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Por fim, à Ana, pela infinita paciência, carinho e compreensão.



ACKNOWLEDGEMENTS

There is a number of people to whom I will never be able to express my gratitude for

their never ending pacience and friendship. Part of this thesis is theirs too.

To Prof. João Sentieiro, my supervisor, for all his support and encouragement. Through-
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Resumo

A Visão é um dos nossos sentidos mais poderosos para a percepção do espaço à nossa

volta. Esta capacidade é determinante para a realização de várias tarefas tais como

locomoção, manipulação, auto-localização, reconhecimento, etc. Esta tese aborda o prob-

lema da percepção visual no contexto da robótica móvel e ilustra alguns destes compor-

tamentos guiados por visão.

Tradicionalmente, a visão era encarada como um problema geral de “reconstrução”,

visando a obtenção de um modelo interno do mundo exterior. Estes modelos, seriam

então usados para tarefas de um ńıvel cognitivo mais elevado, tal como planeamento e

reconhecimento. A primeira parte desta tese, enquadra-se neste paradigma. É tratado

o problema de reconstrução tridimensional usando uma sequência de imagens adquirida

por uma câmara em movimento. Os resultados obtidos indicam que o sistema realiza

uma recuperação robusta e precisa de mapas de profundidade do ambiente, que podem

ser usados por um agente móvel para planeamento, reconhecimento, auto-localização, etc.

Contudo, a construção de modelos internos do mundo é uma tarefa dif́ıcil. Uma

abordagem diferente propõe a utilização do próprio mundo como o modelo, e encara a

visão como um modo de “extrair” a informação relevante para um dado objectivo. Esta

nova abordagem tem sido designada por termos como Visão Activa, Visão Qualitativa,

Visão por objectivos ou Visão Animada.

Neste enquadramento, a segunda parte desta tese aborda problemas de navegação

num ambiente desconhecido, propondo um sistema autónomo de navegação inspirado na

visão de alguns insectos; detecção de obstáculos baseada em técnicas de projecção inversa;

e comportamentos reflexivos de atracagem (docking) para véıculos móveis. Todos estes

comportamentos usam uma parte especializada do campo visual (periférica ou central) e

informação do fluxo óptico na imagem para atingir os seus objectivos. Não é feito nenhum

esforço no sentido da reconstrução tridimensional do ambiente.

Para além da interpretação dos est́ımulos visuais, durante o nosso próprio movimento,

a biologia demonstra a importância do envolvimento activo do observador no processo

de percepção, nomeadamente a faculdade de movimentar os olhos para explorar o espaço

circundante. A parte final da tese aborda um sistema para controlo activo da direcção do

olhar, capaz de realizar os movimentos básicos do sistema oculomotor do ser humano.

Ao longo da tese, são ilustrados vários resultados destes “comportamentos perceptivos”

e é discutida uma perspectiva integrada do sistema completo.

Palavras Chave : Visão por computador, Percepção Visual, Robótica móvel, Visão

Activa, Stereo, Comportamentos Visuais.



Abstract

Vision is one of our most powerful senses to perceive the space around us. This ability

is determinant to accomplish a variety of operations like locomotion, manipulation, self-

localization, recognition, etc. This thesis addresses the problem of visual perception in

the context of mobile robotics, and directly illustrates some visually-guided behaviours.

Traditionally, vision was seen as a general “recovery” problem, aiming at building

an internal model of the external world. These models, could then be used for higher

cognitive tasks, such as planning and recognition. The first part of this thesis, can be

identified with this paradigm. It concerns the problem of 3D reconstruction using, as an

input, an image sequence acquired by a moving camera. The results obtained, indicate the

system ability to accurately recover the depth maps of the environment. Hence, such maps

can be used by a mobile agent moving throughout the scene for planning, recognition,

self-localization, etc.

However, building internal models of the world is a difficult task, and a different

approach proposes the use of the world itself as the model and look at vision as a way

to “extract” some features of this model relevant to a given purpose. Active, qualitative,

purposive or animate vision are all terms used to designate this new approach.

Within this framework, the second part of the thesis addresses the problems of navi-

gation through an unknown environment, proposing a system for autonomous navigation

inspired on insect vision; obstacle detection based on inverse projection techniques; and

reflexive docking behaviours for mobile robots. All these behaviours use a specialized part

of the visual field (peripheral or central) and image flow information to accomplish their

goals. There is no effort to perform 3D reconstruction.

Other than interpreting the input from the visual world, during our own motion,

biology shows the importance of the observer active involvement to perceive the world,

namely the ability to move the eyes to exploit the space around us. The final part of this

thesis addresses a system for active gaze control, capable of the basic eye movements of

the human oculomotor system.

Throughout the thesis, many results of each of these “perceptual behaviours” are

presented and an integrated view of the whole system is discussed.

Keywords : Computer Vision, Visual Perception, Mobile robotics, Active Vision,

Stereo, Visual Bevaviours.
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Chapter 1

Introduction

The perception of the surrounding environment is determinant to accomplish a variety

of operations in the domain of mobile robotics. Very often, mobile robotic applications

involve some degree of interaction with the world itself : locomotion, manipulation, self-

localization, obstacle detection and avoidance, tracking targets, recognition, etc.

Vision is one of our most powerful senses when perceiving the space around us. For

example, the human being relies intensively on visual information in order to do a large

number of tasks like driving, handling tools, walking, or playing tennis. Looking again at

nature and biology, we can find a huge number of animals which use vision efficient and

robustly in many activities, often determining their survival in the world.

It is also interesting to see how different animal species have evolved to different phys-

iological solutions to vision (say, human and insect vision) and yet share some common

features in the way they interpret the visual cues and interact with the environment.

Similarly, a large number of important problems in mobile robotics can benefit from

the use of such powerful sensing modality. This is the scope of this thesis : the use of

visual perception for mobile robots.

What is Vision ? Understanding vision has been a difficult challenge to many genera-

tions of philosophers, mathematicians, psychologists, neurolobiologists, psychophysicists,

and, more recently, computer scientists and engineers.

1



2 CHAPTER 1. INTRODUCTION

1.1 The ecological approach to vision

One of the most captivating theories of the psychology of visual perception was proposed

by Gibson [Gibson, 1950, Gibson, 1966, Gibson, 1979]. The main idea underlying this

theory is that, rather than building internal models of the external world (the percepts),

the environment is considered to be the repository of all the important information.

Therefore, perception would consist in the interaction with the world in order to extract

the information relevant to perform a given action. Gibson’s theory used the concept of

the optic array [Gibson, 1961] :

An optic array is the light converging to any position in the transparent medium

of an illuminated environment insofar as it has different intensities in different

directions. (...) Geometrically speaking, it is a pencil of rays converging to a

point, the rays taking their origin from textured surfaces , and the point being

the nodal point of an eye.

According to Gibson, all the information needed to act in the world should be com-

puted directly from the interaction with the external world. He called this informa-

tion affordances. The affordances of a surface or object is what it offers to an animal

- whether it can be grasped or eaten, trodden or sat upon [Gibson, 1966, Gibson, 1979,

Bruce and Green, 1985]. The ambient optic array is passively sensed by a moving ob-

server :

The normal human being, however, is active. His head never remains in a

fixed position for any length of time except in artificial situations. If he is

not walking or driving a car or looking from a train or airplane, his ordinary

posture will produce some changes in his eyes in space. Such changes will

modify the retinal image in a quite specific way. ([Gibson, 1950], page 117)

Two ideas are worth stressing here : On one hand, the activity of the observer is a

key issue in Gibson’s theory, as the observer can watch changes in the ambient light

which directly convey information about both the world and himself. On the other

hand, the observer motion does not depend on the perceptual needs and, therefore, in

some sense, the observer is passively sensing the optic array [Bruce and Green, 1985,
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Pahlavan et al., 1993]. In this ecological approach, perception and action are seen as

tightly connected and mutually constraining.

The optic array changes when an animal is moving throughout the environment. How-

ever, Gibson referred to the existence of variant and invariant properties of the array, the

latter being potential stimuli [Gibson, 1961]. The idea that the information should be

“picked up” by an observer, while moving in the world and performing various tasks,

suggests the important idea that perception is based on selective attention mechanisms.

As Gibson wrote [Gibson, 1950] :

The world of significant things is too complex to be attended to all at once,

and our perception to it is selective.

1.2 The representational approach to vision

The foundations of modern computer vision were established by the pioneering work of

David Marr [Marr, 1982]. His understanding of visual perception arises, to some extent,

as a reaction to the theories of Gibson and is motivated, on the other hand, by the goal

of actually building artificial “seeing systems” with computer technology1. Marr defined

vision as :

the process of discovering from images what is present in the world, and where

it is.

The main issue consisted in the “recovery” of information about the external world,

in order to build internal models. According to Marr, computational vision should be un-

derstood as an information processing system. A central role was played by the internal

representations, called intrinsic images : the raw primal sketch, containing information

about edges segments, bars, junctions and blobs; the 21
2
-D sketch to represent depth

and shape of objects in viewer centered coordinates; and finally, a 3D world coordinate

model of the object, to be used for recognition and navigation. Some of these represen-

tations were supported by observations in the visual cortex regarding, for instance, the

1In fact, Gibson’s theories can be considered as the last precomputational theory

[Ballard and Brown, 1992]
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existence of cells with different spatial frequency sensitivities. The importance of internal

representations is again clear when Marr states that :

The study of vision must therefore include not only the study of how to extract

from images the various aspects of the world that are useful to us, but also

an inquiry into the nature of the internal representations by which we capture

this information and thus make it available as a basis for decisions about our

thoughts and actions. This duality - the representation and the processing of

information - lies at the heart of most information processing tasks and will

profoundly shape our investigation on the particular problems posed by vision.

Understanding vision would comprise the understanding of three levels in a general

information-processing system : the computational theory, that formally relates the im-

ages and the desired goal of the computation; the representation and algorithmic level,

regarding the implementation of the computational theory; and the final level of hardware

implementation.

This approach would shape the research in computer vision for many years (see

[Tarr and Black, 1994a] for a discussion). In fact, many “vision systems” were built un-

der this recovery paradigm, creating multiple representations of the world around the ob-

server. Examples can be found in the literature in problems like “structure-from-X”, where

the X can be motion, stereo, shading, texture, etc (see [Aloimonos and Shulman, 1989,

Horn, 1986] for an overview). These models or intrinsic parameters, are then used for

higher cognitive tasks, such as planning and recognition.

In spite of the difficulties of recovering shape, egomotion or structure from images,

basically due to the ill-posed nature of such inverse problems, many systems, able to

construct useful models of the world [Witkin, 1980, Grimson, 1981, Davis et al., 1983,

Horn and Brooks, 1989] were built throughout the past years. In order to overcome the

ill-posed nature of many of these visual processes, constraints are often introduced to find

a stable solution : rigidity, smoothness, etc. Moreover, in the past few years we have

watched an increase on the complexity of the tools usually used in computer vision.
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1.3 Purposive and Qualitative Active Vision

However, people have recognized that building internal models of the world is a difficult

task, in spite of the temptation to build a general purpose model. It often faces problems

of complexity and unstability. A different approach, partially inspired in the work of

Gibson proposes the use of the world itself as the model and look at vision as a way to

“extract” some features of this model relevant for a given purpose.

In the earlier approaches to Active Vision the key idea was that the observer was

actively involved in the perception process. However, this involvement basically con-

sisted in controlling egomotion during the image acquisition process. With this proce-

dure, some of the traditionally ill-posed problems of vision, would become well-posed

[Aloimonos et al., 1988] for an active observer.

The Active Vision paradigm then evolved to a more general idea in which controlled

perception strategies were determined by the interaction with the environment, for a given

specific purpose [Bajcsy, 1985, Bajcsy, 1988, Aloimonos, 1990].

Even though the active observer may have important advantages when compared to

the passive observer, the reconstruction of accurate and general representations of the

world is still a hard problem. The idea of purposive vision advocates that perception and

purpose are linked so tightly that they cannot be separated [Aloimonos, 1993]. Therefore,

visual perception is grounded on attentional mechanisms in order to process only the infor-

mation relevant for the current purpose. Therefore, the interaction with the surrounding

environment is achieved through a set of visual behaviours, coupling perception and action

together with purpose. In principle, these behaviours should not required extensive and

complete modeling of the world, and should be able to operate using partial, qualitative

measurements of the environment, which is the main contribution of qualitative vision

[Aloimonos, 1990].

This approach to visual perception, also known as animate vision [Ballard, 1991], has

often been inspired on observations in biological vision systems and particularly on the

human visual system. Other than interpreting the input from the visual world, during

our own motion, biology shows the importance of the observer active involvement, to

perceive the world. The ability to move the eyes to exploit the space around us and fixate
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interesting targets, is a key advantage from a perceptual point of view. Consequently,

in most Purposive and Qualitative Active Vision systems, problems like real-time gaze

control and reactive behaviours, play an important role.

To summarize, we can say that the Active Vision paradigm has evolved from the idea

that the goal of action is to perceive to a new paradigm where the goal of perception is

to act.

1.4 Reconstructionism versus Purposivism

There has been (and continues) a fruitful discussion about the reconstructive and pur-

posive paradigms to computational vision. This discussion, and the opinions of various

researchers on this field, are well patent in the debate proposed in [Tarr and Black, 1994a],

on representations in computer vision.

One of the main points is related to the purpose of representation. Appropriate models

or representations should be derived according to their specific, task-dependent, use (see,

for instance [Edelman, 1994, Fischler, 1994, Sandini and Grosso, 1994] and [Jain, 1994]).

On the other hand, although purposive vision has led to successful examples of visual

behaviours in robotics (there are some examples in this thesis), there is still an open

discussion on the coordination and integration of multiple behaviours, and on the emer-

gence of complex behaviours based on the simpler ones [Aloimonos, 1994, Brown, 1994,

Christensen and Madsen, 1994, Tsotsos, 1994] (scalability).

The main conclusion drawn is that both approaches have led to important under-

standing and achievements in computer vision and in understanding human vision (see

[Tarr and Black, 1994b] for a balance of the debate) and that research should be pursued

in both directions.

1.5 Structure of the Thesis

This thesis addresses the problem of Visual Perception for Mobile Robots. In some sense,

it reflects the evolution of the various schools of thought towards computational vision

and visual perception. In fact, the thesis conveys contributions both regarding the “re-
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constructive” and the behaviour-based, “purposive vision” approaches, thus justifying the

title : Visual Perception for Mobile Robots : from Percepts to Behaviours.

Chapter 1 describes the main approaches to visual perception in an abstract level,

and motivates the relation of perception and action within the context of mobile robots.

It also describes the structure of the thesis and outlines its main original contributions.

Chapter 2 is devoted to the problem of 3D reconstruction using, as an input, an

image sequence acquired by a single moving camera. The results obtained, indicate the

system ability to recover, with some accuracy, the depth maps of the environment. These

maps can in turn be used by any mobile agent moving throughout the scene for planning,

recognition, self-localization, etc. Mainly due to the difficulties of the reconstruction

process, we use techniques like regularization and integration over multiple frames to

increase the confidence on the depth estimates. There are examples using images both

from underwater and land environments.

The second part of the thesis, instead, addresses various mobile robot tasks, within the

framework of purposive and qualitative active vision. Chapter 3 describes an approach

to autonomous navigation in unknown environments, Divergent Stereo, inspired on insect

vision. This system has the capability of following corridors and walls, avoiding obstacles

and motion is controlled using qualitative measurements of the peripheral flow field.

The problem of obstacle avoidance is addressed in Chapter 4. We use inverse projec-

tion techniques on the normal flow of the central visual field of a forward pointing camera

to detect obstacles lying on the ground floor, ahead of a mobile robot.

In Chapter 5, we propose visual behaviours for docking in mobile robotics. There

are many situations in which the task of approaching an environmental point with a

given orientation is important in mobile robotics. This is accomplished by these docking

behaviours which use the information of the normal flow to control the robot speed and

direction of heading.

All these behaviours use a specialized part of the visual field (peripheral or central)

to accomplish their goals. On the other hand, they are all based on a partial description

of the optical flow field as there is no attempt nor need to determine both components of

the optical flow. Finally, there is no effort to perform 3D reconstruction.

In Chapter 6, we address another important characteristic of active vision systems :
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active gaze control. We analyse the basic eye movements of the human oculomotor system

and describe an active camera head designed for active vision applications. Again, the

methodology to track moving targets is based on simple image measurements which are

used directly by the control system.

Throughout the thesis, there are many results of each of different “perceptual be-

haviours” which cover a wide range of visual based functionalities of a mobile robot.

Finally, in Chapter 7 we draw some conclusions and establish further directions of re-

search.

1.6 Original Contributions

This thesis addresses the problem of visual perception in its various facets and implications

in robotics. It contributes towards a more global implementation and analysis of vision

related robotic capabilities.

Chapter 2 is focused on the estimation of structure from motion. The main contribu-

tion is the analysis and characterization of the uncertainty in the matching stage and a

modified matching cost functional to cope with illumination changes in the environment.

These improvements were partially motivated by an underwater application of the system.

Chapter 3 proposes a new approach to mobile robot navigation. One main feature

is the use of a lateral camera positioning, inspired on insect vision. Then, we use par-

tial qualitative optical flow information which is directly used by the control system to

implement behaviours like corridor following, wall following, etc. There is no need to

reconstruct the environment.

Chapter 4 describes an obstacle detection mechanism which, again, uses solely partial

optical flow (normal flow) information to detect obstacles on the ground floor. Other novel

aspects include the absence of calibration of the camera intrinsic parameters or position.

It can cope with general (translation or rotational) motion.

Chapter 5 proposes autonomous behaviours for the important task of docking in mobile

robotics. The main contributions are again the use of the normal flow and the direct

coupling of the perception and behaviour in the two proposed docking situations : ego-

docking and eco-docking.
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In Chapter 6 we describe the design and control of an anthropomorphic active camera

head. The main contributions are the direct use of image data in the control loop and a

two-level organization of the control system, which allows a simpler analysis of the visual

feedback loop and provides insight into the overall system behaviour. As a consequence,

we show good tracking results with simple hardware and control methodologies.
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Chapter 2

Visual Reconstruction

According to what has been discussed in the introduction chapter, the perception of the

three dimensional structure of the working space of a robot allows the completion of

different tasks such as moving around the environment, manipulation, self localization,

recognition, etc.

For the human being, and for many other living beings, there are several visual

cues responsible for the perception of the 3D structure of the surrounding environment

[Gibson, 1950, Marr, 1982]. One of the most important of these visual cues is the stereop-

sis [Marr and Poggio, 1979] which allows the recovery of the 3D structure of a visualized

scene, using two images acquired from different viewpoints.

In the following sections, the problem of depth extraction based on stereo techniques,

will be formalized. The different algorithms that will be described, compose a three-

dimensional vision system which may be used by any moving robot, whenever it is im-

portant to obtain a depth map of the working environment.

2.1 Introduction

The application scenario of the techniques we describe throughout this chapter, consid-

ers an autonomous mobile agent equipped with a video camera. During a mission, the

vision system uses the input of an image sequence acquired over time, to estimate the 3D

structure of the environment.

11
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There are two important characteristics that should be taken into account for such a

system to be useful in practice :

• Recursiveness - Due to the limited on board memory space available in an au-
tonomous mobile robot, the system should be recursive, in the sense that the com-

putations performed at every sampling instant, should not require a large amount

of past information. In our system, the depth map estimated at each instant corre-

sponds to the current position of the robot. Alternatively one could use a world-fixed

coordinate system as well.

• Uncertainty - All the processes involved in the depth estimation problem, are af-
fected by some degree of uncertainty. Hence, recognizing the presence of uncertainty

and making an effort to model the different error sources in the overall process is an

important step to ensure the usefulness of the system. This work uses well known

estimation techniques to deal with the uncertainty associated to the depth maps.

In the system proposed, the depth map estimation is the result of three major pro-

cesses : the matching process, the regularization process and the Kalman filtering process.

The matching process consists in determining the correspondences between homol-

ogous points in images acquired at different time instants. These correspondences, or

equivalently, the disparities, are determined by the use of a correlation-based method

extended by a geometric constraint (the epipolar constraint or epipolar line) introduced

by the camera motion.

Since the matching process is known to be an ill-posed problem [Bertero et al., 1988,

Poggio et al., 1985], a regularization process was introduced in order to constrain the

disparity field to a class of solutions satisfying some smoothness properties. Hence, it is

possible to reduce significantly the noise associated to the disparity estimates and fill in

areas in the disparity vector field, left void by the matching process.

In the final stage of the processing system, a Kalman filter integrates over time multiple

depth measurements, thus reducing the uncertainty. With this approach, one can use

closely spaced images (simplifying the matching process but leading to a poor precision

in the depth estimates) and obtain precision levels that could only be achieved by a
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long baseline system (which, on the other hand, would harden the matching process

significantly).

The system has been applied to a variety of synthetic and real images, the results

being shown later in this chapter. The following sections describe thoroughly each of the

different processes involved in the overall depth estimation system.

2.2 Camera model

The most commonly used model to describe the image formation mechanism (from a

geometric point of view) is the perspective projection (pinhole camera model). This model

[Ballard and Brown, 1982, Horn, 1986] is illustrated in Figure 2.11.
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Figure 2.1: Pinhole camera model

According to this model, a point in the 3D space [X Y Z]T , is projected onto the

image point (x, y) obtained by intersecting the line defined by the 3D point and the

camera optic center (projection center), with the image plane.

x = f
X

Z
, y = f

Y

Z
· (2.1)

1Although it may sound surprising, the laws and principles of perspective were only recently estab-

lished, during the Italian Renaissance.
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where f stands for the focal length and the x, y coordinates are expressed in meters. To

convert these units into pixel coordinates, xa, ya, one must resort to the camera intrinsic

parameters [Horn, 1986] :

xa = Kx x+ Cx (2.2)

ya = Ky y + Cy, (2.3)

where Kx, Ky depend on the size of each image pixel, and Cx, Cy define the image coor-

dinate center, the point where the optical axis intersects the image plane.

In a more compact notation, these parameters are often defined in the literature as :

xa = fx
X

Z
+ Cx (2.4)

ya = fy
Y

Z
+ Cy, (2.5)

where fx, fy can be interpreted as the focal length expressed in pixels (therefore, for non

square pixels, we have two different values). A number of methods have been proposed on

how to calibrate the camera model parameters and on the use of more complex camera

models [Tsai, 1986, Lenz and Tsai, 1988, Faugeras et al., 1992]. However, we assume that

these parameters are known with some accuracy for the 3D reconstruction. In the system

we describe here, we also assume that the navigation system provides information on the

vehicle angular and linear velocities.

2.3 Matching

When two images of a given scene are acquired from different viewpoints, the various

objects present in the scene will appear in different locations on both images. The object

displacement vector in the image is called the disparity. Similarly, the movement of a

camera in a static environment induces a disparity vector field, in the images successively

acquired. The disparity field depends on two main factors : the characteristics of the

camera motion and the three-dimensional structure of the scene. Therefore, one can use

disparity measurements to estimate 3D information about the world. This section is

devoted to the problem of estimating the disparity, known as the matching problem.
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The matching problem consists in determining correspondences between points or

features of two images of the same scene, acquired from different view points. Two

image points/features are correspondent or homologous if they are the projections in

both images of the same 3D point/feature [Dhond and Aggarwal, 1989]. Most known

methods start by considering a point/feature in one image and define some cost criterion

to drive the search for an homologous point/feature in a given region of the second image.

There are basically two main classes of matching methods : feature based and area based

[Dhond and Aggarwal, 1989]. In the former [Marr and Poggio, 1979, Pollard et al., 1981,

Grimson, 1984], the images are preprocessed to extract relevant features like edges, corners

[Moravec, 1977], edge segments [Ayache and Faverjon, 1987], curves, regions, etc, which

are then matched based on a set of local characteristics (like intensity, orientation, area,

length, etc). In the latter the goal is to obtain correspondences for every image pixel,

usually relying on some kind of correlation method [Anandan, 1989, Mathies et al., 1989,

Okutomi and Kanade, 1991]. A comparative analysis of different methods can be found

in [Barron et al., 1994].

The procedure used here is an area based method aiming at recovering a dense disparity

field, and the matching criterion assumes the image brightness constancy hypothesis.

That is to say that even though the camera motion induces a velocity field of the image

brightness patterns, these brightness patterns remain unchanged over time, which is a

plausible hypothesis in the absence of extreme illumination variations.

Let us consider a 3D point which is projected in two images acquired consecutively

during the camera movement. Then, the gray level distributions, in a neighbourhood of

the correspondent or homologous points, p′t and p′t+τ , should be very similar provided that

the illumination conditions did not change. Based on this intuitive idea, one of the most

used gray-level matching criteria is computed by summing the squared gray-level difference

between pixels within windows centered in p′t and p′t+τ as in [Mathies et al., 1989]. This

criterion is known in the literature as the sum of the squared differences [Anandan, 1989,

Heel, 1989] method :

SSD(u, v, x, y) =
∑
α,β

φ(α,β) [I(t,α,β) − I(t+τ,α+u,β+v)]
2 (2.6)

where I(t,x,y) denotes the pixel (x, y) of the image acquired at time t, u and v are the x
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and y disparity components, and φ(α,β) is a weighing function.

Computing the SSD over a range of possible disparity values (which bounds the search

area), as depicted in Figure 2.2, leads to the definition of an error surface over the domain

��❅❅

��❅❅

p′t

p′t+τ

It It+τ

s

Figure 2.2: The problem of correspondence search in a stereo pair. To determine the
point p′t+ τ , correspondent to p′τ , the area S has to be searched.

of plausible disparities. For the optimal disparity, the error surface should attain a minimal

value [Anandan, 1989], which is zero for the SSD criterion, in the case of perfectly equal

gray-level distributions around the correspondent points.

2.3.1 The epipolar constraint

Let the pixel p′t be considered for the matching problem, as shown in Figure 2.3. As depth

is unknown, the 3D point projected in p′t could either be P1, P2 or P3. In any case, the

corresponding projection onto the right image is determined by the intersection of the

right image plane, and the lines defined by the 3D point (P1, P2 or P3) and the projection

center, O2. However, all these lines lie on the plane defined by p′t, O1 and O2, known as

the epipolar plane. Thereby, the position of the pixel p′t+τ correspondent to the pixel p
′
t

is constrained to lie on a line (the epipolar line) [Horn, 1986, Faugeras, 1993] defined by

the intersection of the epipolar plane and the right image plane, as shown in Figure 2.3.

