet ein greifbares Medium, um Form-

informationen zu vermitteln. In der zweiten UI können Bediener SRMR direkt über Gesten

kontrollieren, welche von einem externen System nachverfolgt werden. Im dritten UI wird

die Möglichkeit präsentiert, SRMR mit Hilfe eines Head-Mounted-Display und Gestensystem

virtuell zu Strukturen zusammenzubauen. Alle drei vorgeschlagene UI sind neu und erstmals

in der Anwendung mit SRMRn. Der dritte Teil dreht sich um Fortbewegung mit modularen

Morphologien und beinhaltet drei Studien. Zuerst wird eine einfach Kettenformation präsen-

tiert, mit der ein neuro-visuelles Fortbewegungsmodell eines Neunauge studiert wird. Dann

folgt eine etwas komplexere Struktur, wobei ein Schlangenroboter mit unterschiedlichen

schlangenartigen Gangarten simuliert wird und die Auswirkungen auf die Platzierung von Ka-

meras in solchen Robotern evaluiert wird. Als letztes wird die Bedeutung von Federelementen

in vierbeiniger Fortbewegung experimentell untersucht. Federelemente in den Beinen sowie

eine feder-simulierende Regelung werden miteinander verglichen. Fortbewegung ist eine

fundamentale Funktion von allen mobilen Robotern. Drei biologisch-inspirierte Methoden

der Fortbewegung von MRn werden diskutiert, welche mehrere Leistunsmerkmale verbessern

und das allgemeine Verständnis der Fortbewegung fördern. Obwohl die Idee der Modularität

in der Industrie sowie für alltägliche Objekte oft verwendet wird, haben MRn noch keine genau

definierte Aufgaben im täglichen Leben. Diese These bringt MR einen Schritt näher zu diesem

Ziel und betrachtet solche Systeme aus unterschiedlichen Winkeln.

ix

Abstrato
(Portuguese translation of the abstract will be here)

xi

Contents
Acknowledgements v

Abstract (English/Deutsch/Português) vii

List of figures xvii

List of tables xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 3

1.3 Approach and thesis outline . 4

1.4 Contributions . 6

I Self-reconfigurable modular robots: hardware and control 7

2 Roombots 9

2.1 Introduction . 10

2.2 Related work . 13

2.3 Material and methods . 15

2.3.1 Mechanics, motors and connections . 15

2.3.2 Sensors . 17

2.3.3 Spotlight LED . 18

2.3.4 Universal gripper . 18

2.3.5 Electronics . 19

2.3.6 Motor control . 20

2.3.7 Connection control . 21

2.3.8 Graphical User Interface (GUI) . 22

2.3.9 RGB-D vision system . 23

2.3.10 Robotic-enhanced furniture . 24

2.4 Experimental results . 25

2.4.1 Easy-to-use user interface: The GUI . 26

2.4.2 Scalable self-reconfiguration . 27

2.4.3 Mobile furniture . 29

xiii

Contents

2.4.4 Manipulating furniture . 31

2.4.5 Interactive furniture . 34

2.5 Discussions and future work . 34

2.6 Conclusion . 37

3 An optimal planning framework to deploy SRMR 39

3.1 Introduction . 40

3.2 Terminology . 41

3.3 Problem formulation as search . 42

3.4 Searching for solutions . 44

3.4.1 Search algorithms: Expansion of the search tree 45

3.4.2 Pruning methods . 46

3.4.3 Framework performance analysis . 48

3.5 Deploying the framework on hardware . 51

3.5.1 Addressing ACM alignment problem . 52

3.5.2 Approaching/leaving concave corners . 53

3.5.3 User feedback . 54

3.5.4 Physical limitations allowed in the framework 54

3.6 Hardware validation . 54

3.7 Conclusions and future work . 55

II User interfaces for modular robots 57

4 From playdough to Roombots 59

4.1 Introduction . 60

4.2 Analysis of the problem . 61

4.2.1 Expression: Modeling clay . 61

4.2.2 Digitization: 3D scanning . 62

4.2.3 Abstraction: Voxels and Roombots . 62

4.2.4 Constraints and simplifications . 63

4.3 Solution method . 63

4.3.1 3D Scanning of playdough . 63

4.3.2 Pre-processing of Mesh . 64

4.3.3 Voxelization of the 3D model . 65

4.3.4 Search space definitions and initial module placement 68

4.3.5 Construction with breath first search . 69

4.3.6 Construction with depth first search . 69

4.3.7 User Feedback . 72

4.4 Experimental results and discussions . 72

4.4.1 Effect of Initial Module Placement . 73

4.4.2 Different construction materials . 73

4.4.3 Hardware demonstrations . 74

xiv

Contents

4.4.4 Limitations of the proposed solution . 74

4.5 Conclusions and future work . 75

5 Natural user interface 77

5.1 Introduction and motivation . 78

5.2 System design . 80

5.2.1 Overview of the Proposed Human Robot Interface 81

5.2.2 Detecting User’s Commands . 82

5.2.3 Controlling Roombots . 84

5.2.4 Closing the Control Loop . 86

5.3 Results and Discussion . 88

5.4 Conclusions and Future Work . 88

6 Virtual reality for reconfigurable rooms 89

6.1 Introduction and motivation . 90

6.2 Background on virtual reality . 91

6.3 System design . 92

6.3.1 Requirements of the System . 93

6.3.2 Overall system . 93

6.3.3 Giving more immersive feeling . 95

6.3.4 Assembly . 97

6.4 Results and discussions . 98

6.4.1 User study . 98

6.4.2 Discussions . 99

6.5 Conclusions and future work . 101

III Locomotion with modular morphologies 105

7 Neuro-visual locomotion model for Envirobot 107

7.1 Introduction . 108

7.2 Methods . 109

7.2.1 Envirobot Design . 109

7.2.2 Frame-Based Object Detection . 110

7.2.3 Event-Based Object Detection . 110

7.2.4 Experimental Setup . 111

7.2.5 Neuron Model . 111

7.2.6 Neuron Network . 111

7.3 Results . 115

7.3.1 Behavioral Tests . 115

7.3.2 DVS Performance . 117

7.4 Discussion . 119

7.4.1 Visual Memory . 119

7.4.2 Behavior Adaptation & Learning . 120

xv

Contents

7.4.3 Underwater use of Event Based Cameras 121

7.5 Conclusion . 121

8 Camera Placement on a Snake Robots 123

8.1 Introduction . 124

8.2 Camera trajectory during locomotion . 125

8.2.1 Rolling motion . 128

8.2.2 Side-winding motion . 129

8.2.3 Linear progression motion . 130

8.3 Motion blur of camera during locomotion . 131

8.3.1 Rolling motion . 133

8.3.2 Side-winding motion . 134

8.3.3 Linear progression motion . 137

8.4 Discussions and demonstrations . 138

8.5 Conclusions . 139

9 Locomotion: effects of local passive and active compliance 141

9.1 Introduction . 142

9.2 Methods . 144

9.2.1 Hardware platform . 144

9.2.2 Gait generation . 146

9.2.3 Foot trajectory . 146

9.2.4 Open loop CPG-based control . 146

9.2.5 Tegotae-based control . 148

9.3 Experiments . 149

9.3.1 Passive compliance . 149

9.3.2 Tegotae-based active compliance . 150

9.3.3 Experiment terrain . 150

9.4 Results and Discussions . 151

9.4.1 Performance metrics . 151

9.4.2 Overall results . 156

9.4.3 Feet trajectories . 158

9.4.4 Phase vs compliance in Tegotae-based control 159

9.4.5 Emerging gaits from Tegotae-based control 160

9.4.6 Limitations of the platform: . 160

9.5 Conclusions and future work . 161

10 Conclusions 163

10.1 Future work . 167

Appendix 169

xvi

Contents

A Cooperative bridge building by SRMR based on ants’ stigmergic behaviour 169

A.1 Introduction . 170

A.2 Methodology . 171

A.2.1 An algorithm from ants . 171

A.2.2 Roombot’s mechanics . 171

A.2.3 Logic-level simulation . 172

A.2.4 Experimental set-up . 172

A.3 Results . 172

A.4 Conclusions . 172

B Leg touchdown patterns of the modular quadruped 175

Bibliography 195

Curriculum Vitae 197

xvii

List of Figures
1.1 Microbots from the Disney animation Big Hero 6 3

1.2 Thesis outline . 6

2.1 Roombots framework with the five tasks indicated 12

2.2 Design of a single Roombots module . 16

2.3 Modifications of the connection plates . 17

2.4 Integration of a Universal Gripper into a Roombots hemisphere 20

2.5 Roombots electronics . 21

2.6 Pitch angle compensation . 22

2.7 GUI of Roombots . 24

2.8 RGB-D camera and furniture used in the sub-tasks 25

2.9 Circle walk demonstration . 27

2.10 Chair formation sequence . 28

2.11 Chair following a user . 29

2.12 Assistive furniture opens up space . 30

2.13 Active slope compensation . 31

2.14 Overcoming a ledge . 32

2.15 Table picking up an object . 33

2.16 Two RB gripper modules passing a pen in mid-air 34

2.17 A gripper metamodule assisting in opening a PET water bottle 35

2.18 Interaction with tracking and lighting . 36

3.1 Caption short description for table of contents . 42

3.2 Flowchart for a general search algorithm . 44

3.3 Illustration of Roombots neighborhoods . 47

3.4 Goal state of the two test cases for algorithm comparison. 48

3.5 Comparison of number of problems solved within 30 minutes for (a) gap and (b)

ceiling test cases. 49

3.6 Description of the ACM and passive plate components 52

3.7 Example showing the parallel behavior when approaching a concave corner . . 54

3.8 Different stages from the experiment of crossing a gap using 3 RB modules. . . 55

4.1 The cycle from an inspiration to the final Roombots shape 61

4.2 The inspirational LEGO® advertisement . 63

xix

List of Figures

4.3 Initial and pre-processed view . 65

4.4 High and low resolution voxel space . 68

4.5 Initial module placement . 69

4.6 Six structures . 70

4.7 Construction of modular structures with DFS. 71

4.8 Artificial feedback . 72

4.9 Different objects used for benchmarking and the corresponding found Room-

bots structures . 74

4.10 Best two BFS results . 75

4.11 The stool example . 75

5.1 Rendered picture representing the different aspects of the Roombots project . . 79

5.2 Roombots are being designed to work in daily life environments 80

5.3 Overview of proposed user interface . 82

5.4 Experimental robotic spotlight system . 83

5.5 Control system . 84

5.6 Adjusting brightness of the light . 84

5.7 Real time information of the GUI . 85

5.8 Kinematic model of Roombots metamodule manipulator 86

6.1 A single Roombots module . 90

6.2 Main components of the GUI in the Workshop . 95

6.3 Users can place their custom structures anywhere in the Room 96

6.4 The complete set-up required by the system during a user test 97

6.5 A Roombots module in current selection . 98

6.6 Loop formation . 99

6.7 Operators were asked to perform four successive tasks 100

6.8 The subjective opinions of users . 102

6.9 Throne . 103

7.1 The Envirobot target bulb and overhead tracking LEDs 110

7.2 8-neuron wide network of the module consisting of an input layer, a response

layer, and an auxiliary layer . 113

7.3 The architecture of the behavior arbitration sub-network 114

7.4 The sub-network used to produce the system’s output 116

7.5 The experimental Envirobot swimming trajectories in four distinct scenarios . 117

7.6 A comparison between the neuron network computation rates achieved by the

two types of image capture . 118

7.7 An example of trajectories for both vision systems recorded during the experiments119

7.8 A performance comparison between event-based and frame-based cameras . . 120

8.1 Modular Snake Robot Lola-OP . 126

8.2 Camera trajectory (on head, straight) during rolling 128

xx

List of Figures

8.3 Camera trajectory (in the middle, sideways) during rolling 129

8.4 Camera trajectory (on head, straight) during sidewinding 130

8.5 Camera trajectory (in the middle, sideways) during sidewinding 130

8.6 Camera trajectory (on head, straight) during linear progression 131

8.7 Camera trajectory (in the middle, sideways) during linear progression 132

8.8 w and µ of camera during rolling (on head, straight) 134

8.9 w and µ of camera during rolling (in the middle, sideways) 135

8.10 w and µ of camera during sidewinding (on head, straight) 135

8.11 w and µ of camera during sidewinding (in the middle, sideways) 136

8.12 w and µ of camera during sidewinding (in the middle, upwards) 136

8.13 w and µ of camera during linear progression (on head, straight) 137

8.14 w and µ of camera during linear progression (in the middle, sideways) 138

8.15 w and µ of camera during linear progression (in the middle, upwards) 138

8.16 Captured images during rolling (on head, straight) 139

8.17 Captured images during sidewinding (on head, straight) 139

8.18 Captured images during linear progression (on head, straight) 140

9.1 Quadruped robot . 144

9.2 Three different elements . 145

9.3 The designed foot trajectory . 147

9.4 Motion based motion blur metric MMBM . 155

9.5 Evaluation of the proposed metrics . 157

9.6 Ground reaction force and the orientation of the force 158

9.7 Foot trajectories during locomotion on the flat surface 159

9.8 Phase evaluation of fore and hind right limbs . 160

A.1 Roombots agent as an ant . 170

A.2 Pipeline of the distributed control of RB based on ants 173

B.1 Leg touchdown patterns when all element are rigid 176

B.2 Leg touchdown patterns when all element are hard 176

B.3 Leg touchdown patterns when all element are soft 177

B.4 Leg touchdown patterns when fore limb elements are hard and hind limb ele-

ments are rigid . 177

B.5 Leg touchdown patterns when fore limb elements are soft and hind limb ele-

ments are rigid . 178

xxi

List of Tables
2.1 The video is available as supplementary material for this article (see link) 25

3.1 Average convergence time of tested algorithms in [s] on both gap and ceiling test

cases . 50

3.2 Average number of expanded nodes of the tested algorithms on both gap and

ceiling test cases . 50

3.3 Optimality percentage of tested algorithms on both gap and ceiling experiments 51

3.4 Completeness percentage of both gap and ceiling test cases when history list

does not have orientation. 51

4.1 Comparative performance of the suggested methods 73

6.1 Subjective evaluation of the proposed interface 101

8.1 Parameters and Coordinate Transformations of Camera Placement for Examined

Gaits . 127

8.2 MMBM statistics for different snake gaits . 139

xxiii

1 Introduction

Traditional objects are often made for certain use and do not exhibit modularity. They have a

fixed morphology and perform a certain function. When they do not function as expected,

they need to be either replaced or repaired which usually takes significant amount of time. A

can opener, a shirt or bottle are some examples for such objects.

Modularity is the capability of a system that allows its parts to be combined in different ways

to enhance its flexibility in use. It is a very generic term that appears in many fields such as

programming, industry, art, science and even daily life. For different uses, the exact meaning

slightly changes. For example, a modular software refers to having blocks of code that can

be maintained separately and easily merged with the rest. A modular construction refers

to fabrication of smaller blocks prior to the assembly and capability of assembling them in

different ways. According to [Salvador et al., 2002], there are two main criteria to classify the

modularity of a product: (1) existence of a main body (a central unit) connecting modular

pieces (or alternatively no main body where modular pieces attach to each other to form the

system) and (2) diversity of interface (either single interface or multiple interface types to

connect to each other). Combinations of those criteria results in four types of modularity:

1. A system with diverse interface and main body is said to have component swapping

modularity: Each modular part can be only replaced with a new one. E.g., custom-size

battery of specific device.

2. A system with identical interface and main body is said to have bus modularity: Different

modules can be connected to the same bus and modules are swappable with each other.

E.g., universal serial bus (USB) devices being modules and a PC being the main body.

3. A system with identical interface and no main body is said to have sectional modularity:

Pieces can be combined in any possible way (such as Lego blocks). E.g. Lego bricks.

4. A system with diverse interface and no main body is said to have combinatorial modu-

larity: Main components can be different, but they are connected in only one way. E.g.

a car (AC unit, steering unit, multimedia unit etc. are assembled in a single way).

1

Chapter 1. Introduction

Although, an example has been given for each category, they are not limited to single applica-

tion domain and represent much more generic concepts to be used in different application

areas such as mechanics, electronics etc..

A modular robots (MRs) can be built into different morphologies that enables different capabil-

ities [Gilpin and Rus, 2010]. In the modular robotics field, the commonly meant modularities

are the sectional modularity (independent modules) and the bus modularity (modules relying

on central computation, power etc.). In other words, the system is mostly expected to be

consist of identical modules. However, there are modular robots with heterogenous modules

too. Heterogeneity can be in only the functional level (all modules having the same shape, but,

different functions) or also in shape. Modular robots can be classified in numerous different

ways. [Ahmadzadeh et al., 2015] gives a systematic classification of an extensive list of MRs by

considering module, information, task and environment (MITE). A specific group of MRs can

self reconfigure into different morphologies, thus called self-reconfigurable modular robots

(SRMRs). Self reconfiguration adds further autonomy to MRs and usually comes with the

increase in the complexity of modules.

1.1 Motivation

SRMRs have various advantages over traditional fixed morphology robots. [Yim et al., 2007]

summarizes them in three main points: Versatility, robustness and low cost. The most promi-

nent capability is the shape changing. A SRMR ideally can create any arbitrary shape. Thus,

they can adapt to changing demands in time. Having standardized building modules is also

preferred for manufacturing reasons. Because mass manufacturing a single type of building

block is expected to be cheaper and faster than custom designing dozens of task specific

robots. Moreover, replacing a broken module is much easier than detecting and repairing a

problem in a big system. SRMRs can in principle self-repair through detecting broken modules

and replacing them autonomously.

Ideally, many tasks should be done with a SRMR system. Space applications stand out among

all of the possibilities, because the cost of bringing a tool to orbit or deeper space is tremen-

dously high. Another promising application area is intelligent living environments. SRMRs

can be used to augment environments we live in by creating furniture, manipulating existing

objects and aiding humans. Additionally, SRMRs have an artistic perspective. They can serve

as construction blocks for artists to create new interactive experiences.

High motion capabilities thanks to the large number of joints is inherently present in SRMRs.

It is not intuitive to control such highly redundant systems. Furthermore there is an emerging

need for human-robot interaction whenever those robots are used in human presence, which

leads to the inevitable question “How humans can control SRMRs?”. User interfaces for SRMRs

have merely been addressed in the literature thoroughly so far.

Animals have been evolved in millions of years through breeding among specimens, mutations

2

1.2. Challenges

and survival of the fittest. Indeed, animals display spectacular characteristics that let them

survive to this date. There are various studies focusing on behaviour adaptation in case of

loosing a limb such as [Cully et al., 2015]. Further morphological changes in biology can be

observed during growth or more severely during metamorphosis. More complex challenges

such as morphological additions or complete transformations (like more complex metamor-

phosis) become available through SRMRs. Hence, they open new directions to study imaginary

animals in laboratory environment.

The Biorobotics Laboratory (Biorob) and Computer and Robot Vision Laboratory (VisLab)

(two research laboratories I have been affiliated throughout my PhD program “Robotics, brain

and cognition”) are particularly interested in biologically inspired systems. While Biorob has

the major focus in animal locomotion, VisLab stands out in vision and cognition (learning)

studies. In real life, animals can display all three of these features in parallel. Being part of

an international and multidisciplinary PhD program, this thesis will act as a bridge between

conceptually quite different (bio-inspired) robotics studies.

1.2 Challenges

An ultimate robot would be a tiny SRMR which can create any shape and perform any task

similar to what is depicted in “Big Hero 6”, an animation movie by Disney Studios. Fig. 1.1

shows two scenes where a single Microbot is introduced and its capabilities are shown as a

swarm. Naturally, we are bounded by physical limitations and currently available technology.

Actuator power to module weight ratio, battery life and material strength are among the most

pronounced limitations. Thus, very large scale systems (i.e. 1000+ modules) have still not

been realized. The closest are Kilobots [Rubenstein et al., 2012], but those are self assembling

robots, not SRMRs. In order to achieve such scales, power management, power sharing and

energy harvesting capabilities should be iteratively revisited.

(a) (b)

Figure 1.1 – Microbots from the Disney animation Big Hero 6: (a) Tiny microbot modules (b)
can create any large structure using as many modules as needed.

3

Chapter 1. Introduction

Current state of the art presents that SRMRs are still inferior to individually designed custom

robots for achieving a certain single task. It may as well remain that way due to the definition

of the system. In other words, the power of SRMRs comes from the adaptability to different

tasks whereas a task-specific design is optimized for the performance on that given task.

Nevertheless, the goal is to increase overall performance of SRMRs through both having more

diverse task capabilities and improving individual task performances. Modular designs bring

extra complexity over specific designs. They may as well be more fragile and expensive.

Sensorization still remains to be one of the biggest challenges in SRMRs. With rapid techno-

logical advancements, sensor diversity is increasing while size and cost of existing sensors

decrease monotonously. Hence, the number of sensors in our daily lives constantly increase.

Nowadays, even a mobile phone comes with dozens of sensors. A good portion of sensors

which have found their way into SRMRs are proprioceptive to measure internal states such

as motor encoders, battery monitors, accelerometers and gyroscopes. There are also very

useful and common exteroceptive sensors such as thermometers, barometers and cameras

that are used in SRMRs as well. However, sensing the surrounding objects still (similar to

skin) remains to be a challenge especially for self-reconfiguration in 3D. Most of the presented

SRMRs in the literature rely on knowing initial states and executing set of actions in open

loop fashion. There exits proximity sensors like infrared or ultrasound sensors. But, a large

number of them are needed to cover all directions in 3D self-reconfiguration. Planar and 2D

scenarios are easier as surrounding the robot with an array of sensors is sufficient. Another

popular approach is the use of cameras. However, the use of cameras also require integration

of a powerful computation unit to process images. The size, power and cost requirements of

SRMR increase proportionally. Existing SRMR solutions do not have truly integrated cameras

and powerful computation in all modules, but, mostly keep a camera as a separate passive

(non-actuated) module [Barrios et al., 2016], [Zhu et al., 2014], [Murata et al., 2007].

In robotics, modularity has multiple perspectives as it involves the hardware morphology as

well as control behind it. SRMRs are high DOF systems. Such high dimensionality can be

seen as a blessing since it provides functional flexibility, or at the same time, a curse as the

control can get quite complex. High dimensionality of SRMRs still remains as a big challenge

to develop control and planning algorithms. Developments on scalable control solutions as

well as massively scalable wireless communication systems (in a compact volume) are highly

in demand to bring proof of concept systems into real world applications.

1.3 Approach and thesis outline

This thesis focuses on the development of electromechanical hardware and control strategies

for (SR)MRs and addresses biologically inspired locomotion models on MRs. The objective of

this thesis is trying to answer following research questions:

1. How far can we go on the path of creating the perfect SRMR that can tackle every possible

4

1.3. Approach and thesis outline

task?

2. What kind of user interfaces are suitable for using SRMRs in daily lives?

3. How closely can we recreate animal locomotion in laboratories using (SR)MRs?

4. How does the visual system correlate with bio-inspired locomotion of modular robots?

5. What is the role of compliance in bio-inspired locomotion of modular robots?

Answers to these questions are presented in three main parts. The first two questions are

addressed in the first two parts while the rest of the questions are collected in the last part.

Fig. 1.2 illustrates the visual structure of the thesis. The key concepts binding chapters together

are shown on the figure. Each chapter and part are illustrated with blue and green backgrounds

respectively in Fig. 1.2. The main similarity of Part I and Part II is the use of Roombots (RB) (a

SRMR made in Biorob) as the application platform whereas locomotion studies (Part III) use

only modular robots (not self-reconfigurable).

Part I describes the improvements on electromechanical structure of Roombots and comple-

mentary control & planning framework.

Part II introduces three novel user interfaces for SRMRs using three different approaches: a

tangible, a gesture-based and a virtual reality interface.

Part III studies three different topics on three different locomotion modes to answer respec-

tively the last three of research questions: anguilliform swimming, terrestrial serpentine and

legged quadrupedal locomotion. The swimming study had to be conducted on a waterproof

robotics platform Envirobot while the others exploited a simpler and less complex modular

platform (Robotis Bioloid kit).

5

Chapter 1. Introduction

Modular robots

P.1 & P.2 - Self-reconfigurable robots (Roombots)

P.1 – Hardware, control and planning

P.2 - User interfaces

Ch.2 - Planning
Ch.1 – Platform development

Ch.3 - Tangible

Ch.4 - Gestures

Ch.5 – Virtual reality

Ch.6 – Neurovisual lamprey swimming

Ch.7 – Camera placement on snake robots

Ch.8 Compliance & emerging gaits

P.3 - Locomotion

Figure 1.2 – Thesis outline.

1.4 Contributions

The main contributions of the thesis are:

• Hardware development of Roombots by upgrading existing features and adding new

ones.

• Developing control strategies and an autonomous planning framework for self-

reconfiguration.

• Developing three novel user interfaces for SRMRs.

• Implementing and testing a biologically inspired neurovisual locomotion model for

robotic lamprey using event-based cameras.

• Analyzing the relation between serpentine locomotion and visual information.

• Analyzing the effects of compliance in quadrupedal locomotion.

6

Part ISelf-reconfigurable modular robots:
hardware and control

7

2 Roombots

The first chapter introduces Roombots (RB) that is a SRMR created in the Biorobotics Labora-

tory. A particular focus of this chapter is to explain improvements and upgrades achieved since

October 2014 (the beginning of this thesis). Improvements involve both hardware changes and

software/control developments. For the first time, we had a significant number of modules (13)

to showcase larger SRMR systems since the beginning of the Roombots project. This chapter

serves as the logbook of all the tiny improvements that paved the way towards realization of

a scalable SRMR. The platform (Roombots) developed in this chapter forms a basis for the

Part I and Part II as all of the SRMR work developed in this thesis uses Roombots for hardware

demonstrations.

Reference publications

• This chapter is based on Simon Hauser, Mehmet Mutlu, Pierre Alexandre Léziart,

Hala Khodr, Alexandre Bernardino and Auke Ijspeert. “Roombots extended: challenges

in the next generationof self-reconfigurable modular robots and their application in

adaptive and assistive furniture.” Submitted to Robotics and Autonomous Systems.

My original contributions

– Building the required electronics (ACM sensor plate, ACM sensor readout board,

universal gripper controller board, LED ring board, spotlight board)

– Co-supervising Jérémy Blatter for the GUI development

– Primarily supervising Hala Khodr, Ahmet Safa Öztürk, Stéphane Bussier and

co-supervising Quentin Golay and Théo-Tim Denisart who did projects on

different aspects of the Roombots project

– Guiding and conducting planning experiments

– Partially writing and fully reviewing the manuscript

9

Chapter 2. Roombots

2.1 Introduction

Self-reconfigurable modular robots (SRMRs) pose interesting interdisciplinary challenges in

hardware, software and their application for an end user.

The hardware is an engineering challenge. The general idea of modular robotics is to combine

“simple” modules into larger, more complex and thus usually more capable structures that pos-

sess the required functionality of a task at hand. A true reversible modular robotic system (MR)

has three key functionalities: reversible connection between two modules, reversible discon-

nection between two modules, and actuation (either within one module or in a structure as a

whole). Note that reversible connection does not automatically include disconnection as there

can be different mechanical systems for both connection and disconnection. For the design

of each of these systems, the overall dimensions of a module should be defined, which often

are linked to the expected tasks. At last, it has to be considered if all the sub-units are exact

copies of each other (homogeneous MR) or if specialized units collaborate together (hetero-

geneous MR) [Ahmadzadeh et al., 2015]. In manually reconfigurable modular robot systems

[Ahmadzadeh et al., 2015], the connection and disconnection functionalities are outsourced

to a human such that an MR mainly has to care only about the actuation system. This means

that each module can take on almost any form with any mechanical properties, particularly

also soft modules. In contrast, SRMR [Ahmadzadeh et al., 2015] systems have to perform the

connection and disconnection functionalities autonomously, which introduces additional

constraints on the rigidity: to enable or at the very least simplify the self-reconfiguration,

each module should be structurally rigid such that some form of alignment between modules

is achievable - a usually necessary condition for self-connection - yet provide some form

of movement to initiate self-reconfiguration. The balance between these two properties is

already challenging to achieve in 2D SRMR systems and add a significant level of difficulty in

3D SRMR systems.

The software requires algorithms to deal with decentralized systems. It needs to be defined if

one module acts as a master commanding all other modules in the system, if each module has

the same amount of control or if there is a main external controller unit. Additionally, a way

for a human to intuitively interact with one or more groups of modules has to be developed

such that the current state of the modular system can be understood and a future state can be

communicated.

At last, one has to consider for which application the robotic platform is to be developed.

Even though SRMR can have the ability to shape-shift into various morphologies, this does

not necessarily mean that one module should be as small as possible build any arbitrary

morphology; one module should be as small as the smallest unit required by the application.

It also needs to be defined what should be the added value of the ability to self-reconfigure to

justify the major development of the challenges mentioned above: what is the usage of the

self-reconfiguration?

As one example that aims at tackling some of these challenges, over the last decade we devel-

10

2.1. Introduction

oped “Roombots”(RB), a 3D self-reconfigurable modular robot system with the application

- among others - of serving as adaptive and assistive furniture. In this framework, multiple

groups of modules adapt to the needs of a user by creating different pieces of furniture or

augmenting the capabilities of existing furniture. Additionally, such pieces of furniture can

also act somewhat autonomously and provide assistance specifically to elderly by e.g. prevent-

ing falls thanks to a following chair, picking up and holding objects and bringing items while

retaining their functionality as pieces of furniture.

The first generation of Roombots proposed the general hardware design of our SRMR to-

gether with algorithmic work on reconfiguration and locomotion and works in user interfaces

[Sproewitz et al., 2008], [Sproewitz et al., 2009], [Sproewitz et al., 2010b], [Sproewitz, 2010], [Sproewitz et al., 2010a],

[Sproewitz et al., 2013], [Sproewitz et al., 2014], [Bonardi et al., 2012b], [Bonardi et al., 2012a],

[Bonardi et al., 2013], [Bonardi et al., 2014], [Vespignani et al., 2013], [Ozgur et al., 2014]. As a

proof of concept, only a limited number of modules was needed to demonstrate the three key

functionalities: connection, disconnection and movement. However, to go further towards

the vision of using Roombots for adaptive furniture, more modules were needed and a few

adaptations in hardware and software had to be made based on the experience with the

developed prototypes.

To showcase some of the new capabilities of the upgraded Roombots system, we propose

five new tasks that we regard as core functionalities of adaptive and assistive furniture: self-

reconfiguration, mobility, manipulation, human-module-interaction, and user interface. Each

of these tasks will be demonstrated by Roombots, often through various sub-tasks (see Fig.

2.1).

The first task is scalable self-reconfiguration which stands at the core of an SRMR system

and fits well into the vision of creating adaptive furniture. For this demonstration, a discon-

nected group of RB modules self-reconfigures into a shape resembling that of a common

piece of furniture. It should be noted that while this task essentially reduces to a series of

connection, disconnection and movement actions, which already have been demonstrated in

e.g. [Sproewitz et al., 2014], performing it with a larger number of modules is not trivial due

to the scalability of the robotic system: continuous reliable reconfiguration with a group of

modules rather than an isolated reconfiguration with two modules adds significant challenges

in hardware and software to deal with real-world physical phenomenons that only occur for

larger groups of modules. In the case of Roombots, the first hardware iteration experienced

major elastic deformations and misalignment issues such that the autonomous formation of

larger structures was not possible. Due to the various hardware modifications presented in

section 2.3.1 and closed-loop control described in section 2.3.2, such tasks lie now within or at

least much closer to the capabilities of the present hardware iteration.

Second, adaptive furniture should possess a certain degree of mobility such that pieces of

furniture can dynamically move within a living space. Depending on the functionality of the

structure, mobility can require certain adaptation of the furniture to the environment as well

11

Chapter 2. Roombots

Figure 2.1 – Roombots framework with the five tasks indicated. 1) Self-reconfiguration of a
group of Roombots modules into a shape to function as a toy. 2) Mobile furniture where an
existing piece of furniture has been enhanced with RB modules to enable it to move around in
the living space. 3) Object manipulation where furniture is able to assist in simple tasks such
as picking up and holding a remote control. 4) Interactive furniture, allowing users to work
together with robotic-enhanced furniture, and 5) an easy-to-use user interface (UI) to monitor
the current state of the robotic system.

as autonomy to react to changes in the environment. We performed a set of demonstrations

to showcase the mobility aspect, ranging from following and evading pieces of furniture to

slope compensation and even stair climbing.

To fulfill more of the assistive aspects of the Roombots vision, robotic-enhanced furniture

must possess a way to manipulate objects. Simple actions such as holding a book can already

provide assistance, and it is clear that many of such actions require a method for manipulation,

i.e. a gripper. Such a gripper can, for instance, be used for fetching remote controller fallen

on the ground. For the integration of a gripper into the RB framework - which should be

able to manipulate a wide range of everyday objects - we revisited the concept of granular

jamming that was used to develop a “Universal Gripper”. By miniaturizing the mechatronic

components, we were able to equip selected modules with this gripper and demonstrate

common tasks such as a piece of furniture picking up an object from the ground and an RB

structure helping to open a water bottle. Two gripper modules further are able to pass objects

12

2.2. Related work

from one module to another, which will also be briefly discussed.

Users need an intuitive way of interacting with modules. Interaction could be through e.g.

speech recognition where modules react to spoken commands, or through gesture control

as e.g. in [Ozgur et al., 2014, Mutlu et al., 2016, Nigolian et al., 2017] where commands are

created through the tracking of gestures. Further, modules should provide a feedback to the

environment such that the current state of a single module or a group of modules can easily

be understood. A simple way to achieve this is through light where different colors can be

assigned to different states. We revisited our approaches in the past and demonstrate again

the interaction capabilities of RB.

At last, when the complete information about the state of the modules is required, an ap-

propriate visualization tool is needed. We describe the development of a Graphical User

Interface (GUI) that allows for an easy control of RB modules. The GUI greatly facilitated the

development of many of the presented demonstrations and will simplify the development of

future challenges. Such challenges (e.g. RB metamodule locomotion on-grid) are identified

along with this work and analyzed and discussed in section 2.5.

The manuscript is structured as follows. It first details the hardware and software modifications

of the newest generation of Roombots and then reports significant demonstrations in hardware

of selected scenarios. It then concludes with the limitations of the current platform and with a

general discussion of challenges of self-reconfigurable modular robot systems.

2.2 Related work

Over the years, a large variety of 2D and 3D proof-of-concept SRMR systems has been de-

veloped. A comprehensive list of both mechanical designs and algorithms of SRMR can be

found in [Ahmadzadeh et al., 2015] and [Ahmadzadeh and Masehian, 2015]. If a research in-

cludes experiments with prototype hardware modules, the basic functionalities connection

and disconnection are in many cases shown with a minimal number of modules, often in

an isolated experiment involving two to five modules. Larger reconfigurations with more

modules are usually shown in simulation, whereas structures in hardware experiments with

more modules (e.g. some form of collaborative behavior) are mostly manually assembled,

e.g. PolyBot [Yim et al., 2000], SMORES [Davey et al., 2012], UBot [Cui et al., 2012], SUPER-

BOT [Salemi et al., 2006], CoSMO [Liedke et al., 2013], 3D M-Blocks [Romanishin et al., 2015],

Soldercubes [Neubert and Lipson, 2015] and AMAS [Terada and Murata, 2008].

With Roombots, the focus is not only task execution with prepared structures, but also the

actual formation process in 3D. While some of the systems in [Ahmadzadeh et al., 2015] and

[Ahmadzadeh and Masehian, 2015] certainly will mature further and with additional develop-

ment will be able to demonstrate larger reconfigurations in hardware, most (if not all) SRMR

systems have difficulties when the number of modules is increased, especially for 3D systems.

Because of significant hardware challenges, only a limited number of such SRMR systems are

13

Chapter 2. Roombots

able to perform 3D self-reconfiguration with more than five modules where all modules are

involved in the self-reconfiguration, allowing for a more comprehensive understanding of the

potential of reconfigurable systems.

As Roombots are thought to work in groups that can involve up to tens of modules (task

1), we put a closer look at the largest structures formed through self-reconfiguration with

3D SRMRs, and could only find two examples where the formation (or reconfiguration) is

explicitly stated in literature: (i) M-TRAN III [Kurokawa et al., 2008] formed a mesh structure

with 24 modules (48 DoF) that locomotes by disconnecting modules from one side of the

mesh and reattaching them on the other side, and (ii) ATRON presents a self-reconfiguration

sequence with 3 three-units meta-modules in [Brandt et al., 2007], resulting in 9 modules (9

DoF). We aim to show that Roombots is one of the few systems where 3D reconfiguration with

10 modules (30 DoF) and more is possible.

The challenge doesn’t stop once a structure is formed. The dynamic shape-shifting capabilities

of SRMRs raises the question of how humans can interact with such complex robot systems

[Weller et al., 2011]. Vision is one of the most powerful sense that enables accurate remote

sensing and allows for interaction. Particularly the sense of depth plays a crucial role in al-

most all of our fundamental sub-tasks such as grasping and locomotion. Similar to humans,

robotics systems can benefit from vision too. One of the easiest way of getting the depth map

information is using RGB-D cameras. There exists numerous ways to utilize RGB-D cameras

for human tracking [Camplani et al., 2017, Han et al., 2012, Liu et al., 2015], detecting gestures

[Ramey et al., 2011] as well as other human motion [Ye et al., 2013] or learning object affor-

dances [Koppula et al., 2013]. Modular robots can benefit from the vision capability as well,

although the integration of a vision system into a modular robot system is not straightforward.

There are several possibilities (e.g. integrated in a module, a specialized module, an external

system), each with their own advantages and disadvantages and engineering difficulties. A

recent use of RGB-D sensor in the scope of SRMR has been reported in [Tosun et al., 2018]

where a system made out of SMORES carry the RGB-D sensor around and use it for closed loop

self reconfiguration as well as navigation. The simplest way however for tracking is to have

the RGB-D camera externally. Such an external camera could be placed on top of a structure

built out of modular robots as e.g. in [Magnússon et al., 2013]. However, because the camera

in this work is used to track multiple objects in a simulated living space, we use a stationary

mounted external camera with an overhead view.

Concerning the vision of providing assistance in everyday tasks, robots started entering

houses to do chores much later than their industrial counterparts that are used in pro-

cess automation. One of the pioneering service robots which became widely available is

Roomba [Forlizzi and DiSalvo, 2006]. Although consumer robots are not very widespread,

there is a deep literature on the research of service robots reporting various tasks such as

cloth folding [Maitin-Shepard et al., 2010, van den Berg et al., 2011], social interaction with

humans [Broekens et al., 2009, Martin et al., 2009, Demiris, 2009], doing a combination of

different chores [Beetz et al., 2012, Srinivasa et al., 2012, Asfour et al., 2013] and helping dis-

14

2.3. Material and methods

abled people with an autonomous wheelchair [Carlson and Demiris, 2012] or bidepal robot

[Sugahara et al., 2004]. All of those robots are either partially of generic human form or specif-

ically designed for a given task. Here, we explore the possibility of such tasks being attempted

by distributed systems such as SRMRs, specifically in the scope of creating an assistive envi-

ronment.

Whereas conventional furniture consists of passive elements that stays where they are placed,

advancements in technology and robotics call for smarter and interactive houses. Exam-

ples are a robotic ottoman system guessing your intention and responding to your needs

[Sirkin et al., 2015] or a robotic wardrobe to modulate living space to needs of the user [OriLiving, 2019].

Thanks to the expansion of internet of things, there is an increasing number of architectural ef-

forts to sensorize furniture using cameras and other complementary sensors [Georgoulas et al., 2014]

and in designing actuation systems for furniture [Gross and Green, 2012], [Yu et al., 2007].

The vision of Roombots is to introduce dynamically reconfigurable furniture into our future

living space, redefining room arrangements and available space. In this work, we show proof-

of-concepts of functionalities enabled by such reconfigurable furniture, namely dynamic

adaptivity and assistance. We are aware that our current work does not contain much quantita-

tive data; we rather report qualitative data by showcasing the many abilities of a reconfigurable

system. We believe that such progress is also important to report as it can serve as a benchmark

for future iterations and generations of reconfigurable systems.

2.3 Material and methods

The following subsections describe the different modifications of the RB hardware and soft-

ware in detail: the adaptations on the module itself, the added sensors and the new control

possibilities, the new gripper, added electronics, the Graphical User Interface (GUI), the

external RGB-D camera and the passive parts (furniture).

2.3.1 Mechanics, motors and connections

The overall design and dimensions of one Roombots module are kept as the original design

described in [Sproewitz et al., 2014], thus only the main features are described here. One

module consists of 4 interconnected half-spheres (hemispheres) that can continuously rotate

around each other by 3 motor units. Each module has 10 connection plates of which two

possess actively retractable hooks that can latch onto any other connection plate. This Active

Connection Mechanism (ACM) is the mechanism that allows one module to attach to another

module or to any surface equipped with our connection plate, forming dynamic multi-module

structures such as adaptive furniture. One module contains all necessary electronics for

operation, a bluetooth module for communication and batteries, making it fully autonomous.

Fig. 2.2 gives an overview of the design of a single module.

15

Chapter 2. Roombots

Figure 2.2 – Design of a single module with a) an exploded view of the main components
Active Connection Mechanism ACM (2), hemispheres (4) and motor units (3), b) arrangement
of the motor units inside the assembled module and orientation of the rotation axes (red and
blue axes), and c) fully assembled Roombots module of the newest iteration with dimensions
11x11x22 cm. Parts of this image have been adapted from [Sproewitz et al., 2009].

As already pointed out in [Sproewitz et al., 2014], a stiffer construction and stronger actuators

were needed to overcome some of the limitations of the initial design. From previous iterations

of the hardware, it became clear that the design needed major improvements in three areas:

motor strength, control precision, and connection reliability. As a first step, the material of the

three main gearboxes that are driving each module was changed from plastic to brass together

with replacing the respective motors to more powerful ones. On the one hand, this significantly

increased the torque of the Degrees of Freedom (DoFs) of one module (19% increase for the

middle DoF with a Maxon RE-max 24 DC motor to 4.3 Nm, and 70% increase for the outer

DoF with a Maxon RE 25 DC motor to 8.4 Nm, [Vespignani, 2015]). On the other hand, due

to the much more precise metal gearboxes, the backlash from each gearbox was reduced by

a factor of 10 (from 2 ◦ to 0.2 ◦) which was necessary to improve the control precision and

thus the connection reliability of a module. Many difficulties in the ACM caused by the use of

3D-printed parts and plastic gearboxes also required a change of material. This mechanical

latch needs to withstand the full weight of a few connected modules. Thus, we decided to

also implement metallic gearboxes and manufacture the structural parts of the ACM out of

aluminum which also helped to increase the connection reliability of a module.

In an effort to compensate for small misalignments during reconfiguration, we reconsidered

the hybrid ACM mentioned in [Sproewitz et al., 2014] in which permanent magnets are used to

assist the connection action. It consisted of one permanent magnet in the middle of the ACM

and connection plates that would need a specific polarity to create attraction, thus unfavorably

changing the hermaphrodite ACM into a gendered connection mechanism. We achieved a

hermaphrodite connection with permanent magnets by creating a ring of magnets whose

polarities are oriented in a specific manner (see Fig. 2.3) such that an attraction is created

every 90 ◦ which corresponds to how two modules can connect to each other. A standard

ring is formed by 8 disk-shaped magnets with alternating poles facing the surface; due to

space constraints, ACM only contains 6 magnets, so the ring is missing a quadrant. Each

ACM and every possible connection plate both of a module and of a passive grid structure

16

2.3. Material and methods

Figure 2.3 – Modifications of the connection plates. In the middle of each plate, a ring of
permanent magnets with alternating poles (N and S) facing the surface (RM; 8 magnets
for a standard plate, 6 magnets for an ACM) assists in forming contact between two plates.
Two infrared sensors (IR) give information about the proximity of neighboring plates or the
environment whereas four pairs of a hall-effect sensor (HS) and corresponding magnet (HM)
indicate if two touching plates are oriented appropriately such that a connection with the
ACM can be formed.

has been equipped with this ring of permanent magnets. They are helping to form an aligned

contact between two connection plates that are supposed to be touching. This magnetic

connection is strong enough to form a small region of attraction when two plates are close,

however it is not capable of transferring any load and the connection is easily broken by any

movement of a module. The researches in [Kurokawa et al., 2008] and [Davey et al., 2012] are

using a similar magnetic ring idea as a main connection method. Using permanent magnets

as main connection method results in harder disconnection process. However, the magnet

ring is used as only a complementary method to the mechanical ACM in Roombots. Thus,

advantages of both methods are integrated while minimizing disadvantages of each approach.

In the end, we built 11 new fully functional modules with the presented hardware modifica-

tions (with a total of 13 modules with 2 modules of the previous iteration).

2.3.2 Sensors

The most important sensorization was done on the rotary joints by adding absolute encoders

(12-bit capacitive absolute encoder AMT203). Initially, Roombots had relative encoders which

meant that modules were supposed to be powered up only after all joints were manually

aligned to a certain angle such as 0◦. New absolute encoders ensure that the control of a

module does no longer depend on the initial position when switched on, thus the initialization

of experiments became easier. Although both relative and absolute encoders could have been

used in conjunction, relative encoders have been removed to open up some space for stronger

17

Chapter 2. Roombots

DC motors.

There has been a high demand on proximity sensors on Roombots for various applications,

particularly for reliable self reconfiguration. Each ACM plate is equipped with two infrared

(QRE1113GR) and four single-axis linear hall-effect sensors (DRV5053RA) (shown as IR and

HS respectively in Fig. 2.3). Infrared sensors detect existence and distance of a nearby object

within the range of 1 mm to 15 mm. The reading of the infrared sensor relies on the reflectivity

and orientation of a facing surface. On the other hand, hall effect sensors report the magnetic

flux, ΦB , crossing the sensor area which correlates to the proximity of a magnet. The actual

ΦB reading depends on distance, strength, orientation and misalignment of a facing magnet.

Every possible docking surface (matching surface of ACMs) are equipped with four cylindrical

magnets with a diameter of 3 mm (illustrated as HM in Fig. 2.3). All four magnets are situated

right in front of hall effect sensors when an ACM is connected. Thus, the viability of docking can

be assessed. Additionally, each ACM is equipped with a three-axis accelerometer (ADXL337) to

detect the gravity vector. The gravity vector helps to detect external disturbances or internally

accumulated errors such as gear backlashes, manufacturing/assembly misalignments or local

control imperfections. The selected sensors are quite commonly used in many embedded

systems. The use of similar sensors has been reported in different modular robots too. For

instance Sambot in [Wei et al., 2011] uses infrared sensors, accelerometer and gyroscope

integrated in modules whereas [Zhu et al., 2014] presents a non-actuated sensor module just

for carrying linear hall effect sensors and a camera.

2.3.3 Spotlight LED

A powerful RGBW-spotlight LED board has been developed to illuminate a workspace when-

ever the ambient lighting is insufficient. This spotlight can be integrated within any Roombots

module at multiple possible locations. Particularly when Roombots need to incorporate a

camera, the environment needs to be well-lit. Whenever there is a lack of light, a module

can carry the spotlight to the desired location and enable the computer vision approaches.

Furthermore, such a colourful and strong light can be used to induce emotions by playing

with color and intensity functions. For example creating a sunset effect in a bedroom without

any windows or fireplace feeling in a living room without a fireplace.

2.3.4 Universal gripper

In the vision of Roombots as depicted in Fig. 2.1, the functionality of object manipulation had

to be implemented in the Roombots platform. There were essentially two options available:

a manipulator either could be designed as a standalone system that could be attached to a

module with the ACM, or it could be implemented directly into a module. For the first option,

the method of manipulation would be more open since the space needed for it is not restricted

as a standalone gripper unit could have arbitrary dimensions. As a disadvantage, a new

power management and communication line would have to be designed for such a system.

