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Resumo

Nesta tese desenvolvem-se metodologias baseadas em visão para a estabilização e

acostagem de robots flutuante. Devido à perturbações exteriores, esta tarefa é fun-

damental por permitir estabilizar o véıculo relativamente a um sistema de coor-

denadas externo. Utiliza-se um sistema de visão para medir as deformações na

imagem quando o véıculo se desloca relativamente à estação de acostagem. Usa-se

um superf́ıcie planar como plano de referência para o seguimento visual de qualquer

região texturada, baseado em transformações projectivas. O sistema de seguimento

integra fluxo óptico e métodos baseados em correlação que, recorrem a modelos

de movimento para amostrar as deformações de imagem expectáveis ao longo do

tempo. Estes modelos são actualizados para se adaptarem ao movimento do robot.

A informação do sistema de seguimento é utilizado para calcular homografias entre

imagens e para alinhar a imagem actual com uma imagem de referência inicial. Es-

tas transformações revelam o movimento real da câmara no espaço 3D e permitem

reconstruir a trajectória da câmara. Esta informação é usada para o controlo dos

robots. Estuda-se o controlo visual baseado em medidas 2D ou 3D. As estratégias

de controlo resultantes são ilustradas com experiências reais com um diriǵıvel e um

robot submarino.

Palavras-chave: Seguimento visual, fluxo óptico, transformações projectivas planares,

controlo baseado em visão, robots submarinos, diriǵıveis, estabilização e acostagem.
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Abstract

This thesis describes a method of vision based station keeping and docking for float-

ing robots. Due to the motion disturbances in the environment, these tasks are

important to keep the vehicle stabilized relative to an external reference frame. A

vision-based tracking system is used to measure the image deformations, as the

vehicle moves with respect to a docking station. A planar surface is chosen as a

reference plane which allows visual tracking of a naturally textured region, based

on planar projective transformations. The tracker integrates optic flow computa-

tion within the region with a correlation based method using motion models that

sample the expected image deformations over time. These models are updated by

the robot history of motion so as to accommodate predicted/future camera mo-

tions. The information provided by the tracker is then used to calculate inter-image

homographies that register the current viewed image with some initial reference im-

age. These transformations reveal the real camera motion in 3D space and allow

to reconstruct the camera trajectory. This information can then be used to control

the robots. Both 3D visual servoing as image based visual servoing approaches are

studied. The resulting control strategies are illustrated with real experiments with

a blimp and an underwater robot.

Key-words: visual tracking, optic flow, planar projective motion models, visual

servoing, underwater robots, blimp, station keeping, docking.
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Chapter 1

Introduction

So far, in the field of robotics, a lot of effort and progress has been made on visual

navigation of mobile robots. Most cases however deal with the navigation of wheeled

mobile bases that are restricted to move on the ground plane. More complex systems

deal with what we call floating robots that move in 3D space. Typical examples are

unmanned aerial vehicles or underwater robots.

Research on the utilization of unmanned aerial vehicles has grown with an increas-

ing interest on robotic airships, also known as blimps or lighter-than-air vehicles.

The motivation behind it is that airships outperform airplanes and helicopters in

low-speed, low altitude applications, having an enormous potential for tasks like

environmental and traffic monitoring, climate research, transportation, etc. Sev-

eral references can be found in literature about airship modeling for autonomous

navigation [5, 10, 17].

In marine research an increase of interest on the utilization of autonomous under-

water vehicles (AUV’s) and remote operated underwater vehicles (ROV’s) is noted

during the last decade. Such underwater vehicles can be inserted into a wide variety

of applications related to underwater management, monitoring and manipulation

tasks. Some examples are map building of the ocean floor, pipe-line inspection, ma-

nipulation tasks in the off-shore industry, etc. A recent shift of interest is towards

the use of underwater robots in coastal regions, which are socially and economically

1



2 CHAPTER 1. INTRODUCTION

important areas. These regions are at shallow waters and thus affected by sur-

face phenomena such as waves, tides, weather conditions, air and water interaction

and commercial and recreational navigation. Therefore, they are characterized by

fast dynamics and high concentration of energy, giving rise to strong perturbations.

This demands strong requirements on controlling any vehicles in these areas. In

literature, various references can be found for modeling and control of underwater

vehicles. A complete textbook on these topics can be found in [8]. Other references

deal with robust control of vehicle motion in shallow waters [2, 24].

The work presented in this thesis is integrated in the NARVAL1 project, for which

one of the main goals is the design and implementation of reliable navigation systems

of limited cost for mobile robots in unstructured environments. For demonstration,

two experimental setups were used, namely: (i) an airborne blimp and (ii) a remote

operated underwater vehicle (ROV). The problem addressed is that of station keep-

ing and docking with the indoor blimp and ROV, based on visual input. Since the

kinematics and dynamics of an underwater vehicle are a reasonably approximated

by those of an airship, we use the blimp as a test-bed for experiments in a laboratory

environment.

Maintaining a vehicle fixed at a given position and orientation is an important

behavior, required for many tasks. To do so, the floating vehicles need to sense

and actively control their position and orientation to avoid drift caused by unknown

currents and forces. For underwater robots, classical sensors for position and orien-

tation include magnetic compasses, depth-sensors and translational motion sensors

(i.e. accelerometers or Doppler velocity logs). The main drawbacks of using mag-

netic compasses is that they have a slow update rate and do not perform well in

the presence of metallic structures such as ships. Translational motion sensors are

integrating sensors (odometry) and are thus likely to accumulate errors (drift). As-

1ESPRIT-LTR Project 30185, NARVAL - Navigation of Autonomous Robots via Active Envi-
ronmental Perception, http://gandalf.isr.ist.utl.pt/narval/index.htm



3

suming that the tasks of docking and station keeping are defined relative to short

range regions in the environment, one can use vision in order to extract information

about the vehicle’s pose and use this information for visual servoing.

Various references can be found on automatic vision based station keeping for

underwater vehicles and blimps. In [23], optical flow information is used to recon-

struct the vehicle 3D motion so as to realize station keeping. However, not all 3D

motions are observable from the optical flow of feature points in the image. Espe-

cially, feature displacements cannot be used to determine the absolute range without

other knowledge of the scene structure. In [22], the problems related to this poor

conditioning are pointed out and an alternative approach is proposed by assuming

that certain motions can be sensed by using other sensing modalities.

More recently, the station keeping problem has been addressed within the frame-

work of visual servoing architectures [27, 6, 20, 18], which can be mainly classified

into 3D visual servoing and image based servoing. In the first case, image informa-

tion is interpreted so as to reconstruct the 3D scene or motions and this information

is then used for navigation. With image based visual servoing, image feature param-

eters are directly measured in the image plane and regulated to some desired value.

Visual servoing techniques usually deal with regulating a kinematic error function to

zero. The problem of how to introduce dynamics into the image plane is addressed

in [32] for the case of station keeping with a blimp. Applications of image based

visual servoing for station keeping for underwater robots can be found in [25] and

[19]. However, in both cases the emphasis is on the visual servoing part and the

visual tracking is assumed to be perfect. This is not always realistic for real imple-

mentations, since in a marine environment, images in general contain non-uniform

lighting, low contrast, marine snow and thus lack of necessary features.

Some of the most reliable methods for tracking apply numerical optimization to

minimize the error between a reference image and a target region, subject to a pa-
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rameterized deformation model. Often, the L2 norm is used to measure the error,

and the approach is referred to as sum-of-squared-difference (SSD) method. Some

variants of this method deal with tracking simple (affine or translational) defor-

mations [12] and more complex projective planar [29, 21] and piecewise bilinear

transformations over large images regions. A more general derivation of the SSD

algorithm, described in [9], uses optimization techniques in the specific context of

image registration. Motivated by the latter approach, we developed a tracking sys-

tem based on full planar projective transformations, thus accommodating a wide set

of possible image deformations.

1.1 Objectives of the thesis

In this thesis the major emphasis is put on the visual processing part, requiring both

robust and real time tracking of image features, which is necessary to allow visual

servoing. The approach adopted determines camera motion from the registration

between the current live image and an initial reference image. Assuming that an

image patch with sufficient texture is initially identified by the user, the temporal

changes of this image patch induced by the vehicle’s motion are tracked based upon

planar projective transformations. To accomplish this goal, a set of motion vectors

is used that sample the search space for expected image deformations. With this

method, we avoid exhaustive search on the parameter space, allowing high tracking

frequencies required for real time applications. To enhance robustness, optical flow

information is integrated, providing the tracker with an initial estimate of the current

transformation parameters.

The tracked image region is then used as a visual landmark and its deformation

parameters convey information about the camera motion, the vehicle motion and

scene structure. Under the planarity assumption, it follows that it is possible to
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obtain a scaled Euclidean reconstruction of the relative camera trajectory in 3D

space from the image registration [7]. No further assumptions are made with respect

to the landmark, so that any textured region in the image plane can be a candidate,

as long as it is locally planar in 3D space. This provides a means of self-localizing

the robot relative to any naturally textured scene in an unstructured environment.

Various methods for vision based station keeping are then proposed and formu-

lated into a visual servoing approach. Both the 3D visual servoing approach and

the image based visual servoing approach will be discussed and compared. To allow

station keeping over a wider range, we also introduce the use of image stabilization

with an on-board pan and tilt camera and discuss how this should be integrated

in the various control strategies. In addition, the vehicle non-holonomic constraints

are taken into account in the design of the control laws. All methods are illustrated

by data obtained from real experiments with the blimp and ROV.

1.2 Structure of the thesis

This thesis is organized as follows. Chapter 2 introduces the fundamental aspects

of projective geometry required to understand the work done on visual tracking and

motion analysis. Chapter 3 describes and discusses the tracking system developed

for this work. In Chapter 4, the blimp and the underwater robot used for experi-

ments are specified and modeled. Chapter 5 introduces the various visual servoing

techniques used for realizing station keeping and docking. Chapter 6 shows experi-

mental results of station keeping and docking test, obtained from real data for both

the blimp an the underwater robot. Finally, in Chapter 7, conclusions are drawn

and future work is indicated.
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Chapter 2

Projective Geometry and
Transformations

This chapter summarizes the fundamental aspects of projective geometry required

to understand the work done on visual tracking and motion analysis in this thesis.

This chapter is included for the sake of completeness of the thesis. The reader

familiar with these concepts might skip reading this chapter. A thorough discussion

of these matters can be found in [7, 13].

One important reason to study projective geometry is that most system with

lenses, whether it is a biological one like the human visual system or machine vision,

can be modeled by a system that performs a perspective transformation. Under

this transformation, points of the world are projected onto the retinal or image

plane, involving a non-linear mapping (perspective distortion) when represented in

the usual Euclidean space. In the projective space, this mapping can be represented

with linear equations by using the homogeneous representation of points and lines,

as will be seen in what follows. Another reason to study projective geometry is that

it provides an intuitive insight into the geometry of imaging systems.

7



8 CHAPTER 2. PROJECTIVE GEOMETRY AND TRANSFORMATIONS

2.1 The projective plane

In a n-dimensional projective space, P
n, a point is represented by a n+1 coordinate

vector x = (x1, ..., xn+1), where at least one of the xi is non-zero. This is the homo-

geneous representation of a point and it is defined up to a scale factor. This means

that any two coordinates x = (x1, ..., xn+1) and x
′ = (x′

1, ..., x
′
n+1) in the projective

space represent the same point if and only if x′
i = kxi for any non-zero k. The space

P
2 is known as the projective plane.

Homogeneous representation of points and lines. A point x = (x, y) in R
2,

lies on the line l represented by the vector l = (a, b, c) if and only if the equation

ax + by + c = 0 is satisfied. This can be written as the inner product of the

vectors (x, y, 1).(a, b, c)� = 0. However, this condition is satisfied for any vector

k(x, y, 1) with k �= 0, which means that the class of vectors given by (kx, ky, k)

represent the same point (x, y) in R
2. The class of equivalent vectors related by

such a scaling factor is known as a homogeneous vector. Any arbitrary vector of

the type (x1, x2, x3) in P
2 can thus be seen as a homogeneous representation of a

point (x1/x3, x2/x3) in R
2. Similarly, different choices of a, b and c specify different

lines. This representation is not unique since the vector k(a, b, c) represents the

same line for any non-zero k. Therefore, a line is also represented by a homogeneous

vector. The set of equivalent classes of vectors in R
3 forms the projective space P

2,

represented by the set of homogeneous vectors.

The use of homogeneous coordinates allows to obtain simple linear expressions

when dealing with intersections of lines and lines passing through points. In the

projective plane, we can write the equation of a line as:

x�l = 0 (2.1)

This equation states that the point x lies on the line l if and only if the inner
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product of the homogeneous vector representation is equal to zero. The intersection

of two lines l = (a, b, c) and l′ = (a′, b′, c′) is given by the point:

x = l× l′ (2.2)

From the triple scalar product identity one obtains (l × l′)T l = (l × l′)T l′ = 0.

Considering the vector x = l × l′ as representing a point, it can be verified that

x�l = 0 and also x�l′ = 0. From equation (2.1), it follows that the point x lies on

both lines l and l′ and therefore is the intersection of the two lines.

Similarly, it is also possible to obtain an expression for the line joining two points.

Considering two points x and x′, their vector cross-product can be thought of as

representing the line:

l = x× x′ (2.3)

From the triple scalar product identity xT (x× x′) = x′T (x× x′) = 0, it can be seen

that both points x and x′ lie on this line.

Points and lines at infinity. Two lines l = (a, b, c) and l′ = (a, b, c′) that differ

only in their third element are parallel lines in R
2. From equation (2.2) we observe

that their point of intersection in the projective plane is at x = (c′ − c).(b,−a, 0).

This point does not correspond to any finite point in R
2, since it implies a division

by zero. Intuitively, this suggests that parallel lines in R
2 meet at infinity. In the

projective plane however, the intersection of parallel lines is given by a homogeneous

vector of the type (x1, x2, 0). Points in the projective plane for which the last element

is equal to zero era called ideal points or points at infinity.

The only line that satisfies the condition x�l = 0 for any x1, x2 is given by

l∞ = (0, 0, c). This is the line at infinity.

The concepts of ideal points and the line at infinity simplify the intersection prop-

erties of points and lines. In the projective plane P
2, any two lines intersect at a

single point and any two points are joined by one single line. This is not true for R
2,
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where parallel lines do not intersect and the points at infinity are not included. The

projective space P
2 can thus be thought of as R

2, augmented by points at infinity.

2.2 Planar projective transformations

The image plane of a camera can be modeled as a projective plane. In Figure 2.1

we illustrate the case when a camera is observing a plane in the 3D space. Points

in the observed space are projected onto the image plane according to a perspective

projection model.

Figure 2.1: Perspective projection defines a mapping of points on one plane to
another plane

If a coordinate system is defined on each plane and points are represented in

homogeneous coordinates, then the mapping that relates points on the image plane

to the points on the world plane is given by a projectivity.

Definition 2.1 (Projectivity). A projectivity is an invertible mapping, h,
from P

2 to itself such that three points x1,x2 and x3 lie on the same line if
and only if h(x1), h(x2) and h(x3) do.

Projectivities preserve the collinearity property (a line one a plane is mapped to

a line in the other plane) but in general do not preserve parallel lines. Synonyms
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of a projectivity are collineation or homography. A projectivity can be written

algebraically as a linear transformation on homogeneous coordinates in the projec-

tive space P
2. These transformations are planar projective transformations and are

represented by a non-singular 3× 3 matrix H such that:

x′ = Hx, H =


h11 h12 h13

h21 h22 h23

h31 h32 h33


 (2.4)

where x′ and x are homogeneous coordinate vectors of points on the image plane

and world plane, respectively. The homography H is defined up to a scale factor

and called a homogeneous matrix, thus having eight degrees of freedom.

Under perspective imaging, it is common to use inhomogeneous coordinates in-

stead of homogeneous because they can be measured directly from the image plane.