The epipolar line is the locus of all the homologous points of p′t when depth ranges from

zero to infinity.
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Figure 2.3: The epipolar line, el, is the locus of all the corresponding points of p′t when
depth ranges from zero to infinity.

This constraint is of the outmost importance in the matching process, as it reduces

the dimension of the search space from 2 (over an image region) to 1 (along the epipolar

line). The epipolar line depends on the camera motion and camera parameters, which

determine the relative position of O1 and O2.

Therefore, the epipolar line can only be computed if the camera motion and camera in-

trinsic parameters are known. Alternatively, the epipolar geometry between an image pair

can also be determined using a set of correspondent point matches [Longuet-Higgins, 1981,

Faugeras, 1992, Hartley, 1992]. Moreover, if the camera motion is not known, the recon-

struction can still be performed up to a projective transformation, which may suffice

for some applications (see [Mundy and Zisserman, 1992] for a discussion). However, in

our approach we assume that the motion parameters are provided by the mobile vehicle

navigation system.

By using the epipolar constraint as a form of a priori knowledge in the matching

problem, one can define [Santos-Victor and Sentieiro, 1992b] a ESSD (Extended Sum of

Squared Differences) matching criterion that not only penalizes the gray level difference

between two candidate pixels but also weighs deviations from the epipolar constraint :

ESSD(u, v, x, y) =
∑
α,β

φ(α,β) [I(t,α,β) − I(t+τ,α+u,β+v)]
2 + λep d2

ep(x, y, u, v), (2.7)
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where dep(x, y, u, v) is the distance from the matching candidate and I(t+τ,x+u,y+v) to the

epipolar line. The influence of the a priori knowledge in the final cost functional is

controlled by the parameter λep
2.

2.3.2 Matching with equalization

The use of the epipolar constraint leads to significant improvements in the global per-

formance of the matching process. However, even a slight change over time, in the illu-

mination conditions, may lead to an important degradation of the process, as the image

brightness constancy assumption is no longer valid. Whenever this is the case, the ESSD

functional will not exhibit a sharp minimum in for the true disparity, and the matching

matching operation fails. Unfortunately, this is often the case in, for instance, underwater

images where this system was applied [Santos-Victor and Sentieiro, 1993].

To overcome this problem, one can introduce some changes in the algorithm, to com-

pensate for, at least, uniform changes in the illumination. This is accomplished by con-

sidering different classes of image regions. Let the image be partitioned in two sets of

pixels :

A - A pixel p is a member of A if, in a given neighbourhood of p, there are significant

changes in the gray level values of the image, or equivalently if there is some local

texture.

B - A pixel p is classified as a member of B if, in a neighbourhood of p the gray levels
are approximately constant, which amounts to say that p lies in an untextured image

region.

For every pixel in A, the matching process uses solely the varying component of
the gray level distribution, which should be sufficient to identify homologous points and

therefore, canceling out any constant offset of illumination that may exist. To some

extent, this operation introduces a local equalization of the image patches, expressed in

2Since the epipolar line depends on the camera motion and camera parameters, the value of λep should

reflect the uncertainty associated to these parameters.
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the following modified cost criterion :

ESSD(eq)(u, v, x, y) =
∑
α,β

φ(α, β)[I(t,α,β) − Idct
Idc(t+τ)

I(t+τ,α+u,β+v)]
2 + λepd

2
ep(x, y, u, v), (2.8)

where Idct is the mean gray level value within the matching window of image I(t). For

every other pixel in B, where the image presents a “flat” brightness distribution, the
matching process is based on the ESSD cost criterion as described in equation (2.7).

This approach succeeds in matching a much larger number of image patches, provided

that there is some texture content, even in the presence of illumination changes. To

determine whether a pixel is a member of A or B, the gray level variance within the
matching window is estimated and compared to a threshold value.

2.3.3 Computing the disparity

Once the ESSD values have been calculated for the domain of plausible disparities, a

strategy must be defined to determine the optimal disparity. In the work described in

[Mathies et al., 1989], the disparity vector is estimated by fitting a quadratic surface to

a neighbourhood of the minimum value of the SSD, whereas in [Heel, 1989] a simpler

solution consists in fitting to the SSD values, two one-dimensional parabolas in both

the x and y directions. Usually, the minima found by these two strategies are different,

since the two one-dimensional fit is not equivalent to a single two-dimensional fit (except

when the paraboloid axes coincide with the x and y directions). The two-dimensional

fit, however, needs a much larger spatial support in order to yield robust estimates and,

therefore, the second order approximation to the ESSD surface, in a neighbourhood of

the minimum, is no longer appropriate.

Hence, we have chosen to fit two one-dimensional parabolas in the x and y directions

in a neighbourhood of the ESSD surface minimum :

q(u) = au2 + bu+ c, (2.9)

where a, b and c are estimated using the data points. Once an analytical expression for the

error surface is available, the minimum can be determined, analytically. This value is the

optimal disparity value, according to the established criterion, estimated with sub-pixel
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accuracy :

ûopt = − b

2 a
, (2.10)

provided that the coefficient a is different from 0.

The uncertainty associated to this estimate can be related to the shape of the ESSD

error surface [Anandan, 1989, Heel, 1989, Mathies et al., 1989]. In [Anandan, 1989], the

uncertainty is determined as a function of the curvature of the SSD surface along its main

axes, whereas in [Mathies et al., 1989] the uncertainty is calculated using error propaga-

tion techniques in the SSD cost functional. Alternatively, in [Heel, 1989], the variance

estimate can be expressed as :

σ2
u =

(
d2q(uopt)

du2

)−2

q(uopt)· (2.11)

The first term in equation (2.11) expresses the decrease of the uncertainty with the increase

of the error surface curvature, while the second term is a normalization factor which

depends on the minimal value of the ESSD surface.

2.4 Regularization

Many visual reconstruction processes, aiming at recovering the three-dimensional in-

formation based on two-dimensional information, are often inverse ill-posed problems

(e.g. the estimation of the disparity field between a stereo pair) [Bertero et al., 1988,

Poggio et al., 1985, Szeliski, 1987, Terzopoulos, 1986b].

Due to the ill-posed nature of the matching process, the estimated disparity vector field

is degraded by noise and may exhibit void areas, corresponding to matching failures. In

this section, we present a regularization approach which, by introducing prior smoothness

constraints in the disparity field, allows the reduction of disturbances and the filling in of

the void areas.

A problem is said to be ill-posed, in the sense of Hadamard [Bertero et al., 1988]

whenever either there is no solution; or the solution is not unique; or the solution does

not change continuously on the data, thus being numerically unstable.

Using the regularization framework, it is possible to reformulate ill-posed problems

into well-posed variational principles, by including a priori knowledge about the solu-
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tion. The standard Tikhonov regularization [Tikhonov and Arsenin, 1977], uses stabiliz-

ing functionals to constrain the space of admissible solutions to smooth functions.

To determine the regularized solution U , based on a set of data points D, we define
an error functional, Ψd(D,U), that measures the proximity between the data and the
proposed solution, and a stabilizing functional, Ψp(U), that quantifies the smoothness
constraints on the desired solution. The solution, U∗, is obtained by the minimization of

the following composed functional [Szeliski, 1990] :

Ψ(U ,D) = λΨd(U ,D) + Ψp(U)· (2.12)

The choice of both functionals, Ψp and Ψd, ensures that under weak conditions, the so-

lution to the optimization problem exists [Anandan, 1989]. The stabilizing functional

we have chosen for the regularization of the disparity vector field is the thin membrane

[Anandan, 1989, Terzopoulos, 1986b] model, which represents a small deflection approxi-

mation [Szeliski, 1990] to the surface area :

Ψ(U ,D) = λ
∑
x,y

(u− d)TQ−1(u− d)

+
∫ ∫

trace {∇u∇uT}dxdy, (2.13)

Q =


 σ2

u 0

0 σ2
v


 , (2.14)

where u(x, y) = [u(x, y) v(x, y)]T denotes the regularized disparity vector field, σ2
u and

σ2
v are the variances of both x and y components of the observed disparity vectors, ∇
is the gradient operator and λ quantifies the relative weight of the fitness-to-data term

in the global cost functional3. A point worth mentioning is that the fitness-to-data term

depends on the confidence of the measurement data. If the uncertainty associated to

a given disparity measurement is very large, the fitness-to-data term is automatically

relaxed.

The domain of the surface u(x, y) is usually discretized using either the finite differ-

ences method or the finite element method [Horn, 1986], [Terzopoulos, 1986b]. Applying

3Whenever an observation d is unavailable, λ is set to zero, thus disabling the fitness-to-data term.
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the finite element analysis, as proposed by Terzopoulos [Terzopoulos, 1986b] to the cost

functionals to be minimized, yields :

Υ(U ,D) =∑
x,y

[λ(u−d)TQ−1(u−d)+ ‖ u(x+1,y)−u(x,y) ‖2 + ‖ u(x,y+1)−u(x,y) ‖2]· (2.15)

The cost functional (2.15) is minimized using the Gauss-Seidel relaxation method,

where u is determined iteratively for each point in the image grid as a function of

the neighbouring values [Blake and Zisserman, 1987, Terzopoulos, 1986b]. The iterative

mechanism is the same for u and v and can be written as :

un+1
(x,y) = ūn(x,y) +

λσ−2
u

1 + λσ−2
u

[ u0
(x,y) − ūn(x,y) ], (2.16)

where u0
(x,y) is the x component of the disparity measured for pixel (x, y) and ū(x,y) is a

local mean given by :

ū(x,y) =
u(x+1,y) + u(x−1,y) + u(x,y+1) + u(x,y−1)

4
· (2.17)

Figure 2.4 provides some geometric insight into the iterative process. At each iteration,
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Figure 2.4: Geometric interpretation of the relaxation process.

the new disparity vector, un+1 lies within the triangle shown in the figure, always on or

above the line joining the observed disparity d, and the local mean disparity vector, mn.
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To determine the uncertainty associated to the regularized disparity field, we have

to update the uncertainty as the regularization process evolves, imposing changes in the

initial disparity field.

As the regularization iterations proceed, ūn will depend on an increasing number of

data points, therefore hardening the problem of propagating the uncertainty. For the sake

of computational efficiency we have used, instead, an approximate estimate, based on the

relaxation equation (2.16) :

var[un+1] =
var[ūn] + (λσ−2

u )
2var[u0]

1 + (λσ−2
u )

2
· (2.18)

2.5 Coarse-to-fine control strategy

To improve the efficiency and accuracy of the results, the whole algorithm is running

under a coarse-to-fine control strategy, based on a Gaussian pyramid [Anandan, 1989,

Rosenfeld, 1984]. The basis of the pyramid corresponds to the finest level of resolution

and contains the images acquired. The successive lower levels of resolution are obtained

by low-pass filtering (with a gaussian filter) and subsampling the original images. In each

level of the pyramid, the image dimension if halved (in each direction) when compared to

the precedent finer resolution level.

The matching process is started at the coarsest level of resolution, where the disparity

field is estimated and regularized. At the coarsest resolution, it is possible to obtain a

rough estimate of the disparity field without excessive computational effort, due to the

reduced size of the images and search regions used for the matching.

Once the matching/regularization processes are finished at the coarsest level, the dis-

parity field is projected to the next (higher resolution) level. These values are then used

as initial estimates of the disparity and refined by the matching algorithm applied to a

small local region around the predicted value. Once again, the regularization takes place

and these steps are repeated until the final estimates at the highest level of resolution are

available. Figure 2.5 illustrates the method, showing the structure of the pyramid and

the flow of information among the different levels.

The coarse-to-fine control strategy greatly reduces the computational effort, since the
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Figure 2.5: Coarse-to-fine control strategy based on a Gaussian pyramid.

most demanding computations are performed at the coarsest level of resolution. Further-

more, this strategy increases the speed of spatial propagation of the constraints involved

in the regularization functional [Terzopoulos, 1986a]. The results obtained are often bet-

ter than those produced by a single resolution algorithm, since the matching search space

is reduced and the spatial support of the ESSD functional extended [Terzopoulos, 1986a].

2.6 Motion model

This section addresses the problem of establishing all the dynamic models to be considered

in the depth estimation problem. First, we introduce the equations describing the motion

of the camera with respect to a static 3D point. Then, the camera model is used to

determine the velocity field induced in the image plane as a consequence of the camera

motion. Finally, some considerations concerning the uncertainty sources will be made and

some uncertainty models derived.

Consider a camera moving relative to a fixed point in space. Let {C} be a coordinate
frame attached to the camera optic center, let ω = [ωx ωy ωz]

T and T = [Tx Ty Tz]
T be

the angular and linear velocities of the camera with respect to a fixed world frame, and

let P = [X Y Z]T denote the position vector of a point in the 3D space, relative to the

fixed world frame. These frames are shown in Figure 2.6.
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Figure 2.6: Camera in motion and the related coordinate frames.

Using the rigid body motion model, the velocity of P relative to {C} is described by
the following differential equation [Horn, 1986] :

dP

dt
= − T − ω ×P· (2.19)

To determine how this motion is projected onto the image plane, the camera model

must be used. Using the pinhole camera model (described in Section 2.2) together with

equation (2.19), and eliminating Z, we get a new set of equations that express the apparent

motion (velocity field) induced on the image plane by the real movement of the camera

[Ballard and Brown, 1982, Heel, 1989, Horn and Shunck, 1981]4 :


 ẋ

ẏ


 =

1

Z


 −1 0 x

0 −1 y


T+


 xy −(1 + x2) y

(1 + y2) −xy −x


ω,

Ż(t) = (ωxy − ωyx)Z(t)− Tz· (2.20)

These equations show how the induced image velocity depends on the camera motion

and on the scene structure, Z(t). It also shows that, in the absence of translation, the

4To simplify the notation, some variables were not explicitly indicated as time dependent (e.g. x(t)

instead of x), as it is nevertheless clear from the context.
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velocity field does not depend on the scene structure and, therefore, cannot be used to

recover depth.

It should be noted, however, that the motion of a mobile vehicle can only be known

with limited precision and therefore the camera motion parameters cannot be known

exactly. Also, the pinhole model is a simplified description of the image formation process

and the camera intrinsic parameters are also not known exactly. Furthermore, the image

acquisition process and the methods used to determine the disparity are again responsible

for the introduction of errors that affect the disparity estimates. Characterizing the error

is then a key issue in developing the system [Szeliski, 1990]. The existence of uncertainty

was incorporated into the model as additive white Gaussian noise in equations (2.20), and

the discrete model is obtained by approximating the time derivatives by finite differences

(τ being the sampling period)5. We have :

State equation :

Z[t+τ ] = a[t] Z[t] + b[t] + η· (2.21)

Observation equation :

d[t] =


 x[t+τ ] − x[t]

y[t+τ ] − y[t]


 = C[t]

1

Z[t]

+D[t] + µ, (2.22)

where η is a zero mean Gaussian random variable with variance r, µ is a zero mean

Gaussian random vector with covariance matrix Q. It is further assumed that { µ, η} are
independent. The terms a[t], b[t], C[t] and D[t] depend on the motion parameters and the

image point coordinates and are given by :

a[t] = 1 + τ( ωyx − ωxy )

b[t] = −Tzτ

5The image coordinates in the discrete model assume a camera lens with unitary focal length. To

obtain the physical coordinates on the image sensor, we have to use the camera intrinsic parameters

[Horn, 1986].
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C[t] = τ




xTz − Tx

yTz − Ty




D[t] = τ




ωxxy − ωy(x
2 + 1) + ωzy

ωx(1 + y2) − ωyxy − ωzx




2.7 Kalman Filtering - Recursive depth estimation

Once the disparity has been estimated and a model relating depth and disparity formu-

lated, the problem of how to estimate depth based on the disparity measurements has

to be addressed. In this section we show how a Kalman filtering approach can be used

for the purpose of depth estimation and for combining multiple disparity estimates over

time, thus improving the reliability of the depth estimates.

Using the state space description (see Section 2.6), it is possible to define an estimation

problem to determine the value of Z[t], based on noisy observations of the disparity, d[t].

We will consider the estimation of depth independently at each pixel whereas the spatial

dependencies are embodied in the regularization stage.

This estimation problem can be conveniently dealt with using Kalman filtering tech-

niques. Since the observation equation is non linear on the state variable Z[t], the discrete

time Extended Kalman Filter (EKF) has to be used [Jazwinski, 1970]. Even giving rise

to a suboptimal solution the EKF was chosen rather than the optimal non linear filter to

reduce the complexity. The estimation process comprises a prediction phase and a filter-

ing/updating phase. In the prediction phase, the expected values of depth and related

uncertainty are estimated using exclusively past information and the dynamic model :

Prediction :

Ẑ(t/t−1) = a[t−1]Ẑ(t−1/t−1) + b[t−1], (2.23)

σ2
Z(t/t−1)

= a2
[t−1]σ

2
Z(t−1/t−1)

+ r, (2.24)

where Ẑ(t/t−1) is the depth value predicted at time t, based on the data available up to
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time t−1, σ2
Z(t/t−1)

is the corresponding variance and r is the variance of the noise affecting

the camera motion equation.

At time t, when a new disparity observation is available, the predicted depth value

can be updated. This is the core of the EKF filtering step which uses a linearized version

of the observation equation around the predicted value :

d[t] ≈ dL
[t] = C[t]Z[t] +D[t] + µ, (2.25)

where C[t], D[t] are the coefficients of the linearized model given by :

C[t] = − C[t]

Ẑ2
(t/t−1)

D[t] = 2
C[t]

Ẑ(t/t−1)

+D[t]

The filtering equations are given by :

Filtering :

Kt = σ2
Z(t/t−1)

CT
[t] [ C[t]σ

2
Z(t/t−1)

CT
[t] +Qt ]

−1, (2.26)

σ2
Z(t/t)

= ( 1−KtC[t] ) σ
2
Z(t/t−1)

, (2.27)

Ẑ(t/t) = Ẑ(t/t−1) +Kt ( d[t] − C[t]Ẑ(t/t−1) − D[t] ), (2.28)

where Ẑ(0) and σ2
Z(0)

are the initial depth estimate and related uncertainty and Kt is the

Kalman gain.

Warping the Depth Map

To complete the analysis of the EKF process, there is still an additional problem to solve

in the prediction phase.

The predicted depth value, Ẑ(t/t−1) is obtained using the camera motion model. How-

ever, this predicted value does no longer correspond to the original pixel location (x, y),

as the coordinates have changed to a new location, (x′, y′). As, in general, this new posi-

tion does not correspond to any point in the image grid, the depth at a pixel (x, y) must
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be inferred based on a set of depth predictions in points, (x′
i, y

′
i), outside of the image

grid. This problem can be addressed using various interpolation mechanisms such as bi-

linear or bi-cubic interpolation [Heel, 1989, Mathies et al., 1989]. This idea is depicted in

Figure 2.7

�
�

�
��✒

�

(x, y)

(x′
i, y

′
i)

Figure 2.7: Warping the depth map. During the prediction phase the depth map has to
be interpolated.

The depth estimate in (x, y) is determined as a weighed sum of the estimates laying

within a 3×3 window centered in (x, y). The uncertainty of the warped map is estimated
using error propagation techniques :

Z(x,y) =

∑n
i=1 d

−2
i Z(x′i,y

′
i)∑n

i=1 d
−2
i

σ2
Z(x,y) =

∑n
i=1 d

−4
i σ2

Z(x′i,y
′
i)

(
∑n

i=1 d
−2
i )

2
(2.29)

where Z(x′i,y
′
i)
represents the predicted depth values and di is the Euclidean distance from

(x′
i, y

′
i) to (x, y).
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2.8 System description

The global operation of the recursive depth estimation system is shown in Figure 2.8. A

new image is acquired at every sampling instant and a new depth map is estimated.

Image Image Image

Match Match Match Match

Regul. Regul. Regul. Regul.

Kalman Filtering Stage

✲

❄ ❄ ❄
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Cov∗(k)
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Disparity Field

Regularized Field

Depth Maps

Figure 2.8: Block diagram of the 3D vision system.

The matching process is applied to each pair of successive images to determine the

disparity vector field and the associated uncertainty. The disparity vector field is then

regularized to reduce the uncertainty level and fill in image areas where the matcher

has failed to determine the disparity. Each new observation (regularized disparities and

uncertainties) are finally used to update the depth estimates resulting from previous

measurements, by a Kalman filtering stage which leads to a decrease of the uncertainty

over time, as more information is being gathered and taken into account.
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2.9 Results

The 3D vision system presented in the previous sections has been tested for a wide va-

riety of synthetic and real images. The initial tests have allowed improvements in the

matching and regularization stages and suggested directions to overcome the different

problems found. In this section, we present several results, covering applications for both

underwater and land robotics.

2.9.1 Underwater application

The vision system was partially developed during the MOBIUS project of the European

Community MAST (Marine Science and Technology) Programme. The overall goal con-

sisted in estimating the bathymetry of the seabed during a mission of an autonomous

underwater vehicle (AUV) or a remotely operated vehicle (ROV). Marine robotics is

becoming a research field of major interest for applications such as environmental surveil-

lance, cable laying or inspection, exploration, etc. Within this scope, the Mobius project

aimed at developing a sensor combining an acoustical channel (sonar) and optic chan-

nel (vision) for high resolution mapping of the seabed. The results described in this

section correspond to the 3D maps recovered by the depth from motion vision system

[Santos-Victor and Sentieiro, 1992a, Santos-Victor and Sentieiro, 1992b].

The underwater image acquisition was done in a special test tank with a specially

designed camera for underwater applications. The camera main characteristics are the

high sensitivity and spectral response of the CCD sensor, particularly suited for underwa-

ter imagery without any external illumination [Santos-Victor and Sentieiro, 1993]. The

camera was fixed to a special mount and displaced vertically inside the tank, while some

objects were placed on the opposite side of the test tank. The experimental setup is shown

in Figure 2.9.

The underwater environment is quite challenging for vision applications due to the

extreme and difficult illumination conditions. Quite often, in fact, there are illumination

changes which harden the matching process and consequently the problem of depth re-

covery. This is a good example of how the use of equalization techniques is of paramount

importance in the matching process.
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Figure 2.9: Experimental setup for the underwater application. The camera motion is
vertical downwards, and obstacles were placed in front.

Figure 2.10 shows on the left column, an image pair acquired during the experiments.

It is seen that the image contrast is very poor and that there are important illumina-

tion changes between both images. Applying the matching process without the equal-

ization technique leads to the depth map shown on the top right image of Figure 2.10.

Depth is coded in gray level intensity, the darker points being closer to the observer.

The white areas correspond to matching failures. This result shows that without any

equalization (the top right image in Figure 2.10) only small areas within the image are

successfully matched. This is due to the lack of texture and to illumination changes

which violate the image brightness constancy hypothesis. On the other hand, the depth

map obtained using equalization is shown on the lower right image of Figure 2.10, where

a large number of image points have been correctly matched. Therefore, the equaliza-

tion techniques described in Section 2.3 proved to be essential to get some good results

[Santos-Victor and Sentieiro, 1993].

During the experiments in the test tank, the camera was moved vertically with a

downwards speed of 1 m/s, and the images are acquired every 0.4 seconds, yielding a

separation of 40 cm between successive images. Regarding the matching process, a 7× 7
matching window was used at the coarsest level. The equalization process is used whenever

the ratio between the gray level standard variation and the average gray level value, within
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Figure 2.10: Left : Underwater stereo image pair. Right : The top image shows the
depth map recovered using the equalization procedure, while the lower image corresponds
to the results using equalization.

the matching window, is greater than 0.01 (see Section 2.3.2).

In all the examples tested, a three-level pyramidal structure was used for the matching

and regularization procedures. The a priori depth map estimate is 12 meters for every

image pixel, with 0.001 m2 variance. The regularization parameter was set at λ = 1, and

the epipolar constraint weight, λep = 5.

Figure 2.11 shows results for one of the image sequences. The left column shows the

image sequence acquired during the camera motion, while the right column shows the

corresponding depth maps in perspective. It should be noticed the low contrast of the

input images and the brightness variation along the image sequence. Nevertheless, the

system has succeeded in estimating the depth structure of the scene. These results show

that the system is able to reconstruct the 3D shape of the scene. It is also noticeable

the improvement in the depth maps as time goes by. This is due to the integration of

multiple estimates by the Kalman filtering procedure. Very often, during the experiments,

the camera motion is affected by perturbations, which did not prevent the system from

retrieving the scene three dimensional structure.
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Figure 2.11: The left column shows the input image sequence, acquired during the
camera motion in the experimental pool. On the left side, the perspective view of the
reconstructed depth maps are shown.
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2.9.2 Land Robotics Application

The same vision system was tested with terrestrial images. In these circumstances, the

contrast is usually good when compared to the underwater images. However, the adaptive

equalization mechanism may still be useful in the presence of illumination changes (which

often happen in outdoor environments).

The input images used in one trial6, are shown on Figure 2.12. The camera motion

is divided in two segments. During the first half, the motion is horizontal towards the

right. The images corresponding to this part are arranged horizontally, thus suggesting

the camera motion. After a while, the camera starts moving vertically upwards, acquiring

the images shown in vertical arrangement. The complete image sequence comprises 12

images, 5 of which are shown in Figure 2.12.

The results obtained using this input sequence are shown on Figure 2.13. The repre-

sentation consists in a perspective view with the gray level textured mapped on top of

the 3D surface. With this kind of visualization it is easier to evaluate the quality of the

reconstruction. Again, the geometrical arrangement of the maps, suggests the camera

motion and corresponds to the input images shown in Figure 2.12.

The results shown illustrate the quality of the 3D reconstruction. The first estimated

depth map is still very distorted, while the accuracy is improved during the sequence and

time integration of more information. An important observation is worth mentioning :

during the first half of the sequence, the reconstruction of horizontal edges is difficult,

when compared to vertical edges. The reason why is that those edges are aligned with

the motion direction, thus hardening the matching process. When the camera starts the

vertical motion, then the reconstruction of horizontal edges becomes much easier, while

problems arise with vertical edges.

This idea stresses that, ideally, for the purpose of visual perception, the camera motion

should not be defined independently of the perceptual processes themselves. Instead,

much could be gained by linking action/motion and perception where motion would be

controlled to optimize, in some way, [Maver and Bajcsy, 1993] the quality of the perceived

data. This topic will be central in some of the following chapters of this thesis within the

6The images shown were kindly provided by the Robotics Institute of the Carneggie Mellon University.
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Figure 2.12: Image sequence for the land robotics example. Initially (images shown
horizontally), the camera moves along the x axis, to the right. Afterwards the camera
performs a upwards vertical motion (images shown vertically).
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Figure 2.13: Reconstructed depth maps using the land images. The maps are shown in
correspondence with the images of Figure 2.12.
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scope of active vision.