18

2.3. Material and methods

For the latter option, only methods that do not require much space can be considered as

everything has to fit into one hemisphere, although power and communication can be shared

from the module itself. This advantage led to the decision to integrate a manipulator into a

module, and thus an appropriate gripper technology had to be found with two constraints:

(i) to work in limited space and (ii) to be able to manipulate a variety of everyday objects

(glasses, remote control, USB stick, cutlery, etc.). After much consideration, the interesting

concept of granular jamming was used to develop a “Universal Gripper” (UG) similar to the

one in [Brown et al., 2010]. This gripper consists of a closed, flexible membrane (often a party

latex balloon) filled with small granules (e.g. sand, ground coffee, etc.). The membrane is

normally soft and adapts to the shape of an object when pushed onto them. The actual

gripping is achieved by transitioning the fluid state of the granules into the solid (jammed)

state by creating a vacuum inside the membrane. This effectively locks the shape of the

membrane which now is able to exert a gripping force on the object. Due to this interplay of a

soft, shape-adapting state and a solid, gripping state, this gripper is capable of manipulating

a wide range of objects as demonstrated in various previous works (e.g. [Brown et al., 2010,

Amend et al., 2012, Amend et al., 2016]).

Integrating a UG into a Roombots hemisphere still posed a number of challenges, mostly

around downsizing the mechatronic components, especially the required and usually large

vacuum pump. A careful selection of a miniature vacuum pump (Schwarzer SP 100 EC) and

small-scale solenoid valves (SMC S070C-SAG-32) resulted, to the best of our knowledge, in

the first-of-its-kind mobile jamming gripper integration within an MR. Two modules have

been equipped with this type of gripper which is filled with ground coffee as in the original

version in [Brown et al., 2010]. In addition of being able to manipulate various objects, the

control of the gripper is extremely simple and robust where the vacuum pump - with the

solenoids - either inflates or deflates the membrane to set pressures, measured by a single

pressure sensor (Honeywell 015PAAA5). Details of the implementation are depicted in Fig. 2.4

left, and the final Roombots gripper module is shown in Fig. 2.4 on the right. Although the

Universal Gripper is very capable, it has few limitations such as the object size and weight

which depends on the size of the gripper, pressure in the membrane chamber and type of

granules and membrane. Furthermore, it needs to press against to object. Hence, it is not

always suitable to handle standing objects that has sensitive balance or soft objects.

2.3.5 Electronics

A considerable part of the electronics was redesigned to accommodate for the hardware

changes (see Fig. 2.5 for details). The power board, motor control boards and ACM control

boards went through major updates. The technology of communication with the modules

(Bluetooth) as well as the communication bus inside a module (RS-485) were kept the same.

Three new board types were designed to control the additional hardware. The hemisphere with

an integrated Universal Gripper contains a gripper board that is responsible for controlling the

pressure inside the membrane by using a pressure sensor, vacuum pump and valves. Further,

19

Chapter 2. Roombots

Figure 2.4 – Integration of a Universal Gripper into a Roombots hemisphere. Left: a miniature
vacuum pump and small-scale solenoid valves allowed the components to be fully contained
and a specialized gripper PCB alike the existing electronics measures and controls the pressure
inside the flexible membrane. Right: a gripper module with the Universal Gripper sticking out
on top, replacing one of the ACMs.

a specialized spotlight board controls the powerful RGBW-LED integrated in one hemisphere

which is used for illumination purposes in different colors and brightness. Finally, a LED-ring

board gives feedback to a nearby user (this board has been developed in [Ozgur et al., 2014]).

Further, readout boards for other new sensors have been integrated in Roombots. The values

of the proximity sensors and accelerometer are not directly used by modules, however they

can be reported to an external PC which can execute higher level controllers (as e.g. in

[Khodr et al., 2019] for a local connection search algorithm), summarized in section 2.3.7.

2.3.6 Motor control

Changing the hardware led to changes in the firmware of various boards in Roombots. The

new absolute encoders have a much lower resolution (number of ticks per rotation) than

relative encoders, which particularly affected the derivative control. Hence, the frequency of

the control loop was reduced and PID parameters were adapted. Absolute encoders read over

SPI and the communication channel is going through slip rings. Although the communication

with absolute encoders is mostly smooth, rare encoder reading errors can occur. Various

reading error detection and safety procedures have been implemented. For instance, all the

20

2.3. Material and methods

Figure 2.5 – Roombots electronics is also modular and distributed throughout a module
in hemispheres H0-H3. The background of each hemisphere region is shaded to match
colors of the real hemispheres. In each Roombots module, there exists 3 motor driver boards
(MB), 2 active connection mechanisms boards (ACM), 2 proxy boards (PrB, used to convert
voltages and ease assembly), 2 LED boards (LB, used to give feedback to the operator), 1
communication board (CB, provides Bluetooth connection and drives the inner RS-485 bus)
and 1 power regulation board (PB). Furthermore, each module can support extra options such
as spotlight board (SB) or Universal Gripper control board (GB) in the outer hemispheres.
Extra option slots are identical and each electro-mechanical subsystem can be placed in either
of the outer hemispheres. The extra options are not considered as essential for the basic
operation of Roombots modules; only selected modules are equipped with them. Electrical
connections within a module are illustrated with different colors: Red (15V), orange (6V),
brown (5V), green (RS-485 bus), blue (SPI) and black (support boards for easy user access).
Each physical connection is shown with a circle whereas unconnected lines pass through a
board without a circle.

DC motors are disabled if the position error gets unexpectedly large which may occur due to

external disturbances or persistent erroneous encoder readings.

2.3.7 Connection control

The proximity sensors and accelerometer data can be used to check the validity of a connec-

tion. A connection can only be formed if two plates are close enough and correctly oriented

which can be checked by the IR-sensors and hall effect sensors. Additionally, in a lattice-type

configuration, the gravity vector must be collinear to either the global x-, y- or z-coordinate,

measured by the accelerometer; other directions indicate non-idealities such as body elasticity,

local control error, or gear and ACM backlashes.

These properties are used in [Khodr et al., 2019] to develop a local search algorithm for reliable

connections that has two stages. In our case, the condition for a successful connection is the

proper alignment of the four hall effect sensors. Since their values is maximal when directly

opposite a magnet, it is enough to threshold the sum of the four sensors to validate a possible

21

Chapter 2. Roombots

Figure 2.6 – Pitch angle compensation. The accelerometer detects deviations (red solid line)
from the global orthogonal frame (red dashed line) and uses an inverse kinematics model of
the module to correct imperfect attachments and module deflections.

connection. If the sum is above the threshold when a connection sequence is initiated, the

command list continues normally. If the sum is below the threshold, the first stage of the local

search engages, where the accelerometer data is converted into a pitch angle. The pitch then

is used to generate motor commands for a new desired angle by an inverse kinematics model

of the module (Fig. 2.6) to reorient the plates orthogonally. If this is still not satisfying the

threshold condition, the second stage with random movements engages. This is because the

occurence of ACM misalignments strongly depends on the movement history of each module

such that modeling this effect is infeasible. Instead, one of the three motors is randomly

chosen and moves by either +1° or -1°, followed by a new evaluation of the hall effect sensor

values. This process is repeated until the threshold condition is satisfied.

The result of this local search algorithm was a drastic improvement of single-module on-grid

locomotion: while one module before could only locomote on a tabletop and had a 0% success

rate for certain movements on a wall or ceiling, the new connection control was tested in three

of the most challenging scenarios (i) going up when attached to ceiling, (ii) going up when

attached to a side wall, and (iii) going left when attached to a side wall. Each scenario was

repeated 10 times. The new docking position search method works with a 100% reliability for

all movements (average convergence time for a connection by random movement is 43.53 s),

a crucial property for any self-reconfiguration with the hardware.

2.3.8 Graphical User Interface (GUI)

For designing different complex tasks as outlined in the introduction, an easy-to-use User

Interface (UI) was needed. Different user interfaces with Roombots were already explored in

the past, e.g. using Playdough to form structures [Mutlu et al., 2018] and an approach based on

Virtual Reality (VR) [Nigolian et al., 2017], however these previous works could not be adapted

to larger scale dynamic formations. The Playdough interface does not work in real-time, and

22

2.3. Material and methods

the VR only allows a limited kinematic range for simplicity reasons. Since Roombots are

able to form complex geometrical structures, it seemed natural to develop a Graphical User

Interface (GUI) to be able to visualize such formations. This GUI has been developed with

Unity1, a 3D animation software that often is used for creating video games. Even though

Unity has the capability to function as a physics simulator, we only use the visualization aspect

of the software. Naturally, the visualization does not always represent the real configuration of

modules perfectly due to the physics present in the real world, causing e.g. elastic deformation

of modules and attachment plates under load. This effect as well as others, arguably could

be modelled and hence included in the visualization. However, throughout our experience

with the real modules, we found these effects and other undefined sources of noise to be too

stochastic for modelling and decided to implement control routines in the modules to account

for discrepancies. These routines will be discussed below in section 2.4.1; the GUI itself was

kept simple and assumes perfect conditions.

Fig. 2.7 shows screenshots of an example usage of the GUI. There are three main parts: control

panel, visualization panel and message panel. The control panel has three sub-categories:

manual commands, operation mode and list of modules. In “manual commands” (left), single

commands (motor, ACM, LED, gripper, spotlight) can be created and sent to specific modules.

These commands can also be added to a list which is created on the fly. In “operation mode”

(second left), this list of commands is stored, and it can be executed in a single sequence to

perform a specific task. Command lists also can be saved and loaded here. This category also

allows the execution of predefined movements of a Central Pattern Generator (CPG) as well

as executing external plug-ins, e.g. control of a motor with a computer keyboard. The yellow

border around the panel indicates that the control has been switched from the virtual modules

to the actual real-world modules. Connected modules provide real-time feedback of all the

motor and sensor states which then are displayed in the GUI. In “list of modules” (second

right), all virtual modules are listed and modules can be created or deleted. The current state

and positions of all modules can be exported as a “scene”, and scenes can also be imported

again, allowing a quick setup for new tasks. Here, each virtual module can also be connected

to a real module by bluetooth, which then allows an easy switch between performing a list

of commands with the virtual modules alone or together with the real connected modules.

On the bottom, the visualization panel has an arrangement of virtual Roombots modules is

visible. This panel also contains and a (empty) message panel to display warnings and other

messages (not shown here).

2.3.9 RGB-D vision system

Some of the proposed tasks require an external system that tracks a user and furniture present

in a setup. We have already used the Microsoft Kinect sensor in previous works for tracking

purposes and reimplemented the same system also for the current chapter. Here, a Kinect

v2 sensor is mounted on the ceiling and observes a designated ground area. It functions as

1https://unity3d.com

23

Chapter 2. Roombots

Figure 2.7 – Screenshots of the GUI. The control panel can be switched between “manual
commands” where specific commands can be sent to single modules, “operation mode” where
a sequence of commands can be played and additional modes are available (CPG and plug-ins)
and “list of modules” where all modules are listed and can be connected by bluetooth to real
Roombots modules. On the bottom, a visualization panel shows a Roombots arrangement,
and the message panel below can display various informations during runtime (not shown
here).

a depth sensor and can distinguish objects with different heights in the scene. It is assumed

that the highest object in the scene is the head of a user, and multiple pieces of furniture are

marked in specific ways to make them unique and define their orientation. Fig. 2.8 a) and b)

give an overview of the tracking system. A recent use of RGB-D sensor in the scope of SRMR

has been reported in [Tosun et al., 2018] where a system made out of Smores carry the RGB-D

sensor around and use it for closed loop self reconfiguration as well as navigation.

2.3.10 Robotic-enhanced furniture

As two example pieces of furniture to demonstrate the proposed tasks, we equipped a small

table and a chair with Roombots modules to extend their functionalities. Fig. 2.8 c) and d)

show both pieces of furniture. The chair is put on passive caster wheels such that it can roll

24

2.4. Experimental results

Figure 2.8 – RGB-D camera and furniture used in the sub-tasks. a) An overhead Microsoft
Kinect depth sensor (red arrow) can track objects within the area marked with masking tape.
A chair is shown in this area. b) View of the camera; depth is mapped onto pixel gray-scale
making the chair easily identifiable. c) Close-up view of the caster wheels and the differential
drive-like wheel modules of the used chair. d) The used table with four wheel modules and a
meta-module with a gripper attached underneath.

in any direction, and two modules use their outer hemispheres as wheels to drive the chair

similar to a differential drive. Since the main load is borne by the passive wheels, a user can sit

on the chair, however the chair is only moved by the modules under no additional load. For the

table, each leg is extended by one module, and again using the outer hemispheres for rolling,

the table can move almost omni-directionally. Additionally, a gripper structure consisting of

one gripper module in series with a standard module can be mounted underneath the table.

This allows the table to pick up objects from the ground and place them onto itself as will be

shown later.

2.4 Experimental results

To demonstrate the augmented capabilities of the modified RB system, we designed five

main tasks which are demonstrated in various sub-tasks. The results of these experiments

are presented in this section and the link to the supplementary video including all described

experiments can be found in Tab. 2.1.

Table 2.1 – The video is available as supplementary material for this article (see link)

Description Location

1 RB sub-tasks link

25

Chapter 2. Roombots

2.4.1 Easy-to-use user interface: The GUI

GUI is almost the backbone of Roombots. Although, it is possible to control Roombots without

a GUI, it significantly eases any use. There is no quantitative data to report in this section.

However as an example to present the work flow of the GUI from task definition to hardware

execution, we here describe the development of a simple demonstration, “Circle walk”. The

demo consists of a sequence of movement commands that make a module locomote on-grid

in a circular manner.

At startup, the GUI visualization area is empty, and a new virtual RB module is added. The

module is initialized with both ACMs opened and all motors in their zero state. By default, it is

placed in the GUI vertically onto the grid with one ACM facing the grid. First, an initialization

script is loaded into the GUI that attaches the module to the grid and brings the motors in

the correct position to start the circular loop. Then, the main list is loaded and the loop-box

ticked, which makes the full sequence loop as long as needed. This main list of commands

consists of a predefined sequence of ACM opening and closing actions and performing 90
◦ rotations of motors in between where looping these actions makes the module move in a

circular fashion on a single 2x2 grid plate. The top row in Fig. 2.9 shows the initialization and

the first half of the circular loop demonstration in the GUI.

Once the demonstration has been developed in the GUI, it is only a matter of connecting

a real module to the virtual module in the GUI. Once connected, the mode is switched

from “Simulation” to “Roombots” to send commands to the bluetooth connection, and the

demonstration is performed with the hardware (bottom row of Fig. 2.9). Additional control

routines are implemented to increase the rate of success for executing commands. The

GUI continuously crosschecks the setpoints of motors and ACMs with the actual values

fed back from the module. If read values do not lie within a small margin, GUI sends the

corresponding commands again. The most crucial part of a reconfiguration is forming the

connection to a new attachment point. Handling misalignments during this process required

more elaborate strategies. In our case, the sensors implemented on the ACM plates give the

necessary information concerning the correct alignment. If a misalignment is detected, a

search algorithm performs small actions around the setpoints that usually result in a successful

connection. Details of this algorithm can be found in [Khodr et al., 2019].

The GUI possesses more features, e.g. forcing the starting point for the forward kinematics of

connected RB modules in simulation, adding pauses to a sequence of commands, running

CPG networks and external plugins and more. The described example only present the basic

functions of the GUI which are enough to make the development of simple demonstrations

relatively quick and easy.

Research on most of the (SR)MR systems begins with simulation to study the feasibility of

the system because simulation is easier and faster to set up compared to robot hardware

and can give valuable information. Moreover, very complex scenarios can be explored in

simulation environment. Such a simulation is not necessarily user friendly. Nevertheless,

26

2.4. Experimental results

Figure 2.9 – Circle walk demonstration. The GUI is shown in “operation mode” where a
preprogrammed list of commands is executed in sequence. The first half of the circle walk is
shown; looping the script makes one module go around on a 2x2 grid. The corresponding
hardware configuration is shown as insets.

most of the modular robotic systems are accompanied with simulation/GUI tools. For in-

stance, [Krupke et al., 2012] explains a simulation environment for a modular system whereas

[Kurokawa et al., 2000] includes self-reconfiguration steps too. One of the most comprehen-

sive and recent SRMR GUI (VSPARC) is designed for Smores in [Jing et al., 2016]. It is using

Unity engine similar to our approach. Most of the features presented for VSPARC also exists in

the Roombots GUI, adapted for the Roombots hardware.

2.4.2 Scalable self-reconfiguration

As an example of a larger self-reconfiguration task (i.e. with more modules and more steps)

that goes together with the application of adaptive furniture, we show the formation of a

small chair with 12 modules. The details of the planning of this demonstration can be found

in [Khodr et al., 2019]. The work includes the development of a local search algorithm and

closed-loop control during the connection process that enables more reliable reconfiguration,

as well as the derivation of an A* search algorithm that finds the motor command sequence to

form a given structure from arbitrary initial conditions.

Here, only the final formation sequence is shown, starting from 12 modules standing on a flat

grid. In order to decrease the number of nodes on the search tree for such a large number of

possible motor actions at each state, pruning methods are included in the search algorithm to

avoid exploring not promising branches. The formation of the full chair is divided in to 6 sub-

configurations (manually preprocessed by an operator) that must be reached in a specified

27

Chapter 2. Roombots

Figure 2.10 – Snapshots of the chair formation sequence. The chair is built in 6 stages (4 for the
legs and 2 for the backrest). The large time loss in the middle is caused by a battery change and
a manual intervention to connect the leg segments, however as shown in the supplementary
video, the self-reconfiguration is largely autonomous.

order and build up the chair in stages. Fig. 2.10 shows snapshots of the formation process.

In 3D SRMRs, we could only find a few systems that demonstrated self-reconfiguration with

more than 8 modules. M-TRAN demonstrated cluster flow with 24 modules (48 DOF total)

in [Kurokawa et al., 2008]. However, in most of the demonstrations of M-TRAN, the struc-

ture stays connected. ATRON [Brandt et al., 2007] presents a sequence with 9 DoF. Simi-

larly, SMORES demonstrate a system with 6 up to 9 modules (4 DOF each) with consider-

able autonomous (closed-loop) shape changing with disconnections and re-connections

in [Tosun et al., 2018] and [Daudelin et al., 2018]. Although M-TRAN, ATRON, SMORES and

various other SRMR are potentially capable of showing a similar application shown in 2.10, to

the best of our knowledge this is the first time a 3D self-reconfiguration is shown using more

than 30 DOF (36) with all modules initialized as separate (detached). Further details of this

sub-section will be explained in Ch. 3.

28

2.4. Experimental results

Figure 2.11 – Following chair. An overhead Kinect (top left panels in each snapshot) tracks the
position and orientation of an assistive chair (short blue line) and the path to the patient (long
red line). The user can sit whenever needed as the chair follows the user inside the predefined
area.

2.4.3 Mobile furniture

The task of mobile furniture is demonstrated in four sub-tasks: following chair, evading chair,

adaptation to environment and overcoming obstacles.

Following chair

We explore the possibility of an assistive chair that follows a user to always be available in

case of the user needing to rest. The system is aimed at preventing falls - a common problem

among elderly - and providing assistance for manual recovery after a fall. It consists of an

RGB-D camera tracking the position and orientation of the user and of the assistive chair in

a predefined area. Two Roombots modules are attached to the chair which allows the chair

to move anywhere and in any orientation in the area, similar to a two-wheeled differential

drive robot. A controller (PC) computes the difference between the position and orientation

of the user and the chair and sends movement commands to the modules such that the chair

is always next to the user ready for the user to sit down (Fig. 2.11).

Evading chair

We also demonstrate the inverse scenario where Roombots furniture has to make space to

let a user pass. This scenario could take place in a packed apartment where the available

space is limited and shared between user and furniture, or a user is physically unable (e.g. in a

wheelchair) to move furniture out of the way. We again used the depth map to track a user and

the same chair as in the previous demonstration. The chair initially is located in the middle of

a defined area and the user would like to cross this area. A controller (PC) extrapolates the

desired path of the user and moves the chair orthogonally to this path out of the way to make

29

Chapter 2. Roombots

Figure 2.12 – Assistive furniture opens up space. An overhead RGB-D camera (top left panels
in each snapshot) tracks an assistive chair (short blue line) and the user’s location with respect
to the chair (green line). It extrapolates the path of the user (white lines) and moves the chair
orthogonally to it (short red line) before returning to its original position after letting the user
pass.

space for the user to pass. After creating enough space and the user passing, the chair moves

back to its original position (Fig. 2.12).

It is important to note that both “following and evading chair” demonstrations are not com-

plete and comprehensive solutions to solve the problem. The full solution would require

significantly more research which falls out of the scope of this chapter and the SRMR field.

Such a solution would involve detailed intention detection considering a much wider spec-

trum of actions and would incorporate safety and emergency protocols. Nevertheless, they

serve as a proof-of-concept that SRMR can be used in such applications.

Adaptation to environment

Roombots-enhanced furniture can have additional functionalities besides providing mobility

to existing pieces of furniture. In this demonstration, we equip a small table with four modules,

fixed to the end of each leg of the table. We use the outer hemispheres (one DoF) as wheels to

enable the table to act similarly to an omnidirectional vehicle. In this specific example, the

two other DoFs of a module can move in a null-space such that the total height of a leg can

be varied. The table transports a set of objects and this height adjusting ability can be used

to keep the tabletop horizontal on uneven terrain to prevent the objects from falling off the

tabletop. We let the table drive from a straight area into a sloped area. In the first case without

adaptation, the set of objects falls off the table after a short distance on the slope area. If the

slope compensation is activated, the tabletop can be kept closer to the horizontal plane which

prevents the objects from falling on the sloped area. Fig. 2.13 depicts snapshots of both cases.

30

2.4. Experimental results

Figure 2.13 – Active slope compensation. Top row: a table driving over a sloped area (left side
of double stripes) tilts its tabletop, causing objects on top of it to fall (red circle). Bottom row:
the attached RB modules can partly compensate for the slope by shortening the hind legs of
the table, keeping the tabletop more horizontally such that the objects stay on top.

Overcoming obstacles

For the table in the previous demonstration, an additional behavior is available by “rotating”

the RB modules around their attachment point at the end of each leg. This causes a module to

move in a circular manner around the tip of the leg, performing a movement similar to a step.

We use this movement to demonstrate climbing a small ledge that the table cannot drive over.

The table drives towards the ledge until the front legs are aligned and touch the ledge. The

front RB modules then rotate, moving on top of the ledge by doing so. The same process then

repeats for the hind legs, after which the table has successfully overcome the ledge. Fig. 2.14

depicts snapshots of this process. In this demonstration, the table is piloted by a human and

the sequences are manually initiated.

2.4.4 Manipulating furniture

One of the most needed and repeated task in daily life (as well as industrial settings) is object

manipulation. Hence, it is an implicit requirement for a SRMR to be able to manipulate the

surrounding objects, particularly when humans and SRMR need to cohabit.

Object pick-up

A small table is equipped with one module on each leg that enables the table to move similarly

to an omnidirectional vehicle. Additionally, a meta-module structure with an implemented

Universal Gripper is attached to the underside of the table. The task is to start at location X,

pick up a pen at location Y and bring it to location Z. The table is again manually controlled

and rolls into position to pick up the pen. The gripping sequence is preprogrammed and

executed once the table is in the correct position. It picks up the pen from the ground and

31

Chapter 2. Roombots

Figure 2.14 – Overcoming a ledge. A table drives until its front legs touch the ledge. The
attached RB modules then perform a rotation around their attachment point, causing them to
move on top of the ledge in the process. The same movement then is repeated for the hind
legs after which the table has overcome the ledge.

puts it on top of the table which then rolls to the final location. Fig. 2.15 shows snapshots of

this manipulation task.

Passing objects

One of the advantages of the Universal Gripper is that it can grip objects regardless of their

shape and orientation (within a size limit given by the size of the gripper). This is promising

for passing objects from one gripper to another since the passing sequence does not need to

take the object’s shape or orientation into account. In the framework of multiple RB furnitures

collaborating with each other, such a scenario of passing an object between pieces of furniture

can easily be imagined. We adopt this task in a simpler setup where an object is passed from

one RB gripper module to another. The first module picks up an object (pen) from a tabletop

and rotates its gripper to face the gripper of the second module. In this position, it is important

to notice that simply making the two grippers touch orthogonally causes issues for the second

gripper to actually grip the object as it would require the surface on the object that is currently

occupied by the first gripper. There are several ways to deal with this issue; here we present

the preliminary results of inducing a “shift” such that the second gripper touches a free part of

the object (this also requires that the object is somewhat elongated to possess such a free part).

The second gripper then grips the object upon which the first gripper releases, transferring

the object to the second gripper. Fig. 2.16 is showing snapshots of transferring a pen from one

to another module.

Even though we only show one example of such mid-air sensor-less passing of objects be-

tween two modules, we see much potential in using this unique way of object transfer in a

collaborative environment as depicted in Fig. 2.1.

32

2.4. Experimental results

Figure 2.15 – Table picking up an object. An assistive table with manipulating capabilities
moves towards a pen dropped on the floor. It picks up the pen with a Universal Gripper, places
it on top of the table and brings it to the user.

Opening water bottle

The third demonstration in this task concerns a more assistive subtask of manipulation. Here,

we briefly validate if a gripper structure can help with opening a PET water bottle. A user has

to hold the bottle and push it into the gripper of a waiting RB structure. The gripper then

actively grips the cap of the bottle and performs a rotation to open the cap. Once opened, the

user can remove the bottle and the modules place the cap on the table (Fig. 2.17).

Object manipulation capabilities of SRMRs

Almost all SRMRs have means of connecting and detaching to each other. Some use mag-

netic attraction whereas a big portion of them use mechanisms. For example, the Active

Connection Mechanism (ACM) is the mechanical latch Roombots use for the purpose of

connection. In theory, this connection mechanism - and similar ones in other systems - could

also be used for object manipulation. However, most of the times these self-reconfiguration

methods are not suitable for manipulating arbitrary objects. It is possible to design a grip-

per module as an extension for almost all of the SRMRs similar to [Brandt et al., 2007]. Also,

some of the SRMRs have already integrated gripper modules such as [Mondada et al., 2005]

and [Gross et al., 2006]. These existing grippers are similar to conventional manipulator end

effectors. An integrated universal manipulator is demonstrated for the first time with this

work.

33

Chapter 2. Roombots

Figure 2.16 – Two RB gripper modules passing a pen in mid-air. The first module picks up the
pen from the table and orients it to face the gripper of the second module. A shifting motion
then takes place such that the second gripper has a free part of the pen to grab onto. The first
module then presses the pen into the gripper of the second module and releases it after the
pass is completed.

2.4.5 Interactive furniture

Kinect tracking control

We can couple movement control of RBs with the tracking abilities of the Kinect. Using depth

information and the body segregation method of the Kinect, we can define intuitive hand

gestures for certain commands. Such a user interface was explored in [Ozgur et al., 2014],

however not in real-time. There, a user would first point to an RB module and then to a desired

goal position, and a planning algorithm then computes and executes a movement sequence.

Here, we use real-time inverse kinematics to convert the position of a users hand, tracked by

the Kinect, into movements commands to make a meta-module follow the hand. The top row

of Fig. 2.18 gives an example of this interaction.

LED capabilities

At last, we showcase LED lighting capabilities as an interaction method. Each module contains

two rings of 6 RGBW-LEDs that can be used to e.g. display the state of a module to a user or

indicate if an ACM is open or closed. Additionally, one module possesses a powerful RGBW-

LED that can be used as a spotlight to illuminate a specific region (as already discussed in

[Mutlu et al., 2016]). In the bottom row of Fig. 2.18, some lighting examples are shown.

2.5 Discussions and future work

The presented hardware demonstrations showcase the capabilities of the upgraded Roombots

modules. We are aware that the outcomes of the demonstrations are rather of qualitative

34

2.5. Discussions and future work

Figure 2.17 – A gripper metamodule assisting in opening a PET water bottle. The user pushes
the bottle into the gripper which grips the cap and then performs a rotating movement to
open the bottle.

than of quantitative nature as this chapter aims at exploring a potential use of (SR)MR for

adaptive and assistive furniture. In this context, we successfully presented proof-of-concept

demonstrations of RB modules completing a large and complex self-reconfiguration task

involving a significant number of autonomous connections with minimal human assistance.

Further, RB modules are used to create mobile furniture that can follow and evade users, adapt

to the environment and can overcome obstacles. Manipulation tasks involved RB modules

picking up an pen, opening a PET bottle and a proof-of-concept demonstration of passing

objects between two modules. At last, RB modules possess various LED lighting capabilities.

We have showed examples of how to use simple gestures to control an RB metamodule and

developed a dedicated GUI for an easy monitoring of modules and creation of demonstrations.

The challenges for the presented experiments were to increase the connection reliability and

to develop an interface to quickly create demonstrations with a large number of modules. For

the reliability, on the one hand we could significantly improve the movement precision of

all DoFs by changing the materials of the main gearbox and ACM from plastic to aluminum

and by integrating a new absolute encoder. The increase in weight was compensated for

with stronger motors. On the other hand, reconfiguration sequences now use a closed-loop

controller to better align an ACM with a neighboring plate thanks to the integration of infrared

and hall-effect sensors. Additionally, a ring of permanent magnets locally helps to form a

connection while retaining the hermaphroditism of the ACM. Concerning the interface, the

developed GUI contains all the key functionalities to rapidly develop Roombots scenarios. It

allows for a safe creation of motor sequences in its virtual mode, and due to the improved

connection reliability, the switch from virtual to real modules has a high chance of correctly

performing the demonstration despite the disturbances present in the real world.

While a single module now works effectively, reliable position control of multiple modules in

series remains a challenge. With Roombots, an example are the necessary more complex on-

35

Chapter 2. Roombots

Figure 2.18 – Interaction with tracking and lighting. Top row: a users hand is tracked with
the Kinect sensor and its position converted into inverse kinematic commands that make
the meta-module follow the hand. Bottom row: lighting capabilities of Roombots with the
integrated LED-rings and the powerful RGBW-spotlight.

grid locomotion capabilities of a meta-module to perform a self-reconfiguration as in task 1,

for which the capabilities of a single module are too limiting. Even though the mechanics have

been upgraded to cause less gearbox backlash, there are two main sources of misalignment

that hinders the autonomy of this functionality: (i) the connection between two modules

possesses unidentified mechanical play, and (ii) two modules in series still cause significant

elastic deformation of the module shells.

For the experiments in this chapter, only the chair reconfiguration task involved meta-module

reconfiguration where human assistance thus was needed in a few cases. Nevertheless, we

regard the successful demonstration of the autonomous chair formation using 12 modules as

a significant milestone in Roombots project. It validates both the capabilities of the hardware

and the self-reconfiguration framework. It should be noted that relatively minor human

intervention during the hardware demonstration was needed despite the efforts for autonomy:

3 manual interventions were needed in 107 executions of motor commands and connection or

deconnection events (of which 16 events are independent connections only). In particular, the

random local search algorithm to align the ACMs does not handle all possible cases equally

well and may not converge because the positions of the two connecting plates are initially

too misaligned due to elastic deformations and mechanical play. As a result, the local motor

actions caused by the algorithm do not allow a meaningful quantitative comparison of the

sensory feedback to steer the connection to a more aligned state, in which case the external

assistance was needed. A more elaborate algorithm together with a proper modelling of all

physical effects could be able to bring the reconfiguration to true autonomy. However, the

Roombots robotic platform in its current form has rather reached an upper limit in terms

of complexity and weight, making it difficult to investigate such research. Further hardware

validation would thus likely require a new platform which could be part of future research in

the topic of SRMRs.

36

2.6. Conclusion

Another major future work is the integration of additional structural passive parts. In the full

Roombots vision, furniture consists not only of RB modules but also of lightweight structural

parts that will help to reduce the weight of the formations and allow the creation of larger pieces

of furniture such as a table. The addition of such passive parts requires a close collaboration

of RB modules to position them appropriately in a structure for which new reconfiguration

algorithms will have to be developed and tested, such as e.g. in [Bonardi et al., 2013].

By operating the upgraded Roombots design at the limitations of the platform through suc-

cessfully running the many different sub-tasks, we could identify the following additional

hardware and control challenges: (i) exploration of machine vision capabilities (such as e.g.

in visual servoing for autonomous docking) to allow modules to perceive their environment,

(ii) autonomous adaptation of morphology according to the task, either with visual feedback

and/or other means, (iii) exploring safe human-module interaction for a safe integration

of modular robots into our living space, (iv) improved autonomy and self-reconfiguration

performance through deeper research on AI methods, potentially with a new design of an

SRMR.

The continuous development of SRMRs gives us insights into current challenges and limita-

tions of the general concept of reconfigurable systems. In the long term, we could imagine

the technology being used in many more applications, e.g. reconfigurable factory lines where

it could be used both for reducing factory space and manufacture costs through machine

reconfiguration, or futuristic visions of reconfigurable satellites, exploration space robots or

even space stations where autonomous reconfiguration systems could prove invaluable for

their versatility and robustness. This work is another steppingstone towards the grand vision

of SRMRs.

2.6 Conclusion

In this chapter we presented the capabilities of the latest generation of our self-reconfigurable

modular robotic system “Roombots”. We outlined five key tasks that we consider relevant to

the vision of modular robotics for adaptive and assistive furniture and were able to successfully

demonstrate various sub-tasks in hardware. This required significant design improvements -

especially in the mechanics of the modules - which are described in detail.

Concerning the demonstrations, modules performed a large-scale self-reconfiguration into

a chair and provided mobility capabilities - such as following and evading a patient and

overcoming obstacles - to off-the-shelf pieces of furniture by being used similarly to omnidi-

rectional wheels. Specialized gripper modules were used to demonstrate basic manipulation

capabilities such as picking up a pen, and could show the passing of objects between two

modules. Interaction functionalities with colored LED and with the use of a Kinect depth

camera were presented and we discussed the development of an easy-to-use Graphical User

Interface (GUI) to control and monitor groups of modules.

37

Chapter 2. Roombots

Much of the presented results are of qualitative nature with a set of Roombots modules

achieving a defined sub-task. Our goal in this chapter was not to optimize a single task

leading to quantitative data to analyze, but to show the versatility of our SRMR system in many

different scenarios. We were interested in the capabilities as well as limitations of the current

iteration of our system to build new experience in hardware experiments that can be used

for future development of this or another SRMR, creating a benchmark of demonstrations

that other systems can compare to. Even though some of the demonstrations were partly

controlled by a human operator, autonomy is only one aspect of SRMRs and all of the presented

demonstrations have been crucial milestones for this project.

While the majority of the presented demonstrations is focused on adaptive and assistive furni-

ture, the tasks in general share the main challenges present in generic SRMR functionalities

in mechanics (connection, disconnection, movement, alignment), electronics (autonomy,

communication, sensors), software (control, computation, robustness, safety) and interaction

(user interface, user feedback). Roombots as a system presents one approach in tackling these

various and interdisciplinary challenges, which could inspire other systems with the solutions

described here, and we hope that this work is stimulating the general field of moduluar robots.

As for the future of the Roombots project, we envision the design and integration of lightweight

passive, structural parts that can be used in conjunction with active RB modules to form larger

furniture for our everyday environment. New collaboration algorithms (i.e. adapting existing

control framework or creating a new distributed control framework) will need to be developed,

especially regarding safety when interacting with modules, coming one step closer to the

integration of such robotic systems into our living space.

38

3 An optimal planning framework to
deploy SRMR

Ch. 2 presented a brief introduction of hardware and control improvements on RB. However,

autonomous planning for self-reconfiguration is a highly challenging task mostly due to

the sheer size of the inherent high dimensionality of SRMRs and unusual orientation of the

exes of rotation. The problem is highly nonintuitive for humans as it poses sort of a puzzle.

Luckily, self reconfiguration of SRMRs can be formally represented as discrete states and

well-defined actions causing states to evolve under certain assumptions (i.e. restricting the

motion capabilities to certain discrete angles and using SRMRs on an engineered discrete

environment). Thus, self reconfiguration can be formulated as a conventional search problem

where computers are much better than humans for crunching numbers. In this chapter, we

present further details of the planning framework introduced in Ch. 2. The framework has

been shown to work for Roombots and in principle it can be adopted to other SRMRs with

minimal changes. Chronologically, this work has been completed in a later phase of this thesis.

Otherwise, it could have been integrated in Ch. 4 and Ch. 6 to boost the autonomy of self

reconfiguration.

Reference publications

• This chapter is based on Hala Khodr, Mehmet Mutlu, Simon Hauser, Alexandre

Bernardino and Auke Ijspeert. “An Optimal Planning Framework to Deploy Self-

Reconfigurable Modular Robots .” Submitted to IEEE Robotics and Automation Let-

ters.

My original contributions

– Definition and supervision of MS thesis project of Hala Khodr

– Building the required electronics (Sensor plate and readout boards)

– Providing the base code for the framework

– Guiding and planning of experiments

– Performing experiments

– Reviewing the manuscript

39

Chapter 3. An optimal planning framework to deploy SRMR

3.1 Introduction

Self-reconfigurable modular robots (SRMRs) are “Swiss Army knives” of robotics. A set of

robotic modules are expected to perform a great variability of tasks by adapting to chang-

ing demands. The task space flexibility of SRMRs arises from the high number of degrees

of freedom (DOF) since each active module introduces at least a DOF to the system. On

the other hand, the same high dimensionality can be a curse too. Self-reconfiguration is

proved to be a NP complete problem for chain type of SRMRs by [Hou and Shen, 2010] and

[Hou and Shen, 2014] which renders conventional search methods impractical for large DOF

SRMR systems.

In order to overcome the limitation of search space explosion, [Arancha Casal, 1999], [Unsal et al., 2001],

[Yoshida et al., 2002] and [Tosun et al., 2018] introduce divide-and-conquer methods to re-

duce the problem into smaller substructures. Another way to overcome the high dimensional-

ity is introducing randomness is the search algorithm. For instance, [Brandt, 2006] uses RRT-

connect on ATRON to show possible benefits of randomness in hard problems. Yet another

approach is to efficiently restrict the motion capabilities of robotic modules for computa-

tional benefits as shown in [Larkworthy and Ramamoorthy, 2010]. Further extensive surveys

on control strategies proposed for SRMRs are presented [Ahmadzadeh and Masehian, 2015],

[Stoy et al., 2010] and [Kotay and Rus, 2000].

In [Fitch and Butler, 2008], the million module march algorithm was introduced as a fully

decentralized path planning using a Markov Decision Process (MDP) for sliding cube module

abstraction. It is extended in [Fitch and McAllister, 2013] to include kinematic model for a

physical module and it was applied on Superbot [Salemi et al., 2006].

Although, for certain type of SRMR (near) optimal distributed control methods exist, in most

of the SRMR systems search-based centralized methods are needed for complete and optimal

solutions. By optimality, we denote that the algorithm finds the minimum number of steps

among all possibilities from start to goal. By completeness, we imply that it guarantees to find

a solution if one exists.

So far, Roombots is more commonly used for free space locomotion experiments, even though,

on-grid (lattice) self-reconfiguration is studied to a certain extent [Sproewitz et al., 2010a],[Bonardi et al., 2012b].

In the locomotion through reconfiguration approach introduced in [Bonardi et al., 2012b],

only one RB module is moving; furthermore, it is neither allowed to manipulate another

one nor interact with other modules. This limits the possible reachable positions when en-

countering cases that one module alone cannot overcome, for instance a gap. When more

modules interact with each other, this becomes a subset of the self-reconfiguration problem.

[Sproewitz et al., 2010a] proposes a gradient based navigation for Roombots. The basic mo-

tion units considered in [Sproewitz et al., 2010a] are meta-modules (structure formed of two

modules connected together). This choice considerably augments the reachable space of

one basic unit; however it also increases the difficulty of manipulation with the increase of

the degrees of freedom, since more combinations of motor actions are possible to reach a

40

3.2. Terminology

desired position. One major issue in [Sproewitz et al., 2010a] is the inability to guarantee the

completeness of the process because of local minima.

The motivation of this chapter is to create a complete framework that can guarantee a solution,

provided that it exists, to move RB modules from initial poses to desired goal poses. The

smallest unit of the system is required to be a single RB module and collaboration between

modules must emerge whenever needed. Such planning capability is essential to unlock the

full potential of Roombots in self-reconfiguration, self-assembly, self-disassembly, locomotion

and flow applications. The framework should take into account all physical capabilities and

limitations of real RB modules in lattice environment (for instance alignment, maximum

weight, motor rotation, work space..). Thus, the generated plan should be executable in real

hardware.

In this chapter we propose an optimal planning framework for RB based on conventional

search algorithms. We compare blind and informed search methods while incorporating

crucial pruning methods and offline steps to accelerate the search to a point where we can

always obtain a solution for configurations involving up to a few RB modules (double digit

DOF) in medium-sized or restricted workspaces where gradient based methods fail. Thus, we

have a kernel functionality which can later be used in higher level planners to overcome larger

problems.

Contributions of this chapter are four-fold: (i) deriving an abstraction layer which is a novel

transition model from a configuration to another one, (ii) introducing a novel RB module

specific search heuristic which can be adopted to other SRMRs, (iii) complementary generic

methods based on look up tables and pruning rules to accelerate the search and (iv) compar-

ative study on trade-offs of different search methods in terms of complexity, completeness,

optimality and execution speed.

The rest of the chapter is organized as follows. Sec. 3.2 gives the notation, Sec. 3.3 explains

our formulation of self reconfiguration as a search problem, Sec. 3.4 compares different con-

ventional search algorithms on the self-reconfiguration problem, Sec. 3.5 describes hardware

considerations for the plan to be deployable in the real world, Sec. 3.6 briefly demonstrates

the framework on real hardware and Sec. 3.7 concludes the chapter.

3.2 Terminology

A Roombots (RB) module is the basic robotic structure in this work. Each RB module has

three rotational motors (M0, M1, and M2) and two active connection mechanisms (ACM0 and

ACM1) that allow it to attach to the grid, to other modules or to any passive surface equipped

with the corresponding connection plate. Fig. 3.1a illustrates these components. Each RBi

configuration, denoted Ci , can be uniquely abstracted to Ci ={HAC M 0 , HAC M 1 ,S AC M 0 ,S AC M 1 }

where HAC M i is the homogeneous matrix that represents the position and orientation of AC Mi

in 3D space and S AC M i is the status (open or closed) of AC Mi . We define a RB meta-module

41

Chapter 3. An optimal planning framework to deploy SRMR

the structure composed of two RB modules connected together to form a 6 DOF system as

seen in Fig. 3.1b. We consider our environment as a confined 3D space modeled as a box

with width nx , length ny and height nz as illustrated in Fig. 3.1c. The 6 sides of the box can

have fixed supports with passive connectors to which RB modules can attach. We create a

3D occupancy grid where each occupied voxel represents one sphere of an RB module. We

denote the number of RB modules present in the environment with N .

(a) (b) (c)

Figure 3.1 – (a) Single RB module components (b) RB meta-module example(c) Environment
Abstraction

3.3 Problem formulation as search

The goal of our framework is to compute the sequence of RB actions from an initial (I) to a

goal (G) state. By considering our task as a problem-solving agent, it is formally defined by five

main components [Russell and Norvig, 2009]:

The initial state that the agent starts in

Any arrangement of the N RB modules in a given environment is a state S={C0,C1, ..,CN ,O}

where Ci is the RB configuration of each module RBi , O the resulting 3D occupancy grid.

The possible actions (a) available to the agent given a particular state

We map the actions to the motors’ motion but restrict them to discrete movements. In other

words, at each state, there are mainly 9 actions per module:

• Rotate M0 to angle position −120°, 0°, or 120° (2 possible actions).

• Rotate M1 to angle position −90°, 0°, 90° or 180°(3 possible actions).

• Rotate M2 to angle position −120°, 0°, or 120°(2 possible actions).

42

3.3. Problem formulation as search

• Toggle (close if open and vice versa) each ACM (2 possible actions).

The transition model that determines the resulting state from the current one after doing

a specific action a

We abstract one RB module to a set of joints and links and use the popular Denavit-Hartenberg

(DH) convention to attach the reference frames. We consider the fixed ACM as base (b)

while the other ACM as end-effector (e), and the 3 motors as revolute joints. Using the DH

parameters, one can derive the homogeneous transform matrix T i−1
i specifying the position

and orientation of the i th frame with respect to the previous (i −1)th coordinate frame. Then,

the position and orientation of e with respect to b can be computed as

T b
e = T b

0 ·T 0
1 ·T 1

2 ·T 2
e (3.1)

where 0, 1, 2 refer to the frames attached to the revolute joints. One final multiplication is

needed to know the absolute position and orientation of e in the world frame :

HAC M e = HAC M b ·T b
e (3.2)

In the case of a meta-module, we will further need to update the state of the second (manipu-

lated) RB module. The base and end-effector of the first and the second modules (b1, e1, b2

and e2) are illustrated in Fig. 3.1b. Since the homogeneous matrix (HAC Me2
and HAC Mb2

) for

each ACM of the second RB module before action a is known, the transformations between e1

and b2 (T e1
b2), as well as between e1 and e2 (T e1

e2) are fixed and they can be calculated as:

T e1
e2 = (HAC Me1

)T
current ·HAC M e2

(3.3)

and

T e1
b1 = (HAC Me1

)T
current ·HAC M b2

(3.4)

Finally, the homogeneous matrix for each the ACMs of the second RB module after applying

an action a can be calculated as:

(HAC Me2
)new = (HAC Me1

)new ·T e1
e2

(3.5)

and

(HAC Mb2
)new = (HAC Me1

)new ·T e1

b2
(3.6)

where current denotes the instance before applying a, and new the one after applying it. Lastly,

knowing the positions of the bases and end-effectors, the 3D occupancy grid is updated by

computing the new voxels occupied given this action.

43

Chapter 3. An optimal planning framework to deploy SRMR

The goal test that determines whether a given state is the goal

we compare the 3D occupancy grid of the current state and that of the desired goal state. We

note that the goal state can be any distribution of RB modules, e.g. a complex structure or

disconnected modules distributed in space.

The step cost of taking action a in state s to reach state s′

we assume each step cost equals to +1.

3.4 Searching for solutions

Having formulated the problem, the next step is to find a solution, i.e. a series of actions to

go from state I to state G. Starting at the initial state I , the possible action sequences form a

search tree with I at the root, the branches are the actions and the nodes correspond to states

in the search space of the problem. The strategy adopted for searching follows the flowchart

shown in Fig. 3.2. We highlight two of its main blocks throughout the rest of this section: (i)

n

Initialize root node

& push into search list

Get all successors

If valid?

If in history?

History of
nodes

y

Add to history & search list

Get next node

Search
List

Solution found

If goal node?

If empty?

Solution
does not exist

y

y
n

n

Prune

n

y

For each
end of successors

Figure 3.2 – Flowchart for a general search algorithm

how to select the next node from the search list, and (ii) how to prune some branches.

44

3.4. Searching for solutions

3.4.1 Search algorithms: Expansion of the search tree

We keep track of nodes that have been generated but not yet expanded in a search list. The se-

lection of the next node from the search list depends on the search algorithm implementation.

We consider and compare four approaches: A* search, bidirectional A* search, breadth-first

search (BFS) and depth-first search (DFS). Only the bidirectional search has one additional

layer: two searches are initiated in parallel, one forward tree with the root being the initial state

and another backward tree with the root being the goal state. When two branches from each

search tree meet, the algorithm converges. In this case, it is important to highlight two points:

(i) in addition to specifying the goal 3D occupancy grid, we also define the configuration of

the RB modules at the goal state to be able to consider it as an initial state for the backwards

tree, and (ii) the check goal stage will not only include the goal test but an additional test to

check if the current node is in the history list of the other tree.