Let the inhomogeneous coordinates of a pair matching points x and x′ in the world

and image plane be (x,y) and (x’,y’) respectively. The projective transformation

that maps the points (x, y) from the world plane to the image points (x′, y′) can

then be written in inhomogeneous form as:

x′ =
x′

1

x′
3

=
h11x+ h12y + h13

h31x+ h32y + h33

, y′ =
x′

2

x′
3

=
h21x+ h22y + h23

h31x+ h32y + h33

(2.5)

2.3 Homography estimation

In this section we discuss algorithms for estimating homographies from point-to-

point correspondences on planes. Given a set of points xi and a corresponding set

of points x′
i in P

2, the estimation problem is to compute a 3× 3 matrix H such that

x′
i = Hxi for each i. A minimum of four point-to-point correspondences is required

to estimate the homography. This is the minimum solution. If more than four point

correspondences are given, then these correspondences may not be fully compatible

due to small errors in the point measurements resulting from image noise. It is thus

necessary to find the best possible estimate given the data set. This can be realized
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by minimizing some algebraic or geometric cost function. The most commonly used

approach uses an algebraic distance to be minimized with least-square techniques,

resulting into low computational requirements. Geometric distance functions result

into non-linear optimization problems but, in general, allow to define more intuitive

cost-functions. The rest of this section focuses on least-square type algorithms.

The minimal solution. Given a set of four 2D point-to-point correspondences,

xi ↔ x′
i, the homography H can be determined up to a unique solution. Consider

the equation x′
i = Hxi for each correspondence to be expressed in terms of a vector

cross-product as x′
i ×Hxi = 0. If the j-th row of H is denoted by hj

�, we have:

Hxi =


h1

�xi

h2
�xi

h3
�xi


 (2.6)

Writing x′
i = (x′

i, y
′
i, w

′
i)
�, the cross-product is given by:

x′
i ×Hxi =


y′ih3

�xi − w′
ih2

�xi

w′
ih1

�xi − x′
ih3

�xi

x′
ih2

�xi − y′ih1
�xi


 = 0 (2.7)

Since hj
�xi = xi

�hj for j = 1, ..., 3, this gives a set of three equations in the

entries of H, which may be written in the form:
 0� −w′

ixi
� y′ixi

�

w′
ixi

� 0� −x′
ixi

�

−y′ixi
� x′

ixi
� 0�





h1

h2

h3


 = 0 (2.8)

This equation has the form Aih = 0, where Ai is a 3 × 9 matrix determined

from a point correspondence and h a 9× 1 vector containing the entries of H. This

system is linear in h, whereas the elements of Ai are quadratic in the known point

coordinates. The system described by equation (2.8) contains three linear equations

for each correspondence but only two are linearly independent. Stacking the four

2 × 9 matrices obtained from each correspondence into a single 8 × 9 matrix, A,

one ends up with a system of eight equations with eight unknowns (h is defined up
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to a scale vector), of the type Ah = 0. To avoid the obvious solution h = 0, an

additional constraint such as ‖h‖ = 1 needs to be imposed. To preserve the linear

independency of the system, no more than two points can be collinear.

Equation (2.8) holds for any coordinate representation of the type (x′
i, y

′
i, w

′
i) and

since the homogeneous coordinate vector is defined up to a scale vector, it is possible

to choose w′
i = 1 and set x′

i and y′i equal to the coordinates as measured from the

image.

The overdetermined solution. If more than four point correspondences are given,

then the linear system Ah = 0 becomes overdetermined. If the position of points is

exact, then a unique solution exists. However, since points measurements are always

corrupted with noise, there will be no exact solution. This requires the definition of

a cost function to be minimized so as to obtain the best possible estimate of h in

a least square sense. To avoid the obvious solution h = 0, an additional constraint

such as ‖h‖ = 1 needs to be imposed.

A possible cost function could be used to minimize the norm ‖Ah‖ subject to the
additional constraint of ‖h‖ = 1. This is known as the Direct Linear Transformation

algorithm (DLT-algorithm) [13].

The DLT-algorithm:

• Given n ≥ 4 point correspondences xi ↔ x′
i compute the matrix Ai from

equation (2.8) for each correspondence . Only the first two rows need to be

used.

• Stack the n 2× 9 matrices into a single 2n× 9 matrix A.

• Obtain the singular value decomposition of A. The unit singular vector cor-

responding to the smallest singular value is the solution h. If A = UDV T



14 CHAPTER 2. PROJECTIVE GEOMETRY AND TRANSFORMATIONS

with D diagonal with positive entries arranged in descending order down the

diagonal, then h is given by the last column of V .

• The matrix H is determined from h.

The inhomogeneous solution. An alternative solution is to turn the homoge-

neous matrix H into a inhomogeneous representation by imposing h9 = 1. Equation

(2.8) then turns into:

[
0 0 0 −xiw

′
i −yiw

′
i −wiw

′
i xiy

′
i yiy

′
i

xiw
′
i yiw

′
i wiw

′
i 0 0 0 −xix

′
i −yix

′
i

]
h̃ =

[
−wiy

′
i

wix
′
i

]
(2.9)

Using four or more point correspondences, these equations result into a system of

the type M h̃ = b. This can be solved for the minimum case into a unique solution

and for the overdetermined case by minimizing the norm of ‖ M h̃− b ‖.
One drawback of turning to the inhomogeneous solution is that not all true solu-

tions can be reached. For example, those solutions that require h9 to be zero (which

involves mappings of finite points on one plane to infinite points on the other plane)

can not be obtained. This suggests that the solution becomes unstable for those

situations for which h9 ≈ 0.

Normalized DLT-algorithm. Image coordinates are sometimes given with the

origin at the top-left of the image or alternatively with the origin at the image center.

Unfortunately, the DLT-algorithm is not invariant to the selection of the origin and

scaling in the coordinate frame. to avoid ill-conditioned solutions, a normalization

transform to the data need to be applied before using the DLT-algorithm.

The following normalization procedure is proposed in [13]. In a first step, the

coordinates in each image are translated so as to bring the centroid of the cloud of

all points to the coordinate origin. In a second step, the coordinates are scaled so

that the average distance of all points to the origin is equal to
√
2. This can be
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realized by applying the following transformation to the set of points in each image:

T =


k 0 −kxc
0 k −kyc
0 0 1


 , (2.10)

where k is a scaling factor and (xc, yc) are the coordinates of the centroid of the cloud

of points in each image. Applying the DLT-algorithm to the normalized data set

gives an estimate of the homography H̃, relating the normalized point coordinates in

one image to the other. The mapping between the originally measured coordinates

in both images is given by Ĥ = T
′−1H̃T , were T and T ′ are the normalization

transformations corresponding to each image data set.

In Figure 2.2, the performance between the DLT-algorithm, the normalized DLT-

algorithm and the inhomogeneous solution are compared for 5 point-to-point corre-

spondences. The experiment simulates an identity transformation were points from

a reference image are mapped to the same points in the target image. The real

homography thus is given by the 3 × 3 identity matrix. To compare the various

algorithms, 100 trials were made with each point being subject to 0.2 pixel Gaus-

sian noise in the target image. Mapping an arbitrary image point from the reference

image to the target image with the estimated homography is a way of visualizing the

effects of error propagation. Ideally, this point is projected to the same coordinates

in the target image. The 100 projections obtained from the estimated homographies

are displayed in the figure for the various algorithms.

The experiment illustrates that the DLT-algorithm performs worst if not using

normalization. The inhomogeneous solution performs as well as the normalized

DLT-algorithm and therefore can be used as an alternative for those solutions that

do not require h9 to be close to zero.
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(a) (b) (c)

Figure 2.2: Comparison between the performance of (a) the DLT-algorithm, (b) the
normalized DLT-algorithm and (c) the inhomogeneous solution.

2.4 The perspective camera model

A camera performs a mapping between 3D-points in the world and a 2D image plane.

The most widely used camera model is the pinhole model, illustrated in Figure 2.3.

Figure 2.3: The pinhole camera model

The 3D point X = (X,Y, Z) is mapped to the 2D point (fX/Z, fY/Z) on the

image plane. This point is obtained from the intersection of the image plane with

the ray passing through the 3D point and the camera center C, defining a non-linear

mapping. In this model, the Euclidean coordinate system placed at the center of

projection is the the camera coordinate frame, the plane z = f is the image plane

and f is the camera focal distance. The line containing the camera center, perpen-
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dicular to the image plane is called the principal axis of the camera, which coincides

with the z-axis of the camera coordinate frame. The intersection of the principal

axis with the image plane is called the principal point.

Perspective projection with homogeneous coordinates. If the world and

image coordinates are expressed as homogeneous vectors, the 3D to 2D mapping

of points in the world to the image plane can be expressed as a linear mapping.

Introducing the notation Xcam = (X,Y, Z, 1) as the homogeneous representation of

world points expressed in the camera reference frame and x = (fX, fY, Z) as the

homogeneous 3-vector of points in the image plane, the projection equations of the

pinhole camera can be written as:


fX
fY
Z


 =


f 0 0 0
0 f 0 0
0 0 1 0






X
Y
Z
1


 (2.11)

x = PXcam (2.12)

The 3× 4 homogeneous matrix P is called the camera projection matrix.

Intrinsic parameters. In general, the image coordinate system is not placed at

the principal point, (px, py) and we need to translate the coordinates of every image

point to account for this effect. Also, image coordinates are often given in pixels

so that the effect of unequal scaling factors in each direction need to be accounted

for. Under these considerations, the mapping from 3D world coordinates to 2D pixel

coordinates is given by the following projection matrix:

x = K[I | 0]Xcam (2.13)

The matrix K is called the camera calibration matrix, given by:

K =


αx 0 x0

0 αy y0

0 0 1


 (2.14)
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were αx = fmx, αy = fmy, mx is the number of pixels in the x-direction per

unit distance, my the number of pixels in the y-direction per unit distance and

(x0, y0) = (mxpx,mypy) are the coordinates of the principal point expressed in pix-

els. The parameters contained into K specify the internal camera structure and are

called the camera intrinsic parameters.

Camera rotation and orientation. In general, points in space are not given in

the camera reference frame but in some world reference frame. The two coordinate

frames are related by a rotation and a translation. If X̃ is an inhomogeneous vector

representing the coordinates of a point in the world frame and X̃cam represents the

same point in the camera frame, then:

X̃cam = R(X̃− t), (2.15)

where R is the 3× 3 rotation matrix describing the orientation of the camera coor-

dinate frame in the world frame and t is the position of the camera center in the

world coordinate frame. Substituting Xcam in equation (2.12) by X (which is the

homogeneous representation of X̃), the camera projection becomes:

x = KR[I | −t]X (2.16)

This equation describes the mapping between 3D points, expressed in an exter-

nal world coordinate system and points in the camera image plane. The camera

projection matrix is given by:

P = K[R| −Rt], (2.17)

The parameters in R, t are called the camera extrinsic parameters, since they

specify the camera external position and orientation in the world frame.

Normalized coordinate system. A coordinate system attached to the camera

such that the projection of a point M = (X,Y, Z) is the point m = (x, y) determined
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by the relations: X/x = Y/y = Z is called the normalized coordinate system and

is illustrated in Figure 2.4. Note that (x, y) are metric image coordinates which

can be related to the real image coordinates in pixels by an affine transformation

determined by the camera intrinsic parameters.

C

Y

Z

X
y

x

f=1

Figure 2.4: The normalized camera coordinate system

The normalized camera coordinate system allows to ignore the intrinsic parame-

ters of the camera and to think in terms of ideal systems. This is especially useful

for camera motion analysis. If the coordinates in the image plane are transformed

according to:

x̃ = K−1x, (2.18)

where x̃ are the new transformed image coordinates, then the camera projection

matrix for the normalized coordinate system turns into P = [R| −Rt].
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Chapter 3

Tracking of Image Regions

The problem addressed in this thesis consists in controlling a floating robot based

on the visual information captured by an on-board camera. When the robot is

at a short distance from the environment, vision is a powerful means to extract

information about the vehicle’s ego-motion and can thus be used for closed loop

control of the robot. The motion of the robot (and camera) in the 3D space induces

motion in the video stream. In general, these image deformations (transformations)

are dependent on both the camera motion and scene structure. Hence, measuring

these temporal image deformations can provide information of the camera position

and orientation.

The tracking system described in this chapter aims at providing estimates of im-

age transformations, over time. As the robot moves in 3D, the image formed by the

on-board camera can be distorted according to a fairly general set of deformations.

We assume that the scene can be approximated locally by a planar surface. As a

consequence, the image motion can be described by a planar projective transforma-

tion.

Since visual cues are later used to control the robot in a visual feedback loop,

the tracker design should take the computational requirements into account and

avoid introducing large delays in the control loop due to image processing. We use

a region-based tracking method, whereby a region selected in the reference image is

21
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tracked over time and used as a visual landmark. No further assumptions are made

with respect to the landmark, so that any textured region in the image plane can be

a candidate, as long as it belongs to a plane in the 3D space. This provides a means

of self-localizing the robot relative to any naturally textured scene and increases the

applicability of the system, since it does not require deploying artificial items in the

environment.

Some of the most reliable methods for region-based tracking apply numerical

optimization to minimize the error between a reference region and a target region,

subject to a parameterized deformation model. Often, the L2 norm is used to

measure the error, and the approach is referred to as the sum-of-squared-difference

(SSD) method. A general derivation of the SSD-algorithm is described in [9] and uses

optimization techniques in the specific context of image registration. The algorithm

uses a set of motion (deformation) models applied to the reference region that sample

the search space for expected image deformations. These deformations can be stored

into a pre-calculated database and the main advantage is that most computations

can be done off line. This database is also referred to as the difference template

[9]. Motivated by the latter approach, we developed a tracking system based on

full planar projective transformations, thus accommodating a wide set of possible

image deformations. Additionally, the tracker adapts the difference template in

accordance with the history of robot motions, while maintaining the computational

loads minimal.

To enhance robustness of the tracking system, optical flow information is used to

provide the method with an initial estimate. The advantages are two-fold: (i) on

providing an initial estimate to the difference template matching, only small adjust-

ments remain to be made. As only residual registration errors persist, we use a dense

sampling of image motion models in a small neighborhood of the reference image,

thus increasing the precision of the method. (ii), since the optic flow information
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keeps track of average motion in the image plane, it provides a means for tracking

when no other method is at hand (e.g. in those cases for which the landmark is out

of sight).

3.1 Motion estimation using optic flow

In this section we describe an algorithm for tracking image regions based on optic

flow information, assuming that the image of points move according to a planar

motion model [28, 23]. Such a model can be approximated by an affine motion

model, estimated from measurements of the spatiotemporal image derivatives [15].

Keeping track of this motion provides an initial estimate for the mapping of regions

in between two successive images.

Estimation of affine motion in the image plane. If a camera is moving in 3D

while observing a static environment, then the motion of points in the image plane

induced by the camera rigid motion is given by the motion field (Appendix A):

[
u
v

]
=

1

Z

[
−1 0 x
0 −1 y

] 
tx
ty
tz


 +

[
xy −1− x2 y

1 + y2 xy −x

]
ωx

ωy

ωz


 (3.1)

In this equation, the vector t = (tx, ty, tz) is the camera translational velocity,

the vector ω = (ωx, ωy, ωz) is the camera rotational velocity and (u, v) denote the

optical flow that we assume to be equal to the motion field.

We assume that the camera observes a plane in 3D-space, described by:

aX + bY + cZ + 1 = 0 (3.2)

Using the equations of normalized perspective projection, we can rewrite the

equation of the plane as a function of image coordinates:

1

Z
= −ax− by − c (3.3)
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Under the planar assumption, the optic flow becomes constrained. Substituting

equation (3.3) into equation (3.1) the optic flow for points belonging to the plane is

given by:

[
u
v

]
=

[
ax+ by + c 0 −ax2 − bxy − cx

0 ax+ by + c −axy − by2 − cy

]
tx
ty
tz


+

[
xy −1− x2 y

1 + y2 xy −x

] 
ωx

ωy

ωz




(3.4)

This equation can be parameterized as follows:

u = u0 + uxx+ uyy + uxyxy + uxxx
2

v = v0 + vxx+ vyy + vxyxy + vyyy
2

This is the planar motion model of the optic flow, for a moving camera observing

a plane. Since quadratic terms in general give rise to poor estimates in the presence

of image noise, it is preferable to omit these terms, giving rise to the affine motion

model [26]:

u = u0 + uxx+ uyy

v = v0 + vxx+ vyy (3.5)

This affine motion model is a good approximation of the planar motion model,

whenever the viewing angle between the camera principal axis and the plane normal

is not too large [23]. To estimate the parameters of affine motion model, consider

the optical flow constraint equation [15] (Appendix A):

Exu+ Eyv + Et = 0, (3.6)

where Ex and Ey are the spatial derivatives in the image along the x- and y-axis

and Et is the temporal derivative. These quantities can be measured from successive

images. Substituting the affine model given by equation (3.5) into equation (3.6)

yields:
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u0Ex + uxExx+ uyExy + v0Ey + vxEyx+ vyEyy = −Et (3.7)

Packing all the model parameters in a single vector, this equation can be written

as a linear combination of the spatiotemporal derivatives and the parameter vector:

[
Ex Exx Exy Ey Eyx Eyy

]
θ = −Et, (3.8)

with θ = [u0 ux uy v0 vx vy]
T . The parameter vector θ can be estimated with a min-

imum of six measurements of spatiotemporal derivatives. The overdetermined case

can be resolved in a least-square sense. A robust estimate is obtained by including

measurements at each image point, assuming that the plane viewed by the camera

covers the whole image.