2.10 Conclusions

We have discussed that a mobile actor in order to perform numerous tasks has to be able

to perceive the structure of the surrounding space. Even though this may not imply the

need for a thorough reconstruction of the 3D structure of the environment, such a map

could be used for a variety of tasks ranging from navigation and manipulation to the

higher level tasks of planning and recognition. Naturally, the 3D depth reconstruction

may be a purpose in itself if, for example, we want to check the 3D characteristics of a

given part for quality control.

We have presented, in this chapter, a system for 3D visual reconstruction based on

stereo techniques. The system input is an image sequence acquired over time by a moving

camera. In the context of mobile vehicles the camera should be installed on the vehicle

during a given mission. Meanwhile, the images are used to build and continuously update,

over time, a three dimensional map of the visualized scene.

There are three main features on this system. First, the existence of uncertainty is

considered, from the beginning, and incorporated in the models. We have modeled and

estimated the uncertainty associated to the disparity measurements. Second, we have

used a regularization approach to reduce the uncertainty in the disparity vector field, and

fill in image areas where the matcher has failed to estimate the disparity. Finally, we use

a kalman filter to integrate, over time, multiple disparity measurements, which improves

the depth estimates accuracy.

The matching procedure is the most delicate process in the overall system, therefore

justifying the attention paid to this problem. We use an area based matching criterion

and, as mentioned before, we address not only the problem of determining the disparity

vectors but also the process of modeling and estimating the measurement uncertainty.

The matching criterion is a combination of an image gray-level difference term and the

geometric constraints imposed by the camera motion (epipolar line). This criterion has

been modified in order to compensate for illumination changes in the images, which often

occur, particularly in underwater images.
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The results herein presented, both in underwater and land environments, show the

3D reconstruction capabilities of the system. The dramatic improvement due to the illu-

mination compensation in the matching criterion was shown, namely for the underwater

images. Moreover, the results show the improvement, over time, of the reconstructed

depth maps due to the time integration procedure.

It should be stressed that most of the computations required in the depth estimation

problem are mostly local and therefore, much could be gained in terms of computing time,

by using massively parallel computation.

Even though we believe that driving a mobile robot throughout an unknown environ-

ment may not need a full 3D reconstruction (as it will be shown in the remaining chapters

of this thesis), the ability of building such a map, even at a low frequency, can neverthe-

less be useful for high level planning or recognition or when the map itself is the goal (as

in seabed bathymetry or photogrammetry). Therefore, whenever there is the purpose of

estimating the scene structure, this system can be applied to a large number of problems,

both in underwater and land robotics.
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Chapter 3

Visual based navigation

We have seen how to estimate the 3D structure of a given scene, using an image sequence

as the input. This knowledge can be used to plan a safe trajectory between two points,

grasp an object or for recognition purposes. However, since the environment is usually

dynamic, we have to consider a navigation strategy allowing the robot to react, in due

time, to environmental changes.

In this chapter we present a new approach for a real-time navigation system, which is

driven by two cameras pointing laterally to the navigation direction (Divergent Stereo).

The main assumption is that, for navigation purposes, the driving information is not

distance (as obtained by a stereo setup) but motion or, more precisely, the qualitative

optical flow information computed over non-overlapping areas of the visual field of the

two cameras. This qualitative information (no explicit measure of depth is performed) is

used in many experiments to show the robustness of the approach.

A mobile vehicle has been equipped with a pair of cameras looking laterally (much like

honeybees) and a controller, based on fast real-time computation of optical flow, has been

implemented. The control of the mobile robot (Robee) is driven by the difference between

the apparent image velocity of the left and the right cameras. The proposed navigation

strategy is inspired on recent studies describing the behaviour of freely flying honeybees

and the mechanisms they use to perceive range.

41
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3.1 Introduction

Research in computer vision has often been motivated by similarities with solutions

adopted in natural living systems. Since the early work in image processing and computer

vision, the structure of the human visual system has often been used, as the “natural”

model of artificial visual systems. Comparatively less effort has been devoted to the study

and implementation of artificial vision systems based on the so-called “lower level” ani-

mals. The posture stems mainly from the idea that by “understanding human vision” one

can obtain a “general” solution to the visual process, and eventually be able to develop

a “general purpose visual system”.1 We certainly agree that there is a lot to be learned

from human vision (and conversely there is a lot to be learned by trying to implement ar-

tificial systems with anthropomorphic features). However, such a “general purpose vision

system” does not exist, and we are convinced that a lot can be gained and understood by

looking at much simpler biological systems.

In fact, a more careful analysis reveals that the human visual system is not as general

purpose as it may look. For example, it is of little use in underwater environments, it has

a limited spectral band, it cannot measure distance, size or velocity in metric terms. Even

its recognition capabilities can be fooled very easily, for example by turning upside-down

pictures of even familiar faces. The apparent generality of the system comes from the

fact that we actually perform a limited number of motor and cognitive “actions” and,

within this limited domain, our visual system (or more generally the integration of our

perceptual systems) performs very efficiently.

Following these ideas, one could say that the goal of a vision system in a “living” agent

is not generality but specificity : the physical structure and the purpose drive perception

[Aloimonos, 1990, Bajcsy, 1985, Ballard et al., 1989].

Within the scope of this work we would like to argue that the frontal position of the

eyes (with a very large binocular field) is mainly motivated by manipulation requirements

and, if one restricts the purpose to navigation control, a potentially more effective eye-

positioning is the one adopted by flies, bees and other flying insects, namely with the

eyes pointing laterally. The tradeoff between these two extreme situations is that in the

1And, possibly, the notion that “human vision is complex while insect vision is simple”.



3.1. INTRODUCTION 43

latter case the global visual field (i.e. the union of the visual fields of the two eyes) can be

enlarged without increasing the computational power 2. On the other hand, by increasing

the binocular part of the visual field, the region where a stereo-based depth measure is

possible, becomes larger.

Looking again at biology, one finds out that the position of the eyes in different species

becomes more frontal as the manipulative abilities increase (it is not by chance that

humans and primates have, among all species, the wider binocular field and the more

frontal positioning of the eyes).

Other aspects worth considering are the fact that stereo acuity is maximal at short

distances which, behaviourally, correspond to the manipulative workspace. Moreover,

stereo is the only visual modality providing depth information in static environments

(which is behaviourally relevant particularly in manipulative tasks). Conversely, motion

parallax is useful if the “actor” or the environment are dynamic and its accuracy (and

the corresponding range of operation) can be tuned by an active observer, by varying its

own velocity. In this respect motion-derived features, such as time-to-crash, seem more

relevant to dynamically control posture and other navigation parameters : if one has to

jump over an obstacle, the change in posture while he/she is approaching the obstacle

(for example when to start to lift the leg), may be driven by “time-to-crash” more than

by distance (which would be dependent upon the approaching speed).

The biological model of the navigating actor proposed here, is inspired on insects and

on the use they make of flow information to solve apparently complex motor tasks like

flying in unconstrained environments and landing on surfaces [Franceschini et al., 1991,

Horridge, 1987, Lehrer et al., 1988, Srinivasan, 1992]. Particularly relevant to this work

is the experiment reported in [Srinivasan et al., 1991] where honeybees were trained to

navigate along corridors in order to reach a source of food. The behavioural observation

is the fact that, even if the corridor was wide enough to allow for “irregular” trajectories,

bees were actually flying in the middle of the corridor. This finding is even more surprising

if we take into consideration that insects do not have accommodation and, that the stereo

baseline is so small that disparity cannot be reliably measured. Apparently, then, no

2Of course one could use “technological tricks” like rear-viewing mirrors, but this is not a valid

argument in this context.
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depth information can be derived using “traditional” methods. The solution presented

in [Srinivasan et al., 1991], is rather simple and it is based on the computation of the

difference between the velocity information computed from the left and the right eyes :

if the bee is in the middle of the corridor the two velocities are the same, if the bee is

closer to one wall, the velocity of the ipsilateral eye is larger. A simple control mechanism

(the so-called centering effect) may, therefore, be based on motor actions that tend to

minimize this difference : move to the left if the velocity measured by the right eye is

larger than that measured by the left (and vice versa).

Following this line of thought, a mobile robot (Robee) has been equipped with laterally

looking cameras and a controller has been implemented, based upon motion-derived mea-

sures, which does not rely on precise geometric information but takes full advantage of the

continuous (in time) nature of visual information. Navigation is controlled on the basis of

the optical flow field computed over windows of images acquired by a pair of cameras point-

ing (in analogy with the position of the eyes in the honeybees and other insects) laterally

and with non overlapping visual field [Santos-Victor et al., 1993, Sandini et al., 1993b].

We called this camera placement Divergent Stereo.

While working on the experiments presented here, we became aware of a similar imple-

mentation (the beebot system) proposed in [Coombs and Roberts, 1992]. A discussion of

the differences between the two approaches will be presented later on. However, the main

difference lies on the fact that, while in the system proposed by Coombs and Roberts gaze

control is part of the navigation strategy, in the present implementation a simpler setup

has been analysed where gaze control becomes unnecessary by appropriately position-

ing the two cameras and by controlling some behavioural variables such as the “turning

speed”.

The experiments reported describe the behaviour of Robee in tasks like : following a

wall, avoiding obstacles, making sharp and smooth turns, and navigating along a funneled

corridor with a very narrow exit.

In Section 3.2, we describe the Divergent Stereo approach for robot navigation and

present the experimental setup. The computation of the optical flow is discussed in

Section 3.3. The control aspects will be addressed in Section 3.4. Finally, after the

presentation of the experimental results (in Section 3.5), a brief discussion will summarize
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the major points of this approach within the framework of qualitative vision.

3.2 The Divergent Stereo Approach

The basis of the visually guided behaviour of Robee is the centering reflex, described in

[Srinivasan et al., 1991] to explain the behaviour of honeybees flying within two parallel

“walls”. The qualitative visual measure used is the difference between the image velocities

computed over a lateral portion of the left and the right visual fields.

Even if the principle of operation is very simple a few points are worth discussing before

entering into the implementation details, in order to explain the underlying difficulties

and the design principles adopted. The first, and possibly major, driving hypothesis is the

use of qualitative depth measurements : no attempt is made to actually compute depth

in metric terms. The second guideline is simplicity : whenever possible, the tradeoff

between accuracy and simplicity has been biased towards the latter criterion. Finally,

the goal of our visuo-motor controller is limited to the “reflexive” level of a navigation

architecture acting at short-range. In spite of these limitations, we will demonstrate a

variety of navigation capabilities which are not restricted to obstacle avoidance or to the

“centering reflex”.

Among the practical problems encountered in the actual implementation, two are

worth discussing in order to better appreciate some of the concepts presented later on.

The first point regards the relationship between heading direction and optical flow com-

putation. Strictly speaking, flow information can be reliably used for the centering reflex

only when the directions of the two cameras are symmetric with respect to the heading

direction. For the camera placement of Robee (see Figure 3.1) this requirement is satis-

fied only during translational motion of the robot. During rotational motions (as during

obstacle avoidance), the flow field is not solely dependent on the scene structure. This

problem has been solved by Coombs and Roberts [Coombs and Roberts, 1992] by stabi-

lizing the cameras against robot rotations and by introducing a control loop keeping the

gaze aligned with the heading direction. The solution adopted in Robee is different, as

the two cameras are fixed. Section 3.3.1 presents a detailed analysis of the rotational field

and discusses ways to overcome this problem, either by using special control strategies,
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or by carefully selecting the camera positions.

A second, relevant, point is the unilateral or bilateral absence of flow information,

caused by the absence of texture, or by localized changes in environmental structure (e.g.

an open door along a corridor)3. If the centering reflex is applied in a crude mode, the

absence of flow information would produce a rather unsteady behaviour of the robot.

This problem has been solved by introducing a sustaining mechanism to stabilize, in

time, the unilateral flow amplitude in case of lack of information. This simple qualitative

mechanism does not alter the reflexive behaviour of Robee (in the sense that it is neither

based on prior knowledge of the environment, nor on metric information) and extends

the performance of the system to a much wider range of environmental situations (see

Section 3.4.3 for more details).

The experimental setup is based on a computer controlled mobile platform, TRC Lab-

mate, with two cameras pointing laterally. The two cameras, with 4.8mm auto-iris lenses,

are connected to a VDS 7001 Eidobrain image processing workstation. The left and right

images are acquired simultaneously, during the vehicle motion. The setup is illustrated in

Figure 3.1. During the experiments, the vehicle forward speed is approximately 80 mm/s.

3.3 Optical Flow Computation

To compare the image velocity observed by the left and right cameras, the average of the

optical flow on each side is computed. The optical flow is usually defined as the apparent

motion of the image brightness patterns observed when a camera is moving relative to vari-

ous objects [Horn and Shunck, 1981, Horn, 1986], and many authors have studied its main

characteristics [Koenderink and van Doorn, 1975, Koenderink, 1986, Verri et al., 1989].

The major assumption used to compute the optical flow from an image sequence is

the image brightness constancy hypothesis. Let I(x, y, t) be the gray level value at time

t at the image point (x, y). Then, if u(x, y) and v(x, y) are the x and y components of

the optical flow vector at that point, the image brightness constancy hypothesis can be

3This situation occurs, even with textured environments, if the relationship between “wall(s)” distance

and vehicle speed is such that the resolution of the optical flow computation is lower than image velocity

(e.g. if the robot is moving slowly and the “walls” are very far away).
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Figure 3.1: Robee with the divergent stereo camera setup

expressed as :

I(x+ uδt, y + vδt, t+ δt) = I(x, y, t) (3.1)

for a small time interval δt. If we expand the left-hand side of this equation in a Taylor

series, and let δt tend to zero, we obtain :

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (3.2)

This equation is known as the optical flow constraint [Horn and Shunck, 1981] and is

actually just an expansion of the equation

dI

dt
= 0 (3.3)

in the total derivative of I(x, y, t) with respect to time. The constraint equation (3.2) can

be rewritten in the form :

[Ix Iy].[u v]T = −It (3.4)

where Ix, Iy and It stand for the first order spatial and time derivatives of the image.

This equation shows that using local image measurements alone, we can only determine

the component of the optical flow, U⊥, in the direction of the image brightness gradient :

U⊥ =
It√

I2
x + I2

y

(3.5)
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which is called normal flow. However, nothing can be said about the optical flow com-

ponent along the direction of the image contour. This ambiguity is widely known as the

aperture problem [Horn and Shunck, 1981, Horn, 1986].

This structural limitation, has motivated the search for alternative methods and fur-

ther constraints on the optical flow allowing the recovery of both of its components

[Horn and Shunck, 1981], [Nagel, 1983], [Nagel and Enkelmann, 1986], [Nagel, 1987] or in

[Girosi et al., 1989, Little and Verri, 1989]. These methods are often extremely complex

and/or unstable4.

More recently, however, it has been shown that the normal flow conveys sufficient

information to accomplish many tasks related to visual perception [Fermüller, 1993b,

Huang and Aloimonos, 1991]. This is the approach followed in this thesis for different

visually guided robotic tasks (see Chapter 3 to Chapter 5). Therefore, we avoid imposing

extra constraints on the optical flow field.

The experiments used to demonstrate the Divergent Stereo navigation concept are

based upon a mobile platform moving on a flat floor. As the robot motion is constrained to

the ground plane, it can be assumed that the flow along the vertical direction is negligible

(unless there is a significant lateral motion, which is seldom the case). Hence, we can use

a simpler computation procedure, which is fast and robust (since, for example, it does

not involve the computation of second derivatives), by simply assuming in equation (3.2)

that the vertical flow component, v, is 0. The horizontal component of the flow vectors,

u, are then simply given by :

u = − It
Ix

. (3.6)

In order to obtain useful flow estimates, it is necessary, as in other similar approaches,

to smooth the images, in both space and time domains. Usually, this is accomplished

through the use of gaussian smoothing (in space and time). The temporal smoothing

is generally computed, centering the filter kernel in the image to be processed. This

procedure requires not only past images, but also images to be acquired after the time

instant under consideration (a non causal filter).

4Usually, these methods impose smoothness constraints on the optical flow field using some

sort of regularization technique, or relying on second or higher order time-space image derivatives

[Micheli et al., 1988, Uras et al., 1988, Otte and Nagel, 1994] which tend to be a very ill-posed problem.
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The time delay introduced with this procedure, becomes relevant when the visual

information is to be used for real-time control because it introduces a lag in the feedback

control loop. In our approach, instead, having the control application in mind, a causal

first order time filter has been used, which recursively updates the time smoothed image :

Is(0) = I(0)

Is(t) = λIs(t− 1) + (1− λ)I(t), with 0 ≤ λ ≤ 1 (3.7)

where I(t) and Is(t) stand for the image acquired at time t and the corresponding temporal

smoothed image. The parameter λ controls the desired degree of smoothing. When λ is

larger, the images are more smoothed in time. Using the recursive time filtering procedure,

only present and past images are required for the time filtering process 5.

The spatial smoothing is performed by convolving the time smoothed images, with a

gaussian filter, and the time derivative is simply computed by subtracting two consecutive

space and time smoothed images.

To speed up the optical flow computation, a set of five images is acquired at video rate

and the temporal smoothing of both, left and right image sequences, starts concurrently

to the acquisition. The last two images (on each side) of the time smoothed sequence,

are then used to compute the average, left and right, optical flow vectors. Finally, the

difference between the average flow on the left and right images is used to synthesize

the control law. Then, a new sequence of 5 images is acquired, and the whole process is

repeated. In this way, the images are sampled at video rate even if the complete system

operates at a slower rate (determined by the computation time which varies with the

number of non-zero flow vectors).

The images acquired have a resolution of 256x256 pixels, and the optical flow is com-

puted over a window of 32x64 pixels on each side. In the current implementation, the

averaged optical flow vectors are computed at a frequency of approximately 1.5Hz.

In order to clarify the Divergent Stereo approach, we performed an open-loop exper-

iment, illustrating the obstacle detection capabilities. Figure 3.2 shows the experiment

setup and an image with the flow vectors superimposed. The vehicle is moving at a

5Regarding memory storage, it is only necessary to store I(t), Is(t) and Is(t − 1).
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forward speed of 80mm/s. Along the rectilinear trajectory, the robot will pass midway

between the left wall and an obstacle placed on the right side. At this point, the robot

is centered relatively to the left wall and the obstacle, and the bilateral flow difference

should be 0.

42cm

108cm

Figure 3.2: Experimental setup for the obstacle detection experiment. A sample of the
computed optical flow is shown on the right.

The evolution in time of the difference between the left and right average flow fields is

shown in Figure 3.3. As expected, the difference is initially positive, as the robot is closer

to the left than to the right wall and, when approaching the obstacle, the error tends to

zero, as the vehicle is approximately centered with respect to the obstacle and the left

wall. After passing the obstacle, the difference tends approximately to the initial value,

again, as the robot proceeds, following a rectilinear path.
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Figure 3.3: Difference between the left and right average flows, during the obstacle
detection experiment. The full path takes 20 seconds, covering a distance of about 2.4m.
The filtered signal (dashed line) results from applying a first order filter to the measured
values.
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This experiment shows the sensitivity of the proposed perception process when per-

forming an obstacle detection task, thus motivating its use in a closed loop fashion. An

important remark is that the system does not critically depend on the accuracy of the

optical flow computation, because the measurements are used continuously in closed loop.

3.3.1 Analysis of rotational flow

The vision-based centering reflex relies on the assumption that the optical flow amplitude

is only dependent on the distance between the cameras and the environment. Strictly

speaking, this assumption is valid if the two cameras are pointing symmetrically with

respect to the heading direction, and the heading direction does not change. However,

this constraint does not hold during the rotational motion, necessary to adjust the heading

direction, because the roto-translation of the cameras introduces a component on the flow

field which does not depend on distance.

This section presents a detailed analysis of the rotational flow of the Divergent Stereo

setup, and explains how the disturbances introduced during robot rotations, can be re-

duced and eventually made irrelevant, by appropriately positioning the cameras with

respect to the vehicle rotation center and by tuning some of the centering reflex control

variables.

Figure 3.4 describes the set of coordinate systems associated to the robot. Let the

robot coordinate system be denoted by {X,Y}, and the left/right cameras coordinate
systems by {x,y}. The setup is symmetric and the right camera optic center has polar
coordinates (ρ, θ) with respect to the origin of the robot coordinate system.

The translational component of the camera motion, (Ẋ, Ẏ ), due to the rotation of the

robot around its geometric center is given by :

ẊL = −ρ θ̇ sin θ

ẎL = −ρ θ̇ cos θ

ẊR = −ρ θ̇ sin θ

ẎR = ρ θ̇ cos θ

where the subindex refers to the left or right cameras. By expressing this motion param-

eters in the cameras coordinate systems, it yields :
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Figure 3.4: Coordinate systems associated to the vehicle for the analysis of the rotational
motion.

ωL
y = θ̇

TL
x = −ρ θ̇ cos θ + TM

TL
z = ρ θ̇ sin θ

ωR
y = θ̇

TR
x = −ρ θ̇ cos θ − TM

TR
z = −ρ θ̇ sin θ

where Tx, Tz denote the x and z components of camera linear velocity, ωy is the y com-

ponent of the camera angular velocity and TM is the robot forward speed.

The influence of the rotation can be perceived in the following equations describing

the horizontal component, u, of the image motion field :

uL =
1

ZL

[xaρ θ̇ sin θ + ρ θ̇ cos θ − TM ]− (1 + x2
a) θ̇

uR =
1

ZR

[−xaρ θ̇ sin θ + ρ θ̇ cos θ + TM ]− (1 + x2
a) θ̇

where xa denotes an image point coordinate expressed in units of focal length.

Observing that the left and right flow fields have opposite directions, (due to the choice

of the cameras coordinate systems) the comparison of both left/right lateral flows is given

by the sum of uL and uR :

e = uL + uR (3.8)

= [TM − xaρ θ̇ sin θ]
(
1

ZR

− 1

ZL

)
+ ρ θ̇ cos θ

(
1

ZR

+
1

ZL

)
− 2(1 + x2

a) θ̇ (3.9)
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In the absence of rotation, this equation is simplified to :

e = TM

(
1

ZR

− 1

ZL

)
. (3.10)

This equation shows that, without rotation, the error signal, e, is directly proportional to

the deviation from the center trajectory. The robot forward speed appears as a scaling

factor which has the role of a sensitivity gain. However, if the rotational motion is

important, the circumstances under which the lateral flow comparison is still meaningful

as a trajectory deviation measurement, have to be considered. There are three main

contributions to be analysed :

1. In the first term, [TM−xaρ θ̇ sin θ]( 1
ZR

− 1
ZL
), the rotation affects the sensitivity gain.

Avoiding large variations of this gain, which would influence the system closed-loop

behaviour, introduces a constraint between the maximum rotation speed and the

robot forward speed, TM . This requirement can be met by suitably selecting the

values of θ and ρ, or increasing the vehicle speed.

2. The term ρ θ̇ cos θ( 1
ZR
+ 1

ZL
) depends on the unknown 3D structure but does not

convey any information on the deviation from the optimal trajectory. It can be

made small enough, by installing the cameras closer to the vehicle rotation center,

hence reducing ρ.

3. The term −2(1 + x2
a) θ̇ is not dependent on the 3D structure of the environment.

A calibration procedure could be designed to compute the correspondence between

rotational speed (which is internally controlled) and displacements in the image

plane. During normal operation, this term can be compensated.

3.3.2 Design specifications

The problem of determining a set of design constraints to overcome the problems due to

the rotational motion will be analysed in this section. The analysis will be restricted to

the structure dependent terms which appear in equation (3.9).

Concerning the first term, it can be seen that the rotation leeds to changes in the

sensitivity of the error signal to the trajectory deviation factor (see equation (3.10) ).
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Very fast rotations could even lead to unstability. Therefore, a natural constraint will be

such that the rotation term does not affect, too significantly, the sensitivity gain :

xaρ θ̇ sin θ < αTM (3.11)

where α ∈ [0, 1] is the admissible relative change in the sensitivity gain. Alternatively,

the second term in the error signal should also be kept small relatively to TM :

ρ θ̇ cos θ < β TM (3.12)

where β ∈ [0, 1] quantifies the admissible relative magnitude of this term.
A suitable setup (ρ, θ) can be chosen to meet these specifications. There are two other

ways to satisfy these constraints in practice. The first one, consists in fixing the value for

the forward speed, and limiting the value of θ̇, by saturating the control variable before

it is applied to the robot (in natural systems this may be an intrinsic constraint) :

θ̇ < min

(
α TM

xaρ sin θ
,

β TM

ρ cos θ

)
. (3.13)

Another way of addressing the problem consists in having an extra control loop, that

dynamically adjusts the vehicle forward speed, to fulfill the design constraints :

TM > max

(
xaρ θ̇ sin θ

α
,
ρ θ̇ cos θ

β

)
. (3.14)

As a numerical example, let the values of the current setup be considered :

θ = 72o

TM = 0.08 m/s

ρ = 0.34 m .

Since the focal length of the lenses is 4.8mm, roughly the same order of magnitude as

the size of the CCD chip, a reasonable approximation for the upper bound of xa is xa � 1.

The following constraints arise from these settings :

θ̇ < min( 0.247α, 0.759β ) rad/s . (3.15)



3.4. REAL-TIME CONTROL 55

For example, by setting the project parameters α and β to 0.5 and 0.2, respectively,

yields6 :

θ̇ < 7.1 deg/s . (3.16)

To conclude, one can say that through careful placement of the camera system and

choice of some design parameters, the constraints derived in this section can be met. It

is worth stressing, however, that the proposed solution only represents an approximation

based on qualitative observations. On the other hand, the experiments performed, clearly

show that the desired behaviour is obtained and that the choice of the design parameters

is by no means critical, illustrating the robustness of the approach proposed.

Obviously, another possibility to overcome the rotation problem is to inhibit the control

action whenever the robot is required to rotate faster than the maximum allowable speed

(a sort of “saccadic” motion which resembles very much the behaviour of insects). During

our experiments we have tried several approaches such as using the design specifications

explained in this section or adopting the “inhibitory” solution, by actually disregarding the

flow measurements during fast rotations. Robee performed equally well in both situations.

