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Co-Supervisor: Doctor Victor José de Almeida e Sousa Lobo
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Abstract

This thesis aims to develop a monocular vision system to track an Unmanned Aerial Vehicle
(UAV) pose (3D position and orientation) relative to the camera reference frame during its
landing on a ship. The vast majority of accidents and incidents occur during take-off or
landing since, in the vast majority of systems, an external pilot takes control. Having less
human intervention increases system reliability and alleviates the use of certified pilots. Due
to UAV size and weight, take-off is easily performed by hand, so the main focus will be in the
landing maneuver. The vision system is located on the ship’s deck, which reduces demands
on the UAV’s processing power, size, and weight. The proposed architecture is based on an
Unscented Particle Filter (UPF) scheme with two stages: (i) pose boosting, and (ii) tracking. In
the pose boosting stage, we detect the UAV on the captured frame using Deep Neural Networks
(DNNs) and initialize a set of pose hypotheses that are likely to describe the true pose of the
target using a pre-trained database indexed by bounding boxes. In the tracking stage, we use
a UPF based approach to obtain an online estimate of the true pose of the target. On contrary
to many vision-based particle filters that sample particles from a distribution that is based
solely on predictions from the previous frames, in this work, we also use information from
the current frame to improve the convergence of the filter. We fuse information from current
and previous time steps with Unscented Transform (UT) filters, and use, for the first time in
this type of problem, the Bingham and Bingham-Gauss distributions to model the dynamics
and noise of the orientation in its natural manifold. These filters depend on the computation
of importance weights that use sub-optimal approximations to the likelihood function. We
evaluate different similarity metrics that compute a distance measure between an artificial
rendered image with the hypothetic state of the system and the captured frame. Since we
are approximating the likelihood function, we enrich the filter with additional refinement steps
to abridge its sub-optimality. We have developed a “realistic” simulator for a quantitative
analysis of the results. The entire description and experimental analysis of the system is based
on the tracking error and processing time. When analyzing a landing sequence with a real sky
gradient filled with clouds, we have obtained approximately 81% less rotation error using the
Unscented Bingham Filter (UBiF) and the Unscented Bingham-Gauss Filter (UBiGaF) when
compared to the simple Unscented Kalman Filter (UKF) without considering the use of pose
optimization. When we use pose optimization, we can decrease the obtained rotation error in
more than 50%.

Keywords: Computer Vision, Model-Based Pose Estimation, Model-Based Tracking, Au-
tonomous Vehicles.
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Resumo

Esta tese tem como objetivo desenvolver um sistema de visão monocular para fazer seguimento
da pose (posição 3D e orientação) de um Véıculo Aéreo Não Tripulado (VANT) referente ao
referencial da câmara durante a aterragem num navio. A grande maioria dos acidentes e inci-
dentes ocorre durante a descolagem ou aterragem, já que na grande maioria dos sistemas um
piloto externo assume o controlo. Ter menos intervenção humana aumenta a fiabilidade do
sistema, deixando de haver necessidade de utilizar pilotos certificados. Devido ao tamanho e
peso do VANT, a descolagem é facilmente realizada à mão sendo que o foco principal será a
manobra de aterragem. O sistema de visão está localizado no convés do navio, o que reduz
o poder de processamento, tamanho e peso do VANT necessários. A arquitetura proposta
baseia-se num esquema de Filtro de Part́ıculas Unscented (FPU) com duas fases: (i) boosting
de pose, e (ii) seguimento. Na fase de boosting de pose, detetamos o VANT na imagem usando
Redes Neurais Profundas (RNPs) e inicializamos o seguimento com um conjunto de hipóteses
que descrevem a pose real do alvo usando uma base de dados pré-treinada. Na fase de segui-
mento, usamos uma abordagem baseada num FPU para obter uma estimativa em tempo real
da verdadeira pose do alvo. Ao contrário de muitos filtros de part́ıculas baseados em visão
que amostram part́ıculas utilizando uma distribuição baseada somente nas imagens anteriores,
neste trabalho, usamos também a informação da imagem atual para melhorar a convergência
do filtro. É fundida informação do instante actual e dos anteriores utilizando filtros de Trans-
formação Unscented (TU) e usamos, pela primeira vez neste tipo de problema, as distribuições
de Bingham e Bingham-Gauss para representar a dinâmica do sistema e o rúıdo de orientação.
Estes filtros dependem do cálculo de pesos que usam uma aproximação sub-óptima da função
de verossimilhança. Nós avaliamos diferentes métricas de semelhança que calculam a distância
entre uma imagem sintética criada com a hipótese do estado e a imagem capturada. Uma
vez que estamos a aproximar a função de verossimilhança, enriquecemos o filtro com passos
adicionais de refinamento para reduzir a sua sub-optimalidade. Foi desenvolvido um simu-
lador “realista” para uma análise quantitativa dos resultados. Os resultados experimentais
apresentados são baseados no erro de seguimento e no tempo de processamento. Ao analisar
uma sequência de aterragem com um gradiente de céu real cheio de nuvens, obtivemos aprox-
imadamente 81% menos erro de rotação usando o Filtro de Bingham Unscented (FBiU) e o
Filtro de Bingham-Gauss Unscented (FBiGaU) quando comparado com o simples uso do Fil-
tro de Kalman Unscented (FKU) sem considerar o uso da fase de otimização. Quando usamos
otimização de pose, conseguimos reduzir o erro de rotação obtido em mais de 50%.

Palavras-chave: Visão artificial, Estimativa de Pose Baseada em Modelo, Seguimento Baseado
em Modelo, Véıculos Autónomos.
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Chapter 1

Introduction

All that we are is the result of what we have thought.

Gautama Buddha
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This chapter presents the motivation and context, the objectives, the challenges, the proposed
methodology, the original contributions, the published work, and the outline of the document.

1.1 Motivation and Context

Portugal has to monitor approximately 50957 km2 of territorial waters1. Fast Patrol Boats
(FPBs) are extensively used in patrolling (Figure 1.1) the maritime traffic to ensure that all
the applicable laws are being respected. Their efficiency can be significantly improved by the
support of Unmanned Aerial Vehicles (UAVs) in extending their surveillance range e.g. by
transmitting georeferenced video in real-time to the FPB.

Figure 1.1: UAV patrolling mission illustration.
1 We have approximately 16460 km2 on the continent, 23663 km2 on Azores, and 10834 km2 on Madeira.

1
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The vast majority of the accidents and incidents with UAVs occur during take-off or landing
(the most challenging maneuvers) as described in Williams [2004]; Wild et al. [2016], since in
the vast majority of the systems during this operations an external pilot takes control. Having
less human intervention in these operations increases system reliability and alleviates the use
of trained and certified UAV pilots. Landing on a ship is a tough task, especially in small ships
that are very sensitive to the weather conditions and have a small area available for landing.
Our UAV landing area has a size of around 5×6 meters (Figure 1.2 right). We use a net-based
retention system that guarantees the safe UAV landing without disturbing the essential FPB
function (Figure 1.3).

Figure 1.2: Camera location (left) and FPB available landing area (right) illustrations.

Figure 1.3: FPB 5× 6 meters landing area (red rectangle) and net-based retention system.

A fixed-wing UAV presents a simpler structure, can carry greater payloads2 for longer
distances using less power, and have a larger endurance when compared with rotary-wing
UAVs. The main disadvantages are the need for a launcher to take-off and a larger landing
area. The standard mission profile for a fixed-wing UAV is described in Figure 1.4 left, where
we can see that we have the take-off and respective climb until it reaches the mission envelope.
After completing the mission, the UAV starts a descend trajectory until it performs loiters
around a specific position. In this position, the UAV trajectory is chosen to take into account
a state machine, as described in Figure 1.4 right. In the loiter stage, the UAV makes circular
loiters in a predefined position waiting to be detected by the ground-based vision system. The
stage transition happens when the UAV pose begins to be detected. In the approach stage, the
UAV proceeds in a straight line to the landing cone3. In the land stage, the UAV begins the
landing sequence4. If the UAV position is lost during the landing stage, a go-around strategy is
adopted5, and the loiter stage begins again. When the UAV is almost arriving at the landing
2 Communications, electronics (autopilot and actuators control), sensors, and actuators.
3 d = 50 meters from the landing area (Figure 1.5).
4 Decreasing altitude and performing a predefined trajectory to the center of the landing area.
5 Increase altitude and turn right.
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area, we enter in a no return stage where we cannot avoid the landing even if we lost the
UAV pose estimation. All the approximation trajectory must be performed inside a predefined
landing cone that depends on the landing platform. In the landing trajectory, the UAV must be
between the maximum apparent descendent angle (α1) and the minimum apparent descendent
angle (α2), and the orientation horizontal angle (β1) must be inside the opening horizontal
angle (β2), as described in Figure 1.5. The trajectory inside the landing cone must also be
chosen taken into account the existing wind vortices and the ship’s superstructures. Due to
the UAV size and weight, the take-off could be made by hand (Figure 1.6 left), but the landing
requires a simple and reliable system. The used UAV platform characteristics [Xia et al. ,
2014; Ajaj et al. , 2014, 2016; Beaverstock et al. , 2013; Morais et al. , 2015] are described in
Table 1.1 and the used UAV Computer-Aided Design (CAD) model is described in Figure 1.6
right.

HEIGHT

TIME

MISSION ENVELOPE

TRAJECTORY 
STATE MACHINE

LoiterLoiter ApproachApproach LandLand

Go AroundGo Around

No ReturnNo Return

Figure 1.4: Standard mission profile (left) and trajectory state machine (right).

Figure 1.5: Approximation cone: lateral (left) and top (right) views.

Table 1.1: Used UAV platform characteristics.
Length: 1.2 m Airfoil: NACA 65-410

Wingspan (b): 1.8 m Maximum Take-Off Weight: 5 kg
Chord (c): 0.24 m Cruising speed (vcr): 15 m/s

Wing area (S): 0.432 m2 Maximum speed (vmax): 20 m/s

Some of the techniques currently used in autonomous landing are based on radar or in the
utilization of the Global Positioning System (GPS) [Cho et al. , 2007; Smit, 2013; Xu et al.
, 2013; Inc, 2016]. Since GPS and radar are vulnerable to jamming6, and the radar requires
large payload7, we will explore vision-based techniques to perform this task. A vision system
can increase the system autonomy and provide an alternative means for landing [Chowdhary
et al. , 2013; Grant et al. , 2009; Wu et al. , 2013; Yang et al. , 2016; Zhou et al. , 2017]. The
majority of the research made in this field is based on UAV onboard sensors and computation,
using markers on the landing area to facilitate Computer Vision (CV) [Cesetti et al. , 2010;
Lange et al. , 2008; Lin et al. , 2016; Morais et al. , 2015; Saripalli, 2009; Saripalli et al. , 2002;
6 Intentional emission of radio frequency signals to block the signal reception.
7 Our UAV has a maximum payload of 5 kg (Table 1.1).
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Sharp et al. , 2001; Wenzel et al. , 2011; Wu et al. , 2013; Xiang et al. , 2012; Xu et al. , 2009;
Zhao & Pei, 2013]. Instead, we propose a ground-based vision system [Hazeldene et al. , 2004;
Kong et al. , 2013; Martinez et al. , 2009; Moore et al. , 2009; Kong et al. , 2015] installed
on the ship. This allows more processing power, as well as the use of Commercial-Off-The-
Shelf (COTS) UAVs with standard autopilots. The ground-based vision system computes the
relative pose of the UAV concerning the landing platform from captured images, and then the
Ground Control Station (GCS) [Klimkowska et al. , 2016] sets the trajectory of the UAV via
radio communications (Figure 1.7).

Figure 1.6: Real UAV take-off onboard a ship (left) and the used UAV CAD model (right).

ACTUATORSSENSORS

ONBOARD PROCESSING

COMMS
(TX/RX)

COMMS
(TX/RX)

CAMERA

TRACKING
ALGORITHM

Figure 1.7: General scheme illustration.

1.2 Objectives

In this thesis, we aim to develop a monocular Red, Green, and Blue (RGB) ground-based
vision system that estimates the UAV pose concerning the camera reference frame to perform
tracking. The system should be able to operate in outdoor scenarios guaranteeing an error
compatible with the automatic landing requirements. A simplified control structure is described
in Figure 1.8, where we highlight the contribution of the thesis: (i) the camera as a sensor (to
capture images), and (ii) a tracking algorithm. No other UAV or ground sensor information
will be used in the estimation.

PROCESS VARIABLE
(POSE)

CONTROL PROCESS

SENSORMEASUREMENT

OUT
DESIRED POSE

(SET POINT)

Figure 1.8: Simplified control structure.



1.3. CHALLENGES 5

1.3 Challenges

In our approach, it is used a monocular RGB camera located on the ship (Figure 1.2 left)
with a processing station to perform the needed CV processing tasks (Figure 1.7). The system
observes and obtains the UAV pose and sends that information to the GCS that computes
the needed control commands (Figure 1.8) to guide the UAV via radio to perform autonomous
landing using a net-based retention system (Figure 1.3). There are many challenges when we are
trying to automate this complex operation in a real-world scenario. The initial UAV detection
is difficult since the search area is vast, and we are operating in an outdoor environment with
external conditions that we cannot control (Figure 1.9). In addition to that, we are using a
small size UAV, making it difficult to detect at far distances. We also have a small landing
area of 5×6 meters (Figure 1.2 right). Our UAV has 1.8 meters of wingspan (Table 1.1), which
is almost 40% of the landing area width. We further need to deal with changing backgrounds
and motion blur since we have a moving landing platform. The landing platform operates in
a maritime environment where we can have fog and high humidity. To tackle these issues, we
need to have a robust system that exploits the maximum image information possible to be able
to estimate the UAV pose with low error. A summary of the main challenges can be seen in
Figure 1.10.

Figure 1.9: Outdoor captured real UAV images.

Challenges

UAV Initial detection

Small landing area
Small size UAV

Moving landing 
platform

Maritime 
environment

Figure 1.10: Main challenges.
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1.4 Methodology

The proposed method is divided into two major parts (Figure 1.11):

• Pose boosting (Chapter 4) - In the pose boosting stage, we detect the UAV on each
image frame and generate pose (3D position and orientation) hypotheses using a pre-
trained database. In the detection, we have to address the challenges of detection in an
outdoor scenario using a moving platform. We retrieve multiple pose hypotheses from
the database (one-to-many relation) to be able to reduce the existing ambiguities (due
to the UAV model geometry) and obtain a low estimate error. These hypotheses will be
used for tracking in a filtering structure to reduce even more the existing ambiguities by
using temporal information;

• Tracking (Chapter 5) - In this stage, we use the UAV CAD model combined in a filtering
structure to perform UAV pose tracking. We explore multiple filter variants, including
the use of distributions to better represent the motion and observation models, decreasing
the estimated error between iterations. To be able to decrease even more the error due to
the sub-optimal adopted filtering method, we also perform local optimization to search
in the state space for better estimates.

STATE
ESTIMATION

CAMERA

Chapter 4 Chapter 5

Figure 1.11: System architecture (simplified).

1.5 Original contributions

As a result of the developed work, the following contributions were made:

• Development and performance analysis of a ground-based vision system ar-
chitecture to perform UAV tracking using a 3D model-based approach - Our
first direct contribution is the proposal of a novel ground-based pose tracking framework
for UAV landing using a 3D model-based approach. 3D model-based algorithms are good
estimation methods but require large processing power. This processing power is easily
available in a ground-based system since it does not present any payload restrictions
when compared to the UAV. To be able to validate the developed system architecture,
it is essential to compare it with more traditional methods. The tests performed show
that the developed scheme has the best performance among all the tested approaches;

• The validation in a developed “realistic” simulator environment and real im-
ages - Since in the real images captured until now we do not have ground truth data, we
have developed a “realistic” simulator to be able to validate the developed system stages
and the overall architecture. The validation in real images is also performed, being able
to infer the target detection performance and present a qualitative analysis of the overall
system performance;
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• The development and analysis of alternative similarity metrics used to ap-
proximate the observation likelihood function - Since we are tackling a very com-
plex problem (UAV pose estimation), the likelihood function is hard to obtain. One of
the solutions is to approximate it using a similarity metric as a proxy. However, these
approximations are coarse and may be insufficient to capture all aspects of the true likeli-
hood. We have developed similarity metrics that use the UAV CAD model to generate a
computer graphics image on the UAV hypothetical pose and compare it with the real im-
age with some robustness to background clutter, occlusion. These metrics were analyzed
in a “realistic” simulator environment to demonstrate their strengths and weaknesses;

• Development of a pose boosting method that uses current image frame in-
formation to obtain a rough pose estimate - The original Boosted Particle Filter
(BPF) [Okuma et al. , 2004] implementation uses a detector to improve and add diversity
in the proposal generation. In our approach, we also use a detector to obtain the target
position on the frame but extend it with rough estimates of depth and pose using a pre-
trained database of images indexed by bounding box properties. A key contribution was
the fast appearance-based initialization using the information given by a corner detec-
tion algorithm. When using a corner detection algorithm, we can deal with illumination
changes frequent in outdoor environments;

• Training of Deep Neural Networks (DNNs) for object detection using a syn-
thetically generated dataset for transfer learning - Since there is no publicly avail-
able database, a training dataset generation scheme was developed using the UAV CAD
model and real background images, varying the pose randomly around a predefined in-
terval. The annotations are automatically generated to be able to train the network and
perform transfer learning to real images. This data generation framework can be applied
to any UAV provided its CAD model. The tests performed with a real dataset show the
effectiveness of this approach;

• The use of directional statistics distributions in the UAV tracking, to improve
the obtained orientation estimation - In the developed pose tracking framework, we
have studied the combination of two different directional statistics distributions: (i) the
Bingham (Bi), and (ii) the Bingham-Gauss (BiGa). In a periodic domain like the manifold
of orientations in a 3D space, the Gaussian model is not a good approximation, especially
in the presence of strong noise. The Bi distribution can be used in a filtering structure
to model the periodic nature of rotations better. However, the Bi noise is specific to the
angular position component and does not capture its correlation with the angular velocity.
We introduce BiGa noise to model the full rotational noise, both in its angular position
and velocity components. Until now, no other UAV tracking system or 3D model-based
tracking system addressed the use of these distributions in a filtering structure. The
proposed framework has been tested in a “realistic” simulator and significantly improves
orientation estimation accuracy;

• The use of a pose optimization step to improve the estimate - A pose optimiza-
tion step is used to improve the estimate in the time between measurements. Since we are
using approximated observation likelihood functions (similarity distance metrics), and we
use a limited number of particles, a local optimization step can decrease the estimation
error. A novel particle pose optimization stage named Genetic Algorithm based Frame-
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work (GAbF) based on the evolution strategies present in the genetic algorithms have
also been proposed. When using the GAbF modified crossover and mutation operators,
we obtain superior performance in the pose estimation task. Several pose optimization
approaches were tested, and results show significant improvements in the overall system
accuracy;

• Graphics Processing Unit (GPU) implementation and test - To be able to de-
crease the processing time and increase the real-time capability of the system, the frame
radial and tangential distortion correction, the target detection, UAV rendering, and sim-
ilarity metric calculation were implemented entirely in the GPU. The UAV CAD model
was also simplified to increase the rendering speed without loss of accuracy. It was pos-
sible to decrease the needed processing time, increasing the real-time capability of the
system.

1.6 Published work

This thesis document was based on the written conference and journal articles, as described
in Figure 1.12. A complete summary of the published work and developed projects is given in
Appendix F.

2014 2015 2017 2018 2019

Pessanha Santos et al. [2014a]
Single-frame pose estimation
Pessanha Santos et al. [2014b]
Single-frame pose estimation

Pessanha Santos et al. [2015]
UPF for pose tracking
Morais et al. [2015]
Airborne UAV landing approach

Pessanha Santos et al. [2017]
Single-frame pose estimation

Pessanha Santos et al. [2018]
UKF+UBiF for pose tracking

Pessanha Santos et al. [2020b]
Single-frame pose optimization
Pessanha Santos et al. [2020a]
UBiF and UBiGaF for pose tracking
Pessanha Santos et al. [2019d]
UBiF and optimization for tracking

Pessanha Santos et al. [2019c]
UKF+UBiF for pose tracking
Pessanha Santos et al. [2019a]
GPU-based single-frame pose estimation
Pessanha Santos et al. [2019b]
AUTOLAND project description

Submitted Journal articles:

Figure 1.12: Published work.

Until now, eight articles have already been submitted and accepted at conferences [Pes-
sanha Santos et al. , 2014a; Morais et al. , 2015; Pessanha Santos et al. , 2015, 2017, 2018,
2019c,a,b]. In Pessanha Santos et al. [2014a], is used a Particle Filter (PF) based approach for
single-frame UAV pose estimation. In Morais et al. [2015], the UAV trajectory was estimated
relative to the landing area using the UAV RGB camera to detect markers (lights) located on
the ship’s deck. In Pessanha Santos et al. [2015, 2017, 2018, 2019c], a vision system based on
a standard RGB camera was used to track a UAV landing aboard a ship. In Pessanha San-
tos et al. [2015], is used a PF for pose estimation and an Unscented Kalman Filter (UKF)
for filtering while Pessanha Santos et al. [2017] used a novel resampling step based on the
evolution strategies found in the genetic algorithms. A comparison of the developed approach
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with ten traditional resampling schemes showed the best performance among those tested. In
Pessanha Santos et al. [2018], is used a PF for pose estimation combined with a UKF for the
translational motion filtering and an Unscented Bingham Filter (UBiF) for the rotational mo-
tion filtering. In Pessanha Santos et al. [2019c], is also used a PF for pose estimation combined
with a UKF for the translational motion filtering and a UBiF for the rotational motion filtering
but showing new results that illustrate the effectiveness of the approach. In Pessanha Santos
et al. [2019a], is analyzed the computational performance of a GPU-based approach for real-
time single-frame UAV pose estimation. In Pessanha Santos et al. [2019b], the developed CV
landing strategies during the AUTOnomous LANDing (AUTOLAND) project are presented
and illustrated.

We have three journal articles accepted and published [Pessanha Santos et al. , 2014b,
2020b,a], and one submitted under review [Pessanha Santos et al. , 2019d] that will be im-
proved, taking into account the reviewers comments. In Pessanha Santos et al. [2014b], it is
presented a RGB monocular ground-based vision system for single frame UAV pose estima-
tion. In Pessanha Santos et al. [2020b], the single frame pose estimation approach is explored
as an optimization problem showing new methods and results. In Pessanha Santos et al.
[2020a], we explore the use of directional statistics for UAV tracking, developing a new filter
based on a directional statistic distribution that correlates attitude and angular velocity. In
Pessanha Santos et al. [2019d], due to the sub-optimality of the adopted filter, we explored
the use of refinement steps between observations to decrease the obtained UAV tracking error.