Heuristic choice for A*

Estimating the number of actions between two states is a very challenging task. One approach

is using machine learning algorithms to create effective heuristics in large search spaces as

in [Jabbari Arfaee et al., 2011]. Although it is interesting to investigate this approach, it does

not guarantee admissibility. In [Asadpour et al., 2009], they introduce a heuristic based on

the graph edit distance between two graphs. However, this chapter is limited to closed chain

reconfiguration. The adopted approach here is inspired from the optimal assignment metric

introduced in [Pamecha et al., 1997]. We explain in what follows our strategy. Since the goal

test is comparing current and goal occupancy grids, the heuristic function should have a

measure of the path cost between two 3D occupancy grids. Given a 3D occupancy grid in

the current state Oc and the goal 3D occupancy grid OG , we find a bijection between the 2N

occupied voxels in Oc and the 2N occupied voxels in OG which minimizes the sum of all voxel-

to-voxel costs using a minimum-cost-maximum-flow approach [Edmonds and Karp, 1972]:

αG = argmin
α

2N∑
i=1

f (gα(i), p(i)) (3.7)

where α is the assignment function, f is the voxel-to-voxel cost function p(i) is the position of

voxeli , gα(i) is the position of the assigned goal voxeli . And the final heuristic will be equal to

h =
⌈2N∑

i=1
f (gαG (i), p(i))

⌉
(3.8)

The voxel-to-voxel cost f is calculated as the sum of distances defined by neighborhood

sequences. In other words, starting from the given voxel, we specify the set of reachable voxels

by only one action: we denote this set as the voxel neighborhood. The smallest number of

neighbors traversed to reach a goal determines the voxel-to-voxel cost. We considered two

types of voxel neighborhood:

45

Chapter 3. An optimal planning framework to deploy SRMR

1. “26-neighborhood” (8-neighborhood in 2D) illustrated in Fig. 3.3a. Mathematically, this

can be calculated as

f (gαG , p) = max(|xG −xp |, |yG − yp |, |zG − zp |) (3.9)

where (xp ,yp ,zp) and (xG ,yG ,zG) are the coordinates of the current and goal voxel posi-

tions respectively.

2. Taking into account the capabilities of RB modules, we devise a new “RB neighborhood"

representing the reachable space of one voxel in one action with a RB meta-module

(Fig. 3.3b). For faster computation, we pre-calculate the cost between any two voxels

using this neighborhood given the environment defined by nx , ny and nz and save it in a

3D array denoted RB N . Moreover, since a single RB action can move up to three voxels,

we divide the cost by 3 in order not to overestimate the actual path cost. Mathematically,

the cost corresponds to

f (gαG , p) = RB N (|xG −xp |, |yG − yp |, |zG − zp |)
3

(3.10)

where (xi ,yi ,zi) and (xG ,yG ,zG) are the coordinates of the current and goal positions

respectively.

The 26-neighborhood breaks the admissibility of the heuristic function since it doesn’t take

into account the possibility of forming a meta-module leading sometimes to an overestimated

cost. The RB-neighborhood, on the other hand, guarantees the admissibility of the heuristic,

and therefore the optimality of the solution. Although this heuristic is admissible, it sets

the path cost low, leading to slow convergence. For this reason, we relax the restriction of

optimality constraint in favor to a faster convergence and also consider the 26-neighborhood

heuristic, not-admissible in this case. In conclusion, we implement and compare two versions

of A*: the first with admissible heuristic using the RB neighborhood (denoted as A*) and the

second with not admissible heuristic using 26-neighborhood (denoted as A* nah).

3.4.2 Pruning methods

Since the branching factor of the search space is very high, it is important to prune some ac-

tions to avoid exploring not promising branches. We apply two methods for pruning branches

during the search: (i) validity check and (ii) history keeping.

Validity check

We define not valid actions as:

• ACM closing action when no valid connector plate is present. Although this action is

46

3.4. Searching for solutions

1

y0

-1

-1

0

x

z

0 -1

1

1

(a)

4

y

20

0

x

2
04

2z

4

(b)

Figure 3.3 – Different voxel neighborhoods: (a) 26-neighborhood and (b) one octant of the
Roombots neighborhood. The darker color indicates the voxel in consideration. The voxels
with lighter color represent the reachable space in one action.

physically possible, it is actually not effective, so we prune it.

• ACM open action resulting in floating (not connected) RB modules.

• ACM open action resulting in heavy weight (more than 2 RB modules) on a single

module.

• Blocked motor actions when the kinematic chain is closed by being attached to a fixed

support from both ends.

• Motor actions resulting in a collision.

In order to fast compute if an action results in a collision, we devise a collision-check database

(offline) containing the occupied voxels during each motor movement for every RB configura-

tion. The action is considered valid only if these voxels are empty in the 3D occupancy grid.

For each motor action, the collision database is implemented as a sorted list with unique keys

representing the RB configuration. The list is loaded only once at the start of the program,

and used only for look-up during the program execution which is only an O(l og (n)) operation

where n is the length of the list.

History keeping

Keeping track of a history and performing similarity checks with newly considered nodes

is crucial to avoid going in unnecessary loops. Similar to collision lists, the history is also

implemented with a sorted list with unique keys generated for each state. We consider two

ways to check the similarities between a current state and one in the history.

47

Chapter 3. An optimal planning framework to deploy SRMR

• The complete way is to compare both the ACMs positions and orientations of each RB

module between the two states. We denote it as with orientation (w. ori.).

• The incomplete way to check state similarity is to only compare the ACMs positions of

each RB module between the two states. We denote it as without orientation (w/ ori.).

The second option (w/ ori.) is justified by the fact that many paths can exist between two

states due to redundancy. It is also motivated by the desire to decrease the convergence

time by reducing the effective branching factor with the price of giving up completeness and

optimality. It is important to note that with a bidirectional search the second option (w/ ori.)

approach cannot be applied since when the two branches meet, RB modules need to have the

same RB orientation for the sequence to be feasibly connected.

3.4.3 Framework performance analysis

We consider two test cases as shown in Fig. 3.4 to compare the performance of the search

algorithms implemented.

0

2

4

6
x

0
2

4
y

0

2

4

z

(a)

0
2

4 x

0
2

4y

0

1

2

3

4

z

(b)

Figure 3.4 – Goal state of the two test cases for algorithm comparison. (a) Crossing a horizontal
gap with 2 RB modules in a 6x8x4 environment where all the sides except the floor are disabled.
The middle cells of the floor are disabled emulating the presence of a gap. The goal state are
2 RB modules in the positions shown irrespective of their orientation. (b) Ground to ceiling
transition with 2 RB modules, in a 5x5x4 box where the side walls are disabled. The goal state
is 2 RB modules on the ceiling in the positions as shown irrespective of their orientation. In
both cases (a) and (b), the initial state is a random placement (pose) of the 2 RB modules on
the yellow area.

We compare 6 algorithms explained (A*, A* nah, Bidirectional A*, Bidirectional A* nah, BFS,

and DFS) with and without orientation history keeping when feasible. For each test case

and for each algorithm, we repeat the simulation 100 times with random initial states using

the same seed for the random number generator to guarantee a fair comparison. We also

introduce a timeout of 30 minutes to avoid very long runs. Computations are done using a

48

3.4. Searching for solutions

PC with an Intel Core i5-750@2.67GHz and 12 GB RAM. Finally, we extract 5 main features to

compare the considered algorithms:

The total number of solved problems within the limit of 30 minutes

we further categorize how many of them converged to a found solution, and how many

converged to no existing solution as shown in Fig. 3.5. By comparing the total number of

solved problems, we notice that in both test cases, all the runs with the approach “w/o ori."

resulted in 100% convergence to a solution in less than 30 minutes. Whereas, with to the

approach “w. ori.", only A * and bidirectional A* (non-admissible) converged to 100% in

the gap test case, and above 95% in the ceiling test case. The worst result is the BFS with

orientation algorithm with a score of only 30% in gap test case and 55% in ceiling test case.

Ground to ceiling transition with 2 modules

A* A* nah BFS DFS Bi-D A* Bi-D A* nah
0

25

50

75

100

N
 r

u
n

s
(<

=
 3

0
 m

in
s)

w. ori., no solution w. ori. w/o ori., no solution w/o ori.

(a)

Crossing a horizontal gap with 2 modules

A* A* nah BFS DFS Bi-D A* Bi-D A* nah
0

25

50

75

100

N
 r

u
n

s
(<

=
 3

0
 m

in
s)

w. ori., no solution w. ori. w/o ori., no solution w/o ori.

(b)

Figure 3.5 – Comparison of number of problems solved within 30 minutes for (a) gap and (b)
ceiling test cases.

The mean convergence time

execution times are reported in Table 3.1. BFS results in the longest convergence time. On the

other hand, A* with non-admissible heuristic and without orientation approach has shown

the fastest convergence time in both test cases.

49

Chapter 3. An optimal planning framework to deploy SRMR

Table 3.1 – Average convergence time of tested algorithms in [s] on both gap and ceiling test
cases

Gap test case ceiling test case

Algorithm w/ orient. w/o orient. w/ orient. w/o orient.

A* 671.5 48.9 441.5 261.0
A* nah 123.8 32.3 378.5 125.2

BFS 1049.2 139.1 924.0 196.7
DFS 327.6 107.7 224.8 238.1

BiD A* 584.8 NA 245.0 NA
BiD A* nah 85.3 NA 128.8 NA

The mean number of expanded nodes

we keep track of the number of nodes popped off the search list as an indication of the memory

used. Results are reported in Table 3.2. It is important to note that the numbers given in the

table are only valid and processed nodes. However, in total, we visit in the order of millions of

nodes (about 5 millions), most of which are pruned.

Table 3.2 – Average number of expanded nodes of the tested algorithms on both gap and
ceiling test cases

Gap test case Ceiling test case

Algorithm w/ orient. w/o orient. w/ orient. w/o orient.

A* 168.4k 17.1k 43.3k 12.1k
A* nah 24.6k 4.6k 30.3k 3.7k

BFS 167.4k 24.9k 67.7k 24.1k
DFS 23.9k 11.8k 9.9k 7.1k

BiD A* 220.2k NA 66.2k NA
BiD A* nah 23.9k NA 14.5k NA

The mean optimality percentage

since the fastest solutions were found from algorithms that don’t guarantee optimality(minimum

number of actions), we compare how far the found solutions are from optimal ones. Results

are reported in Table 3.3. The solutions found by A* “with orientation" are optimal by defi-

nition and are used as a baseline for comparison. We notice that all algorithms except DFS

are near optimal with around 70 % of confidence for gap test case and 80 % of confidence for

ceiling test case. Moreover, it is interesting to note that DFS appears to be way too far from

optimal although its convergence time is competitive with the other algorithms: if we look at

the number of actions in the solution path, we find it to be around 2000 steps. This comes

from the fact that DFS always expands nodes along one branch until a solution is found.

50

3.5. Deploying the framework on hardware

Table 3.3 – Optimality percentage of tested algorithms on both gap and ceiling experiments

Gap test case Ceiling test case

Algorithm w/ orient. w/o orient. w/ orient. w/o orient.

A* 100% 69.1% 100% 78.1%
A* nah 97.2% 72.6% 98.9% 77.7%

BFS 100% 65.7% 100% 74.9%
DFS ε% ε% ε% ε%

Bi-D A* 88.2% NA 97.8% NA
Bi-D A* nah 91.5% NA 96.4% NA

The completeness percentage

we calculate completeness as the percentage of convergence to not-found solutions where an

actual solution exists if we use the “with orientation" approach. By this measure, we can see

the effect of giving up the completeness of the similarity check on the completeness of the

search algorithm. Results are reported in Table 3.4.

Table 3.4 – Completeness percentage of both gap and ceiling test cases when history list does
not have orientation.

Algorithm Gap test case Ceiling test case

A* 93 % 83 %
A* nah 76 % 77 %

BFS 95 % 89 %
DFS 82 % 82 %

In the light of presented results, the strategy we propose to find solutions is to first run the

fastest algorithm which is A* (nah) without orientation. Since completeness is not guaranteed

with this algorithm, if solution was not found in a given limited time, we try the second fastest

but complete search algorithm: bidirectional A* nah, or A* nah with orientation. For an

optimal and complete search, we run A* with orientation.

3.5 Deploying the framework on hardware

The output of our framework is the sequence of actions leading from an initial to a desired goal

state. However, to apply this sequence on real hardware, some considerations listed below

should be taken into account.

51

Chapter 3. An optimal planning framework to deploy SRMR

3.5.1 Addressing ACM alignment problem

One of the most limiting challenges with on-grid locomotion using RB modules is the mis-

alignment during the connection phase between the gripper of the ACM and the passive

connectors on other modules or on the grid. Since the emergence of ACM misalignment is

highly dependent on the real time experiment, it cannot be modeled and was not included

in the transition model described in section 3.3. Therefore, the need for an active alignment

mechanism arises.

Strategy

Each ACM plate has 4 pairs of hall-effect sensor and magnet. The four magnets are considered

as the source of the magnetic flux density whose change can be detected by the 4 hall-effect

sensors. On the other hand, each passive plate also has small magnets in the same positions as

the ones on the ACM plate as shown in Fig. 3.6a. Therefore, if these magnets are aligned with

the hall-effect sensors on the ACM side, the sensed magnetic flux density will be maximum.

This design allows us to detect the presence of any misalignment before closing the ACM.

Moreover, each ACM plate has also an accelerometer that can be used to detect its orientation.

More specifically in our case, the accelerometer is used to calculate the initial pitch of the RB

module when attached horizontally as illustrated in Fig. 2.6. This initial pitch can be obtained

from the accelerometer data using the following formula:

β= ar ct an(
−az√

(ax)2 + (ay)2
) (3.11)

where ax , ay , and az are the accelerations measured around x-, y-, and z-axis respectively.

Knowing the initial pitch β, we calculate the new desired angles using the inverse kinematics

model to compensate for this initial rotation at the base of the RB kinematic chain.

(a)

Figure 3.6 – Description of the ACM and passive plate components.

52

3.5. Deploying the framework on hardware

Algorithm 1 Random Search

1: function RANDOMSEARCH(si)
2: s ← si

3: while Hall-effect sensors above threshold t do
4: Pick N random neighbors of s:
5: nei g h={s0, s1, ..., sN }
6: for each: s j in nei g h
7: Evaluate its fitness function F(s j)
8: snew = argmins j

(F (s j))
9: s ← snew

10: Successful alignment : Quit

Pitch compensation alone is only valid when a RB module is attached horizontally and even

then it is not always enough, requiring an additional local search. The strategy for the local

search is to change the three motor angles in the neighborhood (+/- 1° for any motor) of

the desired angles and use the value of the hall effect sensors as a feedback for the quality

of alignment. Since this relation is highly non-linear, we chose a random search approach

(Alg. 1). The fitness function is considered to be the sum of the sensor values. Three setups

were tested: 1) going up when attached to ceiling, 2) going up when attached to a side wall,

and 3) going left when attached to a side wall. For each setup, the experiment is repeated 10

times. We note that in these experiments, the success rate of a successful connection is 0%

before introducing the plugin and 100% after the plugin with an average convergence time of

43.53 seconds. We also tried the simulated annealing search, but the mean convergence time

increases to 106.48 seconds, so we proceeded with the random search choice. Alg. 2 depicts

the overall strategy developed to actively compensate for any connection misalignment.

Algorithm 2 ACM Alignment Plugin

1: procedure ACM ALIGNMENT

2: Go to desired motor angles
3: if Hall-effect sensors below threshold t then
4: Successful alignment : Quit
5: else
6: Perform pitch compensation (update desired motor angles with IK)
7: if Hall-effect sensors below threshold t then
8: Successful alignment : Quit
9: else

10: RandomSearch(motor angles)

3.5.2 Approaching/leaving concave corners

Approaching/leaving a concave corner with a single motor action would result in a collision.

However, since the outer motors (M0 and M2) have the same velocity profile, this movement

is possible by rotating both motors at the same time, which leads to a parallel behavior as

53

Chapter 3. An optimal planning framework to deploy SRMR

shown in Fig. 3.7. On the other hand, allowing this behavior as a possible action in our

framework would increase the branching factor. Instead, we consider the single action in case

of approaching/leaving a concave corner valid and rather do a post-processing step in the final

list of actions by replacing the single motor command (M0) by the equivalent collision-free

parallel approach (simultaneous command for M0 and M2).

Figure 3.7 – Example showing the parallel behavior when approaching a concave corner

3.5.3 User feedback

We add a visual feedback for the ACM states using the LED rings on the RB module: a red color

indicates an open ACM, a green color a closed ACM, and a blue color an ACM in the alignment

plugin. Lastly, all LEDs starts blinking violet when the goal is reached.

3.5.4 Physical limitations allowed in the framework

RB modules are approximately 1.6kg. Although a single module can dock successfully on every

scenario on a rigid grid, a metamodule consisting of at least 2 modules has higher uncertainties

at the end effector pose. Thus, it cannot always dock reliably. Nevertheless, we ignored

this limitation in the proposed framework to have a more capable framework since future

hardware iterations may overcome this challenge. During the real experiments, we allowed

human intervention to help docking in such cases. The number of interventions depends

on how many times such motions are needed. On average, there were two interferences per

experiment in the scenarios shown in the video attachment.

3.6 Hardware validation

Six experiments with the real hardware were done in total. These were inspired by real life

examples such as ants collaborating to cross a gap, or humans cooperating to overcome a

high wall. Whereas the experiments are shown in the attached video, we discuss one of the

experiments in this section: Crossing a horizontal gap with 3 modules. The algorithm used was

A* nah w/o ori. from section 3.4. It was solved in 139.34 seconds and resulted in a sequence of

38 actions. We present the main stages of the reconfiguration and highlight the emergence of

collaboration between RB modules to achieve the desired task in Fig. 3.8. In the first 5 stages

(Fig. 3.8a-e), the modules demonstrate a collaboration so that one module will end up on the

second side of the gap (Fig. 3.8f): one RB module manipulates another one to bring it to the

54

3.7. Conclusions and future work

other side, while the third RB module is moving away to guarantee a collision free movement

for the formed meta-module. In the following 4 stages (Fig. 3.8f-i), we notice the formation of

a bridge-like structure when one RB module “hands over" its neighbor to the RB module on

the other side of the gap. In Fig. 3.8j, we see 2 RB modules already on the other side of the gap.

In the last stages, the two RB modules on each side on the gap connect to form a meta-module

and move to the other side. In Fig. 3.8n, all RB modules form a wall structure on the other side

of the gap satisfying the goal target. The experiment took around 4 minutes and required a

single human intervention.

(a) t=0s (b) t=24s (c) t=32s (d) t=40s (e) t=56s

(f) t=80s (g) t=104s (h) t=120s (i) t=144s (j) t=152s

(k) t=168s (l) t=192s (m) t=224s (n) t=240s

Figure 3.8 – Different stages from the experiment of crossing a gap using 3 RB modules.

3.7 Conclusions and future work

In this chapter, a formulation of self-reconfiguration as a search problem for Roombots

modules is presented. The presented framework can easily be adopted to various SRMRs by

adapting the transition model to the kinematics of the used modules.

The proposed framework is complete and optimal. Therefore, it finds a solution as long as a

solution exists. Furthermore, a novel transition model and a heuristic are proposed based on

motion capability of RB modules. The proposed heuristic can successfully guide the search.

However, there is still a room for improvement on the heuristic function. Thanks to history

keeping and active pruning strategies, the search could be accelerated to enable small to

medium size problems in reasonable time. The proposed framework can already solve various

scenarios. Moreover, the plan is ready to be deployed in real modules owing to hardware and

control extensions added to Roombots to increase docking reliability.

55

Chapter 3. An optimal planning framework to deploy SRMR

The next step will be developing a higher level planner using the framework explained in this

chapter as the core element. Similar to all other search-based self-reconfiguration algorithms

in the literature, the proposed framework is also limited with the size of the search problem. If

the problem is too big, the higher level planner could divide the task into sub-tasks and each

sub-task can be solved with this framework.

56

Part IIUser interfaces for modular robots

57

4 From playdough to Roombots

How would you tell a SRMR to form a chair? It could be possible to give voice commands

to initiate it. Especially when a library of chair types is available, the operator could just say

“Build me chair # 3!”. What if you want something new and not predefined? One can take

the modules one by one and assemble, but, it beats the purpose of an autonomous robotic

platform. One can open a PC and start clicking buttons, dragging modules around on a PC

screen until he/she is happy with it. It would work as most of the SRMR research is using

exactly this method. But, is it really the most user friendly way of interacting with SRMRs? We

believe not. To prove it, we allocate the whole Part II for the study of user interfaces (UIs) for

SRMRs.

This chapter explains a novel user interface making use of tangible media (malleable sculpture

dough). We believe the easiest way of conveying 3D shape information is through manipu-

lating playdough. Even very young kids know how to create shapes of everyday objects with

playdough. Once user creates a sculpture, it is 3D scanned into a mesh to digitize the shape

information for further processing. The goal of this chapter is to investigate the feasibility of

commanding Roombots to form desired shapes by using playdough.

Reference publications

• This chapter is based on Mehmet Mutlu, Simon Hauser, Alexandre Bernardino and

Auke Ijspeert. “Playdough to Roombots: Towards a Novel Tangible User Interface for

Self-reconfigurable Modular Robots.” IEEE International Conference on Robotics and

Automation (ICRA) 2018.

My original contributions

– Designing the user interface

– All of the coding and testing

– Partially doing the hardware demonstrations

– Writing the manuscript

59

Chapter 4. From playdough to Roombots

4.1 Introduction

One of the grand challenges [Yim et al., 2007] for the intended usage of structures built with

SRMR is the method of how the inspiration for a structure by a user is translated into an

real-world representation with SRMR. This process is illustrated in Fig. 4.1. We formally split

the full process into five subprocesses: (i) expression, where an idea of a user takes shape in

the real world, (ii) digitization, where this idea gets digitized and put into a PC, (iii) abstraction,

where the raw digital representation is post-processed into a representation that can be used

by an SRMR system, (iv) planning where algorithms produce an instruction plan that creates

the desired shape in the form of a building sequence and finally (v) formation, where the

SRMR form into the initial inspiration in the real world by following the building plan provided

by the planning step. It is important to notice that only the first and the last processes take

place in the real world and only they are usually able to provide any other than visual feedback

(e.g. haptic feedback) which is the primary type of feedback in the digital representation (Fig.

4.1).

Earlier works on Roombots focus mostly on only single processes of Fig. 4.1. In [Bonardi et al., 2012a],

a user utilizes a tablet PC and augmented reality to virtually place pre-defined structures into

a living room; the inspiration is never expressed in real world and digitization does not take

place since the abstraction step is directly performed manually. [Ozgur et al., 2014] proposes

a direct human robot interaction (HRI) to control the location of modules in discrete grid

environment in the real world, whereas [Mutlu et al., 2016] extends this idea to the continuous

space; the expression and digitization steps are skipped in both cases. In contrast, much stand-

alone work has been done in the planning step (e.g. [Bonardi et al., 2012b]), where a selected

set of abstracted structures have been provided to reconfiguration algorithms. The formation

step has not yet been the primary focus and is subject of ongoing hardware development but

ultimately necessary to demonstrate the complete cycle.

This chapter focuses on the three aspects expression, digitization and abstraction as a whole.

In particular, we seek a method that is able to rapidly produce the abstracted representation of

an idea; as one of the main strengths of SRMR is their ability to shape-shift and create (almost)

arbitrary structures, a fast abstraction of the inspiration is necessary to allow a purposeful

interaction with an SRMR-system. We present a method that combines the relatively novel

technology of 3D-scanning with an existing algorithmic approach (DFS) with adjustments to

autonomously generate the building instructions for Roombots, bringing us one step closer

to the vision of Roombots to be used as “fast-protyping” user-created furniture. At last, the

formation (self-reconfiguration) step is subject of ongoing hardware development and will

not be discussed in this chapter.

60

4.2. Analysis of the problem

User

Formation

Self-reconfiguration
of Roombots

Expression

Tangible UI,
passive medium

Digitization

~real time 3D scan,
raw mesh

Abstraction

Voxel, robotic
representation

e.g. Haptic feedback Visual feedback

Algorithms,
building instructions

Planning

Inspiration
e.g. stool

Real world Digital world

100

300

y(mm)

200 300

x(mm)

200100

200

100

z(
m

m
) 300

mod1; m0; pos120
mod1; m1; pos90
mod2; m0; pos-120
mod3; m2; pos240
mod1; m0; pos0
mod3; m1; pos-90
mod2; m1; pos180
mod2; m2; pos0
mod1; m0; pos120

Figure 4.1 – The cycle from an inspiration to the final Roombots shape. The inspiration first is
expressed in the real world. A digitization step transforms it into the digital world where the
processing steps abstraction and planning can take place. At last, the inspiration takes shape
with the SRMR by the formation.

4.2 Analysis of the problem

The main purpose of this chapter is to create a user friendly interface to generate a final

shape of structures to be self assembled by Roombots. The interface should come up with a

construction plan of the a desired arbitrary structure. For this, each of the three processes (see

Fig. 4.1) leading to the processing step are explained in detail below, motivating our choice for

each of the used methods. The explanation of each method can be found in further sections.

4.2.1 Expression: Modeling clay

An inspiration can be expressed in the real world in many different ways. It can be in the

form of a drawing, a spoken or written description or even as a pantomimic gesture. As the

purpose of Roombots is to form 3-dimensional shapes, expressing the inspiration also in a 3-

dimensional way seemed to be the most intuitive approach. However, the size of the structures

formed by Roombots is roughly in the order of magnitude of a human. Hence, a method to

form a model of the inspiration was desired: a Tangible User Interface (TUI) [Ishii et al., 2012,

Nakagaki et al., 2016]. There exist diverse interaction media proposed in the literature that

could benefit a TUI. For instance, computational building blocks in [Anderson et al., 2000]

and active cubes proposed in [Watanabe et al., 2004] can immediately transform the physical

61

Chapter 4. From playdough to Roombots

structure that a user is building into the digital domain as a 3D voxel array. Furthermore,

[Raffle et al., 2004] offers a construction method with kinetic memory which includes the

ability of a user to input the shape of the structure as well as the expected motion. The

Roombots is a complex robotic system due to the nature of SRMRs. In order to simplify

the interaction, we inclined for a passive medium. In this work, the passive medium can

be anything (LEGO® blocks, wood pieces etc.) that allows creation of structures that can be

replicated with Roombots. Modeling clays are widely used for 3D shape modeling in games, e.g.

Cranium® and Cluzzle®, or professional activities like architecture or art. Play-Doh® or similar

modeling clays are very easy to shape and made for kids to create 3D shapes. Modeling clay is

also one of the most studied tangible user interface (TUI) material used in the literature. For

instance, [Piper et al., 2002, Ishii et al., 2004] use the modeling clay for fascinating landscape

analysis and digital 3D design. [Johnson and Thomas, 2010] creates electronic circuits using

conductive and insulating playdough. Another usage is explained in [Gao et al., 2015] where

modeling clay is used to design an ergonomic PC mouse.

4.2.2 Digitization: 3D scanning

Having a passive interaction medium requires an additional step to digitize the shape infor-

mation that is formed by the playdough (note that if the inspiration is directly digitized e.g. by

modeling a structure in a PC, the expression step can be skipped). In this regard, we rely on

commercial scanning solutions, which are becoming widely available and cheaper by the day,

to convert the real object to the digital data. The result of the 3D-scanning process is a mesh

grid that approximates the shape of an object with surface triangles.

4.2.3 Abstraction: Voxels and Roombots

For representing the 3D information, we use a voxel representation. Voxels are commonly used

to represent SRMRs, particularly lattice types like Roombots. Example usage of cubic SRMR

representation can be seen in [Stoy, 2006, Stoy and Nagpal, 2004] and [Romanishin et al., 2013].

The quality of voxelization greatly depends on the voxel resolution and generally improves

with a higher resolution, for which small and many voxels are required. However, Roombots

modules are relatively big such that a representation in which a voxel corresponds to a half

Roombots module would result in big voxels and low resolution. Low resolution voxelization is

likely to result in undesired information loss and a voxel array that possibly is not resembling

the original shape anymore. Nevertheless, it is possible to preserve the rough shape informa-

tion even with big/coarse voxels when voxelization is done in a smart way. An advertisement

of LEGO® is cleverly illustrating this challenge in Fig. 4.2.

62

4.3. Solution method

Figure 4.2 – The inspirational LEGO® advertisement emphasizing the shape representation
capabilities of primitive construction bricks.

4.2.4 Constraints and simplifications

Some shapes cannot be built with Roombots due to their structure which consists of two con-

secutive cubic/spheric shape. For instance, the T shaped block (in its elementary, symmetric

form) in the famous Tetris® game is physically impossible to build with Roombots modules.

Each Roombots module has three degrees of freedom (DOF) that can continuously rotate

and two active connection mechanisms (ACM) that allows modules to connect to each other

or to an environment equipped with connection plates [Sproewitz et al., 2014]. Such motion

capabilities allow a single module to locomote by itself and gives it functional flexibility.

However, the same blessing of motion capabilities turn into a curse of dimensionality in a

search problem. Nevertheless, most of the furniture-like structures made out of Roombots

that have been demonstrated so far do not make use of DOFs, i.e. each joint of a Roombots

module is set to zero degrees and the module resembles two consecutive voxels. Even though

the continuous rotation of each DOF increases the number of possible structures that can be

built with Roombots, in this chapter we use modules as if they are construction bricks. Hence,

construction is done only in orthogonal axes.

4.3 Solution method

The construction of structures with a shape given by the playdough is a multi stage process that

is almost completely autonomous. Once the user shapes the playdough, the following stages

are (i) 3D scanning, (ii) mesh pre-processing, (iii) voxelization, (iv) initial module placement

(v) construction search and (vi) the user feedback.

4.3.1 3D Scanning of playdough

3D scanning is needed to capture the information sculpted into playdough. There is a deep

research literature on 3D scanning focusing on many different methodologies. An early study

in [Rusinkiewicz et al., 2002] captures 3D mesh in real time using a camera. In a more recent

study, [Izadi et al., 2011] shows how to fuse color and depth information to have high quality

63

Chapter 4. From playdough to Roombots

3D scans. [Follmer and Ishii, 2012] suggests a method to scan modeling clay in 2.5D in real

time. There are also commercial 4D scanners (3D scanners that can capture temporal changes).

However, they are usually expensive systems. [Straub et al., 2015] offers an open source and

one of the most economical instantaneous 3D scanners.

It is possible to replicate the system in [Straub et al., 2015] in a smaller scale for smaller objects.

However, developing a 3D scanning system is out of scope of this chapter. We picked the

cheapest commercially available solution: a 3D scanner from XYZprinting® for 200$. It is using

an Intel® Real-Sense™F200 camera to obtain depth and color images. The Intel RealSense

SDK and 3D Scan tool (11.0.27.8892) is used for 3D scanning. As a result, we compromised on

real-time scanning for the sake of cost efficiency. Nevertheless, a playdough structure similar

to the one shown in Fig. 4.1 can be scanned in approximately 45 to 90 seconds.

4.3.2 Pre-processing of Mesh

3D scanned meshes need a quick and almost automatized preprocessing. The initial meshes

are solidified (to obtain closed surfaces), simplified by reducing the triangle patch count to

accelerate voxelization and saved as .stl file format. Finally, they are imported into MATLAB

R2015b for the rest of the abstraction. Scanned parts can occasionally have small artifacts

as seen in Fig. 4.3a However, those artifacts are insignificant, and rarely need to be explicitly

removed.

Scaling

The scanned playdough model is a smaller mock-up of the desired structure where the user

has to specify the size of the desired final structure. In other words, the user is giving only

the shape information with the playdough and the final size of the desired object is another

parameter. There could be a hard-coded constant gain to scale up the 3D model to get the

real-life object size. However, making an exactly scaled model means more effort for the user

since removing or adding material to change the scale of the sculpture may not be simple.

Additionally, the user may want to change the size of the object after some use. In such

scenarios, having an adjustable parameter κ eases the user’s role. In this chapter, κ is assumed

to be the maximum length of the object along any x-y-z axes and it can be set on the fly. We

envision that the user can use the GUI or a physical object such as knob or slider bar to define

the scale. In summary, κ is the only user parameter other than the playdough shape in the

proposed interface. Fig. 4.3b shows the scaled model with κ= 420 mm.

Orientation

Orientation of the mesh is critical for the processing step of the proposed interface since

the Roombots modules will be placed along the orthogonal axes as explained in Sec. 4.2.4.

In a stationary 3D scanning system, the orientation of the coordinate frame of playdough

64

4.3. Solution method

(a)

100

200

100 200

z(
m

m
) 300

3D Mesh

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Figure 4.3 – (a)Initial view of the 3D scan and (b) after pre-processing when the mesh is ready
for the voxelization.

structure would be fixed with respect to the world coordinate frame and the user could simply

rotate the playdough sculpture to input the desired orientation. Although this could be a

nice feature, our orientation information is not reliable due to the handheld 3D scanner. A

workaround is to rotate the mesh manually. Alternatively, we propose an auto rotate method

in the pre-processing step.

We assume that the user is working on a flat surface, e.g. table, with the surface normal

pointing in reverse gravity direction. As a result, the only unknown orientation axes that needs

to be optimized is rotation with respect to the surface normal. The problem can be formulated

as

argmax
θ∈[0◦,90◦)

f (θ,M) (4.1)

where f is the occupancy function, θ is the rotation with respect to the surface normal where

the sculpture is placed and M denotes the scanned and scaled mesh.

4.3.3 Voxelization of the 3D model

The power of the shape representation of a voxel space highly depends on the voxel resolution.

When the resolution is low, the voxel space suffers from aliasing. Voxelizing the M with

Roombots-size voxels is likely to result in drastic shape deformations. Hence, we firstly

voxelize the M with relatively high resolution to minimize the severe effects of aliasing and

obtain the high resolution voxel set Vh . The voxelization for Vh is based on the generic ray

65

Chapter 4. From playdough to Roombots

intersection method similar to the one that is described by [Patil and Ravi, 2005]. The whole

space is discretized uniformly (center of each cell space representing a voxel area) and voxels

confined in the M are assigned into Vh . The voxels of Vh obtained by voxelizing the mesh in

Fig. 4.3b are plotted in Fig. 4.4a. Secondly, we create a uniform low resolution voxel set Vl on

the same space. Voxels in Vl are large and have the size of half of a Roombots module. Unlike

Vh , where all voxels are binary, Vl associates an occupancy value to each voxel. That is one

of the main breaking points where the proposed solution goes from a generic to a specific

application for Roombots. In our implementation, we set the size of large voxels of Vl (they

will be called vl) to be five times larger than the small voxels of Vh (they will be called vs). That

ratio between the voxel sizes will be called ρ. So, the space covered by a half Roombots module

is represented by 53 vs .

Grid offset selection

The accuracy of shape representation capability with large voxel set Vl relies on the discrete

offset (o) value between Vl and Vh . The offset is the discrete position translation (in 3D space)

of Vh on top of Vl with the step size of vs edge length. The occupancy value of a single voxel in

(Vl) is defined as

Vl (xi , yi , zi) :=
xi+bρ/2c∑
xi−bρ/2c

yi+bρ/2c∑
yi−bρ/2c

zi+bρ/2c∑
zi−bρ/2c

Vh(x, y, z)

ρ3 (4.2)

which corresponds to total number of vs in the space defined by the given vl divided by total

number of vs that could fit in the same space. When Vl is shifted by the size of one vs in any

x-y-z axis, the occupancy of voxels in Vl changes. Before proceeding further, we define another

set Vlo which a subset of Vl that consists of elements of Vl that have minimum 0.5 occupancy.

For better shape representation of Vl , its voxels should be occupied as densely as possible. In

more rigorous terms, the optimization problem can be formulated as

argmax
p∈[0,ρ−1)

g (p,Vl o ,Vh ,ρ) (4.3)

where p ∈ N and the aim is finding the optimal position offset p = [px , py , pz] for Vh that

maximizes the fitness function g which is defined as

g (p,Vlo(p),Vh ,ρ) := [2
∑

Vlo(p)−card(Vlo(p))] ·ρ3

card(Vh)
(4.4)

66

4.3. Solution method

In Eq. 4.4, the first term in the numerator (when multiplied by ρ3) denotes the number of

occupied vs in the set Vlo (i.e. occupied space) and the second term comes from the number of

extra voxels that could fit in Vl o (i.e. empty space). Thus, the fitness function is rewarding the

higher occupancy, whereas it is penalizing low occupancy. Finally, the term is normalized with

the total number of voxels in Vh . Finding the optimal offset between Vh and Vl is automated

and the implementation is given in Alg. 3.

Algorithm 3 Find the offset yielding the highest occupancy

Require: Voxel set Vh obtained
1: procedure FINDBESTOFFSET(Vh ,ρ)
2: omax ← 0 . o is occupancy
3: popt ← [0,0,0]
4: for (each p offset) do . p is 3D in xyz
5: Vlo ← CREATEVLO(p,Vh ,ρ) . Eq. 4.2
6: o ← CALCULATEFITNESS(p,Vh ,Vl o ,ρ) . Eq. 4.4
7: if o > omax then
8: omax ← o
9: popt ← p

10: return omax , popt

For better clarification we will revisit the auto-rotate method. The computational implemen-

tation of the rotation procedure, is given in Alg. 4. The implementation of Eq. 4.1 is a brute

force method in which the resolution of θ is taken to be 5◦.

Algorithm 4 Rotate mesh to maximize occupancy

Require: Mesh M is scanned
1: procedure ROTATEMESH(M)
2: θmax ← 0
3: omax ← 0
4: for (each angle θ) do
5: Mt ← ROTATEZ(M ,θ)
6: Vh ← VOXELIZE(Mt) . Vh is voxel set
7: o, p ← FINDBESTOFFSET(Vh ,ρ)
8: if o > omax then
9: omax ← o

10: θmax ← θ

11: M ← ROTATEZ(M ,θmax)
12: return M

Search space selection (reduction)

The following subsections will be explaining the construction/search part of the interface.

Having a small search space usually reduces the computation time of the search algorithm.

Hence we select only Vlo to be filled with Roombots modules. The resulting Vl o of the mesh

67

Chapter 4. From playdough to Roombots

shown in Fig. 4.3b can be seen in Fig. 4.4b.

(a)

100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Figure 4.4 – (a) High resolution voxel space to approximate the 3D model accurately and (b)
low resolution voxel space in which the voxel size is equal to a half Roombots module.

4.3.4 Search space definitions and initial module placement

In the rest of the section, the search approach used to fill Vl o with Roombots modules is

explained. For a comparative study, two of the well known exhaustive search algorithms,

breadth first search (BFS) and depth first search (DFS) are implemented. The discrete search

space is Vlo which is a 3D voxel array. Each node is defined as a connected structure that

is possible to be constructed with Roombots. Each layer corresponds to total number of

modules in the structure. For instance layer zero is the empty Vlo and layer-1 is a only single

Roombots module placed in Vl o . The goal node (nG) is the state where either all voxels of Vlo

are occupied (when card(Vl o) is an even number) or just a single voxel is left empty (when

card(Vlo) is an odd number) assuming the search problem is optimally solvable. The globally

optimal solution is the structure which yields the highest possible occupation. By the term

optimality, we also refer to set of structures that are completely constructible with Roombots,

unlike the case discussed in Sec. 4.2.4. When the Vlo does not lead to an optimal solution, we

need to search all possible structures to come up with the best matching structure.

In order to ensure globally optimal solution, the start node (nS) should be the empty Vlo and in

the first iteration all possible initial placements should be inserted into the search queue/stack.

Eventually, all initial placements lead to the optimal solutions when card(Vl o)%2 = 0, provided

that the initial placement does not result in non-optimal free space (i.e. dividing the free space

and each new space blob having odd number of voxels). Further discussion on optimality

will be given in Sec. 4.3.6. Thus, we pick a random optimal initial seed module and start the

construction search with that one. Fig. 4.5 illustrates two different initial configurations.

68

4.3. Solution method

100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(a)

100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Figure 4.5 – The initial module can be placed in any location in Vlo . Two examples can be seen
in (a) and (b)

4.3.5 Construction with breath first search

BFS gives a structured baseline to analyze the construction process. It exhaustively searches

for the all possible structures and stops only when all alternatives are tested. However, the

expansion factor of the search space is very high exponential. A single Roombots module has

10 surfaces. In free space, another module can attach to any of the surfaces in five different

ways, resulting in 46 (50−4 repetitions removed) different possibilities (children nodes) in the

second layer. The number of surfaces increases, resulting in even higher number of children

per parent node in the 3rd layer. In such an exponential search space, any branch that can be

pruned helps to improve the total computation time. Hence, we do the pruning with (i) history

keeping and (ii) optimal placement check. The history all of the opened nodes is recorded and

we do not push the child in the search queue if it already exists in the history. The history is

implemented with map container with unique keys generated for each structure to optimize

the time spent checking if the node has already been opened. The flow of the procedure can

be seen in Alg. 5. Once BFS ends, the user has a selection of possibilities listed in highest

occupancy order as shown in Fig. 4.6.

4.3.6 Construction with depth first search

The structure of the DFS is more suitable for the addressed construction problem particularly

when the structure can be built with Roombots and the optimal solution exists. Therefore, we

implemented DFS with the same structure of Alg. 5 by only changing the queue to stack. DFS

marches towards goal and stops as soon as the goal state is reached. If we let the DFS to search

all possibilities, the results would be the same as BFS since they are both exhaustive methods.

However, our DFS implementation is intended to find a quick solution for large search space.

69

Chapter 4. From playdough to Roombots

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.798

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.797

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

4th - Occupancy:0.792

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.769

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.767

300

Figure 4.6 – Six structures resulting from the construction based on BFS with ns shown in Fig
4.5a. Structures are ordered in the occupancy order. Note that the Vl o has odd number of
Voxels for the desired stool structure which means one voxel remains unoccupied. The user
can pick any of the resulting structure. Even though the 1st structure has a higher occupancy,
the 4th structure would be a better stool in terms of functionality.

Fig. 4.7 gives the resulting structures of the DFS approach.

Structures that cannot be built completely

When the structure cannot be built optimally with Roombots, DFS cannot terminate since nG

does never appear and it searches for all possibilities like BFS. While the exhaustive search still

continues, the best results can be displayed to the user and user can stop the search anytime

when satisfied with one of the offered solutions.

70

4.3. Solution method

Algorithm 5 Construction with BFS

Require: Vlo is obtained
1: procedure CONSTRUCTBFS(Vlo)
2: Initialize empty h . h is the history
3: Initialize q with seed module nS . q is the queue
4: while q is not empty do
5: np ← POP(q) . parent node
6: Nc ← GETCHILDREN(np)
7: for (each nc in Nc) do
8: if nc is not in h and optimal then
9: PUSH(nc ,q) . child into q

10: PUSH(nc ,h) . child into h

11: nG = FINDHIGHESTOCCUANCY(h)
12: return nG

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.756

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.754

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

4th - Occupancy:0.727

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.723

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.720

300

Figure 4.7 – Construction of modular structures with DFS.

Pruning method based on optimal placement

We propose a pruning method for the implemented search algorithm that is mentioned as

optimality check on the eight line of Alg. 5. If the Vl o can be fully filled with Roombots, we

can immediately decide if an opened child will result in non-optimal solution. If the child is

dividing the remaining free space into more then one 3D blobs, all blobs should have an even

number of voxels. Otherwise, we can prune that branch by discarding the child.

71

Chapter 4. From playdough to Roombots

4.3.7 User Feedback

One crucial observation in Fig. 4.7 is that DFS does not suggest a nice functional stool. The

main reason is that Vlo has an odd number of voxels and one voxel need to get discarded.

However, the displayed results are only for one scan (snapshot) of the playdough. In an

interactive continuous case, assuming that the 3D-scanning can be done much faster, the user

can still guide the interface towards a desired structure (see Sec.4.3.7). In order to demonstrate

the role of the user feedback, then 3D model is modified to emulate what the user could do.

Applying the modification, this time the resulting Vlo has an even number of voxels as seen in

Fig. 4.8 and a functional stool is quickly found by the search method.

(a)

300
400

y(mm)

200 300

x(mm)

200100
100

200

z(
m

m
)

400

(b)

300
400

y(mm)

200 300

x(mm)

200100
100

200

z(
m

m
)

400

(c)

100

300

y(mm)

200 300

x(mm)

200100

200

100

z(
m

m
) 300

(d)

Figure 4.8 – (a) Creating an artificial feedback by modifying the 3D model directly and running
the same procedures on the modified model. Resulting (b) mesh, (c) high resolution voxel
space and (d) resulting structure.

4.4 Experimental results and discussions

In order to test the performance of the computational part of the proposed interface, we

created the test set seen in the Fig. 4.9 (a)-(h). The common property of all of those models

is that they have an even number of vl and they can be filled optimally after scaling them to

Roombots size. For the scaling of the models, we have considered smaller mock-up furnitures

rather than the human size because we only have 13 Roombots modules in Biorobotics

Laboratory and we focused more on the physical experiments we can do in the future. Fig.

4.9 (i)-(p) shows the resulting Roombots structures of each model in the test set. The number

of modules needed for each model can be seen in Tab. 4.1. The same table also reports the

computation time for each model when processed with the BFS, DFS and DFS with no pruning

check as well as number of different structures tested in history (hd) until finding the solution

with DFS. Computations are done on a PC with an Intel i7-6700HQ CPU and 16GB RAM.

The Tab. 4.1 suggests that the proposed pruning method enables the search to be used in

real-time applications in the Roombots project. The BFS time clearly shows the explosive

effect in computation time since the search space is highly exponential with respect to the size

of the structure. The NA marks in the table represents that not all possible structures could

be tested in 30 minutes. To put this into perspective: when the Sofa 1 object is searched for

72

4.4. Experimental results and discussions

approximately 7 hours, roughly 12 million structures are tested and BFS was still in the 11th

layer (11 modules placed out of 25 module model).

Table 4.1 – Comparative performance of the suggested methods

Object # mod. # hd td (s) td,np (s) tb (s)

Stairs wood (h) 7 15 0.10 0.06 0.19
Stool (Fig. 4.8) 8 16 0.10 0.14 0.27
Fancy chair (d) 10 38 0.14 0.10 17.9
Armchair 1 (a) 11 58 0.16 19.6 85.4
Stairs LEGO (e) 14 66 0.19 105 1171

Sofa 2 (g) 16 108 0.24 NA NA
Armchair 2 (b) 17 187 0.32 0.24 NA
Bookshelf (c) 20 387 2.70 545 NA

Sofa 1 (f) 25 329 1.91 NA NA

4.4.1 Effect of Initial Module Placement

The location of initial module also effects optimality. For instance when the stool example

given in Fig. 4.6 is initialized with the seed module given in Fig. 4.5b, two results having highest

occupancy can be seen in 4.10. Note that the second option was not available previously, due

to the placement of the seed module. However, DFS already returns the first solution and

global optimality of the solution relies on the user interaction where user should iterate the

playdough sculpture to achieve the desired structure.

4.4.2 Different construction materials

Modeling clay is not the only option for our interface. LEGO®, wood pieces, any deformable

or brick-like material can be a tangible medium in this work. The test set already has models

made out of LEGO® and wood pieces. One selection criteria can be the connection capabilities.

For instance, LEGO® blocks or wood pieces can only be stacked on top of each other, but,

Roombots modules has docking surfaces also on the sides. In that regard, playdough can

represent capabilities of Roombots better.

Even active building blocks such as Active Cubes could have been used. For instance, [Ichida et al., 2004]

estimates CAD models from Voxel model made with robotic blocks. It is almost the reverse of

our problem and could simplify our interface. There would be no need for the (i) scanning, (ii)

initial voxelization, (iii) rotation search and (iv) large voxel offset search steps.

73

Chapter 4. From playdough to Roombots

(a) (b) (c) (d)

(e) (f) (g) (h)

100

200100

200

z(
m

m
)

x(mm)y(mm)

300

0 0
-100

-200

(i)

100

300 400

200

z(
m

m
)

x(mm)y(mm)

200

300

200

400

100

(j)

400

x(mm)

200

150

y(mm)

200
50

400

z(
m

m
)

600

(k)

300200

x(mm)

0

100

100

z(
m

m
)

y(mm)

200

300

400 200

(l)

100

400

200

z(
m

m
)

400

300

y(mm)

200

x(mm)

200

(m)

500

x(mm)

0
0

100
200

z(
m

m
) 300

100

y(mm)

0-100 -500

(n)

600

100

x(mm)

400300

200

z(
m

m
)

y(mm)

300

200 200100

(o)

100

300200

x(mm)y(mm)

200

150 200

z(
m

m
)

100

300

10050

400

(p)

Figure 4.9 – Different objects used for benchmarking and the corresponding found Roombots
structures.