Tracking of image regions based on optic flow. Using the previous described

method, it is possible to adjust an affine model from a sequence of images. For each

new image, the affine flow provides an estimate of the velocity of the image points.

Points in the previous image can be mapped to the current image by integrating

this optic flow information. Figure 3.1 shows the affine flow field obtained from a

sequence of translated images.

If the point (xi, yi) denotes the coordinates of a point in one image, then its new

coordinates (x′
i, y

′
i) in the subsequent image may be obtained by integrating the local

component of the affine motion over time according to:

x′
i = xi + u (3.9)

y′i = yi + v (3.10)

The components u and v of the affine flow are calculated at each image point,

(xi, yi), from the estimated parameters of the affine model, as given in equation

(3.5). It should be noted however that errors in the estimated components u and v
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(frame 1) (frame 12) (frame 25)

Figure 3.1: Tracking an image patch based on affine flow measurements; the camera
views a plane under an angle so that a perspective distortion is observable; for each
frame in the sequence, the affine flow is sampled and super-imposed for the case of
pure camera translation at constant speed.

of the affine flow are accumulated while integrating. This can be observed in Figure

3.1 from the difference between the real and estimated positions of the tracked

window. The last frame shows an offset in estimated window corner coordinates.

The corresponding L2-norm of the difference between the corner coordinates of the

real and estimated window position over time is illustrated in Figure 3.2.
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Figure 3.2: L2-norm from the difference between the real and estimated coordinates
of the tracked window; the estimate is obtained from the affine flow measurements.

The integration of tracking errors over time calls for the need of an additional
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method so as to reset these errors. This will be the topic of the next section.

3.2 Difference template matching

Given a reference image I0 and a target image I1, the registration problem is that of

computing a transformation (x′, y′) = T (x, y), that maps points (x, y) in the refer-

ence image to points (x′, y′) in the target image. Usually, these transformations, are

parameterized as a function of a vector q: T (x, y) = Tq(x, y). This transformation

is on image coordinates and therefore defines an image warping that maps pixel

intensity values from I1 back to I0:

Wq(I1) → I0 : I0(x, y) = I1

(
Tq(x, y)

)
(3.11)

This is illustrated in Figure 3.3.

Figure 3.3: The problem of image registration is to find the transformation W
that warps a selected region in the target image, I1, onto a selected region of the
reference image I0. Image points that belong to a plane in 3D space are related by
a 2D projective planar transformation that can be parameterized as a function of a
vector q.

We continue assuming that the target to track can be locally approximated as

a planar surface. Planar motions cannot be adequately modeled by simple image
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transforms, like affine or translational. A projective planar transformation is the

exact motion model when a camera rotates about its eyepoint or if the image surface

is planar. As discussed in Section 2.2, the 2D projective transformation, H, has

eight degrees of freedom, h1, h2, · · · , h9. Considering the inhomogeneous solution

and parameterizing the entries of H by a vector q, image points of two images of a

plane are related by:

x′ =
q1x+ q2y + q3

q7x+ q8y + 1
, y′ =

q4x+ q5y + q6

q7x+ q8y + 1
(3.12)

As suggested in [14], instead of representing the projective transformation by the

eight coefficients of the homography, the positional offsets of the four corners of some

image region is used to define the various motion models. This is illustrated in Figure

3.4, where four examples of motion sampling vectors ∆qi are given. The coordinates

(xi, yi) of the four corners of the quadrangle define eight degrees of freedom and thus

completely describe planar projective transforms. The corresponding homography

can be easily obtained from point-to-point correspondences between the reference

quadrangle and the deformed quadrangle.

Figure 3.4: Planar projective transformations can be parameterized by the positional
offset of the four corners of an quadrangle. From top to down: translation, rotation,
scaling and perspective distortion.

To register two image regions, one needs to minimize a suitable error criterion,
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such as the sum-of-squared-differences (L2-error criterion). If the real transforma-

tion is given by the parameter vector q, then the minimization problem is defined as

finding an estimate q̂ that minimizes the residue of the sum of squared differences

between the pixel intensity values of the two image regions to be registered. Writing

images as column vectors, the parameterized L2 error function is given by:

e(q) =
1

2
‖ Wq(I1)− I0 ‖2, (3.13)

where the image warpingWq(I1) is specified by the homography parameterized with

the vector q, mapping I1 to I0 according to equation (3.11). This error function can

be minimized with usual gradient descent methods. Discrete approximations to the

partial derivatives of I1

(
Tq(x, y)

)
can be computed as:

I1

(
Tδei

(x, y)
)
− I1(x, y)

δ
, (3.14)

where ei is the i’th basis vector over the parameter space of vector q and δ is an

adequate value for discretization, depending on the shape of the error function.

However, for an 8 dimensional space this method has a weak interpolation capabil-

ity, i.e. it only searches the space effectively in the coordinate directions, and within

a range determined by the parameter δ. Furthermore, minimizing equation (3.13)

using an exhaustive search on the parameter space would be impractical.

At each time instant, we assume that an initial estimate q0 of the transformation

parameters is available. In our case, this initial estimate is obtained with the affine

motion estimate, discussed before. As a consequence, I0 and I1 can be approximately

registered, such that only small errors remain. The transform parameters need to be

adjusted by a vector ∆q such that I1 can be transformed into a better approximation

of I0. This defines a mapping of I1 onto I0 by a composition of two image warps: (i)

a warping of I1 to an image I ′1 defined by the initial estimate q0 and subsequently
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(ii) a warping of I ′1 to I0 by the adjustments to the transformation parameters, ∆q.

Figure 3.5 visualizes this composition of image warps.

Figure 3.5: Mapping I1 to I0 by the composition of an initial estimate of the trans-
formation parameters and the adjustments to these parameters.

From Figure 3.5 it follows thatWq(I1) = W∆q

(
Wq0(I1)

)
so that I0 can be obtained

from warping I1 according to:

W∆q

(
Wq0(I1)

)
→ I0 : I0(x, y) = I1

(
Tq0(T∆q(x, y))

)
(3.15)

Substituting this composition into equation (3.13), the new error criterion can be

seen as a function of ∆q:

e(∆q) =
1

2
‖ W∆q

(
Wq0(I1)

)
− I0 ‖2, (3.16)

which can be rewritten to obtain the following equivalent error function:

e(∆q) =
1

2
‖ Wq0(I1)−W−1

∆q(I0) ‖2 (3.17)

The image obtained from warping I1 according to Wq0 is given by I
′
1(x, y) =

I1

(
Tq0(x, y)

)
and is approximately registered with I0 by the initial estimate, q0.

The image obtained from warping I0 with W−1
∆q is given by Ī0(∆q) = I0

(
T −1

∆q (x, y)
)
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and accounts for small adjustments applied to I0 in order to match I0 with I ′1 and

further optimize the registration between I0 and I1.

To minimize this error function, we define a set ofmmotion vectors {∆qi : i ∈ (1 . . .m)}
to sample the parameter space, instead of performing exhaustive search. Each ∆qi

transforms the reference image I0 into an image Ī0(∆qi) = I0

(
T −1

∆qi
(x, y)

)
that con-

tains image deformations expected to be observed over time. With the set of motion

vectors, the parameter vector ∆q can be expressed as a linear combination of the

various ∆qi:

∆q =
m∑
i=1

ki∆qi (3.18)

This decomposition is not unique since {∆qi : i ∈ (1 . . .m)} is in general a set of

redundant vectors. The choice of the motion vectors ∆qi is discussed later in this

chapter. Now, the image space can be considered as a function of the parameter

vector k = [k1 . . . km]
T . The new parameterization is given by:

Î0(k) = Ī0(
m∑
i=1

ki∆qi) (3.19)

For small deviations about k = 0 we have the first order approximation:

Î0(k) ≈ I0 +
m∑
i=1

∂Î0

∂ki
ki, (3.20)

where discrete approximations of each partial derivative can be expressed as:

∂Î0

∂ki
= Ī0(∆qi)− I0 = Bi (3.21)

In [9], the set of vectors Bi are denoted Difference Templates and are also used for

image registration, but they are justified in a different form. Substituting equation

(3.21) into equation (3.20), the new parameterization is then given by:

Î0(k) ≈ I0 +Bk, (3.22)
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where B is the partial derivatives matrix: B = [B1 . . . Bm]. Substituting the new

parameterization given by equation (3.22) into the error function given by equation

(3.17), this error criterion now becomes a function of the vector k and takes the

form:

e(k) =
1

2
‖ D −Bk ‖2, (3.23)

where D is the difference image I ′1 − I0. The least square solution for k can be

determined by minimizing:

mink ‖ D −Bk ‖2 ⇒ k = (BTB)−1BTD (3.24)

After determining k, the solution for ∆q can be calculated from equation (3.18).

Using the updated estimates of the parameter vector ∆q, this process can proceed

in subsequent iterations.

An example. Figure 3.6 (a) shows a reference image with a selected image region of

interest (ROI). The image contained within this ROI, corresponds to I0 in equation

(3.16). The problem is to register the reference image with the current target image

for each temporal iteration. Based on an initial estimate, it is possible to predict

the location of the reference ROI in the target image up to some small errors that

remain to be adjusted. Figure 3.6 (b) shows the current target image with the initial

estimate of the ROI position (note that small errors remain).

From the initial estimate of the transform parameters, it is possible to warp the

target image approximately back onto the reference image. The region bounded by

the vertices of the reference ROI in this warped image is I ′1, which can be obtained

from I ′1(x, y) = I1

(
Tq0(x, y)

)
, (x, y) ∈ I0.

The image regions I0 and I ′1 together with their difference D = I ′1 − I0 are il-

lustrated in Figure 3.7. The two regions are approximately registered based on the

initial motion estimate, but small adjustments remain to be made.
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(a) (b)

Figure 3.6: (a) Reference image with an identified ROI; (b) current target image
with the ROI position predicted from some initial estimate.

Figure 3.7: Image regions I0, I
′
1 and the difference between them, D = I ′1 − I0
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To register I ′1 with I0, the method proposes to ”explain” the observed difference

(D) by a linear combination of the elements in the pre-calculated difference template,

as stated in equation (3.18). The difference templates are calculated from the set

of motion (deformation) models applied to the reference region and sample the

search space for expected image deformations. Figure 3.8 shows some typical image

deformations (translation, rotation, scaling and perspective distortion) applied to

the reference image I0. The figure also shows the resulting difference templates Bi,

as stated in equation (3.21).

The solution k given by equation (3.24) states that the observed image difference

D is best approximated by the image obtained from the linear combination of the

difference templates Bi, according to the elements of k. The question of which

difference templates are to be included in the set will be discussed in the following

paragraph. Once obtained k, the solution for ∆q can be calculated according to

equation (3.18).

With the adjusted estimate of the transform parameters, the updated coordinates

(xi, yi) of the four corners of the ROI in the target image can now be calculated

according to: (x′
i, y

′
i) = Tq0

(
T∆q(xi, yi)

)
, where (xi, yi) is a corner coordinate in

the reference image and (x′
i, y

′
i) the corresponding corner coordinate in the target

image. The projection of the updated ROI position in the target image is illustrated

in Figure 3.9 together with the initial estimate.

Discussion and implementation of the method. The reason for rewriting

equation (3.16) into the form of equation (3.17) is that it allowed to derive a new

parameterization of the error criterion (equation (3.22)) that uses the difference

templates, Bi. The main advantage to do so is that upon identifying the reference

ROI in the reference image, the set of difference templates Bi can be computed a

priori, that is off-line. To obtain the solution for k as in equation (3.24), it follows
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Translation

Rotation

Scaling

Perspective distortion

Figure 3.8: Reference ROI (I0), expected image deformations (Ī0(∆qi)) and their
corresponding difference images (Bi).
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Figure 3.9: ROI position in target image as predicted by the difference template
method. Also the initial prediction was super-imposed.

that most computational requirements go out with the off-line computation of the

matrix (BTB)−1. The only on-line computation of the algorithm implies simple

matrix computations and an image warp Wq0(I1) → I ′1. This makes the method

very well-suited for real time tracking applications.

Another advantage of this method in relation to standard local gradient descent

methods is the ability to customize the set of motion models according to the kind

and range of expected image deformations. Also, with the increase of computational

power, it is easy to add new sample vectors to improve estimation results.

The choice of the sample vectors is of great importance for the performance of

the algorithm. The following design choices need to be taken into account:

• the number of sample vectors;

• the directions of the sample vectors;

• the range of the sample vectors;

• the number of iterations.

As proposed in [1], the best performance is obtained by creating three sets of

difference templates to cover translational, affine and planar projective motion mod-
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els. This is motivated by the fact that large deformations may be estimated more

robustly using a simpler motion model, which is refined in subsequent iterations.

Starting with the most constrained set of vectors, the translational set will center

the template with the current image, but further deformations need to be estimated.

In a second phase, affine deformations will be adjusted, estimating most of the ro-

tation, scaling and shear in the transformation. Finally, the planar projective set is

used so to estimate remaining perspective distortions.

Since we are interested in real time tracking, computation time is important. In

practice, a fixed computation time is desired, which has an upper bound given by

the minimal required frequency of tracking (which is application dependent). Once

such a frequency is defined, a trade-off has to be established between the number

of sampling vectors and the number of iterations to do with the set. Using a higher

number of sampling vectors, allows to estimate transformations over an wider range,

but requires more online computation time. An increase in computation time re-

sults into a lower frame rate which implies larger inter-image deformations, imposing

some trade-offs. The various sets of sampling vectors used in this work were estab-

lished after many experiments and are shown in Appendix B. Each set includes 48

motion vectors that sample the parameter space uniformly in each direction, but

over non-uniform increasing range. With this choice, the algorithm needs to iterate

only once for the translational, affine and planar projective sampling sets.

Performance of the difference template tracker. Some experiments were

conducted to characterize the performance of the method. Camera motions in 3D

are simulated, such that they produce sudden increasing image deformations. We

consider increasing translations, rotations and scaling in the image plane. The

performance of the tracking algorithm is measured by comparing the L2 norm of

the real and estimated positional offset of the quadrangle corner coordinates. In
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Figure 3.10 these norms are plotted for increasing deformations.
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Figure 3.10: Performance of the algorithm for estimating translation. rotation, zoom
in and zoom out in the image plane. The continuous line shows ground-truth values,
+ - first iteration with translational set, o - second iteration with affine set, ♦ - last
iteration with planar projective set.

The algorithm is applied by subsequently iterating once with the translational

set, the affine set and the planar projective set of motion models. From Figure 3.10

it follows that in the case of translational deformations, the algorithm is able to

accurately estimate translations up to an inter-image shift of 8 pixels.

3.3 Adaptive templates

The choice of the motion models that are included in the difference template method

greatly determines the performance of the algorithm, as they sample the search space
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for expected image deformations. Ideally, the choice of motion sampling vectors

should be adapted to the camera motion.

Assuming that robot motion is smooth, then the induced image deformations over

time are also smooth. Hence, recently estimated transformations point out into the

direction and range of expected image deformations in near future. Including

these past transformations into the set of motion sampling vectors, one expects an

increase on performance for the algorithm. Introducing new sampling vectors into

the existing partial derivatives matrix B (in equation (3.23)) requires the on-line

computation of BTB and (BTB)−1 for obtaining the solution given by equation

(3.24), which would slow down the tracking frequency significantly.

In this section, we describe a method to substitute a motion sampling vector in

an existing difference template database by taking advantage of the information al-

ready contained in the pre-calculated matrices BTB and (BTB)−1, requiring a low

computational effort. Then, an heuristic is used for deciding which sampling vector

is to be replaced by what other sampling vector.