1.7 Thesis outline

In Chapter 2, we will present the related work concerning the UAV take-off and landing, re-
tention systems, landing guidance systems, vision-based landing systems, object detection, 3D
model-based pose estimation and pose tracking, including UAV applications. In Chapter 3,
the problem formulation and the used methodologies are explained. In Chapter 4, the tar-
get detection method and the used pre-trained database for pose boosting are explored. In
Chapter 5, the applied tracking architecture is described in detail. In Chapter 6, the obtained
experimental results are presented and evaluated regarding pose estimation error and process-
ing time. Finally, in Chapter 7, we present a summary of the research detailing its conclusions
and suggest directions for future research in this area.
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Chapter 2

Related work

I hear, I know. I see, I remember. I do, I understand.

Confucius

Chapter contents
2.1 UAV take-off and Landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Retention systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Landing guidance systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Vision-based UAV landing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 3D model-based pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Pose tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Directional statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

This chapter makes a review of the related work both on the general goal of the thesis (UAV
take-off and landing, retention systems, landing guidance systems, and vision-based UAV land-
ing systems) and on the components of the proposed methodology (object detection, 3D model-
based pose estimation, and pose tracking).

2.1 UAV take-off and Landing

The first Vertical Take-Off and Landing (VTOL) UAV autonomous landing onboard a ship
was performed by the helicopter MQ-8 Fire Scout [Petrescu et al. , 2017; Lin et al. , 2017a].
Fire Scout is currently in use by the US Navy and can autonomously take-off and land from
an aviation capable ship. Scorpion is a remotely piloted UAV with Extreme Short Take-
Off and Landing (ESTOL) capability [Ro et al. , 2007], being able to tilt the thrust vector
without changing the attitude of the aerodynamic surfaces [Ahmed et al. , 2015; Valavanis
& Vachtsevanos, 2015; Barton, 2012]. This design confers additional flexibility and resistance
against turbulence and stall, which is especially helpful for launch and recovery from ships in
rough seas. Fanwing is a family of Short Take-Off and Landing (STOL) UAVs featuring a new
lift concept and unique design based on a cross-flow fan along the wingspan [Li, 2013; Seyfang,

11
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2012, 2011]. Fanwing was designed for high maneuverability, providing a short take-off length
(less than 3 meters).

Due to the used UAV model size and weight (Figure 1.6), the take-off is easily performed
by hand (Figure 2.1 left), so the main focus will be in the landing maneuver (Figure 2.1 right).
The final system should be able to automatically perform the UAV landing with minimal
human supervision and without structural changes in the existing platform.

Figure 2.1: UAV take-off (left) and landing (right) illustrations.

2.2 Retention systems

The traditional retention system’s objective is to decelerate a UAV as it lands rapidly. The
Advanced Arresting Gear (AAG) is a modular, integrated tailhook retention system [Ma, 2003;
Mendoza et al. , 2007]. During normal operation in a carrier deck, the tailhook engages on a
wire, and the kinetic energy is transferred to the deck systems. Point Take-Off and Landing
(PTOL) [Yoffe, 2017] refers to a type of landing where there is no requirement for a landing
area. The Skyhook system [Eldridge et al. , 2009; Klausen et al. , 2016; Sørbø, 2016] uses
a hook with a shock cord to be able to perform an abrupt UAV stop. Shipboard Pioneer
Arresting System (SPARS) [Reuter & Greenstadt, 1988] is a net-based retention system used
for shipboard operations. It has been used with the Pioneer UAV system by the US Navy
[Gleason & Fahlstrom, 2010].

In our approach, we are using a net-based retention system (Figure 2.2), that guarantees
the UAV safe landing without disturbing the essential FPB function.

Figure 2.2: Net-based retention system (experimental test example).

2.3 Landing guidance systems

Section contents
2.3.1 Non-cooperative guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Cooperative guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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There are two main types of landing guidance system strategies: (i) non-cooperative (Sec-
tion 2.3.1), and (ii) cooperative (Section 2.3.2). In the first type, the environment is not pre-
pared to assist in the landing maneuver, and the UAV must have the ability to land without
any exterior assistance. In the second type, the environment is prepared, including dedicated
systems.

2.3.1 Non-cooperative guidance

In unknown environments, complex algorithms are required to recognize patterns in sensor
data to be able to perform the UAV landing. We can use an Improved Fresnel Optical Landing
System (IFOLS) [Gajjar & Zalewski, 2004] to give glide path information in the final landing
phase or CV to measure the UAV angular velocity [Wang et al. , 2007].

2.3.2 Cooperative guidance

Cooperative approach landing guidance systems are typically based on radio-frequency com-
munication between the ground and the UAV, providing information on the position of the
UAV compared with the desired approach route. Some examples of radio-frequency systems are
Instrument Landing System (ILS) [McLees et al. , 2018; Chisholm, 1989], Transponder Land-
ing System (TLS) [Winner & Kuehn, 2002], and Global Navigation Satellite System (GNSS)
[Stempfhuber & Buchholz, 2011].

In the developed approach, we use a cooperative method employing a monocular RGB
ground-based system using the UAV CAD model, as will be described in Section 3.5.

2.4 Vision-based UAV landing systems

The vast majority of the vision-based landing systems [Kong et al. , 2014] use the onboard
camera and external markers [Lange et al. , 2008; Merz et al. , 2006; Saripalli, 2009; Saripalli
et al. , 2002, 2003; Sharp et al. , 2001; Wenzel et al. , 2011; Xiang et al. , 2012; Zhao & Pei, 2013;
Yang & Tsai, 1998; Huh & Shim, 2010; Sereewattana et al. , 2015] to waive the use of GPS. The
autonomous landing of a small fixed-wing UAV into a net using a ground-based vision system
without GPS was successfully tested by Kim et al. [2013]. Other systems automatically detect
existing runways using Infrared Radiation (IR) lamps [Gui et al. , 2013] or use an onboard
database of known runways to perform image registration and control the UAV orientation
[Miller et al. , 2008; Williams & Crump, 2012] e.g. for emergency landing [Fitzgerald et al. ,
2005; Hubbard et al. , 2007; Mejias et al. , 2009].

Some methods are based on the use of the onboard camera to detect the “H” international
landing mark and estimate the relative pose [Lin et al. , 2016; Saripalli, 2009; Saripalli et al.
, 2002; Wenzel et al. , 2011; Zhao & Pei, 2013; Saripalli et al. , 2003; Yang & Tsai, 1998;
Mondragón et al. , 2010; Lin et al. , 2015] or introducing a “T” form artificial mark with high
emissivity1 combined with a IR camera to detect the relative pose to the UAV [Xu et al. ,
2009].

1 The ratio of energy radiated from a material’s surface to that radiated from a perfect emitter at the same
wavelength, temperature, and viewing conditions.
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In our approach, it is used a monocular RGB camera located on the ship with a process-
ing station to perform the needed CV processing tasks. The system observes the UAV and
computes the control commands to send to the UAV via radio to perform autonomous landing
using a net-based retention system (Figure 2.3). Since a ship is a moving platform at sea, we
have continuously changing backgrounds (sea and clouds).

Figure 2.3: Landing area (orange), RGB camera (yellow), and communications (green).

2.5 Object detection

Object detection is one of the most critical tasks in CV. We need to estimate the UAV location
on the captured frame before estimate and track its pose. This task is very challenging since
we have a wide variation of possible UAV poses (3D position and orientation). The boosted
cascade classifier of Viola & Jones [2001], was the first system to obtain a high detection
accuracy in real-time. A boosted cascade classifier consists of stages, each with an ensemble
of Weak Learners (WLs). A WL is a learning algorithm that produces a classifier that can
label data with an accuracy above chance2 [Ferreira & Figueiredo, 2012; Freund & Schapire,
1995; Vaghela et al. , 2009]. Its performance profits from an efficient classifier structure and
the use of fast-to-compute hand-crafted features. Most of the entries in Imagenet Large Visual
Recognition Challenge (ILSVRC) [Russakovsky et al. , 2015] until 2012 are based on hand-
crafted feature extraction and classification for object detection [Felzenszwalb et al. , 2008;
Fidler et al. , 2013]. In 2012, the ILSVRC winner achieved half the error of previous entries
using a DNN [Krizhevsky et al. , 2012]. After 2012, almost all the entries on ILSVRC for
object detection use DNNs [Sermanet et al. , 2013]. In this thesis, we will explore DNNs that
are the current state-of-the-art in classification and object detection.

Convolutional Neural Networks (CNNs) are a specific type of DNNs explicitly designed
to deal with the variability of 2D shapes that are showing great results [Krizhevsky et al. ,
2012; LeCun et al. , 1998; Szegedy et al. , 2015]. Approaches like Region-based Convolutional
Neural Network (R-CNN), Fast Region-based Convolutional Neural Network (FR-CNN), Faster
Region-based Convolutional Neural Network (FaR-CNN), Single Shot Detector (SSD) and You
Only Look Once (YOLO) use a CNN framework [Girshick, 2015; Girshick et al. , 2014; He et al.
, 2014; Ren et al. , 2015; Redmon & Farhadi, 2016; Liu et al. , 2016b; Redmon & Farhadi,
2018] (Table 2.1). With R-CNN and FR-CNN, the object region proposals are extracted using
2 A simple rule-of-the-thumb classifier with error < 0.5 in the binary case.
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selective search3 [Uijlings et al. , 2013; Wang et al. , 2015] and only these regions are processed
by the network, which saves important computational resources. FaR-CNN does the detection
in a single forward pass using a Region Proposal Network (RPN) [Ren et al. , 2015]. SSD uses
a single network (unified network) to generate objects presence scores in a discrete space of
default Bounding Boxes (BBs) at different Aspect Ratios (ARs) and scales for each Feature
Map (FM)4. This information is combined with predictions from multiple resolutions FMs to
be able to adjust the BBs to represent the object shape better. It also benefits from extensive
use of data augmentation (e.g. random crop strategy and color distortion as described in Liu
et al. [2016b]) to reduce overfitting5. From the current existing real-time object detection
implementations, the YOLO (Table 2.1) is faster than other detection systems and can run in
multiple image sizes with a trade-off between speed and accuracy [Redmon & Farhadi, 2016,
2018]. This unified network uses the same data augmentation scheme used by the SSD network.

Table 2.1: Examples of CNNs for object detection.
Name: Object region proposals: Notes:

R-CNN [Girshick et al. , 2014] Selective search [Girshick et al. , 2014] The first solution for object
detection, slow training and inference

FR-CNN [Girshick, 2015] External algorithm Training in a single stage, horizontal
flipping as data augmentation scheme

FaR-CNN [Ren et al. , 2015] RPN [Ren et al. , 2015] Replace of the slow selective search by
RPN (neural network)

SSD [Liu et al. , 2016b] —————————————— Unified framework and
extensive use of data augmentation

YOLO [Redmon & Farhadi, 2018] ——————————————
Unified framework, data augmentation
similar to SSD and a faster detection

than the other described networks

Depending on the problem, acquiring ground truth data is time-consuming and expensive,
and the use of synthetic data can be a solution, especially in CV problems. The generated
synthetic data should be as realistic as possible with an accurate annotation for training. It has
been successfully used in object detection [Tremblay et al. , 2018; Hartwig & Ropinski, 2019],
pose estimation [Tremblay et al. , 2018; Jalal et al. , 2019; Kiru Park & Vincze, 2017; Xing
et al. , 2017], stereo vision [Zhang et al. , 2016a], and to obtain the disparity/flow [Mayer et al.
, 2016]. In our implementation, we are using a synthetically generated training database using
the UAV CAD model to train DNNs for UAV detection, as will be described in Section 4.2.

2.6 3D model-based pose estimation

Section contents
2.6.1 Airborne systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Ground-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Pose estimation is the problem of determining the position and orientation of a rigid object
relative to a fixed reference frame. The class of methods that use the object or environment
CAD model to generate features and perform pose estimation are called 3D model-based pose
3 Selective search is one alternative to exhaustive search with a sliding window, starting with over-segmentation

merging similar regions and produce region proposals [Girshick et al. , 2014].
4 The output of different units (neurons) creates a FM or activation map. Units in a convolutional layer share

the same weights and bias between them.
5 The classifier will perform well on the training data but poorly in the presence of new data not being able to

generalize.
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estimation. The main applications of 3D model-based pose estimation are Augmented Reality
(AuRe) [Reitmayr & Drummond, 2006; Skrypnyk & Lowe, 2004; Seo et al. , 2011; Wuest et al.
, 2005], robot manipulation [Vicente et al. , 2016; Choi & Christensen, 2010], robot navigation
[Li-Chee-Ming & Armenakis, 2015], autonomous robots [Lwin et al. , 2019], object pose tracking
[Kyrki & Kragic, 2011; Chliveros et al. , 2013; Seo et al. , 2013; Tsai et al. , 2015; Lourakis &
Zabulis, 2013; Pauwels et al. , 2013; Cao et al. , 2016], human pose estimation [Pons-Moll &
Rosenhahn, 2011], hand pose estimation [de La Gorce et al. , 2011], face reconstruction [Jiang
et al. , 2018], among others. Some of the works to perform 3D model-based pose estimation are
based on simple features such as e.g. edges [Lowe et al. , 1991; Klein & Murray, 2006; Klein &
Drummond, 2003; Seo et al. , 2011; Wuest et al. , 2005], key points [Skrypnyk & Lowe, 2004;
Vacchetti et al. , 2004b; Artieda et al. , 2009], contour extraction [Kosaka & Nakazawa, 1993;
Lowe, 1992; Azad et al. , 2011], the combination between contours and edges [Chliveros et al.
, 2013], or the combination between edges and texture information [Vacchetti et al. , 2004a].
The 3D model-based pose estimation methods can be divided into [Lepetit et al. , 2005; Zhong
& Zhang, 2019]: (i) feature-based, (ii) edge-based, (iii) direct, and (iv) region-based. In the
feature-based methods, we need to have a textured object to be able to obtain sufficient key
points for correspondence [Artieda et al. , 2009], and in the edge-based, we perform 3D edge
correspondence in the image usually obtaining a high sensitivity to noise leading to several
local minima [Dambreville et al. , 2010]. The direct methods focus on the pixel values relying
on the image gradient [Seo & Wuest, 2016; Zhong et al. , 2018], and the region-based methods
focus on image statistics [Tjaden et al. , 2017]. Image statistics are not reliable in complex
scenes but are more robust to illumination change when compared with the direct pixel value
analysis [Zhong & Zhang, 2019]. Some more recent applications of direct methods e.g. model
the illumination under the Lambert assumption [Seo & Wuest, 2016] or use a texture model
for online template matching using pixel information [Zhong et al. , 2018]. Most of the region-
based methods are based on the real-time PWP3D algorithm [Prisacariu & Reid, 2012] that
defines a pixel-based posterior energy function that performs better when compared with pixel-
based likelihoods. Other region-based methods use e.g. a monocular camera to obtain local
color histograms and perform template matching [Tjaden et al. , 2017]. The two main existing
approaches in the UAV field are divided into: (i) airborne (Section 2.6.1), and (ii) ground-based
systems (Section 2.6.2).

2.6.1 Airborne systems

The vast majority of the current airborne 3D model-based pose estimation UAV systems use
the CAD model of known objects. We can use the RGB UAV onboard camera and the 3D
wireframe model of the environment to perform feature matching using a moving edges tracker
algorithm [Li-Chee-Ming & Armenakis, 2015] and even combine this information with sensor
data to get the velocities needed to perform control [Teuliere et al. , 2010]. These methods can
be combined with temporal filtering techniques such as the PF to improve accuracy [Teuliere
et al. , 2015] or with CNNs to detect dynamic objects and minimize the estimation error
[Buyval et al. , 2017].
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2.6.2 Ground-based systems

We did not find any ground-based vision system that estimates the UAV pose using its CAD
model. The vast majority of the ground-based systems are developed for tracking or UAV
control without using CAD information. By using the CAD model, we can represent our
knowledge about the problem (a priori information) and use it to estimate the UAV pose.
Some developed ground-based systems for UAVs are based on RGB stereo vision and perform
image segmentation using a recursive algorithm to obtain the UAV range and altitude for
landing [Hazeldene et al. , 2004] or combine a Chan-Vese segmentation algorithm [Chan &
Vese, 2001; Osher et al. , 2004] for the UAV detection and then fuse that information with
sensor data using an Extended Kalman Filter (EKF) to perform control [Tang et al. , 2016].
Others use IR stereo vision and combine an active-contour based algorithm with mean-shift to
detect and track the UAV [Kong et al. , 2013] or use Trinocular cameras to apply a color-based
algorithm based on probability distributions to extract four different color landmarks located
on the UAV to provide visual feedback to the flight controller [Martinez et al. , 2009].

Nowadays, all UAVs have their 3D CAD model available, so their pose can be estimated
using a class of methods for 3D model-based pose estimation. We propose a 3D model-based
ground-based vision system [Hazeldene et al. , 2004; Kong et al. , 2013; Martinez et al. , 2009;
Moore et al. , 2009] with high processing capability, which allows reducing the UAV size,
weight, and power requirements. This approach makes it also possible to use standard UAVs
equipped with COTS autopilots. Using a ground-based system, we can estimate the UAV pose
using single frame information (Section 5.5) or use a filtering scheme to decrease the obtained
estimate error and perform tracking (Section 3.5).

2.7 Pose tracking

Given several measures over time, we can use target-specific dynamic models to filter the
sensor data using a Kalman Filter (KF) [Lefferts et al. , 1982; Shuster, 1989; Humpherys et al.
, 2012], a EKF [Markley et al. , 1994; Humpherys et al. , 2012], a UKF [Crassidis & Markley,
2003; Kraft, 2003; VanDyke et al. , 2004; Wan & Van Der Merwe, 2000] or a PF [Cheng &
Crassidis, 2004; Oshman & Carmi, 2004; Kantas et al. , 2015; Abdelali et al. , 2015; Ng & Delp,
2009]. PFs in CV were applied to visual tracking tasks such as ball tracking [Taiana et al. ,
2008; Xia & Wu, 2015], spherical pendulum tracking [Myhre & Egeland, 2015], human face
tracking [Chang & Ansari, 2005], articulated object tracking [Gonzales & Dubuisson, 2015],
vehicle tracking [Chan et al. , 2012], object tracking [Bohyung Han et al. , 2004; Chang et al.
, 2005; Sugandi et al. , 2011], or arbitrarily shaped 3D objects pose (rotation and translation)
estimation [Azad et al. , 2011]. A variation of the generic PF is the Mixture Particle Filter
(MPF) where each component (mode) is modeled with an individual PF [Vermaak et al. , 2003].
The BPF extends the mixture PF to enrich the proposal distribution with new detections from
Adaptative Boosting (AdaBoost) [Okuma et al. , 2004]. The combination of a PF with a UKF,
known as an Unscented Particle Filter (UPF) [Van Der Merwe et al. , 2001; Rui & Chen,
2001a; Mohammadi & Asif, 2011; Birsan, 2005], is described in Li et al. [2003] for visual
contour tracking, and in Guo & Qin [2007] for ground maneuvering target tracking. This
approach generates better proposal distributions for the PF, taking into account the current
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observations in a well know UKF structure [Guo et al. , 2007]. PFs can be combined with
other types of filters to generate better proposal distributions e.g. the Iterated Extended
Kalman Filter (IEKF) that computes the updated state as a Maximum A Posteriori (MAP)
estimate [Bar-Shalom et al. , 2004; Liang-Qun et al. , 2005; Kyrki & Kragic, 2011]. It is
also possible to use a local optimization algorithm where we apply multiple PF iterations at
the same time instant to fine-tune the pose estimate. This approach is commonly known as
Particle Filter Optimization (PFO) [Zhou & Chen, 2013; Liu et al. , 2016a; Zhang et al. , 2007].
We can also use a different approach and combine a PF with Particle Swarm Optimization
(PSO) [Krzeszowski et al. , 2010; Zhang et al. , 2015; Eberhart & Kennedy, 1995; Nedjah &
de Macedo Mourelle, 2006; Shi et al. , 2001; Trelea, 2003] to perform local optimization, where
each particle updates its state vector, taking into account its history and its neighbors. It has
been applied e.g. to human motion tracking [Saini et al. , 2014; Zheng & Meng, 2007], image
registration [Khan & Nystrom, 2010], object tracking [Zheng & Meng, 2007], and multi-object
tracking [Kwolek, 2013] using CV. When using a PF based approach, we have to obtain the
likelihood function between iterations. That is often not possible since we may not know its
analytical expression or it can be computationally hard to obtain. To solve this issue, we
can use a likelihood-free approach [Sigges et al. , 2017; Owen et al. , 2015; Marjoram et al. ,
2003; Flury & Shephard, 2011; Liu & West, 2001a], where the particle weights are approximated
(employing a distance metric) using a simulation scheme to model the system parameters. The
increase of the computational processing capability allows the approximation of very complex
models. This can be seen as a derivation from the Approximate Bayesian Computation (ABC)
algorithm [Pritchard et al. , 1999].

As initially described in Section 1.4, we have developed a pose tracking architecture based on
a UPF. This structure has the objective of combining the strengths of some existing approaches
and allowing the development of new ones. Our main contributions until now (Section 1.5)
were the developed 3D model-based ground-based vision system architecture for UAV tracking,
the use of a pre-trained database for pose boosting (Section 4.1), the inclusion of a pose
optimization stage to improve the estimate in the time between measurements (Section 5.5),
the use of a new methodology named GAbF (Section 5.5.4) to perform local optimization, the
use of directional statistics distributions to improve the orientation estimation (Appendix C),
the comparison with more traditional methods (Chapter 6), the validation on simulation and
real images (Section 6.2), and a GPU-based implementation to decrease the processing time
and increase the real-time capability of the system (Section 6.8).