4.4.3 Hardware demonstrations

We have manually replicated some of the test set models with Roombots and report the Stool

in Fig. 4.11. We also tested the reverse process by 3D scanning Roombots structure, as seen in

Fig. 4.11c, and running the algorithm to replicate (or potentially by changing size scale) the

Roombots structure with another set of Roombot. In that case, active Roombots blocks are

replacing playdough to control yet another set of Roombots (or even another SRMR).

4.4.4 Limitations of the proposed solution

Our demonstrated system has three major limitations: (i) 3D scanning is not real time, thus

we only demonstrate the proof of concept, (ii) it does not use the full potential of Roombots

74

4.5. Conclusions and future work

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.797

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.796

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100
z(

m
m

)

4th - Occupancy:0.792

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.767

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.765

300

Figure 4.10 – Best two results of BFS when the seed module is taken as shown in Fig. 4.5b.

(a) (b) (c)

Figure 4.11 – The stool example from (a) playdough to (b) Roombots and further (c) reverse
scanning the Roombots structure.

and assumes them as uniform construction bricks, (yet we can still demonstrate a large subset

of the full capabilities) and (iii) scaling up the size of desired structures leads to exponential

computation time.

The suggested DFS with history and the pruning check can solve a reasonably sized search

space in real time which is sufficient for us since we have only 13 modules. However, scaling

up to more than 40-module-structures starts suffering from computation time and getting a

quick solution depends on the chance. For large free spaces, additional strategies are needed.

4.5 Conclusions and future work

In this chapter we are proposing a novel, tangible human robot interaction to control the

shape of SRMRs. The proposed interface consists of multiple computation steps. The highest

computation load is resulting from the search to construct the given shape optimally. The

attempted solution space is highly exponential and pruning branches as soon as possible

plays a crucial role to have real-time performing interface.

The proposed solution can be applied to any lattice type SRMRs. Having a SRMR with the

75

Chapter 4. From playdough to Roombots

shape of a single voxel eliminates the construction step. Thus, large scale scenarios can be

be built very fast. If a SRMR has a more complex shape, the rule to get new child nodes

in the construction step should be updated according to the new shape. The rest of the

implementation is generic.

Properties inherent to TUIs also apply to this chapter. For example, a visually disabled person

can control Roombots using the TUI. He may not make use of the suggested visual feedback,

but, can always touch and feel the final structure after self-reconfiguration and modify the

playdough when needed.

The future work in this line of research will focus on incorporating inverse kinematics into

the proposed interface to be able to build more complex structures. Real-time 3D scanning is

an enabling factor for this work. Hence, we will adopt an automated real time 3D scanning

technique. The final work plan is including passive components to replace some of the robotic

modules to the search algorithm which would reduce the cost of real systems and possibly

boost upscaling properties of the interface.

76

5 Natural user interface

The previous chapter relied on 3D scanning of an external tangible interaction medium (play-

dough). Although, it is very effective in conveying the shape information, it may not be very

suitable for some other purposes such as conveying pose data. Humans use verbal commands

and pointing gestures for such information transfer. In a previous study, [Ozgur et al., 2014]

used pointing gestures to select modules in a discrete environment (grid-space) and send

them to desired new locations. The study heavily relies on use of external cameras to track both

the user and robots. In this chapter, we are improving the similar idea to achieve continuous

control of SRMRs. More specifically, the interface is demonstrated using a metamodule of two

RB modules connected in series. Metamodule has strong directional lighting capability. The

user controls the location of the light cone on a desktop by using pointing gesture. The study

also demonstrates further gesture capabilities for modifying light intensity.

Reference publications

• This chapter is based on Mehmet Mutlu, Stéphane Bonardi, Simon Hauser, Alexandre

Bernardino and Auke Ijspeert. “Natural user interface for lighting control: Case study

on desktop lighting using modular robots.” IEEE International Symposium on Robot

and Human Interactive Communication (RO-MAN) 2015.

My original contributions

– Defining and developing details of ideas

– Designing the user interface

– Most of the coding and testing

– Partially doing the hardware experiments

– Writing the manuscript

77

Chapter 5. Natural user interface

5.1 Introduction and motivation

The world of robotics has evolved dramatically over the last decade. Robots have seen their

capabilities increasing, both in terms of mechanics and electronics but also in terms of control.

A growing number of robots are no more limited to lab spaces and are being designed to be

integrated in every day life environments. They should provide services, help, and support to

a wide variety of end-users, ranging from young children to elderly, all of them having specific

needs. These robots appear in many shapes and orders of complexity, from the very advanced

humanoid robots, such as Asimo [Masato, 2001], able to walk, run, and manipulate objects, to

the simpler vacuum cleaner robot Roomba [iRobot, 2018], limited to a specific task. But the

complexity of these robots is often linked to their cost, which confines the most advanced

ones to lab’s environments. They are also often specialized into carrying out a specific set of

tasks, such as manipulating objects or exploring unknown environments. More and more

robots are being developed to support humans, such as the Keepon [Kozima et al., 2009]

robot, used for example as an helper therapy for autistic children, or the RI-MAN robots

[Odashima et al., 2006], designed to carry patients from their bed to their wheel chair. But

these robots suffer from their high level of specialization into a specific domain and are lacking

the ability to adapt to the task to be performed.

As opposed to this rise in complexity trend, the domain of reconfigurable modular robots has

emerged as a potential solution. Reconfigurable modular robots are simple interchangeable

units able to assemble to form a more complex structure to solve various more complicated

tasks. Among them, Self-Reconfigurable Modular Robots (SRMRs) are equipped with active

connection mechanisms allowing them to dynamically change shape to adapt to the user

needs or to the task to be performed. They are different from more classical bio-inspired and

anthropomorphic robots since they do not necessarily exhibit traits that would allow for an

intuitive way of interaction (such has a head with cameras or hands with embedded tactile

sensors).

RB are made for building reconfigurable living and working environments that adapt to the

current needs of human beings. We aim at a smart assistive environment where the robotic

furniture is at the service of the user and helps with important aspects of his/her daily life.

The hardware technology will be modular using a novel “universal connector” such as to allow

flexible use, easy plug-and-play, and gradual implementation in the house. Different research

aspects linked to the Roombots project are illustrated in 5.1.

The needs for a natural way of interacting with such robots is growing, especially if we envision

to deploy them in everyday life environments, as it is the case in the RB project. When

considering interaction inside homes or public spaces, we have to keep in mind that the

proposed interaction solution should be non-intrusive but also easy to handle for non-experts

or people with disabilities. An example scenario can be seen in 5.2.

We have developed several interaction strategies to control our modular robots Roombots. The

first one is a low level communication targeted towards expert users in which we send motion

78

5.1. Introduction and motivation

Figure 5.1 – Rendered picture representing the different aspects of the Roombots project. On
this illustration, a table is being constructed out of active modules and passives elements
(wooden color) evolving on a 2D grid (in dark grey). A set of modules is located out of the
grid and metamodules separate from the main group to perform off-grid locomotion. They
reattached to the grid using a passive alignment mechanism included in the ground. A user is
controlling the process using a tablet device.

command sequences. A second interface based on a classical GUI offers to the user the ability

to build pieces of furniture made of RB modules in a 3D environment. It requires the user

to focus on a computer display using a keyboard and a mouse for to remotely interact with

robotic units situated elsewhere. To enhance the user experience, we designed an Augmented

Reality application based on a tablet display in which the user could place robots into the

environment and freely move them around [Bonardi et al., 2012a]. The main limitation of this

approach was the necessity for the user to carry an external device at all time. To alleviate the

need for an extra device we developed a gesture based interface where the user is able to select

individual RB modules and move them to target locations by pointing at the modules and at

the targets, receiving visual feedbacks on LED setups on both the grid tiles composing the

environment and the RB modules [Ozgur et al., 2014]. In this chapter, we proposed a new way

of interacting with these non-anthropomorphic platforms, in which the end-user was placed

at the center of the interaction by abstracting away the complexity of the control techniques

inherent to SRMRs.

Motivated by the existing natural control interface studies [Lichtenstern et al., 2012], [McLurkin et al., 2006],

[Bellmore et al., 2011], [Klompmaker et al., 2012], we decided to complement our approach to

take into account the versatility of our modular system and the re-usability of its components.

We propose in this chapter a novel tracking method allowing the user to interact with a set

of modular robots using hand movements. We illustrate our approach with a main usage

scenario using the modularity brought by the modular robotic platforms. We created a multi-

directional spotlight made of two Roombots modules which is able to control light’s direction

and intensity based on the user arm/hand movement on a table top.

79

Chapter 5. Natural user interface

Figure 5.2 – Roombots are being designed to work in daily life environments. A rendered image
that shows an example.

This chapter is organized as follows. In a first section, we describe the hardware setup and

software design of our interface. We then present our case studies and the related experiments

and results we carried out. Finally, we summarize our study and give potential future extension

plans in the last section.

5.2 System design

Roombots is a self reconfigurable modular robot. A single module can perform locomotion on

a structured grid environment. When multiple of RB come together, they can attach to each

other and/or do more complex tasks by collaborating with other modules in the environment.

For instance, a single module can be used as a 3 degree of freedom (DOF) manipulator when

it is attached to the grid using its active connection mechanism. A second module can attach

to the end of the first one. The resulting structure consisting of two RB modules in series

is called metamodule. A metamodule can be used as a 6DOF manipulator on the grid or

it can do controlled locomotion on or off the grid. The advantage of RB is pronounced in

particular on their flexibility of use. They can form structures such as furniture, carry existing

objects or manipulate surrounding environment whenever possible. The focus of this chapter

is introducing an easy to use human-robot interface for controlling Roombots to illuminate

desired location at controlled light intensity.

Light is the essential part of almost all visual systems. Human and machine vision is only

possible with existence of either radiated or reflected light. Hence, proper lighting systems are

entangled with our daily lives. Although most of the lighting systems are stationary and only

on/off controlled, there exists many variations such as light intensity and color controlled

ones or mobile lights as commonly seen on theater stages [Sugden, 1995] to increase comfort,

give focus to certain areas or just for entertainment. Another need for local lighting arises

80

5.2. System design

on desktops. Small and adjustable desktop lights are commonly used while studying or

working on a table. User needs to manually adjust position of the light and the table lamp

occupies small space on the table. There are also intelligent and robotics solutions in the

literature. A lamp design that uses a higher level of cognitive architecture to achieve fluency

in human robot cooperation is presented in [Hoffman and Breazeal, 2008]. Our proposition

is using more generic-use RB modules instead of table lamps since RB are mainly designed

for autonomously creating furniture. Manipulation capabilities of RB for self reconfiguration

purposes [Sproewitz et al., 2010b] and some native interfaces for controlling robot locomotion

[Ozgur et al., 2014] were studied in previous works. Therefore, we assume a robot can carry

the light to the desired location. In this chapter, the focus is on human robot interaction once

the RB are on the location where light is needed.

5.2.1 Overview of the Proposed Human Robot Interface

The proposed system consists of a depth camera, light equipped RB metamodule and a

computer. The depth camera can be any camera giving a depth information of image pixels. It

is also possible to use stereo cameras, but, in this study Kinect is used since it is widely available

and relatively cheap. One of the key requirements is having a mobile and remotely controllable

light. Even though in this chapter RB are used to actuate the light, a mechanically simpler

pan and tilt system [Wilson et al., 2012, Winkler et al., 2012] can also be used as light actuator.

Finally, a computer is needed to implement our autonomous lighting control interface. 5.3

illustrates all components of the proposed system and 5.4 shows the real implementation of

the experimental setup. The Kinect is mounted on the ceiling to have bird’s eye view of the

desktop. It captures both depth and color images and transfers them to PC over USB. Depth

images are used to extract the desired light location by detecting the position of the user’s arm.

The user lifts the arm over certain height to activate the light position control mode. The end

point of the hand is assumed to be the desired light location. Then, it is geometrically possible

to calculate desired pose of the light to enlighten the desired spot, if the coordinates of Kinect

and light are known. Once the desired pose of the light is known, robot is commanded to

bring the light to the calculated pose. The communication between PC and RB is handled

over bluetooth channel. Finally the robot directs the light to the calculated orientation. If

the control of the robot is rigid enough and extrinsic calibration of robot and Kinect is done

accurately, there is no need for color images. However, color is used as a feedback mechanism

to ensure the desired location is really illuminated.

Using gestures for controlling hardware [Ozgur et al., 2014] or software [Kamel Boulos et al., 2011]

can be one of the most intuitive control ways depending on the implementation. When a table

environment is considered, a person would need to first reach the lamp and then direct the

light towards a desired direction. However, with the proposed interface, simply showing the

target spot is enough. The interface protocol is quite intuitive. The user needs to raise his/her

arm a little upper than the usual working height and reach to the place where light is needed

(5.5a). RB will immediately respond to the request by directing the light to the set direction.

81

Chapter 5. Natural user interface

Figure 5.3 – Overview of proposed user interface. The key components and relations between
them are shown.

The spotlight will follow the end of the arm as long as the arm stays up, in other words in the

position set mode. System continues to light the final set point when the arm is lowered to

usual working height as it can be seen in 5.5b.

The second mode of the system is adjusting the brightness of the light. It is similar to setting

the position. First, the user needs to raise the arm further up. When the arm is high enough,

the system switches into light brightness adjustment mode. In this mode, the robot stops

position tracking mode and stays in the final set point. At this point the user controls a virtual

slider that regulates the brightness. Moving the hand towards right results in dimmer and

eventually turned off the light. Similarly, moving hand toward the left side means brighter

illumination as illustrated in 5.6. Once the appropriate level of brightness is set, the user can

lower hand vertically and switch back to the light position setting mode.

A computer is needed to process the Kinect data to get input from the user and to control the

robot. However, the user does not need to interact with the PC which is hidden from the user.

The illustrations given in 5.7 show how the automated control part works.

5.2.2 Detecting User’s Commands

The proposed interface is designed to have minimal learning for the user before starting to

use the system. The fundamental information required to accomplish the task is detecting the

arm, finding its end point and measuring the horizontal position and height of the end point.

This information can be extracted using a depth image of the table captured from above. The

depth images captured by Kinect give the distance of each pixel to the camera in millimeters.

Hence, the obtained depth image is a two dimensional distance matrix of pixels in the fieldof

view of the camera. The first processing step consists in converting the depth image to binary

image by thresholding within position-set-mode height. If there are no objects higher than

82

5.2. System design

(a) (b)

Figure 5.4 – Experimental robotic spotlight system consisting of a Roombots metamodule,
Kinect (a) and computer(b).

approximately shoulder height, the obtained binary image would show only the user arm

when it is raised to set the light position. The implemented case, shown in 5.4a, is an example

of such scenario which simplifies the computer vision steps. If there are objects higher than

the minimum range of light-position-set mode, those objects needs to be filtered out from the

depth image. Using methods such as background subtraction [Piccardi, 2004]. The next step

is obtaining meaningful regions in the binary image. This step requires connected component

analysis on the image, also known as blob detection. Ideally, the binary image should have

only a single blob which is the arm of the user. However, due to noise on the Kinect, many

other small blobs can be observed on the camera. Moreover, noise can separate the arm blob

into multiple blobs. In order to get rid of noise, closing operation (dilation followed by erosion)

is applied on binary image and only the biggest blob is taken into account provided that it

has minimum size. All the other noise generated blobs are discarded. In the end of the depth

image processing, only the arm blob is obtained as seen in 5.7b. Once the arm is extracted, the

tip point of it, the furthers point from user, is considered to be the target set-point for spotlight.

The target point corresponding to 5.7b is marked as red circle on 5.7a.

Knowing the target position on image plane is sufficient to calculate the spotlight’s desired

orientation such that its light will illuminate the target point. If the intrinsic calibration of

depth camera is done properly, xt i and yt i coordinates of the target on image plane can be

mapped to actual xt w and yt w coordinates in the world coordinate frame. Also note that depth

83

Chapter 5. Natural user interface

(a) (b)

Figure 5.5 – User is pointing where the light is needed (a). Once the pose of Roombots spotlight
is set, it remains on the desired location (b) as long as the user does not switch to the control
mode.

(a) (b)

Figure 5.6 – Adjusting brightness of the light. Raising the arm further up puts the system on
intensity setting mode. For higher or lower illumination hand should be on the left (a) or right
(b) of the table respectively.

image gives the third coordinate, zt w .

The detection of the brightness adjustment mode is almost the same as the position target

setting mode. If the height of the target point is higher than the predetermined threshold, the

system goes into the light intensity control mode. In this mode the lateral position of the arm

tip point is mapped to the brightness of the light.

5.2.3 Controlling Roombots

Knowing the target position on the table is enough to calculate the desired orientation of

the spotlight. But still Roombots need to have a low level controller for bringing the light

to the desired orientation. As a design choice, the position of the end effector of the RB

metamodule is kept constant at a certain point and the light orientation is changed around the

pre-determined operating point. Thus, the resulting overall motion of the light is only rotation

which also simplifies the control for the operator. Rotation around each axis is called pan, tilt,

and roll motion. Ideally, roll has no observable result since the light going out of the source

84

5.2. System design

(a) (b)

(c) (d)

Figure 5.7 – The application GUI gives real time information about the detection and control.
Although the user does not need to interact with the PC, this information is still useful to
explain the system. The Operator can see (a) color images, (b) processed depth and (c) RGB
images and (d) simulation view on the application GUI.

forms a conic shape. However, pan and tilt results in displacement of illuminated region on

the desk. Even though only pan and tilt motions are required, achieving it is not trivial with RB

metamodule.

Attaching two Roombots modules to each other in series results in a 6-DOF serial manipulator

(Roombots metamodule). Once the Roombots metamodule fixes itself on a stationary surface

(see Fig. 5.8), the forward kinematic model of the system can be written as follows,

b
e T =

(6∏
i=1

i−1
i T

)
6
e T (5.1)

where b
e T denotes the transformation from base (0T = bT) to the end effector, i−1

i T adds one

rotation variable for each DOF, and 6
e T is the constant transform to reach the end effectors

85

Chapter 5. Natural user interface

X1
Y1

Z1 X5

Y5 Z5

X2

Y2 Z2

Xb

Yb Zb
Xe

Ye ZeX6
Y6

Z6

X4
Y4

Z4

X3
Y3

Z3

Figure 5.8 – Kinematic model of Roombots metamodule manipulator. Each module (two
spheres) has three DOF with continuous rotation capability.

center which is the center of light source in this study. For each desired light orientation

(i.e. end effector orientation) the inverse kinematics of the metamodule are numerically

solved. The solution of inverse kinematic gives the rotation angles, Qi , that each joint should

reach. Desired light orientation can be achieved after knowing all Qi values. However, inverse

kinematics may not always have a solution or may have multiple solutions. In the multiple

solution case, the solution which is closest to the previous states is used. Cases with no solution

should be treated carefully or should be avoided. In order to simplify the control problem,

continuous space is discretized with resolution of 0.5 degree rotation angles. When the light

target orientation is calculated, it is assigned to the closest available discrete angle. Although

discretization results in slight errors, the resolution is sufficient for human perception. Since

the roll rotation is a free parameter, it provides some flexibility to find valid inverse kinematics

solutions. When inverse kinematics could not be found in the first try, the roll angle is changed

to find the solution for desired pan and tilt angles. In the end we were able to calculate

inverse kinematics in real time for all possible pan and tilt angle combinations within our

operation range and resolution. Each solution is tested in Webots simulation environment

[Webots, 2018] to validate the results in real time. The Webots screenshot corresponding to

time instance for 5.7 is shown in 5.7d.

5.2.4 Closing the Control Loop

When ideal conditions are assumed, open loop control of the RB manipulators is sufficient.

However, there are many noise sources in the real world. Extrinsic calibration between RB and

Kinect can be done but, slight structural misalignments are unavoidable. Furthermore, there

are uncertainties arising from RB hardware such as gearbox backlash and body elasticities.

Those uncertainties cause the open-loop-illuminated region to have stochastic position error.

One solution to reduce the errors for different scenarios could be using simple, yet precise

pan and tilt mechanism or using a rigid manipulator such as industrial ones. However, we

would like to implement our proposed interface for RB and it is still possible to compensate

most of the noise by implementing active control.

86

5.2. System design

For the closed loop control, feedback from the environment is needed. It is obtained by

processing the RGB images captured by Kinect. RGB images are first converted to grey-scale

and then thresholded to get the brightest region in the binary image. To avoid noise, a similar

blob filtering technique to the one explained for depth images is implemented on binary

image. An example of processed RGB image can be seen in 5.7c. The highlighted region shows

the blob corresponding to the brightest region. We assume that the illuminated region appears

to be the brightest part in the image. Finally, the center of that blob is found by calculating,

Sx = 1

n

n∑
n=1

xi , Sy = 1

n

n∑
n=1

yi (5.2)

where Sx and Sy are x and y coordinates of the first moment of the area, n is the number of

pixels in that region and xi and yi are image coordinates of blob pixels. The first moment is

also known as center of mass of the area in an image. The enter of mass of that blob is assumed

to be the center of the illuminated region.

Knowing the set point and the resulting light location, a conventional PI D controller can be

implemented to compensate errors. Only P control is implemented to have a simpler system,

i.e.

u = Kp e (5.3)

where u is the input to the plant that is error compensation signal, Kp is the proportional

control constant and e is the error. Both u and e are two dimensional vectors since the position

control of the light is in the (x,y) plane. Thus, the error signal can be written as

(
ex

ey

)
=

(
xt −xl

yt − yl

)
(5.4)

where subscripts t and l corresponds to target and actual light positions respectively. The

control signal u tries to bring the actual light closer to the target point. In order to avoid

overreactions to an unexpected situation u is passed through a saturation function to limit the

correction signal’s effect.

87

Chapter 5. Natural user interface

5.3 Results and Discussion

Proposed system has been implemented in hardware and subjective tests are conducted to

evaluate the system. The supplementary material for demonstrating the performance of the

interface and the whole system can be found among the media submission of this paper.

Another interesting aspect of the interface is the fact that light position gives a direct visual

feedback to the user. In 5.3, we can observe one more implicit feedback loop. Since the user

can directly see the location of the light, in case of an unexpected situation when the light

does not reach the target position for some reason, the user can intervene the control process

by giving a proxy target such that the light would end up the location the user wants. This

situation actually means human in the loop control.

5.4 Conclusions and Future Work

In this study we presented an intuitive user interface to control a robotic spotlight which is

actuated by a RB metamodule. We integrated a Kinect based input device to detect the arm of

the user that is used to set the desired spot and brightness for illumination. The manipulation

of the light is done in continuous space and in real time. Finally, we incorporated visual

feedback, in the form of detecting bright regions in the environment to improve tracking

performance with closed loop control.

The main contributions of this chapter are twofold: (1) a natural interaction designed for

autonomous and mobile lighting and (2) Roombots gained a new functionality and behaviour

which is bringing the light to most needed spots. The proposed lighting interaction is designed

to make light position and intensity control as intuitive as possible. Although, light is actuated

with a complex robot, the natural human robot interaction made the control of the lighting

quite user friendly. Thanks to this new interface, a relatively complex and generic purpose

robot was easily controlled for lighting application.

The light used in this chapter was a commercially available LED with a proper reflective cone.

It has been very useful for prototyping the system. As a future work, we will design the light

from scratch to fit everything it inside RB module. Additionally, backlash in custom made

gearboxes of RB has been identified as the biggest source of uncertainty for precise control of

RB. We will revise the design and try to reduce the backlash as much as possible.

Another extension to this study will focus on implementing a similar interface for controlling

an end effector of RB manipulator with teleoperation [Vertut, 2013]. RB manipulator can be

used to locate objects, even if the system is physically in a different place. For instance, one

can help a disabled person who has to stay at home to reach and fetch items using Roombots

from other side of the world. In such extensions, improvements to the feedback loop will be

needed.

88

6 Virtual reality for reconfigurable
rooms

In the beginning of the Ch. 4, we argued that a user directly building the structure is inap-

propriate and using a screen may not be the best interaction way. In the last years, head

mounted displays (HMDs) became quite popular which raised the question if there could be a

possible user experience improvement via use of HMDs for controlling SRMRs. This chapter

presents another user interface for SRMRs using HMDs and hand (gesture) tracking sensor.

The intended task of this UI is identical to Ch. 4 which is setting a desired shape a structure to

be made out of Roombots. However, in this chapter, the user assembles each module one by

one in virtual environment.

Reference publications

• This chapter is based on Valentin Nigolian, Mehmet Mutlu, Simon Hauser, Alexandre

Bernardino and Auke Ijspeert. “Self-reconfigurable modular robot interface using

virtual reality: Arrangement of furniture made out of roombots modules.” IEEE Inter-

national Symposium on Robot and Human Interactive Communication (RO-MAN)

2017.

My original contributions

– Defining and supervising the student project

– Designing the user interface

– Partially doing the user study

– Reviewing the manuscript

89

Chapter 6. Virtual reality for reconfigurable rooms

Figure 6.1 – A single Roombots module consists of four half-sphere-like parts that can rotate
independently. There is a continuous rotation capability between each dark and white hemi-
sphere within a module. They can form more complex structures through self-reconfiguration.
The rendered image displays different capabilities of Roombots while reconfiguring them-
selves into a table by utilizing L-shaped and X-shaped passive elements.

6.1 Introduction and motivation

There are different levels and ways of achieving generic-use robots. One of the extreme branch

for multi-purpose robots is called modular robots (MRs) [Yim et al., 2007]. The idea behind

MRs is having relatively simple modules that are not capable of performing many tasks, but

drastically enhance their capabilities when multiple modules work together in a collaborative

manner. If the reconfiguration can be done autonomously by an MR, the type of MR is called a

Self-Reconfigurable Modular Robot (SRMR). SRMRs can potentially offer solutions to complex

problems by using many of simple building blocks, and by controlling them in a coordinated

way.

[Ahmadzadeh and Masehian, 2015] and [Ahmadzadeh et al., 2015] give extensive literature

surveys of MRs in terms of mechanical and control approaches respectively. There is a large

literature behind challenges of SRMRs.

Our aim in this chapter is to create a user interface for assembly of structures made out of

RB modules and placement of said structures. Essentially, this work focuses on the problem

of assembling structures and its intricacies.The MR community already makes use of visual-

ization tools. A nice example is given in [Zykov et al., 2007] where different structures made

out of molecubes are created in a simulation environment. High DOF structures created with

90

6.2. Background on virtual reality

modular robots increase the need of user-friendly interfaces. For instance, an average remote

controlled model car has two degrees of freedom (steering and throttle) and a user can fully

control it. In contrast, a human cannot directly control all individual actuators of a 60-DOF

SRMR structure. Such a task requires a higher level abstraction layer for a human operator

control. However, no high-level interface to control and assemble SRMRs could be found in

the literature. This means that although the various hardware-related aspects of SRMRs have

been studied in length, very little work has been done regarding how to interact with them. As

it follows, it is very difficult to find inspiration when designing such a new interface and even

more difficult to evaluate it, as there is no suitable comparison. For this reason, the underlying

basis of the interface we present is mostly empirical.

The contributions of this chapter are twofold. First, an interface is proposed to do assembly

of structures made out of SRMRs in a seemingly natural manner. The user experience is

enhanced by integrating a head mounted display and a hand tracking system to the interface.

The interface was then evaluated by conducting a user study. The rest of the chapter is

organized as follows. 6.2 gives a review of VR techniques used in related concepts. The

proposed system is presented in 6.3 and the evaluation of the system is explained in 6.4.

Finally, concluding remarks and future works are given in 6.5. Additionally, an explanatory

video showcasing the interface’s features was made.

6.2 Background on virtual reality

Virtual reality (VR) tools are becoming a part of daily life and they are increasingly being used.

Two of the most common uses for VR are video games and online product customization.

Changing color, texture or other features of a virtual product and displaying it from any angle

is widely used to make the product more appealing. One of the first examples of online

product customization is presented in [Nousch and Jung, 1999]. Customers can design their

custom furnitures (shelves), online, within the allowed limits so that the product can be

manufactured. In [Heydarian et al., 2015], the similarity of immersive virtual environments

are compared with real physical mock ups for office related tasks on various architecture,

engineering and construction works. Authors conclude that immersive virtual environments

can successfully represent the physical world in most of the cases. Substitutionary reality is

another branch similar to VR addressing the problem of differences between real and virtual

objects around the user [Simeone et al., 2015]. In substitutionary reality, all real objects are

associated with virtual counterparts with a certain discrepancy. A low cost VR framework is

presented in [Hilfert and König, 2016] where authors focus on the framework that they present

and emphasize the use of VR in training scenarios. One of the most used applications for

the VR is spatial object placement. Particularly, furniture placement in a room is addressed

frequently. The whole mock-up can consist of real-sized virtual objects which the user can

interact with as if they are real, as shown in [Dunston et al., 2011] where authors use their

system to review the design of a hospital room. Another similar VR application is given in

[Beattie et al., 2015] where authors use Oculus Rift and Leap Motion in their interface to help

91

Chapter 6. Virtual reality for reconfigurable rooms

a CAD assembly task. Moreover, virtual environments have the intrinsic feature of modifying

physics. This allows for physically-impossible behaviors such as objects floating or intersecting

each other. VR offers useful tools for robot control and visualization. Robots may be far away

from the operator and the operator can face a challenging scenario. Indeed, analyzing the

situation can be extremely difficult with only raw data. However, an appropriate use of a VR

tool can ease the duty of the operator and can increase the mission performance as explained

in [Nguyen et al., 2001] where VR is used while controlling remote space rovers. Another

important aspect of VR in robot control is the ability to have different viewing angles. Although

authors are using only simulation in [Recchiuto et al., 2015], they are analyzing the effects

of the view angle in formation control tasks of robot swarms. In the real world, all viewing

angles may not be possible, but recreating the robot state in a virtual environment gives more

freedom to an operator.

In a previous study on the same RB hardware [Bonardi et al., 2012a], authors studied an in-

terface with a goal similar to this current chapter. The approach in [Bonardi et al., 2012a]

involves study on a human robot interface in a real-life-size virtual environment using a tablet

PC. They found that being able to move in the virtual environment increases precision in

furniture placement. They also concluded that augmented reality (placing virtual objects on

the real video captured by the mobile device) does not have significant effect on the same

spatial arrangement task. Another modular robotics interface presented a direct human robot

interaction [Ozgur et al., 2014]. In that study, the operator only points towards a RB module

using an arm to chose it and afterwards the operator can point a desired goal location for the

chosen module. Then, the module autonomously locomotes to the goal location on the grid

environment. The pointing gesture is tracked by a Kinect. This natural interface considers only

re-placement of existing single modules and it does not support self-reconfiguration from one

structure to a new one. If the notion of placement using VR has been extensively studied, this

knowledge can be adapted to manipulate modules in a way that they are assembled to create

new structures. This would be an interface which would consider modules to be brick-like

objects, with the user assembling structures brick-by-brick. However, it would not consider

the ability of SRMRs to change their configuration. The interface we present in this chapter is

intrinsically related to the very essence of SRMRs.

6.3 System design

RB are designed to work in a shared environment with humans. In order to control many RB

modules, there is a need for practical and easy-to-use interface. The demonstrative scenario

considered in this chapter is building arbitrary structures with RB modules, particularly

furniture.

92

6.3. System design

6.3.1 Requirements of the System

The primary consideration of this work is usability. We envision a scenario where the user has

many RB modules and those modules can create furniture according to needs. For instance,

a table made out of RB modules should be able to self reconfigure into chairs and/or stools

when needed, thus saving space and having redundant modularity at home/work. The user

interface should provide a simple way to define those two different configurations with a

pre-established set of modules and passive elements. VR enables also the remote control,

such that the user can change the furniture configuration even if he/she is not present in the

room. To sum up:

• The user should be able to create any desired structure, using RB modules.

• The user should interact with the furniture in a virtual environment which is the repre-

sentative of the real room.

• The environment should support innovative input devices to provide an intuitive inter-

face.

• The system is expected to make the user feel immersed in the virtual environment.

6.3.2 Overall system

The interaction is designed to be completely in a virtual environment in order to satisfy the

design requirements of interacting with the RB furniture. The system consists of a virtual

environment representing a workshop and a room and a Graphic User Interface (GUI) to

interact with said environment. The minimal requirements of the interface is only a regular PC

filling the system requirements of the Oculus Rift. In our system, the computer uses Microsoft©

Windows 7 as an OS and acts as the central device binding the other elements together.

There is a substantial number of different areas of interaction which can potentially result

in meeting our design criteria. Joystick, gamepad, inertial remote controllers, haptic devices

projectors and 3D screens are only some of the most popular input-output devices that could

have been used. Since the system represents the real world, devices with more real-life-like

interaction would be more appropriate. Hence, two extra devices are chosen to enhance the

user experience: Oculus Rift, a VR device consisting of a head mounted display for 3D vision

with head tracking capability, and Leap Motion, a hand tracking and gesture recognition (GR)

system. Leap Motion introduces the concept of holding items with the hand and moving them

around. On the other hand, Oculus Rift not only replaces the screen with 3D vision capability,

but also gives head pose tracking capability to steer the direction of sight in a life-like way.

Environment components

The environment contains various elements interacting together. We distinguish four of them:

93

Chapter 6. Virtual reality for reconfigurable rooms

• Roombots modules, as described in 6.1

• L-shapes, passive elements on which Roombots modules can attach. They can be seen

on Fig. 6.1.

• Passive plates, simple static elements on which Roombots modules can attach. They are

typically fixated on walls, the ceiling or the floor. Such plates can also be seen on Fig. 6.1

as the dark gray area on the floor.

• Structures, a set of Roombots modules and L-shapes assembled together.

Virtual environment

The virtual environment of this system is a representation of the real environment where

one would assemble modules together and a room which can be any place where furniture

is needed; a house, an office, a hospital, a school, a garden and so on. In our specific imple-

mentation, an indoor place is considered. This environment has two aspects: the Workshop

and the Room. In the Workshop, Roombots modules and their passive companions can be

manipulated to create arbitrary structures. It features a large rotating plate that can be used to

consider one’s current work from various angles and a grid of passive connectors on which

modules can be attached. After building a structure, the user can “export” it to the “room”. In

the Room, the custom structures are considered to be a single object and are manipulated as

such. The user can place the structures in the room along with pre-defined furnitures such

as a stool or a table. On the visual side, the Room is not very refined, as this work is more

of proof-of-concept than a finite product. We consider two rooms and not one to clearly

distinguish the two sort of tasks they allow to do. The Workshop aims at building structures.

Modules and passive elements are considered as distinct objects. On the other hand, the

Room aims at placing structures as they would be in an actual room. Whole sets of modules

and passive elements are considered as single objects. Screenshots from the workshop and

the room can be seen in 6.2 and 6.3 respectively.

Graphical user interface (GUI)

The GUI has four main components: the holders, the pointer, the turntable and the display.

First, the holder contain the Roombots modules and L-shapes. They provide a way to add new

elements to the scene, as new ones will appear once an existing object has been displaced.

Note that the holders are purely conceptual and are thus not shown. The second component

is the pointer. It allows to pick up the structures from the holders or anywhere else. The 3D

motion of this pointer can be controlled by the Leap Motion. Thirdly, the “turntable” is a large

plate that can be rotated, thus giving different perspectives on the modules that are attached

to it. Finally, the display shows the current state of the environment through the Oculus Rift’s

HMD. The Oculus Rift also acts as an input device since its orientation is interpreted by the

software to define which part of the scene must be displayed. Indeed, the core functionality

94

6.3. System design

Figure 6.2 – Main components of the GUI in the Workshop. On the right, RB modules and
L-shapes can be grabbed and manipulated (the red cube represents the hand-controlled
pointer). The cube turns white when holding a handle, to give the user feed-back that he or
she pinched it. At the bottom, the “turntable” and its handles. In the center, the structure
being currently assembled.

of any VR device is to follow the user’s head movements. Furthermore, the interface uses the

keyboard to perform generic tasks that are independent from the other devices. It allows to

move around in the room using keys in an arrow-like configuration on the left-side of the

keyboard, import and export structures and switch between the Workshop and the Room.

6.3.3 Giving more immersive feeling

Using Oculus Rift and Leap Motion devices, we aimed to give a more immersive feeling.

Directly grasping objects

Leap Motion, [Motion, 2018], is used to track hand gestures. The same function can also

be achieved by other depth image sensors like Kinect. Leap Motion was chosen assuming

that it can perform better since it is specifically designed to track hand gestures. Holding

objects with e.g. a mouse has only two states, holding or not-holding depending on mouse

button state and its real world 2D motion must be transformed in a virtual 3D one which is a

common problem in 3D-based softwares. However, Leap Motion provides 3D motion and a

continuous state for the pinching (grabbing) gesture depending on the closeness of fingers.

The GUI gives a holding state feedback by altering the size of pointer. In other words, open

hand (non-holding state) results in a big pointer and grabbing hand (holding state) displays a

small pointer. Additionally, the inner cube turns white when the user is dragging an object’s

95

Chapter 6. Virtual reality for reconfigurable rooms

Figure 6.3 – Users can place their custom structures anywhere in the Room. Here, we can see
the same chair as in fig.6.2, placed in front of a pre-built table made of Roombots modules
and L-shapes.

“handles”. Handles are presented in 6.3.3. Thus, the user can get feedback from the system

if the grabbing attempt is not successful, e.g. when the gesture is not done correctly. 6.4

illustrates the operator while using the complete set-up to assemble RB-made structures and

place them. Indeed, grabbing structures is done by pinching with the hand while bringing the

pointer to an object.

Object manipulation & handles

Ideally, one would want to use the same gestures as in real life to manipulate an object. To

rotate a module’s components, both hands are needed, one holding the module and the other

rotating another part of it. However, recognition of complex hand gestures is quite a difficult

task and no current technology allows to perfectly mirror hands. For this reason and to keep

the interface as simple as possible we only use one gesture, namely the “pinch”. The idea is

to use “handles”, analogous to rods attached to the objects and their components. When an

object has been grabbed, it is considered to be “selected”. Once selected, an object shows

handles that are used to manipulate it, rotation-wise. Pinching a handle and then dragging

it would have the object rotate such that the handle follows the direction to the user’s hand.

Three handles are used. One follows exactly the hand’s movements and the other two makes

the object rotate around the first one. For a Roombots module, three more handles are added

to change its configuration by rotating its components around their axis. All three correspond

to rotation around its three aforementioned inner axes, i.e. the actuated degrees of freedom of

the real modules. See Fig.6.5 for a visual explanation of handles.

96

6.3. System design

Figure 6.4 – The complete set-up required by the system during a user test.

6.3.4 Assembly

The “connector” is the main concept underlying the assembly process. All objects possess a

set of connectors that are either passive or active and that are used to connect them together.

Active connectors correspond to the actual ACMs present in all Roombots modules. They

represent the ability to attach to other modules’ passive connectors. Two objects are connected

if a connector of the first is connected to a connector of the second. More than manipulate

single objects using handles, the interface aims at assembling various objects together. This

task has two main components : snapping and connectivity. Snapping is changing an object

orientation so their connectors match perfectly when they are brought close. It is a well-known

rigid body problem and its implementation will not be explained further.

Connectivity

The connectivity problem, however, is non-trivial. Defining how the connections between

the objects are represented has several aspects. In this interface, a hierarchical model is used.

When two objects are connected, one is considered to be the “parent” and the other the “child”.

Manipulating the parent (e.g. dragging it) results in forwarding the modification to its children

in a recursive manner, thus manipulating bulks of objects as a whole. To deconstruct a bulk,

one would have to grab the latest-attached modules. While this approach works well when

assembling a structure piece-by-piece, it becomes more complicated when connecting bulks

of objects. Indeed, when connecting two sets of objects together, each having their own

97

Chapter 6. Virtual reality for reconfigurable rooms

Figure 6.5 – A Roombots module in current selection, thus showing its handles. The green
handle follows exactly the direction to the hand’s position while the red and blue handles only
rotate around the green handle. The rotation of the green handle is done around the bottom
of the module. The cyan, magenta and yellow handles are used to change the Roombots
module’s configuration.

“parent”, it is unclear which of them should become the parent of the connected structure.

All relationships would have to be redefined in any case. No convenient solution was found

to this problem. When two bulks are connected, modifying one will thus not forward the

modification to the other. See Fig. 6.6 for a more detailed explanation of the problem.

6.4 Results and discussions

A user study was conducted to test the interface and see if it is a feasible and user-friendly

approach. 21 volunteered test subjects (operators) with various VR and GR background

tried the system. The main focus was making them perform a series of increasingly difficult

construction tasks, thus testing the main functionalities of the interface. Subjective system

appreciation was used to evaluate the proposed interface. They simply used the interface as it

is. Fig. 6.7 gives more detail on the task performed by participants.

6.4.1 User study

Once the users completed their tasks, they were asked the questions in 6.1. Possible choices

were: (0) not at all, (1) not really / no, (2) a little bit / neutral, (3) yes and (4) a lot / definitely

depending on the question. Additionally, they were asked the following background questions:

“Did you have any previous knowledge about VR?”, “Did you have any previous knowledge

about GR?” and “Did you have any experience in 3D environments (Games, Computer-Aided

Design, etc.)?”. Those questions were used to determine the prior experience of our users

regarding methods used by the interface. Answers to those background question yield that our

sample had sparse (high standard deviation) and overall balanced (mean close to “neutral”)

experience of both VR and GR, with GR being less known than VR.

The results yield an overall positive feedback, with most people enjoying their experience.

98

6.4. Results and discussions

Figure 6.6 – On the left, a module loop forming a bulk. Module A is parent of B, which is parent
of C which itself is parent of D. However, the chain stops here to avoid any infinite-update
loop. D is thus parent of no module. Moving A would move the whole bulk, but moving C
would only move D in addition. The same goes for any modification of configuration. On the
right, a second bulk with E being the parent of F, hence the parent of this second bulk. If the
user were to bring the left-hand bulk close-enough to F, the whole bulk would be snapped, but
no connection would be made (even though the connector of F is active, as shown by its pale
blue color). Indeed, after this connection, it is unclear which module becomes the parent of
all modules.

This is shown by Q7, with a mean well above “yes” and little variation (σ= 0.51). In contrast,

participants did not find the gesture-control particularly intuitive, as shown by Q2. However,

there seems to be consensus that it becomes easier to use with time (learning effect). Indeed,

answers to Q3 indicates that participants felt more comfortable after the initial adaptation

time. This concurs with the examiner’s observations that after a short period of confusion,

mostly regarding reconfiguration, most subjects tended to rapidly gain understanding of how

to use them. It must be noted that even though people felt they got better, a few of them still

had great difficulties in mastering the proposed gesture control. Additionally, no participant

was familiar with the notion of SRMRs. Q4 and Q5 strongly imply that subjects felt immersed

using a VR and GR-based interface, with the Oculus Rift having very high consensual approval

and the Leap Motion lower but still satisfactory approval. Q8 and Q9 show an overall positive

feed-back but also distinct discrepancies regarding whether or not participants would use this

interface or a similar one. Indeed, subjects were not necessarily convinced by the concept

of gesture-control itself and a few of them argued they would be more efficient using a more

traditional approach. For this reason, the data of those two questions are further discussed

using two graphs in 6.4.2.

6.4.2 Discussions

To sum up the user study, we asked the users to perform simple tasks using the immersive

interaction framework. The results are promising, yet, should be further discussed in details.

Indeed, Q2 and Q8 yield disappointing results. Concerning Q2, the main problem is, as far

99

Chapter 6. Virtual reality for reconfigurable rooms

(a) (b)

(c) (d)

Figure 6.7 – Operators were asked to perform four successive tasks. First (a), simply connect
a module to the turntable without rotating any of the joints. Second (b), rotate a module
using two handles and connect it to the first one. Third (c), change the second module’s
configuration to match the picture. Finally (d), add a third module on top, switch to the
“Room” and rotate the whole structure to match a given picture.

as we could observe, the detection of the hand due to technical limitations. For example the

grabbing/pinching gesture works better when the gesture angle is similar to holding a vertical

stick than a horizontal stick. In addition, the range of the Leap Motion is spatially quite limited

and gets less and less precise as the hand reaches its boundary. As a result, participants were

sometimes confused by why it did not work when stretching their arm too far from the sensor.

This is consistent with the results of [Beattie et al., 2015], and should deserve more attention

when trying to design a similar interface.

The solution offered by the interface, to let the user move in the room using the keyboard,

compensates for this limitation but was observed to often be counter-intuitive. It thus requires

training to learn that unexpected sensor response and our test subjects did not have enough

time to fully get used to this response. It is interesting to observe that while people would use

a similar interface to perform a similar assembly task, they were not particularly convinced by

the one presented in the present work.

Additionally, if it did not convince subjects with no or no real experience of VR or, on the

contrary, a subject with broader knowledge of it, people possessing little to moderate VR

background were more convinced, as shown in Fig.6.8. This might mean that people with

little VR background would be more pleased by our use of this technology than people with

100

6.5. Conclusions and future work

Table 6.1 – Subjective evaluation of the proposed interface (Range: 0-4)

Question µ σ

Q1 Did the OR help you perceive the depth better? 2.71 0.85

Q2 Is the gesture control intuitive? 2.86 0.79

Q3 After some time, did you feel the interface getting easier to use? 3.33 0.58

Q4 Did you feel immersed with the OR? 3.57 0.60

Q5 Did you feel immersed with the LM? 2.76 0.60

Q6 Overall, how would you rate this interface? 2.83 0.56

Q7 Overall, did you enjoy your experience? 3.52 0.51

Q8 Would you use this interface if you had to do a similar assembly
job?

2.38 1.16

Q9 Would you use another VR-based and GR-based interface to do a
similar job?

2.76 0.94

no real or no background. The latter might not see the benefits of VR to do such tasks. A

similar observation can be made regarding Gesture Recognition. As shown in Fig. 6.8, the less

experienced participants were, the more they were willing to use the interface again. Arguably,

people with GR experience might have done so in a completely different manner and were

thus forced to change their habits.

However, with little practice, one can be quite efficient at assembling structures. Indeed, the

developer of this interface is able to build arbitrarily complex structures in a very natural way.

Fig. 6.9 shows an example of a complex structure built by an experienced user. Finally, the

results of Q7 are are positive. Which shows that even if subjects would not necessarily use such

an interface to perform similar assembly tasks, they still enjoyed their experience. Indeed, VR

and GR make the interfaces using those concepts more appealing.

6.5 Conclusions and future work

In this chapter, we presented a novel self-reconfigurable modular robot interface to be able

to command Roombots to create desired furniture on the needed spot. The interface uses a

virtual environment to represent the real world and has two different functionalities: Create

structures using the Workshop and then place them using the living space. To give a more

immersed control to the user, HMD and hand tracker were adopted to the interface. Although

our user study is not statistically very significant due to the number of testers, we conclude

that while there is still room for improvement, especially regarding to gesture-recognition, this

interface and similar approaches are promising and open to novel ways to interact with robots

in general and even more so with SRMRs. The “handles” approach appears to be a convincing

way to achieve intuitive control over the modules considering the low complexity of gesture

recognition solutions opted for (i.e. pinching). The handles have certain drawbacks (clarity,

101

Chapter 6. Virtual reality for reconfigurable rooms

Appreciation
0 1 2 3 4

U

se
rs

 (
V

R
)

0

2

4

6

Appreciation
0 1 2 3 4

U

se
rs

 (
G

R
)

0

2

4

6 None
Some
Expert

Figure 6.8 – The subjective opinions of users are asked to evaluate appreciation (Q8) distri-
bution of users with respect to their prior experience for the proposed interface. Two plots
consider VR and GR experience respectively. Three experience levels consist of (i) none or
almost none, (ii) limited and (iii) high experience. Experienced VR users are hard to satisfy
since they already had long enough interaction with commercial applications, whereas less
experienced VR users appreciated our interface more. A similar trend can also be seen in GR
experience levels. However, our users had less GR experience compared to their VR experience
and they reacted with more enthusiasm.

not suited for color-blindness, crossing depending on configuration, etc.) but provide a way

to create any structure in a much faster way than manually setting the rotary joint angles of

each module.

It is important to note that we do not claim that the presented interface accelerates the task

completion or increases precision of user control compared to any other. It is an attempt to

give the user more immersive feeling while controlling SRMR. We evaluated its qualitative

accessibility and not its quantitative performance.