Substituting a sampling vector in the template database. Consider the

structure of the partial derivatives matrix B, containing all difference templates Bi.

Writing each Bi as a column vector, the partial derivatives matrix is given by:

B(l×m) = [B1 B2 · · · Bm], (3.25)

where l is the number of pixels contained in the selected image region and m is the

number of sampling vectors included in the set. The matrix BTB has the form:

BTB =



BT

1
...

BT
m


 [

B1 · · · Bm

]
=



BT

1 B1 · · · BT
1 Bm

...
. . .

...
BT
mB1 · · · BT

mBm




(m×m)

(3.26)

To calculate BTB it is thus necessary to do m×m multiplications of two difference

images. If the size of each difference image is (p×r), the calculation of BTB implies
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m×m× p× r multiplications, requiring a great deal of computational power.

Upon substitution of a sampling vector, a difference template Bi needs to be

substituted by a new difference template B′
i, where i ∈ {1, 2, . . . ,m}. The new

partial derivatives matrix B′ differs only from B by its ith entry:

B′
(1×m) = [B1 · · ·B′

i · · ·Bm], (3.27)

The corresponding new matrix B
′TB′ has the form:

B
′TB′ =




BT
1
...

B
′T
i
...

BT
m




[
B1 · · · B′

i · · · Bm

]
=




BT
1 B1 · · · BT

1 B′
i · · · BT

1 Bm
...

. . .
...

...
B

′T
i B1 · · · B

′T
i B′

i · · · B
′T
i Bm

...
...

. . .
...

BT
mB1 · · · BT

mB′
i · · · BT

mBm




(m×m)

(3.28)

The problem is how to calculate (B
′TB′)−1 by taking advantage of the informa-

tion stored in the already pre-calculated matrix (BTB)−1. This is done in two steps.

First we show how to obtain B
′TB′ from BTB and in a second step, their inverse

matrices will be related.

Step 1:

Since the entries of BTB and B
′TB′ only differ on the ith column and row, the new

B
′TB′ can be obtained from the pre-calculated BTB simply by updating the 2×m

new entries for the i’th row and column, requiring only p×r×2×m multiplications.

Without loss of generality, in the remaining part of this section we assume that

i is at the last row and column, which can always be achieved with permutation

matrices. In this case both BTB and B
′TB′ contain the same information at the

entries of their upper (m− 1)× (m− 1) block. Writing:

BTB =

[
E(m−1)×(m−1) F(m−1)×1

G1×(m−1) H1×1

]
(3.29)
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it follows that B
′TB′ can be written as:

B
′TB′ =

[
E(m−1)×(m−1) F ′

(m−1)×1

G′
1×(m−1) H ′

1×1

]
(3.30)

This representation allows to relate the inverse matrices of BTB and B
′TB′ in a

convenient way, as will be seen in the next step.

Step 2:

Now the goal is to obtain (B
′TB′)−1 at a low computational cost from the already

pre-calculated matrix (BTB)−1. Writing BTB as a block matrix and supposing that

the inverse of its upper-left block exists, it follows [16] that the inverse of BTB can

be written as:

(BTB)−1 =

[
E F
G H

]−1

=

[
E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1

]
, (3.31)

where S = H − GE−1F is a scalar. This inverse is also a block matrix for which

the upper left block, E−1 + E−1FS−1GE−1 has size (m − 1 × m − 1). Note the

fact that, to obtain the inverse (BTB)−1, one only needs to calculate the inverse of

matrix E and scalar S. Now, since matrices BTB and B
′TB′ share the same matrix

block E, the inverse of B
′TB′ can be obtained at a cheap computational cost from

the inverse of BTB by taking advantage of the shared E−1. The matrix block E−1

can be recovered from (BTB)−1 by writing:

(BTB)−1 =

[
E F
G H

]−1

=

[
M11 M12

M21 m22

]
(3.32)

With this representation, E−1 is given by:

E−1 = M11 −M12.m
−1
22 .M21 (3.33)

Once extracted E−1, it can be used to calculate the inverse of (B
′TB′)

′−1 according
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to:

(B
′TB′)−1 =

[
E−1 + E−1F ′S

′−1G′E−1 −E−1F ′S
′−1

−S
′−1G′E−1 S

′−1

]
, (3.34)

with S ′ = H ′ − G′E−1F ′. For each template substitute, the updated pseudo in-

verse of the new partial derivatives matrix B′ is obtained by this equation. Upon

periodically substituting one sampling vector in the database, all pre-calculated in-

formation can be updated at a relative low computational effort.

Substitute heuristic. Upon periodically substituting a difference image in the

partial derivatives matrix, still the problem remains of deciding which sampling

vector is to be replaced by what new sampling vector. Assuming smooth motion,

the best new motion sampling vector is given by the last detected motions in the

image plane, which is obtained from the current estimate ∆q.

The decision of which sampling vector to remove is not trivial, since it can destroy

the ability of the database to sample deformations in all directions. Such a situation

occurs when image deformations occur in a single direction over a relative long time

span, e.g. during translation. Upon periodically substituting in the entire database,

the database will end up sampling only in the direction of translation. For this

reason, it is decided to maintain the original sampling set, {∆qi : i ∈ (1 . . . 48)},
fixed and have a smaller complementary set in which expected image deformations

are substituted based on the last estimated value of the transformation.

To accommodate the substitute sampling vectors, an additional set of 8 sampling

vectors is added to the existing translational, affine and planar projective sampling

sets (each of which includes 48 motion vectors). This way one expects an increase in

performance of the difference template registration method while at the same time

a redundant base is preserved, sampling all possible image deformations.

A simple heuristic is used to decide which sampling vector in the complementary

sets is to be substituted. Based upon the values of the last 8 elements in vector
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k (equation (3.24)), the sample vector with the lowest weight ki, i ∈ {49 · · · 56} is

substituted.

Performance with adaptive sampling vectors. Doing the same experiment as

illustrated in Figure 3.10, the performance with substitution of motion vectors is

given in Figure 3.11.
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Figure 3.11: Performance of the adaptive algorithm for estimating translation, rota-
tion, zoom in and zoom out in the image plane. The continuous line shows ground-
truth values, + - first iteration with translational set, o - second iteration with affine
set, ♦ - last iteration with planar projective set.

During the experiment, the motion vectors are substituted iteratively, based on

the previous estimate. Since past values are integrated, this experiment shows the

ability of the algorithm to track the visual landmark when undergoing an accel-

eration in the image plane, rather then showing the absolute range of detectable

deformations, as was the case in Figure 3.10. However, comparing Figures 3.11 and
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3.10 shows that this version of the algorithm is able to estimate the various transfor-

mations in the image plane over a much wider range in the presence of acceleration.

We therefore conclude that the adaptive component contributes to the robustness

of the tracking system.

3.4 Outline of the tracking algorithm

The implementation of the tracker algorithm is resumed in the following tables.

Initialization/Off-line Operations

1. Identify the textured image region to be tracked, I0.

2. Construct the translational, affine and planar projective sampling sets:
- translational set: {∆qi : i ∈ (1 . . . 48)}1

- affine set: {∆qi : i ∈ (1 . . . 48)}2

- planar projective set: {∆qi : i ∈ (1 . . . 48)}3

3. Compute the corresponding partial derivatives matrices and pseudo inverses:
- translational set: {B,BTB, (BTB)−1}1

- affine set: {B,BTB, (BTB)−1}2

- planar projective set: {B,BTB, (BTB)−1}3
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Run-time/On-line Operations.

1. Compute the optic flow in the image: (u, v)
and the corresponding transform estimate: T(u,v)(x, y)

2. Compute the current initial estimate from the composition of the
optic flow estimate and the previous transform estimate, Tq̂t−1(x, y):

Tq0(x, y) = Tq̂t−1

(
T(u,v)(x, y)

)

3. Refine transform estimate with the translational motion sampling set

- compute I
′
1 = I1(Tq0(x, y)) using the current initial estimate

- compute the difference image, D = I
′
1 − I0

- estimate vector k1 and parameter update ∆q1

- update the current transform estimate: Tq̂(x, y) = Tq0

(
T∆q1(x, y)

)
.

4. Refine transform estimate with the affine motion sampling set

- use q̂ as the initial estimate: Tq0 = Tq̂

- compute I
′
1 = I1(Tq0(x, y)) using the current initial estimate

- compute the difference image, D = I
′
1 − I0

- estimate vector k2 and parameter update ∆q2

- update the current transform estimate: Tq̂(x, y) = Tq0

(
T∆q2(x, y)

)
.

5. Refine transform estimate with the perspective motion sampling set

- use q̂ as the initial estimate: Tq0 = Tq̂

- compute I
′
1 = I1(Tq0(x, y)) using the current initial estimate

- compute the difference image, D = I
′
1 − I0

- estimate vector k3 and parameter update ∆q3

- update the current transform estimate: Tq̂(x, y) = Tq0

(
T∆q3(x, y)

)
.

6. Substitute the composition ∆q = ∆q1 ◦∆q2 ◦∆q3 in the translational,
affine and projective motion sampling sets
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With this algorithm, we were able to successfully track an image patch undergoing

planar projective transformation. Figure 3.12 shows results of tracking an identified

region over time.

Figure 3.12: Tracking an image patch over time. This test was conducted with the
aerial blimp.



Chapter 4

Robot Modeling

The work presented in this thesis is integrated in the NARVAL project, for which one

of the main goals is the design and implementation of reliable navigation systems of

limited cost for mobile robots in unstructured environments. For demonstration, two

experimental setups were used: (i) an airborne blimp and (ii) a remotely operated

underwater vehicle (ROV).

In this chapter, these robots are specified and modeled. Both robots have the same

degrees of freedom, since they both float in 3D space. The design of the blimp is

such that the geometric arrangement of the thrusters defines the same controllable

degrees of freedom as in the ROV. For these reasons, the blimp kinematic and

dynamic relations are a reasonable approximation of those of the submarine, having

different time constants. Therefore, this chapter only introduces the blimp dynamic

model which also applies to the ROV. The blimp can be used as a test-bed for

experiments in a laboratory environment. The only major difference is the fact that

since water is more viscous than air, the control will be simpler in that case, when

compared to the blimp. On the other hand, visual processing is expected to be

more difficult for the underwater case, requiring high-performance and robust visual

processing.

47
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4.1 Blimp and ROV description

The small-size indoor blimp used is illustrated in Figure 4.1. It is composed of a

balloon, a gondola and a remote controller. For the blimp to float in air, its envelope

needs to be filled with a gas that is lighter then air, typically Helium. The gondola

is a rigid structure attached to the bottom of the balloon. It contains the motor

controllers, a radio receiver and the three thrusters for propulsion in the horizontal

and vertical planes. Additionally, a mini camera with a video link was mounted on

the gondola.

Figure 4.1: Radio controlled indoor blimp with on-board camera.

The CCD camera sends video signals to a remote computer via a video link in

open air. Figure 4.2 shows a typical image of a scene as viewed by the blimp camera.

The images received by the computer are processed and analyzed so as to derive

proper control signals, sent to the blimp via a radio link.
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Figure 4.2: Image as seen from the blimp on-board camera while looking down to
the ground-plane.

The remote operated underwater robot is illustrated in Figure 4.3. The underwa-

ter robot is equipped, among other sensors, with an on-board pan and tilt camera.

The camera is mounted rigidly to the ROV but its pan and tilt angles can be con-

trolled separately, resulting in two extra degrees of freedom for the camera. The

ROV is wired to a remote processing unit by an umbilical. Video signals go up to

the ground surface were they are processed in a remote computer. Figure 4.4 shows

a typical image of an underwater scene as viewed from the robot camera. Control

signals for the ROV thrusters are sent down via the umbilical to the ROV motors.

4.2 Blimp dynamic model

In order to derive a mathematical model, it is useful to first review some physical

principles of airship operation [10, 17]. First of all, an important characteristic

is the aerostatic lift, which, unlike the lift forces generated over a wing surface,

is independent of flight speed. The aerostatic lift force comes from Archimedes’

Principle and is equal to the mass of the volume of air displaced by the airship’s

envelope. The aerostatic lift is also known as the buoyant force. An upward lift is



50 CHAPTER 4. ROBOT MODELING

Figure 4.3: Remote operated underwater robot with on-board pan- and tilt-camera.

Figure 4.4: Typical image of an underwater scene. The ROV on-board camera is
looking downwards to the sea bottom.
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obtained when the airship’s envelope contains a gas with a density lower then air.

Helium is the most commonly used lifting gas.

Second, a buoyant body in motion in a fluid displaces each fluid particle in the

direction of motion of the body. The fluid therefore gains kinetic energy and the

body experiences a resistance to its motion. This effect can be taken into account

by considering added mass and inertia terms. As the blimp displaces a relative

large volume of air during flight, these properties become significant and the body

behaves as if it had a mass and moments of inertia substantially higher than those

indicated by conventional physical modelling.

Finally, because the airship center-of-mass is difficult to locate and time-variant

during flight, motion has to be referenced to by a system of orthogonal body axes,

FM , placed at the geometric center of the envelope volume, as shown in Figure 4.5.

The centre of volume can be assumed to coincide with the center of buoyancy.

y
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Figure 4.5: Definition of reference frames.

Considering the vehicle as a rigid body (not taking into account its elasticity) the

dynamic model can be obtained by writing down the six degrees of freedom Newton-

Euler equations of motion resolved into the body-fixed reference frame [8, 10]:
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M v̇ + c(v) +D(v)v + g(α, β, γ) = τ, (4.1)

The various elements in equation (4.1) will be explained in more detail in the

following.

The velocity vector. The vector v = [u w]T , is the 6×1 velocity vector containing

the three components of linear velocity u = [u1 u2 u3]
T and the three components

of angular velocity w = [ω1 ω2 ω3]
T measured in the earth-fixed inertial reference

frame FW and expressed in the body-fixed reference frame FM .

The mass matrix. The 6 × 6 mass matrix M ≡ MRB + MA contains all masses

and inertias of the rigid body (MRB) and the added mass and inertia terms (MA).

Considering the gondola as a point mass, aligned along the z-axis of the body-fixed

reference frame, the planes (x − z) and (y − z) in the body-fixed reference frame

form symmetry planes for the mass distribution. This implies various simplifications

for the mass matrix. In the first place, all cross-coupling inertial terms become zero

and the inertia matrix becomes diagonal. In the second place, one can neglect the

contribution from off-diagonal elements in the added mass matrix MA, thus sug-

gesting the following model: MA = diag{A11, A22, A33, A44, A55, A66}. The elements

Aii, i ∈ (1, 2, .., 6) can be estimated from the dimensions of the airship’s hull, as

described in [8].

Coriolis and centrifugal terms. The 6× 1 vector c(v) = cRB(v) + cA(v) groups

all quadratic terms, containing the centrifugal and Coriolis dynamic forces.

Damping matrix. The matrix D(v) ≡ DS(v) +DH(v), is the 6× 6 aerodynamic

damping matrix. Linear and quadratic skin friction drag are modeled with DS(v)
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and arise due to laminar and turbulent boundary layers. Damping due to vortex

shedding, which depends on the streamline of the airship’s hull, can be modeled

with DH(v). For small indoor blimps moving at low speed, laminar boundary layer

conditions can be assumed, considering only linear skin friction coefficients. For this

case, the following model is proposed: D = diag{Xu1 , Yu2 , Zu3 , Kω1 ,Mω2 , Nω3}. The
elements of D can be estimated either from wind-tunnel testing or system identifi-

cation tools.

Gravity and buoyancy vector. The vector g(α, β, γ), is the 6×1 restoring forces

vector containing the gravity and buoyancy forces. Since these forces are defined

in the earth-fixed inertial frame, they need to be resolved into body-fixed axes by

a rotation matrix. The standard fixed x − y − z angles representation is used to

parameterize the rotation matrix with the roll(γ), pitch(β) and yaw(α) angles.