2.8 Directional statistics

When using Gaussian filtering techniques (e.g. EKF [Markley et al. , 1994]) for attitude
estimation, it is typically considered a small angle assumption in the state and observation
noises [Crassidis & Markley, 2003; Darling & DeMars, 2016b; Markley & Crassidis, 2014; Pes-
sanha Santos et al. , 2015] so that a Gaussian distribution can well approximate the posterior
distribution. For large angular variations, we should use a directional statistic to represent bet-
ter the true probability distribution [Kurz et al. , 2013, 2014a]. In 1D applications are typically
used the wrapped normal or the von Mises distribution [Mardia & Jupp, 2000; Jammalamadaka
& Sengupta, 2001].
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The Bi distribution [Bingham, 1974] is defined directly on the unit multidimensional hy-
persphere [Gilitschenski et al. , 2014]. It has been successfully used in a filtering structure
to: (i) estimate the attitude of a ping pong ball [Glover & Kaelbling, 2014], (ii) to predict
objects pose using point cloud data [Glover et al. , 2012], (iii) for estimation of orientations
in the 3D space with unit quaternions [Shuster, 1993] using a predict-update framework [Kurz
et al. , 2014b], and (iv) using a UKF based approach using deterministic sampling [Gilitschen-
ski et al. , 2016]. Some mixtures and combinations of distributions have also been made to
quantify the correlation between Euclidean states (e.g. angular velocities) and the attitude on
its manifold. Some of these implementations are the Partially-Conditioned Gaussian Mixtures
(PCGM) [Darling & DeMars, 2016b], the Gauss-Bingham (GaBi) [Darling & DeMars, 2015a,b]
and the BiGa [Darling & DeMars, 2016a]. These approaches allow us to correlate the attitude
and angular velocity uncertainties.

As described in Section 1.5, until now, no other UAV tracking system uses directional
statistics distributions (Appendix C). Since the Bi distribution (Section C.1) is defined directly
in the unit multidimensional hypersphere, we have used it in a filtering structure to be able to
quantify the existing attitude uncertainty on its manifold (Section 5.3.1). We have also used
the BiGa distribution (Section C.2) in a filtering structure to correlate the estimated UAV
angular velocity with the attitude to decrease the obtained attitude error (Section 5.3.2).
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Chapter 3

Problem formulation and
Methodologies

Anyone who has never made a mistake has never tried anything new.

Albert Einstein

Chapter contents
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Boosted Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Unscented Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Overall system proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This chapter presents the problem formulation, the filtering techniques used to develop the
proposed tracking architecture (PF, BPF, and UPF), and describes the overall system proposal.

3.1 Problem formulation

Section contents
3.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 State model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Motion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 State transition model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.6 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.7 Vision system camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

As initially described in Section 1.2, the main objective is to perform UAV tracking, using
image information, with respect to the camera reference frame. In the system design, we have
made the following assumptions:

• The UAV follows a constant velocity model (Section 3.1.4);
• The FPB and wind perturbations are not explicitly modeled;
• The UAV CAD model is available (Figure 1.6 right);

21
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• The intrinsic camera parameters are known (Section 3.1.7).

To be able to formulate the problem at hand, we will define the used reference frames for
position and orientation representation (Section 3.1.1), the adopted state model (Section 3.1.2),
introduce the state estimation framework (Section 3.1.3), the motion models (Section 3.1.4), the
state transition model (Section 3.1.5), the observation model (Section 3.1.6), and the adopted
vision system camera model (Section 3.1.7).

3.1.1 Reference frames

The UAV reference frame (Figure 3.1), is based on the following assumptions [Beard & McLain,
2012; Dobrokhodov, 2015; Klein & Morelli, 2006; Zheng et al. , 2017; Zhu et al. , 2011]:

• The UAV is considered a rigid body;
• The UAV mass and mass distribution remains constant during operation;
• The UAV reference frame origin is located in its Center Of Gravity (COG).

Figure 3.1: Camera and UAV reference frames.

We can correlate the reference frames shown in Figure 3.1, using a spatial rotation and
translation [Lepetit et al. , 2005; Josef, 2006; Cyganek & Siebert, 2011]. A rotation matrix
(spatial rotation) has the following properties [Goldstein et al. , 2002; Murray, 1994]:

• The matrix is orthogonal;
• The determinant is unity;
• A product of rotation matrices can represent successive rotations;
• The rotation matrix is not commutative.

In part of the work, we adopt Euler angles1 where the following Direction Cosine Matrix
(DCM) gives the transformation for a Z-Y-X (γ−β−α) rotation sequence according to [Rogers,
2007; Lepetit et al. , 2005; Bigun, 2006; Zhu et al. , 2011]:

R(γ, β, α) =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)


︸ ︷︷ ︸

Rx(α)

cos(β) 0 −sin(β)
0 1 0

sin(β) 0 cos(β)


︸ ︷︷ ︸

Ry(β)

 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1


︸ ︷︷ ︸

Rz(γ)

(3.1)

1 Euler angle α represents the rotation around X, β represents the rotation around Y , and γ represents the
rotation around Z (Figure 3.1).
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For other parts of the work, it is more convenient to adopt a unit quaternion based repre-
sentation. For a unit quaternion q = [q1, q2, q3, q4]T (3.7), the DCM matrix is given by [Pervin
& Webb, 1982; Lepetit et al. , 2005; Cyganek & Siebert, 2011]:

R(q) =

(q2
4 + q2

1 − q2
2 − q2

3) 2(q1q2 + q4q3) 2(q1q3 − q4q2)
2(q1q2 − q4q3) (q2

4 − q2
1 + q2

2 − q2
3) 2(q2q3 + q4q1)

2(q1q3 + q4q2) 2(q2q3 − q4q1) (q2
4 − q2

1 − q2
2 + q2

3)

 (3.2)

Using the relation (3.1) or (3.2) the rotation can be related between reference frames. The
orientation error can be obtained according to:

δ(R1, R2) =

√
‖ logm

(
RT1 R2

)
‖2F

2
180
π

[deg] (3.3)

where {R1, R2} are rotation matrices. If we use a unit quaternion (3.7) based representation,
the orientation error quaternion qe, that expresses the error between two unit quaternions qu
and qp, can alternatively be obtained according to:

qe = qu ⊗ q̄p (3.4)

where ⊗ represents unit quaternion multiplication (the composition of orientations) and q̄p
corresponds to the conjugate of qp [Finkelstein et al. , 1962; Conway, 1937].

3.1.2 State model

The UAV state is represented according to the camera reference frame and contains linear and
angular positions and velocities:

xt = [tTt , rTt ]T with tTt = [uTt ,vTt ] and rTt = [qTt ,ωTt ] (3.5)

where uTt = [X,Y, Z] is the linear position, vTt = [vx, vy, vz] is the linear velocity, ωTt =
[ωx, ωy, ωz] is the angular velocity. Representing the orientation directly in the space of Euler
angles is difficult because of the existing singularities2. To deal with this, we use a unit
orientation quaternion qt (3.5) defined as:

qt = [%T , q4]T (3.6)

where qt ∈ S3 ⊂ R4 :‖ q ‖ = 1 with:

%T = [q1, q2, q3] = ê sin
(ρ

2

)
and q4 = cos

(ρ
2

)
(3.7)

where ê is the axis of rotation, and ρ is the angle of rotation. The UAV pose (3D position
and orientation), concerning the camera reference frame, is given by pt = [utT ,qTt ]T . The
captured camera image at each time instant t is given by yt.

Our main objective will be to estimate the posterior Probability Density Function (PDF)
p(xt | y1:t) (3.10), and for that, we need to perform tracking to filter the existing noise. The
state estimation of dynamical systems is introduced in Section 3.1.3.
2 Loss of one degree of freedom, commonly known as gimbal lock [Oh & Vadali, 1988].
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3.1.3 State estimation

The state estimation of dynamical systems is based on a transition model (Section 3.1.5) that
describes how the system evolves and an observation model (Section 3.1.6) that explains how
the measurements are related to the state. In general, a discrete state-space model can be
characterized by [Arulampalam et al. , 2002; Challa, 2011; Haug, 2012; Thrun et al. , 2005;
Van Der Merwe et al. , 2001]:

xt+1 = F(xt, ξt) (3.8)

yt = H(xt,ηt) (3.9)
where F(.) is the system function, H(.) is the measurement function, t is a time index, xt is the
state of the model (not directly observable), yt is the observation, ξt and ηt are respectively
the system and observation noise. In probabilistic state estimation, the primary objective is
to estimate the PDF of the state given the past observations p(xt | y1:t). The transition
model (3.8) can be represented by the state transition PDF p(xt | xt−1) and the observation
model (3.9) can be represented by the likelihood PDF p(yt | xt). Given the Markov process
assumption for the state propagation and conditional independence for the observations, we
can represent the posterior PDF p(xt | y1:t) in a recursive way as [Arulampalam et al. , 2002;
Challa, 2011; Doucet et al. , 2001; Doucet & Johansen, 2009; Forsyth & Ponce, 2002; Haug,
2012; Thrun et al. , 2005; Gelfand et al. , 2010]:

p(xt | y1:t) = p(yt | xt)p(xt | y1:t−1)∫
p(yt | xt)p(xt | y1:t−1)dxt︸ ︷︷ ︸

p(yt|y1:t−1)

∝ p(yt | xt)p(xt | y1:t−1)
(3.10)

with prediction p(xt | y1:t−1) given by the Chapman-Kolmogorov equation [Anderson & Moore,
1979; Iltis, 1990; Ross, 2010]:

p(xt | y1:t−1) =
∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (3.11)

where p(xt−1 | y1:t−1) is the state distribution at the previous time step.

3.1.4 Motion models

We consider that the UAV follows a constant velocity model, i.e. it suffers small accelerations
between two consecutive time steps t and t + 1. Furthermore, we consider that linear and
angular motions are independent [Haug, 2012; Bazin et al. , 2010; Antone & Teller, 2000].
Thus, the full model is composed of two separate dynamical systems. The motion (rotation
and translation) decoupling has been applied with success in multiple fields such as e.g. motion
estimation in catadioptric vision [Bazin et al. , 2010], image-based visual servoing motion
control [Deguchi, 1998], visual odometry [Kim et al. , 2018; Scaramuzza & Siegwart, 2008;
Zhang et al. , 2016b], camera pose estimation from matched feature points [Fathian et al. ,
2017], indoor mapping [Liu et al. , 2017], extrinsic calibration of a camera and a 3D Light
Detection And Ranging (LIDAR) [Zhou et al. , 2018], vision-based robot control [Tahri &
Chaumette, 2005; Andreff et al. , 2002], and two-point cloud rotation and translation estimation
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[Ma et al. , 2016]. In the UAV field, it has been applied with success e.g. to automatic landing
using the airborne camera [Azinheira & Rives, 2008], using stereo vision to estimate altitude,
attitude and motion [Eynard et al. , 2012], vision-based rotation estimation [Bazin et al. ,
2012], tracking with a monocular camera [Chen & Dawson, 2006], and UAV controller design
[Lee et al. , 2010; Metni et al. , 2005; Guenard et al. , 2008]. This decoupling simplifies the
formulation and the UAV control law since the translation and rotation can be controlled
independently [Atkins et al. , 2016; Kingston et al. , 2003; Eubank et al. , 2009; Gautam et al.
, 2014].

3.1.5 State transition model

In discrete-time, the state transition model (3.8) is given by [Kraft, 2003; Pessanha Santos
et al. , 2015, 2018, 2019c]:

xt+1 = F(xt, ξt) =
[

Fl(tt, ξlt)
Fr(rt, ξrt )

]
=


[

I3×3 ∆t · I3×3

03×3 I3×3

]
tt + ξlt[

qt ⊗ δqωt ⊗ δqrt
ωt + ξrt

]
 (3.12)

where ξlt ∼ N (0,Ql
t) is a Gaussian noise random variable with zero mean and covariance

Ql
t, ⊗ represents unit quaternion multiplication (orientations composition), ξrt ∼ N (0,Qr

t ) is
a Gaussian noise random variable with zero mean and covariance Qr

t , and δqωt and δqrt are
quaternions representing the integration of the effect of the angular velocity and rotation noise
assumed constant during a sampling interval ∆t:

δqωt = Ω(ωt) and δqrt = Ω(ξrt ) (3.13)

with:

Ω(b) =
[

b
‖ b ‖ sin

(
‖ b ‖ ∆t

2

)
, cos

(
‖ b ‖ ∆t

2

)]
(3.14)

When using the UBiF (Section 5.3.1) or the Unscented Bingham-Gauss Filter (UBiGaF)
(Section 5.3.2), the noise of the rotational components of the state transition model is assumed
Bi distributed (Section C.1) and BiGa distributed (Section C.2) respectively.

3.1.6 Observation model

In the developed approach, we use two different observation models: (i) a linear and Gaus-
sian model (Section 3.1.6.1), and (ii) a likelihood model approximation using image information
(Section 3.1.6.2). The linear and Gaussian model is the classical model and is a computationally
inexpensive rough approximation to the real observation model. The likelihood approximation
is a computationally expensive non-linear and non-Gaussian model obtained using image in-
formation. Both models are essential in the final algorithm implementation, the first allows a
rough and fast pose estimative, and the second concentrates all the computational efforts in
the most promising zones.
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3.1.6.1 Linear and Gaussian model

As initially described in Section 3.1.4, we consider that the UAV follows a constant velocity
model with independent motions. The linear and Gaussian model for the implemented motion
filtering (Section 5.3) is given by [Kraft, 2003; Pessanha Santos et al. , 2015, 2018, 2019c]:

zt = H(xt,ηt) =
[

Hl(tt,ηlt)
Hr(rt,ηrt )

]
=

 [I3×3 03×3

]
tt + ηlt[

I4×4 03×3

]
rt ⊗ δqηt

 =
[

ut + ηlt
qt ⊗ δqηt

]
(3.15)

where ηlt ∼ N (0,Rt) is a Gaussian noise random variable with zero mean and covariance
matrix Rt and δqηt is a quaternion representing the integration of the effect of the observation
rotation noise in a similar way to (3.13). When using the UBiF (Section 5.3.1) or the UBiGaF
(Section 5.3.2), the noise of the rotational components of the observation model is assumed Bi
distributed (Section C.1).

3.1.6.2 Likelihood approximation model

The probability density function p(yt | xt) (Section 3.1.3) expresses the probability mass of a
particular image yt, given a particular state hypothesis xt. We can approximate samples ŷt
from this density by rendering synthetic images of the UAV CAD model at state xt using a
graphics engine ŷt = g(xt). This is a coarse approximation to the true density because many
effects of the image formation process are not modeled (e.g. background texture, image noise,
motion blur, or occlusions). The likelihood function L(xt,yt) is the likelihood of the state xt
given an observation yt and is proportional to p(yt | xt), considering yt fixed. To compute
an approximated value to this likelihood (up to scale), we use a similarity metric between yt
and the synthetic images rendered for the assumed states xt, d(yt, g(xt)), as will be described
in Section 5.4.1. The similarity metric will be used as observation model p(yt | xt) in the
implemented UPF based approach, as will be described in Section 3.5.

3.1.7 Vision system camera model

We are using the pinhole camera model (Figure 3.2), that describes the real-world projection
in an image plane using intrinsic3 and extrinsic4 parameters [Jähne et al. , 1999; Prince, 2012;
Radke, 2013; Hartley & Zisserman, 2003]. The relation between 3D coordinates and camera
coordinates is given by [Ma et al. , 2012; Hartley & Zisserman, 2003]:

λ

uv
1

 =

fsx Sθ cx

0 fsy cy

0 0 1


︸ ︷︷ ︸

Intrinsic matrix

1 0 0 0
0 1 0 0
0 0 1 0

 [
R T

0 1

]
︸ ︷︷ ︸

Extrinsic matrix


X

Y

Z

1

 (3.16)

where λ is an arbitrary positive scalar, (u, v) represents the image coordinates (in pixels),
(X,Y, Z) are 3D coordinates, f is the focal length that represents the distance between the
image plane and the optical center, sx is the horizontal pixel number by meter (pixel/m), sy is
the vertical pixel number by meter (pixel/m), Sθ is the skew factor proportional to the angle
3 Allow a mapping between camera coordinates and pixel coordinates in the image frame.
4 Define the coordinate system transformations from the 3D world to 3D camera coordinates.
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between the u and v pixel axes5, c = (cx, cy) are the coordinates (in pixels) of the center of
the image, R is a rotation matrix and T is the translation matrix to camera coordinates.

Figure 3.2: Pinhole camera model illustration.

In the real world, the camera lens present distortions, being the most relevant the radial6

and tangential7 [Cyganek & Siebert, 2011; Prince, 2012; Radke, 2013]. The tangential distor-
tion component presents less influence on the final result. The distortion can be represented
by [Hartley & Zisserman, 2003; Lepetit et al. , 2005; Ma et al. , 2012; Szeliski, 2010]:

xdistortion = x(1 +K1r
2 +K2r

4 +
Optional︷︸︸︷. . . )︸ ︷︷ ︸

xradial

+ 2p1xy + p2(r2 + 2x2)︸ ︷︷ ︸
xtangential

ydistortion = y(1 +K1r
2 +K2r

4 +
Optional︷︸︸︷. . . )︸ ︷︷ ︸

yradial

+ 2p2xy + p1(r2 + 2y2)︸ ︷︷ ︸
ytangential

(3.17)

where {x, y} are coordinates of the distorted points, r2 = x2 + y2, {K1,K2} are two constant
values between [−1, . . . , 1], and {p1, p2} are two constant values between [−0.1, . . . , 0.1]. Nor-
mally {K1,K2} are enough to obtain a good approximation, but if needed the polynomial can
be expanded as shown in (3.17).

We have obtained the intrinsic matrix (3.16) and the distortion parameters (3.17) offline
[Sturm & Maybank, 1999; Lepetit et al. , 2005], using a chessboard calibration pattern accord-
ing to Bouguet [2008] (Figure 3.3). An example of a distortion-corrected image can be seen in
Figure 3.4.

3.2 Particle Filter

Due to the non-linear nature of the rotation and to the multimodality of the likelihood function
(due to UAV symmetries, occlusions, and background clutter), we cannot use a typical filtering
5 The pixels in a sensor may not be square, resulting in a small distortion.
6 Non-linear distortion (2D image deformation) that depends on the distance to the image center.
7 It depends on the lens location relative to the image plane (lens not parallel to the image plane).
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Figure 3.3: Used chessboard calibration pattern.

Figure 3.4: Real captured (left) and distortion corrected (right) images.

model (e.g. EKF or UKF) and the PF [Haug, 2012; Thrun et al. , 2005; Challa, 2011; Simon,
2006] is a tool that can represent this continuous distribution by discrete samples (Figure 3.5).
Since we cannot sample directly from p(xt | y1:t), the idea of this filtering technique is to
represent the state xt (3.8) using a set of weighted samples (particles) that approximate the
posterior PDF. The set of possible system states are represented by the samples xmt with
associated weights wmt originating {xmt , wmt }

M
m=1. The posterior PDF is then approximated by

a discrete weighted approximation of the true posterior according to:

p(xt | y1:t) ≈
M∑
m=1

wmt δ(xt − xmt ) (3.18)

where M is the number of particles, δ(.) is the Dirac function, and
∑M
m=1 w

m
t = 1. The generic

PF is composed of four main steps [Wang et al. , 2016; Van Der Merwe et al. , 2001; Wang
et al. , 2012; Boli et al. , 2004; Chan et al. , 2012; Gordon et al. , 1993]: (i) initialization,
(ii) importance sampling, (iii) importance weighting, and (iv) resampling, as described in
Algorithm 1. After resampling, an additional move step can be used to decrease the probability
of occurring degeneracy8.

Typically in CV, it is used the transition prior9 q(xmt | xmt−1) [Arulampalam et al. , 2002;
Ristic et al. , 2004; Rui & Chen, 2001b] as proposal distribution (Section 3.1.3) not incorpo-
rating the actual measurement in its generation (Section 5.2). The actual measurement is used
8 Only a few of the particles will have significant weight.
9 In the importance sampling step, as described in Algorithm 1.
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Figure 3.5: Multiple pose hypotheses illustration.

only in the likelihood calculation (importance weights), as described in Algorithm 1. This
approach can be improved by using current frame information in the proposal distribution,
e.g. using a UKF (Section 3.4). Another different approach is to enrich the proposal distri-
bution injecting new particles from the current image using a detector (Section 3.3). As will
be described in Section 3.5, our approach uses both methods to better approximate the true
posterior and decrease the obtained estimation error.

Algorithm 1 Particle Filter (PF)
. Initialization:
1. Draw M initial particles from the prior p(x0) and initialize the weights with 1

M
creating

{xm0 , wm0 }Mm=1.
� Importance sampling (t ≥ 1):
1. Sample M particles x̂mt ∼ q(xmt | xm0:t−1,y0:t), where q is a proposal distribution which is easy
to sample from and is used to approximate the posterior PDF.
� Importance weighting (t ≥ 1):
1. Obtain the unnormalized importance weights:

w̃mt ∝ wmt−1
p(yt|x̂m

t ) p(x̂m
t |x

m
t−1)

q(x̂m
t
|xm

t−1,y1:t)

2. Normalize the obtained importance weights:
wmt = w̃m

t∑M

i=1
w̃i

t

� Resampling (t ≥ 1):
1. Eliminate particles with low importance weights and replicate particles having high impor-
tance weights to obtain M random samples with uniform weights creating {x̂mt , ŵmt }Mm=1 →{
xmt , wmt = 1

M

}M
m=1

.
� Move step - Optional (t ≥ 1):
1. Use a move step to increase the diversity of the particles after the resampling step [Havangi
et al. , 2013; Haykin et al. , 2001]. This step can be performed by adding Gaussian noise to the
particle state [Kotecha & Djuric, 2003; Kotecha & Djuric, 2001; Haug, 2012].
. Output: {xmt , wmt }Mm=1

3.3 Boosted Particle Filter

The MPF [Vermaak et al. , 2003] is a variation of the generic PF, designed to track multiple
targets, where each target is modeled with an individual PF. The BPF [Okuma et al. , 2004]
extends this application using AdaBoost [Viola & Jones, 2001] to incorporate current observa-
tions and be able to detect objects leaving and entering in the analyzed scene. In the original
BPF implementation, the proposal is given by [Okuma et al. , 2004]:
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qB(xt | x0:t−1,y1:t) = αqada(xt | xt−1,yt) + (1− α)p(xt | xt−1) (3.19)

where qada is the proposal from the AdaBoost detection, and α varies between zero and one
defining the contribution of each proposal. When α = 0, the implemented filter becomes a
simple MPF. As will be described in Section 3.5, we also use a detector to obtain the target
position on the frame (Section 4.2) but extend it with rough estimates of depth and pose using
a pre-trained database of synthetically generated images (Section 4.3).