The study’s results clearly show the interest of participants for VR and GR. This “fun factor” is

a well-known phenomenon related to VR, GR and gamification. Gamification is the subject

of many studies and has a broad set of possible applications, notably teaching, as shown

by [Villagrasa et al., 2014]. Incidentally, such a strong appreciation for our interface from

participants implies it could be used not only to build structures but also to learn how to build

such structures and manipulate SRMRs. Indeed, SRMRs can be quite complex and it takes

time to learn how they behave since their reconfiguration might not be intuitive (efficiency

and capability are the priority over practicality). Being able to “play” or “fiddle” with them

virtually is very helpful to understand their mechanisms. As such, our interface might provide

a more natural way to study SRMRs.

Currently, the main draw-back of the interface is that it is limited in gesture recognition. While

the “pinch” is very simple to detect and intuitive, the interface would reach a different level

if the hands could be used in a completely natural manner. A possibility to attain this level

might be to use haptic gloves or similar gesture-recognition devices. SRMRs still present great

challenges on the reconfiguration side. Indeed, it is very difficult to automatically build a target

structure. The present interface could be improved to store data from the manual assembling

102

6.5. Conclusions and future work

Figure 6.9 – This throne shows the possibilities of Roombots modules. It uses modules in
various configurations and positions. All physically possible structures can be built by an
experienced user, no matter how complex it may be.

sequence, data that could be used by the modules to self-reconfigure.

103

Part IIILocomotion with modular
morphologies

105

7 Neuro-visual locomotion model for
Envirobot

Self-reconfiguration is a particularly demanding task. It loads many constraints on the me-

chanical structure and properties of a system. Creating animal-like structures using SRMRs

and expecting them to perform like real animals also becomes quite challenging. Although,

it is shown in the literature [Bonardi et al., 2014], it still has certain limitations such as size,

weight and weight distribution of the structure that may make it less animal-like. Furthermore,

self-reconfiguration’s benefit on locomotion lies in the morphology change during locomo-

tion. If morphology is not expected to change during locomotion, the use of SRMRs becomes

irrelevant. Throughout Part III, we explain three different animal-locomotion related studies

where robots have modular bodies, but not self-reconfigurable. The advantage of not having

self reconfiguration is the structure becomes lighter, cheaper, faster to develop and can be

designed for more specific needs such as being waterproof.

This chapter reports a study of neurovisual locomotion of lamprey. The aim of this study

is to create a robotic lamprey which can be used to study neurovisual locomotion model

of real lampreys. Our upgraded robotic lamprey consists of a head and modular body con-

sisting of identical and serially (chain structure) connected modules. The head module has

cameras and the computation unit to execute a model. On top of revalidating results of

[Manfredi et al., 2013] on a real robotic lamprey (cited study shows results in a simulated

animat), we carry the study further by adapting the model to run in real time on the robot and

even further by integrating more realistic (animal-like) cameras called event based cameras.

107

Chapter 7. Neuro-visual locomotion model for Envirobot

Reference publications

• This chapter is based on Ibrahim Youssef, Mehmet Mutlu, Behzad Bayat, Alessandro

Crespi, Simon Hauser, Jörg Conradt, Alexandre Bernardino and Auke Ijspeert. “Event-

Based Spiking Neural Network Visual Control of an Autonomous Robotic Lamprey” To

be Submitted.

My original contributions

– Defining the project

– Supervising three student projects (Ibrahim Youssef, Roger Fong, Elias Klauser)

– Helping with experiments

– Reviewing the manuscript

7.1 Introduction

Robotics and biology benefit from a symbiotic relationship such that breakthroughs in one

domain often lead to progress in the other [Gao et al., 2019]. The field of biology is a well

established bastion of inspiration for robotic development, and has had an impact on sub-

domains ranging from sensation and artificial intelligence to mechanical design. At the

same time, biologists and neuroscientists have begun employing robotic systems to validate

hypotheses and computational models in their fields [Floreano et al., 2014], [Ijspeert, 2008].

The lamprey is one such organism at the center of this exchange, and has been the subject of

extensive modelling and experimentation. Due to its simple locomotion strategy, well studied

physiology, and relatively primitive nervous system, this organism remains fertile ground for

similar studies in vision-guided locomotion.

This chapter investigated a solution to the control problem facing visually guided swimming

robots. Previous research has investigated traditional feedback control strategies for manipu-

lating aquatic robots using visual input [Sattar et al., 2005][Hu et al., 2009]. Simpler open loop

control strategies have been used to implement goal-directed swimming in robotic lamprey

[Manfredi et al., 2013]. More recently, a vision guided fish robot developed by Yu et al. made

use of a simple body wave model to produce fish-like swimming patterns [Yu et al., 2016].

These strategies have all been used to track singular objects in the robots’ fields of view. Little

work has been done on robot controllers capable of resolving conflicts between competing

stimuli for such aquatic robots. It would be difficult to extend existing control laws to encode

and manage more complex behaviors without introducing significant complexity. The study

of central pattern generators (CPGs) has gone a long way towards simplifying the problem

of coordinating gaits in robotic systems [Ijspeert et al., 2007][Yu et al., 2014]. Still, effective

strategies must be developed capable of bridging the gap between complex visual input and

CPG drive signals.

The large computational load associated with high-frame-rate image processing remains one

of the major limitations to real-time vision controlled robots. Event-based cameras offer a

108

7.2. Methods

potential solution to overcome many of these limitations. These event driven cameras operate

in a way that resembles the function of retinal photoreceptors. Rather than producing frames

at fixed intervals, this sensory strategy reports events in response to light log-intensity changes

at individual pixels [Lichtsteiner et al., 2008]. What is then communicated by the sensor is not

a complete image, but a stream of events specifying which pixels have registered positive or

negative changes in light intensity. This approach allows visual information to be transmitted

at a significantly lower bandwidth since redundant information is withheld. At the same time,

these systems offer a high dynamic range, making them attractive to implement high speed

computer vision algorithms on-board robots. A growing body of research has shown how

event driven sensors may be used to improve aggressive maneuvering with Unmanned Aerial

Vehicles (UAVs) [Mueggler et al., 2015], but no work has been done to study their potential

value to underwater robotics.

This study offers two main contributions; it adds to the growing body of research on neu-

ron based visuomotor control, and reports on the novel use of event-driven cameras in an

underwater robot. This work validated and extended the biologically inspired visuomotor

control architecture proposed by Sarvestani et al. [Kamali Sarvestani et al., 2013]. In order to

evaluate the control strategy, it was reproduced and used as the main high-level controller

for the Envirobot platform. The Envirobot is an anguilliform swimming robot developed

by Bayat et al. for the monitoring of environmental conditions in lakes [Bayat et al., 2016].

Multiple behaviors were implemented such that the robot was capable of navigating through

an environment containing various attractive and repulsive visual cues. Finally, the frame

based cameras used to stimulate the visuomotor controller were replaced with a pair of event

based cameras, and performance was compared in a target approach task for the two modali-

ties. The challenge with these sensors, particularly in the unexplored domain of underwater

vision, lies in the development of algorithms capable of effectively processing the visual data.

Neuron-based control strategies, such as that presented in this chapter, are expected to be

particularly well-suited to exploiting the output properties of such event driven cameras. This

marked the first instance of dynamic vision sensors being used in an aquatic environment.

7.2 Methods

7.2.1 Envirobot Design

The Envirobot platform was upgraded to include computer vision capabilities. A NanoPi NEO

Plus2 [NanoPi, 2017] was used to capture images from the cameras, implement the visual

network, and transmit high-level signals to the robot’s CPG. The robot head was enlarged and

circular apertures were introduced, allowing the cameras (either RGB or DVS interchangeable)

to observe the robot’s surroundings. A couple of acrylic domes were used as waterproof

camera housing. A modular bumper system was introduced to protect the domes against

bumping into sides of the pool. Because, water could leak into the robot if the domes would

get cracked. An aluminum base plate was designed to carry and cool the robot’s embedded PC

109

Chapter 7. Neuro-visual locomotion model for Envirobot

(NanoPi). This was found to appreciably reduce the CPU’s working temperature from 45◦C to

30◦C.The finalized Envirobot can be seen in Fig. 7.1a.

(a) (b) (c)

Figure 7.1 – The Envirobot target bulb and overhead tracking LEDs. (a) The updated vision-
ready Envirobot system. Antennas are used for remote reprogramming. The new head is
connected to four modules making up the robot’s spine. (b) The target bulb along with
corresponding tracking LED. A styrofoam platform and weight were used to ensure that the
bulb remained completely submerged in the water. (c) The minimum distance between the
Envirobot tracking LED and the platform LED is 0.45 cm during collision.

7.2.2 Frame-Based Object Detection

A couple of XIMEA MU9PC-MH RGB cameras were used to validate the visuomotor control

network proposed in [Kamali Sarvestani et al., 2013]. Images were captured using a pair of

cameras fitted with wide-angle fish-eye lenses. Both camera allowed for an approximately

270◦ field of vision while having minimally overlapping region in front on the robot.

Images captured by the camera were used to drive the Envirobot’s behavioral circuits. A

color-based blob detection algorithm was used to discriminate between red and green blobs,

which respectively represented predator and prey. All image processing was performed using

functions provided by the OpenCV library (v3.3.1) [Bradski, 2000].

7.2.3 Event-Based Object Detection

A pair of iniVation mini-eDVS cameras were used as the event based sensors. As with the frame

based cameras, wide-angle fish-eye lenses were fitted to the mini-eDVS devices, affording the

system an approximately 240◦ field of vision.

With this hardware, individual pixels were directly fed into the neuron network. Since color

detection was not possible with these devices, a blink-detection algorithm was used to la-

bel objects in the robot’s view. A simplified version of the algorithm for flash detection in

[Censi et al., 2013] was adopted that omitted the use of a particle filter. Rather than estimating

the location of flashing objects, any pixels measured to be flashing at 86 Hz were used to

stimulate the input layer of the neuron network.

110

7.2. Methods

7.2.4 Experimental Setup

In order to test the behavior and performance of the system, we constructed a water-proof

target as seen in Fig. 7.1b that also carries a small LED on top to be compatible with the

overhead LED tracking system. For frame based cameras, the bulb’s color served as the

stimulus (red for predator, green for prey). However, the dynamic vision sensors provided no

color information. So, the targets were made to flash at a constant frequency of 86 Hz. Flashing

pixels were used to directly stimulate the neuron network’s input layer for the attractive

behavior when DVS hardware was fitted. For the performance comparison, the avoidance and

escape behaviors were not used. The overhead tracking system was able to record a minimum

distance of 0.45 cm between the target and the Envirobot. This was due to the placements of

the LEDs on the robot and target bulb as illustrated in Fig. 7.1c.

7.2.5 Neuron Model

The neuron implementation adopted for this design was based on the leaky integrate-and-fire

(LIF) neuron model [Lapicque, 1907]. The number of parameters in this model were reduced

by defining the membrane’s time constant as τm = RmCm . We also applied Ohm’s law to

to the input current, yielding an input membrane potential mi (t) = Rm Ii (t). The resting

potential of all neurons in our network were set to mo = 0, and a constant refractory period

of Tr e f r actor y = 1ms was specified. The implementation of each neuron in the network was

represented by

τm
dm(t)

d t
=−[m(t)−mo]+mi (t). (7.1)

The membrane potential was computed in real-time by continuously solving the ODE using

the Euler method [Griffiths and Higham, 2010].

7.2.6 Neuron Network

The visuomotor control implemented in this project was based on the work presented by

Sarvestani et. all [Kamali Sarvestani et al., 2013]. The neuron network was comprised of three

main units, a stimulus prioritization block, behavior arbitration block, and output generation

block. These subsystems allowed the platform to filter competing signals, select the optimal

behavior, and drive the robot CPG accordingly.

Stimulus Prioritization & Position Encoding

The stimulus prioritization strategy was modeled on the structure of the optic tectum found

in vertebrate organisms [Bianco and Engert, 2015]. This module allowed the system to focus

attention on a single stimulus from a given behavior. For example, when presented with

numerous predators, this subsystem allowed the robot to identify which enemy presented

111

Chapter 7. Neuro-visual locomotion model for Envirobot

the most immediate risk. The sub-network also served as a transformation between stimuli

positions in the robot’s field of view and system turning strength.

The stimulus prioritization sub-networks each consisted of an “Input Layer”, a “Response

Layer”, and an “Auxiliary Layer for each possible” behavior. The neurons of this subsystem

were organized into one of two possible configurations; the first arrangement drove the robot

towards attractive stimuli, while the other layout was for repulsive stimuli.

For all types of behavioral circuits, the instantaneous lateral inhibition between response layer

neurons is defined as I (t) in

Ib,n(t) = wResp−Resp
N∑

k=1,k 6=n
yResp

b,k (t),∀nε[1, N], ∀bεB. (7.2)

The connections within behavioral circuits used to direct the robot towards attractive stimuli

(prey) obeyed the following rules.

xResp
b,n (t) = w In−Resp

b,n y In
b,n(t)− Ib,n(t),∀nε[1, N], ∀bεB , (7.3)

x Aux
b,n (t) =



n∑
k=1

wResp−Aux
b,k yResp

b,k (t)nε[1, N /2], ∀bεB ,

N∑
k=n

wResp−Aux
b,k yResp

b,k (t)nε(N /2, N], ∀bεB.

(7.4)

The connections within behavioral circuits used to direct the robot away from repulsive stimuli

(predators and obstacles) were defined in

xResp
b,n (t) =


w In−Resp

b,n y In
b,n− N

2

(t)− Ib,n(t)nε(N /2, N], ∀bεB

w In−Resp
b,n y In

b, N
2 +n

(t)− Ib,n(t)nε[1, N /2], ∀bεB

(7.5)

The connections between neurons of the Response and Auxiliary layers are identical to Eq.

(7.4).

All neuron connections in this sub-network were made according to equations Eq. (7.3)-Eq.

(7.5), and are exemplified in Fig. 7.2, Fig. 7.3 and Fig. 7.4 for an 8-neuron-wide network. x(t)

represents neuron input potential, y(t) represents neuron membrane potential, w is the

connection strength between two neurons, and N is the total number of neurons in each layer.

B is the set of all behaviors that the robot may perform.

112

7.2. Methods

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Response AuxiliaryInput

Figure 7.2 – 8-neuron wide network of the module consisting of an input layer, a response
layer, and an auxiliary layer. The inhibitory connections of the response layer are not shown in
this figure. Connections in green drive the robot towards attractive stimuli, while those in red
drive it away from repulsive stimuli. Connections drawn in grey are common for all behaviors.

Behavior Arbitration

Behaviour arbitration sub-network allows the controller to designate a single response when

faced with competing behavioral stimuli. The simplified model is comprised of three distinct

neurons for each behavioral circuit. This processing block allows the system to attenuate

the contribution of less pertinent behavioral cues to the system output. Drawing from the

anatomy of the basal ganglia (the neural structure on which this sub-network is based), these

three neurons were labeled as the subthalamic nucleus (STN) neuron, internal globus pallidus

(GPi) neuron, and external globus pallidus (GPe) neuron [Kandel et al., 2013].

The STN neurons receive stimulation from the response neurons and inhibition by the GPi

neuron of the same behavioral circuit. The STN neurons are also inhibited by GPe neurons of

all other behaviors. It can be formulated as

xST N
b (t) =+

N∑
n=1

wResp−ST N
b,n yResp

b,n (t)−wGPi−ST N
b yGPi

b (t)

− ∑
kεB ,k 6=b

wGPe−ST N
k yGPe

k (t), ∀bεB.
(7.6)

Each GPe neuron is excited by the STN neurons of the same behavioral circuit.

xGPe
b (t) = wST N−GPe

b yST N
b (t), ∀bεB (7.7)

The GPi neuron of a given behavior is stimulated by the STN neurons of all other behaviors.

113

Chapter 7. Neuro-visual locomotion model for Envirobot

Each GPi neurons is also inhibited by the GPe neuron of the same behavior.

xGPi
b (t) =+ ∑

kεB ,k 6=b
wST N−GPi

k yST N
k (t)−wGPe−GPi

b yGPe
b (t), ∀bεB. (7.8)

Finally, the GPi neuron of each behavior inhibits all response layer neurons of the same

behavior.

xResp
b,n (t) =−wGPi−Resp

b,n yGPi
b (t), ∀nε[1, N], ∀bεB. (7.9)

The stimulative and inhibitory connections between the neurons of this sub-network were

formally represented in equations Eq. (7.6)-Eq. (7.9). The circuit is illustrated for a system

capable of performing 3 different behaviors in Fig. 7.3. Although only 2 behaviors were tested

in this work (approach and escape), 3 behavioral circuits are depicted in Fig. 7.3 and Fig. 7.4 to

show how the architecture generalizes to perform multiple behaviors.

Response Neurons Response Neurons Response Neurons

STN

GPe

GPi

STN

GPe

GPi

STN

GPe

GPi

Behavior Circuit 1 Behavior Circuit 2 Behavior Circuit 3

Figure 7.3 – The architecture of the behavior arbitration sub-network. Each behavior has an
associated STN, GPe, and GPi neuron. The module receives input stimulation from the re-
sponse layer neurons. The output of this artificial basal ganglia are the inhibitory connections
between each GPi neuron and all response layer neurons of the same behavior.

114

7.3. Results

Network Output

The final portion of the network generates the the robot’s CPG drive signals. In this unit

of the network, a slight modification to the architecture of [Kamali Sarvestani et al., 2013] is

proposed; the swimming speed is controlled by the locomotor neurons’ combined firing rates,

while turning is dictated by the difference in reticulospinal neuron activations. Additionally,

the output of each locomotor neuron is made to inhibit the reticulospinal neuron of the

opposite side, further emphasizing this difference. This sub-unit has been implemented as

described by

xLoco
le f t (t) = ∑

bεB

N
2∑

n=1
wResp−Loco

b,n yResp
b,n (t). (7.10)

xLoco
r i g ht (t) = ∑

bεB

N∑
n= N

2 +1

wResp−Loco
b,n yResp

b,n (t). (7.11)

xReti cul o
le f t (t) =+ ∑

bεB

N
2∑

n=1
w Aux−Reti culo

b,n y Aux
b,n (t)+xLoco

le f t +xLoco
r i g ht . (7.12)

xReti cul o
r i g ht (t) =+ ∑

bεB

N∑
n= N

2 +1

w Aux−Reti cul o
b,n y Aux

b,n (t)+xLoco
l e f t +xLoco

r i g ht . (7.13)

Fig. 7.4 illustrates the connections. The instantaneous estimates of speed and heading were

determined using

speed(t) = R(xLoco
r i g ht (t))+R(xLoco

le f t (t)) (7.14)

headi ng (t) = R(xReti culo
r i g ht (t))−R(xReti cul o

le f t (t)) (7.15)

7.3 Results

7.3.1 Behavioral Tests

To experimentally validate the visuomotor control architecture proposed in [Kamali Sarvestani et al., 2013],

the controller was used to guide the Envirobot through seven different scenarios. For these

experiments, only frame-based cameras were used, and behaviors produced in response to

115

Chapter 7. Neuro-visual locomotion model for Envirobot

Response Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Auxiliary Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Response Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Auxiliary Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Response Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Auxiliary Layer Neurons

1 . . . N
2

N
2
+ 1 . . . N

Left Right

Locomotor Neurons

Left Right

Reticulospinal NeuronsInhibition
Excitation

Behavior Circuit 1 Behavior Circuit 2 Behavior Circuit 3

Figure 7.4 – The sub-network used to produce the system’s output. Depicted are the connec-
tions between the response layer neurons and the locomotor neurons. Links between auxiliary
neurons and reticulospinal neurons are also drawn.

color cues. Green circles were interpreted as prey, while red circles were considered predators.

The robot was made to operate at a slow and fixed frequency in order to avoid damaging the

system.

The approach behavior was tested by placing the Envirobot in a pool with a solitary attractive

stimulus (Fig. 7.5a). Likewise, the escape behavior was evaluated by recording the robot’s

reaction to a single repulsive stimulus (Fig. 7.5b). We then studied the system’s ability to priori-

tize between different stimuli of the same behavioral group. This was done by exposing the

platform to two attractive stimuli simultaneously (Fig. 7.5c). Finally, the behavior arbitration

was studied by placing attractive and repulsive stimuli in close proximity (Fig. 7.5d). The

results of these four experiments are presented in Fig. 7.5.

The robot was then made to navigate through three dynamic scenarios. Exposing the system

to solitary attractive and repulsive stimuli in constant motion, verified the network’s ability to

drive chasing and fleeing behaviors. In a more complex scenario, we studied the platform’s

response to sudden changes in its environment. The scenario began by initially presenting the

robot with two attractive stimuli at different distances, similar to the case in Fig. 7.5c. However,

upon approaching its initial target, a predator was suddenly made to appear. The Envirobot

116

7.3. Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X Coordinate [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y
 C

oo
rd

in
at

e
[m

]

Envirobot
Target

Single Attractive Stimulus

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X Coordinate [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y
 C

oo
rd

in
at

e
[m

]

Envirobot
Predator

Single Repulsive Stimulus

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X Coordinate [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y
 C

oo
rd

in
at

e
[m

]

Envirobot
Target

Competing Attractive Stimuli

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X Coordinate [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y
 C

oo
rd

in
at

e
[m

]

Envirobot
Predator
Target

Competing Attractive and Repulsive Stimuli

(d)

Figure 7.5 – The experimental Envirobot swimming trajectories in four distinct scenarios.
These experiments were conducted by placing the robot in a pool with one or more stimuli,
and then tracking its trajectory during locomotion. The robot was presented with (a) a single
attractive stimulus (prey), (b) a single repulsive stimulus (predator), (c) two attractive stimuli
(prey), but at different locations to test the controller’s stimulus prioritization capabilities.
Finally, (d) The robot was presented with an attractive stimulus (prey) and a neighboring
repulsive stimulus (predator) to test the controller’s behavior arbitration capabilities.

was capable of changing its behavior to first escape the predator, and then target the safer prey.

The chasing behavior, fleeing behavior, and trajectory readjustment behavior were recorded

and made available for viewing.

7.3.2 DVS Performance

We characterized the performance of the robot when driven by dynamic vision sensors instead

of frame-based cameras.

The number of complete passes through the neuron network were measured using both

cameras to provide an objective measure of the computational advantage introduced by the

bio-inspired vision strategy. The controller was run while the robot was exposed to no stimuli,

117

https://biorob2.epfl.ch/utils/movieplayer.php?id=317
https://biorob2.epfl.ch/utils/movieplayer.php?id=318
https://biorob2.epfl.ch/utils/movieplayer.php?id=319

Chapter 7. Neuro-visual locomotion model for Envirobot

one stimulus, and two stimuli. Each scenario was maintained for 60 seconds, and repeated for

both cameras. The results presented in Fig. 7.6 indicate a dramatic improvement offered by

the event-based strategy. We observed an order-of-magnitude improvement when using the

dynamic vision sensors.

1.0 1.2 2.2 2.4 2.0 1.4 1.6 1.8
Passes per Second (log10 scale)

Fr
am

e-
B

as
ed

Ev

en
t-B

as
ed Number of Stimuli

No Stimuli
One Stimulus
Two Stimuli

Figure 7.6 – A comparison between the neuron network computation rates achieved by the
two types of image capture. The controller was run for a duration of three minutes for each
type of camera. Tests began with no visual stimuli, and a stimulus was added to the robot’s
field of view each minute.

A final experiment studied the improvement in robot swimming precision due to the dynamic

vision sensors. 20 experiments (10 with frame based cameras, and 10 with event based

cameras) were performed in which the robot was made to attack a prey from a starting point

approximately 3 meters away. Experiments were allowed to run until either the platform

reached its target or one of the pool’s walls.

A metric was developed to quantitatively evaluate robot’s target approach performance. At

every time instant, the angle formed by the robot’s current location, the target location (the

angle vertex), and its most recent past location was computed. This gaze alignment angle,

θg aze (t), represented how well centered within the robot’s field of view the target was at each

time instant. Angles closer to 0° represented strong instantaneous alignment, while angles

greater in magnitude indicated a deviation from head-on approach. Each angle was multiplied

by a normalizing factor, defined as the ratio between the current distance-to-target and the

initial distance-to-target. To score the robot’s performance in a single trial, the gaze angles

were integrated over time. The resulting value was coined the aggregate gaze alignment, Ag aze

[°s]. This quantity represented the amount of time spent with the target not centered within

the robot’s field of view. Effectively, this score served as a measure of how long the robot was

able to keep the object dead-ahead.

Fig. 7.7 illustrates the trajectories for the two camera types, while Fig. 7.8a depicts the evolution

of the gaze alignment for each trajectory. The statistics for the 20 experiments are reported

in Fig. 7.8b. The results clearly favored usage of event-based cameras for the prey approach

118

7.4. Discussion

tasks. Use of dynamic vision sensors led to a reduction in the aggregate gaze alignment score,

falling from Āg aze = 3.34 °s to Āg aze = 0.57 °s.

0.0 0.5 2.5 3.01.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Y

 C
oo

rd
in

at
e

[m
]

Event Based
Frame Based
Target

Approach Trajectory Comparison

 X Coordinate [m]

Figure 7.7 – An example of trajectories for both vision systems recorded during the experiments.
The robot was placed 3 meters away from the target and allowed to perform its approach
behavior. Experiments were run until the robot reached the target, or until collision with the
bounds of the pool.

7.4 Discussion

7.4.1 Visual Memory

The visuomotor controller presented in this chapter was only capable of generating output

signals based on instantaneous input. While introducing event based cameras to the platform

was found to have improved the robot’s head-on approach of attractive stimuli, the purely

reactive nature of the controller made it impossible to respond to stimuli outside of its field

of view. For example, the robot was found to cease performing its escape behavior upon

successfully turning away from a predator such that visual contact was broken. Additionally,

the controller lacked an internal model of the robot’s anguilliform swimming gait. Due to

stimuli rapidly shifting between the right and left eye, the platform sometimes overshot its

objective.

In vertebrates, the hippocampus helps to solve the memory problem by maintaining a spatial

map of its organism’s surroundings [O’keefe and Nadel, 1978]. Biologically inspired vision

systems seek to reproduce the functionality of such spatial maps [Rebai et al., 2012] and visual

sort-term memory [Vega et al., 2013]. Kinaesthesia, on the other hand, allows organisms to

estimate the relative locations and orientations of body parts. It may be possible to improve

our controller by extending the visuomotor network to include a more advanced localization

119

Chapter 7. Neuro-visual locomotion model for Envirobot

0 5 10 15 20
Time [s]

-0.05

0.00

0.05

0.10

0.15
G

az
e

H
ea

di
ng

 [o]

Event Based
Frame Based

Gaze Alignment Comparison

(a)

0 1 3 4
Aggregate Gaze [degree*s]

Ev
en

t
B

as
ed

Fr
am

e
B

as
ed

Aggregate Gaze Alignment Scores

2

(b)

Figure 7.8 – A performance comparison between event-based and frame-based cameras.
(a) The gaze alignment plots corresponding to the trajectories in (a). The area under each
curve was used as a final measure of how well the robot performed. An area of 4.5 °s was
recorded for the frame-based trial. The event based camera experiment exhibited a significant
improvement, with an aggregate gaze alignment of 0.8 °s. (b) The aggregate gaze alignment
scores for the two types of camera shows a significant improvement in the robot’s ability
to align the target with its heading when the event based cameras were used. The mean
score Āg aze = 3.34 °s obtained using frame-based cameras, dropped to Āg aze = 0.57 °s with
event-based cameras.

and memory system. This could enhance the robot’s precision while attacking prey, and allow

it to retain an awareness of stimuli that have fallen outside of its field of view.

7.4.2 Behavior Adaptation & Learning

It may be interesting to study the ability of this controller to generalize its performance to

previously unknown stimuli. Lamprey and other organisms have been found to be capable

of adapting their behaviors based on danger cues sensed in their surrounding environments

[Wagner and Bals, 2012]. Damage-released alarm cues originating from conspecific organisms

under distress mark regions as high-risk, and can instigate the animals’ alarm responses

[Hume and Wagner, 2018]. Experiments have even shown that certain fish species are able to

learn from such odor cues, which are believed to play a role in teaching organisms to recognize

new organisms as predators. It has been found that combining damage released alarm cues

120

7.5. Conclusion

with visual information produces learned predator recognition [Brown et al., 2011].

Using such ques as penalties or rewards, it should be possible to generalize the controller’s

performance when presented with novel objects. In aquatic environments chemical signals,

such as the aforementioned danger cues, are dispersed by Brownian motion over time. In

addition, such signals may not even be visually detectable, making them poor candidates for

visual tracking (or avoidance). However, they could prove valuable as a means for providing

positive reinforcement to help form new network connections. This could be done in an

approach resembling the policy optimization algorithms commonly used in reinforcement

learning.

Such learning algorithms could have interesting applications for environmental monitoring

systems. Deploying robots capable of sensing and intelligently interpreting such chemical

cues could prove to be an asset in discovering and localizing newly introduced pollutants. If

the sources of such contaminants becomes visually recognizable by the system, it may even

be possible to identify problems early on.

7.4.3 Underwater use of Event Based Cameras

This first use of event based cameras in an underwater environment was shown to have a

positive effect on the precision of goal directed swimming in the Envirobot platform. Indeed,

aquatic robot vision remains a challenge due to the effect of the medium on the dispersion and

attenuation of light. These effects manifest in a significantly reduced depth of field, limiting

the utility of cameras in underwater monitoring and exploration applications.

Through the use of DVS devices, the Envirobot was able to detect objects from further away

than with frame based cameras. However, to simplify the challenge of underwater object

detection, these experiments were conducted with a single attractive stimulus and used a

flashing target. Additional work is required to rigorously characterize the performance of event

based cameras in water, and to develop algorithms capable of directing robot locomotion in

more complex environments.

7.5 Conclusion

The objective of this chapter was both to validate a biologically inspired visuomotor con-

troller, and serve as the first use case of event driven cameras underwater. To achieve

this, a vision-ready head was designed for use with a modular lamprey robot. The con-

trol architecture was then evaluated on its ability to reproduce the behaviors predicted in

[Kamali Sarvestani et al., 2013]. Finally, the performance benefits associated with the use of

event based, rather than frame based, cameras were recorded.

The model was successful in reproducing approach behavior (attacking prey) and escape

behavior (fleeing predators), while prioritizing between various stimuli of the same behavioral

121

Chapter 7. Neuro-visual locomotion model for Envirobot

groups. The system was also found effective in arbitrating between competing behaviors.

Based on the structure of vertebrate neurovisual circuits, this controller was capable of pro-

ducing complex behaviors in response to visual cues.

Following this, event based cameras were used to drive simple goal directed swimming,

and system performance was compared with that obtained using frame based hardware. It

was found that the biologically inspired vision hardware improved the Envirobot’s ability to

approach prey with reduced overshoot. This hardware also enabled the CPU to process the

neuron network more rapidly, allowing the leaky integrate-and-fire neurons to adopt more

biologically accurate parameter values. The challenges associated with this hardware are an

inability to detect color, a lack of algorithms for image rendering in aquatic environments, and

a limited understanding of the device performance underwater.

This chapter offers contributions to both the fields of robotics and neurobiology. The vision-

ready Envirobot offers an ideal platform to investigate vision-controlled locomotion in anguil-

liform swimmers such as salamander and lamprey. By their very nature, the dynamic vision

sensors used in this study are ideal for research into optic-flows and how they are used by

organisms to direct swimming. At the same time, this chapter contributes to the state-of-the

art in underwater robotics. The computational and sensory advantages offered by the DVS

devices may lead to improvements in applications such as marker tracking on active beacons,

environment monitoring, or search and rescue systems.

122

8 Camera Placement on a Snake Robots

The previous chapter made use of a very simple body morphology with a chain of modules

having parallel rotation axes. The challenging part in terms of hardware were waterproofing

modules and integrating a vision system. In this chapter, we use a similar body morphology,

but, on solid ground. Due to higher friction of terrestrial serpentine locomotion, the chain

is modified from only vertical rotation axes to alternating axes (horizontal axes followed by

a vertical one vice versa). That morphology change results in capabilities that can replicate

serpentine locomotion modes such as sidewinding, rolling or linear progression. The aim of

this chapter is to analyze advantages of various camera locations of snake robots for different

applications. Such a chain morphology is one of the most commonly used ones in the literature.

Almost every study, that makes use of cameras, places a camera on the head, looking straight.

In this chapter we point out different possibilities.

Reference publications

• This chapter is based on Mehmet Mutlu, Kamilo Melo, Massimo Vespignani, Alexan-

dre Bernardino and Auke Ijspeert. “Where to place cameras on a snake robot: Focus

on camera trajectory and motion blur” IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR) 2015.

My original contributions

– Coming up with the concept

– Simulating the snake robot

– Writing the manuscript

123

Chapter 8. Camera Placement on a Snake Robots

8.1 Introduction

In the literature related to robotic search and rescue (SAR), it is common to find mentions

to “Snake robots” as potential tools for accessing narrow cavities in places that any other

platform cannot reach [Murphy, 2014]. With the exception of the Active Scope Mechanism

[Huff et al., 2012], to the date, there is a lack of deployments of such technology in real mis-

sions due to either (i) the level of readiness of the snake robot platforms [Melo et al., 2013],

[Hiroya Yamada, 2013], [Wright et al., 2012], their cost and complexity [Liljeback et al., 2014],

[Rollinson et al., 2014], or simply because they do not comply with regulations needed to

operate in certain environments [Murphy, 2014]. We consider that there is still a more rele-

vant factor that delays the introduction of these robots as real assets for SAR missions. The

definition of a task that a snake robot can perform better than other robots is still fuzzy. For

instance, tasks like assessing the structural status of a collapsed building with limited access,

provide video feedback of interest points (including possible victims) where a borehole is the

only access through the rubble, and so on, omit many details of how the robot will perform

the task with limited perception equipment on board or how capable the remote operator is

(or the robot itself if it is meant to be autonomous) to control the motion and task execution.

As perception become crucial in these types of tasks, as many times mentioned in the literature,

the use of a snake robot as a mobile extension of a camera [Huff et al., 2012] prevails. In fact,

several researchers had come with this idea and intuitively incorporate a camera in the “head”

of their snake robot designs [Hiroya Yamada, 2013, Wright et al., 2012, Liljeback et al., 2014,

Rollinson et al., 2014]. Two possible ways to exploit a camera mounted on the head of the

robot are for video surveillance, and for navigation. In the former, the camera acts as a simple

final tool of a redundant manipulator, operated once the robot is positioned in place while

guaranteeing some level of mechanical stability. The later, is more complex, as it proposes an

interplay between computer vision algorithms and locomotion controllers for snake robots.

To the best of our knowledge, there is scarce literature available for the mentioned topics. The

references above report some robot implementations that incorporate a camera in the head

module. However, there is no information on their effective use to provide data for navigation

during locomotion.

Nevertheless, related work is available in the control of a snake robot, to stabilize the motion of

the robot’s end modules as a gait progresses [Wu and Ma, 2011, Tesch et al., 2013]. Particularly,

in [Tesch et al., 2013], optimization techniques are used to the problem of moving a snake

robot (an expensive system) optimizing simultaneously the gait performance as well as the

ability to maintain motion of a specific module in certain way i.e. keeping the head module

with minimal changes in their orientation as the gait progresses. These algorithms effectively

control the robot with the expected results obeying defined policies, however their use with

a camera to acquire useful video/image data for self-navigation is missing. On the other

hand, in [Florez et al., 2013], the authors use the Modular Snake Robot Lola-OP™ 1, with a

camera added in the head module, running standard video stabilization algorithms in order

1Developed by KM-RoBoTa s.a.s. (http://km-robota.com)

124

8.2. Camera trajectory during locomotion

to correct the video as the robot moves. But there is no mention of neither coordination of

video processing during the actual robot gaits, nor any video database useful for navigation.

All these aforementioned implementations of camera-on-head of a snake robot rely on the fact

that the robot is a serial manipulator featuring a slender form and small cross section. Thus,

all these robots incorporate their cameras intuitively placed pointing along the longitudinal

axis of the robot. The question we want to address in this chapter is: is this camera placement

in a snake robot (i.e. on the head and pointing longitudinally) in fact optimal for navigation as

it seems to be for inspection and how does this depend on the type of the gait?

We want to provide a systematic approach for studying the placement of a camera in a Modular

Snake Robot (MSR) since the use of a snake robot as a camera manipulator in order to acquire

video data of a selected scene is straightforward. The idea behind our study is twofold. In the

first place, we are simultaneously observing the natural coverage of camera with respect to

absolute motion of the MSR for different gaits and for different camera locations. The second

idea is tracking motion blur amount in images captured by an onboard camera during the

same gaits and for the same proposed camera locations. On the other hand, our interest to find

a correlation between camera trajectories and the video motion blur is because of the fact that

a MSR like Lola-OP™, shown in figure 8.1, is capable of “holonomic” and repeatable motions.

Additionally, the payload (weight and volume) of a MSR is not always constrained. This makes

worth the analysis of different locations as well as different orientations of a fixed camera in a

MSR, in order to explain quantitatively where and under which conditions a camera should be

mounted, for maximizing the information gathered and ensuring quality for the processing.

The outline of this chapter is as follows. In Sec. 8.2, the description of the robot, the gaits used,

the camera position and orientation are shown. Then, in Sec. 8.3 the expected motion blur

of images captured by the camera while MSR is performing locomotion is reported. Further

implications of motion blur and locomotion correlation is discussed in Sec. 8.4 and some real

life deployment examples are given. Finally, conclusions are given in the last section.

8.2 Camera trajectory during locomotion

A common framework to control modular snake robot’s locomotion is provided by [Melo and Paez, 2014].

Q(n, t) =
Oe + Ae sin(we +n/λe +δ) if n is even

Oo + Ao sin(wo +n/λo) if n is odd
(8.1)

In Eq. (8.1), O is the offset angle that represents the center of oscillation, A is the amplitude

of oscillation, w is the oscillation frequency, λ is a body wave number and δ is the phase

difference between horizontal and vertical joints.

Depending on the application, the operator may need to keep the line of sight fixed to a certain

125

Chapter 8. Camera Placement on a Snake Robots

Xs

Ys Zs

Xs

Ys Zs

Xw
Yw

Zw

Figure 8.1 – Modular Snake Robot Lola-OP™ showing coordinate frames of global world and
local sensors in a simulation environment.

area or try to observe large space during locomotion. Observing the trajectory of the camera

for different types of gaits gives an idea about the coverage of the camera. There exists a

trade-off in the stability of the image and covered area. Depending on the requirements of

the application the definition of optimal camera placement will differ. Hence, a comparative

study will be presented for camera field of view and pose.

Different gaits of the MSR are simulated in Webots 7.4.3. In Fig. 8.1, coordinate frames of the

simulation world and local sensors that are placed on each module can be seen.

Rolling, sidewinding and linear progression are three main gaits of snake robots. In this

chapter, one example from each of rolling, sidewinding and linear progression will be studied.

Frequency of the gaits, f , is chosen to be same for even and odd modules and for all gaits and

it is set to 1Hz. All gait parameters for all experiments can be seen in the Table 8.1. For each of

the locomotion examples, the camera is assumed to be placed in two separate locations. Either,

looking straight head camera or middle camera pointing towards sideways with respect to the

snake longitudinal axis. The head camera is placed on the same location as the first sensor

coordinate frame shown on the Fig. 8.1 with the orientations given in Table 8.1. Similarly, the

middle camera is placed on the fourth module with the orientations given in Table 8.1.

For visualizing the camera field of view, pose of the each module of the snake robot is logged

for short duration. From Fig. 8.2 to Fig. 8.7 trajectories of all 8 modules of the snake are shown.

The color of a single module’s path is drawn as changing from black to specific color. The very

first black dot in the beginning of each module’s path is captured at t = 0sec and position of

the module is logged for three or two (only linear progression) seconds for each run. The color

change from black to a saturated color progresses linearly from t = 0 to end of the run. Each

module’s path is plotted with a different color starting with red on the head, followed by green

on the second module, blue for the third one and so on. The pose of individual modules are

logged in 1kHz. However, position of the modules are illustrated with dots which are drawn

50ms apart on the plots. Hence the density of the dots throughout a path gives an intuition

about the linear velocity of the module. The denser the dots are, the longer the module stays

around those dots which means that module moves relatively slow on that region. The overall

snake velocity is marked with a blue arrow in each figure. In addition to the trajectory of

modules, the orientation of the camera is also shown throughout the locomotion from Fig. 8.2

to Fig. 8.7. Orange lines starting from the camera node represent the primary axis of the

126

8.2. Camera trajectory during locomotion

Table 8.1 – Parameters and Coordinate Transformations of Camera Placement for Examined
Gaits

Rolling

Amplitude of osc., [Ae , Ao] [40◦, 40◦]
Offset of osc., [Oe ,Oo] [0◦, 0◦]

Delta, (δ) π/2r ad
Frequency, (f) 1H z

Lambda, (λ) 100000
Camera coord., head-straight [xc yc zc]T = [−ys1 zs1 −xs1]T

Camera coord., middle-side [xc yc zc]T = [−xs4 zs4 − ys4]T

Sidewinding

Amplitude of osc., [Ae , Ao] [10◦, 40◦]
Offset of osc., [Oe ,Oo] [0◦, 0◦]

Delta, (δ) π/4r ad
Frequency, (f) 1H z

Lambda, (λ) 4/π
Camera coord., head-straight [xc yc zc]T = [zs1 ys1 −xs1]T

Camera coord., middle-side [xc yc zc]T = [xs4 ys4 zs4]T

Linear Progression

Amplitude of osc., [Ae , Ao] [0◦, 30◦]
Offset of osc., [Oe ,Oo] [0◦, 0◦]

Delta, (δ) π/2r ad
Frequency, (f) 1H z

Lambda, (λ) 4/π
Camera coord., head-straight [xc yc zc]T = [−ys1 zs1 −xs1]T

Camera coord., middle-side [xc yc zc]T = [−xs4 zs4 − ys4]T

camera (z) and are oriented along the camera’s viewing direction. The actual field of view

depends on lenses and is application-specific, whereas the camera direction is universal for all

applications. The color gradient of camera’s primary axis lines, from black to orange, has the

same time progress notion with path of the snake’s module position. Camera pose is plotted

with fine sampling through the end and coarsely in the beginning of each run. Coarse parts

also have coordinate axes plotted on them. Each plot also has zoomed versions of camera

pose for the first second of locomotion.

127

Chapter 8. Camera Placement on a Snake Robots

8.2.1 Rolling motion

The rolling motion of a snake robot involves continuous rotation of the body around longitu-

dinal axis, as can be seen in Fig. 8.2 and Fig. 8.3 for three seconds. In these figures, the robot is

moving on x-z plane where y axis is the height from ground. The robot takes an arch shape to

move sideways when offset terms of Eq. (8.1) are zero. This motion is known to be robust in

rough terrain and slopes [Zhen et al., 2015].

Head camera looking straight

The first observation that can be made about placement of the camera on the head looking

away in the longitudinal direction of the snake is that the camera is not pointing towards the

motion direction. Center of the field of view of a camera is looking more than 90 degrees

away from it as it can be seen in Fig. 8.2. This means the robot would not know about most of

the approaching obstacles. Moreover, it is not easy to guide the robot with the information

obtained from captured images if the camera is pointing away from the locomotion direction.

0

-0.2

x (m)
-0.4

-0.6
-0.2

0

y (m)

0.5

0.1

0.2

0.3

0.4

0.9

0.8

0.7

0.6

0.2

z
(m

)

-0.48

x (m)
-0.5-0.52-0.54

0.25

0.4

0.35

0.3

0.2

0.02
0.04

y
 (

m
)

z
(m

)

Figure 8.2 – Camera and snake trajectory during rolling gait. Camera is placed on head looking
straight.

Camera field of view stays quite close to previous field of views. However, continuous rolling of

the snake means rolling of the camera around itself which can be seen clearly on the zoomed

part of Fig. 8.2. Hence the view would be rolling and not stay very stable while rolling.

Middle camera looking sideways

Placing the camera on the fourth module of the robot with orientation to point sideways

results in very large displacement of the field of view between image frames during rolling.

Although camera motion that is shown in Fig. 8.3 would be naturally covering a large area

like a torus around the snake, camera rotation velocity is quite fast. Large rotational velocity

128

8.2. Camera trajectory during locomotion

results in large displacements of pixels on the image plane during the exposure period which

usually has negative effect on visual SLAM algorithms and can disturb convergence of SLAM.

0

-0.2

x (m)
-0.4

-0.6
-0.2

0
y (m)

0.2

1

0.8

0.6

0.4

0.2

z
(m

)

x (m)

-0.25
-0.27

-0.29-0.05
0y (m)

0.05
0.1

0.4

0.45

0.5

0.55

z
(m

)

Figure 8.3 – Camera and snake trajectory during rolling gait. Camera is placed on the fourth
module looking sideways.

8.2.2 Side-winding motion

Sidewinding is a very fast gait. Similar to rolling, motion of the robot is directed sideways,

with a small forward component. However, the number of contact points with the ground is

much smaller than rolling motion. Sidewinding is commonly performed by snakes moving on

granular medium and surface contact points of the snake follows discontinuous trajectories.

Slight oscillatory motion, as seen on Fig. 8.4 and Fig. 8.5 is mainly caused by the asymmetrical

structure of the snake robot used in the simulations. Sidewinding plots span three seconds of

experimental data.

Head camera looking straight

The camera placement in this case is similar to the rolling case. Fig. 8.4 shows camera points

mostly perpendicular to the direction of locomotion. However, camera orientation does not

have continuous rotation component unlike the rolling gait. Also the average speed of the

sidewinding is higher than rolling. Translational progress of the camera is not uniform in

sidewinding. Camera stays around ground contact point of the head module for a while and

moves quite fast within the swing phase.

Middle camera looking sideways

When the camera is mounted on the direction of the locomotion in a middle module, it can

be quite informative for sidewinding gait. It is not only pointing through the locomotion

129

Chapter 8. Camera Placement on a Snake Robots

-0.2
-0.4

-0.6

x (m)-0.8
-1

-1.2-0.2
0

y (m)

0

-0.2

-0.4

-0.6

-0.8

-1

0.2

z (
m

)

-0.6
-0.65
x (m)-0.7

-0.75
0.020.04

y (m)

-0.16

-0.18

-0.2

-0.22

-0.24

-0.26

-0.28

-0.3

-0.32

z
(m

)
Figure 8.4 – Camera and snake trajectory during sidewinding gait. Camera is placed on head
looking straight.

direction, but also exhibiting a circular exploratory motion around the snake direction, even

though exploration may not cover a wide area. Furthermore, orientation of the camera always

stays around the initial orientation. This type of camera placement can be useful to teleoperate

the robot during locomotion in a remote place.

-0.2
-0.4

-0.6

x (m)
-0.8

-1
-1.2-0.2

0
y (m)

-0.2

0

-0.4

-0.6

-0.8

-1

0.2

z
(m

)

-0.4-0.45

x (m)
-0.5-0.55-0.6

0.02

0.04

-0.4

-0.45

-0.5

-0.55

y
 (

m
)

z
 (

m
)

Figure 8.5 – Camera and snake trajectory during sidewinding gait. Camera is placed on the
forth module looking sideways.

8.2.3 Linear progression motion

Linear progression is examined as the last type of gait in this study. Linear progression can

be obtained with horizontal waves and vertical waves. However, due to high friction between

ground and snake, horizontal waves cause either too much energy loss or do not result in

130

8.3. Motion blur of camera during locomotion

proper locomotion. Therefore, only vertical wave generated linear progression is considered

in this part. The average speed of the robot is much slower than rolling and sidewinding while

performing linear progression. Fig. 8.6 and Fig. 8.7 covers only two seconds of data, because

position samples of consecutive modules start to overlap for longer runs.

Head camera looking straight

The most noticeable characteristic of camera motion in this gait and placement is that there

is almost no rotation with respect to two of the axes. Dominant rotation is mainly on pitch.

Also the translational speed of the camera is quite low which makes the camera quite steady.