Thruster vector. The vector τ = τA + τP, is the 6 × 1 applied forces vector

containing all forces and moments acting on the rigid body due to the aerodynamic

control surfaces (τA) and the propulsive units (τP). For an indoor blimp moving at

low speed under laminar boundary layer conditions, aerodynamic control surfaces

will have no effect and thus are not included. In this case, the vector τ will be a

function of the geometrical arrangement of the propulsive units around the body

axes: τ = [Tcmn 0 Tv 0 (dzTcmn) (dyTdiff )]
T , where Tcmn = (Ts + Tp) is the common

mode component of thrust coming from the starboard and port side propellers, Tv

is the thrust resulting from the vertical propeller, Tdiff = Ts − Tp is the difference

between starboard and port side propeller thrust, dy is the horizontal offset from

the center of volume of the horizontal propellers and dz is the vertical offset of the

vertical propeller (see Figure 4.5).
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4.3 Blimp kinematics

For control and navigation purposes, the velocity vector in equation (4.1) must

be transformed to the earth-fixed inertial frame, FW , so as to obtain the vehicle

position and orientation over time in the fixed world reference frame. This leads

to the kinematic relations. The relative position and orientation of FM with re-

spect to FW will be denoted by the vector η = [x y z α β γ]T , where a standard

roll(γ), pitch(β), yaw(α) fixed angles representation is assumed for the orientation.

The rotation matrix describing the orientation of FM in FW is then given by:

W
MR =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


 , (4.2)

where c(.) = cos(.), s(.) = sin(.). The kinematics relation can then be written as:

η̇ =

[
J1(α, β, γ) 03×3

03×3 J2(α, β, γ)

]
v, (4.3)

where J1 =
W
MR is the rotation matrix and J2 a Jacobian matrix relating the angular

velocity vector to the time derivatives of the attitude parameters. The Jacobian J2

can be easily calculated from the rotation matrix (see [3]). For the fixed angles

representation it is given by:

J2(α, β, γ) =


1 sγtβ cγtβ
0 cγ −sγ
0 sγ

cβ
cγ
cβ


 , (4.4)

where t(.) = tan(.). Integration over time of equation (4.3) gives the vehicles position

and orientation over time in FW .

In the design of control laws, it is sometimes useful to distinguish the vehicles

controllable degrees of freedom from its velocity screw:

TM =
[
u1 u3 ω3

]T
(4.5)

whereTM is the vehicle control input vector containing the three controllable degrees

of freedom, resulting from the geometric arrangement of the thrusters. This vector

specifies the non-holonomic constraints of the vehicle.
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4.4 Camera kinematics

In this section we consider a pan and tilt camera to be rigidly attached to the vehicle.

Vision will be used to control the robots so that measurements will be done in the

camera reference frame. The desired trajectories of the camera reference frame play

an important role in the design of control laws. It is therefore useful to derive the

camera controllable degrees of freedom as a function of the vehicle control inputs

and the two extra degrees of freedom introduced by the pan and tilt unit.

To do so, we first derive a model for a pan and tilt camera, relating the pan and

tilt velocities to the resulting velocity of the camera frame. Then we consider the

case of zero pan and tilt angles and velocities, so as to obtain the camera control-

lable degrees of freedom resulting from the vehicle control input vector. Finally,

the overall camera kinematic relations are obtained from the composition of the two

separate cases.

Pan and tilt camera. The schematics of a pan and tilt camera is depicted in

Figure 4.6. The model includes the camera reference frame FC , in which the tilt

angle θtilt is defined and also a base frame FB, in which the pan angle θpan is defined.

The camera frame is rigidly attached to the base frame, in such a way that its only

degree of freedom relative to the base frame, is the tilt angle. The only degree of

freedom considered for the base frame is the pan angle.

The orientation of FC in FB depends only on the camera tilt angle and is therefore

given by:

B
CR =


 cos(θtilt) 0 sin(θtilt)

0 1 0
− sin(θtilt) 0 cos(θtilt)


 (4.6)

The position of the origin of the camera frame expressed in the base frame is

given by the constant vector BPC = [a b c]T . Here we consider b = c = 0. Defining

vC = [uC wC ]
T as the 6 × 1 camera velocity screw, then the components of this
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Figure 4.6: Schematics of a pan and tilt camera; FB base frame in which the pan
angle is defined; FC camera reference frame in which the tilt angle is defined.

screw due to the pan and tilt velocities, ωpan and ωtilt can be resolved into the camera

reference frame from superposition:

wC = [0 ωtilt 0]
T + C

BR wB (4.7)

uC = C
BR(uB +wB × BPC), (4.8)

where wB = [ωpan 0 0]T and uB = [0 0 0]T define the base frame velocity screw.

These equations can be written into a more compact form as:

vC = J3(θtilt)

[
ωpan

ωtilt

]
, (4.9)

where J3(θtilt) is a Jacobian relating the rates of the pan and tilt angles to the

resulting camera velocity screw, as given by:

J3(θtilt) =




0 0
0 0
0 0

cos(θtilt) 0
0 1

sin(θtilt) 0




(4.10)

Note that with BPC = [a 0 0]T , the Jacobian only depends on the tilt angle. In

practice, a camera with a pan and tilt unit often comes with angle encoders so that
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the pan and tilt angles can be sensed within the unit.

Camera motion due to vehicle motion. Now we consider the pan and tilt

camera to be rigidly attached to the vehicle as illustrated in Figure 4.7. The camera

reference frame is indicated by FC , having the camera optical axis pointing along its

z-axis. The coordinates of the origin of the camera frame with respect to the vehicle

reference frame are constant and given by MPC = [dx dy dz]
T . The orientation of

FC in FM is given by the rotation matrix M
C R, which is usually parameterized by

the x-y-z fixed angle representation given by the respective γ, β, α angles: M
C R =

M
C R(γ, β, α). When controlling the camera pan and tilt angles, this rotation matrix

becomes time-variant, depending on the current value of the pan and tilt angles:

M
C R(γ + θpan, β + θtilt, α).

F

F

x’

ϕ

M

C

x

y

z

y’ z’

Figure 4.7: Position and orientation of the camera frame, FC , in the vehicle reference
frame, FM .

Throughout the rest of this thesis, we consider the orientation of the pan and tilt

camera in the vehicle frame to be γ = α = 0 and β = ϕ, as illustrated in Figure 4.7.

For the case ϕ = 0, the camera points down, looking perpendicular to the ground-

plane. The rotation matrix thus becomes a function of some established value of ϕ
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and the current pan (θpan) and tilt (θtilt) angles:

M
C R(θpan, ϕ+θtilt) =


 cos(θtilt + ϕ) sin(θtilt + ϕ)sin(θpan) sin(θtilt + ϕ) cos(θpan)

0 cos(θpan) − sin(θpan)
− sin(θtilt + ϕ) cos(θtilt + ϕ) sin(θpan) cos(θtilt + ϕ) cos(θpan)




(4.11)

Taking vC = [uC wC ]
T as the 6 × 1 camera velocity screw, the relation between

the camera and the vehicle velocity screws is given by:

wC = C
MRw (4.12)

uC = C
MR(u+w × MPC) (4.13)

where w and u are the angular and linear components of the vehicle velocity vector.

For control purposes it is useful to relate the camera velocity screw to the vehicle

control inputs. To do so, we substitute w = [0 0 ω3]
T and u = [u1 0 u3]

T into

equations (4.12) and (4.13), where we have plugged the elements of the vehicle

control input vector, TM (as defined in equation (4.5)), into the vehicle velocity

screw. Rewriting the resulting expressions into matrix form yields:

vC = J4(ϕ, θpan, θtilt,
MPC)TM , (4.14)

where J4(ϕ, θpan, θtilt,
MPC) is the 6×3 control input Jacobian, written as a function

of the camera orientation and position in the vehicle reference frame. For controlled

pan and tilt angles, this Jacobian is time-variant.

In the case of the blimp, the on-board camera has no pan and tilt unit (θtilt =

θpan = 0), so that the rotation matrix simplifies to:

M
C R =


 cos(ϕ) 0 sin(ϕ)

0 1 0
− sin(ϕ) 0 cos(ϕ)


 (4.15)

The resulting control input Jacobian in this case becomes time-invariant and has
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the following particular structure:

J4(ϕ,
MPC) =




cos(ϕ) − sin(ϕ) −dy cos(ϕ)
0 0 dx

sin(ϕ) cos(ϕ) −dy sin(ϕ)
0 0 − sin(ϕ)
0 0 0
0 0 cos(ϕ)




(4.16)

This time-invariant control input Jacobian plays an important role in the design

of control laws, later on in the thesis.

Overall camera kinematics. After having obtained the camera velocity screw as a

function of the pan and tilt velocities as well as a function of the vehicle control input

vector, the overall camera kinematic relations can be obtained from the composition

of equations (4.14) and (4.9), resulting in:

vC = J4(ϕ, θpan, θtilt,
MPC)TM + J3(θtilt)

[
ωpan

ωtilt

]
(4.17)

This expression gives all degrees of freedom of the camera velocity screw, that are

controllable from the vehicle control input vector and the pan and tilt velocities.

If no pan and tilt unit is available on-board, this relation simplifies to:

vC = J4(ϕ,
MPC)TM , (4.18)

where J4 is given by equation (4.16) and is time-invariant.

4.5 Summary

In this chapter we introduced the blimp and the underwater robot used for experi-

ments in this thesis. The dynamic and kinematic models of the blimp were useful for

simulation purposes and to gather insight into the physical principals of operation.

Since the main goal in this thesis is to explore the use of vision in order to control

the robots, measurements are done in the camera reference frame. The relationship
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between the camera velocity screw and the vehicles control input vector plays an

important role in the design of control laws for visual navigation. This relationship

is a function of the camera extrinsic parameters which throughout the thesis are

assumed to be known. In practice, they can be obtained from a camera calibration

procedure.

The underwater robot is equipped with a pan and tilt unit, introducing two extra

degrees of freedom for the camera. These were modeled in the base frame of the

pan and tilt unit. Upon controlling the pan and tilt angles, the orientation of the

camera frame in the vehicle frame becomes time-variant, depending on the current

values of the pan and tilt angles. The pan and tilt degrees of freedom will be used

in a later stage for image stabilization.



Chapter 5

Station Keeping and Docking

The problem addressed in this chapter is that of controlling a floating vehicle (either

the blimp or the ROV) in order to achieve station keeping and docking. Station

keeping consists in stabilizing the vehicle relative to some external reference frame

or environmental region, thus rejecting external disturbances like currents. The

docking problem is intimately related to station keeping, and consists of controlling

the vehicle in order to attain a desired position and/or orientation relative to a

chosen coordinate frame. Vision is used to extract information about the vehicle’s

pose so as to realize the station keeping and docking behaviors. These tasks are

then formulated in a visual servoing framework.

Although a dynamic model for the blimp was derived in Chapter 4, the control

laws that shall be proposed in this chapter are based on kinematic error functions

only. However, deriving the dynamic model gave us a better insight into the system’s

behavior and the coupling effects between kinematic variables could be identified.

Section 5.1 starts with an outline of the various visual servoing strategies that

are established in literature. A tutorial on this topic can be found in [27]. For nav-

igation purposes, these strategies can be roughly classified into two architectures:

(i) position based (or 3D-) visual servoing and (ii) image based servoing. In the

case of 3D servoing, images are used to reconstruct the scene and estimate 3D po-

sitions/orientations from visual information. In the image based approach, features

61
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are measured directly from the image plane and used to synthesize the control laws

without an intermediate reconstruction phase.

In Section 5.2, the station keeping task is defined for the case of 3D visual servoing.

In Section 5.3 this task is defined for the image based approach. Since docking and

station keeping are intimately related (docking can be thought of as station keeping

over a wider range), these tasks also apply for docking.

Finally, an image stabilization technique is proposed which controls the camera

pan and tilt angles in such a way that it drives a visual landmark to the image

center. This adds stability to the station keeping tasks since the visual landmark

remains centered in the image. The problem of how to accommodate the image

stabilization technique into the proposed visual servoing tasks will be discussed in

the final section.

5.1 Visual servoing architectures

Visual control loops have been introduced in order to increase the flexibility and the

accuracy of robot systems. Most references deal with visual servoing for positioning

tasks in manipulator control ([27, 6, 20]) and the approaches can be mainly classified

into 3D visual servoing and image based servoing. Recently, these approaches have

been applied to the problem of mobile robot navigation ( [19, 32, 18]). The main

difficulty in these cases arise due to the non-holonomic constraints of the vehicle

when not all degrees of freedom are controllable.

The approach adopted for visual servoing follows the theory referred to as the

task function approach [18, 6], where the servoing task is formulated as regulating a

particular error function to zero. The task is represented by a particular alignment

between the camera frame and the landmark and is fulfilled when the error function

is zero.
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3D servoing. In the 3D approach, features are extracted from the image and used

to estimate the pose x of the camera relative to the target. In this thesis, a planar

landmark is chosen as a target.

A kinematic error function is defined between the current and desired camera

pose. For station keeping, this error function is given by the difference between the

actual and desired pose:

E(x) = x− x∗, (5.1)

where x∗ is the desired pose. For simulation purposes, the real values for x can

be obtained from integrating the kinematic relations of the camera given by equa-

tions (4.12) and (4.13), if not considering the pan and tilt degrees of freedom. An

estimate of the current pose, x̂, is used for feedback and obtained from the self-

localization method described in Section 5.2. Using feedback, a regulator is defined

that exponentially reduces the errors to zero. Since the kinematic errors are defined

in Cartesian space, it is relatively easy to obtain a controller design based upon

geometric insight.

The main advantage of the 3D approach is that it directly controls the camera

trajectory in Cartesian space. However, since the control design is based on error

functions in Cartesian space, the image features used in the reconstruction phase

may leave the image and lead to servoing failure. Another problem is that stabil-

ity is difficult to analyze since errors in the pose estimation cannot be analytically

computed as a function of calibration errors [20].

Image based servoing. With image based visual servoing, the error signals are

defined directly in terms of image feature parameters. An image based visual ser-

voing task is therefore represented by an image error function e(s), where s is the

image feature parameter vector. If the camera is observing a static landmark, then
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the elements in s are only dependent on the relative pose of the camera frame with

respect to the landmark. Defining the pose of the camera as an element x ∈ SE3,

the image feature parameter vector becomes a function of this pose, s(x).

Although the error e(s) is defined on the image parameters, the robot control

input is typically defined in task space coordinates. Therefore it is necessary to

relate changes in the image features to changes in the relative camera pose. This

relationship is often referred to as the image Jacobian or the interaction matrix:

ṡ = L(s, Z)vC (5.2)

In this equation, ṡ gives point velocities of image features, vC is the camera

velocity screw and L the image Jacobian, which depends on the current values of

the image features and also on their relative depth, Z. In general, the image Jacobian

is a non-square n× 6 matrix, where n represents the number of image features.

If the chosen image features are the coordinates s = [x y]T of a projection in the

image plane of the 3D point, [X Y Z]T (expressed in the camera frame), then the

image Jacobian is given by the motion field (see Appendix A):
[
ẋ
ẏ

]
=

[
− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

(1 + y2) −xy −x

]
vC (5.3)

The image based visual servoing task can now be formulated as the regulation of

the image features in s to some desired value s∗:

e(s) = C
(
s− s∗

)
, (5.4)

where the matrix C allows to take more measurements than the actual number of

task constraints into account. From feedback it follows that an appropriate control

law is given by:

vC = −λe(s), (5.5)

where λ is some positive scalar defining the speed of convergence. In order to

guarantee the convergence of the above control law, the error has to be decreasing
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over time, ė(s) < 0. The error rate is given by:

ė(s) =
δe

δs
.
δs

δt
=

δe

δs
.
δs

δx
.
δx

δt
, (5.6)

which can be rewritten, using equations (5.4) and (5.2) and substituting δx
δt

= vC ,

as:

ė(s) = CL(s, Z)vC (5.7)

Substituting the control law given in equation (5.5) into equation (5.7), the fol-

lowing differential equation is obtained for the error function:

ė(s) = −λCL(s, Z)e(s) (5.8)

Exponential convergence of the error function is ensured under the condition:

CL(s, Z) > 0 (5.9)

A possible choice for C is the pseudo inverse C = L(s, Z)+ of the image Jacobian

[6]. Since the pseudo inverse L(s, Z)+ depends on Z-component of each feature point,

these values need to be estimated. Using this choice however may lead the system

close to or even reach a singularity for the image Jacobian L(s, Z). An alternative is

to consider a constant positive matrix C = L(sd, Zd)
+ given by the pseudo-inverse

of the image Jacobian computed at the desired image features, s = sd and Z = Zd.

In this case, the convergence of the task function is guaranteed in the neighborhood

of the desired 3D camera position (station keeping). However, care should be taken

if the initial camera position is too far away from the desired position (docking).