The solution adopted by Coombs and Roberts is also satisfactory. However, the higher

complexity, introduced by the stabilization of the cameras against head rotations and by

alignment of the eyes with the heading direction, does not seem to improve behavioural

performance.

3.4 Real-time Control

The overall structure of Robee control system involves two main control loops :

1. Navigation loop - Controls the robot rotation speed in order to balance the left and

right optical flow.

2. Velocity loop - Controls the robot forward speed by accelerating/decelerating as a

function of the amplitude of the lateral flow fields7.

6The choice of these numerical values is a way of specifying a threshold relative to some known nominal

quantity.
7Robee accelerates if the lateral flow is small (meaning that the walls are far away), and slows down

whenever the flow becomes larger (meaning that it is navigating in a narrow environment).
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Additionally, a sustaining mechanism is implicitly embodied in the control loops to

avoid erratic behaviours of the robot, as a consequence of localized (in space and time)

absence of flow information. These aspects and the analysis of the different control loops

will be presented in the following sections.

3.4.1 Navigation Loop

The analysis of the control loops is based on simplified dynamical models of the control

loop components and on the use of linear systems theory8.

The robot heading direction (controlled variable) is controlled by applying a rotation

speed (control variable) superimposed on the forward motion. The simplest dynamic

model of the system must account for two important terms : an integral term relating

the input angular speed and the output angular position; the mechanical inertia of the

system, which is modeled by a first order dynamic system. In continuous time, the transfer

function relating the control and controlled variables, according to our simple model, is

given by :

Gc(s) =
a

s (s+ a)
(3.17)

where a is the dominant low-frequency mechanical pole.

Since we are using digital control, we must determine how the computer (where the

control algorithm is implemented) “sees” the system. As a sample-and-hold mechanism

is being used, the step invariant method is appropriate to determine the discretized sys-

tem [Astrom and Wittenmark, 1986]. Considering the low-frequency pole at 5 Hz, and a

sampling period of τ = 0.7s, we obtain :

Gd(z) =
0.468z + 0.0318

z2 − (1 + 1.51e−7)z + 1.51e−7
. (3.18)

Again for simplicity, we may assume that the difference between the left and right

flow vectors, provides the error, e, between the robot direction, ξrobot, and the direction

of the lateral walls, ξwalls, with a delay of one sampling period introduced by the flow

computation. This approximation is only valid for small course deviations, since the visual

8A more accurate control analysis/synthesis is undergoing.
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process is, in fact, non linear. The sensor model is then given by :

e(k) = ζwalls(k−1) − ζrobot(k−1) . (3.19)

Qualitatively, e(k) is positive if the left side flow is larger than the right side flow,

which means that the left wall is closer than the right one. Hence, the appropriate control

action would be turning to the right. The discrete time PID controller, that is used to

close the navigation loop, performs the following control law :

u(k) = Kp[ e(k) +Ki

∑
n

e(k−n) +Kd(e(k) − e(k−1)) ] (3.20)

where u is the control variable (rotation speed in degrees/s ) and e(k) stands for the error

signal observed at time instant k. The transfer function corresponding to the PID is given

by :

GPID(z) = Kp
(Ki +Kd + 1)z

2 − (1 + 2Kd)z +Kd

z(z − 1) . (3.21)

By connecting all these models, we obtain a linear feedback loop as shown in Figure

3.5.

Ref.
Direction

Motion
Directione(k)

PID

Divergent
Stereo Sensor

u+

-

+
Mobile Robot

       Gd(z)
z-1

Figure 3.5: This block diagram illustrates a simple modelization of the robot navigation
system

Although a thorough analysis of the system behaviour, with different control settings,

can hardly be done based on approximate models, a discussion can still provide us some

insight and understanding on the performance of several classes of controllers.

As a start, the loop could be closed simply by using a proportional gain (by setting

the integral and derivative gains to zero). The root-locus corresponding to this situation

is shown in Figure 3.6.
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Figure 3.6: Root-Locus corresponding to the proportional controller. The unit circle is
shown in dotted line for easier stability analysis.

Even though the proportional controller succeeds in stabilizing the system, fast re-

sponses can only be attainable with large values of gain which lead to significant oscillatory

behaviour, as the dominant poles become complex conjugate.

By adding a derivative component to the controller (which basically works as a predic-

tive term, thus coping better with the delay), one can expect to achieve faster responses,

even for smaller gain values. Figure 3.7 shows the root-locus in this situation. The deriva-

tive component is fixed to Kd = 1.5 . The effect of adding the extra zero is that the low

frequency pole is attracted into the higher frequencies, thus improving the response time

of the system. Also, for large gains the oscillatory behaviour of the system is reduced.

Finally, the effect of inserting the integral component in the controller can be analysed

by considering the root-locus shown in Figure 3.8. The parameters used are Ki = 0.1 and

Kd = 1.5. In this last situation, adding a discrete integrating effect (an extra pole in 1),

decreases the stability margin of the system, as well as the response speed. In practice, the

system may even become unstable due to various unmodeled components or perturbations,

such as the non linearities in the visual processing.

This simplified analysis, allowed us to gain important insight and understanding on the
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Figure 3.7: Root-Locus corresponding to the proportional-derivative controller. The
derivative gain was fixed at Kd = 1.5 .
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Figure 3.8: Root-Locus corresponding to the PID controller.
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behaviour of the system under the different controller topologies. Further modeling is still

necessary for a quantitative analysis or a more systematic control synthesis. Nevertheless,

some of the ideas discussed in this section were later on verified in the experiments, as

described in Section 3.5.

3.4.2 Velocity Control

This section presents the strategy proposed to control the robot forward speed based on

the environment structure. The rationale is that, if the robot is navigating on a narrow

environment, it is safer to decrease the forward speed; whereas if it is moving on a wide

clear area, it is reasonable to increase its speed.

The mean flow vector on each side of the robot gives a qualitative9 measurement of

depth. By averaging these bilateral mean flow vectors, a qualitative measurement of width

is obtained.

The control objective amounts to keeping the average flow close to some specified

reference value. If the flow increases, the robot should slow down, thus reducing the

observed flow. This behaviour, which can be implemented within the purposive approach

described here, is not only coherent from the perceptual viewpoint (it agrees with what

a human driver, for example, would do) but also increases the safety. Qualitatively, this

corresponds to saying that the size of the environment is scaled by the robot speed.

Let To be the nominal speed, at which the robot should move, and let fo be the

corresponding nominal flow. For safety purposes, the robot speed, T , is constrained to

the interval [(1 − β)To, (1 + β)To], where β ∈ [0, 1] quantifies the permissible excursion.
A sigmoid function is used as smooth saturation, as shown in Figure 3.9.

The velocity to be applied to the robot is given by :

T = To

[
1− β +

2β

1 + eδ(f−fo)

]
(3.22)

where f is the average between the left and right flows, and δ determines how fast the

speed variation should be with respect to the flow variation. To determine δ, one can

say, for example, that 90% of the total velocity excursion should be reached for a relative

9Qualitative in the sense that it is not a measure of depth, and, moreover, depends on the robot speed.
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Figure 3.9: The sigmoid function, used in the velocity control loop, describes how the
robot forward speed should change, with relation to the measured flow. It is used to
introduce a smooth saturation on the robot velocity.

variation of φ around the nominal flow. By using equation (3.22), δ is given by :

δ =
ln 19

φfo
. (3.23)

In the current implementation, we have used β = 0.5, φ = 0.3, and a reference flow of

fo = 2.0 pixels/frame, yielding δ = 4.95.

3.4.3 “Sustained” behaviour

The navigation system, described in the previous sections, allows the robot to navigate

by balancing the flow measurements on the left and right sides. Therefore, it can only

be applied as long as there is texture on both sides of a corridor–like environment. This

situation is not entirely satisfactory for two reasons :

• It would be nice if the reactive behaviour of Robee could be used in environments
far more complex than corridors.

• In most mission scenarios, Robee would most certainly find environments with
“walls” not uniformly covered with texture. This fact would cause an illusory percep-

tion of infinite distance and, therefore, elicit unappropriate behaviours (for example,

if an open door is found while traveling along a corridor).

To overcome these problems, we have introduced in the control strategy a mechanism

that is able to cope with unilateral lack of flow information. Whenever it occurs, the
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control system uses a reference flow that should be sustained on the “seeing” camera (i.e.

the camera still measuring reliable flow).

This mechanism monitors whether there is significant flow being measured on both

sides of the vehicle, or if just one (or none) of the cameras is capturing significant flow.

Three situations may arise :

• Bilateral flow - Optical flow is measured in both cameras. Consequently, the

robot is locally navigating in a corridor, and the standard navigation strategy can

be applied

• Unilateral flow - Only one camera is capturing flow information. Without the

sustaining mechanism, the robot would simply turn towards the side without flow

measurements, trying to balance lateral flows. A more appropriate behaviour, in-

stead, would be keeping the unilateral flow constant, hence following the ipsilateral

wall at a fixed distance. With such strategy, the robot may cross corridors with open

doors, even with partially untextured walls and, when arriving to a room, follow the

walls at a fixed distance.

• Blind - If none of the cameras is capturing flow information, the robot is virtually

blind. This robot should either stop or follow straight ahead for a while, or even

wander in a random exploratory way, until some texture is again found. Currently,

Robee stops if this situation arises.

Let us analyse how, without any prior knowledge of the environment, the sustaining

mechanism is implemented . During normal operation, the reference flows are estimated

by filtering over time each of the lateral mean flow vectors. The time filtering takes into

account the number of vectors that contributed to the mean computation :

f̄(t) =
αn̄(t−1)f̄(t−1) + (1− α)n(t)f(t)

αn̄(t−1) + (1− α)n(t)

(3.24)

n̄(t) =
αn̄2

(t−1) + (1− α)n2
(t)

αn̄(t−1) + (1− α)n(t)

(3.25)

where f(t) is the mean flow, computed at time t, with n(t) flow vectors; f̄(t), n̄(t) are the

corresponding time filtered values; and α ∈ [0, 1] is a time decay constant. Functionally,
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α determines the amount of past flow information that should be “remembered” in the

filtering process.

The system enters the sustaining mode whenever it is unable to estimate reliable flow

vectors on one side. In the experimental tests, α was set to 0.6, which agrees with the

time filtering parameter used for temporal smoothing.

As a final remark, we would like to stress that the proposed approach extends consider-

ably the performance of the “reactive” behaviour and that the use of both the corridor and

the wall following behaviours in task–driven navigation is straightforward. In particular,

two potential applications are worth mentioning :

• The “reactive” control of Robee can be used to acquire information about environ-
mental structure. In fact, odometric information, coupled with the sensory informa-

tion of Robee, would allow to build a map of the environment in terms of corridors

and walls which could be used by a planning system to drive navigation on a higher

level.

• The planner of a robot moving in a known (but variable) environment could take
advantage of “task–level” commands like : “navigate to the end of the corridor” or

“follow a wall” without relying on geometric information which, ultimately, may be

difficult to acquire and maintain in realistic environments.

3.5 Results

This section presents the results of a set of tests that clearly demonstrate several ap-

plications of the Divergent Stereo navigation approach. The goal of the experiments is

the study of the closed loop behaviour of the visually guided robot. In order to test the

performance in a wide range of environmental situations and to analyse in more detail the

influence of the different controller settings, three experimental scenarios with increasing

degree of difficulty have been considered. The final experiment illustrates the sustaining

mechanism along with the velocity control loop. In all the results presented the trajectory

of the robot was recorded from odometric data during real-time experiments.
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3.5.1 Turn Experiment

On the first set of experiments, the robot was tested in a turning corridor setup, as shown

in Figure 3.10.

         -1.2 1.8

-0.6

3.6

X

Y

[m]

[m]

Figure 3.10: Setup used for the turn experiment. The vehicle is supposed to perform
the turn, using the divergent stereo navigation strategy.

The whole navigation system has been tested with different controller settings. For

these experiments, the integral gain Ki, was fixed to zero, as suggested by the discussion

on the controller design.

In the first three experiments, the influence of the derivative gain on the navigation

performance has been studied. Figure 3.11, shows the trajectories followed by the robot

with a fixed proportional gain, Kp = 1.5, and using for Kd the values of 1.0, 1.2 and 1.4.

The trajectories were recorded using the odometry information, and are shown superim-

posed on the experimental setup.

To evaluate the effect of the proportional gain on the controller, another set of tri-

als was performed. The integral and derivative gains were kept constant (Ki = 0 and

Kd = 1.2), while using for Kp the values of 1.25, 1.5 and 1.75. The results are shown in

Figure 3.12.

The analysis of the trajectories show that, by increasing the value of Kd, the response
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Figure 3.11: Results obtained in the closed loop operation in the turn experiment. The
controller settings were Kp = 1.5, Ki = 0 and using for Kd the values (from left to right)
of 1.0, 1.2 and 1.4. The trajectory was recovered using odometry.
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Figure 3.12: Results obtained in the turn experiment (closed loop operation). The
controller settings were Kd = 1.2, Ki = 0 and using for Kp the values (from left to right)
of 1.25, 1.5 and 1.75. The trajectory was recovered using odometry.
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becomes faster, even though the trajectories may become less smooth. On the other hand,

by increasing Kp, the response becomes faster but not as fast as when the derivative

component is increased

3.5.2 Funnel

In another set of experiments, we used a funneled corridor with an obstacle. The setup

is shown in Figure 3.13. When navigating in this environment, the robot must avoid the

obstacle while trying to keep centered in the funneled corridor. This situation is particu-

larly interesting because it forces the robot to react to sudden changes (the obstacle) as

well as to smooth changes of the environment structure.

         
-0.6

Y[m]

3.6

X[m]-1.8 1.2

Figure 3.13: Setup used for the funneled corridor experiment. In this scenario, the robot
has to avoid an obstacle while managing to keep the track in the funneled corridor.

Again, different settings of the PID controller have been used, in order to study the

robot behaviour. Figure 3.14 shows the trajectories corresponding to three of those ex-

periments. The robot trajectory, recovered from odometry, is superimposed on the setup

layout.

The first trial represents an experiment with the controller tuned with {Kp = 1.5,

Ki = 0.0, and Kd = 1.5}, which led to a nice trajectory. On the second trial, the integral
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Figure 3.14: Funneled corridor experiment. The leftmost and rightmost plots show the
results of increasing the proportional gain while decreasing the derivative gain. In the
center, it is seen the unstable behaviour due to the insertion of the integral action.

component has been introduced using {Kp = 1.5, Ki = 0.1, Kd = 1.5 }. As suggested by
the discussion made in Section 3.4, an unstable behaviour was observed, with the vehicle

moving towards the left wall. Finally, on the third experiment a nice performance was

also obtained by slightly increasing the proportional gain, while diminishing the derivative

gain {Kp = 1.8, Ki = 0.0, Kd = 1.2}. As expected, a somewhat smooth trajectory was
obtained.

The tests performed, enhance the importance of suitable control system design, and

clearly show the aim of our discussion of the modeling and control system design. Even

if further improvements on the vehicle dynamics modeling are certainly necessary, it is

worth noting that the behaviour of the robot does not depend upon critical values of the

controller settings and, therefore, the robustness of the system is very promising.

3.5.3 Corridor

In this set of experiments, a corridor which is just slightly larger than the robot and with

a sharp turn in the end has been used (see Figure 3.15) to test the performance of the

system on a combination of different environmental situations.

Also in this situation, several trials were performed, changing the parameters of the
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Figure 3.15: Setup used for the corridor experiment. The corridor is just slightly larger
than the robot, and has a tight turn in the end.

PID controller. Figure 3.16 shows the trajectories obtained by increasing the values of

Kp. The derivative gain is fixed in Kd = 1.2, while the proportional gain increases from

left to right Kp = 1.2, 1.4, 1.6 . The integral gain is not used.

On the second set of trials, the proportional gain is set to Kp = 1.4, and the derivative

gain is increased from left to right Kd = 1.0, 1.2, 1.4 . Again, the integral gain is not used.

The trajectories are shown in Figure 3.17.

The results show that by increasing, both the proportional and derivative gains, the

response becomes somewhat faster. In general, by increasing the derivative gain leads to

a faster behaviour of the control system.

3.5.4 Velocity Control

In order to test the velocity control, the robot was navigating through a funneled corridor,

where the width changes from 1.65m to 1.25m. The full length of the funneled corridor

is about 2.25m.

Since the corridor is becoming narrower, the average flow increases. By introducing

the velocity control mode, the robot velocity will decrease in order to keep a constant flow.
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Figure 3.16: Corridor experiment. The derivative gain is fixed in Kd = 1.2, while the
proportional gain increases from left to right Kp = 1.2, 1.4, 1.6. The integral gain is not
used.
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Figure 3.17: Corridor experiment. The proportional gain is fixed in Kp = 1.4, while the
derivative gain increases from left to right Kd = 1.0, 1.2, 1.4.
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Figure 3.18 shows the average between the left and right flows measured over time. The

filled line was obtained without velocity control (showing increasing flow values), while

the dotted line shows the action of the velocity control keeping image flow close to the

desired value of 2 pixels/frame.
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Figure 3.18: The average between the left and right flows obtained in an experiment
with (dotted line) and without (filled line) velocity control. The nominal flow is 2.0
pixels/frame and the nominal velocity 80mm/s.

The evolution of the robot velocity along the path is shown in Figure 3.19. It is seen

that, as the corridor is narrowing, the velocity decreases in order to keep the flow to a

lower safer value.
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Figure 3.19: The robot speed in mm/s during the funneled corridor experiment. As the
corridor narrows, also the velocity decreases for safer operation.

Other experiments were performed using the proposed strategy. Particularly, it is
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interesting to see that, during the corridor experiment, the final turn is done at a reduced

speed enabling the robot to make a softer, safer turn.

3.5.5 Sustained behaviour

This experiment was designed to show the influence of the sustaining mechanism upon

the robot behaviour and how it can deal with different environment structures. The first

experiment consisted in using a corridor which exhibits a lack of texture on the right

side, and whose left wall suddenly finishes in a room. Figure 3.20 shows the trajectories

obtained by activating (center) and de-activating (left) the sustaining mechanism. In the

latter case, the robot turns left trying to balance both lateral flows while, in the former,

a reference flow value is sustained leading the robot to follow the right wall.
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Figure 3.20: Sustained mechanism experiment. The left diagram corresponds to the
behaviour of the robot without the sustaining mechanism. At the center, due to the
sustaining behaviour, the robot manages to follow the right wall. The rightmost diagram
corresponds to an experiment along the corridor with an open door on the left and a lack
of texture on the right.
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Another experiment was made using the corridor setup, where some texture was re-

moved from the corridor walls, and a door, roughly located midway in the corridor, was

left opened. The results are documented in Figure 3.20.

To conclude, we would like to claim that the proposed approach, both on the control

and visual perception facets, led to good results and proved the feasibility of a naviga-

tion system based on these principles. Furthermore, it should be noticed that with the

introduction of the sustained behaviour, the robot is able to navigate in a much wider set

of environments. In fact, only one textured wall is needed for the navigation strategy to

work.

It is worth noting that, the design principles adopted to eliminate the influence of

the rotational component of the optical flow, did prove successful in our experimental

conditions and, therefore, even if a stabilization mechanism is desirable or even mandatory

in other situations, it is not strictly necessary to produce the kind of behaviours described

in this thesis.

3.6 Conclusions

A qualitative approach to visually-guided navigation based on optical flow has been pre-

sented motivated by studies and experiments performed on freely flying honeybees.

The approach is based on the use of two cameras mounted on a mobile robot with the

optical axes directed in opposite directions such that the two visual fields do not overlap

(Divergent Stereo). Range is perceived by computing the apparent image speed on images

acquired during robot motion.

A real-time computation of optical flow is presented, based upon the constraints im-

posed by the geometry of the cameras and by the navigation strategy. Furthermore,

some suggestions have been presented on how to select some design variables in order to

make the disturbances due to the rotational motion, irrelevant to the described reactive

behaviours.

A PID controller was used to close the visuo-motor control loop. The closed loop

behaviour was studied, based on models of the different control system components. The

analysis of the control system design led to a suitable configuration for the PID controller.
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The approach has been tested using real-time experiments to accomplish different

navigation tasks, like performing a tight turn or navigating through a funneled corridor.

The influence of the control parameters on the system behaviour was studied and the

results confirmed, for the assumptions made, the discussion on the control system design.

A controller for the robot forward velocity was also studied and implemented. Ex-

periments have been made to show the improvement achievable by including this control

loop in cluttered environments.

Finally, through the insertion of a sustained behaviour, the robot is able to navigate

in environments rather more complex than a simple corridor, showing the capability of

operating in sparsely textured corridors, and following unilaterally textured walls.

All the experiments were performed without the need for accurate depth or motion

estimation, nor requiring a calibration procedure (besides the manual positioning of the

two cameras).

The main features of Robee can be summarized as follows :

• Purposive definition of the sensory apparatus and of the associated processing. In

fact, the approach proposed cannot be considered general but, with limited com-

plexity, solves a relevant problem in navigation : the control of heading direction in

a cluttered environment.

• Use of qualitative and direct visual measures. In our opinion this is not only a “re-
ligious” issue but, more importantly, a way to achieve a reasonable autonomy with

limited computational power. Successful examples of this approach have recently ap-

peared in the literature both with respect to reflex-like behaviours for obstacle avoid-

ance [Enkelmann, 1990, Ferrari et al., 1991, Fossa et al., 1992, Gaspar et al., 1994,

Sandini and Tistarelli, 1990] and in relation to more “global” measures of purposive

navigation parameters [Fermüller, 1993a].

• Continuous use of visual measures. A further aspect worth mentioning is the

attempt made at developing a sensory system providing a continuous stream of en-

vironmental information. A first advantage is the increased robustness implicit in

the use of repeated measures (no single mistake produces catastrophic errors) and
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a secondary, and potentially more important, advantage is the possibility of im-

plementing sensory-motor strategies where the need for a continuous motor control

is not bounded by an “intermittent” flow of sensory information. This paradigm

is, in our opinion, a non trivial evolution of some active vision implementations

where the motion of the (active) observer is seen “only” as a way of taking ad-

vantage of the stability of the environment (e.g. by moving the vehicle along pre-

programmed, known trajectories to reduce uncertainty). The use of vision during

action [Sandini et al., 1993a], on the contrary, may be a very powerful extension of

the concept of active observer by exploiting the use of dynamic visual information

not only at the “reflexive” level of motor control.

• Simplicity. This feature is often regarded as an engineering and implementation

aspect and, as such, is not explicitly considered a scientific issue. This view, in

our opinion, must be changed if reasonable applications of computer vision are ad-

dressed. The issue of simplicity, however, should not be considered, within specific

aspects of intelligent actor’s design (such as, sensory systems, mechanical design,

computational architecture etc.) but must be considered at system level. Robee is

an example of such an holistic view of simplicity where the purpose is achieved by

a comprehensive analysis and integration of visual processing, sensor design, sensor

placement, control law and vehicle structure. In this respect low-level animals (and

insects in particular) are extremely interesting examples of “simple” actors where

all engineering aspects are mixed exploiting not only “computational” issues but,

more importantly, the cooperation of “intelligent” solutions which, if considered sep-

arately, may look like interesting implementational tricks but, once acting together,

produce intelligent behaviours.

Before concluding, it is worth mentioning the fact that Robee is blind in the direction

of motion (it will bump against an obstacle just in front of it). This problem will be

addressed in the next chapter.

On the other hand, for the navigation behaviour, we are using only a very limited

portion of the lateral visual field. A more frontal part of the visual field, can be used

to extract other motion-derived measures (e.g.time-to-crash) to control, for example, the
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docking speed and the heading direction of a mobile robot. These aspects will be focused

and presented in Chapter 5.
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Chapter 4

Visual Obstacle Detection

As discussed in the previous chapter, the Divergent Stereo approach that has been pro-

posed, allows Robee to manoeuvre in cluttered environments, but it is blind in the direction

of motion, thus being unable to avoid obstacles located ahead. In this chapter, we propose

a visual obstacle detection behaviour to overcome this limitation.

4.1 Introduction

Traditional systems for robot navigation tend to perform some kind of map building and

use this map to determine a safe trajectory avoiding all the obstacles. As discussed previ-

ously (see Chapter 2), this approach is quite sensitive and computationally too demanding

to be used in real-time for navigation or obstacle avoidance in mobile robotics, particu-

larly when dealing with dynamic environments. Instead, an alternative solution, within

the framework of purposive vision [Aloimonos, 1990], may use the specificity of the task

under consideration, to propose simpler and more robust approaches for vision guided

robotics.

The major hypothesis considered in the approach herein proposed, consists in assuming

that the robot is moving on a flat ground plane. This constrains the methodology proposed

to indoor scenes. With this assumption, and for the sole purpose of obstacle detection, we

propose a system which is fast, robust and independent of a variety of motion or camera

parameters.

77
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The visual information used is the normal flow vector field computed over an image

sequence acquired by a single camera. A point to be noticed is the assumption that

the normal flow ( or equivalently the first order temporal-spatial derivatives of an image

sequence ) is the only flow information available (as discussed in Section 3.3). There is

no need, whatsoever, to use extra constraints for the flow field in order to overcome the

aperture problem as it is usually done in a variety of other methods.

Conceptually, we try to characterize the apparent motion of the ground plane globally,

and detect violations to this coherent motion pattern, which can only correspond to

points lying outside the ground plane. To determine the presence of the obstacles we

use inverse projection techniques as suggested in [Zielke et al., 1990, Mallot et al., 1991].

However, instead of calibrating the extrinsic and intrinsic parameters of the camera as

in [Zielke et al., 1990, Mallot et al., 1991], we use the image measurements directly to

estimate the projective transformation between the image plane and the ground plane.

This transformation is then used to inverse project the flow field onto the ground plane,

highly simplifying the interpretation of the flow pattern.

The motion of the ground floor perceived in the image plane, can be fully described

by a second order polynomial in the image coordinates [Subbarao and Waxman, 1986].

This parameterization captures the motion of the ground plane as a whole. However,

estimating the second-order coefficients of this polynomial leads to highly unstable algo-

rithms [Negahdaripour and Lee, 1992]. Instead, we approximate the motion of the planar

surface as an affine transformation and derive a robust parameter estimation procedure

uniquely based on the normal flow information.

In an initialization stage, the affine parameters are used to estimate the projective

transformation between the image plane and the ground plane (which roughly contains

information about the ground plane orientation with respect to the image plane). This

transformation is constant since the camera is rigidly attached to the robot. During the

obstacle detection phase, the computed normal flow field is inverse projected onto the

horizontal plane, and analysed.