3.4 Unscented Particle Filter

When we combine a PF with a UKF, we obtain a UPF [Rui & Chen, 2001a; Van Der Merwe
et al. , 2001; Birsan, 2005], as initially described in Section 2.7. The UPF is composed of
the typical four steps described in Section 3.2 for the PF: (i) initialization, (ii) importance
sampling, (iii) importance weighting, and (iv) resampling, as described in Algorithm 2. The
main difference, when compared with the generic PF, is in the importance sampling step,
where we use a UKF (Appendix A) to integrate the current observation and generate a better
proposal distribution [Rui & Chen, 2001a; Van Der Merwe et al. , 2001; Wang et al. , 2016;
Haykin et al. , 2001; Zhou et al. , 2010; Birsan, 2005].

As will be described in Section 3.5, we extend this concept to include a directional noise
model (Bi and BiGa distributions) to better cope with the periodic nature of the rotational
motion component. We will use a UKF (Appendix A) for the translational motion filtering
and a UBiF (Section 5.3.1) or a UBiGaF (Section 5.3.2) for the rotational motion filtering.

Algorithm 2 Unscented Particle Filter (UPF)
. Initialization:
1. Draw M initial particles from the prior p(x0) and initialize weights with 1

M
creating

{xm0 , wm0 }Mm=1. Initialize the mean x̄m0 and covariance Pm
0 for the UKF (Appendix A).

� Importance sampling (t ≥ 1):
1. Update the particles applying a UKF to each particle (Appendix A). From the UKF we
obtain x̃mt (A.29) and P̃m

t (A.30), and we can sample particles using the proposal distribution
x̂mt ∼ q(xmt | xm0:t−1,y0:t) = N

(
x̃mt , P̃m

t

)
[Rui & Chen, 2001a; Van Der Merwe et al. , 2001].

� Importance weighting and Resampling (t ≥ 1):
1. These steps are the same as applied in the PF described in Section 3.2.
. Output: {xmt , wmt }Mm=1

3.5 Overall system proposal

Section contents
3.5.1 Pose boosting introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Tracking introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

In the classical UPF, we combine a PF (Section 3.2) with a UKF (Appendix A). We extend
this concept to include a directional noise model (Bi and BiGa distributions) to better cope
with the periodic nature of the rotational motion component. The current observation inclusion
on the proposal distribution outperforms the traditional PF transition prior based proposals
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[Rui & Chen, 2001b]. As adopted in the BPF (Section 3.3), we also use a detector but we
extend it to compute a coarse estimate of the pose of the UAV with the current observation.
In summary, our system proposal (Figure 3.6) is inspired in a BPF where a modified UPF
computes the proposal distribution to include directional noise models (Section 5.2) and is
enriched with a pose optimization step (Section 5.5) to cope with the sub-optimality of the
likelihood model (Section 5.4.1). The proposed system architecture (Figure 3.6) is described
in detail in Algorithm 3, including the system assumptions, the inputs, the initialization, the
pose boosting stage (Chapter 4), and the tracking stage (proposal, approximate weighting and
resampling, and pose optimization) (Chapter 5). The pose boosting stage is initially shown in
Section 3.5.1 and described in detail in Chapter 4. The tracking stage is initially specified in
Section 3.5.2 and fully explained in Chapter 5.
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Figure 3.6: System architecture.

3.5.1 Pose boosting introduction

In the pose boosting stage, we apply a detector to obtain the ROI coordinates of objects with
the appearance of the UAV (Section 4.2). The ROI with the highest confidence value is used
to obtain a rough UAV pose estimate using a pre-trained database of UAV images generated
artificially at different orientations (Section 4.3). Each particle represents the UAV state, as
described in Section 3.1.2.

3.5.2 Tracking introduction

The tracking stage is composed of three modules (Figure 3.6): (i) proposal, (ii) approximate
weighting and resampling, and (iii) pose optimization. The proposal module is responsible for
generating a set of particles x̂1:M

t that reflect the distribution of the state of the system. This
module is quite complex, and the adopted architecture variants will be described in detail in
Section 5.2. The proposal stage takes the current set of particles x1:M

t and generates samples
from a proposal distribution similarly to the UPF, using as observation zt which we approx-
imate as the pose of the particle with the best likelihood for the acquired image p(yt | xt).
This maximum likelihood approximation zt is a very coarse estimate of the actual pose but
still effective in improving the proposal distribution (Section 5.5). After the proposal stage, we
approximate the particle weights w1:M

t (approximate weighting) using an approximate likeli-
hood function (Section 5.4.1). The resampling module is responsible for eliminating particles
with low importance weights and replicate particles having high importance weights to improve
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Algorithm 3 Proposed system (Figure 3.6) - Pseudocode
. Assumptions:

1. Constant UAV velocity model (Section 3.1.4);
2. FPB and wind perturbations are not explicitly modeled (Section 3.1).

. Inputs:
1. UAV CAD model (Section 3.1);
2. Camera parameters - radial and tangential factors (Section 3.1.7);
3. Pre-trained detector weights wtrained (Section 4.2);
4. Pre-trained pose samples database Ddatabase (Section 4.3).

. Initialization:
1. Load UAV CAD model and camera parameters;
2. Load UKF (Appendix A), UBiF (Section 5.3.1), and UBiGaF (Section 5.3.2) parameters.

� Pose boosting:
1. Capture a new frame yt;
2. Obtain Regions of Interest (ROIs) on the captured frame using a detector (Section 4.2):

ROIs = Detector(yt,wtrained)
3. Obtain M −M0 pose particles using the pre-trained database (Section 4.3):

xM0+1:M
t = Hypotheses generation(Ddatabase,ROIs)

4. Combine xM0+1:M
t with the best M0 particles from the previous time step x1:M0

t−1 (t > 1):
x1:M
t =

{
x1:M0
t−1 ,xM0+1:M

t

}
� Proposal (t ≥ 1):

1. Obtain the current measurement zt (Section 5.4.1):
zt = Coarse pose estimate(x1:M

t , Ft)
2. Apply motion filtering to the set (Section 5.3):

2.1. Case 1 - UKF (Appendix A):
x̂1:M
t = UKF(x1:M

t , zt)
2.2. Case 2 - UKF (Appendix A) + UBiF (Section 5.3.1) or UBiGaF (Section 5.3.2):

x1:M
t =

{
UKF(t1:M

t , zt)
UBiF(r1:M

t , zt) or UBiGaF(r1:M
t , zt)

� Approximate weighting and Resampling (t ≥ 1):
1. Evaluate the likelihood of the current particle set (Section 5.4.1):

w1:M
t = Approximate weighting(x̂1:M

t , zt)
2. Apply a resampling strategy (Section 5.4.2):

x̃1:M
t = Resampling(x̂1:M

t , w1:M
t )

� Pose optimization (t ≥ 1):
1. Apply an optimization stage to refine the pose estimate (Section 5.5):

x1:M
t = Optimization(x̃1:M

t )

. Output:
1. UAV state estimation (Section 3.5.2):

x∗t = State estimation(x1:M
t )

particle diversity, generating the set x̃1:M
t (Section 5.4.2). Finally, to increase the accuracy of

the result, we use a pose optimization stage to perform a fine local adjustment of the pose
component of the particles, as described in Section 5.5. The optimized particle set is given
by x1:M

t , from which we can use statistics (mean, mode, maximum, etc.) to obtain the state
estimation x∗t that will ultimately represent our UAV pose for control purposes. To generate
particles for the next time step, we choose, from this set, the best M0 particles x1:M0

t−1 . These
particles will be mixed with new ones obtained using the current frame at time t.



Chapter 4

Pose boosting

We cannot teach people anything; we can only help them discover it within themselves.

Albert Einstein

Chapter contents
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This chapter describes the proposed pose boosting stage, used to obtain a set of rough pose
estimates from the captured image.

4.1 Proposed system structure

The pose boosting stage is inspired in the BPF (Section 3.3), which is an adapted MPF intended
for multiple target tracking that uses AdaBoost to incorporate current observations (targets
position on the image) in the proposal generation (3.19). In our implementation, we also use
a detector, but we have adapted its architecture to single target tracking, improving it using a
pre-trained database to be able to retrieve not only the UAV position but a set of rough pose
estimates. As initially described in Chapter 3, the pose boosting stage (Figure 3.6) can be
divided into two different stages (Figure 4.1): (i) detection (Section 4.2), and (ii) hypotheses
generation (Section 4.3).

Section 4.2 Section 4.3

CAMERA

PRE-TRAINED 
DETECTOR WEIGHTS

PRE-TRAINED DATABASEUAV CAD MODEL

0 1:M M

t

+
x
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1:M
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ty

Figure 4.1: Pose boosting (proposed structure).
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The UAV detection in the captured frame is essential to be able to apply the algorithms
needed to estimate its pose. Since the search area is vast, and we do not use any UAV
sensor information, we have trained detectors based on DNNs (Section 4.2). In the hypotheses
generation stage, we compare the obtained detector ROI with the highest confidence value
with a pre-trained database of UAV bounding boxes in multiple poses to obtain a rough pose
estimate (Section 4.3). The UAV CAD model (Figure 1.6 right) plays a vital role in the
detector training and database generation (Figure 4.1), as will be described in Section 4.2 and
Section 4.3.

4.2 Target detection

Section contents
4.2.1 YOLO and SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Synthetic images dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The UAV detection stage is critical (Section 2.5) since we are operating in an outdoor environ-
ment, and we need to have illumination invariance. The presence of other objects can affect
system performance and reliability. The target detection phase consists of searching in the im-
age for ROIs that may contain our UAV. The used detectors are described in Section 4.2.1 and
the used synthetic images (Figure 4.2) dataset generation scheme is described in Section 4.2.2.

Figure 4.2: Synthetic training dataset (example).

4.2.1 YOLO and SSD

The UAV detection is made using YOLO v3 [Redmon & Farhadi, 2018] or SSD [Liu et al. ,
2016b], which are state-of-the-art detectors methods without the need for external region pro-
posals (Section 2.5). The YOLO v3 uses a variant of the original DarkNet-53 network [Redmon
& Farhadi, 2016, 2017] incorporating a 106 layer fully convolutional [Redmon & Farhadi, 2018].
This network performs detection downsampling the input image at three different scales (32,
16, and 8) in a concept similar to Feature Pyramid Networks (FPNs) [Lin et al. , 2017b],
improving its performance when detecting small objects. The SSD uses a VGG16 network
[Simonyan & Zisserman, 2014] for feature extraction and then incorporates additional convo-
lutional layers and filters to obtain the location of the object on the captured frame. The
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implemented convolutional layers decrease in size progressively and have the objective of be-
ing able to predict at multiple scales (Section 2.5). The YOLO implementation is performed
adapting the publicly available code [Redmon & Farhadi, 2019], and the SSD implementa-
tion is performed by adapting the publicly available Tensorflow object detection Application
Programming Interface (API) [J. Huang & Zhu, 2017]. The detector will be trained using a
synthetic images dataset (Figure 4.2), as described in Section 4.2.2. The detector performance
was evaluated using 679 real captured test images, as described in Section 6.3.

4.2.2 Synthetic images dataset generation

Since there is no public UAV database for object detection and the real data acquisition is very
costly, we decide to use a synthetically generated dataset to perform transfer learning to real
images [Joseph Tan et al. , 2015; Varol et al. , 2017]. A synthetic image is created, rendering
the UAV CAD model (Figure 1.6 right) on top of a dataset of real captured background images,
as described in Figure 4.3. For each image is also generated an annotation file that contains the
UAV ROI coordinates. The ROI coordinates on each image are obtained using four different
steps (Figure 4.4): (i) UAV rendering, (ii) image binarization1 [Sauvola & Pietikäinen, 2000]
to detect the UAV area, (iii) the calculation of the Oriented Bounding Box (OBB)2, and (iv)
from the obtained OBB coordinates we calculate UAV ROI. We have used 335769 annotated
images (width× height = 1280× 720) for training, as described in Section 6.3.

SYNTHETIC 
IMAGE 

GENERATOR

UAV CAD MODEL

BACKGROUND 
IMAGES

RANDOM POSE 
GENERATOR

TRAINING 
IMAGES

ANNOTATIONS

]T T T
p = [u ,q

y

Figure 4.3: Synthetic images dataset generation scheme.

Figure 4.4: Rendered UAV (left), binarization (center left), OBB (center right), and ROI
(right).

1 Conversion between a grayscale image [0, . . . , 255] and a black and white binary image {0, 1}.
2 The oriented rectangle of the minimum area enclosing the UAV
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4.3 Hypotheses generation

Section contents
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4.3.3 Translation hypotheses generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

From the ROIs obtained in the target detection stage (Section 4.2), we cannot infer the UAV
orientation (Section 4.3.2) but only its 3D position (Section 4.3.3). We will use the current
image information3 to generate hypotheses that are near the real UAV pose, using a pre-trained
database. Using this database, we can create a relation one-to-many from the parameters of the
OBB that contains the UAV corner points to a set of UAV poses (Figure 4.5) to add diversity
to the filter proposal. Many methods can obtain such corner points. In our case, we used the
Features from Accelerated Segment Test (FAST)4 corner detector. The database generation
scheme is illustrated in Section 4.3.1, the orientation hypotheses generation in Section 4.3.2,
and the translation hypotheses generation in Section 4.3.3.

Figure 4.5: Hypotheses generation (simplified scheme).

4.3.1 Database generation

The database is created by rendering synthetic images of the UAV 3D CAD model at a fixed
position, but varying the rotation according to a uniform distribution restricted in a specific
interval concerning the camera reference frame5. This database is created offline and indexed
efficiently for fast run-time access. For each generated possibility, it is obtained the OBB that
better fits the projected object and is stored in a database indexed by the angle (θ) and AR
(R). The database poses are given by:
3 The ROI with the highest confidence value.
4 A corner detection method that uses a Bresenham circle algorithm [Bresenham, 1977] (linear algorithm for

discrete circle representation) of radius 3 to classify if a specific point is a corner or not. If K adjacent pixels
in the circle are all brighter or all darker (plus or minus the threshold respectively) than the candidate pixel,
it is considered a corner [Rosten & Drummond, 2006; Rosten et al. , 2010].

5 Euler angle α represents the rotation around X, β represents the rotation around Y , and γ represents the
rotation around Z (Figure 3.1).
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Di =
[
Xi, Y i, Zi,qi

]
(4.1)

where i is the pose index in the database. Each database pose has one associated OBB Bi

given by:

Bi =
[
θi, xi, yi, wi, hi

]
(4.2)

where θi is the OBB angle in degrees relative to the horizontal,
(
xi, yi

)
is the OBB center

coordinate, wi is the OBB width and hi is the OBB height. The AR Ri is obtained according
to (Figure 4.6):

Ri = wi

hi
(4.3)

wθ 

θ 

w

h

h

Figure 4.6: OBB angle (θ), width (w), and height (h) illustration.

4.3.2 Orientation hypotheses generation

From the captured frame, we will obtain B = [θ, x, y, w, h] (Figure 4.7). The difference between
θ and R of the observation and all θi and Ri from the database is calculated online using the
Euclidean distance:

d
(
θ,R, θi, Ri

)
=
√

(θ − θi)2 + (R−Ri)2 (4.4)

The poses are ordered by its distance value d
(
θ,R, θi, Ri

)
, and the ones with the lower

value will be used as samples (Figure 4.8). These samples represent the database hypotheses
set that better describe our observation. In the first iteration, we will retrieve the M poses,
and after the first iteration, we will use M −M0 poses (Figure 4.1). Since in the database
generation (Section 4.3.1), we have rendered the UAV at a fixed position, to obtain the 3D
position, we apply a relation between the obtained OBBs, as will be described in Section 4.3.3.

4.3.3 Translation hypotheses generation

We have adopted the weak-perspective model [Carceroni & Brown, 1997; Lee & Park, 2006;
Lee et al. , 2006; Bradski & Kaehler, 2008] since the UAV size is small when compared to
the camera distance. This model assumes that the object points are all at the same depth,
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Figure 4.7: Observation frame OBB detection. From left to right: (i) original image, (ii)
detected ROI, (iii) FAST features, and (iv) OBB.

Figure 4.8: Some selected possibilities from the best database matches.

projected in a plane parallel to the image. We also assume that the object size variations
are only due to distance scaling. The Z coordinate can be approximated by the relationship
between the OBB areas and depth according to:

Z = Zi
√
Ai

A
(4.5)

where Ai corresponds to the OBB i area, and A corresponds to the observation OBB area. The
X and Y coordinates for each particle are calculated by the relation between the coordinate
of the center of the observed OBB (x, y), the obtained Z coordinate, and the intrinsic camera
parameters (obtained by calibration) given by the focal length f = (fx, fy) and the camera
center coordinates c = (cx, cy) (Section 3.1.7).

X = Z(x− cx)
fx

(4.6)

Y = Z(y − cy)
fy

(4.7)

An accurate camera calibration step [Bouguet, 2008] is essential to ensure precision in
system performance (Section 3.1). The database performance evaluation will be described in
Section 6.4.



Chapter 5

Tracking

Evolution is a process of constant branching and expansion.

Stephen Jay Gould
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This chapter presents the proposed tracking stage, detailing the developed proposal generator
architecture variants, the adopted motion filtering techniques, the approximate weighting and
resampling strategies, and the explored pose optimization schemes.

5.1 Proposed system structure

As described in Section 3.5, the tracking module (Figure 3.6) is divided into three different
stages (Figure 5.1): (i) proposal (Section 5.2), (ii) approximate weighting and resampling
(Section 5.4), and (iii) pose optimization (Section 5.5). In the proposal step, we test different
variants (Section 5.2): (i) using the boosted particles solely on the current frame, or (ii)
mixing them in a standard PF, or (iii) mixing them in a UPF using 3D model-based likelihood
models. In the approximate weighting and resampling step, we have also used a 3D model-
based likelihood model approximated by alternative image similarity metrics, evaluated in
Section 5.4.1. The resampling strategy to reduce the discrepancy between the particle weights
is explained in Section 5.4.2. In the pose optimization step, we have explored again 3D model-
based strategies (Section 5.5) to search locally and abridge the sub-optimality of the filter.

39
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Section 5.2 Section 5.4 Section 5.5
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Figure 5.1: Tracking (proposed structure).

5.2 Proposal generator architecture variants
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The proposal distribution is fundamental in the architecture of PFs. Its role is to generate a set
of particles from a proposal distribution that should be as close as possible to the true posterior
distribution. Typically, it uses a prior based on a motion model applied to the information
of the previous time step and blends it with likelihood information on the current time step.
In our work, we have tested five different combinations: (i) neglect temporal information and
use only pose boosting (Section 5.2.1), (ii) mix pose boosted particles with a PF based on a
constant velocity model (Section 5.2.2), (iii) mix pose boosted particles with a standard UPF
(Section 5.2.3), (iv) mix pose boosted particles with a UPF that uses UKF for translational
motion and a UBiF for the rotational motion (Section 5.2.4), and (v) mix pose boosted particles
with a UPF that uses UKF for translational motion and a UBiGaF for the rotational motion
(Section 5.2.4).

5.2.1 Pose boosted proposal

The pose boosted proposal does not use previous frame information or motion filtering re-
lying only on current frame information to generate the proposal particle set x̂1:M

t = x1:M
t

(Figure 5.1), as described in Chapter 4.

5.2.2 Proposal with prediction

As described in Section 5.2.1, the pose boosting sampling only uses information from the
current frame. The importance sampling using prediction (Figure 5.2), on the other hand,
uses information from the past, encoded in a subset of the particles of the previous iteration
x1:M0
t−1 (the best M0 particles). In the first iteration, all the particles of the proposal come

from the pose boosting x̂1:M
t = x1:M

t . After the first iteration, the proposal distribution will
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be composed of particles coming from the previous iteration x1:M0
t−1 and particles obtained

from the pose boosting sampling xM0+1:M
t (M is the total number of particles). The adopted

state transition model is described in Section 3.1.5. The PFs traditionally used in CV (e.g.
condensation algorithm [Blake & Isard, 1997]) do not incorporate the current frame and only
use the transition prior (M0 = M) to generate hypotheses. The proposal with UKF explained
below incorporate these observations more systematically (Section 5.2.3).

MOTION PREDICTION

PROPOSAL

TRANSITION MODEL

Chapter 4
tx tx tx

t-1x

1:MM0+1:M

1:M0

1:M
POSE BOOSTING

ˆ

Figure 5.2: Proposal with prediction.

5.2.3 Proposal with UKF

To further improve the proposal distribution, we have applied a UKF to each particle (Ap-
pendix A) similar to what is performed in the UPF (Section 3.4). The translational and
rotational motions x1:M

t are filtered using this approach, as described in Figure 5.3. In the first
iteration, all the particles of the proposal come from the pose boosting x̂1:M

t = x1:M
t . After the

first iteration, the particle set will be composed of particles coming from the previous iteration
x1:M0
t−1 and particles obtained from the pose boosting sampling xM0+1:M

t originating the set
x1:M
t . The current measurement zt, is given by the particle with the highest weight using a

similarity metric (Section 5.4.1). This is a coarse estimate of the pose but still effective in
improving the proposal distribution.
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Figure 5.3: Proposal with UKF.
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5.2.4 Proposal with UKF and UBi(Ga)F

When we use the UKF for the rotational motion r1:M
t filtering (Appendix A), we have to

consider a small angle assumption to quantify the existing uncertainty [Crassidis & Markley,
2003; Darling & DeMars, 2016b; Markley & Crassidis, 2014; Pessanha Santos et al. , 2015]. In
a periodic domain like the manifold of orientations in a 3D space, the Gaussian approach is
not a good approximation, especially in the presence of strong noise. We can use the Bi and
BiGa distributions described in Appendix C in a filtering structure to obtain better orientation
estimates. This formulation allows us to take into account the periodic nature of the rotation
(Bi and BiGa) and even the existing angular velocity uncertainty in the angular pose estimation
in its natural manifold (BiGa). We propose the UBiF and the UBiGaF to address this issue
(Section 5.3). These filters use the Bi and the BiGa distributions in their formulation to better
cope with the orientation manifold. The main difference between the filters is in the update
step. The UBiF update step is adapted from the Bayes filter formulation, and the UBiGaF
update step relies on a UKF structure. The remaining filtering steps are the same as described
in Section 5.2.3. x̂1:M

t gives the final set of motion filtered particles (Figure 5.4).
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Figure 5.4: Proposal using a UKF with a UBiF or UBiGaF.