5.2 3D Station keeping

In Chapter 3, we introduced the problem of image registration and proposed a

method to track the projection of a planar surface in the image-plane over time,
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based on planar projective transformations. In this section we consider the problem

of robot pose estimation from this image registration. These estimates can then be

used in a visual feedback loop for the design of a 3D station keeping control law.

Camera trajectory reconstruction. The geometry of a camera observing a plane

while traveling in 3D space, is depicted in Figure 5.1. The camera reference frame at

the initial position and orientation is indicated by FC and its pose at some successive

time instant is given by FC∗ . Under rigid motion of the camera reference frame in

3D space, the relative position and orientation of FC in FC∗ is given by a rotation

matrix R (note: R = C∗
C R) and a translation vector t.

n

F
C F

π

C*

A

tR,

x

M

z

x

y

y

z

u

v

u

v

m

m*

Figure 5.1: Geometry of the camera trajectory reconstruction.

The coordinates of an observed point M , belonging to the plane π, are defined

in FC and given by CPM = [Mx My Mz]
T . The coordinates of the same point, but

expressed in FC∗ are related to CPM by:

C∗
PM = R CPM + t (5.10)

The observed plane π is defined in FC by its normal n = [a b c]T and distance d
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to the origin of the camera coordinate system at the initial time instant, given by:

π : aX + bY + cZ = d (5.11)

If the point M belongs to the plane π, then:

nT CPM = d, (5.12)

which can be rewritten as:
nT CPM

d
= 1, (5.13)

This allows to rewrite equation (5.10) as:

C∗
PM =

(
R +

tnT

d

)
CPM , (5.14)

relating the coordinates of point M when expressed in FC and FC∗ .

As seen from Section 2.4, the projections m and m∗ of the point M into the

normalized camera coordinate system of FC and FC∗ , are related by a homography:

m∗ = Am, (5.15)

which can be obtained from the inter-image homography in pixels, by knowing the

camera intrinsic parameters. Moreover, the projective coordinates of m and m∗ in

the normalized camera coordinate system are given by CPM and C∗
PM , respectively.

Comparing equations (5.14) and (5.15), it follows that the homography A is related

to the geometric parameters of the camera motion by:

A = R +
tnT

d
(5.16)

Given an inter-image homography, it is thus possible to reconstruct the relative

displacement of the camera coordinate frame. In [7], this decomposition is resolved,

which is also known as scaled Euclidean reconstruction. It follows that upon deter-

mining the inter-image homography, it is possible to explicitly compute the normal
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n to the plane and the relative rotation R of the camera retina. Since the homog-

raphy is defined up to a scale factor, the distance to the plane, d, and the relative

camera translation t can only be recovered up to a scale factor, allowing to explicitly

compute their ratio t∗ = t/d.

To reconstruct the real camera translation, a priori information is needed of for

example the real value of d in FC . The real camera translation can then be deter-

mined according to:

treal = drealt
∗, (5.17)

where t∗ is the scaled translation vector. Usually, the real distance to the plane can

be obtained from a sensor other then the camera (e.g. an acoustic depth sensor),

allowing to determine the scale factor.

Results on homography decomposition. The quality of the reconstructed cam-

era trajectory depends mainly on the accuracy of the homography estimation. Since

the homography is calculated from the corner coordinates of the tracked image re-

gion, small errors on these coordinates result in errors on the trajectory reconstruc-

tion.

To illustrate this problem, some tests were realized with simulated camera mo-

tions in 3D. We included translations along the x, y- and z-axis and rotation around

the camera optical axis. These are the principal components of motions for a camera

mounted on the vehicles, pointing down and observing the ground-plane perpendic-

ularly. The same test was performed for different sizes of tracked image regions.

In Figures 5.2, the selected template sizes are shown for two experiments. The

L2-norm between the difference of real corner coordinates and estimated corner

coordinates, ‖q − q̂‖, are also plotted for both cases. This norm indicates the

tracking error over time. It follows that for both cases, this error does not exceed

1.2 pixels during the experiment. This leads to a maximum ”average” offset of
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1.2/8 = 0.15 pixels on each corner coordinate.
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Figure 5.2: Initial selected template and quality of tracking in the image plane for
a small window (top) and a large ROI (bottom). The L2-norm is obtained from the
difference between the real and estimated coordinates of the tracked windows over
time.

The results obtained from homography decomposition are indicated in Figure 5.3

for both cases. During reconstruction, the camera intrinsic parameters were assumed

to be known. Both the real trajectory and the estimated trajectory are shown in

each plot. It follows that the trajectory reconstruction for the bigger template is of

better quality than for the case of the small template, whereas the tracking error in

the image plane is of the same order.
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Figure 5.3: Quality of the trajectory reconstruction from homography decomposition
of the smaller (top) and bigger (bottom) template. The continous plots are ground
truth values and the + marked plots are estimated values.
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The main errors in both cases arise in the reconstruction of relative displacement

in the x- and y-direction. This is due to the fact that if no strong perspective dis-

tortion is present, translation in the image plane can be accounted for by either a

camera translation or a rotation around the pan and tilt angles, leading to an am-

biguity in the reconstruction. The rotation around the camera optical axis (swing

angle) and the translation along the z-axis are reconstructed satisfactory for both

cases. These camera motions correspond to unique observable deformations in the

image plane.

Decoupled control design. The control problem addressed here is that of stabi-

lizing the vehicle about a desired pose in the horizontal plane defined by the xy-axes

of the earth-fixed reference frame, FW , while maintained at some fixed height. For

a floating vehicle moving at low speed, it is reasonable to assume zero roll and pitch

angles, γ = β = 0. Under this assumption, the model described by equations (4.1)

and (4.3) can be considered decoupled into two non-interacting (or lightly interact-

ing) subsystems, describing motion in the horizontal plane and in the vertical plane

of FW .

Referring to the kinematic relations of the vehicle as given by equation (4.3),

motion in the horizontal plane can be described by a simplified kinematic model:

ẋ = u1 cos(α) ẏ = u1 sin(α) α̇ = ω3 (5.18)

where (x, y) are Cartesian coordinates of the origin of the vehicle reference frame,

FM , in the horizontal plane, α is the orientation (yaw-angle) of the vehicle in the

horizontal plane and (u1, ω3) are the vehicle linear forward velocity and angular

velocity around its z-axis, expressed in the vehicle reference frame.

The control inputs are the vehicle forward speed, u1 and the vehicle angular speed,

ω3, resulting from the common-mode and differential-mode signals of the thrust

of the left and right propellers. This motion model captures the non-holonomic
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constraints of the vehicle motion in the horizontal plane.

Under the decoupling assumption, motion in the vertical plane is described by

the simple kinematic relation: ż = u3, where u3 is the vehicle vertical linear speed.

Control in the horizontal plane. In [4], a non-linear control law is proposed to

stabilize a non-holonomic robot about a desired posture (xd, yd, αd) by using smooth

time-varying feedback control. Using this control strategy, the desired behavior for

the closed loop system is to stabilize the vehicle in the horizontal plane towards any

final position and orientation, with time-varying feedback of the type:

[
u1

ω3

]
=

[
−k1 0 0
0 −g(t) −k3

]
 RT

2×2(α) 0
0

0 0 1





x− xd
y − yd
α− αd


 , (5.19)

where u1 is the vehicle forward speed, ω3 is the vehicle angular speed in the horizontal

plane , k1 and k3 are positive numbers, R(α) is the 2× 2 rotation matrix describing

the robot orientation in the horizontal plane and g(t) is a bounded function at least

once differentiable such that δg(t)/δt does not tend to zero when t tends to infinity;

for instance, g(t) = sin(t). The rotation matrix R(α) is included so as to transform

the error vector from the fixed reference frame to the vehicle reference frame.

The station keeping task in this case is represented by the error function E(x) =

[x y α]T − [xd yd αd]
T , where x is the partial pose of the vehicle frame FM instead

of the camera frame (as in equation (5.1)). The error function at each time instant

is given by the relative displacement of the vehicle frame with respect to the initial

desired position and orientation. This displacement can be obtained from the camera

trajectory reconstruction, as illustrated in Figure 5.4, where FM and FC are the

initial position and orientation of the vehicle and camera frame and FM∗ and FC∗

indicate their current position and orientation in 3D space.

The relative position and orientation of FM∗ in FM is described by the transfor-
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Figure 5.4: The relative displacement of the actual vehicle pose, M
M∗T , can be ob-

tained from the composition of M
C T , CC∗T and C∗
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mation M
M∗T defined as:

M
M∗T =

[
M
M∗R MPM∗

01×3 1

]
(5.20)

This transformation can be obtained from the composition of the following trans-

formations:

M
M∗T = M

C T C
C∗T C∗

M∗T , (5.21)

where C
C∗T results from the camera trajectory reconstruction and M

C T and C∗
M∗T are

given by the position and orientation of the camera frame in the vehicle frame at the

initial and current time instant. Note that the camera trajectory reconstruction re-

covers the relative translation up to a scale factor, depending on the initial distance

to the plane. Assuming this initial distance to be given by some measurement other

than vision, the scale factor can be determined and the real displacement obtained.

Control in the vertical plane. Measuring the relative displacement along the

z-axis of the vehicle, a PID-controller can be tuned for dynamically controlling the
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altitude by regulating the relative error to zero:

u3 = Kpez(t) +Kdėz(t) +Ki

∫ t

0

e(τ)dτ (5.22)

where ez = zr−z is the error in altitude. The closed loop system aims at stabilizing

the vehicle at some fixed height, rejecting any disturbances coming from variations in

the buoyancy force or dynamic coupling effects between the vehicle forward velocity,

u1 (generating small pitching moments) and altitude, z.

5.3 Image based station keeping

In this section, two different image based visual servoing task will be formulated.

First a point-to-point positioning task will be proposed, which regulates the centroid

of the tracked window to the image center. However, by observing only the centroid

in the image plane, no information can be extracted about the orientation and

vertical displacement of the camera frame in 3D space. Therefore a hybrid control

strategy is proposed that uses 3D servoing for the vertical plane as described in the

previous section, whereas the orientation is not regulated to a desired value at all.

Second, an image based control law will be derived that combines the information

of the four corners of the tracked window so as to regulate each of them to a desired

position in the image plane. In this case, the relative position of the four corners in

the image plane reveal sufficient information so as to control both positional offset

and orientation of the camera in the horizontal plane as well as the altitude of the

camera in the vertical plane.

For both tasks, the design of the control laws is obtained by considering only

those camera degrees of freedom resulting from the vehicle control input vector.

The degrees of freedom defined by the camera pan and tilt angles will be used later

on for image stabilization.
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Point-to-point positioning. Consider the centroid of the tracked window, as

illustrated in Figure 5.5, to be the only observed image feature.

Figure 5.5: Point-to-point positioning by driving the centroid of the tracked window
to the image center.

The velocity of the centroid in the image plane is related to the camera velocity

screw in 3D space by:

ṡ = L(s, Z)vC , (5.23)

where s = [xc yc]
T contains the centroid coordinates, vC is the camera velocity screw

and L(s, Z) is the image Jacobian as given in equation (5.2). The desired camera

velocity screw that drives the centroid, s, to any desired position, s∗, is given by the

following control law:

vC = −λL(s, Z)+(s− s∗) (5.24)

Since the vehicle has limited controllable degrees of freedom, the resolved camera

velocity screw may require trajectories that are physically impossible to achieve for

the vehicle. Therefore, the vehicle non-holonomic constraints need to be taken into

account.

Assuming zero pan and tilt angles and velocities, the relation between the camera

velocity screw and the control inputs vector is given by the control input Jacobian,

J4(ϕ,
MPC), given in equation (4.18). Substituting vC = J4(ϕ,

MPC)TM into equa-
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tion (5.23), a new image Jacobian is obtained that relates image point velocities to

the vehicle control inputs:

ṡ = LM(s, Z, ϕ,MPC)TM , (5.25)

where LM(s, Z, ϕ,MPC) is the new image Jacobian given by:

LM(s, Z, ϕ,MPC) = L(s, Z)J4(ϕ,
MPC) (5.26)

In this equation, LM is written also as a function of the camera extrinsic param-

eters with respect to the vehicle reference frame.

The control law that drives the centroid to the desired position and respects the

vehicle non-holonomic constraints is now given by:

TM = −λL+
M(s− s∗) (5.27)

Since this solution is under-constrained, the correct pseudo-inverse is given by

L+
M = LT

M(LMLT
M)−1. For station keeping, a possible pseudo-inverse can be obtained

from LM(s∗, Z, ϕ,MPC), were the desired centroid position is at the image center,

s∗ = (0, 0). If the camera extrinsic parameters are known and given by ϕ = 0

(camera looking down perpendicularly to the ground plane) and Pco = [dx dy dz],

the resulting pseudo-inverse simplifies into the following structure:

L+
M = Z



−1 −dy

dx

0 0

0 −1+2d2
y

dx


 (5.28)

This results into the following simple control law:

Tm = −λZ



−ex − dy

dx
ey

0

−1+2d2
y

dx
ey


 , (5.29)

where ex and ey are the centroid offset from the image center along the x- and y-

axis of the normalized camera frame. It is straight forward to verify that the matrix
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L+
MLM(s, Z, ϕ,MPC) > 0 is definite positive, which guarantees the convergence of

the control law. Note however, that the pseudo-inverse was obtained around the

desired image feature position so that the convergence prove only is valid for small

deviations of the camera in 3D space around the position corresponding to the

desired view.

It follows that the vehicle vertical speed is not controlled in driving the centroid

to the image center. Intuitively, this makes sense since from observing only one

feature point in the image plane no information can be extracted about camera

motions along projection rays. Therefore, for point-to-point positioning using only

the centroid information, a hybrid control strategy is required that uses 3D servoing

for the vertical motion, as described in the previous section.

Equation (5.29) also shows that with ϕ = 0, the lateral offset ey of the centroid

can only be controlled if dx �= 0.

Since a proportional control law is not completely satisfactory in the presence of

constant disturbances, a vectorial PID control is used instead, such that the desired

control input is given by:

TM = −λL+
M(Kpe+Kdė+Ki

∫
edt), (5.30)

where Kp(2× 2), Kd(2× 2) and Ki(2× 2) are positive diagonal matrices.

Visual servoing for position, orientation and altitude control. We now

design an image based control law that combines the information of the four corners

of the tracked window so as to regulate each of them to a desired position in the image

plane. The problem is illustrated in Figure 5.6, where the current and desired view

are given. The position of the four corners in the image plane conveys information

about the vehicle orientation, altitude and translational offset in 3D space.

Defining the vector s = [x1 y1 x2 y2 x3 y3 x4 y4]
T , containing the current coordi-
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(a) (b)

Figure 5.6: (a) desired view, (b) current view.

nates of each corner, then their point velocities are related to the camera velocity

screw by:

ṡ = L(s, Z)vC , (5.31)

where L(s, Z) is the 8×6 image Jacobian obtained from stacking the 2×6 Jacobians

corresponding to the motion field of each corner coordinate pair.

Relating the corner velocities in the image plane to the vehicle control inputs

allows to take the vehicle non-holonomic constraints into account. Assuming zero

pan and tilt angles and velocities, the new Jacobian is given by:

ṡ = LM(s, Z, ϕ,MPC)TM (5.32)

where LM is obtained from substituting vC = J4(ϕ,
MPC)TM into equation (5.31),

resulting in:

LM(s, Z, ϕ,MPC) = L(s, Z)J4(ϕ,
MPC) (5.33)

The control law that regulates the corners to their desired position in the image

plane is given by:

TM = −λL+
M(s− s∗) (5.34)
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Now the solution is over-determined, which means that there are more feature

parameters than task degrees of freedom. The correct pseudo-inverse for this case

is given by L+
M = (LT

MLM)−1LT
M . This pseudo inverse is a 8×3 matrix which makes

analytic analysis much harder, even for simplified cases where a constant pseudo

inverse is used around some equilibrium state.

5.4 Image stabilization

The use of kinematic models for visual servoing (for both 3D as image based servo-

ing) is not always realistic for floating vehicles with relative slow dynamics. There-

fore it is likely that during station keeping maneuvers, the target gets out of view

due to limited bandwidth in acceleration. In an attempt to avoid these situations,

image stabilization is used, aiming at centering the target in the image by control-

ling the camera pan and tilt angles. We consider a separate control scheme that

independently controls these angles.