For pure translational motion, the obstacle detection analysis is very simple since

all points on the ground plane should have the same flow vectors, whereas points lying

above or below the ground plane, will have respectively larger or smaller flow values.
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Contrasting with previous approaches [Carlsson and Eklundh, 1990, Enkelmann, 1990,

Sandini and Tistarelli, 1990], the method we propose here, does not rely on the knowl-

edge of the camera motion and, for pure translational motion, it is also independent of

the camera intrinsic parameters. A geometric, intuitive explanation is given.

Different experiments were performed to test the various steps of the whole method.

Finally, a real-time system was implemented on a robot, to detect obstacles laying on the

ground plane. The system is fast and the performance robust. The results obtained are

presented and discussed.

In the following sections, we describe the problem of motion analysis of a planar patch.

Then, the affine model approximation for the motion field is introduced and we present

the estimation procedure to recover the model parameters uniquely based on the normal

flow. We then describe the inverse projection method, and show how to recover the needed

image plane/ground plane transformation using the affine model parameters. Finally, a

variety of tests are presented, and conclusions drawn.

4.2 Planar surfaces in motion

Many authors have addressed the problem of mission parameters estimation from global

flow field data, as in [Nelson and Aloimonos, 1988], [Guissin and Ullman, 1989] and

[Hummel and Sundareswaran, 1993]. Also, our first concern is about the characterization

of the flow field perceived in the image plane. Particularly, in our approach, it is assumed

that the robot is moving on a flat ground and that the camera is facing the ground

plane, hence observing a planar surface in motion. With this assumption, it is possible to

obtain a globally valid parameterization for the corresponding optical flow field. These

parameters can be robustly estimated based on the normal flow field, as it is shown later

in this chapter.

Let us assume a rigid body motion model for the robot, with general linear velocity

T = [Tx Ty Tz]
T and general angular velocity ω = [ωx ωy ωz]

T . Assuming a pinhole

model for the camera (see Section 2.2), the projection of a 3D point with coordinates
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{X, Y, Z}, into the image plane is given by :


x = fx
X
Z
+ cx

y = fy
Y
Z
+ cy

(4.1)

where, as usual, fx, fy denote the camera focal length expressed in pixels and cx, cy denote

the image center coordinates. The projection coordinates x, y are given in pixels. The

motion perceived in the image plane by the moving camera is then given by the well known

equations [Subbarao and Waxman, 1986, Sundareswaran, 1991, Cipolla and Blake, 1992],

[Cipolla et al., 1993] :

u(x, y) = fx

[ x
fx
Tz − Tx

Z(x, y)
+ ωx

xy

fxfy
− ωy(1 +

x2

f 2
x

) + ωz
y

fy

]
(4.2)

v(x, y) = fy

[ y
fy
Tz − Ty

Z(x, y)
+ ωx(1 +

y2

f 2
y

)− ωy
xy

fxfy
− ωz

x

fx

]
(4.3)

where u and v are the x and y components of the flow field.

Considering that the mobile robot is moving on a ground plane and that the camera

is pointing at the ground floor, a global model for the motion field can be found. The

plane equation can be given by :

Z(X,Y ) = Z0 + γxX + γyY (4.4)

where γx, γy are the surface slopes along the horizontal and vertical directions (slant

and tilt) and Z0 is the distance measured along the optical axis. By introducing the

perspective equations, it is possible to describe the ground plane surface as a function of

the image pixel coordinates, instead of the 3D coordinates :

Z(x, y) =
Z0

1− γx
x
fx

− γy
y
fy

(4.5)

Finally, using equation (4.5) together with equations (4.2), (4.3), we obtain the quadratic

equations describing the flow of a planar surface in motion [Negahdaripour and Lee, 1992,

Subbarao and Waxman, 1986].

u(x, y) = u0 + uxx+ uyy + uxyxy + uxxx
2 (4.6)

v(x, y) = v0 + vxx+ vyy + vxyxy + vyyy
2 (4.7)
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which is a globally valid description of the optical flow, with the parameters being given

by:

u0 = −fx
[
Tx

Z0
− ωy

]

ux = Tz+γxTx

Z0

uy = fx

fy

[
Txγy

Z0
+ ωz

]

uxy = vyy

uxx = vxy

v0 = fy
[
−Ty

Z0
+ ωx

]

vx = fy

fx

[
Tyγx

Z0
− ωz

]

vy = Tz+γyTy

Z0

vxy = −1
fx
(γxTz

Z0
+ ωy)

vyy = 1
fy
(−γyTz

Z0
+ ωx)

(4.8)

At this point, a straightforward approach would consist in directly estimating the 8

parameters of the flow model (4.8). However, it has been shown analytically and ex-

perimentally in [Negahdaripour and Lee, 1992], that the estimates of the second-order

parameters are often affected by noise which is higher, up to several orders of magni-

tude, than the first order parameters estimates, even in the case of perfect planar mo-

tion. If the angle of view is small, and the depth range restricted [Bergen et al., 1992,

Koenderink and van Doorn, 1991], then the second-order parameters of the flow model

can be discarded and the motion of the surface can be approximated as an affine transfor-

mation. The modeling error (particularly at the image periphery) is still usually smaller

than the estimation error of the full second order model.

Then, to improve robustness, it is preferable to neglect the second order terms and

approximate, instead, the motion field by an affine motion model :

u(x, y) = u0 + uxx+ uyy

v(x, y) = v0 + vxx+ vyy (4.9)

In the next section, we will present a robust method to estimate the affine model parame-

ters uniquely based on the normal flow and, finally, we will show how to recover the image

plane orientation relative to the ground plane.
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4.2.1 Affine motion parameters estimation using the normal

flow

We have established a model that captures the optical flow of a planar surface in motion

with respect to a camera. The problem now is the estimation of the affine flow param-

eters. Particularly, we would like to constrain ourselves to the use of just normal flow

information. The parameters will be used later on for a number of tasks such as in the

obstacle detection mechanism, to recover the ground plane orientation, or to control the

docking manoeuvre of a mobile robot, as described in Chapter 5.

Let us suppose that only the normal component of the flow field is available. This

assumption is important since the normal flow is the single component which can be

reliably estimated [Fermüller, 1993a, Fermüller, 1993b, Horn, 1986], due to the well known

aperture problem, without having to assume further constraints on the motion field (such

as smoothness) as it is usually done. The optical flow constraint equation, assuming image

brightness constancy over time [Horn and Shunck, 1981] (see Section 3.3), is given by :

uIx + vIy = −It, (4.10)

where Ix, Iy and It stand for the partial derivatives of the image with respect to x, y, and

time. According to affine model equations (4.9), the first term of equation (4.10) can be

written as :

uIx + vIy = voIy + vxIyx+ vyIyy + uoIx + uxIxx+ uyIxy (4.11)

Therefore, the temporal derivative over the planar patch can be expressed as a linear

combination of the parameters to estimate:

[
Iy xIy yIy Ix xIx yIx

]
θ = −It (4.12)

where θ is given by:

θ = [v0 vx vy u0 ux uy]
T (4.13)

To estimate the affine parameters θ, it is sufficient to use just 6 measurements of spatial-

temporal image derivatives or, equivalently 6 measurements of the normal flow. The

least squares solution to this problem can be obtained by considering an over-determined
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system of equations. Let n be the number of measurements available, and define :

D = [−It1 − It2 . . . − Itn ]
T (4.14)

now let

M =




Iy1 x1Iy1 y1Iy1 Ix1 x1Ix1 y1Ix1

Iy2 x2Iy2 y2Iy2 Ix2 x2Ix2 y2Ix2

...
...

Iyn xnIyn ynIyn Ixn xnIxn ynIxn




(4.15)

The least squares solution for the estimation problem is given by the pseudo-inverse

solution :

θ̂ = (MTM)
−1MTD (4.16)

The direct application of the least squares estimation procedure is usually quite sen-

sitive to outliers which usually lead to an ungraceful degradation of the estimates. To

overcome this problem, we devised a recursive estimation procedure, aiming at eliminating

the effect of outliers. The algorithm works as follows :

1. Choose randomly a set of data points, {Ix, Iy, It}, to get an initial estimate, θ0.

Set k = 1.

2. Choose randomly a new set of data points, {Ix, Iy, It}, such that the modeling
error in equation (4.12), evaluated with the current parameter estimate, is small.

3. Estimate θk based on the new data set. Set k = k + 1.

4. Return to step (2) until θ remains unchanged or k exceeds a given number of

iterations.

The rationale behind this algorithm is that by getting an approximate initial estimate,

one can successfully improve this estimate by selecting the data that are most coherent

with the model. In this way, outliers will be discarded in the point selection mechanism

and the estimate improved, in subsequent steps.

A wide variety of tests were performed in order to evaluate the robustness of the

estimation procedure. Figure 4.1 shows an image sequence acquired by a camera moving

towards a slanted poster.
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Figure 4.1: An image sequence used for the estimation tests, acquired by moving a
camera towards a slanted poster.

Figure 4.2 shows an example of the optical flow field computed based on this image

sequence. These data were used to estimate the parameters of the affine motion model as

described previously. We have used these parameters to generate a “reconstructed” flow

field, which is shown for comparison in Figure 4.2. As shown, the estimation procedure

Figure 4.2: The left image shows the optical flow estimated for the poster sequence.
The right image shows the reconstructed flow field based on the estimated affine motion
model parameters .

succeeds in discarding the outliers and the “reconstructed” optical flow is, at least from a

qualitative point of view, consistent with the input data. Notice, for instance, the location

of the Focus of Expansion in both cases.
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4.2.2 Plane coefficients estimation - the intrinsic parameters

We have already presented a procedure to estimate the set of parameters which describe

the affine model of the planar surface motion field. Once θ has been estimated, one can

determine γx and γy by referring to the equation set (4.8). However, these parameters

can only be estimated up to a scale factor, which is the focal length expressed in pixel

coordinates : 


γx

fx
= −vx

v0

γy

fy
=




−uy

u0
, if u0 �= 0

ux−vy

v0
, otherwise

(4.17)

Consequently, if the camera intrinsic parameters are known, the γx,y coefficients can be

obtained directly, thus solving the problem. However, even in the absence of the camera

parameters, fx and fy, it is still possible to proceed with the method, as we shall now

show. If the mobile robot motion is assumed to be purely translational, the affine model

parameters can be simplified to :

u0 = −fxTx

Z0

ux = Tz

Z0
+ γx

fx

fxTx

Z0

uy = fxTx

Z0

γy

fy

v0 = −fyTy

Z0

vx = fyTy

Z0

γx

fx

vy = Tz

Z0
+ γy

fy

fyTy

Z0

(4.18)

These equations have been rewritten to emphasize the ambiguity between {fx, fy}
and {γx, γy, Tx, Ty}. In all the equations above, if we scale up fx or fy by a given factor,

ξ, divide the corresponding Tx or Ty by ξ and multiply the corresponding {γx, γy} by
ξ again, then all the flow parameters remain unchanged. This amounts to saying that,

if a camera with different intrinsic parameters is used, it is possible to find a different

orientation and velocity (suitably scaling γx, γy, Tx, Ty ) such that the camera observes

exactly the same flow field.

Having this ambiguity in mind and as we are not interested in the absolute camera

speed, nor on the absolute camera orientation, we can suppose that a virtual camera with
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unitary fx and fy, is being used. The simplified parameterization then follows :

u0 = −Tx

Z0

ux = Tz

Z0
+ γx

Tx

Z0

uy = Tx

Z0
γy

v0 = −Ty

Z0

vx = Ty

Z0
γx

vy = Tz

Z0
+ γy

Ty

Z0

(4.19)

where one should keep in mind that Tx, Ty, γx and γy do no longer convey information

neither on the absolute orientation of the ground plane, nor on the absolute camera speed.

They correspond to the speed and orientation, with respect to the ground floor, that a

camera with unitary intrinsic parameters, fx and fy, should have in order to perceive the

same flow field. Finally, γx and γy are simply determined by using equation (4.17) with

unitary fx, fy.

In order to evaluate the performance of the estimation procedure to recover the plane

orientation, we have generated a synthetic flow pattern corresponding to a robot moving

forwards with a speed of 25cm/s equipped with a camera pointing down at 45o :

γx = 0, γy = 1

The camera intrinsic parameters, we used, are those of a standard CCD (6.4mm by 4.8mm)

sensor with a 4.8 mm lens and 256×256 image resolution :

fx = 192, fy = 256, cx = 128, cy = 128

The flow vectors were computed according to these camera settings and motion and

corrupted with zero-mean Gaussian noise with a given variance (the noise is added inde-

pendently to each component). Figure 4.3 shows the synthetic flow field in the absence

of noise.

Table 4.1 shows the slant and tilt angles estimate obtained using the synthetic flow

data with increasing noise levels. These results show that the estimates of the plane

orientation are fairly robust and accurate even in the presence of significant levels of

noise.



4.2. PLANAR SURFACES IN MOTION 87

Figure 4.3: Flow field generated for the simulation study, which corresponds to a robot
moving forward on a flat ground, with a camera pointing down.

Noise σ # points slant (deg.) tilt (deg.)

0.0 200 0.0 -45.0

1.0 200 -0.83 -46.97

1.5 200 -0.30 -42.79

2.0 200 -0.20 -46.63

Table 4.1: Tilt and Slant estimates for different values of the noise standard deviation.
The results show the robustness of the estimation procedure. The flow fields with different
noise levels are shown in Figure 4.5.
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4.3 Inverse Perspective Flow Transformation

The method we propose for ground plane obstacle detection, is based on an inverse per-

spective mapping of the flow field. The main idea is that by re-projecting the flow onto

the horizontal plane, the analysis is much simplified. We will show that the obstacle

detection algorithm is very simple for pure translational motion and can also cope with

rotation by fitting simple models to the transformed flow.

Similarly to what has been proposed in [Zielke et al., 1990, Mallot et al., 1991], the

rationale of this method is that if it is possible to inverse project the flow field perceived

on the image plane, (πC), onto the horizontal plane, (πH), then the camera translation

becomes parallel to the ground floor and the rotation is solely around the vertical axis,

which greatly simplifies the flow pattern as illustrated in Figure 4.4.

{H}
{C}

y

x

x

y

z

Pc

Ph

x

Figure 4.4: Inverse perspective mapping. The coordinate systems (C) and (H) share the
same origin even though in the picture they have been drawn separately for the sake of
clarity. While on (C) the motion of the ground floor is perceived as a complex vectorial
pattern, in (H) all the vectors have equal length and orientation under translational
motion.

In all the subsequent analysis, we will include the camera intrinsic parameters, which

could be considered unitary and discarded in the case of translational motion according
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to the discussion in Section 4.2.2. Let

C = {Xc, Yc, Zc }

H = {Xh, Yh, Zh }
(4.20)

be the coordinate frames associated to the camera plane and the horizontal plane. As

both frames share a common origin, the coordinate transformation relating both systems

is just a rotation term, HRC :

HP = HRC
CP (4.21)

where CP is a point in the 3D space expressed in the camera coordinates, and HRC results

from rotating a tilt angle, ψ, around the camera x axis and a pan angle, φ, around the

camera y axis (which corresponds to a camera pointing down in front of a mobile robot).

The rotation matrix will have the following structure however, in most practical systems

the pan angle, ψ, is small and could even be neglected) :

HRC =



cosφ − sinφ sinψ − sinφ cosψ

0 cosψ − sinψ

sinφ cosφ sinψ cosφ cosψ


 (4.22)

Let the perspective projection of a point in a plane β, be defined :

βP′ = Pβ(
βP) (4.23)




s x′
β

s y′β
s


 =




fxXβ

fyYβ

Zβ


 (4.24)

where Pβ denotes the projection operator, and x′, y′ are image points expressed in pixel

coordinates. The set of points in the 3D space that project on a given image pixel (x′
c, y

′
c)

is given by :

CP̃ = [λ
x′
c

fx
λ
y′c
fy

λ]T (4.25)
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which describes a beam passing through the projection center and the projection point

in the image plane. As any other 3D point expressed in the camera coordinate system, P̃

can be expressed in the frame attached to the horizontal plane :

HP̃ = HRC
CP̃ (4.26)

Finally, this point can be projected into the horizontal plane, πH , combining equations

(4.22) to (4.26) :




x′
H

y′H


 = HPC(x

′
c, y

′
c) (4.27)

where HPC(x
′
c, y

′
c) denotes the operator projecting from the image plane to the horizontal

plane. This plane-to-plane projective transformation [Mundy and Zisserman, 1992] can

be rewritten as :




s x′
H

s y′H
s


 =



cosφ − sinφ sinψ −sinφ cosψ

0 cosψ − sinψ

sinφ cosφ sinψ cosφ cosψ







x′
c/fx

y′c/fy

1


 (4.28)

This equation determines how to inverse project, onto the horizontal plane, a point

projected in the image plane pixel (x′
c, y

′
c). To obtain the inverse projection of a flow

vector, we have to calculate the time derivatives of (x′
H , y′H) :




u′
H(x

′
c, y

′
c)

v′H(x
′
c, y

′
c)


 =

∂HPC(x
′
c, y

′
c)

∂x′
c

u+
∂HPC(x

′
c, y

′
c)

∂y′c
v (4.29)

which can be written in homogeneous coordinates as :
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


s u′
H(x

′
c, y

′
c)

s v′H(x
′
c, y

′
c)

s



=




fx [(cosψ + sinψ y′c
fy
) u
fx

− sinψ x′c
fx

v
fy
]

fy [sinφ(sinψ − cosψ y′c
fy
) u
fx
+ (cosψ sinφ x′c

fx
+ cosφ) v

fy
]

(sinφ x′c
fx
+ cosφ sinψ y′c

fy
+ cosφ cosψ)2



(4.30)

Remains to be considered the estimation of ψ and φ using the affine model parameters

that were estimated initially.

4.3.1 Recovering the Slant and Tilt parameters

During an initialization phase, we must determine the rotation matrix, preferably without

explicitly calibrating the system. The process simply consists in determining γx, γy as

explained in the previous sections and assuming that both fx and fy are unitary (for the

case of pure translation).

Since any point in the camera coordinate system can be expressed, according to equa-

tion (4.21), in the horizontal plane coordinate system, we can examine the Z component

of such term:

ZH = sinφX + cosφ sinψY + cosφ cosψZ (4.31)

However, in terms of the camera coordinates, Z is a function of X and Y according to

the ground plane constraint, given in equation (4.4). Combining these two equations,

and knowing that, in the coordinate system of the horizontal plane, all the points in the

ground floor have a constant depth, ZH , we get:

ψ = − arctan γy

φ = − arctan(γx cosψ)
ZH = cosψ cosφ Z0

(4.32)

To summarize, once γx and γy have been estimated according to the procedure de-

scribed in Section 4.2.1, the inverse perspective transformation can be applied, to inverse

project the optical flow onto the horizontal plane, where the analysis is simplified. The
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values of ψ and φ are estimated only once during an initialization phase and remain

constant provided that the camera is in a fixed position relative to the robot.

4.3.2 Obstacle Detection

In this section we will analyse the problems that have to be addressed after inverse pro-

jecting the optical flow, in order to detect the presence of obstacles.

Using the horizontal plane coordinate frame, the linear velocity is constrained to be

parallel to the “new image” plane (hence Tz = 0), the angular velocity component is solely

around the vertical axis and the distance to the ground floor is constant. Therefore, the

optical flow equations are given by :

uh(xH , yH) =
(
− Tx

ZH

+ ωzyH

)
(4.33)

vh(xH , yH) =
(
− Ty

ZH

− ωzxH

)
(4.34)

In many situations, it is reasonable to assume that the rotation component is ne-

glectable when compared to the translational component. On other cases, we can avoid

computing the flow during fast rotations, which would correspond to a saccadic sup-

pression mechanism observed in many biological vision systems. For pure translational

motion, the transformed flow vectors are constant for every point on the ground plane

and a simple test can be performed to check if there are any obstacles above or below the

ground plane. The detection mechanism simply relies on the fact that the optical flow

should be globally constant no matter what the motion direction and speed might be.

Having just computed the normal flow component, at this point the normal flow vectors

can be projected onto the direction of motion, which is constant all over the image.

uh(x, y) = − Tx

ZH

vh(x, y) = − Ty

ZH

(4.35)
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In the case of general motion, the main difficulty consists in separating the rota-

tion component from the purely translational component [Negahdaripour and Lee, 1992,

Sundareswaran, 1992, Hummel and Sundareswaran, 1993]. In our simplified reference

frame, we can simply apply an estimation procedure to the inverse projected flow in

order to recover the translational (constant all over the image) and rotational compo-

nents (which depend on the x or y coordinates). The same kind of estimation techniques

that were used to estimate the affine flow parameters can again be used to separate the ro-

tation and translation components of motion. Once this has been done, the translational

component can be checked as in the case of purely translational motion.

4.4 Results

In this section we present some results obtained using the proposed method. Initially, we

will show some results using the synthetic data and finally some results obtained with a

real robotic application.

For the synthetic tests, we have used the synthetic flow field generated according

to the procedure described in Section 4.2.2. The synthetic flow fields were corrupted

with increasing levels of noise to evaluate the performance of the affine flow parameters

estimation. The inverse projection procedure was performed assuming that the intrinsic

parameters are unknown. Figure 4.5 shows these experiments. On the left column we

have the synthetic flow field after being degraded with noise of different intensities. The

right column shows the corresponding inverse projected flow fields.

From the figure, we can see that even for severely corrupted data, the flow becomes

relatively constant after the inverse projection. The degradation is more noticeable in

the image areas corresponding to the far part of the visual field. In these areas, the flow

amplitude is rather small and the signal to noise ratio is poor. The method seems to be

considerably more accurate at short range, instead.

The system has been tested in real time on a mobile robot. The mission consisted

in moving around in a room and stopping whenever an obstacle was detected. The

experimental setup is composed of a camera with a 8mm lens, installed on a TRC Labmate

mobile platform. The camera was placed in the front part of the robot facing the ground
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Figure 4.5: The left column shows the synthetic flow fields corrupted by noise with
0.0, 1.0 and 2.0 pixels/frame of standard deviation. On the right column we show the flow
inverse projected onto the horizontal plane which becomes constant, and can be used for
obstacle detection.
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plane with an angle of about 65 degrees.

In all the experiments performed, the robot speed was set to 10cm/s. The images are

acquired with a resolution of 128 × 128 pixels and a central window of 80 × 80 pixels is
used for the normal flow computation and the obstacle detection process. This resolution

represents a tradeoff between the necessary detail for the flow computation and analysis,

and the computing speed. At the current level of implementation, the system is running

at a frequency of about 1Hz on an VDS Eidobrain image processing workstation.

Figure 4.6 shows an example of the normal flow field measured while the robot is

moving over the ground plane, in the absence of obstacles. Notice how the flow is along

the image gradient and how its magnitude increases from the top to the bottom. These

normal flow vectors are then used in the initialization stage to estimate the ground plane

parameters. The same figure also shows the result of inverse projecting the ground plane

flow field. The result is an approximately constant flow field over the whole image.

Figure 4.6: The left image shows a sample of the ground plane normal flow field measured
during the robot motion. The right image shows the flow field that results from the inverse
projection.

Several tests were performed using different obstacles placed on the ground floor. An

example is shown in Figure 4.7. On the left we have the normal flow observed during

the trajectory with an obstacle in the visual field. Using the flow information alone, it is

difficult to detect the obstacle. On the right side of Figure 4.7, we show the result of the
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inverse projection mechanism, where the obstacle flow becomes clearly larger than the

ground flow.

Figure 4.7: The left image shows a sample of the normal flow field measured during
the robot motion. The right image shows the resulting inverse projected flow, where the
obstacle can be easily detected.

The result of the detection process is shown in Figure 4.8. The white areas correspond

to obstacle points, while the dark areas represent free space.

This result shows that the obstacle has been detected, particularly the object top

regions. This is due to the sensitivity constraints imposed by the image resolution. It

should be noted that the object contours are reasonably defined and that an acceptable

segmentation could be achieved. However, a precise reconstruction of the obstacle position

is not the main goal of the methodology we propose. The goal, instead, is to provide a

simple, fast and robust reflex-type behaviour for obstacle detection. These characteristics

were achieved in all the tests performed where the system behaved robustly detecting

various obstacles and safely stopping the robot. Several simple strategies can be used in

order to circumvent the obstacles detected. The robot can, for example, rotate a given

angle away from the image side where the object is located, or we can determine the

amount of rotation needed to remove the obstacle from the robot visual field.
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Figure 4.8: Points detected as obstacles above the ground plane.

4.5 Conclusions

We have described a method for fast obstacle detection for mobile robots. The basic

assumption is that the robot is moving on a ground floor and any object not laying on

this plane is considered an obstacle. The method is based on the inverse projection of

the flow vector field onto the ground plane, where the analysis is much simplified as, for

the case of pure translational motion, the flow vectors become constant all over the image

with the obstacles having a larger flow than every other point laying on the pavement.

The detection is then much simplified.

The flow induced by the motion of the ground plane, is described by the affine model.

The model parameter estimation procedure relies exclusively on the first order space

and time derivatives, or equivalently, on the normal flow. Based on the affine model

parameters, the tilt and slant angles of the image plane with respect to the ground are

estimated and used for the inverse projection operation. No explicit calibration of the

camera intrinsic or extrinsic parameters is needed.

It is also shown that in the absence of rotational motion, the method is independent

of the camera intrinsic parameters. It is not necessary to know the robot motion, as the

detection strategy is based on the constancy of the flow vectors. Several tests were pre-

sented to illustrate the robustness of the approach. A running implementation is available

using a mobile platform. Results of the real time experiments have been presented.
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Therefore, we have proposed a strategy for obstacle detection to overcome some of

the limitations of Robee. It should be noticed that both approaches share some common

points. They use the same input data, first order spatial and temporal derivatives of the

images, and different specialized parts of the visual field, peripheral and central, according

to the purpose.



Chapter 5

Visual Behaviours for Docking

There is often the need for a mobile robot to approach a specific point in the environment

in a controlled way, for instance to recharge batteries, logging in to a computing center,

grasp objects, etc. This docking procedure is then an important functionality of a mobile

robot.

This chapter describes visual-based behaviours for docking operations in mobile robotics.