5.3 Motion filtering
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In the proposal with UKF (Section 5.2.3), we use a UKF for the translational and rotational
motion filtering of all the particles in the set x1:M

t . As we are using a linear model for trans-
lation, a simple KF could be applied. To facilitate the transition between the linear and the
angular filter formulations, we will use a discrete-time UKF [Cheon & Kim, 2007; Crassidis &
Markley, 2003; Julier, 2002; Kraft, 2003; Van Der Merwe et al. , 2001; Zhou et al. , 2011], as
described in Appendix A. In the proposal with UKF and UBiF or UBiGaF (Section 5.2.4), we
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use a UKF for the translational motion filtering t1:M
t and a UBiF (Section 5.3.1) or UBiGaF

(Section 5.3.2) for the rotational motion filtering r1:M
t .

5.3.1 Unscented Bingham Filter (UBiF)

In a periodic domain like the manifold of orientations in a 3D space, the Gaussian model is not
a good approximation, especially in the presence of strong noise. The Bi distribution [Bing-
ham, 1974; Mardia & Jupp, 2000] (Appendix C) is an antipodally symmetric distribution that
represents a zero-mean Gaussian distribution projected on the unit hypersphere (Section C.1).
Since the product of two Bi distributions is closed under multiplication after renormalization
(Section C.1.2), we can use the UBiF with an update step directly derived from the Bayes filter
formulation [Ho & Lee, 1964; Thrun et al. , 2005]. We apply a UBiF to the orientation part of
the state vector. As in other filtering frameworks, the used UBiF has two stages: (i) prediction
(Section 5.3.1.1), and (ii) update (Section 5.3.1.2). The angular velocities will be obtained
from the orientation difference between iterations. The UBiF schematic view is described in
Figure 5.5. The performance evaluation of this filtering scheme will be made in Section 6.7.
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t

)

PREDICTION (Algorithm 4) UPDATE (Algorithm 5)

CΦ
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Figure 5.5: UBiF schematic view.

5.3.1.1 Prediction

The prediction step is described in Algorithm 4. For the rotation case, the system model is
given by:

qt = F(qt−1)⊗Φt−1 (5.1)

where qt−1 ∼ PB
(
Me

t−1,Zet−1
)

is the orientation at time t− 1 and Φt−1 ∼ PB(MΦ
t−1,ZΦ

t−1) is
the Bi distributed system noise where M is an orthogonal matrix describing the orientation of
the distribution and Z is the concentration matrix that controls the spread of the distribution
around its mean (Section C.1). The system dynamic F(.) is given by (3.12).

After the prediction step (Algorithm 4), the predicted system state is described by the Bi
distribution PB(M̄t, Z̄t) (Figure 5.5).

5.3.1.2 Measurement update

The measurement update step is described in Algorithm 5. The measurement model is repre-
sented as:
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Algorithm 4 Unscented Bingham Filter (UBiF) - Prediction Step
. Initialization: Φt−1 (5.1)
. Inputs: Me

t−1,Zet−1 (5.1)
1. Approximate the current system state (Section C.1.5):

qt−1 ∼ PB (Me
t−1,Zet−1)

2. Obtain the sigma points qit−1 using deterministic sampling (Appendix D):
qit−1 = Me

t−1q̃it−1 i = 1, . . . , 7
3. Propagate the sigma points qit using the system model F(.) (3.12):

q̄it = F(qit−1) i = 1, . . . , 7
4. Compute the covariance matrix Cq̄t from the sigma points (C.8):

Cq̄t = Cov(q̄t)
5. Obtain the covariance matrix CΦ from the Bi system noise Φt (C.6):

CΦ = Cov(Φt)
6. Obtain the covariance matrices composition Cq̄′

t
(C.7):

Cq̄′
t

= Cov(q̄t ⊗Φt)
7. Estimate the Bi distribution from the obtained covariance (C.9):

PB(M̄t, Z̄t) ∼MLE(Cq̄′
t
)

. Outputs: M̄t, Z̄t

zt = H(qt)⊗Λt (5.2)

where zt ∈ S3 is the measurement at time t and Λt ∼ PB
(
MΛ

t ,ZΛ
t

)
is the Bi distributed

measurement noise. The current observation zt is given by the orientation quaternion of the
approximate maximum likelihood particle, as described in Figure 5.4. Function H(.) relates
the measurement zt to the values of the orientation qt (identity function in our study case).
Choosing MΦ

t = MΛ
t = I4×4 is equivalent to the concept of zero-mean noise in the Euclidean

space [Gilitschenski et al. , 2016; Bingham, 1974].

Algorithm 5 Unscented Bingham Filter (UBiF) - Update Step
. Initialization: Λt (5.2)
. Inputs: M̄t, Z̄t (Algorithm 4) and zt (5.2)
1. Disturb the measure zt using the Bi noise Λt (5.3):

PB(M̌,ZΛ
t )

2. The measurement update can be derived from the Bayes theorem:
P (q̄′t|zt)︸ ︷︷ ︸
PB(Me

t ,Z
e
t )

= C · P (zt|q̄′t)︸ ︷︷ ︸
PB(M̌,ZΛ

t )

· P (q̄′t)︸ ︷︷ ︸
PB(M̄t, Z̄t)

where C is a normalization constant;
3. The final estimate is then obtained from (C.3):

PB(Me
t ,Zet ) = PB(M̌,ZΛ

t ) · PB(M̄t, Z̄t)
. Outputs: Me

t ,Zet

To be able to apply the measurement update step (Algorithm 5), the noise is rotated
(disturbed) according to the actual measurement zt according to (C.4):

P (zt | q̄′t) = PB(q̄′−1
t )⊗ zt; MΛ

t ,ZΛ
t ) = PB(diag(−1,−1,−1, 1) · q̄′t ⊗ zt; MΛ

t ,ZΛ
t ) =

= PB(q̄′t; diag(−1,−1,−1, 1) ·MΛ
t ⊗ zt︸ ︷︷ ︸

M̌

,ZΛ
t ) = PB(M̌,ZΛ

t ) (5.3)

where PB(M̌,ZΛ
t ) represents the Bi distributed measurement noise PB

(
MΛ

t ,ZΛ
t

)
with a peak

aligned with zt and spread controlled by ZΛ
t .

The estimate is described by PB(Me
t ,Zet ), directly obtained by the product of the Bi dis-
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tributed system state PB(M̄t, Z̄t) with the Bi disturbed measure PB(M̌,ZΛ
t ) (Algorithm 5).

The update quaternion qt is obtained from the PB(Me
t ,Zet ) mode (Algorithm 5). The quater-

nion error is obtained by multiplying the previous quaternion (qt−1) with the conjugate of
the estimated one (q̄t) [Finkelstein et al. , 1962; Conway, 1937]. The angular velocities are
obtained converting to the angle-axis representation, according to:

ωx = 2 cos−1(q4)
∆t × q1

‖ qe ‖
(5.4)

ωy = 2 cos−1(q4)
∆t × q2

‖ qe ‖
(5.5)

ωz = 2 cos−1(q4)
∆t × q3

‖ qe ‖
(5.6)

where ∆t is the sampling interval and qe = qt−1 ⊗ q̄t = [q1, q2, q3, q4]T (3.7).
As described in Section 5.3.1, the UBiF uses a Bi distribution to model the periodic nature

of rotations better and decrease the estimate error. The performance evaluation of this filtering
scheme will be made in Section 6.7.

5.3.2 Unscented Bingham-Gauss Filter (UBiGaF)

The UBiF (Section 5.3.1) does not quantify the uncertainty of the correlation between angular
velocity ω and the quaternion attitude q on their natural manifold. We will use the BiGa
distribution [Darling & DeMars, 2016a; Jazwinski, 1970] (Appendix C) that allows capturing
this correlation in a filtering structure (Section C.2). The BiGa is a distribution that consists in
the product of a Bi distribution and a Gaussian distribution conditioned on the Bi distributed
random variables (Section C.2). Thus, we propose the UBiGaF. As described in Section 5.3.1,
the multiplication of two Bi distributions is closed under multiplication after renormalization
(Section C.1.2), but the same did not happen using the BiGa distribution since we do not have
a closed-form multiplication. To be able to incorporate it on a filtering structure, we developed
an update step that was based on the Unscented Transform (UT) [Rui & Chen, 2001a; Julier,
2002; Li et al. , 2003] with a structure similar to the UKF (Appendix A). The UBiGaF is
separated into: (i) prediction (Section 5.3.2.1), and (ii) update (Section 5.3.2.2). The UBiGaF
schematic view is described in Figure 5.6. The performance evaluation of this filtering scheme
will be made in Section 6.7.
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Figure 5.6: UBiGaF schematic view.
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5.3.2.1 Prediction

The prediction step is described in Algorithm 6. The system state at time t− 1 is given by:

rTt−1 =
[
qTt−1,ω

T
t−1
]

(5.7)

where qt−1 is the attitude quaternion and ωt−1 is its angular velocity at time instant t − 1.
The state vector is assumed to be BiGa distributed with parameters defined by mω

t−1 (C.13),
Pω
t−1 (C.14), Pq

t−1 (C.15) and Pqω
t−1 (C.16) at time instant t − 1. The system model is given

by:

rt = F(rt−1)�Ψt−1 (5.8)

where Ψt−1 ∼ PBG with Covariance Pτ
t−1 for the angular velocity part and Covariance Φt−1 ∼

PΦ
t−1 ∼ PB(MΦ

t−1,ZΦ
t−1) for the orientation part, F(.) is the motion model (3.12) and �

represents the BiGa composition obtained using the sigma points representation (Appendix E).

Algorithm 6 Unscented Bingham-Gauss Filter (UBiGaF) - Prediction Step
. Initialization: Ψt−1 (5.8)
. Inputs: mω

t−1,Pω
t−1,Pq

t−1,P
qω
t−1 (5.8)

1. Approximate the current system state (C.13, C.14, C.15, C.16):[
qTt−1,ω

T
t−1
]
∼ PBG

([
qTt−1,ω

T
t−1
]

; mω
t−1,Pω

t−1,Pq
t−1,P

qω
t−1
)

2. Obtain the sigma points Zi
t−1 using deterministic sampling (Appendix E);

3. Add uncertainty Pτ
t−1 to the angular velocity covariance:

P̂ω
t−1 = Pω

t−1 + Pτ
t−1

4. Add Bi noise Φt−1 to the orientation covariance (C.7):
ΦPq

t−1 = Cov
(
Pq
t−1 ⊗Φt−1

)
5. Add uncertainty P̂ω

t−1 to the sigma points angular velocity part and ΦPq
t−1 to the quaternion

part originating the sigma points Ẑi

t−1;
6. Propagate each one of the sigma points Ẑi

t−1 (3.12):
Ẑi

t = Fr(Ẑi

t−1) = fq(Ẑ
i

t−1)⊗ qM
where fq is the quaternion part of the considered sigma point and qM is the quaternion motion;
given by the angular part fω(Ẑi

t−1) of each sigma point;
7. Compute m̄ω

t (E.19), P̄ω
t (E.20), P̄q

t (E.21) and P̄qω
t (E.22) from Ẑi

t.
. Outputs: m̄ω

t , P̄ω
t , P̄q

t , P̄qω
t , Ẑi

t

The quaternion motion qM = [q1, q2, q3, q4]T (3.7) used to propagate each one of the sigma
points Ẑ

i

t−1 (Algorithm 6) is given by (3.14):

q1 = ωx
‖ ω ‖

sin
(
‖ ω ‖ ∆t

2

)
(5.9)

q2 = ωy
‖ ω ‖

sin
(
‖ ω ‖ ∆t

2

)
(5.10)

q3 = ωz
‖ ω ‖

sin
(
‖ ω ‖ ∆t

2

)
(5.11)

q4 = cos
(
‖ ω ‖ ∆t

2

)
(5.12)

where fω(Ẑ
i

t−1) = [ωx, ωy, ωz]T and ∆t is the sampling interval. We calculate the BiGa
parameters from the obtained sigma points after propagation Ẑ

i

t, as illustrated in Section E.3.
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After the prediction step (Algorithm 6), the predicted system state is described by a BiGa
distribution with parameters defined by m̄ω

t , P̄ω
t , P̄q

t , P̄qω
t (Figure 5.6).

5.3.2.2 Measurement update

The measurement update step is described in Algorithm 7, and is similar to the used in the
UBiF (Section 5.3.1.2). The measurement model is also represented as:

zt = H(qt)⊗Λt (5.13)

where zt ∈ S3 is the current observation (Figure 5.4) at time t and Λt ∼ PB
(
MΛ

t ,ZΛ
t

)
is the

Bi distributed measurement noise. Function H(.) relates the measurement zt to the values of
the orientation qt (identity function in our study case).

Algorithm 7 Unscented Bingham-Gauss Filter (UBiGaF) - Update Step
. Initialization: Λt (5.13)
. Inputs: m̄ω

t , P̄ω
t , P̄q

t , P̄qω
t , Ẑi

t (Algorithm 6) and zt (5.13)
1. Predict measurement expected value z̄t (A.23) from Ẑi

t angular part;
2. Predict measurement covariance Pzz

t (A.24) from Ẑi

t angular part;
3. Obtain the innovation νt (A.25);
4. Obtain the innovation covariance Pνν

t (C.7):
Pνν
t = Cov(νt ⊗Λt)

5. Computation of the cross-correlation matrix Prz
t (A.27);

6. Computation of the Kalman gain Kt (A.28):
Kt = Prz

t (Pνν
t )−1

7. Update of the a posteriori state estimate rt (A.29);
8. Retrieve mω

t , Pω
t , Pq

t , Pqω
t from the obtained state covariance Pr

t (A.30).
. Outputs: rt,mω

t , Pω
t , Pq

t , Pqω
t

Using the BiGa formulation, we can model the full rotational noise, both in its angular
position and velocity components. As initially described in Section 5.3.2, we do not have
a closed-form multiplication for the product of two BiGa distributions. To be able to deal
with that, we have adopted a structure similar to the UKF (Appendix A). Using this filtering
structure, we can obtain the a posteriori state estimate rt and state covariance Pr

t , as described
in Algorithm 7. Contrarily to the UBiF, we do not need to estimate the angular velocities
from the quaternion difference since we estimate them directly in the filter. The performance
evaluation of this filtering scheme will be made in Section 6.7.

5.4 Approximate weighting and Resampling

Section contents

5.4.1 Pose evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

This section describes the explored similarity metrics used to approximate the likelihood func-
tion (Section 5.4.1), and the adopted resampling strategies (Section 5.4.2).
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5.4.1 Pose evaluation

Nowadays, all UAVs have their CAD model available, so their pose can be estimated using 3D
model-based methods. In our approach, we synthetically generate images of the UAV, with
a certain rotation and translation, and compare it with the actual image pixel information
using a similarity metric. The increase of computational capability allows the approximation
of very complex methods and real-time particle evaluation. The similarity metric should be
designed to be robust to illumination changes and background clutter. We have tested three
different similarity metrics: (i) color [Pessanha Santos et al. , 2014b; Taiana et al. , 2010, 2008]
(Section 5.4.1.1), (ii) contour [Choi & Christensen, 2011] (Section 5.4.1.2), and (iii) Distance
Transform (DT) [Vicente et al. , 2016] (Section 5.4.1.3). Their performance was evaluated,
taking into account realistic backgrounds and the needed processing time, as described in
Section 6.6.

5.4.1.1 Color similarity metric

The color similarity metric [Pessanha Santos et al. , 2014b; Taiana et al. , 2010, 2008] measures
the difference between the RGB color space histogram (8 bins for each color – B = 24) of two
areas of the real captured image: (i) the inside, and (ii) the outside of the UAV boundary
projected in the real image. This approach assumes that the UAV is all the same color, being
distinct from the expected tracking backgrounds. The difference between them is calculated
using the Bhattacharyya similarity metric [Gómez-Luna et al. , 2013] according to:

p(yt | xt) ∝ dcolor = 1−
B∑
b=1

√
hinner(b) · houter(b) (5.14)

where hinner is the inner histogram, houter is the outer histogram, and b is the respective
histogram bin. One example of inner and outer histogram regions can be seen in Figure 5.7,
where we have the inner histogram that represents the UAV hypothesis area and the outer
histogram that represents the background area between the obtained OBB and the UAV.

Figure 5.7: An example of the inner (black) and outer (blue) regions.

5.4.1.2 Contour similarity metric

In the contour similarity metric, the set of visible edges (from the 3D CAD model) is projected
onto the captured image plane according to the currently tested pose hypothesis. The edge line
segments are identified, and a sample point in the middle is generated. Then a 1D perpendicular
search (Figure 5.8) is made to match the sample points with the nearest edge. After calculating
the matches, the contour metric is calculated as in [Choi & Christensen, 2011]:

p(yt | xt) ∝ Lcontour = exp−λv
(pv−pm)

pv · exp−λeē (5.15)
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where ē is the arithmetic average distance between the sample points and the matched edge
points, λv and λe are sensitivity terms used to tune the metric, pv is the number of visible
sample points and pm is the number of matched sample points.

Figure 5.8: UAV sampled points with 1D search lines (black).

5.4.1.3 DT similarity metric

To compute the DT of an image, we apply one edge detector (e.g. Canny edge detector
[Canny, 1986]) to the image, and then for each pixel, we compute its distance to the closest
edge [Borgefors, 1986], as seen in Figure 5.9. Then, the DT metric is calculated as in [Vicente
et al. , 2016]:

p(yt | xt) ∝ LDT = exp−σd (5.16)

where σ is a fine-tuning parameter and d is given by:

d = 1
k

B∑
i=0

E(ȳ(i)) ·D(y(i)) (5.17)

where k is the number of edge pixels on the hypothesis to compare, B is the total number of
image pixels, y is the captured frame (Figure 1.9), ȳ is the pose hypothesis image (Figure 5.9),
D(y) is the distance transform of the captured frame and E(ȳ) is the edge map of the pose
hypothesis image to compare (Figure 5.9).

Figure 5.9: UAV image ȳ (left), edge map E(ȳ) (center), and DT representation D(ȳ) (right).

5.4.2 Resampling

After we approximate the particle weights (Section 5.4.1), we apply a resampling step [Thrun
et al. , 2005; Haug, 2012; Li et al. , 2015a; Pessanha Santos et al. , 2017]. The resampling
consists in selecting new particle positions and weights such that the discrepancy between the
resampled weights is reduced [Douc & Cappé, 2005; Coquelin et al. , 2009; Bréhard et al.
, 2008], i.e. eliminating particles with low approximate weights and by replicating particles
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having high approximate weights. We have tested ten traditional resampling schemes, namely
the [Beadle & Djuric, 1997; Carpenter et al. , 1999; Gordon et al. , 1993; Li et al. , 2015b;
Liu & Chen, 1998; So, 2003; Douc & Cappé, 2005; Bolic et al. , 2003; Budhiraja et al. , 2007;
Crisan & Lyons, 1999; Jianping et al. , 2009; Liu et al. , 1998]: stratified, systematic, residual,
residual systematic, optimal, reallocation, metropolis, minimum sampling, multinomial, and
branching, as described in Appendix B. The analysis of the inclusion of the resampling step
in the complete system formulation will be performed in Section 6.7.

5.5 Pose optimization

Section contents
5.5.1 Particle Filter Optimization (PFO) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.2 Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.3 Modified PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.4 Genetic Algorithm based Framework (GAbF) . . . . . . . . . . . . . . . . . . . . 53

The pose optimization objective is to perform a local search (refinement steps) in the particle
neighborhood to optimize the used similarity metric using the current frame yt information.
This local optimization can help to reach a better pose estimate, especially if we are near
the global optimum [Gall et al. , 2010; Liu et al. , 2016a]. All the implemented similarity
metrics (Section 5.4.1) are noisy and non-monotonic1 with pose (Section 6.5), and cannot be
optimized with gradient-based methods2. We have tested four different algorithms for pose op-
timization: (i) PFO (Section 5.5.1), (ii) PSO (Section 5.5.2), (iii) modified PSO (Section 5.5.3),
and (iv) GAbF (Section 5.5.4). The pose optimization performance evaluation will be made
in Section 6.6.

5.5.1 Particle Filter Optimization (PFO)

The PFO algorithm [Zhou & Chen, 2013; Liu et al. , 2016a; Zhang et al. , 2007] is based on the
PF theory iterated on the same input (image frame), as described in Section 3.2. In the PFO,
the posterior PDF at time t p(xt | y1:t) (Section 3.1.3) is iteratively approximated on each one
of the N sequential iterations k (1 < k ≤ N) by a set of particles (samples) {p̄mk , wmk }

M
m=1 at

the same time instant t [Zhou & Chen, 2013; Liu et al. , 2016a; Zhang et al. , 2007]. In our
PFO implementation, p̄mk = [(ūmk )T , (q̄mk )T ]T (3.5) represents the UAV pose samples that are
initialized with the pose subpart of x̃1:M

t (Figure 5.1) and the observation yt is the captured
image frame. Since we are performing optimization at the same time instant, the velocity
component of the state is not affected [vTt ,ωTt ]T (3.5), and the PFO does not use it. Although
not used in the PFO implementation, the linear and angular velocity vector of each of the
original particles is maintained to be used in the next system iteration (Figure 3.6).

The particle weights will be approximated on each iteration by a similarity metric, as de-
scribed in Section 5.4.1. On each PFO iteration, we will also perform resampling (Section 5.4.2).
The transition model adds some artificial dynamic noise between iterations [Pessanha Santos
et al. , 2017]:
1 Multimodal with more than one peak or mode.
2 For instance, Gradient descent [Rumelhart et al. , 1985] or Levenberg–Marquardt [Moré, 1978].
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x̄1:M
k+1 = x̄1:M

k + ζ (5.18)

where ζ is typically a zero-mean Gaussian random variable that can have constant variance,
a decreasing variance in time, or another kind of evolution developed for the specific imple-
mentation [Flury & Shephard, 2011; Kantas et al. , 2015; Liu & West, 2001b]. The amount of
added noise must be tuned to decrease the filter convergence time. The artificial noise schemes
applied in the experimental tests to generate the proposal distribution will be described in
Section 6.6.

Algorithm 8 Particle Filter Optimization (PFO)
. Inputs: x1:M

t = [(umt )T , (qmt )T , (v1:M
t )T , (ω1:M

t )T ]T (3.5) , N
. Initialization:
1. Initialize the particle set p̄m0 = [(ūm0 )T , (q̄m0 )T ]T = [(umt )T , (qmt )T ]T (3.5) and the weights wm0
with 1

M
creating {p̄m0 , wm0 }Mm=1.