Image stabilization with pan and tilt control. The image stabilization task

is formulated as the regulation of the centroid of the tracked region to the image

center, using the camera pan and tilt control inputs. Defining s = [xc yc]
T as the

centroid of the tracked region in the image plane, its time derivatives are related to

the camera velocity screw according to equation (5.23). The relationship between

the camera velocity screw, vC and the pan and tilt velocities is given in equation

(4.9). Substituting equation (4.9) into equation (5.23), then relates image point

velocities to pan and tilt velocities:

ṡ = Lpan/tilt(s)

[
ωpan

ωtilt

]
, (5.35)

where Lpan/tilt(s) is the new 2× 2 image Jacobian given by:

Lpan/tilt(s) = L(s, Z)J3(θtilt) (5.36)
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In this equation, J3(θtilt) is the Jacobian relating pan and tilt velocities to the

camera velocity screw, as in equation (4.9). Due to the structure of J3(θtilt), the new

image Jacobian does not depend on the relative depth of image points. Considering

the tracked centroid to be in the neighborhood of the image center, a control law

that drives the centroid to the image center can be obtained as:

[
ωpan

ωtilt

]
= −λL−1

pan/tilt(s
∗)(s− s∗), (5.37)

where s∗ = [0 0]T is at the image center. After calculating, the following expression

for the desired pan and tilt velocities is obtained:

[
ωpan

ωtilt

]
= −λ

[
0 1

cos(θtilt)

−1 0

] [
ex
ey

]
, (5.38)

where, ex and ey are given by the centroid offset from the image center. Verifying

equation (5.9), it follows that local exponential convergence of the control law is

guaranteed.

Image stabilization and 3D Station Keeping. We now consider the case of

performing 3D station keeping with image stabilization. One of the drawbacks on

3D servoing was that since the camera trajectory is controlled in 3D space, it can

not be guaranteed that the visual target stays within the camera field of view under

closed-loop control. Since the image stabilization tasks aims at maintaining the

visual target centered in the image, we expect to avoid these situations up to some

extent.

Upon simultaneously controlling the vehicle and the camera pan and tilt angles,

the reconstruction of the relative camera displacement reveals an ambiguity when

trying to reconstruct the relative displacement of the vehicle reference frame from

it. Changes in the camera orientation can be originated both in pan and tilt control

actions as well as in changing orientation of the vehicle frame due to the 3D station

keeping maneuvers.
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As seen from equation (5.21), the relative displacement of the vehicle reference

frame can be uniquely reconstructed from the estimated camera trajectory if the

camera position and orientation in the vehicle frame is known at each time instant.

Upon actively controlling the camera pan and tilt angles, this orientation changes

over time, so that it is necessary to sense the pan and tilt angles.

Once the the relative displacement of the vehicle reference frame is obtained, it

is straightforward to perform the 3D station keeping task, as given by the control

laws in equations (5.19) and (5.22). Upon fulfilling the 3D station keeping task for

the vehicle reference frame, the camera alignment with the target will converge to

its initial alignment, with the visual target centered in the image.

Image stabilization and image based servoing. When simultaneously execut-

ing the image based station keeping task and the image stabilization task, some care

need to be taken. Considering for example the case of point-to-point positioning,

both tasks are represented by the same error function so that they can be fulfilled

by controlling the camera pan and tilt angles only. The regulation to zero of this

error function, defined on image features, can thus be fulfilled without stabilizing

the vehicle in 3D space.

In order to realize station keeping, we need to decouple this task from the im-

age stabilization task. This can be done by transforming the corresponding error

function according to a mapping that warps the current observed image to an im-

age that would be viewed from zero pan and tilt angles. From equation (5.16),

it follows that the inter-image homography upon pure camera rotation is given

by: A = R(θpan, θtilt), where A is obtained for the normalized camera model and

R(θpan, θtilt) is the rotation matrix parameterized by the pan and tilt angles. Know-

ing these angles at each time instant, it is possible to construct this rotation matrix.

This allows to obtain the following inverse mapping on normalized image coordi-
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nates:

A−1 = RT (θpan, θtilt), (5.39)

which warps the current image back to a virtual view corresponding to zero pan and

tilt angles. Writing the components of the station keeping error function (as used

in the previous established image based control laws) into homogeneous representa-

tions, their transformed values can be obtained according to this inverse mapping.

Note that due to the pure rotation, this mapping is independent of the depth of the

image features.

Intuitively, under this mapping, the error function for image based station keeping

is measured in an artificially generated view, corresponding to zero pan and tilt

angles. This is illustrated in Figure 5.7.

(a) (b) (c)

Figure 5.7: (a) current view if no image stabilization is used, (b) current view with
image stabilization; (c) virtual image obtained from re-warping the current view in
(b) according to the inverse of the pan and tilt angles.

The figure shows the advantage of using image stabilization, since the real view

obtained if no image stabilization was realized (zero pan and tilt angles) contains a

partially occluded visual landmark, whereas the current view with image stabiliza-

tion maintains the landmark centered in the image.



Chapter 6

Experimental results

In this chapter we present and discuss experimental results obtained with the pro-

posed approaches, for controlling both the blimp and an underwater vehicle. A

simulation model, including the dynamic behavior of a floating vehicle moving in

3D space, was developed and used to demonstrate results obtained with the 3D

visual servoing architecture. Some of these results are also described in [31].

Real experiments and results obtained with image based visual servoing are pre-

sented for both the blimp and the ROV [30]. In the case of the blimp, the ex-

periments were executed in a laboratory environment under controlled conditions

whereas the test done with the ROV were realized at open sea in Villefranche,

France.

6.1 3D visual servoing for the simulation model

We start with presenting results obtained with the 3D visual servoing architecture

when applied to an implemented simulation model of a floating robot, including

its kinematics and dynamics. Since no parameter identification is done for the real

blimp, the parameters for the model were established based on the blimp geometric

shape and upon experimentally tuning. This way, the dynamics of the simulation

model roughly captures the time constants and coupling behaviour of the real sys-

83
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tem. The blimp model is characterized by the following set of parameters.

Mass matrix (M = MRB +MA):

MRB = diag{0.526, 0.526, 0.526, 0.04, 0.1, 0.1}
MA = diag{0.1395, 0.3437, 0.3437, 0, 0.0148, 0.0148}

Damping matrix (D = DS +DH):

DS = diag{0.1, 0.1, 0.1, 0.1, 0.1, 0.1}
DH = 0

Center-of-mass (CG) in Fm:

MPCG = [0, 0, 0.35]T

Geometric arrangement of the thruster in FM :

dy = 0.1 dz = 0.4

Recalling the decoupled control laws as proposed in Section 5.2, station keeping

is realized by positioning and orienting the vehicle in the horizontal plane towards

the desired pose, while maintaining the vehicle at constant height. Figure 6.1 shows

the simulation results of a station keeping experiment with the vehicle. At the left

side the trajectory in 3D is illustrated under closed-loop control. The initial lateral

deviation in the horizontal plane (x0 = 0, y0 = −3, α0 = 0) is reduced and the control

stabilizes at the origin (xd = 0, yd = 0, αd = 0). The non-linear controller, designed
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for a kinematic model, performs well when applied to the non-linear dynamic model

of the vehicle, generating smooth control signals. Note that at sample t ≈ 600 the

vehicle starts moving backward. The blimp altitude is dynamically controlled to

remain fixed at z = 0. The non-zero linear velocity (u1) generated by the non-linear

controller introduces a small pitch angle, resulting in small variations of the blimp

height. These variations are dynamically compensated by the altitude controller.

6.2 Image Based servoing with the Blimp

The first real experiments obtained with the blimp describe point-to-point position-

ing with image based servoing. Station Keeping is thus realized so as to maintain

the vehicle at a fixed position, without taking into account its orientation in the

horizontal plane. The altitude is controlled based on the tracked quadrangle area.

The tracking frequency established was 12 Hz for images with a 128× 192 pixel-size

and using a 450Mhz processor.

Figure 6.2 shows the temporal evolution of the error signals and control inputs

during a docking and station keeping experiment.

Figure 6.2(a) shows the image trajectory of the target point (centroid of the

tracked window) under closed-loop control. The control strategy aims at driving

this point to the image center (docking) and keep it as close as possible to this center

(station keeping). Figure 6.2(b) shows the error between the areas of the reference

window and the tracked window and indicates that the blimp is approximately

maintained at a constant height. The control signals (the blimp’s linear and angular

velocities) for the docking and station keeping experiment are plotted in Figure

6.2(c,d).

The approach followed led to encouraging results in moving the error close to

zero, and maintaining the target close to the image center. The main difficulties
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Figure 6.1: Simulation results of a station keeping test with the simulation model;
(a) vehicle under closed-loop control while recovering an initial lateral deviation;
projections of the trajectory onto the horizontal and vertical plane are shown to-
gether with the earth-fixed reference frame ; (b) position over time; (c) orientation
over time; (d) generated control signals.
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Figure 6.2: Docking and station keeping test with the blimp. (a) trajectory of the
centroid of the tracked window (image errors in normalized pixel coordinates); (b)
difference between the area of the image patch and the tracked window; (c) common
mode forward velocity control; (d) differential angular velocity control.
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arise when the target moves laterally. In this case, since the blimp does not have

lateral degrees of freedom, the only solution is to compensate this error by rotating

the blimp. Then, as the rotation is not performed around the camera optical axis, it

induces a translation motion in the image plane, which will generate errors for the

forward motion control. This fact explains that the forward motion control, Tcmn in

Figure 6.2, shows an oscillatory behavior near to its reference value (zero).

6.3 Station keeping and docking with an under-

water ROV

We have performed numerous tests with the proposed approaches to control an

underwater vehicle. The experiments described in the following sections correspond

to the various control strategies and show the advantage of using the camera degrees

of freedom in addition to those of the blimp.

6.3.1 Point-to-point positioning

In Figure 6.3, the results of a station keeping test with the ROV at open sea are

illustrated. In this case, point-to-point station keeping was performed, controlling

the centroid of the tracked window to the image center by image based visual ser-

voing. The altitude in this case is automatically controlled by the ROV auto-depth

function (water pressure).

Figure 6.3(a), shows the window selected initially. It has a positional offset in the

coordinates of the centroid. The crosses in the images indicate the image center.

Figure 6.3(b) shows the tracked window after 100 frames, from which it can be

observed that the centroid gets closer to the image center. At open sea, the main

perturbations arise due to current streams of waves. From Figure 6.3(d) and (e) it
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Figure 6.3: Point-to-point positioning with ROV at open sea; (a) initially selected
landmark; (b) landmark position in image at the end of the experiment; (c) trajec-
tory of the window corners during the trial; (d) positional offset along the image
x-axis; (e) positional offset along the image y-axis; (f) error in window area.
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follows that at frame 30, the positional offset of the centroid is almost zero. A few

moments after, a strong current applied to the vehicle causes positional errors both

in the horizontal and vertical plane. The evolution of the error functions shows

these kind of periodical distortions, whose oscillatory shape is thus explained by

underwater currents due to waves.

The trajectory of the corners of the tracked window is plotted in Figure 6.3(c).

Also note the poor visibility and little texture available in images of underwater

scenes. In spite of these difficult conditions, the tracking system performed robustly.

6.3.2 Image based servoing for position, orientation and al-

titude

In this experiment, the ROV position, orientation and altitude is controlled based

upon visual information only. The Station Keeping test consist of a time span of

300 frames, corresponding to approximately 40 seconds. Figure 6.4 illustrates some

results. It shows the position of the tracked window upon initialization, as well as

the final position at the end of the task. Figure 6.4(c) shows that, during the station

keeping maneuvers, the landmark partially becomes out of sight (at t=60 frames),

indicating either slow dynamics or strong currents. Nevertheless, an estimate of the

current window position is computed, based upon optical flow information, so that

the controller is able to drive the landmark back to the center. The same situation

is repeated at t=230.

In this experiment, the ROV altitude is also controlled based on image features

only. In Figure 6.4(f), the temporal evolution of the window area is plotted, which

indirectly represents the altitude. The ROV is maintained at a constant altitude

during the maneuvers.
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Figure 6.4: Image based control for position, orientation and altitude of the ROV;
(a) initial selected landmark; (b) landmark at the end of the recording phase; (c)
temporal trajectory of the window corner coordinates; (d) positional offset along the
image x-axis; (e) positional offset along the image y-axis; (f) error in window area.
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6.3.3 Image stabilization with the on-board camera

In this experiment, only the on-board camera pan and tilt angles are controlled,

whereas the vehicle degrees of freedom are not used at all. This demonstrates two

aspects. First it shows the capability of centering the landmark in the image center

by visually servoing the pan and tilt motors and second, since the ROV is floating

uncontrolled, the experiment shows the effect of external disturbances due to waves

and underwater currents.

From Figure 6.5(a) it follows that the initial selected window is near to the image

center. Since the ROV is not controlled, a drift of this window in the image plane

is observed. The resulting positional offset is compensated with the camera pan

and tilt angle, maintaining the centroid near to the image center. However, at time

t = 140, the tilt angle reaches its limit resulting into a corresponding increase in

offset along the image x-axis. Note from Figure 6.5(b) that at the last recorded

frame, the landmark is partially out of sight, introducing errors in the tracking

performance (since optical flow information is integrated).

6.3.4 Image based servoing with image stabilization

In this experiment, the ROV position, orientation and altitude is controlled together

with the camera pan and tilt angle so as to realize some image stabilization.

In Figure 6.6 the temporal evolution of the error signals are plotted together with

the initial and final view of the camera. Figure 6.6(c) shows that the the addition

of image stabilization improves the ability to reject external disturbances, during

the trial. The positional offset of the tracked window corners has a much smaller

amplitude then in the previous tests. From Figure 6.6(g) it can be noted that the

ROV is under closed loop control, since the pan angle at the end of the experiment

tends to zero. This means that a lateral offset first is compensated by increasing

the pan angle and afterwards regulated back to zero by controlling the vehicle.
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Figure 6.5: Image stabilization with pan and tilt unit for the ROV onboard camera
at open sea; (a) initial selected landmark; (b) landmark at the end of the recording
phase; (c) temporal trajectory of the window corner coordinates; (d) positional
offset along the image x-axis; (e) positional offset along the image y-axis; (f) error
in window area; (g) temporal evolution of the pan angle; (h) temporal evolution of
the tilt angle.
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Figure 6.6: Image based control for position, orientation and altitude of ROV at open
sea, with image stabilization; (a) initial selected landmark; (b) landmark at the end
of the recording phase; (c) temporal trajectory of the window corner coordinates;
(d) positional offset along the image x-axis; (e) positional offset along the image y-
axis; (f) error in window area; (g) temporal evolution of the pan angle; (h) temporal
evolution of the tilt angle.



Chapter 7

Conclusions

In this thesis we explored the use of vision to perform station keeping and docking

with floating robots, such as blimps and underwater vehicles. From the visual infor-

mation, the robots were able to self-localize themselves relative to a visual landmark

in an unstructured scene. In other cases, the visual information is directly used for

control purposes. The only assumption made is that the landmark is locally planar.

The deformations of the selected image regions were tracked by integrating optic

flow information, to predict the approximate deformation parameters, with a corre-

lation based optimization method to accurately register the current view with the

reference image. This method uses a set of motion sampling vectors that sample

the search space for expected image deformations. Planar projective motion models

were considered that cover the whole range of image deformations that occur when

a camera floats in 3D space. Using the motion vectors, we were able to calculate a

set of difference templates that contribute to the solution of the image registration

problem. An interesting feature of the tracker is that it allows the off-line calculation

of these templates, increasing the tracker frequency significantly. This makes the

method extremely useful for real-time tracking applications. The tracking frequency

established was 12 Hz for images with a 128 × 192 pixel-size and using a 450Mhz

processor.

Also a method was proposed for substituting motion vectors by substituting dif-
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ference templates in the pre-calculated database. This methodology increased the

range over which image deformations can be estimated, while preserving a low com-

putational effort.

The advantages of integrating optic flow computation were twofold: (i) it en-

hanced the robustness of the tracking algorithm in the sense that larger image

deformations could be tracked and (ii) it provides a means of keeping track of image

motion in those situations where the visual landmark becomes out of sight.