The field of view is oscillatory around an offset and on the direction of motion, which helps to

control the robot in teleoperated situations.

x (m)
-0.4

-0.6-0.2

0
y (m)

0.3

0.5

0.4

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

0.2

z
(m

)

x (m)
-0.39-0.4

0.04
0.06

y (m)

0.08

-0.18

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2
z

(m
)

Figure 8.6 – Camera and snake trajectory during linear progression gait. Camera is placed on
head looking straight.

Middle camera looking sideways

When the camera is mounted on the middle part of the snake and pointing towards sideways,

camera motion is minimal and there is only slow oscillatory roll and translational motion of

the camera. Also the region that the camera observes is quite stable.

8.3 Motion blur of camera during locomotion

In vision applications, the quality of captured images is equally important as the trajectory of

the camera. Most of the SLAM applications require sharp images to extract features correctly,

the abundance of features and low pixel displacement during locomotion. In many cases,

features are extracted from the texture of surrounding environment. That stage may require

131

Chapter 8. Camera Placement on a Snake Robots

x (m)
-0.4

-0.6-0.2

0
y (m)

0

-0.3

-0.2

-0.1

0.5

0.4

0.3

0.2

0.1

0.2

z
(m

)

-0.34

x (m)
-0.36

-0.38

-0.40.02
0.04

y (m)
0.06

0.08
0.1

0.06

0.05

0.1

0.09

0.08

0.07z
(m

)

Figure 8.7 – Camera and snake trajectory during linear progression gait. Camera is placed on
the fourth module looking sideways.

engineering the environment, if the natural texture is poor. In realistic search and rescue

missions, it is too hard and time consuming to modify the environment. Also, there can be

insufficient light in the environment that would push the camera to capture images at higher

exposure time, resulting in higher motion blur. However, capturing relatively sharper images

by examining motion of the robot is possible. Motion blur is one of the most pronounced

causes of distortions in robot vision. Certain amount of motion blur can be recovered with

proposed motion deblurring algorithms in the literature [Cho and Lee, 2009]. However, when

the amount of motion blur is extreme, information loss can be irreversible. One of the most

common methods to avoid motion blur is using stabilization platforms [Hilkert, 2008]. The

structure and size of snake robots are usually not well suited for adding mobile stabilization

platforms. On snake robots, even using the first few degrees of freedom for camera stabi-

lization instead of locomotion can be effective up to a certain degree. However, one of the

biggest challenges in snake locomotion is the state estimation due to complex ground-robot

interaction. Furthermore, high vibrations and impacts observed on the body makes visual

SLAM on snake robots during locomotion a very hard problem [Liljebäck et al., 2013].

In this part of the chapter, motion blur formation during snake locomotion will be analysed

and motion blur characteristics of different gaits will be explained. Motion blur can be caused

by the movement of objects on the scene or movement of the camera. Although there can be

exceptions, the environment is expected to be mostly stationary for the robotics applications

in a search and rescue area. This chapter addresses motion blur only caused by the egomotion

of the camera. The effect of rotation and translation motions are different on motion blur.

In particular, the amount of motion blur caused by translation depends on scene depth

in addition to translational velocity, but motion blur caused by rotational motion has no

scene depth dependence. Furthermore, measuring translational speed on a snake robot is

more challenging than measuring rotational speed. Despite, a simple MEMS gyroscope can

132

8.3. Motion blur of camera during locomotion

directly give rotational speed, translational speed can be estimated from the integration of

accelerometer measurements in which calibration and bias errors accumulate. Also, the effect

of translation on motion blur can be negligible when the scene depth is sufficiently large. In

open fields, scene depth is large and makes the translational motion blur relatively small.

Even though snake robots may need to work in cluttered environments where scene depth is

small, we will only consider motion blur caused by the rotational motion of the snake. One

specific observation is that rotational over translational speed ratio of the body elements on a

snake robot is higher than most of the conventional wheeled or tracked robots due to natural

movement of snakes. Therefore, considering only the effect of rotational motion on motion

blur will still address significant amount of the motion blur source in snake robots.

A motion blur metric, Motion-Based Motion Blur Metric (MMBM), which estimates the

amount of motion blur on a camera undergoing rotational motion is given in [Mutlu et al., 2014].

Higher values of the metric corresponds to higher blur. The proposed metric models optical

flow of pixels out of rotational speed measurements and approximates the motion blur that

would be observed on images. The definition of MMBM (µ) is given as

µ := 1

∆u∆v

umax ,vmaxÏ
umi n ,vmi n

√
u̇2 + v̇2 dvdu, (8.2)

where u & v are image sensor coordinates, ∆u & ∆v are image sensor size and u̇ & v̇ are optical

flow vectors derived from gyroscope measurements in following way,

u̇2 + v̇2 =
w2

y

f 2 u4 + w2
x

f 2 v 4 −2
wx wy

f 2 u3v −2
wx wy

f 2 uv 3

+
w2

x +w2
y

f 2 u2v 2 + (2w2
y +w2

z)u2

+ (2w2
x +w2

z)v 2 −4wx wy uv −2wx wz f u

−2wy wz f v + (w2
x +w2

y) f 2,

(8.3)

where f is the focal length of the camera and [wx , wy , wz] is rotational velocity of the camera.

Authors also show a µ based real-time image capturing technique to reduce the average

amount of motion blur on captured images from a camera mounted on a six-legged robot RHex

in [Mutlu et al., 2014]. In this current chapter, µ will be used for motion blur characterization.

The value of µ assumes frames captured with unit exposure time. If the value of exposure is

not fixed in the application µ needs to be scaled with the exposure time. We also consider

fixed exposure time. µ will be calculated for the different snake gaits examined in Sec. 8.2.

8.3.1 Rolling motion

Unlike most of the legged straight locomotion cases, snake rolling involves continuous rotation

as seen in wz and wx parameters of Fig. 8.8 and Fig. 8.9 respectively.

133

Chapter 8. Camera Placement on a Snake Robots

Head camera looking straight

When the camera is on the head and looking straight during rolling, there is quite dominant

rolling (wz) motion of camera. Although there are also oscillations on yaw (wz) and pitch axis

wx , the resulting motion blur has small oscillations around certain value. In roll dominated

camera images, center of the images would be sharper and the periphery would be more

blurred. Having some sharper region around the middle parts can be exploited in vision tasks.

Time (s)

0 0.5 1 1.5 2 2.5 3

µ
(m
m
/s
)

5

10

15

w
z
(r
a
d
/s
)

-5

0

5

w
y
(r
a
d
/s
)

-2

0

2

w
x
(r
a
d
/s
)

-2

0

2

Figure 8.8 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when straight pointing camera is placed on head of a rolling snake.

Middle camera looking sideways

When Fig. 8.8 and Fig. 8.9 are compared, the similarity in the motion of head module and

middle module can be easily seen. Main difference appears in the axes assignment to camera

motion due to camera direction change. When high continuous rotation axis of the snake

robot is assigned to the pitch axis of the camera, the amount of motion blur significantly

increases. This happens because pitch motion creates stronger motion blur on whole image

compared to roll of camera. Hence, this particular camera placement results in excessive

motion blur during snake rolling gait.

8.3.2 Side-winding motion

Sidewinding exhibits high speed swing phases and relatively stationary stance phases for each

module. Unlike the rolling gait, it is closer to the legged locomotion characteristics in terms of

having rotational oscillations around zero.

134

8.3. Motion blur of camera during locomotion

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

10

20

30

w
z
(r
a
d
/s
)

-2

0

2

w
y
(r
a
d
/s
)

-2

0

2

w
x
(r
a
d
/s
)

-5

0

5

Figure 8.9 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when straight pointing camera is placed on the forth module of a rolling snake.

Head camera looking straight

The motion of camera in swing phase highly fluctuates. Although the maximum motion blur

levels are close to the rolling gait, the fluctuating levels of oscillations can be exploited as

explained in [Mutlu et al., 2014]. For instance camera can be triggered to capture images only

when µ is sufficiently small to obtain only sharper images.

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

5

10

15

w
z
(r
a
d
/s
)

-5

0

5

w
y
(r
a
d
/s
)

-2

0

2

w
x
(r
a
d
/s
)

-2

0

2

Figure 8.10 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when straight pointing camera is placed on head of a sidewinding snake.

135

Chapter 8. Camera Placement on a Snake Robots

Middle camera looking sideways

Changing the camera location to middle and changing the direction changes the motion

blur fluctuations significantly. For instance, motion blur remains in lower values for longer

durations, even though the maximum values go higher.

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

5

15

25

w
z
(r
a
d
/s
)

-2

0

2

w
y
(r
a
d
/s
)

-2

0

2

w
x
(r
a
d
/s
)

-5

0

5

Figure 8.11 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when sideways pointing camera is placed on the forth module of a sidewinding snake.

Middle camera looking up

Placing a camera to look upward on a snake robot can be needed for certain scenarios. For

example, when collaboration of ground and aerial robots is needed, upward looking camera

can be useful. Moreover, for changing camera from sideways to up does not require any

human intervention. Simply exchanging even and odd module amplitudes (Ae and Ao) in Eq.

(8.1) is enough to do the side to up transition. Once the camera is pointing upward, mapping

between camera coordinates local gyroscope axes would be [xc yc zc]T = [xs4 − zs4 ys4]T .

Since, µ is calculated for the same snake module as in sideways looking camera, only µ is given

in Fig. 8.12 and it appears to be quite similar to µ in Fig. 8.11

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

0

10

20

30

Figure 8.12 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when up pointing camera is placed on the forth module of a sidewinding snake.

136

8.3. Motion blur of camera during locomotion

8.3.3 Linear progression motion

Finally the linear progression gives relatively lower motion blur compared to rolling and

sidewinding when Fig. 8.13 and Fig. 8.14 are examined. The appealing feature of linear

progression is that it has significant rotation only in a single axis and small impact related

disturbances in the other axes.

Head camera looking straight

Rotation of the head corresponds to pitch motion when the camera is looking straight. Hence,

the amount of motion blur is still considerable although it is smaller than other gaits. Also

the fluctuating behavior allows the acquisition of sharper images at lower values of µ during

locomotion.

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

5

10

15

w
z
(r
a
d
/s
)

-0.5

0

0.5

w
y
(r
a
d
/s
)

-0.2

0

0.2

w
x
(r
a
d
/s
)

-2

0

2

Figure 8.13 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when straight pointing camera is placed on head of a snake doing linear progression.

Middle camera looking sideways

The sideways looking camera exhibits the least amount of motion blur among all examined

snake gaits since the main rotation is small and it corresponds to roll of camera.

Middle camera looking up

When the camera is oriented upwards, camera axes changes to [xc yc zc]T = [−ys4 xs4 zs4]T .

Snake can also switch camera direction from side to up without external intervention for linear

progression. µ automatically increases since the single rotating axis now corresponds to pitch

motion of camera.

137

Chapter 8. Camera Placement on a Snake Robots

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

1

3

5

w
z
(r
a
d
/s
)

-2

0

2

w
y
(r
a
d
/s
)

-0.2

0

0.2

w
x
(r
a
d
/s
)

-1

0

1

Figure 8.14 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when sideways pointing camera is placed on the forth module of a snake doing linear
progression.

Time (s)

0 0.5 1 1.5 2 2.5 3

�

(m
m
/s
)

0

5

10

15

Figure 8.15 – Roll(wz), pitch(wx) and yaw(wy) rotational speeds of camera and corresponding
µ when up pointing camera is placed on the forth module of a snake doing linear progression.

8.4 Discussions and demonstrations

Visual data during the snake locomotion can be highly corrupted due to body oscillations

and impacts especially when there is not enough light in the environment and exposure time

is high. With µ we have an estimate of motion blur amount on images captured by camera

on a snake robot during locomotion. Lower values of µ shows sharper images if image is

captured at that moment. Table 8.2 shows that linear progression is very advantageous in

terms of average motion blur. On the other hand, having fluctuations on µ can be exploited to

capture relatively sharper images during locomotion. For instance, even if sidewinding and

rolling head cameras have similar average motion blur, more variation of sidewinding can be

exploited.

In order to give concrete illustration of the motion blur levels and camera motion of examined

gaits, consecutive images captured during rolling, sidewinding and linear progression are

provided in Fig. 8.16, Fig. 8.17 and Fig. 8.18 respectively. The sharper parts around the middle

of rolling images can be seen in Fig. 8.16. Fig. 8.17 shows behavior of fluctuating µ although

138

8.5. Conclusions

Table 8.2 – MMBM statistics for different snake gaits

Locomotion Camera Min. Max. Avg. Std. Dev.

Rolling Head 1.41 16.60 11.05 1.22

Side 5.67 35.74 32.07 2.19

Sidewinding Head 2.26 18.07 10.87 4.07

Side 1.10 29.24 10.99 5.14

Up 1.75 30.56 7.78 5.12

Linear Head 0.098 15.47 7.18 3.04

Progression Side 0.0072 5.39 1.12 0.65

Up 0.0033 13.81 5.17 3.01

the illustrated part is mainly located around smaller µ region. Images can get sharper or more

blurry during locomotion. Finally, low to moderate level of blur of linear progression is shown

in Fig. 8.18.

(a) (b) (c) (d) (e)

Figure 8.16 – Consecutive images captured during rolling gait by camera mounted on head of
the robot pointing straight.

(a) (b) (c) (d) (e)

Figure 8.17 – Consecutive images captured during sidewinding gait by camera mounted on
head of the robot pointing straight.

8.5 Conclusions

We have presented a systematic analysis of camera trajectories during three different types of

snake locomotion when the camera is placed on the head pointing straight and in the middle

pointing sideways. Camera pose is explicitly computed during different gaits and we were

139

Chapter 8. Camera Placement on a Snake Robots

(a) (b) (c) (d) (e)

Figure 8.18 – Consecutive images captured during linear progression gait by camera mounted
on head of the robot pointing straight.

able to analyze implications of different camera locations on field of view coverage during the

natural locomotion. We also relate snake motion to motion blur on captured images.

Although linear progression gives sharper images on average, there is no globally optimal

location for camera location for all tasks. But, knowing the implications of different camera

locations during different gaits, information input in visual tasks can be maximized. For

example, if the camera information will be used to steer the robot during sidewinding or

rolling, placing the camera on the side is more useful than placing it on the head since head

camera will not be pointing to the direction of locomotion. If having multiple onboard cameras

is a possibility, we can place them as to obtain maximal benefits. The proposed analysis can

be used for designing new robots for a given desired gait or to choose suitable gaits for already

existing robots that are equipped with cameras. Ultimately, it will contribute to the quality of

visual SLAM during snake locomotion.

140

9 Locomotion: effects of local passive
and active compliance

In this final study of locomotion studies on modular structures, we step up to legged locomo-

tion. We analyze the effects of both hard (mechanical) and soft (control-based) compliance

in legged locomotion. We choose a quadrupedal structure as it is both dynamic, quasi stable

and exhibits various gaits. We create easy-to-swap compliant parts on the close to joints. On

top of that, we use Tegotae-controller. Tegotae rule is based on uncoupled oscillators for each

leg and a force feedback from feet to modulate the phase of oscillators. Although oscillators

are uncoupled, they still converge to a gait such as trot, pace or gallop due to mechanical

interaction via being part of the same body. We aim to gain insights on emerging gaits under

changing compliance and changing surface type in this experimental study. The insights of

this study can yield potential use in SRMRs in general.

Reference publications

• This chapter is based on Mehmet Mutlu, Simon Hauser, Alexandre Bernardino and

Auke Ijspeert. “Effects of passive and active joint compliance in quadrupedal locomo-

tion.” Advanced Robotics 2018.

My original contributions

– Coming up with the concept

– Developing electronic parts of the robot (bringing components together and

testing the hardware)

– Developing and performing hardware experiments

– Writing the manuscript

141

Chapter 9. Locomotion: effects of local passive and active compliance

9.1 Introduction

Quadrupedal animals exhibit great adaptability to changing environment conditions during

locomotion. Adaptation can be in the form of reflexive actions, gait change or muscle stiffness

modulation. While reflexes and gait transitions drastically alters locomotion characteristics,

muscle stiffness modulation usually improves performance without completely changing the

locomotion type. The performance criteria can include energy efficiency, speed, precision, ac-

curacy etc.. For instance, real animals move in an energy efficient way [Dickinson et al., 2000].

Different performance demands yield different optimal muscle stiffnesses.

Compliance is a crucial characteristic in legged animal locomotion. All parts of the muscu-

loskeletal system of a body, muscles, tendons, tissue, skin, bones etc., exhibit different levels

of compliance. The effects of compliance greatly vary on the momentary task or activity. It has

the potential to add robustness to stiff/brittle structures, is able to store and release energy

and can help to reduce peak forces e.g. when an impact is experienced. In order to profit from

such properties, it is important to note that in most cases compliance needs to be well-tuned

to obtain a desired effect.

In locomotion, compliance is thought to play a key-role in many aspects from safety and

gait stabilization to energy efficiency and dynamic gaits (e.g. [Alexander, 1984]). It is unclear

however, which kind of compliance acts on which aspects of locomotion and how to quantify

potential benefits. For instance, according to [Geyer et al., 2006], compliant legs are essential

to obtain the basic walking mechanics in bipedal human locomotion. A widely used approach

is adding a passive compliance as demonstrated in [Lasa and Buehler, 2001, Iida et al., 2007,

Hutter et al., 2013, Sproewitz et al., 2013]. A pragmatic extension to passive compliance is the

capability of tuning stiffness using hardware approaches either during the locomotion or even

during a single step cycle [Takuma et al., 2008, Hurst et al., 2010, Galloway et al., 2013] with

variable stiffness actuators.

Elastic, spring-like materials are not the only way to achieve compliance. Using proximal

sensors and an active control, it is possible to model virtual spring effects and integrate into

motor servo control, described as proxy-based sliding mode in [Kikuuwe et al., 2010]. Another

use of virtual springs during quadrupedal locomotion is explained in [Ajallooeian et al., 2013].

Impedance control through controlling torque is also widely used to adjust compliance, e.g.

[Focchi et al., 2012] shows an implementation on quadrupedal locomotion. Force sensors on

the feet can be incorporated to achieve actively compliant locomotion [Ugurlu et al., 2013] in

a morphologically rigid robot. In a recent study [Fukuhara et al., 2016], the authors propose

compliant locomotion through Tegotae-based, sensory feedback driven control where phase

coupling of leg oscillators emerge from robot-environment interaction. By incorporating

machine learning to footstep planning [Kalakrishnan et al., 2011, Buchli et al., 2009] it is also

possible to achieve adaptation to highly rough terrain.

The robots that use the Tegotae-based control scheme have usually been reported to have

series elastic elements on legs [Owaki et al., 2017]. The Tegotae scheme can clearly generate

142

9.1. Introduction

different gaits (trot, bound, gallop etc.) and the passive compliance of the leg has a modulating

role. [Fukuhara et al., 2016] declares that a lower level of active-stiffness results in less Tegotae

(good/useful feedback) in robot-environment interaction and steady state locomotion may be

severely degraded for very low stiffness values.

Despite all previous works emphasize the importance of compliant legs, they cover only

limited aspects. In particular, they lack the analysis of compliant locomotion in rough terrains.

Moreover, there are limited previous studies on the combined effect of passive and active

compliance on locomotion performance. We could not find any study qualitatively evaluating

the relationship of different levels of passive compliance and the Tegotae based control.

The driving force this chapter is the increasing need to understand role of both passive and

active compliance better in quadrupedal locomotion. To this end, a compliant modular

quadruped robot has been designed using low-budget off-the-shelf components. The robot is

highly customizable and fast to reconfigure which enables a wide set of experiment possibili-

ties involving morphological changes. The goal of the chapter is to answer a set of questions

which are

1. How does the passive compliance of legs affect quadrupedal robot locomotion?

2. Can having asymmetric passive compliance on fore and hind limbs increase the perfor-

mance of locomotion?

3. Is it possible to boost adaptation of the robot to its environment using active compli-

ance?

4. Does active compliance and passive compliance cooperate well or destruct each other’s

contributions?

5. Do results scale up to different terrains?

Contributions of the chapter are three-fold: (i) a comprehensive and systematic experimental

analysis of quadrupedal locomotion on various surfaces with passive leg compliance; (ii) a

quantitative analysis on combination of Tegotae-based control and passive leg compliance

under changing compliance levels; (iii) the first study of Tegotae-based control of a quadruped

robot on rough terrain.

The rest of the chapter is organized as follow. Details of the implementation and experiments

are given in Sec. 9.2 and Sec. 9.3 respectively. Analysis and findings from the data are explained

in the Sec. 9.4. Finally, the chapter is concluded in Sec. 9.5.

143

Chapter 9. Locomotion: effects of local passive and active compliance

PCIMU

Current sensor

OptoForce

Servo motors
θ0

Compliant element

}
}
L1

L2

Mocap markers

Rough terrain

Figure 9.1 – (a) The quadrupedal robot consists of various on-board sensors and has an
embedded PC to collect all the data and handle the high level control. (b) The control PC can
get the data from the external tracking system through Wi-Fi. All data is collected on the same
PC to ensure synchronization across various sensors.

9.2 Methods

9.2.1 Hardware platform

This study is conducted on a simple yet dynamically rich quadrupedal morphology. The

robot consists of a rectangular body (39 cm x 23.5 cm). The overall structure of the robot

can be seen in Fig. 9.1 a). Each limb has 2 degrees of freedom (DOF) where the upper leg

(L1) is 79 mm and the lower leg (L2) is 110 mm. The motion of the limbs is constrained to

the sagittal plane. Each hip joint is powered by a Dynamixel RX-28 servo motor and each

knee joint is powered by a Dynamixel AX-12A. In a preliminary study [Mutlu et al., 2017], it

is shown that the proximal parts of the limb should have higher compliance compared to

the distal parts. Hence, the proximal hip part of the leg is directly connected to the lower

(distal) leg without any compliant elements in between. However, lower limbs are extended

with easily changeable “compliant elements” which can have different mechanical properties

such as height, spring stiffness, weight etc.. In this study the different tested elements are

designed to have the same dimensions and only the spring stiffness is varied. They are rigid

elements made out of Polyoxymethylene (POM) rods and two types of compliant elements

made out of super-elastic Nitinol wire with diameters of d = 1.5 mm (further called “soft”)

and 2 mm (further called “hard”) with corresponding flexural stiffnesses 2.3 Nm/rad and 7.3

Nm/rad; torsional stiffnesses 1.75 Nm/rad and 5.54 Nm/rad [Vespignani et al., 2015]. The

three different elements and the quick locking mechanism are shown in Fig. 9.2. The quick

lock mechanism eliminates the need of extra tools to exchange compliant elements and

considerably accelerates the exchange process.

The robot is equipped with an embedded PC to collect sensor data and control servo motors.

The detailed list of on-board components is as follows:

144

9.2. Methods

Figure 9.2 – Three different elements with the same dimensions have been used in this study:
(a) rigid Polyoxymethylene (POM), (b) super elastic nitinol wire with 2 mm and (c) 1.5 mm
diameter. (d) A locking mechanism has been designed which eliminates need for tools for the
change of elements and enables quick change of elements. The mechanism consists of two
interlocking pieces that wrap around the connection joint.

• Dynamixel RX-28 servo motors (4x)

• Interchangeable passive elements (4x)

• Dynamixel AX-12 servo motors (4x)

• Optoforce OMD-30-SE-100N 3D-force sensors (4x)

• ODROID-XU4 embedded control pc

• INA169 DC current sensor

• Xsens MTi-3 AHRS IMU

• USB2Dynamixel communication bus converter (2x)

• LM2596S (12V) DC Voltage regulator

The servo motors are used for joint angle control and have encoders that feed back their

position. The current sensor measures the total current going to the motors at 1500 Hz. The

current sensor has an intermediary Arduino board to send the data to the PC. The robot is

powered externally through a tether from a DC voltage source. Since the source voltage is

the same, the current reading directly correlates to the power demanded by motors during

locomotion. Force sensors give 3D ground reaction force information on each foot which

is essential for the Tegotae control scheme. The IMU has a 3-axis accelerometer, a 3-axis

gyro and a 3-axis magnetometer. It is used for recording acceleration and rotational velocity

of the robot’s body at 100 Hz during locomotion. Due to drifts in the IMU, the global pose

of the robot is tracked with an external motion capture (MoCap) system (Fig. 9.1 b)). The

MoCap data is also streamed to the robot’s on-board PC to ensure synchronization across

different data sources. Thus, all data frames are timestamped with the same clock and they

are inherently synchronized.

145

Chapter 9. Locomotion: effects of local passive and active compliance

9.2.2 Gait generation

Quadrupedal animals can walk or run in a great variety of ways. In this study we picked the

“trot” gait for our analysis since it is one of the most energy efficient quadrupedal gaits that is ob-

served on many quadrupedal animals during long journeys [Bramble and Lieberman, 2004].

Moreover, trot is a switching gait from walking to fast galloping. Hence, it has rich dynamical

characteristics, but does not demand very high actuator power. In this study, two different

types of controllers will be tested: (i) open loop control (forced to trot) and (ii) Tegotae-based

closed loop control.

9.2.3 Foot trajectory

In this study, the role of locomotion controller is coordinating the phase of a gait cycle. How-

ever, the desired trajectory that a foot tracks is designed as a predefined cyclic motion. The

parameters of the foot trajectory, swing amplitude and swing height, are optimized using

Particle Swarm Optimization (PSO) in a simulation environment to yield faster speed for a

given constant locomotion frequency. The shape of the foot trajectory is set to be two different

elliptic arcs during stand and swing phases with maximum 1.5 cm foot clearance (hsw −hst)

as illustrated in Fig. 9.3. The mid stance phase is marked as p2, mid swing phase is marked

as p4 and stance-swing switching moments are marked as p1 and p3. For the inclined sur-

face locomotion, an offset θ0 = 0.1 rad (5.7◦) is added to the hip angle to shift the center of

mass slightly forward. Details of the implemented foot trajectory are further explained in

[Vasconcelos et al., 2017].

9.2.4 Open loop CPG-based control

Legged locomotion can be achieved to some extend in an open loop control scheme, although

the expected robustness of the gait would be low. Open loop control is chosen to form a

baseline in this study. The steady-state locomotion is a cyclic motion such that each limb i is

at a specific phase φi (t) of the cycle at the given time t .

In this particular implementation, each leg’s motion is modeled as a phase-oscillator to steer

the system into a desired limit cycle [Sproewitz et al., 2013], [Ijspeert, 2008], [Collins and Stewart, 1993],

[Cohen et al., 1982]. Leg oscillators are coupled to each other in lateral and axial fashion. The

phase of each limb i is described by the set of coupled differential equations given as

φ̇i = 2π f +∑
j

wi j sin(φ j −φi −ψi j) (9.1)

where φ denotes the phase of an oscillator, f is the gait frequency and ψ is the desired phase

difference between two oscillators. The coupling terms adjust the phase update of each

146

9.2. Methods

x [m]
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

y
[m

]

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

p1
p2

p3

p4

l1

l2

θmax

hsw

x [m]
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

y
[m

]
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

θmax

p1p2
p3

p4

θoffset

l1

l2

hsw

Figure 9.3 – (a) The designed foot trajectory when the hip is fixed and foot freely moves in the
air. Blue elliptic arc shows the swing phase and the red one shows the stance phase. Limits of
the workspace is shown with black arcs. Parameters defining the gait are hip angle maximum
extension (θmax = 0.3 rad), height difference from swing phase mid point to fully stretched
leg (hsw = 15mm) and height difference from stance phase mid point to fully stretched leg
(hst = 0 mm). (b) As an inclination compensation, an offset angle (θo f f set = 0.1 rad) is added
to the hip angle.

147

Chapter 9. Locomotion: effects of local passive and active compliance

oscillator, according to the phase of the neighbors φ j , desired phase shift ψi j between limbs

i and j , and the weight of the coupling wi j . The phase update rule given in Eq. 9.1 brings

the system - starting from any arbitrary initial conditions - to a desired limit cycle after an

initial transient phase. At steady state, the locomotion frequency is constant. First, the phase

is propagated which then is used to calculate the actual joint commands using the desired

Cartesian foot trajectory and inverse kinematics.In other words, φ is given to hip and knee

local PID controllers as the set-point after conversion to joint angles. φ is integrated within

the controller and it is independent of the real leg phase measured by encoders. A separate

feedback term that measures real leg angles could have been added to the Eq. 9.1. But, open

loop control is chosen as a baseline to keep compliance experiments isolated from effects of

feedback. Due to bandwidth limitations of the servo motors, open loop gait frequency is set to

0.5 Hz throughout all experiments.

9.2.5 Tegotae-based control

In the open loop control, coordination of the legs depends on hard-coded couplings between

the oscillators. On the other hand, Tegotae-based control has no explicit leg coordination

and oscillators are coupled indirectly through sensory feedback. All phase oscillators are

independent. However, the Tegotae method is making use of local force feedback and the

phase oscillators still naturally converge to a synchronized behavior due to the dynamic robot-

environment interaction. In this study the implemented Tegotae scheme is similar to the one

explained in [Owaki et al., 2012]. The phase equations of limb oscillators are given as

φ̇i = 2π f + s Ni cos(φi) (9.2)

where Ni is the z axis reading of the force sensor which corresponds to the axial normal force

applied to i th leg by the ground and s is the Tegotae attraction coefficient. The equation

implies that whenever there is a normal ground reaction force on a foot, a phase attraction is

created towards the mid-stance phase. More visually, φ gets attracted towards p2 during the

stance phase shown as red arc from p1 to p3 in Fig. 9.3. Amount of attraction depends on the

normal ground reaction force. Another expectation is that on a rough terrain, robot will not

exhibit periodic body oscillations which will lead to slightly different phase changes at each

gait cycle and the Tegotae-based control is expected to introduce an exploratory stepping

behavior.

Hypothesis 1 (H1) Tegotae-based control will improve rough terrain locomotion performance

thanks to its exploratory nature.

In [Fukuhara et al., 2016], there are two Tegotae rules; one modulating the phase and the other

one modulating the proportional constant (KP) of the local PID controller. Changing KP is not

148

9.3. Experiments

always easy in real hardware. Most of the local PID controllers are not designed for seamless

operation in constantly changing parameters especially due to involved setting delays. It

is also the case for the hardware presented in this chapter. Hence, only the conventional

Tegotae rule is considered. Nevertheless, the conventional Tegotae rule can be considered as a

set-point control scheme and it has dampening and exploratory characteristics and imitates a

compliant control.

9.3 Experiments

This chapter is primarily based on an experimental study. Main research questions of this

chapter were posed in Sec. 9.1. Our strategy to tackle each question can be summarized as

follows:

1. Add series passive compliant elements to all of the legs.

2. Use elements having different compliance on fore and hind limbs.

3. Implement Tegotae-based control and observe if it introduces any advantages over

passive compliance.

4. Test closed loop active controller with different leg compliances.

5. Repeat experiments for different surface conditions.

To address all of these questions, experiments need to involve analyzing various hardware

configurations using open and closed loop controllers on different surface conditions. Our

approach is a comprehensive exhaustive systematic search where only one parameter is

changed at a time. At each different scenario, the robot runs more than 10 steps in steady-state

and the last 10 steps of each run are taken for analysis. The rest of this section elaborates the

details of the followed procedures.

9.3.1 Passive compliance

The passive elements tested in this study are the same as the ones used in [Mutlu et al., 2017].

The rigid element sets a baseline for the other compliant elements. The only upgrade is the

locking mechanism which does not get loose during the locomotion and has considerably

less backlash compared to the one used in [Mutlu et al., 2017]. It is important to note that the

robot itself has an intrinsic compliance arising from body elasticities, motor and connector

backlashes and low level servo control errors. Hence, even the case with the rigid elements has

a hard-to-model parasitic compliance. The other elements introduce significant compliance

on the lower limb only.

The selection of compliance distribution is empirical. The main aim is to observe effects of

relative compliance. There exists 34 = 81 different distributions using only 3 compliance levels

149

Chapter 9. Locomotion: effects of local passive and active compliance

on 4 limbs. Left-right of the robot is always kept symmetric as in most healthy quadrupedal

animals. When the left/right symmetry is considered, number of possible compliance dis-

tributions reduce to 32 = 9. Most of the quadrupedal animals also have stronger and bigger

hind limbs then fore limbs. Thus, the distributions where hind limbs are softer than fore

limbs (3 cases) are discarded. In this study 5 different compliant element distributions are

tested: (i) “all limbs rigid” (practically no bending), (ii) “all limbs hard” (low to moderate

bending), (iii) “all limbs soft” (moderate to high bending), (iv) “fore limbs hard / hind limbs

rigid, (v) “fore limbs soft / hind limbs rigid”. “Fore limbs soft / hind limbs hard” distribution is

intentionally left out. Because, “fore limbs complaint / hind limbs rigid” cases (4th and 5th

distributions) are expected to give similar trend with the excluded case. Moreover, initial tests

revealed that robot has more troubles with soft leg compliances compared to harder/moderate

distributions. Hence one of the visually not very promising distributions is not selected for

further experiments to reduce the total number of runs.

9.3.2 Tegotae-based active compliance

Tegotae control is demonstrated to have the capability to generate rich set of locomotion

modes without setting any coupling between leg oscillators by modulating only a single

variable (s). Moreover, Tegotae can adapt the gait to asymmetrical morphology changes too

[Vasconcelos et al., 2017]. Hence it may not be a perfectly matching condition to compare

open loop and Tegotae control since Tegotae may not always stay in trot mode. In order to

close the difference gap, we have initialized the gaits controlled by Tegotae in trot. We also set

a single value of Tegotae attraction coefficient (s = 0.3) which is experimentally checked to

converge to trot gait at steady-state when locomoting on flat surface and most of the other

cases. Due to its randomness, it is not possible to guarantee the steady-state trot convergence

on the rough terrain. However, rich response characteristics of the Tegotae control make it

even more interesting and worthy to study as an active compliance source.

9.3.3 Experiment terrain

Since Tegotae control is fundamentally based on the robot-environment interaction, different

surface conditions are included in the study.

Flat surface, no inclination:

The flat surface with no inclination constitutes the baseline for the different surface types,

because gait cycles are consistently repetitive and it is easier to observe steady state behavior

particularly for the Tegotae control. This surface type is the most commonly used one for the

Tegotae experiments. Hence, it can be used as a bridge between other studies and our study.

150

9.4. Results and Discussions

Rough surface, no inclination:

A rough surface of 3 m x 1 m size is made out of house decoration tiles. The tiles are painted

with spray paint to obtain the surface seen on Fig. 9.1.b because the original white color was

too reflective under the motion capture system. The roughness consists of valleys and peaks

having approximately 1 cm and maximum 2 cm height difference. Such roughness introduces

stochastic perturbations to the robot’s locomotion in the form of slippage or getting stuck. A

robust locomotion is expected to perform well on the rough terrain.

Rough surface, 3◦ uphill inclination:

The final experiment surface is the 3◦ inclined version of the same rough terrain. The robot

walked uphill during the tests. Uphill conditions are even more challenging since the gravity is

against the locomotion direction.

In summary, we exhaustively tested all different conditions. Therefore, the experiment set

consists of

5 (compliant element distribution) ∗ 2 (open and closed loop control) ∗ 3 (surface types) = 30

(9.3)

runs.

9.4 Results and Discussions

This section presents the analysis of the data collected during the experiments as well as our

observations and comments on the data. Quantifying the locomotion performance is done

by introducing various metrics calculated by using logged data. Furthermore, qualitative gait

symmetry analysis is presented to illustrate locomotion modes emerging from different leg

compliance levels as well as the Tegotae-based rule. Finally, more insights are given about the

Tegotae-based control on various surfaces. The answers to the questions posed in Sec. 9.1 can

be found distributed throughout sections 9.4.2, 9.4.3, 9.4.4 and 9.4.5. Answers are not given in

a list to keep the coherence of the text. However, visual marks such as (A#) are added around

the relevant text to clarify our answers for the reader.

9.4.1 Performance metrics

Quantifying performance of locomotion is a challenging task as there are different perspectives

to look at the same data and some of those approaches can be biased or not as important as

others. In order to be as fair and rigorous as possible, many different performance metrics

151

Chapter 9. Locomotion: effects of local passive and active compliance

have been proposed. They can be grouped in two subgroups: (i) conventional metrics such as

speed, cost of transport, power consumption etc., and (ii) stability of locomotion metrics to

evaluate how much the body oscillated during the locomotion, i.e. how much it deviates from

the horizontal plane.

Stride length (ls):

The foot trajectory is the same for all of the experiments. However, the stride length is expected

to change for different configurations because of slippage and the robot getting stuck. Having

long strides without getting stuck is a desired locomotion criteria. This metric is calculated as

ls = dt /Ns (9.4)

where dt is the total distance taken in 10 steps and Ns is the number of steps (fixed to 10 in

this study).

Experiment time for 10 steps (te):

By the definition of Tegotae, it has power to suppress or advance the gait phase. So, taking

10 steps always takes the same amount of time in open loop locomotion whereas the actual

time needed to perform 10 steps with the Tegotae control varies around the gait period (1/ f).

Hence, we report the time Tegotae-based control needs to take 10 steps. This metric is reported

for the completeness and further used to calculate average speed. It is important to note that

taking 10 steps within less time does not necessarily mean faster locomotion since actual

stride length can change due to foot slipping or getting stuck even though the desired foot

trajectory is the same for all experiments.

Average speed (va):

Although the stride length ls is correlated with the average speed va , there can be differences

since the experiment time for the Tegotae control is not fixed, i.e.:

va = dt /te (9.5)

Average speed is one of the most reported locomotion metrics in the literature since many

researchers are trying to make faster robots.

152

9.4. Results and Discussions

Average power consumption (Pa):

The current demand for the locomotion is among the logged measurements. Motors are pow-

ered using a fixed DC voltage source. Hence the total power consumption for the experiment

is

Pa = VDC

te
·
∫ te

0
I (t)d t (9.6)

where VDC = 18 V. Power consumption is a widely used metric in robotics because it has

implications on the battery size and operation time of a robot.

Cost of transport (CoT):

The cost of transport evaluates the power efficiency of the locomotion and is calculated as

CoT = Pa

m · g · va
(9.7)

where m is the mass of the robot (m = 2.25 kg) and g is the gravitational constant. CoT is also

one of the most common locomotion metrics in the literature and it gives the operation cost

of the robot to move from point A to B.

Control tracking error (e):

We log the actual motor angles read from encoder and desired joint angles. The control error e

is simply the mean (per actuator) of the absolute value of the difference of the setpoint and

the actual motor angle. Setpoint tracking capability is a feature of the local controller, hence

expected to be invariant throughout experiments since weight does not change. However,

when the high level control input is very high or when motors are blocked, actuators may have

higher setpoint tracking error. Lower local control errors indicate the robot is at least moving

in a desired way and not getting stuck.

Average acceleration (aa):

This metric and the following ones are related with the smoothness (oscillation amount) of the

body motion during locomotion. A more oscillating locomotion may not necessarily be less

stable than a more flat one. However, it is an indicator of the energy efficiency. We consider

lower accelerations to be potentially better gaits. The average acceleration is simply the mean

153

Chapter 9. Locomotion: effects of local passive and active compliance

value of all acceleration vector’s Euclidean norms logged during the locomotion.

Average rotational velocity (ωa):

The IMU gives rotational velocity with respect to each axis in 3D. Total rotational velocity ωa is

calculated the same way as the acceleration and it relates to the stability of the body too.

Force fluctuations (σ f):

The axial force fluctuation is calculated as

σ f =
4∑

i=1
σi (9.8)

where σi is the standard deviation of the norm of (3D) data collected by the OptoForce sensors

during the experiment. This metric is correlated with the amplitude of foot touchdown impacts.

Higher impacts will usually result in higher σ f values. High impacts can also deteriorate

sensor readings and usually they are undesired in robotics unless high impacts are needed for

a specific task.

Average motion blur (µa):

In order to enrich our analysis, we are adding a (Self) Motion-based Motion Blur Metric

(MMBM, in short µ) which estimates the average motion blur of images caused by rotational

motion of the robot’s body if there was a fixed camera mounted on the robot’s body. High

levels of motion blur causes a loss of high frequency information on images and it is usually

considered as an undesired artifact for further processing of images. The detailed explanation

of the metric is given in [Mutlu et al., 2014]. This metric is calculated using only rotational

velocity and camera parameters. As a result, it is highly correlated with the gyroscope data, but

takes into account the image formation and the camera model. The variation of µ is similar to

ωa , but, they are different. The difference of the two metrics is more pronounced when the

camera roll becomes the dominant motion. A MMBM value is calculated for each gyroscope

data. An illustrative example is given in Fig. 9.4 where MMBM values during 2.5 gait cycles are

depicted. Higher values of the metric corresponds to higher motion blur levels if an image is

captured at that time instance. Hence lower average MMBM value is considered to be better

for legged locomotion. µa is the mean of all MMBM samples collected during the locomotion.

As seen in the plot, Tegotae-based control yields lower expected motion blur levels at peak

points.

154

9.4. Results and Discussions

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

7
 s

of
t

2
4

7
 h

ar
d

2
4

7
 r

ig
id

2
4

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

7
 s

of
t

2
4

7
 h

ar
d

2
4

7
 r

ig
id

2
4

Figure 9.4 – Motion based motion blur metric (MMBM, or shortly µ) values during 2,5 gait
cycles when the robot is equipped with different compliant elements and walking on flat
surface with (a) open loop and (b) Tegotae control. Higher metric values correspond to more
blurry images. Hence, lower values are considered to be better for the locomotion.

Chance to capture sharp images (µ%):

MMBM can detect very blurry images before any image processing. This information can be

used to selectively capture images when MMBM is low and discard images when MMBM is

high. Even though the images can get extremely blurry at some phases of the gait and has

higher MMBM average (µa), if there are long periods of low MMBM value, such a gait can also

be useful for computer vision applications. This final metric is defined as

µ% = ns ·100

n ·Ns
(9.9)

where ns is the number of MMBM samples smaller than a predefined threshold (selected as 1

in our case) and n is the total number of MMBM samples. Camera motion blur related metrics

are not very commonly used in the literature of robotic locomotion and they are quite task

specific since they relate to image capturing quality on mobile cameras. However, we believe

that it is another way to look at the locomotion performance and they enrich the locomotion

analysis.

155

Chapter 9. Locomotion: effects of local passive and active compliance

9.4.2 Overall results

The performance metrics explained in the previous subsection are calculated for all of the

experimental data and the results are presented in Fig. 9.5. The axes in the spider plots

have been reversed in necessary cases such that outer (from center) values indicate better

locomotion performance in accordance with the defined metrics. Furthermore, all of the

axes have the same range across different plots and their range is scaled and normalized such

that the minimum metric value is always very close to the center and the maximum metric

value is at the outer limits of the spider plot. Therefore, the area of each spider plot gives an

idea about how good the performance is. However, it is important to note that under real

conditions, different axes have different importances, thus the area of the spider plot is not an

absolute classification criteria for any locomotion task. It is rather up to the reader’s interests

and intentions to choose and weight desired metrics for a performance evaluation. It is also

important to note that very small metric value differences between different experiments may

not be absolute indicator. The experiment time was limited to 10 gait cycles and especially

on rough surface, error margins are expected to be higher due to randomness of the contact

points.

The flat and rough terrain results show two major differences between open loop and Tegotae

control: (i) Tegotae control takes longer te (experiment time for 10 steps) than the open loop

control, but, (ii) the tracking error e resulting from the Tegotae control is less than the open

loop e. (A5) Similar observations also hold for e on inclined surface locomotion. But, the

difference of e between open loop and Tegotae control is less pronounced during inclined

surface locomotion. An interesting observation is that te in Tegotae control is getting less than

the open loop case on the inclined surface. The shortest te case occurs with the soft fore /

rigid hind limb compliance on inclined surface. The reason is that the force on the z axis of

the force sensor is changing direction. Fig. 9.6 shows right fore leg, the ground reaction forces,

force sensor orientation as well as the sensor tip point during the mid-stance instance in rigid

and soft fore/rigid hind compliance configurations on inclined rough terrain. The leg can be

bent beyond the natural range when the compliance is too soft.

Another interesting observation is that the Tegotae control seems to have multiple benefits

on both rough 0 deg and 3 deg inclined terrains. (A3 & A4) First of all, it has a tendency to

decrease the cost of transport. Additionally, the metrics related with the stability of the robot

(aa , ωa , e, µa etc.) are indicating the performance increase. Finally, the whole area that is

covered by the spider plots also increase from open loop gaits to Tegotae control. That is a

significant outcome indicating the Tegotae rule can boost locomotion performance on rough

terrain, thus hypothesis H1 is validated. It can also be concluded that introducing passive

compliance to a robot having Tegotae-based control improves locomotion performance as

long as compliance is within favorable range.

In terms of the compliance distribution, there is no single outstanding observation dominating

for all runs. But, some of the distributions perform better under specific conditions. (A1) This

156

9.4. Results and Discussions

Flat - Open Loop

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Flat - Tegotae

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Rough - Open Loop

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Rough - Tegotae

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Inclined - Open Loop

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Inclined - Tegotae

8.9 15 20 26
ls (cm)22

21

21

20

te (s)

0.045

0.073

0.1

0.13

va (m/s)

18

14

11

7.9
Pa (W)

26

18

11

3.1CoT

5.5
5.1

4.7
4.3

e (deg)

3.1
2.7

2.4
2.1

aa (m/s2)

28

25

22

19
!a (deg/s)

4.1

3.4

2.7

2
<f (N)

1.8

1.6

1.4

1.2 7a

2.6

3.3

4.1

4.9 7%

Rigid
Hard
Soft
Fore Hard
Fore Soft

Figure 9.5 – Evaluation of the proposed metrics for all of the experiments. The data is divided
into 6 spider plots illustrating (a) flat terrain / open loop control, (b) flat terrain / Tegotae
control, (c) rough terrain / open loop control, (d) rough terrain / Tegotae control, (e) inclined
rough terrain / open loop control, (f) inclined rough terrain / Tegotae control. Each plot
is showing all of the tested compliance distributions: (i) all rigid elements (practically no
bending), (ii) all hard elements (low to moderate bending), (iii) all soft elements (moderate to
high bending), (iv) fore limbs hard / hind limbs rigid elements, (v) fore limbs soft / hind limbs
rigid elements.

157

Chapter 9. Locomotion: effects of local passive and active compliance

Soft elementRigid element

Inclined rough terrain

OptoForce Z axis Normal ground
reaction force

Tangential ground
reaction force

Figure 9.6 – The ground reaction force and the orientation of the force sensor mounted on
the foot. When the compliance is very low the bending can reach quite high and unnatural
looking levels.

is an expected result since this work tries to answer a broad range of questions. As there is no

single algorithm to solve all problems, there is no perfect compliance distribution to satisfy

different goals. It is still possible to infer that fore hard / hind rigid case has better performance

over all hard distribution. Which points out that asymmetric fore and hind limb compliance

has potential to improve locomotion performance

The experimental data is presented as a comprehensive set without hiding some aspects that

may seem insignificant in the first look. However, we believe that demonstrating invariance of

certain metrics is as important as finding drastic correlations. Thanks to the completeness of

the experiments, a wide range of readers can find even a subset of all results useful for their

own designs.

9.4.3 Feet trajectories

During the trot, two legs should be in the stance phase while the other two should be in the

swing phase. However, our robot does not have active feet controlled from the ankle and only

has passive spherical feet. As a result, the robot has only two points rather than 2 surfaces

in real quadrupedal animals, touching the ground at most of the times. Thus, the robot

dynamics exhibit unstable, inverted-pendulum-like, behavior and one of the swing phase legs

sometimes prematurely touch to the ground to form dynamically stable tripod (unnatural

for animals). Even though, the center of mass is approximately at the geometric center of the

robot, for all of the open loop gaits the tripod is formed by two hind limbs and a fore limb. Even

when one of the swing phase legs touches the ground, the majority of the weight is still carried

by the stance phase legs. In order to capture such behaviors, right feet trajectories are recorded

during flat terrain experiments. Fig. 9.7 gives the fore and hind limb trajectories for all uniform

compliance distributions when locomoting on the flat surface. It is clear that the hind leg is

always dragging. (A2) However, Tegotae control is trying to balance that instability and trying

to bring the system to more uniform swing/stance phases. Previously, it was reported that

158

9.4. Results and Discussions

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allrigid fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allrigid hind

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allhard fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allhard hind

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allsoft fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allsoft hind

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allrigid fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allrigid hind

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allhard fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allhard hind

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allsoft fore

x (forward)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

z
 (

u
p

w
a

rd
)

-0.02

0

0.02

0.04

allsoft hind

Figure 9.7 – Foot trajectories during locomotion on the flat surface, using different uniform
compliance when the robot is controlled with (a) open loop or (b) Tegotae based controllers.