� Importance sampling (k = 1 : N):
1. Explore the parameter space (3.5) adding noise using a predefined strategy (Section 6.7):

3D position → ūmk = ūmk−1 +N (mtrans,Σtrans)
Orientation → q̄mk = q̄mk−1 ⊗ δqr(Σrot) (3.12)

where m is the mean vector and Σ is the covariance matrix.
� Approximate weighting (k = 1 : N):
1. Approximate the unnormalized weights (Section 5.4.1):

w̃mk ∝ Approximate weighting(p̄mk ,y)
2. Normalize the obtained approximate weights:

wmk = w̃m
k∑M

i=1
w̃i

k

� Resampling (k = 1 : N):
1. Eliminate low approximate weights particles and replicate high approximate weights particles
to obtain M random samples with uniform weights creating {p̂mk , wmk }

M
m=1 →

{
p̄mk , 1

M

}M
m=1

(Sec-
tion 5.4.2).
. Outputs: x1:M

k = [p̄1:M
k , (v1:M

t )T , (ω1:M
t )T ]T

5.5.2 Particle Swarm Optimization (PSO)

In this method, each pose sample p̄mk = [(ūmk )T , (q̄mk )T ]T is updated, taking into account its
history and its neighbors. Since we are performing optimization at the same time instant,
the velocity component of the state is not affected [vTt ,ωTt ]T (3.5), and the PSO does not use
it. After initializing the particle swarm with its respective pose (Section 4.3), each particle
stores its best position (the highest obtained similarity metric) and the best position of its
neighborhood found so far [Nedjah & de Macedo Mourelle, 2006; Zhang et al. , 2015]. The
best neighborhood search topology influences the obtained results, and it depends on the
problem at hand and must be analyzed individually. The adopted search topology is given by:

dni = δni

180 × ς + υni (5.19)

where ς is a relative sensibility term used to fine-tune the similarity metric, δni is the obtained
rotation error and υni is the obtained translation error between particles n and i. δni is given
by:
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δni(Rn, Rm) =
√
‖ logm (RTnRm) ‖2F

2
180
π

[deg] (5.20)

where Rn is the rotation matrix of the particle n and Rm is the rotation matrix of the particle
i. The used PSO scheme is described in Algorithm 9.

Algorithm 9 Particle Swarm Optimization (PSO)
. Inputs: x1:M

t = [(umt )T , (qmt )T , (v1:M
t )T , (ω1:M

t )T ]T (3.5) , N
. Initialization:
1. Initialize the particle set p̄m0 = [(ūm0 )T , (q̄m0 )T ]T = [(umt )T , (qmt )T ]T (3.5) and the weights wm0
with 1

M
creating {p̄m0 , wm0 }Mm=1 (Section 4.3). The PSO velocity ϑm0 vector is initialized with zero.

� Update each particle best position (k = 1 : N):
p̄mbest = fbest(p̄mk−1, w

m
k )

� Update each particle best neighborhood pose (k = 1 : N):
p̄mneigh = fneigh(p̄mk−1, w

m
k )

� Obtain each particle velocity (k = 1 : N):
1. The velocity ϑmk is obtained according to [Kwolek, 2013; Saini et al. , 2014; Zhang et al. , 2015]:
ϑmk = $ϑmk−1 + c1r1[p̄mbest − p̄mk−1]︸ ︷︷ ︸

Social component

+ c2r2[p̄mneigh − p̄mk−1]︸ ︷︷ ︸
Cognitive component

where $ is the inertia weight that tunes the influence of the iteration k − 1 velocity ϑmk−1 [Shi
& Eberhart, 1998], {c1, c2} are constants that tune the balance between the cognitive and social
component, {r1, r2} are random variables between zero and one.
� Update each particle pose (k = 1 : N):

p̄mk = p̄mk−1 + ϑmk
. Outputs: x1:M

k = [p̄1:M
k , (v1:M

t )T , (ω1:M
t )T ]T

5.5.3 Modified PSO

We have also tested the existing variation of the PSO algorithm [Clerc & Kennedy, 2002; Khan
& Nystrom, 2010] (Section 5.5.2) with ϑmk given by:

ϑmk = Γ(ϑmk−1 + c1r1[xmbest − xmk−1]︸ ︷︷ ︸
Social component

+ c2r2[xmneigh − xmk−1]︸ ︷︷ ︸
Cognitive component

) (5.21)

where Γ is a constriction coefficient. If the signal between [xmbest − xmk−1] and [xmneigh − xmk−1]
is the same in all dimensions, then {r1, r2} are considered Gaussian random variables between
zero and one, otherwise {r1, r2} are considered uniform random variables between zero and
one. The use of a Gaussian random distribution has the purpose of adding particle diversity
to the solution since it promotes jumps in the particles. The constriction coefficient aims to
control the velocity of the particle and ensure convergence. This coefficient is given by [Khan
& Nystrom, 2010]:

Γ = 2k
| 2− ϕ−

√
ϕ(ϕ− 4) |

(5.22)

where k ∈ [0, 1] and ϕ = c1 + c2. Small k values result in a fast convergence with local
exploration and higher values lead to slow convergence but global exploitation. The value of
one is enough for most applications [Clerc & Kennedy, 2002].
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5.5.4 Genetic Algorithm based Framework (GAbF)

In this section, will be described an original approach based on the evolution strategies present
on the genetic algorithms [Boli et al. , 2004; Kwok et al. , 2005; Cagnoni et al. , 2007; Park
et al. , 2007, 2009], to avoid sample impoverishment [Simon, 2006; Li et al. , 2012]. Instead of
artificial noise, crossover and mutation operators are adopted to perform the exploration of the
pose space [Carmi et al. , 2009; Goldberg & Deb, 1991; Kwok et al. , 2005; Park et al. , 2009;
Uosaki et al. , 2003; Xiaowei et al. , 2013]. The GAbF operates in three phases (Figure 5.10):
(i) bootstrap, (ii) coarse optimization, and (iii) fine optimization, as described in Algorithm 10.

BOOTSTRAP
COARSE

OPTIMIZATION
FINE 

OPTIMIZATION

Tmin

Tcoarse

Figure 5.10: GAbF phases.

In the bootstrap phase, the best B pose samples coming from the approximate weighting
and resampling stage (Figure 5.1) are collected in a list (Top B). The likelihood of each pose
pmk is evaluated and stored in the list. The best A pose samples are stored in an auxiliary buffer
(Top A). The pose samples with weight w very close to zero (below δ = 0.1) are eliminated and
replaced with a random particle selected from the Top A buffer, added to Gaussian noise of
covariance Σinit. At this point, all pose samples have a likelihood above δ. Then, we perform
up to ten improvement steps. In each step, all pose samples are evaluated and compared to
those in the Top A (Figure 5.11) if the obtained weight is higher, the Top A is updated. If
there are at least two pose samples in the Top A with likelihood bigger than Threshold min
Tmin, the bootstrap phase ends. Otherwise, each particle is perturbed with Gaussian noise
with covariance Σbootstrap. If after ten of these improvement steps, we do not have two pose
samples above Tmin, the bootstrap process is restarted up to a maximum of three restarts. In
our experiments (choosing a proper Tmin), we have noticed that the occurrence of restarts is
infrequent. At any stage of the coarse and fine optimization steps, the best two pose samples
have a significant role in the optimization process because they will provide the chromosomes
for an approach inspired by genetic algorithms.

The coarse optimization phase begins when at least two pose samples have a weight higher
than Tmin. Each particle in the Top A list coming from the bootstrap process is analyzed. If the
particle is the best one, it is perturbed with some Gaussian noise (Σbestcoarse

). If the particle
weight is smaller than the best two pose samples are combined using a crossover operation to
create a new particle. The crossover operation consists of the random selection of attributes
(X, Y , Z, α, β, γ in our case) of the original pose samples. To half of the pose samples
generated by crossover is applied a soft mutation by adding Gaussian noise Σcoarse to the
result. Together these rules allow a focused particle diversity, simultaneously converging to the
best solution and avoiding possible local maxima. The process stops when at least two of the
pose samples are above the value Threshold Tcoarse. If this does not happen in ten iterations,
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Figure 5.11: GAbF scheme.

the pose optimization filter returns to the bootstrap phase automatically.
The fine optimization phase is analogous to the coarse phase, but the Gaussian noise co-

variance applied Σfine in mutation is lower, to make a fine-tuning to the estimated pose. The
fine optimization phase ends after five iterations. If during this process, the two best pose
samples in the Top A became lower than Tcoarse but higher than Tmin the coarse optimization
phase is restarted. In an extreme situation where the two best pose samples in the Top A

became lower than Tmin the bootstrap phase is restarted.

Algorithm 10 Genetic Algorithm based Framework (GAbF) - Pseudocode
. Input: Top B, w, ΣB , Σinit, Σbootstrap, Σcoarse, Σfine, Tmin, Tcoarse
. Output: Top A, Top B, w

1: loop
2: w = Compute likelihood(Top B)
3: (Top A, Phase) = Optimization phase(Tmin, Tcoarse, w, step)
4: if Phase = bootstrap and step = 0 then
5: for All pose samples i in Top B do
6: if w(i) < δ then
7: Top M(i) = Random(Top A) + noise(Σinit)
8: end if
9: end for

10: end if
11: if Phase = bootstrap and step > 0 then
12: Top B = Top B + noise(Σbootstrap)
13: end if
14: if Phase = coarse then
15: Best Particle = Best Particle(Top B) + noise(Σbestcoarse )
16: Other pose samples = Crossover and Mutation(Top B, Σcoarse)
17: end if
18: if Phase = fine then
19: Best Particle = Best Particle(Top B) + noise(Σbestfine )
20: Other pose samples = Crossover and Mutation(Top B, Σfine)
21: end if
22: step = step + 1
23: end loop



Chapter 6

Experimental results

If a tree falls in the forest and no one is there to hear it, does it make a sound?

Bishop George Berkeley
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This chapter shows the most relevant results obtained during the development of this work. All
the developments were made on a 3.70 GHz Intel i7-8700K Central Processing Unit (CPU) using
an NVIDIA Quadro P5000 GPU with bandwidth 288.5 GB/s and pixel rate 110.9 GPixel/s.

6.1 Introduction

To describe the overall system performance, we have analyzed landing sequences taking in
three types of simulation environments described in Section 6.2: (i) normal, (ii) complex, and
(iii) real background. The use of a simulated environment is justified by the need to generate
ground truth sequences of UAV motions (six Degrees Of Freedom (DOF)), which would be
hard to obtain in real imagery. The use of simulations with different complexities is essential
to assess the robustness of the overall system and its individual components to a diversity of
possible conditions. Although we do not have ground truth data from landing sequences, we
have labeled real data in the target detection performance analysis (Section 6.3). We have
also used real video sequences in a final system qualitative validation (Section 6.7.5). Some
examples of the performed experimental tests, including the used experimental setup, can be
seen in Figure 6.1 and Figure 6.2.

55
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Figure 6.1: Performed experimental tests I (some examples).

In this chapter, we will describe the system modeling and simulation (Section 6.2), the
target detection system evaluation (Section 6.3), the pose boosting performance (Section 6.4),
the comparison of the developed similarity metrics (Section 6.5), evaluate the pose optimiza-
tion (Section 6.6), the final system tracking performance (Section 6.7), and analyze the GPU
implementation (Section 6.8). A summary of the performed experimental tests can be seen in
Table 6.1.

Table 6.1: Experimental tests summary.
Tests: Objective: Inputs: Outputs:

Synthetic training dataset Precision-Recall curvesTarget detection
analysis (Section 6.3) Obtain detector performance Real test dataset Processing time

Pre-trained databasePose boosting
evaluation (Section 6.4)

Obtain hypotheses
generation performance Normal background dataset Pose error

Normal background dataset Metrics valueComparison of
similarity metrics (Section 6.5) Obtain the metrics performance Complex background dataset Processing time

Pose errorPose optimization
evaluation (Section 6.6)

Obtain the pose optimization
schemes performance Normal background dataset Processing time

Normal background videoComparison between
architecture variants (Section 6.7.1) Complex background video Pose error

Effective number of particlesParticle number vs.
Pose optimization (Section 6.7.2) Complex background video Pose error

Real background
tracking analysis (Section 6.7.3) Real background video Pose error

Pose boosting
contribution analysis (Section 6.7.4) Real background video Pose error

Complete system
analysis (Section 6.7)

Real captured video
quantitative analysis (Section 6.7.5) Real background video ———————–

Histogram similarity (error)Distortion correction
evaluation (Section 6.8.2) Real images dataset Processing time

Rendering errorParticle rendering &
Model simplification (Section 6.8.3) UAV CAD model Processing time

UAV CAD model

GPU performance
analysis (Section 6.8)

GPU-based color
similarity metric (Section 6.8.4) Normal background dataset Processing time
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Figure 6.2: Performed experimental tests II (some examples).

6.2 System Modeling and Simulation

Section contents

6.2.1 Normal background video sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Complex background video sequence . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.3 Real background video sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

To obtain ground truth data in landing sequences, we have developed a “realistic” simulator
with three different test environments denoted: (i) normal, (ii) complex, and (iii) real, as
illustrated in Figure 6.3. The simulated video environments allow a quantitative analysis of the
results. The CAD models and image renders are made with Open Graphics Library (OpenGL)
[Woo et al. , 1999; OpenGL, 2016]. The synthetic video generation scheme is described in
Figure 6.4. The UAV motion is created using the computer keyboard as a joystick and the
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rigid body dynamics1 to perform the simulation of the UAV trajectory [Etkin & Reid, 1996;
Valavanis & Vachtsevanos, 2015; Beard & McLain, 2012]. It was not considered the wind
influence or any other external force in the developed simulation environment.

Figure 6.3: Video environments: Normal (left), complex (center) and real (right).

BACKGROUND
IMAGE OR VIDEO

SYNTHETIC VIDEO
SEQUENCE

MOTION

OPTIONS

SEA CAD MODEL UAV CAD MODEL

SYNTHETIC
VIDEO

RENDERER

Figure 6.4: Synthetic video generation scheme.

6.2.1 Normal background video sequence

The simulator can be configured with the size of each frame on the video, the applied movement
to the background image, the UAV and sea surface motion, image blur and noise (Figure 6.4).
The sea surface is simulated using one additional CAD model representing a simple terrain
model (Figure 6.4) that moves between frames with random displacement generated by a zero-
mean Gaussian distribution. In the normal background video sequence, we use a real sky
gradient obtained during experimental tests (Figure 6.5).

Figure 6.5: Created normal synthetic video sequence (example).

1 Without considering aerodynamic forces.



6.3. TARGET DETECTION EVALUATION 59

6.2.2 Complex background video sequence

In the complex background video sequence (Figure 6.6), we apply a translation on the horizontal
axis to a background filled with clouds to simulate the sky background motion. When the sky
background image reaches the right border, it is mapped to the left border. It is important to
note that in the complex sequence, we are analyzing one extreme case where the sky background
is filled with clouds and exists a strong gradient variation due to the sunset. It reflects common
issues in outdoors imagery2 (Figure 6.6).

Figure 6.6: Created complex synthetic video sequence (example).

6.2.3 Real background video sequence

In the real background video sequence, we use a real captured FPB video and render the UAV
CAD model on it to obtain a landing sequence with ground truth information (Figure 6.7). This
sequence presents less clutter and noise in the background when compared with the complex
sequence (Figure 6.6), but brings the advantage of using real data captured during field tests.

Figure 6.7: Created real synthetic video sequence (example).

6.3 Target detection evaluation

Section contents
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The used target detection methods are based on supervised learning to train a model from
a dataset with both the inputs (images) and the desired results (ROI containing our UAV)
[Vaghela et al. , 2009]. We have tested YOLO [Redmon & Farhadi, 2018] and SSD [Liu et al.
, 2016b] (Section 4.2). The output of the network is a vector of bounding boxes containing
a confidence value for each one after processing the whole image. We use the GPU both for
training and to perform detection.
2 Non-uniform and textured background, space-variant illumination.
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6.3.1 Training and Tests description

The training dataset was generated by projecting the UAV CAD model in various poses into
real background in a total of 335769 images (Section 4.2.2). 25% of the entire dataset is used
for validation. A test set independent of the training set is composed of 679 real full images
(width× height = 1920× 1080) containing our UAV, as shown in Figure 6.8.

Figure 6.8: Test samples (dataset example).

6.3.2 Performance metrics

Two different performance metrics were used: (i) precision3, and (ii) recall4 [Davis & Goadrich,
2006; Flach & Kull, 2015; Howse et al. , 2015]. The precision is given by:

Precision = TP

TP + FP
(6.1)

where TP stands for true positive and FP for false positive. A true positive is one annotation
that is also found as a detection, and a false positive is a detection for which no annotation
exists. The recall defines how many of the objects in the image are found and is given by:

Recall = TP

TP + FN
(6.2)

where FN stands for false negative. A false negative is an annotation for which no detection
exists. The error evaluation will be made using Precision-Recall Curves (PRCs) [Davis &
Goadrich, 2006] that describe the trade-off between precision and recall for different detection
threshold values. The ideal method should map to a point in the graph at the upper-right
corner where Precision = Recall = 1. In this case, all objects in the image are found, and
there are no false positive detections. The Area Under the Curve (AUC) measures how good
the detector is across all the threshold values, being 100% the ideal value [Boyd et al. , 2013;
Buckland & Gey, 1994; Keilwagen et al. , 2014].

6.3.3 Real dataset results

As described in Figure 6.9, the YOLO obtained the best results on the test dataset with a
PRC AUC of about 72%, which is 19% higher than the obtained using SSD. Some examples
of detections for SSD can be seen in Figure 6.10 and for YOLO in Figure 6.11. From the
analysis of Figure 6.9, we can see that we obtain for YOLO a high precision value with a
3 How much of the found detections are actual objects.
4 How many objects that are in the image are found.
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few false positives (Figure 6.12) and a little lower recall since, in the vast majority of the test
samples, the detections are true positives, but we obtain some false negatives (Figure 6.13). On
a 1280× 720 image, the YOLO detection takes about 0.034 seconds (≈ 30 Frames Per Second
(FPS)) that is compatible with the real-time requirements.
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Figure 6.9: Obtained PRCs using YOLO (blue) and SSD (red).

Figure 6.10: Example of UAV detections using SSD (green rectangles).

Figure 6.11: Example of UAV detections using YOLO (pink rectangles).

Figure 6.12: Example of false positives using YOLO (orange rectangles).
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Figure 6.13: Example of false negatives using YOLO (yellow rectangles).

6.3.4 Conclusions

We will use YOLO in our approach since it presents the best compromise between accuracy
and speed. Some examples of detections using YOLO can be seen in Figure 6.11.

6.4 Pose boosting evaluation
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A pre-trained database for hypotheses generation (Section 4.3) was created by rendering 10999
sample images of the UAV 3D CAD model at a fixed position (X = 0, Y = 0 and Z = 4),
but varying the Euler angles5 α, β and γ according to a uniform distribution for each angle
independently with respect to the camera reference frame. In a real scenario, our UAV is
cooperative during the landing and is approximating our position, so we focus our database on
the front hemisphere [−90◦, 90◦], as described in Figure 6.14.

Figure 6.14: Database virtual sphere representation (nominal pose illustration).

6.4.1 Tests description

To test the method, we have rendered 15000 random poses for the UAV in the virtual scenario
at 5, 15, and 30 meters distance. Then, we retrieve the top 10, 25, 50, and 100 pose samples
5 Euler angle α represents the rotation around X, β represents the rotation around Y , and γ represents the

rotation around Z (Figure 3.1).
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from the database, using the scheme described in Figure 6.15, and analyze the obtained error
on each coordinate independently. We have used a normal background without noise and blur
(Section 6.2.1). The idea is to evaluate the ability of our method to generate hypotheses close
to the correct solution to feed the tracking PFs, so we evaluate the method quality via the
error of the closest generated pose.

RANDOM POSE
GENERATION

FRAME M BEST 
POSSIBILITIES

ERROR
CALCULATION

SAVE BEST
POSSIBILITY

POSE BOOSTING

Figure 6.15: Pre-trained database initialization error analysis.

6.4.2 Performance metrics

The translation error between the selected pose and the ground truth pose was obtained using
the Euclidean distance, and the orientation error was obtained according to (3.3):

δ(Rg, Rr) =

√
‖ logm

(
RTg Rr

)
‖2F

2
180
π

[deg] (6.3)

where Rg corresponds to our ground truth rotation matrix and Rr corresponds to the retrieved
rotation matrices. The ground truth and the hypothesis with the lower error were selected to
evaluate the performance of our system (Figure 6.15). From the saved data, we have obtained
the translation error directly from the coordinate difference and the rotation error according
to (3.4):

qe = qg ⊗ q̄r (6.4)

where ⊗ represents unit quaternion multiplication (the composition of orientations), qg corre-
sponds to our ground truth quaternion, and q̄r corresponds to the conjugate [Finkelstein et al.
, 1962; Conway, 1937] of the obtained hypothesis quaternion. Each obtained error quaternion
qe is then converted to Euler angles to analyze each angle independently. It was also obtained
the Standard Deviation (SD)6, the Mean Absolute Error (MAE)7, and the Root Mean Square
Error (RMSE)8 [Willmott & Matsuura, 2005] of the translation (coordinate difference) and
orientation (Euler angles) errors.

6.4.3 Normal background

The obtained translation error decreases with the UAV proximity and is dependent on the
number of pose samples used from the database. In Table 6.2 for the 5 meters case, we can
see that the X and Y errors are very similar with a MAE of approximately 0.06 meters and
a RMSE of approximately 0.08 meters for all the used database particles combination. The
Z error is higher when compared to the X and Y but between [−1.18, 1.27] meters in the
6 A measure used to quantify the data dispersion.
7 Measures the average magnitude of the error without considering their direction.
8 A quadratic metric to obtain the average error, penalizing large variations.
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worst case (10 database particles). We obtain a high number of outliers9, especially in the Z
coordinate.

Table 6.2: Translation error (meters) at 5 meters using 10, 25, 50 and 100 database particles.
X Y Z

10 25 50 100 10 25 50 100 10 25 50 100
5%

Percentile -0.14 -0.13 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -1.18 -1.22 -1.31 -1.36

25%
Percentile -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.23 -0.20 -0.21 -0.22

Median 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.03 0.04 0.04 0.05
75%

Percentile 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.30 0.28 0.27 0.28

95%
Percentile 0.14 0.13 0.13 0.13 0.15 0.15 0.15 0.14 1.27 0.97 0.81 0.76

Outlier % 3.65 4.00 3.94 4.09 5.45 5.81 6.30 6.23 13.22 13.11 13.43 13.05
MAE 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.46 0.41 0.41 0.42
RMSE 0.08 0.08 0.07 0.07 0.08 0.08 0.07 0.07 0.67 0.61 0.59 0.60

SD 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.19 0.09 0.05 0.03

The obtained rotation error is very similar in all the tested distances and is dependent on
the number of pose samples used from the database. In Table 6.3 for the 5 meters case, we
can see that we obtain a high error for all angles with a MAE between [61.81, 73.56] degrees
and a RMSE between [94.20, 97.54] degrees in all combinations for α and γ. We obtain a
better performance in the β angle, with a MAE between [28.66, 41.91] degrees and a RMSE
between [52.52, 61.08] degrees in all the tested combinations. We have some improvement in
the obtained results when we use more than ten pose samples, obtaining e.g. a decrease in the
obtained MAE of about 10% for α and γ and 20% for β when using 25 database pose samples.