We consider two different situations : in the ego-docking, each robot is equipped with a

camera and the egomotion controlled when docking to a surface, whereas in the eco-

docking, the camera and all the necessary computational resources are placed in a single

external docking station, which may serve several robots. In both situations, the goal

consists in controlling both the orientation, aligning the camera optical axis with the

normal to the surface, and the approaching speed (slowing down during the manoeuvre).

These goals are accomplished without any effort to perform 3D reconstruction of the

environment or any need to calibrate the setup, in contrast with traditional approaches.

Instead, we use image measurements directly to close the control loop of the mobile robot.

In the approach we propose, the robot motion is directly driven by the normal flow

field, similarly to the procedure in the previous chapter. The docking system is operat-

ing in real time and the performance is robust both in the ego-docking and eco-docking

paradigms. Experiments are described.

99
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5.1 Introduction

The intimate relationship between perception and action has been discussed and pre-

sented in different forms in the last years. From the seminal paper of Ruzena Bajcsy

describing the peculiarity of Active Perception [Bajcsy, 1988] through the papers on Ac-

tive and Animate vision [Ballard, 1991, Aloimonos et al., 1988] and, more recently, to the

concept of Purposive Vision [Aloimonos, 1990]. Along its evolution research about the

perception/action relationship has suggested, at least, three major advances. The first is

linked to the concept of “exploratory actions” and to the fact that an active observer can

acquire more information about the world by controlling his own position and kinematic

parameters (including optics). The second is the observation that action may help in

simplifying perceptual processes some of which are, in general, ill-posed. The third is the

observation that action is tightly linked to purpose and that purposive actions provide a

natural and powerful constraint to perceptual processing allowing, among other things,

the use of qualitative perceptual information.

From the control point of view the evolution has gone from an “exploratory approach”,

which, in some sense is linked to the problem of motor planning (e.g. move around the

object to acquire more information or move the finger around the rim of a cup to acquire

its shape) through an “utilitarian” phase where action is driven by the need to improve

the perceptual process, to arrive, more recently, to the concept of visual servoing and

visual behaviours where action is eliciting and simplifying the perceptual processes which,

in turn, drive the action itself (the “vision during action” approach [Fermüller, 1993b,

Sandini et al., 1993a, Santos-Victor et al., 1994a]). In this case the control loop becomes

tighter and, if direct visual measures are used, motor control is directly driven by iconic

information (I.e. data which are directly computed from the images). The simplest

instance of this kind of sensory/motor coordination is represented by visual reflexes where

the action cannot be purposively controlled but is a direct consequence of a sensory input.

The experiment presented here, in spite of the fact that it is based on direct, iconic, visual

information, is based on the powerful assumption that we are able to define the purpose of

the motor action. We define such a motor action, solely driven by direct visual information

and purpose, as a visual behaviour. In this sense, the observation that the goal of action
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is to perceive has evolved to a different one: the goal of perception is to act.

In particular, the visual behaviours we address here, are docking strategies for indoor

mobile robots. The robot desired behaviour consists in approaching a surface, along its

normal, with controlled forward speed and then stop. Such behaviour can be used by a

mobile vehicle to dock to a computing center, recharge its batteries in a battery charging

station, approach a work cell to manipulate various objects or, with minor changes, follow

another robot at fixed distance.

We will consider two distinct situations for the docking problem. In the first situa-

tion, that we call ego-docking, the camera is mounted on board of the vehicle, and the

robot egomotion is controlled during a docking manoeuvre to a particular surface in the

environment. The second scenario, that we call eco-docking1, the camera and computa-

tional resources are installed on a single external docking station with the ability to serve

multiple robots. Both scenarios are depicted in Figure 5.1.

Figure 5.1: The left diagram shows the ego-docking where a robot, equipped with a
camera and computing resources, docks to a specified surface. Instead, in the eco-docking,
shown on the right, the camera is attached to a single docking station which may serve
multiple robots.

From the perceptual point of view, both situations are quite similar since the important

issue is the relative motion between the camera and the docking surface. However, a

careful analysis reveals some formal differences between both cases. In the ego-docking,

the camera position with respect to the robot is fixed, whereas in the eco-docking it

is changing continuously, thus posing new problems for the visuo-motor control loop.

However, we show that, by proper formulation of the problem, exactly the same control

architecture can be used in both cases.

The behaviours and framework we describe can have multiple important applications

1From oikos, the Greek word for environment or external world.
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in mobile robotics. In the ego-docking case, each robot can be controlled to dock to any

particular point in the environment, thus offering large flexibility. In the eco-docking

concept, a single docking station with a camera and the computing resources can be used

to serve a large number of robots. The robots can be commanded to approach the docking

station using odometric information alone (hence with limited precision) and once in the

neighbourhood of the docking station, the control system would take over and perform

the manoeuvre.

Similarly to the approaches for the navigation and obstacle detection behaviours, de-

scribed in Chapters 3 and 4, we assume that only a partial description of the optical

flow field is available (See Section 3.3 for a discussion on the optical flow estimation and

constraints).

As mentioned before, the normal flow alone conveys sufficient information to accom-

plish many perception problems and can be estimated robustly and fast. The solution

proposed here relies, again, exclusively on the use of the normal flow information to drive

the robot motion, without imposing any type of smoothness constraints on the flow field.

Section 5.2 is devoted to the problem sensory-motor coordination, where the robot

(motor) and camera (sensor) coordinate frames are related in both the ego-docking and

eco-docking situations. This analysis establishes the link between the measured visual

parameters and the appropriate motor actions in closed loop.

Section 5.3 shows that it can be assumed that the camera is observing a planar surface

in motion and, therefore, the analysis used in Section 4.2 still holds and the normal flow

is used to extract the affine motion parameters.

In Section 5.4, we use the sensory-motor coordination to relate the affine motion pa-

rameters expressed in the camera coordinate frame (sensor frame) and the navigation

commands expressed in the robot coordinate system (motor frame). A closed loop strat-

egy is proposed to control the robot heading and speed, directly integrating the visual

measurements in the motion controller.

In Section 5.5, we present a real-time implementation of the behaviours described,

showing a robust performance in various experiments and, finally, in the last section, we

draw some conclusions and establish further directions of work.

It should again be stressed that the use of visual measurements directly in the mo-
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tion controller leads to improved robustness as the system is continuously monitoring its

performance [Espiau et al., 1992, Santos-Victor et al., 1993, Santos-Victor et al., 1994a,

Sundareswaran et al., 1994], there is no need to calibrate the camera and no reconstruc-

tion of the environment is performed.

5.2 Sensory-motor coordination

In this section we will address the problem of sensory-motor coordination. Both in the

ego-docking or eco-docking problems, the visual information captured by the camera is

being used to drive the motor control loops of the mobile platform. Therefore, one could

refer to the sensor frame where the visual measurements are computed and the motor

frame, where the commands to the robot are defined. In order to design the closed-

loop controllers for the robot, it is necessary to determine the coordinate transformation

between both frames, which we designate by the sensory-motor coordination problem.

All the experiments were carried out using a TRC Labmate mobile platform with the

motion degrees of freedom described in Figure 5.2. The robot motion is constrained to a

T

W

Figure 5.2: Mobile platform motion degrees of freedom.

forward speed T and a rotation speed ω around the vertical axis. In the following sections

we will analyse the sensory-motor coordination for both the ego-docking and eco-docking

problems.
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5.2.1 Ego-docking

For the ego-docking behaviour, each robot is equipped with an on-board camera and all

the computational resources needed for the perception process. Whenever this behaviour

is launched, the mobile robot is supposed to align itself perpendicularly to a specified

docking surface, controlling the forward speed, until it stops.

We assume that the camera coordinate frame is translated with respect to the origin

of the motor frame and rotated by a tilt angle, ψ, around the x axis, and a pan angle, φ,

around the y axis. It is further assumed, for simplification, that the translation is solely

along the y (forward) and z (upward) directions, as shown in Figure 5.3.

X
Y

Z

Xc

Yc

Zc

Figure 5.3: Sensor and motor coordinate frames.

In many situations the camera points in the forward direction, coincident with the

motion direction for pure translation and, therefore, the pan angle is approximately zero.

However, we address the more general situation as it allows the use of an active pan/tilt

camera mount which may be advantageous for more complex visual behaviours. The con-

straint regarding the translation between sensor and motor frames can be easily achieved

in practice without the need for any specific calibration procedure, and is by no means

critical.

Let {R} and {C} be respectively, the robot and camera coordinate frames or, in other
words, the motor and sensor coordinate frames. The motion of {C} expressed in the
sensor coordinate frame [Yioshikawa, 1990] is given as a function of the motion of {R}
according to :

TC = CRR(TR + ωR ×RPOC)

ωC = CRR ωR , (5.1)
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where, as usual, T and ω stand for translation and angular velocities of the frame iden-

tified by the subindex. The term RPOC is the position vector of the origin of the camera

coordinate frame expressed in the robot coordinate system, assumed to have zero x com-

ponent :

POC = [0 dy dz]T . (5.2)

As explained, the rotation matrix relating both frames, is decomposed by a pan (φ)

and tilt (ψ) contributions, and can be written as :

CRR =




cosφ 0 sinφ

− sinφ sinψ cosψ cosφ sinψ

− sinφ cosψ − sinψ cosφ cosψ


 . (5.3)

The motion degrees of freedom of the mobile platform are constrained, according to

Figure 5.2, to a pure rotation around the Z axis and a pure translation along the forward

direction :

TR = [0 Try 0]T

ωR = [0 0 ωrz]
T . (5.4)

Finally, we can express the sensor egomotion as a function of the motor frame motion,

by combining equations (5.1) to (5.4). It yields :

TC =




−ωrzdy cosφ

Try cosψ + ωrzdy sinφ sinψ

−Try sinψ + ωrzdy sinφ cosψ


 ,

ωC =




ωrz sinφ

ωrz sinψ cosφ

ωrz cosψ cosφ


 . (5.5)

In many situations, the camera does not have any mechanical degrees of freedom and,

therefore, the rotation matrix is constant over time. Assuming, as we mentioned before,

that in this case the camera is pointing in forward direction, φ is set to zero and the

camera motion equations simplify to :

TC = [−ωrzdy Try cosψ − Try sinψ]T ,

ωC = [0 ωrz sinψ ωrz cosψ]
T . (5.6)
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An interesting extension to the ego-docking approach, consists in having an active

camera mount, and control the docking point, just by fixation. That is to say that the

robot would dock to the world point being fixated, without the need to specify the docking

point in terms of odometry or any other metric system. This behaviour could be achieved

by combining a fixation behaviour for gaze control (the gaze control problem is addressed

in Chapter 6) and the docking behaviour herein described.

5.2.2 Eco-docking

In the eco-docking scenario, we have a single docking station carrying a camera (eventually

with an active mount) and all the necessary computational resources. This station may

serve several robots, which in turn do not need particular visual capabilities nor do require

any specific computing power. Typically, a robot could be commanded to go to the docking

station based on odometric information alone, which is known to be of limited precision

and, once in the vicinity of the docking station, the local docking behaviour would take

over and conduct the manoeuvre.

Even tough this problem is still very similar to the ego-docking case, particularly from

the perceptual point of view, the sensory-motor coordination differs significantly since the

geometric transformation between the motor frame (robot frame) and the sensor frame

(docking station frame) depends on the instantaneous position and orientation of the

mobile platform with respect to the docking station, as shown in Figure 5.4.

X
Y

Z
X

Y

Z

Xc

Yc

Zc x

Figure 5.4: Coordinate systems involved in the eco-docking problem.

Let us now analyse how these different coordinate systems are related. Let {R}, {S}
and {C} denote respectively the robot, robot front panel and camera coordinate systems.
The linear velocity of any point in the robot front panel, with respect to a fixed frame
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and expressed in the robot coordinate frame [Yioshikawa, 1990], is given by :

RTS = TR + ωR × RPS , (5.7)

where RPS denotes the position vector of a general point in the robot front panel expressed

in the robot coordinate frame. By introducing the coordinate transformation between the

camera and robot coordinate systems,

CP = CRR
RP+ CPOR , (5.8)

and expressing the linear velocity of PS in the camera coordinate frame, we can rewrite

equation (5.7) as :

CTS =
CRR ( TR + ωR × [ RRC (

CPS − CPOR ) ] ) , (5.9)

where CPOR is the position vector of the origin of frame {R}, expressed in the camera
coordinate system. Comparing with the ego-docking case, the difference stems mainly

from the rotation around an object centered coordinate frame instead of a camera centered

coordinate frame. The motion perceived for each point in the robot front panel does not

depend on the absolute distance to the camera alone, CPS, but also on the distance to

the robot coordinate system. When the robot is not too close to the docking station,

this distance is generally smaller than the distance to the camera. As a consequence, the

influence of the rotation in the motion perceived in the image plane, is smaller in the

eco-docking case, when compared to the ego-docking.

In the absence of rotation, both the ego-docking and eco-docking are identical as from a

perceptual point of view one cannot distinguish the case where the camera is approaching

the surface or vice-versa. For the examples tested, we assume that the robot moves in a

piecewise-linear trajectory, so that both docking problems become exactly equal.

The major change, however, is that CRR is no longer constant, as it was in the ego-

docking case with the camera fixed to the robot itself and assuming that there are no

mechanical degrees of freedom. Particularly, the pan angle changes continuously as the

robot evolves. In practice all these terms can be seen as perturbations to the model

assumed in the ego-docking case. Therefore, the use of feedback control strategies becomes

important as it reduces the effect of the external perturbations or unmodeled terms, on

the global performance of the closed loop system.
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5.3 Planar surfaces in motion revisited

In both docking situations described, the ego-docking and the eco-docking, it can be as-

sumed that the camera is observing a planar surface in motion. In the ego-docking, the

camera is viewing the docking surface, whereas in the eco-docking the camera is observing

the robot front panel. Therefore, the hypotheses used in Section 4.2 are still valid. It is

then possible to approximate the flow field of the planar surface in motion with an affine

model which parameters can be estimated using the normal flow, according to what has

been detailed in Section 4.2.

5.4 Visual Based Control

Within this section, we will show how to use the parameters of the affine flow model

to control the docking manoeuvre. The emphasis will be on the direct use of visual

measurements, the normal flow in this case, to control motion and accomplish a given

task. The coordination of perception and action results in an improved performance as

the visual information is continuously being used to monitor the robot behaviour. The

objective of the control system, both in the ego-docking and the eco-docking problems is

twofold :

Heading control - The goal of the heading control is to align the camera axis and

the docking surface normal, during the docking manoeuvre. In this way, the robot

approaches the surfaces perpendicularly.

Time to crash - The robot forward speed is controlled depending on the time to

contact, thus slowing down when approaching a wall. Several authors have shown

the importance of this parameter in the control of locomotion in various animals

[Gibson, 1958, Lee, 1976, Wann et al., 1993].

A point worth mentioning is that the control strategy we propose for the docking

behaviour is such that while moving in open space (say for the ego-docking case), the

control loop will only adjust the robot forward speed to a cruise speed and the heading

direction remains unchanged (thus moving on a straight path). Only when the docking
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surface appears, will the control generate changes in the heading. One can say that

the behaviour is elicited by the visual information without any need for “higher order”

computations, to launch the behaviour.

5.4.1 Ego-docking behaviour

Once the affine optical flow parameters have been estimated, we have to establish the

control laws to command the robot. The first step consists in translating the motion

parameters (angular and linear velocities) of the camera into the control variables (robot

forward speed and angular speed) or, in other words, relate the sensor (camera) and

control (robot) coordinate frames.

Using equation (5.6) together with the affine flow parameter equations (4.8) leads to :

u0 = fx
[
dy
Z0
+ sinψ

]
ωrz

ux = −Try sinψ+γxωrzdy
Z0

uy = fx

fy

[
cosψ − γydy

Z0

]
ωrz

v0 = −fy
Try cosψ

Z0

vx = fy

fx

[
Tryγx cosψ

Z0
− ωrz cosψ

]

vy = γy cosψ−sinψ
Z0

Try

.

(5.10)

The term v0 is inversely proportional to the time to crash, which is the time left before

a collision occurs, provided that the robot keeps the same speed. In fact, v0 consists in

a ratio between the forward robot speed and the distance measured along the optical

axis. Therefore, to control the docking speed of the robot, v0 should be kept constant

by controlling the forward speed Try. To control the heading direction, instead, we can

use the visual parameter vx. To align the camera axis perpendicularly to the visualized

surface the controller must regulate γx to zero.

To keep the time to crash constant, by controlling the robot speed, we define the error

signal as the difference between the observed v0 and a nominal desired vrefo :

ev = vref0 − v0 ,

while the robot speed is incrementally adjusted (thus introducing an integrator in the
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control loop) :

∆Try[n] = Gcv(ev) , (5.11)

where Gcv is at the moment a PID controller.

To control the robot orientation, let us then consider a controller with the following

structure:

ωrz = −Kγx , (5.12)

where K may denote a simple gain or some filtering mechanism. Using this control

structure in the equation of vx, yields :

vx = −fy cosψ

fx

(
Try

Z0K
+ 1

)
ωrz ,

which, in turn, can be rewritten as

ωrz = −fx
fy

Z0K

(Try + Z0K) cosψ
vx

= − Gω

cosψ
vx . (5.13)

Therefore, directly regulating vx to zero accomplishes the goal of regulating γx, thus

orienting the robot perpendicularly to the surface. Note how cosψ is a sort of sensitivity

coefficient. If the camera is pointing straight ahead, then we cannot determine the quali-

tative orientation of the docking surface and the heading control is no longer possible. It

is however a structural parameter that can be easily set by pointing the camera slightly

downwards. The rotation velocity controller works with an error signal given by :

eω = vx ,

with the speed being controlled by :

ωrz[n] = Gcω(eω) . (5.14)

Figure 5.5 illustrates the overall structure of the controller.
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Figure 5.5: Structure of the overall heading and docking speed control system.

5.4.2 Eco-docking

In the absence of rotation, the visual parameters used in the control system are given by :

v0 = −fy
cosψ Try

Z0

vx = −fy
fx

γx cosψ Try

Z0

, (5.15)

which is exactly the same situation as in equations (5.10) except that there is an inver-

sion on the rotation direction. Note that, by simply changing the sign of the rotation

control loop, the same strategy is able to cope with both docking problems which, from

a perceptual point of view, are in fact very similar. In the presence of small rotations,

the differences regarding the changes in CRR are balanced by the control system during

operation, while disturbances due to rotation are less noticeable that in the ego-docking

case.

5.5 Results

The system has been tested in real time on a TRC Labmate mobile platform and a camera

with a 8mm lens. For the ego-docking problem, the camera was placed in the front part of

the robot facing the ground plane with an angle of about 60 degrees and roughly aligned

with the center of the robot as shown in Figure 5.6, while for the eco-docking, the camera

was also slightly pointing downwards.
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Figure 5.6: Experimental setup used for the ego-docking behaviour.

The images are grabbed with a resolution of 128 × 128 pixels and a central window
of 80 × 80 pixels is used to compute the normal flow. The normal flow is then used to
determine the affine parameters and the control signals are synthesized. The system is

running approximately at 1 Hz on a Eidobrain image processing workstation. Figure 5.7

shows an image of the normal flow measured for the ground plane, which is used to

estimate the affine parameters.

Figure 5.7: Sample of the normal flow field used to estimate the affine motion parame-
ters.

Several tests were made using both the ego-docking and eco-docking behaviours. Fig-
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ure 5.8 shows the trajectory of the robot during an ego-docking manoeuvre. Initially there

is an angular difference of approximately 450 between the robot heading and the surface

normal. During the manoeuvre the robot visually aligns itself with the direction normal

to the surface, while controlling the forward speed.
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Figure 5.8: Trajectory during a real ego-docking manoeuvre. The trajectory is recovered
using odometry.

Figure 5.9 shows the evolution of the forward speed and angular position (heading

direction) of the robot during operation. Note how the velocity and orientation vary

smoothly as the robot approaches the goal.

Finally, several tests were made for the case of the eco-docking concept, using the

same controller apart from a sign inversion in the rotation control law. Figure 5.10 shows

a plot of the robot trajectory during an eco-docking procedure. The evolution of the robot

forward speed and heading direction is shown in Figure 5.11. It is seen that while the

robot is far from the docking station, the speed control loop originates an increase of the

robot velocity and, when the robot gets closer to the docking station, the speed decreases

to a final stop.
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Figure 5.9: Ego-docking example. The left plot shows the evolution of the robot forward
speed in [mm/s], while the left plot shows the evolution of the heading direction, in
degrees, during the manoeuvre.
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Figure 5.10: Trajectory during the eco-docking manoeuvre to a static docking station.
The trajectory is recovered using odometry.
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Figure 5.11: Eco-docking example. The left plot shows the evolution of the robot
forward speed in [mm/s], while the left plot shows the evolution of the heading direction
in degrees, during the docking manoeuvre.

5.6 Conclusions

The docking behaviours described here, illustrate the intimate relation between perception

and action. On one hand, the visual measurement used (normal flow) is elicited by the

motion of the robot. On the other hand, the perception/action loop is not decoupled in

the sense that the performance of the perceptual processes is also a function of the control

parameters.

The robot motion is uniquely controlled by the direct link between the normal flow

estimation and the motor commands generated by the controller and, as a consequence,

no matter what the robot “sees” it will end up in front of the “docking wall” and perpen-

dicular to it. There is no need to have “consciousness” of the situation since the behaviour

is elicited directly by the purpose and the conditions in the environment.

More specifically, an active vision approach for the problem of docking has been pre-

sented in two different situations : the ego-docking and the eco-docking.

In the ego-docking, each robot is equipped with an on board camera and the egomotion

controlled during docking manoeuvre to a given surface. In the eco-docking, instead, the

camera and all the necessary computing resources are placed on a single external docking

station, able to serve several robots.

In both situations, the goal consists in controlling both the robot orientation, aligning



116 CHAPTER 5. VISUAL BEHAVIOURS FOR DOCKING

the camera optical axis with the surface normal, and the approaching speed (slowing down

during the manoeuvre). These goals are accomplished without any effort to perform 3D

reconstruction of the environment or any need to calibrate the setup, contrasting with

traditional approaches.

Our approach is based on the direct use of image measurements to drive the motion

controller, without any intermediate reconstruction procedure. Again, we use the normal

flow field as the visual input data.

An affine model is fitted to the measured motion field, as already explained in Chap-

ter 4. The affine parameters are expressed as a function of the robot motion and directly

used to close the motor control loop. The closed loop strategy proposed uses direct visual

measurements to control the robot forward speed (based on time to crash measurements)

and heading direction. The same control structure is used for the ego-docking or eco-

docking cases, in spite of some differences which have been discussed.

A real time implementation was done and a robust docking behaviour achieved, with

examples given both in the ego-docking and eco-docking problems. There is no need to

calibrate the camera intrinsic or extrinsic parameters nor is it necessary to know the

vehicle motion.



Chapter 6

Gaze Control

We have highlighted the fact that perception and action are so tightly connected that

they cannot be considered separately. This link between action and perception is present

in many animals in nature, as we have already mentioned. Particularly, many animals

exhibit eye movements which are continuously used to perceive the surrounding space.

Humans, for instance, make use of a large variety of controlled eye movements, which are

well studied and described in the literature [Robinson, 1968].

Also, in computer vision, there are many advantages in using agile camera systems.

For example, we have mentioned in the previous chapter, that more complex docking

manoeuvres could be accomplished by actively controlling the gaze direction of a camera

while we are moving throughout a scene.

In this chapter, we discuss the problem of gaze control in general terms, as for object

tracking. A stereo head system Medusa, with four mechanic degrees of freedom (two

independent vergences, tilt and pan), designed for active vision applications is described.

A control system for the head is proposed and tested. Some examples on visual tracking

are shown and discussed.

6.1 Introduction

As referred previously, computer vision systems have been traditionally designed disre-

garding the observer role (camera motion, stereo rig geometry, lens parameters, etc) in

117
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the perceptual process. Actually, most systems were designed to process images which

had been prerecorded in some sense or, at least, acquired independently of the perception

process itself. However, most biological vision systems do not just see the surrounding

space but they actively look at it and, very often, their visual processing is related to a

specific task or set of tasks [Pahlavan and Eklundh, 1992, Blake and Yuille, 1992].

Within this new framework, the ability to perform controlled eye movements, driven by

visual stimuli, has several advantages on improving perception [Bandopadhay et al., 1986,

Ballard, 1991, Grosso, 1994]. The advantage of fixating a point in the environment is

discussed in [Fermüller and Aloimonos, 1992] for various tasks in navigation. The problem

of establishing and maintaining a given orientation, between two stereo cameras and a

static or moving target, is addressed in [Grosso and Ballard, 1993, Grosso, 1993]. By

fixating and tracking an object, we can segment the object from the background (motion

blur) and establish an object centered coordinate system, which is more suitable for

recognition purposes [Ballard, 1991].

To further understand these processes, different research laboratories have developed

active vision systems which incorporate cameras with various mechanical and/or optical

degrees of freedom (see [Christensen et al., 1994] for an overview). These systems have

agile “eyes” (cameras) that can verge to maintain a fixation point on an interesting object

and track it over time; then switch the attention to a different object, bringing it to the

image center, and so on.

Some of the existent heads include symmetric vergence movements for both eyes

[Krotkov, 1989, Ferrier, 1991] allowing the separate control of the direction of gaze (often

referred to as version) and vergence. Other prototypes make use of independent vergence

degrees of freedom and allow very fast saccadic rotations [Coombs, 1991, Murray, 1992].

The stereo heads described in [Coombs, 1991, Crowley et al., 1992] are mounted on top

of robotic manipulators. The stereo head described in [Pahlavan, 1993] was designed to

exhibit most of the human oculomotor system degrees of freedom, thus incorporating 13

degrees of freedom [Pahlavan and Eklundh, 1992].

Besides the eye movements, there is another important process in many biological

vision systems : the accommodation [Bruce and Green, 1985, Carpenter, 1988], which
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adjust the optics of the eyes to focus objects at various distances1.

Some stereo heads have optical degrees of freedom [Krotkov, 1989, Christensen, 1991],

[Crowley et al., 1992, Pahlavan, 1993] as well as mechanic degrees of freedom. In fact,

vergence movements are driven by simultaneous stimuli of accommodation and disparity

[Carpenter, 1988]. Disparity and accommodation can be put together to improve the per-

ception of depth, as in [Abbott and Ahuja, 1988, Krotkov, 1989, Ahuja and Abbott, 1993].