A high tracking performance was obtained with sub-pixel accuracy. Even in the

case of underwater images, were little texture and non-uniform lighting are common

problems, the tracking algorithm performed well. This allowed to reconstruct the

camera trajectory based on homography decomposition. With the reconstructed

camera trajectory, the station keeping task can be formulated in 3D space. This

however, lead to unsatisfactory results when tested with the real robots. The main

reason was that translations in the image plane can be accounted for with either

camera translations or small pan and tilt rotations. Also the non-holonomic con-

straints of the vehicles required a non-linear time varying feedback control law. This

design is based on kinematic modeling of the vehicles and did not apply well to the

real non-linear dynamic systems.

Station keeping based on measurements in the image plane performed well on

both robots, although the control laws were also derived based on kinematic rela-

tionships between the desired camera motion and the vehicles control inputs. From

the experiments we conclude that the image based visual servoing approach is most

appropriate for implementing station keeping and docking behaviors in underwater

robots. The main motivation behind this conclusion is that the image based ap-

proach does not depend on a reconstruction phase and that image features can be

tracked accurately within the image plane.

The introduction of an image stabilization technique added more robustness to
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the visual servoing strategies because image features remain approximately centered

in the image plane. This overcomes to some extent the non-holonomic constraints

of the vehicles. However, the implementation required a transformation on the error

functions in the image based approach.

Future work points out into various directions. In the design of control laws, camera

intrinsic and extrinsic parameters were assumed to be known. In practice this is

not always realistic since camera calibration is not trivial. The effect of calibration

errors therefore should be studied in the sense of stability/sensitivity of the various

proposed control laws.

Upon deriving the various image based control laws for station keeping, the pro-

posed solutions include an inverse of the corresponding image jacobian, calculated

at the reference values. This only guarantees exponential convergence of the error

functions in a small neighborhood of the desired camera position and orientation.

A better understanding of the structure of the various image jacobians allows to

identify singularities in the error function space. This can be helpful for designing

more robust strategies for docking, were larger error values are common.

Also the vehicles non-linear and highly coupled dynamic behavior should be

brought into the image plane upon designing the various control laws.

Finally, we point at the integration of the station keeping behavior with other

navigation behaviors, such as image-mosaic based navigation [11]. Other examples

are contour following and obstacle avoidance.



98 CHAPTER 7. CONCLUSIONS



Appendix A

Motion field and Optic Flow

In this appendix, the concepts of motion field and optic flow are introduced. For

literature review see [15].

Motion field. The motion field associates a velocity vector to each point in the

image. Consider a point P , observed by a camera that is rotating and translating

with linear and angular velocities t = [tx, ty, tz]
� and ω = [ωx, ωy, ωz]

�. The velocity

of P relative to the camera, expressed in the camera reference frame is given by:

dP

dt
= −t− ω × P (A.1)

The motion projected on the image plane can be obtained by considering the

pinhole camera model with normalized coordinates [7]. In this model, a point

P = (X,Y, Z) in space is mapped to the point p = (x, y) in the image plane with

coordinates:

x =
X

Z
, y =

Y

Z
(A.2)

We can now determine (ẋ, ẏ), the derivative of the coordinates of p with respect

to time, obtaining :

ẋ =
ẊZ −XŻ

Z2
, ẏ =

Ẏ Z − Y Ż

Z2
(A.3)
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Using equation(A.3) together with equation (A.2) one obtains:

Ẋ =
ẋZ2 + xZŻ

Z
, Ẏ =

ẏZ2 − yZŻ

Z
(A.4)

Also, from equations (A.1) and (A.2), we have:

Ż = −tz − (ωxy − ωyx)Z (A.5)

Substituting the equations (A.4) and (A.5 into equation (A.3), we finally obtain:

[
ẋ
ẏ

]
=

1

Z

[
−1 0 x
0 −1 y

] 
tx
ty
tz


 +

[
xy −1− x2 y

1 + y2 −xy −x

]
ωx

ωy

ωz


 (A.6)

This equation relates the velocity of an image point p, projection of a 3D point,

P , induced by the 3D motion of the camera, and it is known as the motion field.

Optic flow. Brightness patterns in the image move as the objects that give rise to

them move relative to the camera. The optic flow is defined as the apparent motion

of these brightness patterns. Ideally, the optic flow will correspond to the motion

field, which means that the observed flow would be a measurement the motion field.

However, this is not always true (see [15]).

Consider E(x, y, t) to be the image irradiance at time t of the image point (x, y).

Let u(x, y) and v(x, y) be the components of the optic flow along the x- and y-axis

of the image coordinate system. The assumption of image brightness constancy is

written as:

E(x, y, t) = E(x+ uδt, y + vδt, t+ δt) (A.7)

Also assuming that the image irradiance varies slowly over time, a Taylor series

expansion of the right hand side of the previous equation yields:

E(x, y, t) = E(x, y, t) +
∂E

∂x
δx+

∂E

∂y
δy +

∂E

∂t
δt+ e (A.8)
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where e represents the higher order terms of the expansion. Canceling E(x, y, t) on

both sides, dividing trough δt and taking the limit δt → 0, one obtains:

Exu+ Eyv + Et = 0, (A.9)

where we have used

(u, v) = (
dx

dt
,
dy

dt
)

(Ex, Ey, Et) = (
∂E

∂x
,
∂E

∂y
,
∂E

∂t
)

This equation is known as the optical flow constraint equation, and can be re-

written as the inner product between the image gradient (Ex, Ey) and the optical

flow (u, v) as follows:

(Ex, Ey) · (u, v) = −Et (A.10)

At each point, the optical flow constraint defines a single equation for the two

unknown components of the flow. Hence, the optic flow cannot be completely de-

termined from local measurements of Ex, Ey and Et at pixel (x, y), which is known

as the aperture problem. It is only possible to recover the component of the optic

flow in the direction of the brightness pattern gradient (Ex, Ey), which is usually

referred to as the normal flow. The normal flow, (u, v)⊥, can be determined at each

image point as:

(u, v)⊥ = − Et√
E2
x + E2

y

(Ex, Ey) (A.11)
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Appendix B

Motion sampling sets

In this appendix, the translational, affine and planar projective motion sampling

vectors, as used in the implementation of the tracking algorithm, are listed. For

each set {∆qi : i ∈ (1 . . . 48)}k , k ∈ 1, 2, 3, the sampling vectors that form a basis

are shown, sampling the search space for expected image deformations.

The adaptive parts of each set (used to substitute the last observed motion in

the databases) are not listed since they are dynamic. Upon initialization, these

additional motion sampling vectors are randomly chosen.

The positional offsets of the four corners of the ROI is used to define the various

motion models, according to the generic structure of ∆qi = {x1, y1, x2, y2, x3, y3, x4, y4},
where (x1, y1) are the top left corner coordinates, (x2, y2) are the top right corner

coordinates, (x3, y4) are the bottom right corner coordinates and (x4, y4) are the

bottom left corner coordinates of the ROI.
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Translational sampling vectors:

number sampling vector number sampling vector
1 {3, 3, 3, 3, 3, 3, 3, 3} 25 {1, 6, 1, 6, 1, 6, 1, 6}
2 {1, 3, 1, 3, 1, 3, 1, 3} 26 {0, 6, 0, 6, 0, 6, 0, 6}
3 {0, 3, 0, 3, 0, 3, 0, 3} 27 {-1, 6, -1, 6, -1, 6, -1, 6}
4 {-1, 3, -1, 3, -1, 3, -1, 3} 28 {6, 1, 6, 1, 6, 1, 6, 1}
5 {-3, 3, -3, 3, -3, 3, -3, 3} 29 {-6, 1, -6, 1, -6, 1, -6, 1}
6 {3, 1, 3, 1, 3, 1, 3, 1} 30 {6, 0, 6, 0, 6, 0, 6, 0}
7 {1, 1, 1, 1, 1, 1, 1, 1} 31 {-6, 0, -6, 0, -6, 0, -6, 0}
8 {0, 1, 0, 1, 0, 1, 0, 1} 32 {1, -6, 1, -6, 1, -6, 1, -6}
9 {-1, 1, -1, 1, -1, 1, -1, 1} 33 {0, -6, 0, -6, 0, -6, 0, -6}
10 {-3, 1, -3, 1, -3, 1, -3, 1} 34 {-1, -6, -1, -6, -1, -6, -1, -6}
11 {3, 0, 3, 0, 3, 0, 3, 0} 35 {6, -1, 6, -1, 6, -1, 6, -1}
12 {1, 0, 1, 0, 1, 0, 1, 0} 36 {-6, -1, -6, -1, -6, -1, -6, -1}
13 {-1, 0, -1, 0, -1, 0, -1, 0} 37 {6, 6, 6, 6, 6, 6, 6, 6}
14 {-3, 0, -3, 0, -3, 0, -3, 0} 38 {3, 6, 3, 6, 3, 6, 3, 6}
15 {3, -3, 3, -3, 3, -3, 3, -3} 39 {-3, 6, -3, 6, -3, 6, -3, 6}
16 {1, -3, 1, -3, 1, -3, 1, -3} 40 {-6, 6, -6, 6, -6, 6, -6, 6}
17 {0, -3, 0, -3, 0, -3, 0, -3} 41 {6, 3, 6, 3, 6, 3, 6, 3}
18 {-1, -3, -1, -3, -1, -3, -1, -3} 42 {-6, 3, -6, 3, -6, 3, -6, 3}
19 {-3, -3, -3, -3, -3, -3, -3, -3} 43 {6, -6, 6, -6, 6, -6, 6, -6}
20 {3, -1, 3, -1, 3, -1, 3, -1} 44 {3, -6, 3, -6, 3, -6, 3, -6}
21 {1, -1, 1, -1, 1, -1, 1, -1} 45 {-3, -6, -3, -6, -3, -6, -3, -6}
22 {0, -1, 0, -1, 0, -1, 0, -1} 46 {-6, -6, -6, -6, -6, -6, -6, -6}
23 {-1, -1, -1, -1, -1, -1, -1, -1} 47 {6, -3, 6, -3, 6, -3, 6, -3}
24 {-3, -1, -3, -1, -3, -1, -3, -1} 48 {-6, -3, -6, -3, -6, -3, -6, -3}
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Affine sampling vectors:

number sampling vector number sampling vector
1 {-3, 0, -3, 0, 3, 0, 3, 0} 25 {0, -3, 0, -3, 0, 0, 0, 0}
2 {-1, 0, -1, 0, 1, 0, 1, 0} 26 {0, -1, 0, -1, 0, 0, 0, 0}
3 {1, 0, 1, 0, -1, 0, -1, 0} 27 {0, 1, 0, 1, 0, 0, 0, 0}
4 {3, 0, 3, 0, -3, 0, -3, 0} 28 {0, 3, 0, 3, 0, 0, 0, 0}
5 {0, -3, 0, 3, 0, 3, 0, -3} 29 {0, 0, 0, 0, 0, -3, 0, -3}
6 {0, -1, 0, 1, 0, 1, 0, -1} 30 {0, 0, 0, 0, 0, -1, 0, -1}
7 {0, 1, 0, -1, 0, -1, 0, 1} 31 {0, 0, 0, 0, 0, 1, 0, 1}
8 {0, 3, 0, -3, 0, -3, 0, 3} 32 {0, 0, 0, 0, 0, 3, 0, 3}
9 {-3, 0, 3, 0, 3, 0, -3, 0} 33 {-6, 0, -6, 0, 6, 0, 6, 0}
10 {-1, 0, 1, 0, 1, 0, -1, 0} 34 {6, 0, 6, 0, -6, 0, -6, 0}
11 {1, 0, -1, 0, -1, 0, 1, 0} 35 {0, -6, 0, 6, 0, 6, 0, -6}
12 {3, 0, -3, 0, -3, 0, 3, 0} 36 {0, 6, 0, -6, 0, -6, 0, 6}
13 {0, -3, 0, -3, 0, 3, 0, 3} 37 {-6, 0, 6, 0, 6, 0, -6, 0}
14 {0, -1, 0, -1, 0, 1, 0, 1} 38 {6, 0, -6, 0, -6, 0, 6, 0}
15 {0, 1, 0, 1, 0, -1, 0, -1} 39 {0,-6, 0,-6, 0, 6, 0, 6}
16 {0, 3, 0, 3, 0, -3, 0, -3} 40 {0, 6, 0, 6, 0, -6, 0, -6}
17 {-3, 0, 0, 0, 0, 0, -3, 0} 41 {-6, 0, 0, 0, 0, 0, -6, 0}
18 {-1, 0, 0, 0, 0, 0, -1, 0} 42 {6, 0, 0, 0, 0, 0, 6, 0}
19 {1, 0, 0, 0, 0, 0, 1, 0} 43 {0, 0, -6, 0, -6, 0, 0, 0}
20 {3, 0, 0, 0, 0, 0, 3, 0} 44 {0, 0, 6, 0, 6, 0, 0, 0}
21 {0, 0, -3, 0, -3, 0, 0, 0} 45 {0, -6, 0, -6, 0, 0, 0, 0}
22 {0, 0, -1, 0, -1, 0, 0, 0} 46 {0, 6, 0, 6, 0, 0, 0, 0}
23 {0, 0, 1, 0, 1, 0, 0, 0} 47 {0, 0, 0, 0, 0, -6, 0, -6}
24 {0, 0, 3, 0, 3, 0, 0, 0} 48 {0, 0, 0, 0, 0, 6, 0, 6}
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Planar projective sampling vectors:

number sampling vector number sampling vector
1 {1, 0, 0, 0, 0, 0, 0, 0} 25 {-3, 0, 0, 0, 0, 0, 0, 0}
2 {0, 1, 0, 0, 0, 0, 0, 0} 26 {0, -3, 0, 0, 0, 0, 0, 0}
3 {0, 0, 1, 0, 0, 0, 0 ,0} 27 {0, 0, -3, 0, 0, 0, 0, 0}
4 {0, 0, 0, 1, 0, 0, 0, 0} 28 {0, 0, 0, -3, 0, 0, 0, 0}
5 {0, 0, 0, 0, 1, 0, 0, 0} 29 {0, 0, 0, 0, -3, 0, 0, 0}
6 {0, 0, 0, 0, 0, 1, 0, 0} 30 {0, 0, 0, 0, 0, -3, 0, 0}
7 {0, 0, 0, 0, 0, 0, 1, 0} 31 {0, 0, 0, 0, 0, 0, -3, 0}
8 {0, 0, 0, 0, 0, 0, 0, 1} 32 {0, 0, 0, 0, 0, 0, 0, -3}
9 {3, 0, 0, 0, 0, 0, 0, 0} 33 {-6, 0, 0, 0, 0, 0, 0, 0}
10 {0, 3, 0, 0, 0, 0, 0, 0} 34 {0, -6, 0, 0, 0, 0, 0, 0}
11 {0, 0, 3, 0, 0, 0, 0, 0} 35 {0, 0, -6, 0, 0, 0, 0, 0}
12 {0, 0, 0, 3, 0, 0, 0, 0} 36 {0, 0, 0, -6, 0, 0, 0, 0}
13 {0, 0, 0, 0, 3, 0, 0, 0} 37 {0, 0, 0, 0, -6, 0, 0, 0}
14 {0, 0, 0, 0, 0, 3, 0, 0} 38 {0, 0, 0, 0, 0, -6, 0, 0}
15 {0, 0, 0, 0, 0, 0, 3, 0} 39 {0, 0, 0, 0, 0, 0, -6, 0}
16 {0, 0, 0, 0, 0, 0, 0, 3} 40 {0, 0, 0, 0, 0, 0, 0, -6}
17 {-1, 0, 0, 0, 0, 0, 0, 0} 41 {6, 0, 0, 0, 0, 0, 0, 0}
18 {0, -1, 0, 0, 0, 0, 0, 0} 42 {0, 6, 0, 0, 0, 0, 0, 0}
19 {0, -1, 0, 0, 0, 0, 0, 0} 43 {0, 0, 6, 0, 0, 0, 0, 0}
20 {0, 0, 0, -1, 0, 0, 0, 0} 44 {0, 0, 0, 6, 0, 0, 0, 0}
21 {0, 0, 0, 0, -1, 0, 0, 0} 45 {0, 0, 0, 0, 6, 0, 0, 0}
22 {0, 0, 0, 0, 0, -1, 0, 0} 46 {0, 0, 0, 0, 0, 6, 0, 0}
23 {0, 0, 0, 0, 0, 0, -1, 0} 47 {0, 0, 0, 0, 0, 0, 6, 0}
24 {0, 0, 0, 0, 0, 0, 0, -1} 48 {0, 0, 0, 0, 0, 0, 0, 6}
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