Table 6.3: Rotation error (degrees) at 5 meters using 10, 25, 50 and 100 database particles.
Alpha (α) Beta (β) Gamma (γ)

10 25 50 100 10 25 50 100 10 25 50 100
5%

Percentile -166.70 -170.80 -173.20 -174.80 -114.00 -101.40 -106.90 -105.20 -170.20 -172.20 -174.70 -175.60

25%
Percentile -59.88 -33.39 -20.11 -14.08 -25.21 -14.73 -9.82 -7.09 -54.36 -26.44 -17.65 -12.86

Median -1.62 0.04 0.23 -0.18 -0.05 0.01 0.01 -0.05 0.01 -0.01 -0.03 -0.06
75%

Percentile 53.95 33.71 21.16 13.83 22.88 13.35 9.79 6.74 55.70 29.28 17.89 11.73

95%
Percentile 166.30 171.40 173.00 175.00 108.90 102.20 104.10 103.10 168.60 172.40 174.30 175.80

Outlier % 0.00 26.73 34.12 34.95 13.45 21.95 24.95 26.77 0.00 31.73 35.51 35.53
MAE 73.49 67.14 63.98 62.37 41.91 33.75 30.92 28.66 73.56 65.76 63.23 61.81
RMSE 94.85 94.20 95.14 96.56 61.08 54.26 53.63 52.52 97.54 94.84 95.60 96.86

SD 94.83 94.20 95.14 96.56 61.08 54.26 53.63 52.52 97.54 94.85 95.60 96.86

6.4.4 Conclusions

This method presents an overall low translation error, however, the rotation errors are signif-
icant. The large error and the high number of outliers obtained in the rotation are due to a
representation of orientation with features of the OBB (Section 4.3), that present low discrim-
ination of pose and some ambiguities. Future work should research image features with higher
discriminative power. Notwithstanding, the presented method is fast and, as shown later, pro-
vides a good enough diversity of poses both for the initialization of the particle filters and for
9 Values higher than 1.5 times the Interquartile range. The Interquartile range represents 50% of data, being

the difference between the 75% and 25% percentiles.
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the measurement of the unscented particle filters. Depending on our expected orientation, we
could still improve results by using a particular database trained in a specific hemisphere area
(Figure 6.14).

6.5 Comparison of similarity metrics
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The ideal similarity metric should have a global maximum at the correct pose and slowly decay
for increasingly distinct poses (Section 5.4.1). This behavior would result in a large region of
convergence10.

6.5.1 Tests description

We have tested the color similarity metric (5.14) (color), the contour similarity metric (5.15)
with a search distance of 15 and 25 pixels with λv = λe = 1 (Contour15 and Contour25), and
the DT similarity metric (5.16) with σ equal to 25, 50 and 100 (DT25, DT50 and DT100).
We have applied the developed similarity metrics (Section 5.4.1) in the normal and complex
environments, as shown in Figure 6.3. We have performed six tests for each environment
(Table 6.4), rendering the UAV at a nominal pose (Figure 6.14) and varying each variable
(orientation and translation) independently.

Table 6.4: Pose evaluation tests description.
Number: Initial pose (X,Y, Z, α, β, γ): Test: Interval: Sampling rate:

1 Rotation around Z (angle γ)
2 Rotation around X (angle α)
3 Rotation around Y (angle β)

[−180, . . . , 180] 1 degree

4 Translation around Z [3, . . . , 7]
5 Translation around Y [−0.24, . . . , 0.24]
6

(0,0,5,0,0,0)

Translation around X [−0.74, . . . , 0.74]
0.01 meters

6.5.2 Performance metrics

To decide which one to choose, we will evaluate the similarity metrics taking into account the
possible existence of global maximum, local maxima, and analyze their behavior (sensibility
and noise) when we vary (translation and orientation) the rendered possibility.

6.5.3 Normal background

The first tests were made, taking into account a normal background (Figure 6.5). After ana-
lyzing the variations of the angular dimensions in Figure 6.16, it is possible to see that all the
10 The zone where the metric is monotonous for each side of the maximum.
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adopted similarity metrics have peaks around the 180 degrees error. These peaks can lead to
local maxima since we obtain a high value of distance due to the model symmetry (Figure 6.17).
The contour similarity metric presents a very sensitive and noisy behavior, being almost im-
possible to use in the study scenario. The variation, along with translation for the remaining
metrics (Figure 6.18), shows a good X and Y discrimination and better discrimination when
the Z difference is lower than zero Z < 5.

Figure 6.16: Test 1 - Rotation around Z (left), test 2 - Rotation around X (center), and test
3 - Rotation around Y (right) with normal background.

Figure 6.17: An example of 180 degrees variation on Z (left) and 180 degrees variation on Y
(right) where the black color corresponds to the pose overlap.

Figure 6.18: Test 4 - Translation around Z (left), test 5 - Translation around Y (center), and
test 6 - Translation around X (right) with normal background.

6.5.4 Complex background

As expected, in a complex background (Figure 6.6), we get worse performances (Figure 6.19
and Figure 6.20). Since it is based on the pixel difference between two different areas, the color
similarity metric is less affected by the background clutter than the metrics based on edges.
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Figure 6.19: Test 1 - Rotation around Z (left), test 2 - Rotation around X (center), and test
3 - Rotation around Y (right) with complex background.

Figure 6.20: Test 4 - Translation around Z (left), test 5 - Translation around Y (center), and
test 6 - Translation around X (right) with complex background.

6.5.5 Processing time analysis

The processing time for each similarity metric computation is essential, especially in a PF
based framework where each hypothesis (particle) must be evaluated on each iteration at least
once. As seen in the analysis of Table 6.5, the color similarity metric is much faster than
the DT similarity metric. The extra time needed for the DT similarity metric is due to the
extra needed computation to obtain the DT of the captured image and edge map of the pose
hypothesis image to compare (Section 5.4.1). It is essential to take into account that if we are
evaluating 100 pose samples on each iteration, we will have a frame rate of about two FPS
using the color similarity metric. At the moment, the particle rendering is performed using
the GPU, but the similarity metric calculation is performed in the CPU. A GPU-based color
similarity metric will be evaluated in Section 6.8.4.

Table 6.5: Color and DT similarity metrics average processing time.
5 meters 50 meters

Average
time (ms): FPS: Average

time (ms): FPS:

Color similarity 4.9 203.3 3.2 309.3
DT similarity 19.2 52.1 19.4 51.6
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6.5.6 Conclusions

Overall, the similarity metric that presents the best results in the non-cluttered scenario is
the DT, with a slow decay around zero, guaranteeing good discrimination around that pose.
However, in cluttered environments, the DT metric is very noisy and multimodal. Instead,
the color similarity metric works well in all the tested scenarios, having high decay around the
correct pose estimate as the principal disadvantage. If we are analyzing a clear sky, we can use
the DT similarity metric (Section 5.4.1.3), but in the case of a high clutter environment, it is
better to use the color similarity metric (Section 5.4.1.1).

6.6 Pose optimization evaluation
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A test set of 10000 synthetic frames11 was created for the UAV distances 5, 15, 25, 35, and
45 meters (centered on the image using X = 0 and Y = 0) varying the rotation α, β and γ,
according to a uniform distribution restricted in the interval [−180◦, 180◦] with respect to the
camera reference frame12.

6.6.1 Tests description

The hypotheses generation scheme (Section 4.3), was used for the pose samples initialization.
The final pose estimation was obtained from the most likely pose sample after ten pose opti-
mization iterations (N = 10) using 100 pose samples (M = 100). As described in Section 5.5,
we have tested four different pose optimization algorithms: (i) PFO (Section 5.5.1), (ii) PSO
(Section 5.5.2), (iii) modified PSO (Section 5.5.3), and (iv) GAbF (Section 5.5.4). When us-
ing PFO, we have tested ten traditional resampling schemes, namely: stratified, systematic,
residual, residual systematic, optimal, reallocation, metropolis, minimum sampling, multino-
mial, and branching, as described in Appendix B. The implemented artificial dynamic noise
strategies (Section 5.5.1) were:

• Constant variance noise (Noise) - Between successive iterations is added noise with
a constant variance;

• Three discrete phases noise (3Phase) - Each phase has a constant variance (that
decreases between phases) and is executed n times;

• Continuously decreasing variance noise (Iterative) - The variance decreases after
each iteration until it reaches a minimum value.

The added noise was Gaussian with mean mtrans and covariance Σtrans for the translation
(Table 6.6) and mean mrot and covariance Σrot for the rotation (Table 6.7). In the 3Phase
11 Using the normal background, as described in Section 6.4.
12 Euler angle α represents the rotation around X, β represents the rotation around Y , and γ represents the

rotation around Z (Figure 3.1).
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case, we have used n = 3, running the third phase one extra time. In the Iterative case, I is
the current iteration number.

Table 6.6: Translation added artificial noise (meters).
Translation (meters):Artificial

Noise: Mean
mtrans = [mX ,mY ,mZ ]

Covariance
Σtrans = diag[ΣX ,ΣY ,ΣZ ]

Noise diag[0.05, 0.05, 0.01]
First diag[0.05, 0.05, 0.01]

Second diag[0.035, 0.035, 0.005]3Phase
Third diag[0.0025, 0.0025, 0.0025]

Iterative

[0, 0, 0]

diag[0.005, 0.005, 0.005]

Table 6.7: Rotation added artificial noise (degrees).
Rotation (degrees):Artificial

Noise: Mean
mrot = [mα,mβ ,mγ ]

Covariance
Σrot = diag[Σα,Σβ ,Σγ ]

Noise diag[5, 5, 5]
First diag[15, 15, 15]

Second diag[7, 7, 7]3Phase
Third diag[4, 4, 4]

Iterative

[0, 0, 0]

diag[18− I, 18− I, 18− I]

When using PSO, the used distance metric between particles is given by (5.19) with ς = 5
(Section 5.5.2). In the modified PSO, we obtain the constriction coefficient Γ using (5.22) with
k = 1 (Section 5.5.3).

When using GAbF (Section 5.5.4), the used parameters are described in Table 6.8.

Table 6.8: GAbF used parameters.
Parameters: Value: Parameters: Value:

δ 0.1 Σtrans
bootstrap diag[0.1, 0.1, 0.1]

A 3 Σrot
bootstrap diag[5, 5, 5]

B 100 Σtrans
coarse diag[0.25, 0.25, 0.25]

Tmin 0.2 Σrot
coarse diag[25, 25, 25]

Tcoarse 0.3 Σtrans
fine diag[0.15, 0.15, 0.15]

Σtrans
init diag[0.1, 0.1, 0.1] Σrot

fine diag[15, 15, 15]
Σrot
init diag[8, 8, 8]

6.6.2 Performance metrics

The pose samples are evaluated using the color similarity metric (Section 5.4.1.1). The trans-
lation error was obtained from the coordinate difference, and the rotation error is obtained
according to (6.4). It was also obtained the SD, MAE, and RMSE of the error, as applied in
Section 6.4.2.

6.6.3 Normal background

The obtained results are shown in Table 6.9, Table 6.10 and Figure 6.21. In all tested al-
gorithms, the translation error decreases with the UAV proximity. All estimation methods
result in a better Z estimate (Table 6.9) when compared to the simple hypotheses generation
scheme (Section 6.4). The lowest translation error is obtained using the GAbF algorithm,
which presents a MAE below 30 centimeters.
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Table 6.9: Pose optimization schemes translation error (meters) at 5 meters.
PFO Mod. PSO GAbF

X Y Z X Y Z X Y Z
5%

Percentile -0.18 -0.19 -0.47 -0.18 -0.21 -0.67 -0.05 -0.06 -0.25

25%
Percentile -0.06 -0.06 -0.06 -0.04 -0.06 -0.16 -0.01 -0.03 -0.02

Median 0.00 0.00 0.20 0.00 0.00 0.09 0.00 0.01 0.11
75%

Percentile 0.06 0.06 0.06 0.05 0.05 0.40 0.01 0.02 0.31

95%
Percentile 0.22 -0.19 0.21 0.19 0.19 1.01 0.03 0.07 0.54

Outlier % 8.10 8.90 5.20 10.80 9.35 3.65 5.77 5.77 2.58
MAE 0.08 0.08 0.46 0.08 0.08 0.39 0.03 0.04 0.21
RMSE 0.13 0.12 0.67 0.13 0.13 0.54 0.09 0.06 0.27

SD 0.13 0.12 0.59 0.13 0.13 0.52 0.09 0.05 0.23

Table 6.10: Pose optimization schemes rotation error (degrees) at 5 meters.
PFO Mod. PSO GAbF

α β γ α β γ α β γ

5%
Percentile -172.70 -128.70 -174.90 -174.50 -153.40 -175.70 -175.20 -151.80 -173.10

25%
Percentile -80.76 -17.10 -93.72 -85.72 -27.25 -106.4 -85.79 -8.58 -106.10

Median 1.70 1.47 -3.11 3.67 0.30 -0.65 6.59 1.31 2.71
75%

Percentile 77.26 30.49 72.34 100.70 32.12 76.44 111.40 7.19 120.60

95%
Percentile 172.60 158.70 170.80 174.70 161.90 173.30 176.00 112.30 174.10

Outlier % 0.00 24.29 0.00 0.00 26.29 0.00 0.00 30.49 0.00
MAE 106.49 64.53 111.76 110.54 68.83 112.75 106.26 38.95 122.44
RMSE 138.62 103.66 144.37 139.09 103.37 143.94 137.02 77.02 150.75

SD 107.90 75.07 109.40 112.40 84.36 112.00 112.00 58.31 117.60

Concerning the orientation error, we are generating hypotheses in the interval [−180◦, 180◦],
and have used the color similarity metric to approximate the particle weights. As we can see
from the analysis of Figure 6.21, the histograms of the generated particle errors have one peak
near zero degrees, with occurrences between zero and 180 degrees. When we apply pose opti-
mization, the error begins to be concentrated near zero and 180 degrees. This happens mainly
because of the color similarity metric (Section 5.4.1.1) behavior, where complementary poses
are similar (Figure 6.17), which results in high data dispersion (Table 6.10). The best results
are obtained again with GAbF, mainly due to threshold-based phases where the search space
is continuously reduced when we are closer to the solution. The crossover operator between
the best pose samples in the top A (Section 5.5.4) promotes samples on symmetric configura-
tions near the detected local maxima. If we have several local maxima (ambiguous pose), the
possible particle combinations allow us to determine which is the correct pose estimate (global
maxima). If we are stuck in local maxima, the mutation operator allows us to add diversity to
the search space improving the pose estimate.

6.6.4 Processing time analysis

The computational cost for the PSO is very similar to the obtained for the PFO since the most
computationally expensive operation is the similarity metric computation that is performed
for each particle once on each iteration (Section 6.5.5). The PSO methods have to obtain
the best neighborhood particle on each iteration, but that is a fast numeric operation. The
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Figure 6.21: Rotation error histogram (degrees): Hypotheses generation scheme when changing
the number of used database pose samples (left) and Pose optimization (right) using the color
similarity metric.

computational cost for the GAbF method is higher since it is a three-phase13 threshold method,
and we have to obtain multiple times the particle similarity metric before we reach the third
threshold phase and be able to retrieve a pose estimation (Section 5.5.4). Additionally, if
the threshold value of the best particles did not increase in ten iterations, the filter returns
to the previous phase increasing, even more, the needed processing time. As described in
Section 5.5.4, we have noticed that the occurrence of restarts is infrequent.

6.6.5 Conclusions

When we perform local optimization, the results tend to get closer to the local maxima, and
this only decreases the obtained error if we are at the global maximum or if we apply an ade-
quate exploitation scheme. The GAbF presents a better performance but has a high processing
time when compared with the other tested approaches. We will explore the use of pose opti-
mization more extensively in the complete system analysis, as described in Section 6.7, where
we will evaluate landing sequences in different environments (Figure 6.3) to quantify the real
contribution of the scheme.

6.7 Complete system analysis

Section contents
6.7.1 Comparison between proposal architecture variants . . . . . . . . . . . . . . . . . 72
6.7.2 Particle number vs. Pose optimization . . . . . . . . . . . . . . . . . . . . . . . . 77
6.7.3 Real background tracking analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7.4 Pose boosting contribution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7.5 Real captured video sequence qualitative analysis . . . . . . . . . . . . . . . . . . 85

In this section, we have analyzed the proposed system structure (Section 3.5) performing the
following tests:
13 Bootstrap, coarse optimization, and fine optimization phases (Figure 5.10).
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• The comparison between the proposed proposal architecture variants, to be able to quan-
tify the obtained error and the best method in the study scenario (Section 6.7.1);

• The analysis of the contribution of the pose optimization stage, comparing its results
with the obtained when we increase the particle number to be able to quantify the real
advantages of its use (Section 6.7.2);

• The implementation of the best-obtained combinations in a real simulated background
sequence with ground truth given by the UAV CAD model rendering, to be able to
characterize the possible system performance in a real scenario (Section 6.7.3);

• The analysis of the pose boosting stage contribution for the estimate, quantifying the
decrease of performance obtained when we are not using it (Section 6.7.4);

• The qualitative analysis of real captured video sequences, being able to infer the possible
system performance in the real world (Section 6.7.5).

6.7.1 Comparison between proposal architecture variants

In the created landing sequence (Figure 6.22 and Figure 6.23), the UAV is approaching the
ship so that we will use the database trained in the interval [−90◦, 90◦] (Figure 6.14). To be
able to analyze the proposal architecture variants, we will use a constant number of particles.
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Figure 6.22: Tested landing sequence 1: X (left), Y (center) and Z (right).
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Figure 6.23: Tested landing sequence 1: α (left), β (center) and γ (right).

6.7.1.1 Tests description

We have tested five different filter combinations (Table 6.11), in the previously described
normal and complex environments (as seen in Figure 6.3). The difference between the tested
combinations is on the proposal step (Figure 3.6). In combination 1, is used only the pose
boosting sampling (Section 5.2.1). In combination 2, we apply a mixture of pose boosting
sampling and prediction sampling (Section 5.2.2). In combination 3, we apply a UKF for the
rotational and translational motion filtering of the particles (Section 5.2.3). In combinations
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4 and 5, we apply a UKF for the translational motion filtering and, respectively, a UBiF or
UBiGaF for the rotational motion filtering (Section 5.2.4). In the first filter iteration, all the
100 particles (M=100) come from the pose boosting sampling. The velocities are initialized
with zero. The particles are evaluated using the color similarity metric (Section 6.5). In
combinations 2 to 5 every time we capture a new frame, we update the particle vector with 25
new particles coming from the pose boosting sampling to enrich the proposal distribution and
be able to use the most recent observation while maintaining the particle diversity [Okuma
et al. , 2004; Flury & Shephard, 2011; Kantas et al. , 2015; Liu & West, 2001b]. The rest of
the particles in the set are obtained from the last iteration using the resampling reallocation
(Section 6.6). As described in Section 6.6, the best pose optimization results are obtained using
GAbF, but this algorithm presents a high processing time when compared with the other tested
methods. The PFO, on the other hand, presents a more straightforward structure, and we
can easily choose the number of repetitions N that we want to perform on each filter iteration
(Section 5.5.1) presenting a better compromise between speed and accuracy. The PFO artificial
noise (Section 5.5.1) is Gaussian of zero mean and covariance 0.1 meters for the translation in
X and Y , 0.2 meters for the translation in Z and 2,62 rad/sec for the angular velocity (3.12).
The time between iterations is 4t ∼= 0.034 seconds. The temporal filters use a Bi process noise
PΦ
B with MΦ

t = I4×4 and ZΦ
t = diag(-250,-250,-250,0) and a Bi measurement noise PΛ

B with
MΛ

t = I4×4 and ZΛ
t = diag(−800,−800,−800, 0).

Table 6.11: Performed combinations.
Pose optimization

Combination Particle
number (M)

Database
particles Proposal Approximate

weighting Method Resampling Number of
repetitions

1 100 Pose boosting
2 Pose boosting + Prediction
3 UKF
4 UKF + UBiF
5

100 25

UKF + UBiGaF

Color
similarity

metric
PFO Reallocation N

6.7.1.2 Performance metrics

On each iteration, the state estimation is given by the particle with the highest approximate
weight at the end of the filtering pipeline. The translation error was obtained using the
Euclidean distance, and the rotation error according to (6.3) and (6.4). It was also obtained
the SD, MAE, and RMSE of the error, as applied in Section 6.4.2.

6.7.1.3 Normal background

We describe in this section a total of nine tests using the normal background (Figure 6.5). Each
of the combinations in Table 6.11 may have a different value of the number of repetitions in the
pose optimization steps (N). We denote each test with notation CxNy, where x is the number
of the combination in Table 6.11, and y is the number of repetitions of pose optimization
iterations.

The mixture of pose boosting sampling and prediction sampling (C2N0) gives the worst
translation estimate, where we have 90% of the error between [0.54, 15.93] meters (Table 6.12).
We obtain a slightly higher error when compared with the simple use of the pose boosting
sampling (C1N0) since the use of a transition prior is not enough to place a reasonable number
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of particles near the true UAV pose. When using N = 0 (N0), the best estimate is given by
the use of a single UKF (C3N0). When we increase N (1 and 4), the best estimate is given
by the use of the UKF + UBiF with N = 1 (C4N1). The increase of N does not necessarily
decrease the obtained error e.g. we have a decrease in the estimated error in C4N1, but the
error increases in the C4N4 case. A large number of iterations in the same frame makes it
more likely to converge to a local maxima worsening the result.