Tegotae rule can fight against introduced morphological asymmetries and tries to bring the

locomotion to more symmetrical regime [Vasconcelos et al., 2017]. Similarly, we re-validate

that Tegotae rule tries to overcome locomotion asymmetries. Furthermore, we observe cues

to extend that hypothesis to include asymmetries arising from the locomotion surface.

9.4.4 Phase vs compliance in Tegotae-based control

The time evaluation of the phase gives important clues about the locomotion in Tegotae

control. The phase of the limb oscillators when the robot is controlled with the Tegotae rule

is given in Fig. 9.8. The figure displays three different runs with different uniform compliant

elements. For each run, both right (fore and hind) limbs’ phases are plotted. More stiff legs can

have higher interaction forces and we observe that phase delay is increased. This observation

159

Chapter 9. Locomotion: effects of local passive and active compliance

Time (s)
0 2 4 6 8 10 12

P
ha

se
 (

ra
d)

0

1

2

3

4

5

6

7
Flat Surface - Tegotae - Right Leg Phases

Fore/Rigid
Fore/Hard
Fore/Soft
Hind/Rigid
Hind/Hard
Hind/Soft

Figure 9.8 – Phase evaluation of fore and hind right limbs when the robot is locomoting on flat
surface with Tegotae control. Three different uniform compliance tested. When the limbs are
more stiff, the robot-environment interaction is higher and phases get longer delay.

is also consistent with the literature.

9.4.5 Emerging gaits from Tegotae-based control

Open loop runs were always forced to be trot. However, Tegotae control does not have any

direct coupling between phase oscillators of limbs. Nevertheless, on flat surface Tegotae

always converges to trot (for our selected s = 0.3) no matter which compliant element is

used. However, the rough surface has peaks and valleys resulting in unexpected touchdown

moments. Even on the rough terrain, the gait mostly remains a trot. But, in some cases

deviations from trot have been observed. We believe those deviations towards different gait

modes help the robot move more efficiently on the rough terrain. Hence we associate the

decrease on the cost of transport (under aforementioned scenarios) to the gait adaptation

capability of Tegotae. Indeed, open loop control can sometimes get stuck (repeating same

steps blindly with no actual forward motion) on some unfavorable spots on the rough terrain

whereas Tegotae control explores different locomotion modes on the same spots and has

higher likelihood of passing those points. All of the recorded gait patterns are given in the

appendix of this chapter.

9.4.6 Limitations of the platform:

Even though it is an animal-like quadruped structure, unlike real animals, legs have propor-

tionally more mass than the body. Moreover, the outer layer of force sensors is covered with

rubber which has high friction coefficient which leads to sticktion during the locomotion. The

sticktion of force sensors at feet causes energy accumulation in compliant elements during

the locomotion. At takeoff, the compliant leg starts oscillating because of the lack of damping.

Such oscillations become significant distortions when the leg mass is relatively high compared

to the body mass and can be noticed especially in MMBM in the hard case of Fig. 9.4.

Although Optoforce OMD-30-SE-100N gives 3 axis force information, the readings are well

160

9.5. Conclusions and future work

calibrated only when the force is applied on the tip of the sensor dome. During the locomotion

the touchdown may occur on any spot of the the sensor and sensor gives less accurate readings

when the touchdown point is further away from the tip of the dome. Nevertheless, there are

not many commercially available solutions in the market with the similar size and weight.

Even though the force measurement may have some numerical errors, their relative response

to the changing force is quite acceptable.

9.5 Conclusions and future work

In this chapter the effects of leg compliance is investigated. An economical quadrupedal

robot is built to test different passive and active compliance characteristics. The robot is a

biologically inspired one, but, the morphological characteristics does not strictly imitate any

real animal. Instead, it has a modular structure to allow quick morphological changes. Three

different passive compliance levels are tested in five different compliance distribution. For

each compliance distribution is tested on three different surface (flat, rough and rough/in-

clined). Furthermore, Tegotae based method is implemented as an active (soft) compliance

source and its performance is compared to open loop gait for all proposed scenarios.

Various sensor data has been collected during each trial and later on analyzed based on

defined metrics. The problem has many dimensions to consider and there is no single com-

pliance distribution outperforming all the others. Rather there appears to be some favorable

combinations for certain criteria in specific scenarios. The relation of compliance to the

gait is highly nonlinear and is affected by many parameters. Readers with various different

applications in mind can select a subset of findings presented in this chapter to guide their

compliant robot and controller designs.

Tegotae based control is presenting a great value as an active compliance source. In this study

only one level of Tegotae attraction coefficient, s, tested. s is set to a fixed value which has

tendency to converge to trot in all test cases. When the limbs are physically more stiff, the

effects of Tegotae are more pronounced. One of the most prominent effects of Tegotae is

observed to be reducing the cost of transport when locomotion on rough terrain. The most

likely reason for such performance increase is the adaptation capability of the Tegotae control.

By exploring slight gait changes around trot, it overcomes certain local minima where open

loop gaits can exhibit significant performance drops.

The open loop gait parameters are optimized with PSO to yield fast and efficient locomotion,

so the performance difference between the open loop control and the Tegotae control is

not very significant. We expect that Tegotae control has a bigger potential to improve a sub-

optimal open loop gait performance. In the future studies, we will include a non-optimal

open loop gait to our comparisons to observe if Tegotae would perform proportionally more

significant than the open loop control. The feet are completely passive in the current robot.

However, feet play a crucial role in locomotion performance too. Our future work will also

include integration of active feet to the same platform. Finally, we focused only on a fixed

161

Chapter 9. Locomotion: effects of local passive and active compliance

level of Tegotae attraction coefficient, s in this chapter. Exploring a wider spectrum of s is also

among our future aims.

162

10 Conclusions

This thesis explains what we did to bring MRs one step closer to wide daily use. We envision

SRMRs to be Swiss army knives of robotics: Have a SRMR and use it for every possible task.

However, the vision of “one robot to rule them all” has not been realized yet. The studies

conducted in the scope of this thesis do not find “the Holy Grail” neither. Nevertheless, we

have advanced the SRMR front towards that direction.

The majority of the literature on “hardware” of SRMRs explains “how to create a novel/new

SRMR”. Number of persistent studies that research the same SRMR platform throughout the

years (roughly in the scale of a decade or more) and explain incremental steps is just a small

portion. After a few years of study, number of novel and publishable outcomes on the same

hardware becomes smaller. Many promising SRMRs can in principle cope with a lot of tasks

that can be expected from SRMRs. However, all of the demonstrated platforms are bound

to saturate in novelty due to technological limitations. At the point of saturation, a specific

platform can be abandoned and a significantly different SRMR design emerges to address

some of the uncovered issues. On the other hand, we can also keep pushing further on the

same platform. This thesis falls into the latter category. By the time the studies of this thesis

started, major hardware and control papers on the Roombots (RB) platform had already been

published. Instead of starting over with a new SRMR design, we decided to walk on the steep

path of the same platform and try to reach to the end. After five years of continual research

on RB, the end is nowhere within reach and there is still more that it can contribute to the

literature.

This thesis addresses several research questions. Next, the answers are summarized.

• How far can we go on the path of creating the perfect SRMR that can tackle every

possible task?

We started with improving the existing hardware by re-engineering existing functionalities

of RB. For instance, the custom designed gear boxes are upgraded from plastic to brass in

163

Chapter 10. Conclusions

order to reduce the backlash on each DOF. Similarly, active connection mechanisms (ACMs)

are redesigned to reduce static friction to avoid getting stuck. On top of upgrading existing

features, we have also added new ones such as absolute encoders to enable faster and more

flexible experiment initialization by removing the need for calibration after each power cycle.

New lighting systems are added to RB both for illumination (high power directional spotlight)

and user feedback (low power LED ring) purposes. A small scale universal gripper is designed

and integrated within RB modules to enable manipulation of objects with arbitrary shapes.

New proximity sensors are added to each ACM surface to validate alignment during docking

process. Thus, RB can avoid significant amount of uncertainties during self reconfiguration.

Furthermore, the development of a GUI has significantly simplified use of RB. Details of all

hardware changes are explained in Ch. 2.

Complementary to hardware of RB, we have worked on scalable control too. Starting from

the core, control of each DOF is re-visited. In addition to tuning local PID parameters for the

new RB configuration (new gearbox, weight increase, adding absolute encoder), some new

safety and security features have been added. On higher level control, a new optimal planning

framework has been developed for autonomous self reconfiguration tasks in grid environment

as explained in Ch. 3. The new framework is a centralized algorithm that finds optimal set

of actions to self reconfigure from an initial state to a desired goal state. Completeness and

optimality in SRMR come with a high computation burden that limits scalability of the system.

In other words, the framework cannot work for very large number of modules in very complex

tasks. However, the framework is still extremely useful as it enables the very core functionality

of self reconfiguration. Because, the same method can be integrated in a higher level motion

planning scheme to plan small sub-tasks in a very complex scenario by compromising optimal-

ity to gain scalability. Prior planning methods of RB had certain assumptions (simplifications)

such as allocating space for certain (meta-)modules and using artificial potential field vectors.

In extremely nonlinear systems such as RB, potential navigation fields are doomed to fail in

complex scenarios. Modules can easily get stuck in local minima and never reach to goal. The

new framework does not have any restrictions on it and it can plan for all scenarios as long

as it is physically possible. Additionally, we have ant-inspired local control attempt which is

highly scalable, but, designed for solving a specific task: Forming bridges and crossing large

gaps. Details of the distributed-local control attempt can be found in Ch. A.

Thanks to both hardware and control upgrades, we can demonstrate capabilities and effec-

tiveness of RB system. The largest demo consists of 12 modules (making 36 DOF system).

Modules are randomly initialized and are all disconnected in the beginning. They can form a

complex shape such as chair almost fully autonomously. Unfortunately, the self reconfigura-

tion on some of the challenging and complex scenarios is still not 100% reliable. Minimal user

interference is still needed once in a while. We already have preliminary studies to improve

the docking success rate even further by adding a camera and visual servo control. However,

there are no concrete results on that front by the time this thesis is submitted.

• What kind of user interfaces are suitable for using SRMRs in daily lives?

164

The ultimate goal of SRMR research is creating the system that can do every task. It can be

tasks in dangerous places, space applications, industrial applications or simple households.

Bringing SRMRs to daily lives means a demand for human-robot interaction. Since such

robots are not used as a commercial product, there are only very few research studies on

interaction methods with SRMRs. Nobody truly know what is the best way to control SRMRs

yet. However, opening a PC terminal every time user wants to control the system would be

tremendously inefficient and boring. In the search for better user experiences, we study three

different user interfaces (UIs) in the scope of this thesis. Each three UIs focus on different

applications and offer their own niches.

The first UI is addressing the “easy shape information transfer” need. User may need a new

structure being formed which has a novel (not pre-defined) shape. Verbal description could

have been possible to use, but instructions can get quite complicated and lengthy. So, we

propose a novel interface using a tangible and malleable interaction medium in Ch. 4. In this

UI, the user creates a draft sculpture (model) of the desired shape. Then the sculpture is 3D

scanned into digital environment where it is processed further to autonomously create the

same shape using RB. In the complete realization, this UI depends on a real time 3D scanning

solution which was not available during the study. Nevertheless, the UI is demonstrated with

offline (lengthy) 3D scanning method. So far, the capabilities and the concept of the UI has

been presented. Non-real time interaction due to lengthy 3D scanning is the next obstacle

before enabling the full potential of this UI.

The second UI study is focusing on eliminating all middle interaction tools and commanding

SRMRs directly with gestures. Such direct and invisible interfaces are also called as “natural

user interface”. Gestures have been the oldest communication method. They existed even

before formation of languages. Direct physical interaction is a very powerful method. A simple

pointing gesture can be much more clear than many other interaction methods. Inspired by

the nature, we propose a direct human-SRMR interaction. User can simply point a module or

group of modules and send them to a location by simply pointing to a desired goal location.

Such an interface relies on visual tracking system to track both user, modules or both in the

environment. The UI can manifest in different embodiments. In a plausible scenario we

demonstrate it with a (meta-)module carrying a directed spotlight to illuminate a desired

location. User simply shows where the light is needed and RB direct the light on the desired

spot. We believe that the direct interaction with SRMRs in future intelligent environments

(spaces augmented with SRMRs) is a much more exciting and efficient way of interacting with

such robots.

The final UI envisions a teleoperation possibility. User may not be in a certain environment,

yet may need to control SRMRs remotely. In such scenario, there is a need for virtual envi-

ronment. It can be a simple PC terminal. But, we take the study one step further add head

mounted displays to enhance 3D perception in virtual environment. Additionally, we also add

a hand gesture tracking device to manipulate modules in the virtual environment. As a result,

we can assemble any 3D structure with this UI in Ch. 6. The aim of the UI is to create a desired

165

Chapter 10. Conclusions

shape similar to the first proposed tangible UI. Additionally, we can also command the pose of

the final structure in the environment.

There is a great number of ways to control tasks with SRMRs. The three novel UIs we proposed

are merely surface of a deep ocean. We believe that UI studies for SRMRs will create a big hype,

if SRMRs ever reach to the consumer market.

• How closely can we recreate animal locomotion in laboratories using (SR)MRs?

All of Part III contributes to the answer of this question as we consider lamprey swimming,

terrestrial serpentine gaits and quadrupedal locomotion. Bodies of robots used in these

studies consists of blocks of modules which does not look very realistic when stationary.

However, when they start moving, they highly resemble real animals. Particularly Ch. 7 deeply

elaborates the goal oriented neuro-visual locomotion (swimming) model of lamprey. It is

using CPGs as the main motion mechanism. However, there is a closed loop control on top of

the CPG based of what lamprey sees. The visual input is fed into a neuron network consisting

of multiple layers replicating the real animal. Envirobot is chosen as the hardware platform.

Envirobot did not have visual capabilities. Hence, a new head is designed for Envirobot to

accommodate cameras and a more powerful computation unit. In the hardware level, we

integrated event-based cameras as an alternative to conventional RGB cameras. Event-based

cameras replicate the real structure of eye and it reports only events rather than full images.

Our cameras consider a significant intensity change of a pixel as an event. Event based

cameras are much more suitable for driving biological neural control structures compared to

conventional cameras. First of all they respond much faster to changes in the environment.

Then, we can feed each event to the neuron network, creating a more direct interface between

the input layer and the controller. Thus, such biological models can be implemented for

real-time robot control applications.

• How does the visual system correlate with bio-inspired locomotion of modular robots?

Motion of eyes is extremely crucial part of animal vision system. Even with a single eye,

it is possible to get 3D environment information through lighting, occlusions, perspective

projection or motion. Moving an eye (camera) in a stationary environment can yield 3D

information. That is the main reason why some birds have exaggerated head motion while

examining an object on the ground, because they have a narrow overlapping field of view

for stereo vision. Another interesting eye feature is saccadic motion to quickly scan many

points on the field of view to help 3D reconstruction (that happens in the brain). Without

the saccadic motion, physiology of eyes permit to see only a very narrow conical angle with

color. Furthermore there is a direct coupling between eye motion and the rest of the body to

stabilize the eye during bumpy locomotion of the body. Ch. 8 explores the relation between

locomotion and vision. More specifically, snake robot is chosen as the application hardware.

166

10.1. Future work

In the literature, we encounter snake robots equipped with camera(s). However, in all of cases,

camera is placed on the head and pointing roughly forward. Although this common camera

placement has certain advantages, it is not the only option. We compare different camera

location possibilities and compare a few numerical metrics to quantify the quality of vision

during different serpentine gaits. Even though there is no single the best solution, we report

that different camera locations can be more promising for different applications depending

on the gait.

• What is the role of compliance in bio-inspired locomotion of modular robots?

Animals consist of many different tissues spanning a wide range of compliance such as bones

and fat. Moreover, there are active components such as muscles that can change compliance

during the locomotion. In conventional SRMRs there is only inherent structural compliance.

Compliance definitely has an important role in locomotion to dampen high impacts and

increase energy efficiency by storing and releasing the kinetic energy at favorable periods

during the locomotion. Ch. 9 is a comparative study understand insights of compliance in

MRs during locomotion. It considers two different compliance causes: passive (structural)

and active (control-based). The passive compliance is obtained by adding extra elements near

joints. The active compliance comes through Tegotae-based control. Tegotae-rule is actually

used gait emergence studies. When each leg’s phase is controlled with decoupled oscillator,

Tegotae rule modified the rate of phase depending on ground reaction forces applied on

the foot. Thanks to physical interaction of oscillators through robot’s body, different gaits

emerge in multi legged systems. The way the Tegotae rule is formulated can be considered

as an active spring and damper. Divers combinations of passive and active compliance

has been tested on a quadrupedal MR while locomoting on different terrains. Each run is

quantified with many metrics to evaluate locomotion performance. Results do not yield a

linear trend as the compliance in legged locomotion is a highly nonlinear phenomenon, but,

confirm that compliance should be well tuned for better locomotion performance. Another

significant finding is that active compliance base on Tegotae rule can considerably improve

the locomotion performance on rough terrain.

10.1 Future work

Although this thesis did improve the SRMRs on multiple sides, we are still quite far from

bringing SRMRs into daily lives. Focusing on niche applications such as in space domain is

still the more plausible use for SRMRs. Because existing solutions are quite expensive for the

limited functionality they provide.

In the RB side, the hardware of the platform is almost saturated. It is getting exponentially

difficult to add new features to extend current capabilities due to space constraints. On the

other hand, there is also definitely room for improvement. For instance, RB are still using

Bluetooth to connect to a centralized PC to get user commands. Bluetooth is limited to 7 (or 8

167

Chapter 10. Conclusions

depending on the version) modules per Bluetooth dongle. Even though Linux accepts more

than one dongles at a time, some OS (e.g. Windows) don’t allow more than one dongle at a

time. Hence, RB is not super scalable at the moment. There is an increasing need for large

scale wireless communication solution such as Zigbee or variants. To our best knowledge very

high number of modules (e.g. 1000) has never been tested in a very compact volume. Another

improvement can be on proper integration of computer vision systems in SRMRs. Especially

powerful computation units are getting smaller by the day. It is only a matter of time until we

see better computer vision integrations in SRMRs.

However, there is still a lot of room for research in the control, planning and UI domains. There

is a great potential space for expansion particularly for UIs. One of the directions in RB project

can be obtaining a real-time 3D scanner to enable the full potential of the proposed tangible

UI.

168

A Cooperative bridge building by SRMR
based on ants’ stigmergic behaviour

Ch. 3 gave an optimal centralized planning framework for SRMRs. However, its power is

limited with number of modules and complexity of the planning since the search space is

exponentially increasing with that. Another method of controlling SRMR is distributed control

using local rules. Each module follows simple rules and decides on the next action by observing

the close proximity of itself. The advantage of this method is scalability. Such models can

in principle be scaled to much higher number of modules by compromising optimality and

sometimes not finding a solution depending on the task. Each local controller must have task

specific set of rules. This chapter explains our ant inspired approach to the particular problem

of forming bridges with SRMRs and crossing gaps a single module cannot pass otherwise.

Reference publications

• This chapter is based on Jasmine Nguyen-Duc, Mehmet Mutlu, Simon Hauser, Alexan-

dre Bernardino and Auke Ijspeert. “Cooperative bridge building by self-reconfigurable

modular robots based on ants’ stigmergic behaviour.” Submitted to Adaptive Motion

of Animals and Machines 2019.

My original contributions

– Defining and supervising the semester project of Jasmine Nguyen-Duc

– Providing a base code for the framework

– Guiding and planning of simulations

– Partially writing and fully reviewing the manuscript

169

Appendix A. Cooperative bridge building by SRMR based on ants’ stigmergic behaviour

A.1 Introduction

Insect societies have particular ways of self-organising. To improve their efficiency in task

managing, ants are capable of forming a bridge-like self assemblage. “Army ant bridges are

remarkably strong and adaptive; the insects begin to build them as soon as they sense a gap in

their path and disassemble them once traffic has cleared” [Reid et al., 2015].

This research presents a method for robots to accomplish the construction of a bridge similarly

to ants. For this, the concept of stigmergy must be studied. The use of stigmergy in the robotics

field has lead to the creation of an artificial swarm intelligence. The particularity of stigmergy

is mainly the use of indirect communication and the absence of a central leader. So the robots

take initiatives without needing an external command or any direct communication with their

“teammates". The decision making of each agent is based on a set of rules and on the time

varying environment.

Roombots are self-reconfigurable modular robots (SRMRs) designed in Biorobotics Labora-

tory of EPFL. Each module has two adjacent cube-like shapes and has three rotary degrees

of freedom (DOF) as seen in Fig. A.1a. Roombots are capable of self reconfiguration and

locomotion by gripping onto specific surfaces. Active Connection Mechanism (ACM) and

proximity sensors are positioned at the extremities of each module.

(a) (b) (c)

Figure A.1 – (a) Single RB module [Bonardi et al., 2012b] and (b) an agent composed of two
modules in standing position and (c) during a step forward.

The most common way of controlling SRMRs is centralized where all SRMRs are connected to a

central computation unit, which decides how each module should behave. However, there ex-

ists distributed control ways too [Ahmadzadeh and Masehian, 2015], [Cucu et al., 2015]. Cen-

tralized methods usually suffer from high dimentionality of SRMRs and distributed methods

may fail to find a solution for a desired task. Creating an algorithm inspired by a biological

method used by ants would enable Roombots to achieve a certain primitive task, namely,

crossing a wide gap that requires collaboration of multiple modules.

170

A.2. Methodology

A.2 Methodology

A.2.1 An algorithm from ants

In previous studies, ants have been noticed to follow a set of simple rules while forming

bridges: (1) if a gap is ahead, stop moving or slow down; (2) if an ant is immobile in front,

climb on top of it and continue walking; (3) as long as an ant is on top of another, freeze. These

are morphology-free commands that can be converted to an algorithm.

In our Roombots adaptation, each agent randomly explores the environment. The exploration

is modelled as: ant continues walking in the same direction with 80% chance, changes direc-

tion with 15% chance and stops (without detecting gap) with 5% chance. The formation of a

bridge can take a very long time since the agents just walk around randomly in the environ-

ment. However, agents can be attracted towards a gap, for example, driven by smell or light.

We considered that there exists a slight attractor towards the gap. Thus, ants are more likely to

walk towards the gap and start forming bridges during the exploration.

When a gap is detected while exploring, an agent leans forward and freezes for a fixed amount

of time. If no other robot climbs over it in during the frozen period, the leaning robot stands

up again and resumes exploration. If on the contrary, another robot does climb onto it, it

stays frozen independent of time. Thus, the foraging robot has enough time to walk across

the leaning robot’s body. Once the other side of the gap is reached by a climbing robot, the

bridge is formed and allows others to forage across it. As long as there are foraging agents on

top of the “bridge-builders", they cannot stand up. Once there are no more foraging ants on

the bridge, the first agent that formed the bridge stands up first and crosses the bridge while

disassembling it.

A.2.2 Roombot’s mechanics

Each Roombots module has only 3 DOF that is quite low compared to capabilities of a real

ant. In order to have more capable robotic units, metamodules of two modules (attached in

series) have been considered as the smallest robotic agent (ant) as shown in Fig. 3.8j and Fig.

A.1c. Together, the two modules form a biped that is capable of walking in all four directions

in the grid environment. Locomotion sequence is defined as follows: (1) Front module grips

the ground and (2) back module releases connection. Then, (3) back module is first lifted up

and (4) brought to the front side by a rotation of the gripping (former-front) module.

To detect a gap or an obstacle, the agent uses an IR sensor located at the tip of each “leg".

Before dropping the leg onto the ground, the IR sensor is orientated downwards, checks for

obstacles and gaps. In the absence of obstacles or gaps, it drops the leg to the ground and

resumes exploration.

The presented method is essentially a distributed control framework. However, detection

of collisions is a challenging task to be implemented in hardware. Even though, Roombots

171

Appendix A. Cooperative bridge building by SRMR based on ants’ stigmergic behaviour

hardware allows rough torque measurements to detect unexpected collisions, we prefer not to

execute actions that would result in collisions. Collisions could be avoided with distal sensors

which are not yet integrated. Therefore, we tackle the collision problem in a centralised

manner. As a compromise, only one agent moves at a time.

A.2.3 Logic-level simulation

MATLAB is used to simulate the proposed method. Robots and the environment is abstracted

into 3D voxel grid. Environment voxels are fixed and agent voxels are updated at each step

according to the decision agent takes. Although, distributed agents can all move at the same

time, in this work, only one agent moves one step at a time to simplify collision problems.

Each step in the MATLAB simulation is a predefined set of actions (motion primitives) in real

robots.

A.2.4 Experimental set-up

The simulation environment has a flat floor with a (four-unit wide) uniform gap that a single

agent (ant) cannot cross. All agents are initially placed to one side of the gap and the exper-

iments are concluded when all agents cross the gap or a single one is left behind. Different

number of agents was tested varying from two to seven. Although, we envision a fully au-

tonomous framework including the real hardware as shown in Fig. A.2, for this work the the

main focus has been the logic level simulation as illustrated in Fig. A.2b.

A.3 Results

The most obvious difference between this simulation and the biological system is related to

the conformation of the bridge. The bridges formed in the simulation are much simpler in

shape (only linear) and shorter. There are three major reasons for that. (1) Ants are very strong

and can carry up to 50 times of their body weight. For Roombots, that number is slightly more

than one. (2) Ants can hold on to each other in many different ways, whereas Roombots need

to be well aligned and have much less connection possibilities. (3) Only a limited set of motion

capabilities of Roombots have been considered for simplicity. Each action of an agent is a

predefined set of motion primitives. In other words, the command “Move one step forward"

translates into a set of consecutive actions such as “DOF 2 of Module 1 goes to 120 degrees",

“ACM 2 of Module 1 disconnect"... It is possible to enrich considered motion primitives to

enable formation of more realistic bridges.

A.4 Conclusions

We have discussed cooperative behaviour for Roombots that cross a gap of a certain distance

by self-assembling into a bridge. It is inspired by stigmergic foraging in ant colonies. In the

172

A.4. Conclusions

(a) (b)

(c) (d)

Figure A.2 – Whole envisioned pipeline of the work consists of (a) Inspiration from real ants
(credit iStock/lirtlon) (b) modeling the behaviour for distributed SRMR control using pre-
defined motion primitives, (c) obtaining real action sequence and (d) execution on the real
robotic system.

simulation, the agents modify the environment by leaning over a gap when it is detected, thus

decreasing its length. Other agents were shown successful in climbing over the ones leaning to

extend the bridge until the other side is reached. The bridge becomes a shortcut which allows

ants to reduce the distance to reach their target. This work will be extended with richer set of

motion primitives to enable formation of larger and stronger bridges.

173

B Leg touchdown patterns of the modu-
lar quadruped

The leg touchdown in Ch. 9 is detected by thresholding taking the norm of the force vector

obtained from OptoForce sensors. The blue regions in Figs. B.1, B.2, B.3, B.4, B.5 indicate the

foot touchdown and white regions indicate the swing phase. Each plot has a three letter title

describing the experiment:

• 1st letter. R: all rigid elements, H: all hard elements, S: all soft elements, A: fore hard,

hind rigid elements, F: fore soft, hind rigid elements,

• 2nd letter. F: flat surface, R: rough surface, I: rough inclined surface

• 3rd letter. O: open loop control, T: Tegotae based control

175

Appendix B. Leg touchdown patterns of the modular quadruped

0 5 10 15 20

hr

hl

fr

fl

RFO

0 5 10 15 20

hr

hl

fr

fl

RFT

0 5 10 15 20

hr

hl

fr

fl

RIO

0 5 10 15 20

hr

hl

fr

fl

RIT

0 5 10 15 20

hr

hl

fr

fl

RRO

0 5 10 15 20

hr

hl

fr

fl

RRT

Figure B.1 – Leg touchdown patterns when all element are rigid.

0 5 10 15 20

hr

hl

fr

fl

HFO

0 5 10 15 20

hr

hl

fr

fl

HFT

0 5 10 15 20

hr

hl

fr

fl

HIO

0 5 10 15 20

hr

hl

fr

fl

HIT

0 5 10 15 20

hr

hl

fr

fl

HRO

0 5 10 15 20

hr

hl

fr

fl

HRT

Figure B.2 – Leg touchdown patterns when all element are hard.

176

0 5 10 15 20

hr

hl

fr

fl

SFO

0 5 10 15 20

hr

hl

fr

fl

SFT

0 5 10 15 20

hr

hl

fr

fl

SIO

0 5 10 15 20

hr

hl

fr

fl

SIT

0 5 10 15 20

hr

hl

fr

fl

SRO

0 5 10 15 20

hr

hl

fr

fl

SRT

Figure B.3 – Leg touchdown patterns when all element are soft.

0 5 10 15 20

hr

hl

fr

fl

AFO

0 5 10 15 20

hr

hl

fr

fl

AFT

0 5 10 15 20

hr

hl

fr

fl

AIO

0 5 10 15 20

hr

hl

fr

fl

AIT

0 5 10 15 20

hr

hl

fr

fl

ARO

0 5 10 15 20

hr

hl

fr

fl

ART

Figure B.4 – Leg touchdown patterns when fore limb elements are hard and hind limb elements
are rigid.

177

Appendix B. Leg touchdown patterns of the modular quadruped

0 5 10 15 20

hr

hl

fr

fl

FFO

0 5 10 15 20

hr

hl

fr

fl

FFT

0 5 10 15 20

hr

hl

fr

fl

FIO

0 5 10 15 20

hr

hl

fr

fl

FIT

0 5 10 15 20

hr

hl

fr

fl

FRO

0 5 10 15 20

hr

hl

fr

fl

FRT

Figure B.5 – Leg touchdown patterns when fore limb elements are soft and hind limb elements
are rigid.

178

Bibliography

[Ahmadzadeh and Masehian, 2015] Ahmadzadeh, H. and Masehian, E. (2015). Modular

robotic systems: Methods and algorithms for abstraction, planning, control, and syn-

chronization. Artificial Intelligence, 223:27–64.

[Ahmadzadeh et al., 2015] Ahmadzadeh, H., Masehian, E., and Asadpour, M. (2015). Modular

Robotic Systems: Characteristics and Applications. Journal of Intelligent & Robotic Systems,

pages 1–41.

[Ajallooeian et al., 2013] Ajallooeian, M., Pouya, S., Sproewitz, A., and Ijspeert, A. J. (2013).

Central Pattern Generators augmented with virtual model control for quadruped rough

terrain locomotion. In 2013 IEEE International Conference on Robotics and Automation,

pages 3321–3328.

[Alexander, 1984] Alexander, R. M. (1984). Elastic Energy Stores in Running Vertebrates. Amer-

ican Zoologist, 24(1):85–94.

[Amend et al., 2012] Amend, J., Brown, E., Rodenberg, N., Jaeger, H., and Lipson, H. (2012).

A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE

Transactions on Robotics, 28(2):341–350.

[Amend et al., 2016] Amend, J., Cheng, N., Fakhouri, S., and Culley, B. (2016). Soft Robotics

Commercialization: Jamming Grippers from Research to Product. Soft Robotics, 3(4):213–

222.

[Anderson et al., 2000] Anderson, D., Frankel, J. L., Marks, J., Agarwala, A., Beardsley, P., Hod-

gins, J., Leigh, D., Ryall, K., Sullivan, E., and Yedidia, J. S. (2000). Tangible interaction +

graphical interpretation: a new approach to 3d modeling. In Proceedings of the 27th an-

nual conference on Computer graphics and interactive techniques, pages 393–402. ACM

Press/Addison-Wesley Publishing Co.

[Arancha Casal, 1999] Arancha Casal, M. H. Y. (1999). Self-reconfiguration planning for a class

of modular robots. volume 3839, pages 3839 – 3839 – 12.

[Asadpour et al., 2009] Asadpour, M., Ashtiani, M. H. Z., Sproewitz, A., and Ijspeert, A. (2009).

Graph signature for self-reconfiguration planning of modules with symmetry. In 2009

179

Bibliography

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5295–

5300.

[Asfour et al., 2013] Asfour, T., Vahrenkamp, N., Schiebener, D., Do, M., Przybylski, M., Welke,

K., Schill, J., and Dillmann, R. (2013). ARMAR-III: Advances in Humanoid Grasping and

Manipulation. Journal of the Robotics Society of Japan, 31(4):341–346.

[Barrios et al., 2016] Barrios, L., Collins, T., Kovac, R., and Shen, W. M. (2016). Autonomous

6d-docking and manipulation with non-stationary-base using self-reconfigurable modular

robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2913–2919.

[Bayat et al., 2016] Bayat, B., Crespi, A., and Ijspeert, A. (2016). Envirobot: A bio-inspired

environmental monitoring platform. In 2016 IEEE/OES Autonomous Underwater Vehicles

(AUV), pages 381–386.

[Beattie et al., 2015] Beattie, N., Horan, B., and McKenzie, S. (2015). Taking the LEAP with the

Oculus HMD and CAD - Plucking at thin Air? Procedia Technology, 20:149–154.

[Beetz et al., 2012] Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., Blodow, N.,

and Pangercic, D. (2012). Cognition-Enabled Autonomous Robot Control for the Realization

of Home Chore Task Intelligence. Proceedings of the IEEE, 100(8):2454–2471.

[Bellmore et al., 2011] Bellmore, C., Ptucha, R., and Savakis, A. (2011). Interactive display

using depth and RGB sensors for face and gesture control. In 2011 Western New York Image

Processing Workshop, pages 1–4.

[Bianco and Engert, 2015] Bianco, I. H. and Engert, F. (2015). Visuomotor transformations

underlying hunting behavior in zebrafish. Current Biology, 25(7):831–846.

[Bonardi et al., 2012a] Bonardi, S., Blatter, J., Fink, J., Moeckel, R., Jermann, P., Dillenbourg, P.,

and Ijspeert, A. (2012a). Design and evaluation of a graphical iPad application for arranging

adaptive furniture. In 2012 IEEE RO-MAN, pages 290–297.

[Bonardi et al., 2012b] Bonardi, S., Moeckel, R., Sproewitz, A., Vespignani, M., and Ijspeert,

A. J. (2012b). Locomotion through Reconfiguration based on Motor Primitives for Roombots

Self-Reconfigurable Modular Robots. In Robotics; Proceedings of ROBOTIK 2012; 7th German

Conference on, pages 1–6. VDE.

[Bonardi et al., 2013] Bonardi, S., Vespignani, M., Moeckel, R., and Ijspeert, A. J. (2013). Collab-

orative manipulation and transport of passive pieces using the self-reconfigurable modular

robots roombots. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, pages 2406–2412. Ieee.

[Bonardi et al., 2014] Bonardi, S., Vespignani, M., Moeckel, R., Van den Kieboom, J., Pouya,

S., Sproewitz, A., and Ijspeert, A. (2014). Automatic generation of reduced CPG control

networks for locomotion of arbitrary modular robot structures. In Proceedings of Robotics:

Science and Systems.

180

Bibliography

[Bradski, 2000] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

[Bramble and Lieberman, 2004] Bramble, D. M. and Lieberman, D. E. (2004). Endurance

running and the evolution of homo. Nature, 432(7015):345–352.

[Brandt, 2006] Brandt, D. (2006). Comparison of a and rrt-connect motion planning tech-

niques for self-reconfiguration planning. In 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 892–897.

[Brandt et al., 2007] Brandt, D., Christensen, D. J., and Lund, H. H. (2007). ATRON Robots:

Versatility from Self-Reconfigurable Modules. In 2007 International Conference on Mecha-

tronics and Automation, pages 26–32.

[Broekens et al., 2009] Broekens, J., Heerink, M., and Rosendal, H. (2009). Assistive social

robots in elderly care: a review. Gerontechnology, 8(2).

[Brown et al., 2010] Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R.,

Lipson, H., and Jaeger, H. M. (2010). Universal robotic gripper based on the jamming of

granular material. Proceedings of the National Academy of Sciences, 107(44):18809–18814.

[Brown et al., 2011] Brown, G. E., Ferrari, M. C. O., and Chivers, D. P. (2011). Learning about

Danger: Chemical Alarm Cues and Threat-Sensitive Assessment of Predation Risk by Fishes,

chapter 4, pages 59–80. John Wiley & Sons, Ltd.

[Buchli et al., 2009] Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., and Schaal, S. (2009).

Compliant quadruped locomotion over rough terrain. In 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 814–820.

[Camplani et al., 2017] Camplani, M., Paiement, A., Mirmehdi, M., Damen, D., Hannuna, S.,

Burghardt, T., and Tao, L. (2017). Multiple human tracking in rgb-depth data: a survey. IET

Computer Vision, 11:265–285(20).

[Carlson and Demiris, 2012] Carlson, T. and Demiris, Y. (2012). Collaborative Control for a

Robotic Wheelchair: Evaluation of Performance, Attention, and Workload. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3):876–888.

[Censi et al., 2013] Censi, A., Strubel, J., Brandli, C., Delbruck, T., and Scaramuzza, D. (2013).

Low-latency localization by active led markers tracking using a dynamic vision sensor. In

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 891–898.

[Cho and Lee, 2009] Cho, S. and Lee, S. (2009). Fast motion deblurring. ACM Trans. Graph.,

28(5):145:1–145:8.

[Cohen et al., 1982] Cohen, A. H., Holmes, P. J., and Rand, R. H. (1982). The nature of the

coupling between segmental oscillators of the lamprey spinal generator for locomotion: A

mathematical model. Journal of Mathematical Biology, 13(3):345–369.

181

Bibliography

[Collins and Stewart, 1993] Collins, J. J. and Stewart, I. N. (1993). Coupled nonlinear oscilla-

tors and the symmetries of animal gaits. Journal of Nonlinear Science, 3(1):349–392.

[Cucu et al., 2015] Cucu, L., Rubenstein, M., and Nagpal, R. (2015). Towards self-assembled

structures with mobile climbing robots. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 1955–1961.

[Cui et al., 2012] Cui, X., Zhao, J., Zhu, Y., and Tang, S. (2012). UBot: a new reconfigurable mod-

ular robotic system with multimode locomotion ability. Industrial Robot: the international

journal of robotics research and application, 39(2):178–190.

[Cully et al., 2015] Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can

adapt like animals. Nature, 521(7553):503–507.

[Daudelin et al., 2018] Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., and Campbell,

M. (2018). An integrated system for perception-driven autonomy with modular robots.

Science Robotics, 3(23).

[Davey et al., 2012] Davey, J., Kwok, N., and Yim, M. (2012). Emulating self-reconfigurable

robots - design of the SMORES system. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4464–4469.

[Demiris, 2009] Demiris, Y. (2009). Knowing when to assist: Developmental issues in lifelong

assistive robotics. In 2009 Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, pages 3357–3360.

[Dickinson et al., 2000] Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. a. R., Kram, R., and

Lehman, S. (2000). How Animals Move: An Integrative View. Science, 288(5463):100–106.

[Dunston et al., 2011] Dunston, P. S., Arns, L. L., Mcglothlin, J. D., Lasker, G. C., and Kushner,

A. G. (2011). An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient

Rooms. In Collaborative Design in Virtual Environments, Intelligent Systems, Control and

Automation: Science and Engineering, pages 167–176. Springer, Dordrecht.

[Edmonds and Karp, 1972] Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in

algorithmic efficiency for network flow problems. J. ACM, 19(2):248–264.

[Fitch and Butler, 2008] Fitch, R. and Butler, Z. (2008). Million module march: Scalable loco-

motion for large self-reconfiguring robots. The International Journal of Robotics Research,

27(3-4):331–343.

[Fitch and McAllister, 2013] Fitch, R. and McAllister, R. (2013). Hierarchical Planning for Self-

reconfiguring Robots Using Module Kinematics, pages 477–490. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[Floreano et al., 2014] Floreano, D., Ijspeert, A., and Schaal, S. (2014). Robotics and neuro-

science. Current Biology, 24(18):R910 – R920.

182

Bibliography

[Florez et al., 2013] Florez, J., Calderon, F., and Parra, C. (2013). Video stabilization taken

with a snake robot. In Image, Signal Processing, and Artificial Vision (STSIVA), 2013 XVIII

Symposium of, pages 1–5.

[Focchi et al., 2012] Focchi, M., Boaventura, T., Semini, C., Frigerio, M., Buchli, J., and Cald-

well, D. G. (2012). Torque-control based compliant actuation of a quadruped robot. In 2012

12th IEEE International Workshop on Advanced Motion Control (AMC), pages 1–6.

[Follmer and Ishii, 2012] Follmer, S. and Ishii, H. (2012). KidCAD: Digitally Remixing Toys

Through Tangible Tools. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’12, pages 2401–2410, New York, NY, USA. ACM.

[Forlizzi and DiSalvo, 2006] Forlizzi, J. and DiSalvo, C. (2006). Service robots in the domestic

environment: A study of the roomba vacuum in the home. In Proceedings of the 1st ACM

SIGCHI/SIGART Conference on Human-robot Interaction, HRI ’06, pages 258–265, New York,

NY, USA. ACM.

[Fukuhara et al., 2016] Fukuhara, A., Owaki, D., Kano, T., and Ishiguro, A. (2016). Leg Stiffness

Control Based on “TEGOTAE” for Quadruped Locomotion. In Biomimetic and Biohybrid

Systems, Lecture Notes in Computer Science, pages 79–84. Springer, Cham.

[Galloway et al., 2013] Galloway, K. C., Clark, J. E., and Koditschek, D. E. (2013). Variable

Stiffness Legs for Robust, Efficient, and Stable Dynamic Running. Journal of Mechanisms

and Robotics, 5(1):011009–011009–11.

[Gao et al., 2015] Gao, W., Zhang, Y., Nazzetta, D. C., Ramani, K., and Cipra, R. J. (2015). Revo-

Maker: Enabling Multi-directional and Functionally-embedded 3d Printing Using a Ro-

tational Cuboidal Platform. In Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology, UIST ’15, pages 437–446, New York, NY, USA. ACM.

[Gao et al., 2019] Gao, Z., Shi, Q., Fukuda, T., Li, C., and Huang, Q. (2019). An overview of

biomimetic robots with animal behaviors. Neurocomputing, 332:339 – 350.

[Georgoulas et al., 2014] Georgoulas, C., Linner, T., and Bock, T. (2014). Towards a vision

controlled robotic home environment. Automation in Construction, 39:106 – 116.

[Geyer et al., 2006] Geyer, H., Seyfarth, A., and Blickhan, R. (2006). Compliant leg behaviour

explains basic dynamics of walking and running. Proceedings of the Royal Society of London

B: Biological Sciences, 273(1603):2861–2867.

[Gilpin and Rus, 2010] Gilpin, K. and Rus, D. (2010). Modular Robot Systems. IEEE Robotics

Automation Magazine, 17(3):38–55.

[Griffiths and Higham, 2010] Griffiths, D. F. and Higham, D. J. (2010). Euler’s Method, pages

19–31. Springer London, London.

[Gross and Green, 2012] Gross, M. D. and Green, K. E. (2012). Architectural robotics, inevitably.

interactions, 19(1):28–33.

183

Bibliography

[Gross et al., 2006] Gross, R., Tuci, E., Dorigo, M., Bonani, M., and Mondada, F. (2006). Object

transport by modular robots that self-assemble. In Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., pages 2558–2564.

[Han et al., 2012] Han, J., Pauwels, E. J., de Zeeuw, P. M., and de With, P. H. N. (2012). Employ-

ing a rgb-d sensor for real-time tracking of humans across multiple re-entries in a smart

environment. IEEE Transactions on Consumer Electronics, 58(2):255–263.

[Heydarian et al., 2015] Heydarian, A., Carneiro, J. P., Gerber, D., Becerik-Gerber, B., Hayes,

T., and Wood, W. (2015). Immersive virtual environments versus physical built environ-

ments: A benchmarking study for building design and user-built environment explorations.

Automation in Construction, 54:116–126.

[Hilfert and König, 2016] Hilfert, T. and König, M. (2016). Low-cost virtual reality environment

for engineering and construction. Visualization in Engineering, 4(1):2.

[Hilkert, 2008] Hilkert, J. (2008). Inertially stabilized platform technology concepts and prin-

ciples. Control Systems, IEEE, 28(1):26–46.

[Hiroya Yamada, 2013] Hiroya Yamada, Shunichi Takaoka, S. H. (2013). A snake-like robot

for real-world inspection applications (the design and control of a practical active cord

mechanism). Advanced Robotics, 27(1):47–60.

[Hoffman and Breazeal, 2008] Hoffman, G. and Breazeal, C. (2008). Achieving Fluency

Through Perceptual-symbol Practice in Human-robot Collaboration. In Proceedings of

the 3rd ACM/IEEE International Conference on Human Robot Interaction, HRI ’08, pages

1–8, New York, NY, USA. ACM.

[Hou and Shen, 2010] Hou, F. and Shen, W. (2010). On the complexity of optimal reconfigura-

tion planning for modular reconfigurable robots. In 2010 IEEE International Conference on

Robotics and Automation, pages 2791–2796.

[Hou and Shen, 2014] Hou, F. and Shen, W.-M. (2014). Graph-based optimal reconfiguration

planning for self-reconfigurable robots. Robotics and Autonomous Systems, 62(7):1047 –

1059. Reconfigurable Modular Robotics.

[Hu et al., 2009] Hu, Y., Zhao, W., Wang, L., and Jia, Y. (2009). Underwater target following

with a vision-based autonomous robotic fish. In 2009 American Control Conference, pages

5265–5270.

[Huff et al., 2012] Huff, J., Voyles, R., and Tadokoro, S. (2012). Explosion proof active scope

camera. In Safety, Security, and Rescue Robotics (SSRR), 2012 IEEE International Symposium

on, pages 1–3.

[Hume and Wagner, 2018] Hume, J. B. and Wagner, M. (2018). A death in the family: Sea

lamprey (petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylo-

genetic distance. Ecology and Evolution, 8(7):3751–3762.

184

Bibliography

[Hurst et al., 2010] Hurst, J. W., Chestnutt, J. E., and Rizzi, A. A. (2010). The Actuator With

Mechanically Adjustable Series Compliance. IEEE Transactions on Robotics, 26(4):597–606.

[Hutter et al., 2013] Hutter, M., Remy, C. D., Hoepflinger, M. A., and Siegwart, R. (2013). Effi-

cient and Versatile Locomotion With Highly Compliant Legs. IEEE/ASME Transactions on

Mechatronics, 18(2):449–458.

[Ichida et al., 2004] Ichida, H., Itoh, Y., Kitamura, Y., and Kishino, F. (2004). Interactive Re-

trieval of 3d Shape Models Using Physical Objects. In Proceedings of the 12th Annual ACM

International Conference on Multimedia, MULTIMEDIA ’04, pages 692–699, New York, NY,

USA. ACM.

[Iida et al., 2007] Iida, F., Rummel, J., and Seyfarth, A. (2007). Bipedal Walking and Running

with Compliant Legs. In Proceedings 2007 IEEE International Conference on Robotics and

Automation, pages 3970–3975.

[Ijspeert, 2008] Ijspeert, A. J. (2008). Central pattern generators for locomotion control in

animals and robots: A review. Neural Networks, 21(4):642–653.

[Ijspeert et al., 2007] Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From

swimming to walking with a salamander robot driven by a spinal cord model. Science,

315(5817):1416–1420.

[iRobot, 2018] iRobot (2018). Roomba.

[Ishii et al., 2012] Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. (2012). Radical Atoms:

Beyond Tangible Bits, Toward Transformable Materials. interactions, 19(1):38–51.

[Ishii et al., 2004] Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A., and Ben-Joseph, E.

(2004). Bringing Clay and Sand into Digital Design — Continuous Tangible user Interfaces.