A key issue in all these problems is the sensorimotor coordination or, in the particular

case of computer vision, visuo-motor coordination. What kind of visual information can

be used for active control of the camera head systems, how can it be done and with what

purpose. Ideally, one should directly use some “simple” image measurements to provide

visual feedback for motor control, as it seems to be the case in many biological vision

systems, rather than performing exhaustive calculations for scene reconstruction.

To further understand these problems, we have developed a stereo head with 4 degrees

of freedom, for active vision experiments [Trigt et al., 1993, Santos-Victor et al., 1994b].

The head is composed of two B&W video cameras, which can verge independently (hence

fixating closer or further objects), a common tilt unit (up/down) and a common pan unit

(left/right). To some extent, it corresponds to an anthropomorphic design and provides

the main degrees of freedom available in the human ocular system and in many other

living creatures [Yarbus, 1967, Robinson, 1968, Land, 1975, Carpenter, 1988].

The head control allows the performance of basically two kind of movements : saccadic

movements to rapidly switch the attention from one point in the scene to a different one,

and smoother movements to track moving objects in the environment. As mentioned

before, accommodation is an important perception mechanism in biological vision systems

[Bruce and Green, 1985]. Accommodation will be possible in the future by introducing

active lens control, namely focusing.

This chapter describes the design and construction of the stereo head, and addresses

some early experiments and problems of active control of eye movements.

1Accommodation can be achieved in vertebrates either by moving the eye lens backwards or forwards

(as in fish, amphibians and snakes), or by changing the lens shape (other reptiles, birds and mammals),

thus altering its power.
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6.2 System Description

The stereo head described here, is composed of two black and white cameras mounted

on two independent vergence axes. Additionally, the cameras have a common tilt degree

of freedom and can also pan around a “neck” structure. The inter-ocular distance, the

baseline, can be manually set between 60 and 200mm. This feature is important when

working with different depth ranges. A schematic design of the head is shown Figure 6.1.

� �

Tilt

V ergL V ergR

Pan

b ✲✛

Figure 6.1: Schematic representation of the stereo head. The degrees of freedom are
two independent vergences and common tilt and pan. The baseline, b, can be manually
adjusted.

Moreover, the camera mounting system is such that it can be adjusted to ensure that

both vergence and tilt axes intersect in the cameras optic centers, if desired. If the rotation

axes do not pass through the optic centers, each camera rotation necessarily leads to a

small translation component. As a consequence, the target motion in the image plane

varies with depth as well as the amount of rotation. The depth dependence can then be

used to constrain stereo correspondences [Yuille and Geiger, 1990, Francisco, 1994].

However, by adjusting the rotation axes to pass through the cameras optic center, the

kinematics of the global structure and, as a consequence, the control system design are

significantly simplified . Of course, this condition can only be met approximately as, for
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instance, the location of the cameras optic centers is extremely hard to determine, even

with complex calibration methods. Also, in an active configuration it would be necessary

to continuously update the head calibration parameters as they change over time. Again,

it is hardly likely that many natural vision systems are that well “calibrated” and yet they

have outstanding performances. Our approach here, is then to ensure that the optical axes

and the vergence and tilt axes do intersect approximately, while when designing the various

visual behaviours, one must guarantee that these errors do not degrade significantly the

visuomotor capabilities.

In order to accurately track moving objects, we have specified an angular resolution

of 0.010. This value is well suited to the resolution of a good CCD chip and a large focal

length, which represents a worst case scenario [Pahlavan and Eklundh, 1992]. The max-

imum angular speed and angular acceleration were also set as design specifications. Re-

garding the different joints rotational speed, the maximum value was set at 1800/s which is

roughly half the speed of human saccades [Pahlavan and Eklundh, 1992, Robinson, 1968],

thus enabling the head to rapidly switch attention between different targets. The maxi-

mum value for the angular acceleration was set at 10800/s2.

The mechanical structure was carefully designed in order to prevent vibrations while

performing fast movements. The required motor torques were determined by calculating

the moments of inertia of the different parts of the head, and by the set of angular speed

and acceleration specifications. We have used DC motors with harmonic drives (with

negligible backlash) coupled with encoders for vergence, tilt and pan axes.

The main characteristics of the different joints of the stereo head are summarized in

Table 6.1. We have also included the minimum achievable speed by each joint, which

depends on the encoder resolution and sampling frequency. This is an important limit

when tracking slowly moving objects (or very far from the cameras).

The stereo head host system is a 486/50MHz PC computer, equipped with a DT2851

frame grabber and a DT2859 video multiplexer. The motors are driven by Advanced

Motion Controls MC3X series PWM servo amplifiers and we are using two Omnitech

Robotics MC3000 axes control boards. Each of these boards controls up to 3 axes and,

therefore there are two unused control channels that will be used in the future for active

lens control. Additionally, each joint is equipped with switches for limit detection during
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Resolution Min. speed Max. speed Accel.

(degrees) (deg/s) (deg/s) (rad/s2)

Verg. 0.0031 1.55 180 6 π

Tilt. 0.0018 0.9 180 6 π

Pan. 0.0036 1.8 180 6 π

Table 6.1: Medusa main characteristics. This table shows the angular resolution,
minimum and maximum speed and angular acceleration for each joint.

operation and with an inductive position sensor for fine homing during startup. Figure 6.2

shows the mechanical designs of the stereo head. It can be seen how the cameras have been

mounted in order to be able to move the optical center to the point where the vergence

and tilt axes intersect. The designs include also the switches for limit detection and the

inductive sensors for fine homing. A picture of Medusa is also shown on Figure 6.2.

6.3 Control Architecture

The main problem of gaze control is that of determining what kind of visual cues can be

used to control the motion of our eyes, how it is done and with what purpose. This has

been an interesting topic of research in psychology, psychophysics and psychophysiology

for many years [Doorn and Koenderink, 1983, Gibson, 1950, Pobuda and Erkelens, 1993,

Robinson, 1968, Warren and Hannon, 1990] and provides an important source of infor-

mation and useful ideas for the active control of camera heads.

The procedure of tracking a moving object can be seen as a cycle of the following

steps : image acquisition; calculation of the target object position; generation of new

motor commands to reposition the target in the center of the retina. The calculation of

the target position should be understood in the broader sense of determining its position,

and/or velocity, binocular disparity or whatever variables might be relevant to compute.

In our artificial stereo head, this sequence of steps is described by the block diagram

shown in Figure 6.3.
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Figure 6.2: Detailed mechanical designs of the stereo head. The bottom image shows a
picture of Medusa.
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Figure 6.3: Complete loop for gaze control. This figure shows the cycle of image ac-
quisition, locating the target and generating new motor commands to keep the object
centered in the retina.

The variablesXr andXt represent respectively the target reference position (position,

velocity, etc) and the observed target position. Note that these quantities are measured

in the retinal (image) plane. The position of the motor shaft, holding the camera, is

denoted by θc. The term T−1
k represents the inverse kinematics of the head (or an inverse

jacobian), relating the error measured in the image plane into the appropriate joint angles

or velocities. Naturally, this process can be an accurate description of the head kinematic

chain or some simplified version. In the figure, D(z) denotes the digital servo controller,

KD is the DAC conversion factor, KA is the amplifier gain, G(z) is the transfer function

of the motor and E is the encoder function.

Therefore, one can consider that the control system is composed of an outer loop

and an inner servo loop, as shown in the picture. The inner loop operation consists in

generating new motor commands, based on the new desired joint positions and feedback

from the encoders. The outer loop is responsible for determining new joint positions,

using the visual information as feedback, and providing input reference values for the

low level control system. Each of these control levels will be addressed separately in the

following sections
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6.4 Servo Loop

This section is devoted to the problems of the low level control, while the visual based

control will be detailed in Section 6.5. The advantage of considering these two problems

separately stems from the fact that, while the high level control system is difficult to

model, the servo loop can be carefully modeled and analysed. Since the gaze controller

runs at a much lower frequency than the servo loops, we can assume that the motors

transient responses vanish after each sampling period. Hence, we can decouple both

control loops and focus our attention on the visual control system.

For the servo loop, we performed extensive modeling of the different subsystems in

the control loop, and a suitable controller was designed based on specifications, both for

position and velocity control. Position control is suitable for fast movements between dif-

ferent targets, appropriate for saccadic motions, and the velocity control mode is suitable

for the smooth tracking of a moving target.

The low level control makes use of the digital filter of the MC3000 control board. This

filter provides programmable compensation of the closed loop system to improve response

and stability. The discrete filter transfer function is given by :

D(z) = K
z − A

z +B
(6.1)

The compensation filter, together with the sampling time of the control board, affects

the dynamic response and stability of the servo system. The filter zero, A, pole, B,

gain, K and the sampling time, ts, can be set during the controller design process. The

parameters A and B can vary between 0 and 1, ts varies between 64 and 2048 µs and the

gain factor K has a value between 0 and 64.

The axes control board can operate in 4 different modes: position control, proportional

velocity control, integral velocity control and trapezoidal control mode. For all these

operating modes, we will now design a suitable controller for closed loop operation.

6.4.1 Position Control

In the position control mode, the board reads the encoder pulses and compares the ob-

served position to the desired position. The resulting position error is input to the control
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filter (equation (6.1)), and used to move the motor shaft. This operation mode is shown

in Figure 6.4.

✚✙
✛✘
Σ

+

−
K z−A

z−B DAC AMP G(Z)

E

✲ ✲ ✲ ✲ ✲ ✲

✛

✻

Motor

θr

θt

θc

Figure 6.4: Block diagram of the complete system in position control mode.

The motor transfer function [Omnit. Robotics, 1989], relating the motor input voltage

and output angular position in continuous time, Gc(s), is given by :

Gc(s) =
1/KE

s(sTM + 1)
(6.2)

where KE is the motor voltage constant and TM is the mechanical time constant. The

motor electrical pole can be neglected when compared to the dominant mechanical pole.

To find the discrete transfer function, as it is seen by the computer, and assuming that

the system output is sampled by a zero order hold mechanism, we can use the step invari-

ant method [Astrom and Wittenmark, 1986, Franklin et al., 1986]. The discrete transfer

function, G(z), follows from :

G(z) = (1− z−1)Z(L−1Gc(s)

s
) (6.3)

in which Z(L−1F (s)) is the z transform of the time series whose Laplace transform is

given by F (s). The general expression for G(z) is given by :

G(z) =
1

KE

(T − TM + TMe
− T

TM )z + (TM − TMe
− T

TM − Te
− T

TM )

(z − 1)(z − e
− T

TM )
(6.4)
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The choice of the sampling time is critical for the system. Since the motors position

sensor is discrete (an encoder) there will be a minimum velocity that can be detected

by the control board and, therefore, that can be used to command the motors. This

velocity is one encoder pulse per sampling time. For a sampling period of 1ms, and

for the vergence motors this minimum speed amounts to 3o/s. For this reason, we have

chosen the sampling time, T , to be 2.048 ms, the maximum value allowed by the board.

Hence, the minimum velocity will be reduced to 1.5o/s.

Considering that, presently, the system is running at a frequency of about 6 to 7Hz

and that, we expect in the future to reach a speed of about 15-25Hz, the sampling period

is still small enough in order to guarantee the vanishing of all the transients responses

between successive image acquisitions.

The mechanical time constant TM is derived to incorporate the effects of the total

inertial moment for the joint [Omnit. Robotics, 1989].

TM =
R Jtot
KE KT

(6.5)

where R is the motor armature resistance, Jtot is the total inertial moment for the joint

and KT is the motor’s torque constant. The output range of the 8 bit DAC from the

control board is 20 V and, therefore, the conversion factor KD can be determined as:

KD =
20

28
[V/counts] (6.6)

The amplifier gains, KA, have been measured (see [Trigt et al., 1993] for a detailed de-

scription). For the vergence, a value of 1 was obtained while for tilt and pan we obtained

1.95 and 3.56, respectively. The encoder function is given by :

E =
4NG

2π
(6.7)

In this expression, N is the number of encoder lines and G the gear ratio. The factor 4 is

present because the control boards use quadrature counts, thus increasing the resolution

of the closed loop. Combining the different amplification factors, a new transfer function

P (z), is obtained according to the following expressions:

Pverg(z) = 0.155
z + 0.96

(z − 1)(z − 0.88) (6.8)
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Ptilt(z) = 0.149
z + 0.95

(z − 1)(z − 0.86) (6.9)

Ppan(z) = 0.106
z + 0.92

(z − 1)(z − 0.77) (6.10)

The root locus for the uncompensated vergence system, Pverg(z) is shown in figure 6.5. It

shows that if the loop is closed using a simple proportional controller, then the system

will become unstable.
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Figure 6.5: Root Locus of uncompensated system for vergence. The unit circle is shown
in dotted line. The system becomes unstable with a proportional controller.

The digital filter, expressed in equation (6.1) was used to improve the system damping

and stability by suitably placing the controller zero and pole. As a method, the controller

zero, A, was chosen in order to cancel one of the poles of the vergence, tilt and pan

dynamic systems (equations (6.8) through (6.10)). The controller pole is chosen to be at

the origin. Basically this strategy introduces a derivative action to improve the system

damping.

According to this strategy, the Root Locus of the compensated vergence system
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D(z)P(z) is shown in Figure 6.6. It is now seen that the system is stabilized for a set of
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Figure 6.6: Root Locus of PD compensated system for vergence.The unit circle is shown
in dotted line.

values of the controller gain, K, . The controller gain was chosen in order to have double

real poles in the closed loop system. This criterion ensures that the system response will

not overshoot. The closed loop poles are the roots of the following polynomial :

D(z)P (z) + 1 = 0 (6.11)

The value of the control gain is obtained by solving the roots of equation (6.11) and

setting the imaginary part of the roots to zero. For the three different axes the following

controllers were calculated :

Dverg(z) = 1.14
z − 0.88

z
(6.12)

Dtilt(z) = 1.20
z − 0.86

z
(6.13)

Dpan(z) = 1.71
z − 0.77

z
(6.14)
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We have simulated the system behaviour using the filter values in equations (6.12) to

(6.14). Figure 6.7. shows the simulated step response of the vergence motors with load.
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Figure 6.7: Simulated step response for the vergence motor.

It is seen that, due to the presence of a discrete integrator in the control chain, the

system has zero steady state error to a position step command. Moreover, with the

criterion we used for the control system design, the closed loop system shows a fast

response, without overshoot. Notice how the transient response lasts for roughly 15 ms,

which is still much faster than the vision loop.

6.4.2 Proportional Velocity Control

In the proportional velocity control mode, the control error is determined by the difference

between the desired command velocity and the actual motor velocity. The controller is a

simple proportional gain, K. Since the digital filter is disabled in this control mode, the

closed loop behaviour is mainly determined by the system dynamics. The block diagram

of the closed loop system under this control mode is shown in Figure 6.8

In this mode, the motor transfer function (given that the output is now the motor

velocity instead of the shaft position) is given by :

Gc(s) =
1/KE

sTM + 1
(6.15)
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Figure 6.8: The control system block diagram when operating in Proportional Velocity
mode.

As it was done in the position control mode, a discrete version of this system can be

obtained by using the step invariant method. We have :

G(z) =
1

KE

1− e
− T

TM

z − e
− T

TM

(6.16)

The complete transfer function for the open loop system, considering all the different

subsystems, is given by :

P (z) =
KDKAET

KE

1− e
− T

TM

z − e
− T

TM

(6.17)

By using a proportional controller, K, the closed loop poles will be the roots of the

following equation :

z − e
− T

TM +
KKAKDET (1− e

− T
TM )

KE

= 0 (6.18)

For a given location of the closed loop pole, the corresponding value of the gain, K,

can be calculated. There are a variety of control system design procedures that can be

used at this point. We have analysed three different approaches :

(i) To guarantee the system stability, the maximum value for K will occur when the

discrete loop pole is located in z = −1, just before becoming unstable. Using this
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constraint, we have un upper bound for the controller gain :

K <
KE(1 + e

− T
TM )

KAKDET (1− e
− T

TM )
(6.19)

(ii) Another design constraint that can be used is related to the steady state error.

Since none of the dynamic subsystems in the action loop has an integrator term,

the steady state error to a step command (a sudden velocity change) will not be

zero. There will always be a velocity error, and constant perturbations will not be

rejected. However, by suitably setting the value of K, this error can be bounded by

design specification. The transfer function relating the error signal and the plant

input is given by :

H(z) =
E(z)

U(z)
(6.20)

=
KE(z − e

− T
TM )

KE(z − e
− T

TM ) +KEKDKAET (1− e
− T

TM )
(6.21)

To keep the error smaller than a bounding value, errlim, when time tends to infinity

(and z tends to 1), the following condition must be satisfied :

K >
KE(1− errlim)

KAKDETerrlim
(6.22)

(iii) A third design criterion consists on imposing that the pole should be positive, in

order to ensure that the motor velocity will not exceed the command velocity. The

limit situation is reached for z = 0, and yields another criterion for the choice of K.

Table 6.2 summarizes the control gains to be used considering all the design constraints

for the different degrees of freedom. In the implementation, we have chosen the gains

corresponding to the z = 0 constraint, even though these gains do not meet the steady

state error criterion. However, in the next section, we will analyse another velocity control

mode with better performance regarding the steady state error.

6.4.3 Integral Velocity Control Mode

This control mode provides velocity control with controlled acceleration and deceleration,

at a user defined maximum rate. The controller compares the desired velocity and the
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Criterion Vergence Tilt Pan Bound

(i) z > −1 6.2 6.4 8.7 max

(ii) errlim < 0.1 3.5 4.3 10.2 min

(iii) z = 0 2.9 3.0 3.8 max

Table 6.2: Bounding values for the controller gain, in order to fulfill the different design
criteria in the proportional velocity control mode. The Bound column specifies whether
the constraint is a maximal or minimal value for K

actual motor velocity, and the desired motion is achieved by incremental position moves,

constrained by the maximum acceleration/deceleration.

A point worth stressing is that the position controller is being used in order to achieve

the desired velocity command. Therefore, regarding the dynamics and controller param-

eters, the same analysis that was done for the position control mode, is still valid for the

integral velocity control mode.

The main difference, when compared to the proportional velocity control mode, is that

since the compensation filter is now used, the steady state velocity error is zero. This

characteristic of the integral velocity control mode is suitable for smooth tracking of a

moving target. We have set the a(de)acceleration to 1.3 π rad s−2.

6.4.4 Trapezoidal Profile Control Mode

The trapezoidal profile control mode, provides position moves while profiling the velocity

and thus controlling the acceleration.

The controller starts at the actual position and generates a profile to the final position

by accelerating at the specified constant acceleration until the specified maximum velocity

is met, or half the position move is complete. Then, either it remains at the maximum

velocity until the deceleration point or it immediately enters in the deceleration phase

until it stops. After issuing the last position command, the board enters in position mode

to hold to the final position.

Again, the basic mechanism being used is position control and, accordingly, the anal-
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ysis made, for the closed loop behaviour in the position control mode, is again valid in

this control mode.

For the different joints, step responses have been obtained and suitable values for the

acceleration and maximum velocity were determined for the different joints, according to

Table 6.3:

vergence tilt pan

θ̇ (rad/s ) 1.5 π 0.75 π 1.5 π

θ̈ (rad/s2) 6 π 3 π 6 π

Table 6.3: Values for the acceleration and maximum velocity to be used in trapezoidal
profile control mode for the different degrees of freedom.

The values for the tilt are half as big as the values for both vergence and pan. Those

values have shown the best results for the step responses.

6.5 Gaze control : the oculomotor control system

Having analysed the servo loop designs, we can now concentrate on the problem of visual

control of the stereo head. In the control architecture proposed for Medusa, the gaze

control system is responsible for determining the location and/or speed of the target and

to calculate new command positions/velocities, for the vergence, tilt and pan motors.

As the servo loop is running at a much higher frequency than the visual feedback

loop, from the point of view of the gaze control system, we can consider that the servo

loop transients are extinct once a new image is acquired. Hence, the servo loop appears

as a delay, h, when seen by the slower gaze control loop. This structure is depicted in

Figure 6.9.

For many years, there has been a large interest in the study of the oculomotor control

system in biological systems. Its function consists in acquiring visual targets rapidly and,

once acquired, stabilizing their images on the retina in spite of the relative movements

between the target and the observer [Yarbus, 1967, Robinson, 1968, Land, 1975]. Many
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Figure 6.9: Gaze control loop. At the sampling rate of the visual feedback loop, the
inner servo loops can be considered as simple delays.

animals exhibit different kinds of eye movements. In general, these movements stabilize

the image in the retina, therefore minimizing the velocity blur [Carpenter, 1988]. Also,

these movements allow the increase of the field of view observable by the animal. The

retina in many animals, as in birds and mammals, is composed of a relatively large

peripheral area, with low acuity and a much smaller central segment called the fovea with

high acuity. Eye movements are used to shift this foveal region continuously so that acute

vision over a wide field of view can be achieved [Bruce and Green, 1985].

We can identify five basic kinds of eye movements [Robinson, 1968] made by awake,

frontal eyed, foveal animals : saccadic, smooth pursuit, vergence, vestibular and the

physiological nystagmus.

Saccadic eye-movements consist of very rapid relocations of the direction of gaze to

switch attention between different targets. Since the animal does not see well during these

movements, due to the saccadic-suppression mechanism, these eye-movements are not

controlled by visual feedback during their execution, therefore minimizing the execution

time.

The smooth pursuit movements correspond to slow and accurate movements of the

eyes, for example, while tracking a target by the fovea. Another kind of smooth pursuit

movement is the optokinetic nystagmus, the involuntary following by the eyes of any large

moving target. The optokinetic nystagmus occurs, for example, while looking through the
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window of a moving train.

The vergence mechanism is used whenever the distance to the target changes, to keep

the target fixated by the foveas of both eyes. If the target comes very close, further

convergence is impossible, and “double vision” occurs. The main characteristic of this

movement is that both eyes make equal movements in opposite directions, thus keeping

the object in the fovea. Vergence movements are the slowest type of eye movements. As

mentioned before, the accommodation stimulus is used for the vergence control system

[Carpenter, 1988].

The vestibular movements are induced by stimuli of the vestibular system semicircular

canals, and have the function of compensating the head rotations by counter-turning the

eyes in order to stabilize the image on the retina. The vestibular nystagmus (also known

as the vestibular-ocular reflex) is usually interrupted by saccadic movements during head

rotations of large amplitude.

The physiological nystagmus are extremely small movements consisting of drifts, high

frequency tremor and microsaccades that are continuously present during fixation. How-

ever this kind of movements is not involved in the larger tracking eye movements and,

therefore, will not be further discussed.

The kind of eye movements implemented in the stereo head are the saccadic movements

and smooth pursuit mechanism. Basically, for the saccadic movement, the eyes operate

in position control, thus allowing very fast movements to relocate the direction of gaze

direction from one point to another. For the smooth pursuit mechanism, the integral

velocity control mode is used, thus allowing accurate tracking of the target. The first

problem to be addressed, then is the determination of the target position on the retina.

6.5.1 Target detection

For the time being, we kept the visual processing to a low complexity level. The reason

to do so is that we can concentrate on the problems of visuo-motor coordination without

excessive computation time for visual processing.

The first goal we established for the stereo head was following a bright spot moving

throughout the scene. The images are acquired with a resolution of 512 by 512 pixels
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and uniformly subsampled down to 64 by 64 pixels. Then, each image is thresholded

to segment the target from the background. The target position, in the visual field, is

estimated by the center of mass of the image, computed at the coarse resolution.

However, our goal in the future, is to carry on this kind of visual control, using gen-

eral gray-level images, and yet keeping the complexity of the visual processing to a low

level. For this purpose, the images can be sampled using a space variant method, keeping

a higher resolution at the image center, the fovea, and having a coarser resolution to-

wards the periphery [Schwartz, 1977, Tistarelli and Sandini, 1993], [Wallace et al., 1994,

Nielsen and Sandini, 1994]. With respect to the target detection, we can use the normal

flow computed over the retinal image [Aloimonos and Duvic, 1994, Sinclair et al., 1994] to

determine the target foveal speed [Martinuzzi and Questa, 1993] or determine the binoc-

ular disparity by means of correlation techniques or cepstral filtering as described in

[Yeshurun and Schwartz, 1989].

6.5.2 Inverse Kinematics and Control

We have already described the procedure used to determine the target position in the

image. The problem now is how to convert these measurements on the image plane

into the appropriate joint angles. Basically, we have to determine the head kinematics

and jacobian2, which relate the target position and velocity with the appropriate joint

positions and velocities :

θ = T −1
K (Xl, Xr) (6.23)

where θ denotes the joint angles, T−1
K the inverse kinematics andXl, Xr the target position

in the left and right image planes.

The kinematics can be simplified if we assume that the vergence and tilt axes intersect

in the cameras optic centers. In fact, this was the reason why the head design accounted

for this possibility. Still, the kinematics are complex and, above all, depend largely on a

number of parameters of the stereo head/cameras geometry which are hard to calibrate

2The kinematic and jacobian relate 2D image positions and velocity to the joint-space angular positions

and speeds. In this sense, they differ from the usual robotics applications, which relate 3D coordinates

and velocities to the joint space.
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in practice.

Alternatively, we prefer to use a simple approximation of the kinematics since any

inaccuracy can be compensated for in the feedback control loop. During smooth pursuit

movements, the target position is stabilized in the center of the retina. When the tar-

get deviation from the image center is small, the relationship between the vertical and

horizontal disparities and the corresponding tilt and vergence angles, can be decoupled.

In this situation, the relationship between the vergence and tilt angles and the target

position in the left and right image planes, (xl, yl, xr, yr), results from simple geometric

considerations as illustrated in Figure 6.10.
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Figure 6.10: Simplified kinematics. The relationship between the target position in the
image and its angular position, with respect to the vergence and tilt joints.

For the vergence, we have

θl,r = arctan
xl,r
fx

(6.24)

where fx is the camera focal length expressed in pixels. The tilt error can be calculated

similarly, by averaging the two vertical target projections :

θt = arctan
yl + yr
2fy

. (6.25)

It was mentioned before that the saccadic and smooth pursuit eye movements have

been implemented in the stereo head control system. Saccades are performed using posi-

tion control in the servo loop with the joint angles described in equations (6.24) and (6.25).
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As a consequence, the direction of gaze is redirected as rapidly as possible towards a new

target or point of interest.

Alternatively, to track a slowly moving target, the smooth pursuit mechanism is ac-

complished using velocity control (integral velocity control mode). The required angular

velocity command, to be applied to a specific joint, is estimated by dividing the position

error by the sampling time of the overall visual loop (image acquisition and processing),

and used to command the motors.