BT Technology Journal, 22(4):287–299.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P.,

Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). KinectFusion:

Real-time 3d Reconstruction and Interaction Using a Moving Depth Camera. In Proceedings

of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11,

pages 559–568, New York, NY, USA. ACM.

[Jabbari Arfaee et al., 2011] Jabbari Arfaee, S., Zilles, S., and Holte, R. C. (2011). Learning

heuristic functions for large state spaces. Artif. Intell., 175(16-17):2075–2098.

[Jing et al., 2016] Jing, G., Tosun, T., Yim, M., and Kress-Gazit, H. (2016). An end-to-end

system for accomplishing tasks with modular robots. In Robotics: Science and Systems,

pages 1–5.

[Johnson and Thomas, 2010] Johnson, S. and Thomas, A. P. (2010). Squishy Circuits: A Tangi-

ble Medium for Electronics Education. In CHI ’10 Extended Abstracts on Human Factors in

Computing Systems, CHI EA ’10, pages 4099–4104, New York, NY, USA. ACM.

185

Bibliography

[Kalakrishnan et al., 2011] Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., and Schaal, S.

(2011). Learning, planning, and control for quadruped locomotion over challenging terrain

, Learning, planning, and control for quadruped locomotion over challenging terrain. The

International Journal of Robotics Research, 30(2):236–258.

[Kamali Sarvestani et al., 2013] Kamali Sarvestani, I., Kozlov, A., Harischandra, N., Grillner, S.,

and Ekeberg, Ö. (2013). A computational model of visually guided locomotion in lamprey.

Biological Cybernetics, 107(5):497–512.

[Kamel Boulos et al., 2011] Kamel Boulos, M. N., Blanchard, B. J., Walker, C., Montero, J., Tri-

pathy, A., and Gutierrez-Osuna, R. (2011). Web GIS in practice X: a Microsoft Kinect natural

user interface for Google Earth navigation. International Journal of Health Geographics,

10(1):45.

[Kandel et al., 2013] Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., and Hud-

speth, A. J. (2013). Principles of Neural Science, Fifth Edition. McGraw-Hill.

[Khodr et al., 2019] Khodr, H., Mutlu, M., Hauser, S., Bernardino, A., and Ijspeert, A. (2019). An

optimal planning framework to deploy self-reconfigurable modular robots. In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), page (Submitted).

[Kikuuwe et al., 2010] Kikuuwe, R., Yasukouchi, S., Fujimoto, H., and Yamamoto, M. (2010).

Proxy-Based Sliding Mode Control: A Safer Extension of PID Position Control. IEEE Trans-

actions on Robotics, 26(4):670–683.

[Klompmaker et al., 2012] Klompmaker, F., Nebe, K., and Fast, A. (2012). dSensingNI: A Frame-

work for Advanced Tangible Interaction Using a Depth Camera. In Proceedings of the Sixth

International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, pages

217–224, New York, NY, USA. ACM.

[Koppula et al., 2013] Koppula, H. S., Gupta, R., and Saxena, A. (2013). Learning human

activities and object affordances from rgb-d videos. The International Journal of Robotics

Research, 32(8):951–970.

[Kotay and Rus, 2000] Kotay, K. D. and Rus, D. L. (2000). Algorithms for self-reconfiguring

molecule motion planning. In Proceedings. 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), volume 3, pages 2184–

2193 vol.3.

[Kozima et al., 2009] Kozima, H., Michalowski, M. P., and Nakagawa, C. (2009). Keepon. Inter-

national Journal of Social Robotics, 1(1):3–18.

[Krupke et al., 2012] Krupke, D., Li, G., Zhang, J., Zhang, H., and Hildre, H. P. (2012). Flex-

ible modular robotic simulation environment for research and education. In European

Conference on Modelling and Simulation (ECMS), pages 243–249.

186

Bibliography

[Kurokawa et al., 2008] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and

Murata, S. (2008). Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System.

The International Journal of Robotics Research, 27(3-4):373–386.

[Kurokawa et al., 2000] Kurokawa, H., Tomita, K., Yoshida, E., Murata, S., and Kokaji, S. (2000).

Motion simulation of a modular robotic system. In 2000 26th Annual Conference of the

IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on

Industrial Electronics, Control and Instrumentation. 21st Century Technologies, volume 4,

pages 2473–2478 vol.4.

[Lapicque, 1907] Lapicque, L. (1907). Recherches quantitatives sur l’excitation electrique des

nerfs traitée comme une polarization. J. Physiol. Pathol., 9:620–635.

[Larkworthy and Ramamoorthy, 2010] Larkworthy, T. and Ramamoorthy, S. (2010). An effi-

cient algorithm for self-reconfiguration planning in a modular robot. In 2010 IEEE Interna-

tional Conference on Robotics and Automation, pages 5139–5146.

[Lasa and Buehler, 2001] Lasa, M. d. and Buehler, M. (2001). Dynamic compliant quadruped

walking. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automa-

tion (Cat. No.01CH37164), volume 3, pages 3153–3158 vol.3.

[Lichtenstern et al., 2012] Lichtenstern, M., Frassl, M., Perun, B., and Angermann, M. (2012).

A Prototyping Environment for Interaction Between a Human and a Robotic Multi-agent Sys-

tem. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-

Robot Interaction, HRI ’12, pages 185–186, New York, NY, USA. ACM.

[Lichtsteiner et al., 2008] Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×128 120

db 15µs latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State

Circuits, 43(2):566–576.

[Liedke et al., 2013] Liedke, J., Matthias, R., Winkler, L., and Wörn, H. (2013). The Collec-

tive Self-reconfigurable Modular Organism (CoSMO). In 2013 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, pages 1–6.

[Liljebäck et al., 2013] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., and Gravdahl, J. T. (2013).

Future research challenges of snake robot locomotion. In Snake Robots, pages 287–291.

Springer.

[Liljeback et al., 2014] Liljeback, P., Stavdahl, O., Pettersen, K., and Gravdahl, J. (2014). Mamba

- a waterproof snake robot with tactile sensing. In Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on, pages 294–301.

[Liu et al., 2015] Liu, J., Liu, Y., Zhang, G., Zhu, P., and Chen, Y. Q. (2015). Detecting and

tracking people in real time with rgb-d camera. Pattern Recognition Letters, 53:16 – 23.

[Magnússon et al., 2013] Magnússon, A., Pacheco, M., Moghadam, M., Lund, H. H., and Chris-

tensen, D. J. (2013). Fable: Socially Interactive Modular Robot. The Eighteenth International

Symposium on Artificial Life and Robotics, page 9.

187

Bibliography

[Maitin-Shepard et al., 2010] Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., and Abbeel, P.

(2010). Cloth grasp point detection based on multiple-view geometric cues with application

to robotic towel folding. In 2010 IEEE International Conference on Robotics and Automation,

pages 2308–2315.

[Manfredi et al., 2013] Manfredi, L., Assaf, T., Mintchev, S., Marrazza, S., Capantini, L., Orofino,

S., Ascari, L., Grillner, S., Wallén, P., Ekeberg, Ö., Stefanini, C., and Dario, P. (2013). A

bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

Biological Cybernetics, 107(5):513–527.

[Martin et al., 2009] Martin, S., Kelly, G., Kernohan, W. G., McCreight, B., and Nugent, C.

(2009). Smart home technologies for health and social care support. Cochrane Database of

Systematic Reviews 2008, 4(2):13.

[Masato, 2001] Masato, H. (2001). Development of humanoid robot ASIMO.

[McLurkin et al., 2006] McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., and Schmidt,

B. (2006). Speaking Swarmish: Human-Robot Interface Design for Large Swarms of Au-

tonomous Mobile Robots. In AAAI Spring Symposium: To Boldly Go Where No Human-Robot

Team Has Gone Before, pages 72–75.

[Melo et al., 2013] Melo, K., Leon, J., di Zeo, A., Rueda, V., Roa, D., Parraga, M., Gonzalez, D.,

and Paez, L. (2013). The Modular Snake Robot Open Project: Turning animal functions into

engineering tools. In Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International

Symposium on, pages 1–6.

[Melo and Paez, 2014] Melo, K. and Paez, L. (2014). Experimental determination of control

parameter intervals for repeatable gaits in modular snake robots. In Safety, Security, and

Rescue Robotics (SSRR), 2014 IEEE International Symposium on, pages 1–7.

[Mondada et al., 2005] Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneuborg, J. .,

and Dorigo, M. (2005). The cooperation of swarm-bots: physical interactions in collective

robotics. IEEE Robotics Automation Magazine, 12(2):21–28.

[Motion, 2018] Motion, L. (2018). Leap Motion.

[Mueggler et al., 2015] Mueggler, E., Baumli, N., Fontana, F., and Scaramuzza, D. (2015). To-

wards evasive maneuvers with quadrotors using dynamic vision sensors. In 2015 European

Conference on Mobile Robots (ECMR), pages 1–8.

[Murata et al., 2007] Murata, S., Kakomura, K., and Kurokawa, H. (2007). Toward a scalable

modular robotic system. IEEE Robotics & Automation Magazine, 14(4):56–63.

[Murphy, 2014] Murphy, R. R. (2014). Disaster Robotics. The MIT Press.

[Mutlu et al., 2016] Mutlu, M., Bonardi, S., Vespignani, M., Hauser, S., Bernardino, A., and

Ijspeert, A. J. (2016). Natural user interface for lighting control: Case study on desktop

188

Bibliography

lighting using modular robots. In 2016 25th IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), pages 288–293.

[Mutlu et al., 2017] Mutlu, M., Hauser, S., Bernardino, A., and Ijspeert, A. (2017). Effects of

joint compliance in quadrupedal locomotion. page 2.

[Mutlu et al., 2018] Mutlu, M., Hauser, S., Bernardino, A., and Ijspeert, A. (2018). Playdough to

Roombots: Towards a novel tangible user interface for self-reconfigurable modular robots.

page in press. IEEE.

[Mutlu et al., 2014] Mutlu, M., Saranli, A., and Saranli, U. (2014). A real-time inertial motion

blur metric: Application to frame triggering based motion blur minimization. In Robotics

and Automation (ICRA), 2014 IEEE International Conference on, pages 671–676.

[Nakagaki et al., 2016] Nakagaki, K., Vink, L., Counts, J., Windham, D., Leithinger, D., Follmer,

S., and Ishii, H. (2016). Materiable: Rendering Dynamic Material Properties in Response to

Direct Physical Touch with Shape Changing Interfaces. pages 2764–2772. ACM Press.

[NanoPi, 2017] NanoPi (2017). NEO Plus2. FriendlyElec.

[Neubert and Lipson, 2015] Neubert, J. and Lipson, H. (2015). Soldercubes: a self-soldering

self-reconfiguring modular robot system. Autonomous Robots.

[Nguyen et al., 2001] Nguyen, L. A., Bualat, M., Edwards, L. J., Flueckiger, L., Neveu, C.,

Schwehr, K., Wagner, M. D., and Zbinden, E. (2001). Virtual Reality Interfaces for Visu-

alization and Control of Remote Vehicles. Autonomous Robots, 11(1):59–68.

[Nigolian et al., 2017] Nigolian, V., Mutlu, M., Hauser, S., Bernardino, A., and Ijspeert, A. (2017).

Self-reconfigurable modular robot interface using virtual reality: Arrangement of furniture

made out of roombots modules. In 2017 26th IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), pages 772–778.

[Nousch and Jung, 1999] Nousch, M. and Jung, B. (1999). CAD on the World Wide Web: Virtual

Assembly of Furniture with BEAVER. In Proceedings of the Fourth Symposium on Virtual

Reality Modeling Language, VRML ’99, pages 113–119, New York, NY, USA. ACM.

[Odashima et al., 2006] Odashima, T., Onishi, M., Tahara, K., Takagi, K., Asano, F., Kato, Y.,

Nakashima, H., Kobayashi, Y., Mukai, T., Luo, Z., and Hosoe, S. (2006). A Soft Human-

Interactive Robot RI-MAN. In 2006 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 1–1.

[O’keefe and Nadel, 1978] O’keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive

map. Oxford: Clarendon Press.

[OriLiving, 2019] OriLiving (2019). Robotic wardrobes.

189

Bibliography

[Owaki et al., 2017] Owaki, D., Goda, M., Miyazawa, S., and Ishiguro, A. (2017). A Minimal

Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach. Fron-

tiers in Neurorobotics, 11.

[Owaki et al., 2012] Owaki, D., Morikawa, L., and Ishiguro, A. (2012). Listen to body’s message:

Quadruped robot that fully exploits physical interaction between legs. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1950–1955.

[Ozgur et al., 2014] Ozgur, A., Bonardi, S., Vespignani, M., Mockel, R., and Ijspeert, A. J. (2014).

Natural user interface for Roombots. In Robot and Human Interactive Communication,

2014 RO-MAN: The 23rd IEEE International Symposium on, pages 12–17. IEEE.

[Pamecha et al., 1997] Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G. S. (1997). Useful

metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation,

13(4):531–545.

[Patil and Ravi, 2005] Patil, S. and Ravi, B. (2005). Voxel-based representation, display and

thickness analysis of intricate shapes. In Ninth International Conference on Computer Aided

Design and Computer Graphics (CAD-CG’05), pages 6 pp.–.

[Piccardi, 2004] Piccardi, M. (2004). Background subtraction techniques: a review. In 2004

IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583),

volume 4, pages 3099–3104 vol.4.

[Piper et al., 2002] Piper, B., Ratti, C., and Ishii, H. (2002). Illuminating Clay: A 3-D Tangible

Interface for Landscape Analysis. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’02, pages 355–362, New York, NY, USA. ACM.

[Raffle et al., 2004] Raffle, H. S., Parkes, A. J., and Ishii, H. (2004). Topobo: A Constructive

Assembly System with Kinetic Memory. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’04, pages 647–654, New York, NY, USA. ACM.

[Ramey et al., 2011] Ramey, A., Gonzalez-Pacheco, V., and Salichs, M. A. (2011). Integration

of a low-cost rgb-d sensor in a social robot for gesture recognition. In 2011 6th ACM/IEEE

International Conference on Human-Robot Interaction (HRI), pages 229–230.

[Rebai et al., 2012] Rebai, K., Azouaoui, O., and Achour, N. (2012). Bio-inspired visual memory

for robot cognitive map building and scene recognition. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2985–2990.

[Recchiuto et al., 2015] Recchiuto, C. T., Sgorbissa, A., and Zaccaria, R. (2015). Usability

evaluation with different viewpoints of a Human-Swarm interface for UAVs control in

formation. In 2015 24th IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), pages 523–528.

[Reid et al., 2015] Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., and Garnier, S.

(2015). Army ants dynamically adjust living bridges in response to a cost–benefit trade-off.

Proceedings of the National Academy of Sciences.

190

Bibliography

[Rollinson et al., 2014] Rollinson, D., Bilgen, Y., Brown, B., Enner, F., Ford, S., Layton, C.,

Rembisz, J., Schwerin, M., Willig, A., Velagapudi, P., and Choset, H. (2014). Design and

architecture of a series elastic snake robot. In Intelligent Robots and Systems (IROS 2014),

2014 IEEE/RSJ International Conference on, pages 4630–4636.

[Romanishin et al., 2015] Romanishin, J. W., Gilpin, K., Claici, S., and Rus, D. (2015). 3d M-

Blocks: Self-Reconfiguring robots capable of locomotion via pivoting in three dimensions.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 1925–

1932. IEEE.

[Romanishin et al., 2013] Romanishin, J. W., Gilpin, K., and Rus, D. (2013). M-blocks:

Momentum-driven, magnetic modular robots. In 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4288–4295.

[Rubenstein et al., 2012] Rubenstein, M., Ahler, C., and Nagpal, R. (2012). Kilobot: A low cost

scalable robot system for collective behaviors. In 2012 IEEE International Conference on

Robotics and Automation (ICRA), pages 3293–3298.

[Rusinkiewicz et al., 2002] Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. (2002). Real-time 3d

Model Acquisition. In Proceedings of the 29th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’02, pages 438–446, New York, NY, USA. ACM.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern

Approach. Prentice Hall Press, Upper Saddle River, NJ, USA.

[Salemi et al., 2006] Salemi, B., Moll, M., and Shen, W.-M. (2006). Superbot: A deployable,

multi-functional, and modular self-reconfigurable robotic system. In 2006 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 3636–3641. IEEE.

[Salvador et al., 2002] Salvador, F., Forza, C., and Rungtusanatham, M. (2002). Modularity,

product variety, production volume, and component sourcing: theorizing beyond generic

prescriptions. Journal of Operations Management, 20(5):549 – 575.

[Sattar et al., 2005] Sattar, J., Giguere, P., Dudek, G., and Prahacs, C. (2005). A visual servoing

system for an aquatic swimming robot. In 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1483–1488.

[Simeone et al., 2015] Simeone, A. L., Velloso, E., and Gellersen, H. (2015). Substitutional Real-

ity: Using the Physical Environment to Design Virtual Reality Experiences. In Proceedings of

the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages

3307–3316, New York, NY, USA. ACM.

[Sirkin et al., 2015] Sirkin, D., Mok, B., Yang, S., and Ju, W. (2015). Mechanical ottoman:

How robotic furniture offers and withdraws support. In Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interaction, HRI ’15, pages 11–18,

New York, NY, USA. ACM.

191

Bibliography

[Sproewitz, 2010] Sproewitz, A. (2010). Roombots: Design and Implementation of a Modular

Robot for Reconfiguration and Locomotion. PhD thesis, EPFL.

[Sproewitz et al., 2009] Sproewitz, A., Billard, A., Dillenbourg, P., and Ijspeert, A. (2009).

Roombots-mechanical design of self-reconfiguring modular robots for adaptive furni-

ture. In IEEE International Conference on Robotics and Automation, 2009. ICRA ’09, pages

4259–4264.

[Sproewitz et al., 2010a] Sproewitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry,

P.-A., and Ijspeert, A. J. (2010a). Roombots - Towards decentralized reconfiguration with self-

reconfiguring modular robotic metamodules. In 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1126–1132, Taipei. IEEE.

[Sproewitz et al., 2008] Sproewitz, A., Moeckel, R., Maye, J., and Ijspeert, A. J. (2008). Learning

to Move in Modular Robots using Central Pattern Generators and Online Optimization. The

International Journal of Robotics Research, 27(3-4):423–443.

[Sproewitz et al., 2014] Sproewitz, A., Moeckel, R., Vespignani, M., Bonardi, S., and Ijspeert, A.

(2014). Roombots: A hardware perspective on 3d self-reconfiguration and locomotion with

a homogeneous modular robot. Robotics and Autonomous Systems, 62(7):1016–1033.

[Sproewitz et al., 2010b] Sproewitz, A., Pouya, S., Bonardi, S., Kieboom, J. V. D., Mockel, R.,

Billard, A., Dillenbourg, P., and Ijspeert, A. J. (2010b). Roombots: Reconfigurable Robots for

Adaptive Furniture. IEEE Computational Intelligence Magazine, 5(3):20–32.

[Sproewitz et al., 2013] Sproewitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E.,

and Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and

experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of

Robotics Research, 32(8):932–950.

[Srinivasa et al., 2012] Srinivasa, S. S., Berenson, D., Cakmak, M., Collet, A., Dogar, M. R.,

Dragan, A. D., Knepper, R. A., Niemueller, T., Strabala, K., Weghe, M. V., and Ziegler, J.

(2012). Herb 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home.

Proceedings of the IEEE, 100(8):2410–2428.

[Stoy, 2006] Stoy, K. (2006). Using cellular automata and gradients to control self-

reconfiguration. Robotics and Autonomous Systems, 54(2):135–141.

[Stoy et al., 2010] Stoy, K., Brandt, D., and Christensen, D. (2010). Self-Reconfigurable Robots:

An Introduction. MIT Press.

[Stoy and Nagpal, 2004] Stoy, K. and Nagpal, R. (2004). Self-repair through scale independent

self-reconfiguration. In 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), volume 2, pages 2062–2067 vol.2.

[Straub et al., 2015] Straub, J., Kading, B., Mohammad, A., and Kerlin, S. (2015). Characteriza-

tion of a Large, Low-Cost 3d Scanner. Technologies, 3(1):19–36.

192

Bibliography

[Sugahara et al., 2004] Sugahara, Y., Hosobata, T., Mikuriya, Y., Sunazuka, H., Lim, H.-o., and

Takanishi, A. (2004). Realization of dynamic human-carrying walking by a biped locomotor.

In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.

2004, volume 3, pages 3055–3060 Vol.3.

[Sugden, 1995] Sugden, W. H. (1995). Computer controlled stage lighting system.

[Takuma et al., 2008] Takuma, T., Hayashi, S., and Hosoda, K. (2008). 3d bipedal robot with

tunable leg compliance mechanism for multi-modal locomotion. In 2008 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 1097–1102.

[Terada and Murata, 2008] Terada, Y. and Murata, S. (2008). Automatic Modular Assembly

System and its Distributed Control. The International Journal of Robotics Research, 27(3-

4):445–462.

[Tesch et al., 2013] Tesch, M., Schneider, J., and Choset, H. (2013). Expensive multiobjective

optimization for robotics. In Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 973–980.

[Tosun et al., 2018] Tosun, T., Daudelin, J., Jing, G., Kress-Gazit, H., Campbell, M., and Yim,

M. (2018). Perception-informed autonomous environment augmentation with modular

robots. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages

6818–6824.

[Tosun et al., 2018] Tosun, T., Jing, G., Kress-Gazit, H., and Yim, M. (2018). Computer-Aided

Compositional Design and Verification for Modular Robots, pages 237–252. Springer Inter-

national Publishing, Cham.

[Ugurlu et al., 2013] Ugurlu, B., Kotaka, K., and Narikiyo, T. (2013). Actively-compliant locomo-

tion control on rough terrain: Cyclic jumping and trotting experiments on a stiff-by-nature

quadruped. In 2013 IEEE International Conference on Robotics and Automation, pages

3313–3320.

[Unsal et al., 2001] Unsal, C., Kiliccote, H., and Khosla, P. K. (2001). A modular self-

reconfigurable bipartite robotic system: Implementation and motion planning. Au-

tonomous Robots, 10(1):23–40.

[van den Berg et al., 2011] van den Berg, J., Miller, S., Goldberg, K., and Abbeel, P. (2011).

Gravity-Based Robotic Cloth Folding, chapter 6, pages 409–424. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[Vasconcelos et al., 2017] Vasconcelos, R., Hauser, S., Dzeladini, F., Mutlu, M., Horvat, T., Melo,

K., Oliveira, P., and Ijspeert, A. (2017). Active stabilization of a stiff quadruped robot using

local feedback. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4903–4910.

193

Bibliography

[Vega et al., 2013] Vega, J., Perdices, E., and Cañas, J. M. (2013). Robot evolutionary localiza-

tion based on attentive visual short-term memory. Sensors (Basel), 13(1):1268–1299.

[Vertut, 2013] Vertut, J. (2013). Teleoperation and Robotics: Applications and Technology.

Springer Science & Business Media. Google-Books-ID: ZEfqCAAAQBAJ.

[Vespignani, 2015] Vespignani, M. (2015). Challenges in the Locomotion of Self-Reconfigurable

Modular Robots. PhD thesis.

[Vespignani et al., 2015] Vespignani, M., Melo, K., Mutlu, M., and Ijspeert, A. J. (2015). Com-

pliant snake robot locomotion on horizontal pipes. In Safety, Security, and Rescue Robotics

(SSRR), 2015 IEEE International Symposium on, pages 1–8. IEEE.

[Vespignani et al., 2013] Vespignani, M., Senft, E., Bonardi, S., Moeckel, R., and Ijspeert, A. J.

(2013). An experimental study on the role of compliant elements on the locomotion of the

self-reconfigurable modular robots Roombots. In Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on, pages 4308–4313. Ieee.

[Villagrasa et al., 2014] Villagrasa, S., Fonseca, D., and Durán, J. (2014). Teaching Case: Ap-

plying Gamification Techniques and Virtual Reality for Learning Building Engineering 3d

Arts. In Proceedings of the Second International Conference on Technological Ecosystems for

Enhancing Multiculturality, TEEM ’14, pages 171–177, New York, NY, USA. ACM.

[Wagner and Bals, 2012] Wagner, C. M. and Bals, J. D. (2012). Behavioral responses of sea

lamprey (petromyzon marinus) to a putative alarm cue derived from conspecific and

heterospecific sources. Behaviour, 149(9):901 – 923.

[Watanabe et al., 2004] Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino, F., and

Kikuchi, H. (2004). The Soul of ActiveCube: Implementing a Flexible, Multimodal, Three-

dimensional Spatial Tangible Interface. Comput. Entertain., 2(4):15–15.

[Webots, 2018] Webots (2018). Robotics simulator.

[Wei et al., 2011] Wei, H., Chen, Y., Tan, J., and Wang, T. (2011). Sambot: A self-assembly

modular robot system. IEEE/ASME Transactions on Mechatronics, 16(4):745–757.

[Weller et al., 2011] Weller, M. P., Gross, M. D., and Goldstein, S. C. (2011). Hyperform Specifi-

cation: Designing and Interacting with Self-reconfiguring Materials. Personal Ubiquitous

Comput., 15(2):133–149.

[Wilson et al., 2012] Wilson, A., Benko, H., Izadi, S., and Hilliges, O. (2012). Steerable Aug-

mented Reality with the Beamatron. In Proceedings of the 25th Annual ACM Symposium on

User Interface Software and Technology, UIST ’12, pages 413–422, New York, NY, USA. ACM.

[Winkler et al., 2012] Winkler, M. B., Höver, K. M., Hadjakos, A., and Mühlhäuser, M. (2012).

Automatic Camera Control for Tracking a Presenter during a Talk. In 2012 IEEE International

Symposium on Multimedia, pages 471–476.

194

Bibliography

[Wright et al., 2012] Wright, C., Buchan, A., Brown, B., Geist, J., Schwerin, M., Rollinson, D.,

Tesch, M., and Choset, H. (2012). Design and architecture of the unified modular snake

robot. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages

4347–4354.

[Wu and Ma, 2011] Wu, X. and Ma, S. (2011). Sensor-driven neural controller for self-adaptive

collision-free behavior of a snake-like robot. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pages 191–196.

[Ye et al., 2013] Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., and Gall, J. (2013). A Survey

on Human Motion Analysis from Depth Data, chapter 2, pages 149–187. Springer Berlin

Heidelberg, Berlin, Heidelberg.

[Yim et al., 2000] Yim, M., Duff, D., and Roufas, K. (2000). PolyBot: a modular reconfigurable

robot. In IEEE International Conference on Robotics and Automation, 2000. Proceedings.

ICRA ’00, volume 1, pages 514–520 vol.1.

[Yim et al., 2007] Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,

and Chirikjian, G. (2007). Modular Self-Reconfigurable Robot Systems [Grand Challenges

of Robotics]. IEEE Robotics Automation Magazine, 14(1):43–52.

[Yoshida et al., 2002] Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., and

Kokaji, S. (2002). A self-reconfigurable modular robot: Reconfiguration planning and

experiments. The International Journal of Robotics Research, 21(10-11):903–915.

[Yu et al., 2007] Yu, C.-H., Willems, F., Ingber, D., and Nagpal, R. (2007). Self-organization

of environmentally-adaptive shapes on a modular robot. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2353–2360.

[Yu et al., 2016] Yu, J., Sun, F., Xu, D., and Tan, M. (2016). Embedded vision-guided 3-d tracking

control for robotic fish. IEEE Transactions on Industrial Electronics, 63(1):355–363.

[Yu et al., 2014] Yu, J., Tan, M., Chen, J., and Zhang, J. (2014). A survey on cpg-inspired control

models and system implementation. IEEE Transactions on Neural Networks and Learning

Systems, 25(3):441–456.

[Zhen et al., 2015] Zhen, W., Gong, C., and Choset, H. (2015). Modeling rolling gaits of a snake

robot. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages

3741–3746. IEEE.

[Zhu et al., 2014] Zhu, Y., Jin, H., Zhang, X., Yin, J., Liu, P., and Zhao, J. (2014). A multi-

sensory autonomous docking approach for a self-reconfigurable robot without mechanical

guidance. International Journal of Advanced Robotic Systems, 11(9):146.

[Zykov et al., 2007] Zykov, V., Chan, A., and Lipson, H. (2007). Molecubes: An open-source

modular robotics kit. In IROS-2007 Self-Reconfigurable Robotics Workshop, pages 3–6.

Citeseer.

195

Mehmet Mutlu

Route de la Plaine 5, Apt. 46 23 March 1988
1022, Chavannes-Près-Renens, Vaud, Switzerland Turkish & Bulgarian
Phone: +41-76-675-5500 Single
E-mail: mehmet.mutlu@epfl.ch B residence permit until 2023

me@mutlumehmet.net A, B, C, D driving licence
Skype: mehmutlu
LinkedIn: https://www.linkedin.com/in/mehmutlu/
Web: https://people.epfl.ch/mehmet.mutlu

https://www.mutlumehmet.net

Strengths

PCB design Firmware development Control of dynamic robots

Education

Ph.D. (Joint) École Polytechnique Fédérale de Lausanne (EPFL) Robotics, Control & Intelligent Systems 2019
Instituto Superior Técnico - Lisboa (IST) Robotics, Brain & Cognition

M.Sc. Middle East Technical University (METU) Electrical & Electronics Eng. w/ Robotics 2014
B.Sc. Middle East Technical University (METU) Electrical & Electronics Eng. w/ Control 2011
B.Sc. Minor Middle East Technical University (METU) Mechatronics 2011

Professional Experience

EPFL Biorobotics Laboratory Switzerland Oct 2014 - Present

Designing, prototyping, producing and maintaining all electronic boards in 13 Roombots modules (18 boards dis-
tributed throughout a module), Arbiter and Envirobot’s head. Integrating higher level sensors such as camera, force
sensor, IMU and associated computational hardware on robots. Developing firmware, communication protocols (on
SPI, I2C, UART, RS-485), user interfaces and higher level motion planning. Modeling bio-inspired terrestrial and
aquatic locomotion for various morphologies of modular robots. Data analysis on experiments.

IST Computer and Robot Vision Laboratory Portugal Jul 2016 - Sep 2017

Developing visual servo control for manipulators made out of Roombots. Developing novel user interfaces for SRMR.

METU Robotics Laboratory Turkey Dec 2010 - Sep 2014

Motion modeling of dynamical mechanisms, design of stabilization platform controllers, implementing hardware and
software approaches for compensating motion blur, gait optimization and hardware improvements on bio-inspired,
RHex variant, hexapod robot SensoRHex.

ASELSAN REHIS Turkey Jun 2010 - Jul 2010

Internship. Array antenna design, measurements and tests for military radar and electronic warfare systems.

MedSav R&D Department Turkey Jun 2009 - Jul 2009

Internship. RS485 communication board design for medical drug storage systems.

Technical Skills
PCB design Altium Designer (primary), Ares, Eagle
Electronic simulation Multisim, LT Spice, Isis
Microcontroller programming Microchip PIC (XC16 and PIC-C), Arduino (C++), Motorola 68HC11 (Assembly)
Embedded PCs NanoPi, RaspberryPi, Intel Joule, Odroid
Electronics debugging Oscilloscope, logic analyzer, spectrum analyser, multimeter, firmware debugging tools
Programming languages C, C++, C#, MATLAB, Simulink, Java, Python
FPGA programming Verilog and schematic level design with Xilinx Spartan 3
VLSI chip design Cadence
Technical drawing Inventor, KeyCreator, Solidworks
Physical simulation Webots, Robotics Library, Ansys Workbench
OS Ubuntu, Windows
Other tools Git, SVN, Inkscape, Gimp, Blender, Premiere Pro, Microsoft Office, Latex

1

197

Language Skills

Written Proficiency Spoken Proficiency
English Fluent (C2) Fluent (C1)
Turkish Native (C2) Native (C2)
French (Pre-)Intermediate (A2-B1) (Pre-)Intermediate (A2-B1)
German Beginner (A1) Beginner (A1)
Russian Beginner (A0) N/A

Scholarships & Awards

The Foundation for Science and Technology in Portugal (FCT) Ph.D. grant 2014-19
Masters’ Regatta Lisbon - amateur rowing competition, 8+1 category 2nd out of 4 teams 2018
The Scientific and Technological Research Council of Turkey Graduate project scholarship 2011-14
METU Foundation Undergraduate scholarship 2006-11
Coşkunöz Holding Foundation Undergraduate scholarship 2006-11

Extracurricular Training

Business Concept - entrepreneurship course InnoSuisse Sep-Dec 2018
Safety Security and Rescue Robotics Summer School IEEE-RAS Sep 2012

Teaching Experience

EPFL Teaching/laboratory assistant for “Computational Motor Control” Spring 2017-18
Spring 2015-16

IST-Lisbon Laboratory assistant for “Distributed Real-Time Control” Fall 2016-17
EPFL Teaching assistant for “Electrotechnic I” Fall 2015-16
METU Laboratory head-assistant for “Laboratory of Feedback Control Systems” Spring 2013-14

Spring 2012-13
METU Laboratory assistant for “Electrical Circuits Laboratory I” Fall 2013-14
METU Organizing assistant for “Laboratory of Feedback Control Systems” Fall 2012-13

Course was given for the first time in Spring 2012 period
METU Teaching assistant for “Engineering Design I” Fall 2012-13
METU Laboratory assistant for “Electrical Circuits Laboratory II” Spring 2011-12
METU Laboratory assistant for “Analog Electronics Laboratory” Fall 2011-12

Selected Public Events
Exhibiting Roombots as an art piece in Ars Electronica (technological art exhibition) Sep 2016
Promoting Swiss robotics in Bay Area Science Festival Oct 2015

Interests & Activities
Motorcycle enthusiast 2017 - Present
Rowing (amateur level) 2016 - Present
Skiing (amateur level) 2014 - Present
Collecting plastic bottle caps to be exchanged for a wheelchair in a recycling plant Sep 2012-13
IEEE METU Student Branch, Robotics & Automation Society chairman May 2009-10
Preparing and giving 30 hours, theoretical and practical robotics lessons for RAS May 2009 - Jan 2010
IEEE METU Student Branch, Robotics & Automation Society vice chairman May 2008-09
InterRail backpacking Europe tour 2009 Summer
Work & Travel Program in Ohio, the USA (First salary in an unqualified job) 2007 Summer

References
Prof. Auke Ijspeert Ph.D. supervisor auke.ijspeert@epfl.ch (+41) 21 693 26 58
Prof. Alexandre Bernardino Ph.D. co-supervisor alexandre.bernardino@tecnico.ulisboa.pt (+351) 21 841 82 93
Dr. Massimo Vespignani Postdoc massimo.vespignani@nasa.gov (+1) 312 468 28 37
Prof. Afşar Saranlı M.Sc. supervisor afsars@metu.edu.tr (+90) 312 210 45 29

2

198

Publications

Ph.D. Thesis
• M. Mutlu, “Vision Based Control and Perception Methods in Self Reconfigurable Modular Robots”, École Polytechnique

Fédérale de Lausanne (EPFL), Expected: June 2019, supervised by Auke Ijspeert and Alexandre Bernardino, (In Prepa-
ration)

M.Sc. Thesis
• M. Mutlu, “A Novel Real-Time Inertial Motion Blur Metric with Applications to Motion Blur Compensation”, Middle

East Technical University (METU), August 2014, supervised by Afşar Saranlı and Uluç Saranlı

Journal Articles
1. S. Hauser, M. Mutlu, P-A Leziart, H. Khodr, A. Bernardino, A. Ijspeert, “Roombots Extended: Challenges of the Next

Generation of Self-Reconfigurable Modular Robots and Their Application in Adaptive and Assistive Furniture” (To be
Submitted)

2. H. Khodr, M. Mutlu, S. Hauser, A. Bernardino, A. Ijspeert, “An Optimal Planning Framework to Deploy Self-Reconfigurable
Modular Robots”, IEEE, Robotics and Automation Letters, 2019. (Submitted)

3. M. Mutlu, S. Hauser, A. Bernardino, A. Ijspeert, “Effects of Passive and Active Joint Compliance in Quadrupedal Loco-
motion”, Advanced Robotics, 19 July 2018

4. S. Hauser, M. Mutlu, P. Banzet, A. Ijspeert, “Compliant Universal Grippers as Adaptive Feet in Legged Robots”, Advanced
Robotics, 27 July 2018

5. B. Rohani, Y. Yazicioglu, M. Mutlu, O. Ogucu, E. Akgul and A. Saranli, “Lagrangian Based Mathematical Modeling
and Experimental Validation of a Planar Stabilized Platform for Mobile Systems”, Journal of Computational and Applied
Mathematics, 21 October 2013

International Conference Proceedings
1. M. Mutlu, S. Hauser, M. Rickert, J. Santos-Victor, A. Ijspeert, A. Bernardino, “Vision Based Autonomous Docking with

Self-Reconfigurable Modular Robots” (In Preparation)
2. M. Mutlu, S. Hauser, A. Bernardino and A. Ijspeert, “Playdough to Roombots: Towards a Novel Tangible User Interface

for Self-Reconfigurable Modular Robots”, IEEE, ICRA, Brisbane, May 2018.
3. S. Hauser, M. Mutlu, F. Freundler and A. Ijspeert, “Stiffness Variability in Jamming of Compliant Granules and a Case

Study Application in Climbing Vertical Shafts”, IEEE, ICRA, Brisbane, May 2018.
4. R. Vasconcelos, S. Hauser, F. Dzeladini, M. Mutlu, T. Horvat, K. Melo, O. Paulo and A. Ijspeert, “Active Stabilization of

a Stiff Quadruped Robot Using Local Feedback”, IEEE, IROS, Vancouver, September 2017.
5. V. Nigolian, M. Mutlu, S. Hauser, A. Bernardino and A. Ijspeert, “Self-Reconfigurable Modular Robot Interface Using

Virtual Reality: Arrangement of Furniture Made Out of Roombots Modules”, IEEE, RO-MAN, Lisbon, August 2017.
6. M. Mutlu, S. Bonardi, M. Vespignani, S. Hauser, A. Bernardino and A. Ijspeert, “Natural User Interface for Lighting

Control: Case Study on Desktop Lighting Using Modular Robots”, IEEE, RO-MAN, New York City, August 2016.
7. M. Mutlu, K. Melo, M. Vespignani, A. Bernardino and A. Jan Ijspeert, “Where to Place Camera on a Snake Robot: Focus

on Camera Trajectory and Motion Blur”, IEEE, SSRR, Chicago, October 2015.
8. M. Vespignani, K. Melo, M. Mutlu and A. Ijspeert, “Compliant Snake Robot Locomotion on Horizontal Pipes”, IEEE,

SSRR, Chicago, October 2015.
9. M. Mutlu, A. Saranli and U. Saranli, “A Real-Time Inertial Motion Blur Metric: Application to Frame Triggering Based

Motion Blur Minimization”, IEEE, ICRA, Hong Kong, June 2014.
10. E. Akgul, M. Mutlu, A. Saranli and Y. Yazicioglu, “A Comparative Evaluation of Adaptive and Non-Adaptive Sliding

Mode, LQR & PID Control for Platform Stabilization”, IEEE, MSC, Dubrovnik, October 2012.
11. B. Rohani, E. Akgul, M. Mutlu, A. Saranli and Y. Yazicioglu, “A Nonlinear Dynamic Strategy for Mathematical Modeling

and Simulation of Stabilized Platform in Planar Motion in One Body and Three Bodies”, IAM, ICACM, Ankara, October
2012.

Poster Presentations
1. J. Nguyen-Duc, M. Mutlu, S. Hauser, A. Bernardino and A. Ijspeert, “Cooperative Bridge Building by Self-Reconfigurable

Modular Robots Based on Ants’ Stigmergic Behaviour, AMAM, Lausanne, August 2019 (Submitted)
2. S. Hauser, M. Dujany, M. van der Saar, M. Mutlu and A. Ijspeert, “Learning to Walk in Arbitrary Morphologies, AMAM,

Lausanne, August 2019 (Submitted)
3. M. Mutlu, S. Hauser, A. Bernardino and A. Ijspeert, “Effects of Joint Compliance in Quadrupedal Locomotion”, AMAM,

Sapporo, June 2017.
4. S. Hauser, K. Melo, M. Mutlu and A. Ijspeert, “Fast State-Switching of a Jamming-Based Foot”, AMAM, Sapporo, June

2017.

3

199

Appendix
(Co-)Supervised Student Projects

I. Youssef (M.Sc. Thesis) A Biologically Inspired Visuo-Motor Controller for Robotic Lamprey 2018-19
H. Khodr (M.Sc. Thesis) Collaborative Locomotion in Self-Reconfigurable Modular Robots 2018-19
M. Riou Supervising a robot competition team 2018-19
A. Chassignet
S. Montadon
F. Efremov A Novel Self-Reconfigurable Modular Robot Concept 2017-18
M. Dujany Localization of an Underwater Swimming Robot 2017-18
E. Klauser EnVision, a Vision System for Envirobot: Hardware Aspects 2017-18
R. Fong EnVision, a Vision System for Envirobot: Control 2017-18
H. Kohli Stereo Vision in Self-Reconfigurable Modular Robotics 2017-18
E. Clément Supervising a robot competition team 2017-18
W. Gilles
Y. Jian
R. Vasconcelos (M.Sc. Thesis) CPG & Tegotae-Based Locomotion Control of Quadrupedal Modular Robots 2016-17
T-T Denisart Hardware Integration of a Universal Gripper to the Roombot Module 2016-17
Pol Banzet Integration of Variable Stiffness Granular Feet in a Quadruped Robot 2016-17
Q. Golay Passing Objects: Robot-Robot Interaction with Universal Grippers 2016-17
F. Freundler Young’s Modulus Variation of a Variable Stiffness Element Based on Jamming of 2016-17

Compliant Granules
V. Nigolian User Interface for Virtual Assembly of Self-Reconfigurable Modular Robots 2016-17
A. Häfliger Autonomous Vision Based Docking of Roombots 2015-16
A. Vardi Self-Reconfigurable Robots For Space Exploration 2015-16
R. Dryzner From Play-Doh to Roombots 2015-16
V. Nigolian Immersive Interaction Framework for Self-Reconfigurable Modular Robots 2015-16
S. Bussier Multi-Sensory Autonomous Docking Approach for a Self-Reconfigurable Robots 2015-16
A. Öztürk Universal Gripper Controller Design with Visual Feedback 2015-16
M. Félix Supervising a robot competition team 2015-16
M. Jean
C. Marie
M. Moret Hybrid Brain Computer Interface to Control Modular Robots 2014-15

Selected Educational & Hobby Projects

Case study on discrete time multi-variable control of a quadcopter. Simulation in Matlab. 2016
3D swimming and terrestrial locomotion with snake & lamprey-like robot in Webots simulation. 2016
Vector field based formation control with E-Pucks (differential drive mobile robots) in Webots. 2015
Implementing an autonomous navigation on SensoRHex based on the first order logic planner. 2013
Implementing an information metric based exploration algorithm to enhance SLAM performance. 2013
Statistical Robotics project. Comparing open source SLAM algorithms. 2013
AI project. Ms. Pacman vs. Ghosts Competition - Ghosts’ AI. 2012
Robot Vision project. Improving watershed segmentation with resolution pyramids. 2012
Computer Graphics project. Custom design CAD program. 2012
Implementing Pong game on a FPGA board. 2012
Pattern Recognition project. Combining classifiers. 2011
Intelligent Control project. Simulating proxy based sliding mode controller for a hip node of RHex. 2011
B.S. final project. A real-life Sokoban solving and playing robot. 2010-11
Mechatronics final project. Emco CNC mill & lathe renovation. 2011
Mechatronics project. Image processing based color-target shooting robotic mechanism with laser. 2010
Mechatronics project. Building DC brushed motor using scrap material from scratch. 2010
Sokoban variant game design and implementing a solver for it. 2010
Digital Electronics Laboratory project. Sudoku solver on FPGA board. 2010
Analog Electronics Laboratory project. Automatic gain controller. 2010
Sensor based light emitting target shooting robotic mechanism with laser. 2009
Mechaboard design. An education board that is used to teach microcontroller programming 2009

in ME220, ME461 and ME462 mechatronics courses for 3 years in METU. All design by myself.
RoboCup SSL. First prototypes for robots. 2008-09
Mini projects. Sumo and line following robots to participate in local robotics competitions. 2007-∞
Rotating led signs, basic room entrance logging system and many basic microcontroller experiments.

Last update: April 17, 2019

4

200

	Acknowledgements
	Abstract (English/Deutsch/Português)
	List of figures
	List of tables
	Introduction
	Motivation
	Challenges
	Approach and thesis outline
	Contributions

	I Self-reconfigurable modular robots: hardware and control
	Roombots
	Introduction
	Related work
	Material and methods
	Mechanics, motors and connections
	Sensors
	Spotlight LED
	Universal gripper
	Electronics
	Motor control
	Connection control
	Graphical User Interface (GUI)
	RGB-D vision system
	Robotic-enhanced furniture

	Experimental results
	Easy-to-use user interface: The GUI
	Scalable self-reconfiguration
	Mobile furniture
	Manipulating furniture
	Interactive furniture

	Discussions and future work
	Conclusion

	An optimal planning framework to deploy SRMR
	Introduction
	Terminology
	Problem formulation as search
	Searching for solutions
	Search algorithms: Expansion of the search tree
	Pruning methods
	Framework performance analysis

	Deploying the framework on hardware
	Addressing ACM alignment problem
	Approaching/leaving concave corners
	User feedback
	Physical limitations allowed in the framework

	Hardware validation
	Conclusions and future work

	II User interfaces for modular robots
	From playdough to Roombots
	Introduction
	Analysis of the problem
	Expression: Modeling clay
	Digitization: 3D scanning
	Abstraction: Voxels and Roombots
	Constraints and simplifications

	Solution method
	3D Scanning of playdough
	Pre-processing of Mesh
	Voxelization of the 3D model
	Search space definitions and initial module placement
	Construction with breath first search
	Construction with depth first search
	User Feedback

	Experimental results and discussions
	Effect of Initial Module Placement
	Different construction materials
	Hardware demonstrations
	Limitations of the proposed solution

	Conclusions and future work

	Natural user interface
	Introduction and motivation
	System design
	Overview of the Proposed Human Robot Interface
	Detecting User's Commands
	Controlling Roombots
	Closing the Control Loop

	Results and Discussion
	Conclusions and Future Work

	Virtual reality for reconfigurable rooms
	Introduction and motivation
	Background on virtual reality
	System design
	Requirements of the System
	Overall system
	Giving more immersive feeling
	Assembly

	Results and discussions
	User study
	Discussions

	Conclusions and future work

	III Locomotion with modular morphologies
	Neuro-visual locomotion model for Envirobot
	Introduction
	Methods
	Envirobot Design
	Frame-Based Object Detection
	Event-Based Object Detection
	Experimental Setup
	Neuron Model
	Neuron Network

	Results
	Behavioral Tests
	DVS Performance

	Discussion
	Visual Memory
	Behavior Adaptation & Learning
	Underwater use of Event Based Cameras

	Conclusion

	Camera Placement on a Snake Robots
	Introduction
	Camera trajectory during locomotion
	Rolling motion
	Side-winding motion
	Linear progression motion

	Motion blur of camera during locomotion
	Rolling motion
	Side-winding motion
	Linear progression motion

	Discussions and demonstrations
	Conclusions

	Locomotion: effects of local passive and active compliance
	Introduction
	Methods
	Hardware platform
	Gait generation
	Foot trajectory
	Open loop CPG-based control
	Tegotae-based control

	Experiments
	Passive compliance
	Tegotae-based active compliance
	Experiment terrain

	Results and Discussions
	Performance metrics
	Overall results
	Feet trajectories
	Phase vs compliance in Tegotae-based control
	Emerging gaits from Tegotae-based control
	Limitations of the platform:

	Conclusions and future work

	Conclusions
	Future work

	Appendix
	Cooperative bridge building by SRMR based on ants' stigmergic behaviour
	Introduction
	Methodology
	An algorithm from ants
	Roombot's mechanics
	Logic-level simulation
	Experimental set-up

	Results
	Conclusions

	Leg touchdown patterns of the modular quadruped

	Bibliography
	Curriculum Vitae