The visual controller (see Figure 6.9) is a simple PID controller. We have performed

tests using a variety of parameters. Naturally, the pure delay existing in the loop, due to

the visual processing poses a challenge to the control system. More sophisticated control

strategies are now under consideration and development.

6.5.3 Coordination

There is a coordination problem to address regarding the pan and vergence degrees of

freedom. In fact, the horizontal component of the disparity can be compensated either

by verging/diverging the cameras, or by performing a pan movement. We have envisaged

three main possibilities, to combine vergence and pan movements :

(i) The target is followed using the vergence and tilt motors and, whenever the cameras

reach an uncomfortable position, a fast pan movement is performed to redirect gaze

to a more comfortable position, while vergence movements compensate the neck

rotation; This idea is shown in Figure 6.11. The amplitude of the pan saccade3 can

be determined based on the vergence angles :

θg = arctan

[
2 tan θvl tan θvr
tan θvl + tan θvr

]
(6.26)

The gaze angle, θg, is brought back to 90
0 and the new vergence angles, θ′vl and θ′vr,

are set symmetrically equal using the equations :

θ′vl = arctan

[
sin θvl

sin(θg − θvl)

]

3Even though the term saccade is usually applied to the eye movements, this pan movement can be

seen as saccadic in the sense that it is performed as fast as possible without visual feedback during the

movement. Simultaneously, we have saccadic and vergence eye movements.
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Figure 6.11: Fast movement (saccadic type) of the pan motor, followed by the appro-
priate vergence compensation.

θ′vr = π − θ′vl (6.27)

(ii) The gaze angle is continuously kept at 90 degrees, by controlling the pan and tilt

angles, while left and right vergence angles are kept symmetric, moving the fixation

point closer or further from the camera;

(iii) A combined motion of the pan and vergence axes, based on the control effort (energy)

and the comfort of the camera positions, is responsible for horizontally repositioning

the target in the image center.

6.6 Results

An experiment has been carried out to test the overall response of the stereo head. The

experiment setup is shown in Figure 6.12. We have used a light source moving at constant

velocity in front of the stereo head. For this experiment, we have used a single axis (camera

vergence) to track the moving spot.

When this experiment was made, the running frequency of the global visual loop is

around 1.5 Hz, while the current setup runs at about 6Hz using all the degrees of freedom.

The camera is controlled in integral velocity mode, with the digital filter parameters,

K and A, set according to the design analysis. The acceleration is 1.3 πrad.s−2. See
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Figure 6.12: Experimental setup for the gaze control system.

section 6.4 for further details. We have tried different gaze controller parameters settings,

as specified in Table 6.4. In order to illustrate the importance of the the minimum

velocity that may be used, we have initially set the servo loop sampling period, Ts, at

1ms. Therefore, the minimum velocity is expected to be 30/s in the vergence case.

Experiment i ii iii iv v vi

KP 0.5 0.75 1.0 0.75 0.75 0.75

KI 0.0 0.0 0.0 0.1 0.1 0.0

KD 0.0 0.0 0.0 0.0 0.2 0.2

Table 6.4: PID settings for the experiments, with Ts = 1 ms

Figure 6.13 shows different responses of the vergence system. The plots on the left

side correspond to an increase of the proportional gain (from the top to the bottom). On

the right hand side plots, we have introduced the integral action of the controller (top),

then added a derivative term (center), and finally removed the integral part (bottom).

The solid line shows the evolution of the target angular position, while the dotted line

represents the evolution of the camera angular position. Both measurements are taken

in the initial camera coordinate frame. It should be noticed that the target angular

position is determined based on the image processing and therefore depends on the image

resolution.

In general, the tracking capabilities shown are satisfactory. It is seen that the error is
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Figure 6.13: On the left column (experiments i, ii and iii), we see the effect of increasing
the proportional gain of the gaze controller. On the right column, (experiments iv, v and
vi) we start by adding some integrative action, then some derivative action, and finally
remove the integral action.
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reduced as the proportional gain increases. By introducing the integral effect, the error

tends to zero (in average), although increasing the transient effects. This is mainly due

to the addition of extra delay in the loop. By increasing the derivative gain, the system

becomes more responsive and predictive, thus improving the overall system response, by

increasing damping.

The existence of a pure delay of one sampling period for the vergence angles compu-

tation, is also clearly noticeable in the plots, and it is one of the effects that degrades the

system response.

Another observation is that, for some periods, the camera is stalled in the same position

while the error increases. This effect is mainly due to the fact that when the velocities

are very small (under 30/s) the encoder resolution is not sufficient to measure them, as

explained in Section 6.4.

By increasing the sampling period to the proposed value of 2.048 ms, this minimum

velocity is halved down to about 1.5o/s. The experiment was repeated with these settings.

The two top plots on Figure 6.14 show two experiments with the same control settings

but with different sampling frequencies. The tracking performance is clearly improved on

the second plot, as the minimum velocity is lower.

To further improve these new results, one may check if the commanded velocity is

less than the minimum achievable velocity. In this case, the vergence is controlled in

position mode, thus achieving extremely high precisions, in a kind of microsaccades. If,

otherwise, the command velocity is large enough, the controller uses the velocity control

mode. The experiment was again repeated with this combined strategy and the results

are shown on the bottom plot of Figure 6.14. The PID controller parameters are set

at Kp = 0.75, Ki = 0.1 and Kd = 0. Note that a very accurate tracking behaviour was

achieved. However, under this control strategy, the phase of gaze acquisition may be more

difficult, due to the effect of pure position control.

Even though we have used a simple gaze control system, at the current stage, it was

possible to illustrate the basic working mechanisms involved in a active gaze control ap-

plications. Particularly, much can be gained by a careful analysis of the tracking errors

and choosing alternative control strategies, as it was done with the microsaccades. Accu-

rate tracking capabilities were achieved. Further improvements in the control system are,
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Figure 6.14: Tracking trajectories. From the first experiment to the second, we have
doubled the sampling period, thus halving the minimum detectable speed to 1.50/s. On
the final experiment, the control strategy combines smooth pursuit and microsaccadic
movements.
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naturally, being envisaged.

6.7 Conclusions

We have presented Medusa, a stereo head for active vision applications, equipped with

4 degrees of freedom : independent vergence for each camera and a common tilt and pan.

The inter-ocular distance can be manually adjusted. The camera position can be adjusted

so that the tilt and vergence axes intersect (approximately) in the optical centers. We

have set a number of specifications regarding the system performance, namely resolution,

angular velocity and angular acceleration constraints.

The head control was split into two parts. The servo level was designed to ensure that

each of the motors follows the position and velocity references, provided by the external

loop. Particular care was taken in the design of these loops to ensure appropriate dynamic

responses.

The visual information is then linked to the motor action by the gaze control system. In

this outer loop, the visual processing identifies the target position and provides references

to the servo loops in order to track the target. We have presented and discussed the

main characteristics of biological oculomotor systems which provide a valuable help to

the development of artificial stereo heads.

Finally, we have presented an example that illustrates the tracking capabilities of

the system. The analysis of this experiment has revealed some control problems that

suggested directions of improvement. The final control configuration led to low tracking

errors.

Even though the gaze control system was kept to a simple design, good tracking

performance was achieved. Further improvements are now being envisaged, namely in

the gaze control system to cope with the pure delay introduced by the visual processing;

and addressing the problem of gaze acquisition, which may require more advanced control

design, than the problem of gaze holding.
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Chapter 7

Summary and Conclusions

7.1 Summary

We have addressed in this thesis the problem of visual perception in the context of mobile

robotics.

Chapter 1 was devoted to a general introduction to the problem of visual perception,

discussing several approaches. Particularly, we have focused on the Gibson’s approach

to the psychology of visual perception, according to which perception is mainly a pro-

cess of interacting with the environment in order to extract, active and selectively, the

information relevant to a given purpose. On the other hand, in Marr’s theory there is an

important role played by internal representations of the external world. In this sense, vi-

sual perception consists on retrieving information from the world to build internal models

which are then used for higher level cognitive procedures.

Marr’s ideas led to the so called reconstructive approach in computer vision, aiming

at recovering 3D information about scenes using images as the input. Gibson’s ideas,

instead, led to the purposive and qualitative active vision approach. Both methodologies

are discussed in detail.

In Chapter 2 we describe a vision system for 3D reconstruction using an image

sequence as the input. It assumes a single camera moving in the environment (installed

on a mobile robot or on a manipulator). The images are matched and the resultant

disparities used to recover depth. In order to overcome the ill-posed character of the

147
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matching process, we use prior models to constrain the disparity vector field to smooth

solutions, in a regularization approach. The uncertainty on the disparity estimates is

characterized and estimated. A kalman filter is used to integrate multiple measurements

over time. We have presented several results in both land and underwater environments.

Chapter 3 describes an approach to autonomous navigation inspired on insect vision,

Robee. Two lateral cameras are installed on top of a mobile robot and used to drive the

vehicle along corridor like environments, by comparing partial descriptions of the periph-

eral flow fields. This approach does not require any reconstruction of the environment

nor calibration. The robustness arises from the fact that visual measurements are directly

coupled to the control of action, in a way similar to Gibson’s direct perception approach.

Another behaviour was implemented in which the robot can follow walls. Also, the vehicle

speed is controlled based on visual input. Many examples were shown.

As Robee is blind in the direction of motion, in Chapter 4 we have presented an

approach to detect obstacles located ahead of the robot. The main assumption is that the

robot is moving on a flat ground floor and, therefore, the camera is observing a planar

surface in motion. This fact allows the description of the optical flow field by a parametric

model. The information of the normal flow is used to robustly estimate the parameters of

a simplified affine model. These parameters define an inverse perspective transformation

between the image plane and the horizontal plane. Transforming the flow field in this

way, simplifies the detection of obstacles lying above or below the ground floor. Real

experiments are documented.

Docking is an important functionality for a mobile robot. It consists in approaching

a specific point in the environment in a controlled way. We describe in Chapter 5

two docking behaviours : ego-docking and eco-docking. In the ego-docking the robot

carries an on board camera and docks to an external point in the environment. In the

eco-docking, instead, the camera is installed on a docking station which controls the

vehicle manoeuvres. In both cases the vehicle should approach the surface along the

perpendicular direction and slow down until it stops. These behaviours are accomplished,

again by using the normal flow to estimate the parameters of an affine motion model.

These visual measurements are then used to drive the docking manoeuvres.

The active control of eye movements is an important feature in the visual system
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of many animals. Also in robotic applications, we could profit from having a mobile

vehicle equipped with an agile camera system, to actively explore the environment, follow

moving targets, locate landmarks, etc. In Chapter 6 we have described the design

and control of an active camera head. This head has two cameras and four mechanical

degrees of freedom. We have discussed the different types of eye movements and proposed

a control system to implement them. Examples of tracking visual targets are presented

and discussed.

7.2 Discussion

The work described in this thesis can be divided in two main parts. The reconstruction

system produces depth maps which can be used for planning the robot motion between

two points, recognition, object handling or simply to map the 3D structure of a given area

of the environment (in marine science, having a 3D reconstruction of the seabed is often

the goal). We have shown that through careful modeling of the different components of

the system, we can obtain good results.

However, these maps require extensive computation and could hardly be used to safely

drive the vehicle along a given path. Instead, the second part of the thesis proposes

different perception/action functionalities for mobile robots, which stress the concept of

visuo-motor coordination in, at least, two ways :

(i) The visual measurement used (normal flow of target position in the image) is elicited

by the motion of the robot or movements of the eyes.

(ii) The perception/action loop is not decoupled in the sense that the performance of

the perceptual processes is also a function of the control actions.

The consequences of this approach may be, in our opinion, very general particularly

in the area of navigation and manipulation.

A purposive motor action coupled to a specific perceptual process directly elicits a

behaviour (a behaviour emerges, in the sense of Brooks [Brooks, 1986a, Brooks, 1986b]),

without the need for “understanding” the structure of the scene or continuously moni-

toring the geometric features of the environment. In doing that, the system behaves in a
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parsimonious way by utilizing the minimum amount of information necessary to achieve

the current goal (even if it is obvious, it is worth noting that only one goal at a time can

be pursued and that, even in case of concurrent processes, the motor commands must be

unique).

In Chapter 3, we used an approach (with a divergent stereo setup), for “centering” and

“wall following” behaviours. The robot motion is uniquely controlled by the direct link

between the normal flow estimation and the motor commands generated by the controller.

Only the flow information from the peripheral part of the visual fields was used to maintain

the robot in the center of a corridor [Santos-Victor et al., 1994a].

The same approach was again used in the docking experiments described in Chapter 5.

Due to the intimate coupling of perception and action, there is no need to interpret the

scene to elicit the behaviour : no matter what the robot “sees” it will end up in front of

the “docking wall” and perpendicular to it.

In yet another experiment (see Chapter 4) the frontal part of the visual field has

been used, extracting again the normal flow [Santos-Victor and Sandini, 1994], to detect

obstacles and stop.

For all these visual behaviours it is not necessary to know the calibration and/or

the vehicle motion parameters and, moreover, they are all based on the same visual

information (optic flow). Two factors characterize the different behaviours :

(i) The part of the visual field analysed (on which part of the visual field is the attention

focused).

(ii) The control law adopted (the direct link between visual information and rotation of

the wheels).

An important step further arises if we add eye movements to the mobile robot, in order

to actively exploit the environment. In the active gaze control described in Chapter 6,

visual measurements were again used to control the action of an active observer, namely

performing eye movements to keep a stable image of a moving target.

The challenge now is how to combine these different behaviours to accomplish more

complex tasks. The simplest solution would be to design a “planner” eliciting the appro-

priate behaviour according to the current situation. For example, the centering behaviour
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if the robot is navigating along a corridor or the wall following, the docking behaviour to

stop in front of a door, the obstacle detection to avoid obstacles and search for landmarks

or people, using the gaze control.

The problem, then, is no more to understand the environment (each behaviour em-

beds all the perceptual processes necessary to understand the relevant aspects of the

environment) but to understand (or to know) the situation. Of course, this is not nec-

essarily simpler than understanding the environment. However, the fact that it may not

be necessary to “tune” a perceptual process, interpret the perceptual information and

transform this into motor commands but, on the contrary, “appropriate action” is totally

embedded inside the single behaviours, seems to be a very powerful way of breaking a

complex problem into simpler ones and, consequently, of designing incremental systems

whose capabilities are bounded by the number of behaviours implemented and do not

require a general purpose architecture to be developed beforehand.

7.3 Directions for Future Work

Establishing the directions for future work, in the area of computer vision, can certainly

be classified as an ill-posed problem mainly due to the enormous number of possible

solutions.

A number of improvements can be pointed out in most of the problems addressed

in the thesis. Regarding the visual reconstruction, an interesting improvement would

consist on taking full advantage of controlling the camera motion using feedback from

the estimated model. On the other hand, it would be challenging to determine to what

extent we could use less exhaustive models or representations for navigation purposes. For

instance, a representation describing features like corridors, walls, rooms, could possibly

suffice for some applications in robotics.

An improvement already suggested for the docking behaviours consists on mounting

a camera head on top of the robot and controlling the docking point simply by fixation

and coupling the docking and gaze-control behaviours. The docking point would simply

be specified in the image domain.

Concerning the stereo head, there are some directions of work to be pursued in the
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near future. First, we are planning to use the normal flow measurements in order to

track a general target. The vergence process can benefit from a different image sampling

mechanism, namely space variant sampling strategies. Finally, we intend to add optical

degrees of freedom and integrate all the different kinds of eye movements.

Another class of visual behaviours that we would like to address in the future are

related to manipulation as this is often the purpose of having a mobile robot navigating

through the environment. Also in this domain we intend to keep a similar approach

regarding the interaction of perception and action.

Undoubtfully, the integration of all the different behaviours, so that more complex

behaviours can emerge, is a big challenge. It also rises the question of using suitable

mathematical tools to describe and manage the interaction between these behaviours.

Research on visual perception and the dream of actually building “seeing” systems

has attracted, in the past, a number of different scientific communities like psychology,

psychophysics, biology, engineering and computer science, which have contributed to the

actual state of the art.

Certainly, in the future, this trend will persist and stimulate the development of this

exciting endeavour, on achieving truly autonomous mobile agents.
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[Mathies et al., 1989] Mathies, L., Kanade, T., and Szelisky, R. (1989). Kalman filter-

based algorithms for estimating depth from image sequences. International Journal of

Computer Vision, 3(4):209–238.

[Maver and Bajcsy, 1993] Maver, J. and Bajcsy, R. (1993). Occlusions as a guide for plan-

ning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(5).

[Micheli et al., 1988] Micheli, E. D., Sandini, G., Tistarelli, M., and Torre, V. (1988).

Estimation of visual motion and 3d motion parameters from singular points. In Proc.

of IEEE Int. Workshop on Intelligent RObots and Systems, Tokyo, Japan.



162 BIBLIOGRAPHY

[Moravec, 1977] Moravec, H. (1977). Towards automatic visual obstacle avoidance. In

Proc. of the 5th IJCAI, page 584.

[Mundy and Zisserman, 1992] Mundy, J. and Zisserman, A., editors (1992). Geometric

Invariance in Computer Vision. MIT Press.

[Murray, 1992] Murray, D. (1992). Stereo for gazing and converging cameras. Technical

Report OUEL 1915/92, Robotics Research Group, Dept of Engineering Science, Univ

of Oxford.

[Nagel, 1983] Nagel, H. (1983). Displacement vectors derived from second-order intensity

variations in image sequence. CVGIP, 21:85–117.

[Nagel, 1987] Nagel, H. (1987). On the estimation of optical flow: Relations between

different approaches and some new results. Artificial Intelligence, 33:299–323.

[Nagel and Enkelmann, 1986] Nagel, H. and Enkelmann, W. (1986). An investigation

of smoothness constraints for the estimation of displacement vector fields from image

sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:565–

593.

[Negahdaripour and Lee, 1992] Negahdaripour, S. and Lee, S. (1992). Motion recovery

from images sequences using only first order optical flow information. International

Journal of computer Vision, 9(3):163–184.

[Nelson and Aloimonos, 1988] Nelson, R. and Aloimonos, J. (1988). Finding motion pa-

rameters from spherical motion fields (or the advantage of having eyes in the back of

your head. Biological Cybernetics, 58:261–273.

[Nielsen and Sandini, 1994] Nielsen, J. and Sandini, G. (1994). Learning mobile robot

navigation : a behavior based approach. In Proc. of the IEEE International conference

on Systems, Man and Cybernetics, S. Antonio, Texas.

[Okutomi and Kanade, 1991] Okutomi, M. and Kanade, T. (1991). A multiple-baseline

stereo. In Proc. of the IEEE conference on Computer Vision and Pattern Recognition,

Hawaii.



BIBLIOGRAPHY 163

[Omnit. Robotics, 1989] Omnit. Robotics (1989). The MC-3000 Motion Controller : User

Manual and programming guide. Omnitech Robotics, USA.

[Otte and Nagel, 1994] Otte, M. and Nagel, H. (1994). Optical flow estimation: Advances

and comparisons. In Proc. of the 3rd. European Conference on Computer Vision, Stock-

holm, Sweeden.

[Pahlavan, 1993] Pahlavan, K. (1993). Active Robot Vision and Primary Ocular Pro-

cesses. PhD thesis, CVAP, Royal Institute of Technology, Stockholm, Sweden.

[Pahlavan and Eklundh, 1992] Pahlavan, K. and Eklundh, J. (1992). A head-eye system :

Analysis and design. CVGIP: Image Understanding, 56(1):41–56.

[Pahlavan et al., 1993] Pahlavan, K., Uhlin, T., and Eklundh, J. (1993). Active vision

as a methodology. In Aloimonos, Y., editor, Active Perception. Lawrence Erlbaum

Associates.

[Pobuda and Erkelens, 1993] Pobuda, M. and Erkelens, C. (1993). The relation between

absolute disparity and ocular vergence. Biological Cybernetics, 68:221–228.

[Poggio et al., 1985] Poggio, T., Torre, V., and Kock, C. (1985). Computational vision

and regularization theory. Nature, 317:314–319.

[Pollard et al., 1981] Pollard, S., Mayhew, J., and Frisby, J. (1981). PMF : a stereo

correspondence algorithm using a disparity gradient limit. Perception, 14:449–470.

[Robinson, 1968] Robinson, D. (1968). The oculomotor control system: A review. Pro-

ceedings of the IEEE, 56(6).

[Rosenfeld, 1984] Rosenfeld, A. (1984). Multiresolution Image Processing and Analysis.

Springer-Verlag, New York.

[Sandini et al., 1993a] Sandini, G., Gandolfo, F., Grosso, E., and Tistarelli, M. (1993a).

Vision during action. In Aloimonos, Y., editor, Active Perception. Lawrence Erlbaum

Associates.



164 BIBLIOGRAPHY

[Sandini and Grosso, 1994] Sandini, G. and Grosso, E. (1994). Why purposive vision.

CVGIP: Image Understanding, 60(1):109–112.

[Sandini et al., 1993b] Sandini, G., Santos-Victor, J., Curotto, F., and Garibaldi, S.

(1993b). Robotics bees. In Proceedings of IROS 1993.

[Sandini and Tistarelli, 1990] Sandini, G. and Tistarelli, M. (1990). Robust obstacle de-

tection using optical flow. In Proc. of the IEEE Intl. Workshop on Robust Computer

Vision, pages 396–411, Seattle, (WA).

[Santos-Victor and Sandini, 1994] Santos-Victor, J. and Sandini, G. (1994). Uncalibrated

obstacle detection using normal flow. submitted to Machine Vision and Applications.

[Santos-Victor et al., 1993] Santos-Victor, J., Sandini, G., Curotto, F., and Garibaldi,

S. (1993). Divergent stereo for robot navigation: Learning from bees. In IEEE In-

ternational Conference on Computer Vision and Pattern Recognition - CVPR93, New

York.

[Santos-Victor et al., 1994a] Santos-Victor, J., Sandini, G., Curotto, F., and Garibaldi,

S. (1994a). Divergent stereo in autonomous navigation : From bees to robots. Inter-

national Journal of Computer Vision.

[Santos-Victor and Sentieiro, 1992a] Santos-Victor, J. and Sentieiro, J. (1992a). A 3D

vision system for underwater vehicles: an extended Kalman-Bucy filtering approach. In

NATO Advanced Studies Institute - Acoustic Signal Processing for Ocean Exploration,

Madeira, Portugal. Kluwer Academic Press.

[Santos-Victor and Sentieiro, 1992b] Santos-Victor, J. and Sentieiro, J. (1992b). Gener-

ating 3D dense depth maps by dynamic vision : an underwater application. In Proc.

of the British Machine Vision Conference, Leeds, UK.

[Santos-Victor and Sentieiro, 1993] Santos-Victor, J. and Sentieiro, J. (1993). Image

matching for underwater 3D vision. In International Conference on Image Process-

ing: Theory and Applications, San Remo, Italy.



BIBLIOGRAPHY 165

[Santos-Victor et al., 1994b] Santos-Victor, J., van Trigt, F., and Sentieiro, J. (1994b).

Medusa : A stereo head for active vision. In Proceedings of the International Workshop

on Intelligent Robotic Systems, Grenoble.

[Schwartz, 1977] Schwartz, E. (1977). Spatial mapping in the primate sensory projection

: Analytic structure and relevance to perception. Biological Cybernetics, 25:181–194.

[Sinclair et al., 1994] Sinclair, D., Blake, A., and Murray, D. (1994). Robust estimation of

egomotion from normal flow. International Journal of Computer Vision, 13(1):57–70.

[Srinivasan, 1992] Srinivasan, M. (1992). Distance perception in insects. Current Direc-

tions in Psychological Science, 1:22–26.

[Srinivasan et al., 1991] Srinivasan, M., Lehrer, M., Kirchner, W., and Zhang, S. (1991).

Range perception through apparent image speed in freely flying honeybees. Visual

Neuroscience, 6:519–535.

[Subbarao and Waxman, 1986] Subbarao, M. and Waxman, A. (1986). Closed form solu-

tions to image flow equations for planar surfaces in motion. Computer Vision Graphics

and Image Processing, 36:208–228.

[Sundareswaran, 1991] Sundareswaran, V. (1991). Egomotion from global flow field data.

In Proc. of the IEEE Workshop on Visual Motion, Princeton, New Jersey.

[Sundareswaran, 1992] Sundareswaran, V. (1992). A fast method to estimate sensor trans-

lation. In Proc. of the 2nd. European Conference on Computer Vision, Sta Margherita

Ligure, Italy.

[Sundareswaran et al., 1994] Sundareswaran, V., Bouthemy, P., and Chaumette, F.

(1994). Active camera self-orientation using dynamic image parameters. In Proc. of

the 3rd. European Conference on Computer Vision, Stockholm, Sweeden.

[Szeliski, 1987] Szeliski, R. (1987). Regularization uses fractal priors. In Proc. AAAI-87,

pages 271–301, Seattle, WA.

[Szeliski, 1990] Szeliski, R. (1990). Bayesian modeling of uncertainty in low-level vision.

International Journal of Computer Vision, 3(5):271–301.



166 BIBLIOGRAPHY

[Tarr and Black, 1994a] Tarr, M. and Black, M. (1994a). A computational and evolution-

ary perspective on the role of representation in vision. CVGIP : Image Understanding,

60(1):65–73.

[Tarr and Black, 1994b] Tarr, M. and Black, M. (1994b). Response to replies. Recon-

struction and purpose. CVGIP : Image Understanding, 60(1):113–118.

[Terzopoulos, 1986a] Terzopoulos, D. (1986a). Image analysis using multigrid relaxation

methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2):129–

139.

[Terzopoulos, 1986b] Terzopoulos, D. (1986b). Regularization of inverse visual problems

involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 8(4):413–424.

[Tikhonov and Arsenin, 1977] Tikhonov, A. and Arsenin, V. (1977). Solution of ill-posed

problems. Washington DC: Winston.

[Tistarelli and Sandini, 1993] Tistarelli, M. and Sandini, G. (1993). On the advantages

of polar and log-polar mapping for direct estimation of the time-to-impact from optical

flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(8):401–411.

[Trigt et al., 1993] Trigt, F., Santos-Victor, J., and Sentieiro, J. (1993). Medoesa : De-

sign and construction of a stereo head for active vision. Technical Report rpt/07/93,

VISLAB/ISR, Instituto Superior Técnico.
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