Table 6.12: Normal background translation error (meters).
C1N0 C2N0 C3N0 C4N0 C4N1 C4N4 C5N0 C5N1 C5N4

5%
Percentile 0.29 0.54 0.24 0.24 0.10 0.11 0.18 0.14 0.17

25%
Percentile 1.81 2.67 0.91 1.14 0.84 0.48 0.79 0.61 0.90

Median 3.91 4.62 1.90 2.52 2.40 1.46 1.60 1.74 2.24
75%

Percentile 6.52 7.43 3.51 5.37 3.65 3.44 3.46 3.13 4.95

95%
Percentile 12.99 15.93 5.97 11.88 5.34 9.31 6.34 7.34 9.37

Outlier % 3.88 10.00 2.65 5.31 3.67 8.37 4.08 5.51 2.24
MAE 1.76 2.28 0.98 1.44 1.04 1.07 0.89 0.87 1.27
RMSE 1.42 1.82 0.61 0.84 0.16 0.81 0.29 0.52 0.92

SD 4.00 4.79 2.56 3.67 2.84 3.47 2.51 2.72 3.18

The UKF implementation (C3N0) gives the worst rotation estimate, where we have 90%
of the error between [3.71, 147.3] degrees (Table 6.13). Here we can start seeing the advantages
of the use of the UBiF (C4) and UBiGaF (C5) for the rotational motion filtering where we
obtain a better estimate when compared with the other tested methods (Table 6.13). When
using N = 0 (N0), the best estimate is given by the use of the UKF + UBiGaF (C5N0).
When we increase N , the best estimate is given by the use of the UKF + UBiF with N = 4
(C4N4). Here is possible to see a distinct improvement in the estimate when increasing N .

Table 6.13: Normal background rotation error (degrees).
C1N0 C2N0 C3N0 C4N0 C4N1 C4N4 C5N0 C5N1 C5N4

5%
Percentile 4.00 4.11 3.71 2.29 1.06 0.64 2.54 1.59 1.17

25%
Percentile 7.96 8.89 9.15 5.49 2.23 1.53 5.34 4.94 2.57

Median 15.21 15.29 17.46 8.94 4.11 2.97 9.24 9.98 4.50
75%

Percentile 22.06 24.73 35.94 13.79 8.11 7.06 14.20 22.85 8.49

95%
Percentile 43.26 51.72 147.30 23.81 25.14 12.04 13.6 44.60 31.71

Outlier % 4.90 6.73 13.88 2.86 9.18 1.84 3.88 4.08 12.65
MAE 8.80 9.34 17.11 4.91 3.29 2.24 5.26 7.41 4.11
RMSE 3.94 2.29 2.56 0.01 0.63 0.04 0.58 2.53 0.82

SD 15.15 14.51 42.51 6.93 7.50 4.81 7.97 15.33 10.91

6.7.1.4 Complex background

We analyze in this section, the same nine tests described in Section 6.7.1.3 using the complex
background (Figure 6.6). We also perform, in this section, additional tests to the ones described
before to characterize the real contribution of the pose optimization stage in the final result
increasingN from zero to nine using the C4 and C5 combinations. These were the combinations
that obtained the best tracking performance, as described in Section 6.7.1.3.
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The worst translation estimate is given again by the mixture of pose boosting sampling
and prediction sampling (C2N0), where we have 90% of the error between [2.74, 48.40] meters
(Table 6.14). The inefficiency of the simple prior’s use becomes evident when using a complex
background. Using N = 0 (N0), the best estimate is given again by the use of a single UKF
(C3N0). When we increase N , the best estimate is given by the use of the UKF + UBiGaF
with N = 1 (C5N1). The increase of N again does not necessarily decrease the obtained error
e.g. we have an error decrease in the C4N1 estimate, but the error increases in the C4N4
case.

Table 6.14: Complex background translation error (meters).
C1N0 C2N0 C3N0 C4N0 C4N1 C4N4 C5N0 C5N1 C5N4

5%
Percentile 0.28 2.74 0.35 0.17 0.21 0.14 0.27 0.12 0.30

25%
Percentile 1.46 9.82 1.23 0.69 1.09 1.19 1.01 0.80 1.85

Median 3.88 31.96 2.46 2.45 2.52 3.05 3.17 2.45 4.12
75%

Percentile 6.31 44.01 4.29 5.34 4.32 4.75 4.86 4.45 7.09

95%
Percentile 11.82 48.40 6.20 9.91 7.28 8.95 8.09 7.14 15.70

Outlier % 2.04 0.00 1.02 1.84 13.88 1.43 11.02 7.76 7.96
MAE 1.65 10.73 1.18 1.37 1.29 1.37 1.38 1.16 2.25
RMSE 1.28 10.51 0.80 0.97 0.41 0.19 0.24 0.20 1.71

SD 3.95 16.73 2.63 3.37 3.14 3.36 2.65 2.69 4.70

The mixture of pose boosting sampling and prediction sampling implementation gives the
worst rotation estimate (C2N0), where we have 90% of the error between [5.34, 178.4] degrees
(Table 6.15). Here again, we can see the advantages of the use of the UBiF (C4) and UBiGaF
(C5) for the rotational motion filtering where we obtain a better estimate when compared with
the other tested methods (Table 6.15). Using N = 0 (N0), the best estimate is given by the
use of the UKF + UBiF (C4N0). When we increase N , the best estimate is given by the use
of the UKF + UBiF with N = 4 (C4N4).

Table 6.15: Complex background rotation error (degrees).
C1N0 C2N0 C3N0 C4N0 C4N1 C4N4 C5N0 C5N1 C5N4

5%
Percentile 4.15 5.34 3.38 2.95 1.62 1.05 1.41 1.96 1.47

25%
Percentile 8.24 136.60 9.02 6.19 4.67 2.58 4.35 5.02 4.20

Median 15.26 162.70 28.39 11.02 7.85 4.92 7.22 8.88 9.46
75%

Percentile 22.45 172.70 118.30 18.14 13.53 8.56 14.30 15.33 14.23

95%
Percentile 67.34 178.40 167.80 31.11 19.00 15.09 34.38 33.74 31.36

Outlier % 10.00 23.06 0.00 1.84 1.02 1.43 11.02 7.76 7.96
MAE 10.73 50.60 28.01 6.05 4.53 2.99 5.64 5.83 5.76
RMSE 4.50 6.64 7.17 1.53 0.75 0.30 0.32 1.03 0.58

SD 23.36 65.91 59.33 8.92 5.59 4.26 10.31 9.95 10.80

To better describe the system performance, we have chosen the best combinations (C4 and
C5 as described in Table 6.11) and tested their performance when increasing N between zero
and nine to see if there is a distinct improvement that was not stated in the previous analysis.
From the analysis of Table 6.16 and Table 6.17, it is possible to see that we will obtain better
translation results for C5 when using higher values of N . For N > 4 in C4, we have a clear
increase in error, but the same did not happen in C5 where the error decreases in some N
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combinations.

Table 6.16: Complex background translation error for C4 when increasing N (meters).
C4N0 C4N1 C4N2 C4N3 C4N4 C4N5 C4N6 C4N7 C4N8 C4N9

5%
Percentile 0.17 0.21 0.28 0.77 0.14 0.74 0.30 1.25 1.25 1.03

25%
Percentile 0.69 1.09 0.94 1.35 1.19 2.46 2.05 2.80 3.27 4.34

Median 2.45 2.52 2.13 2.12 3.05 5.11 3.46 6.55 6.95 6.99
75%

Percentile 5.34 4.32 3.81 5.05 4.75 8.21 6.87 13.27 12.27 14.14

95%
Percentile 9.91 7.28 9.43 9.38 8.95 13.17 16.27 20.94 20.55 22.26

Outlier % 1.84 13.88 7.14 3.27 1.43 2.65 8.16 0.20 0.82 0.82
MAE 1.37 1.29 1.27 1.45 1.37 2.24 2.11 3.51 3.49 2.89
RMSE 0.41 0.41 0.74 0.80 0.19 1.82 1.65 3.51 3.49 3.89

SD 3.37 3.14 3.44 3.45 3.36 3.99 4.59 6.52 6.17 6.67

Table 6.17: Complex background translation error for C5 when increasing N (meters).
C5N0 C5N1 C5N2 C5N3 C5N4 C5N5 C5N6 C5N7 C5N8 C5N9

5%
Percentile 0.20 0.12 0.21 0.35 0.36 1.00 0.41 0.27 0.58 0.51

25%
Percentile 1.11 0.80 1.17 1.39 2.06 2.55 2.09 1.38 1.83 3.12

Median 2.42 2.45 2.64 2.39 5.10 5.11 3.78 2.90 3.83 5.18
75%

Percentile 4.59 4.45 4.93 4.59 9.39 9.22 7.98 5.03 8.28 8.69

95%
Percentile 11.30 7.14 8.33 8.44 16.07 15.65 12.92 9.33 16.01 16.94

Outlier % 11.02 7.76 1.63 2.45 7.96 4.29 1.63 2.86 1.22 5.31
MAE 1.38 1.16 1.35 1.34 2.25 2.02 2.07 1.44 2.26 2.70
RMSE 0.24 0.20 0.17 1.02 1.71 1.44 1.47 1.15 1.70 2.09

SD 3.24 2.69 3.01 2.94 4.78 10.07 4.78 2.87 4.80 4.80

From the analysis of Table 6.18 and Table 6.19, it is possible to see that we will obtain a
higher rotation error in C5 when using N < 4 and the same did not happen in C4 where the
best estimate is obtained using C4N2. In the vast majority of the combinations, the rotation
error is higher in C5 than in C4. The best rotation estimate for C5 is obtained using C5N5.
Analyzing the best-obtained filters (C4N2 and C5N5) is possible to see that the obtained
error is low, mainly between [−10, 10] degrees for all the angles. The obtained translation
error for these combinations can be seen in Figure 6.24 and the rotation error in Figure 6.25.
An example of the obtained tracking results using C4N2 can be seen in Figure 6.26.

Table 6.18: Complex background rotation error for C4 when increasing N (degrees).
C4N0 C4N1 C4N2 C4N3 C4N4 C4N5 C4N6 C4N7 C4N8 C4N9

5%
Percentile 2.95 1.53 1.61 0.99 1.05 1.29 1.02 1.26 1.62 1.22

25%
Percentile 6.19 4.56 3.48 2.67 2.57 2.72 2.55 2.67 4.74 3.25

Median 11.02 7.81 5.43 4.93 4.91 6.17 5.57 6.01 13.98 6.81
75%

Percentile 18.14 13.53 8.53 11.20 8.52 14.98 8.91 16.00 21.69 18.90

95%
Percentile 31.11 19.00 14.58 20.17 15.09 27.86 21.06 21.89 27.79 26.76

Outlier % 1.84 1.02 3.88 1.22 1.43 0.82 8.57 0.00 0.00 0.82
MAE 6.05 4.53 3.21 3.69 2.99 4.85 3.66 4.35 6.38 4.37
RMSE 1.53 0.75 0.98 0.30 0.30 0.61 2.51 2.71 0.98 3.87

SD 8.92 5.61 3.99 6.14 4.26 8.57 7.69 7.48 8.90 9.40
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Table 6.19: Complex background rotation error for C5 when increasing N (degrees).
C5N0 C5N1 C5N2 C5N3 C5N4 C5N5 C5N6 C5N7 C5N8 C5N9

5%
Percentile 2.49 1.96 1.96 1.43 1.36 1.00 1.15 1.21 1.23 1.57

25%
Percentile 6.61 5.02 4.33 3.23 3.94 2.56 3.25 2.86 2.41 3.31

Median 13.27 8.88 8.21 6.82 8.72 5.17 6.99 5.60 4.86 9.46
75%

Percentile 25.47 15.33 14.47 13.83 13.45 9.22 10.26 16.33 9.90 16.67

95%
Percentile 51.28 33.74 48.60 31.66 20.99 15.65 24.55 27.66 18.98 27.57

Outlier % 11.02 7.76 12.65 6.12 7.96 5.10 7.14 0.00 3.88 0.82
MAE 5.64 5.83 6.58 5.19 5.76 3.76 3.85 4.69 3.30 5.18
RMSE 0.32 1.03 0.35 0.16 0.58 1.87 0.22 2.07 1.75 0.39

SD 16.21 9.95 13.76 9.62 6.56 10.07 6.86 8.79 5.69 8.69
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Figure 6.24: Obtained translation error (C4N2 and C5N5): X (left), Y (center) and Z (right).
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Figure 6.25: Obtained rotation error (C4N2 and C5N5): α (left), β (center) and γ (right).

6.7.1.5 Conclusions

For simple backgrounds, we recommend the use of the UKF + UBiGaF (C5N0) since it presents
a good compromise between the obtained errors and the number of needed pose optimization
iterations (N = 0). Both the filters show excellent performance in the complex background
case, presenting the UBiF less variance in the estimate than the UBiGaF that contributes to the
lower obtained error, as described before. Because of this, we have to use a higher value of N
to obtain similar performance. The tested complex environment is a challenging environment
since the background is filled with clutter and is moving. Nevertheless, the filters present
overall good performance. The motion filtering is essential to obtain a low error, especially in
the rotation case, where we have a clear advantage in its application. This advantage becomes
evident when we analyze the simple use of the pose boosting sampling (C1) performance, where
we obtain a high error even using the PFO, as described in Figure 6.27 and Figure 6.28.

6.7.2 Particle number vs. Pose optimization

It is crucial to quantify the real pose optimization stage contribution to the final result. For
these tests, we have tested the C4 combination (UKF + UBiF) in the complex environment
(Figure 6.6), using the landing sequence described in Figure 6.22 and Figure 6.23.
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Figure 6.26: Complex background C4N2 tracking sequence (estimate represented in red).
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Figure 6.27: Obtained translation error (C1N0, C1N1 and C1N4): X (left), Y (center) and
Z (right).
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Figure 6.28: Obtained rotation error (C1N0, C1N1 and C1N4): α (left), β (center) and γ
(right).

6.7.2.1 Tests description

In Section 6.7.1, we have seen that the combination C4 with pose optimization significantly
increase the obtained results, but we have to choose the right N14 value. By increasing N

we are spending more computation. The computational cost is dominated by the number of
pose renders. The number of pose renders in the pose optimization stage is M ×N , thus, in
the overall algorithm is M +M ×N . Therefore, we compare the performance of an algorithm
with N PFO steps with its version without PFO steps but with M + M × N particles. We
describe in this section a total of eight different filter combinations for C4, to analyze if the
increase of the particles on the set will have similar or even better results when compared with
pose optimization. We have used the same number of database particles, similarity metric,
resampling strategy, and noise, as described in Section 6.7.1.1.

6.7.2.2 Performance metrics

On each iteration, the state estimation is given by the particle with the highest approximate
weight. The translation error was obtained using the Euclidean distance, and the rotation
error according to (6.3) and (6.4). It was also obtained the SD, MAE, and RMSE of the error,
as applied in Section 6.4.2. We have also obtained the effective number of particles N̂eff , to
estimate how well the particle set approximates the true posterior according to [Stachniss et al.
, 2005; Liu, 1996; Grisettiyz et al. , 2005]:

N̂eff = 1∑M
i=1(wit)2

(6.5)

where M is the particle number and w refers to the obtained approximated normalized weights
(Section 5.4.1). If the value of N̂eff is near its maximum number (M), we will have an excellent

14 N is the number of repetitions performed in the pose optimization stage.
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posterior approximation (3.10).

6.7.2.3 Complex background

From the analysis of Table 6.20, it is possible to see that we always obtain better results when
performing local optimization when compared with the increase in the number of particles.
From the analysis of Figure 6.29, we can see a clear increase in the obtained N̂eff that be-
comes closer to its maximum value (M) when we increase N indicating a better true posterior
approximation.

Table 6.20: C4 rotation error (degrees): Particle number vs. Pose optimization.
Particle

number (M) N
5%

Percentile
25%

Percentile Median 75%
Percentile

95%
Percentile MAE RMSE SD

100 1 1.26 3.52 7.87 15.28 19.95 4.53 0.53 7.17
200 0 1.99 5.35 9.75 15.73 37.79 6.44 2.88 12.80
100 2 1.16 2.92 5.11 9.10 21.98 3.73 0.10 7.57
300 0 1.75 5.27 10.53 15.87 56.99 6.96 3.14 14.02
100 3 0.98 2.20 4.20 7.94 14.41 3.01 0.53 7.31
400 0 2.12 5.18 10.42 16.93 36.40 6.55 2.84 12.15
100 4 1.00 3.10 7.42 11.22 28.15 4.38 0.21 8.44
500 0 1.72 5.12 9.89 17.07 36.85 6.21 2.74 12.11

70 80 90 100

N=1

N=2

N=3

N=4

Neff
^

Figure 6.29: C4 N̂eff with M = 100 (particle number) and N = {1, 2, 3, 4}.

6.7.2.4 Conclusions

As described in Section 6.7.1, the result did not improve every time we increase N since we can
get stuck in local maxima and perform optimization steps that will lead to a wrong estimate.
The obtained rotation error for C4N0 with M = 500 and C4N4 with M = 100 can be seen
in Figure 6.30. We can see the advantage of using the pose optimization stage instead of
increasing the particle number, as described in Table 6.20.

6.7.3 Real background tracking analysis

In this section, we have analyzed the proposed system structure (Section 3.5) in a real back-
ground sequence with ground truth created by the UAV CAD model rendering (Section 6.2.3).
The analyzed landing sequence is represented in Figure 6.31 and Figure 6.32.
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Figure 6.30: Complex background obtained rotation (degrees) error (C4N0 with M = 500 and
C4N4 with M = 100): α (left), β (center) and γ (right).
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Figure 6.31: Tested landing sequence 2: X (left), Y (center) and Z (right).
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Figure 6.32: Tested landing sequence 2: α (left), β (center) and γ (right).

6.7.3.1 Tests description

The best results for the complex background analysis performed in Section 6.7.1.4 was ob-
tained by the UKF + UBiF with N = 2 (C4N2) and UKF + UBiGaF with N = 5 (C5N5)
combinations (Table 6.11) using 100 particles (M = 100). In this section, we have tested a
different landing sequence with more angle variations in a real background sequence also using
100 particles (Section 6.7.1.4). We have used the same number of database particles, similarity
metric, resampling and noise strategies, as described in Section 6.7.1.1.

6.7.3.2 Performance metrics

On each iteration, the state expectation is the particle with the highest approximate weight.
The translation error was obtained using the Euclidean distance, and the rotation error ac-
cording to (6.3) and (6.4). It was also obtained the SD, MAE, and RMSE of the error, as
applied in Section 6.4.2.

6.7.3.3 Results

The best translation estimate is given by the C5N5 combination, where we have 90% of the
error between [0.31, 18.01] meters (Table 6.21). The best rotation estimate is given by the
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C4N2 combination, where we have 90% of the error between [1.28, 22.08] degrees (Table 6.22).
When we compare the obtained results (Table 6.21 and Table 6.22), we can see that the error
difference is very low between the selected combinations, as was also verified in the analysis
performed in Section 6.7.1.

Table 6.21: Real sequence translation error for C4N2 and C5N5 (meters).
5%

Percentile
25%

Percentile Median 75%
Percentile

95%
Percentile Outlier % MAE RMSE SD

C4N2 0.19 1.29 4.85 9.00 18.40 4.11 2.29 2.20 5.99
C5N5 0.31 1.58 4.70 8.27 18.01 4.77 2.24 2.19 5.72

Table 6.22: Real sequence rotation error for C4N2 and C5N5 (degrees).
5%

Percentile
25%

Percentile Median 75%
Percentile

95%
Percentile Outlier % MAE RMSE SD

C4N2 1.28 3.50 6.73 11.59 22.08 3.71 3.87 2.10 5.86
C5N5 1.45 3.92 7.74 13.18 23.09 2.25 4.31 2.03 6.90

The analysis performed in Table 6.21 and Table 6.22 is incomplete and does not capture
the true behavior of the combinations in the analyzed landing sequence (Figure 6.31 and
Figure 6.32). As we can see in Figure 6.33, the translation error has very similar behavior
in both methods and decrease with the UAV proximity since we are using a UKF with the
same parameters. As we can see in Figure 6.34, the rotation error has a little bit less noise for
the C4N2 combination but with very similar results decreasing with the UAV proximity. An
example of the obtained tracking results using C4N2 can be seen in Figure 6.35.
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Figure 6.33: Real sequence obtained translation (meters) error (C4N2 and C5N5): X (left),
Y (center) and Z (right).
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Figure 6.34: Real sequence obtained rotation (degrees) error (C4N2 and C5N5): α (left), β
(center) and γ (right).

6.7.3.4 Conclusions

As described in Section 6.7.3.3, the obtained error between the tested combinations (C4N2
and C5N5) is very similar and decreases with the UAV proximity to the camera. As described
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Figure 6.35: Real background C4N2 tracking sequence (estimate represented in red).
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in Figure 6.33 and Figure 6.34, the obtained error is compatible with the automatic landing
requirements.

6.7.4 Pose boosting contribution analysis

In this section, we have analyzed the proposed system structure (Section 3.5) in a real back-
ground (Figure 6.7) without using the pose boosting stage (Chapter 4). This test has the
objective of analyzing the real contribution of this stage in the final result. The analyzed
landing sequence is represented in Figure 6.31 and Figure 6.32.

6.7.4.1 Tests description

The best results for the complex background analysis performed in Section 6.7.1.4 was obtained
by the UKF + UBiF with N = 2 (C4N2) and UKF + UBiGaF with N = 5 (C5N5) combi-
nations (Table 6.11) using 100 particles. The pose boosting stage was only used in the first
filter iteration (initialization). We have used the same number of database particles, similarity
metric, resampling and noise strategies, as described in Section 6.7.1.1.

6.7.4.2 Performance metrics

On each iteration, the state expectation is the particle with the highest approximate weight.
The translation error was obtained using the Euclidean distance, and the rotation error ac-
cording to (6.3) and (6.4).

6.7.4.3 Real background

Both combinations present a very high error in translation and rotation, as described in Ta-
ble 6.23 and Table 6.24. When we get stuck in a local maxima, the system does not receive
information that can add particles close to the current pose of the target. The error in both
combinations is very high, as described in Figure 6.36 and Figure 6.37. An example of the
obtained tracking results for both combinations can be seen in Figure 6.38 and Figure 6.39.

Table 6.23: Real sequence translation error for C4N2 and C5N5 (meters).
5%

Percentile
25%

Percentile Median 75%
Percentile

95%
Percentile Outlier % MAE RMSE SD

C4N2 17.52 32.09 50.46 69.23 84.16 0.00 19.35 19.08 21.37
C5N5 17.45 31.85 50.10 68.85 83.79 0.00 19.37 19.08 21.28

Table 6.24: Real sequence rotation error for C4N2 and C5N5 (degrees).
5%

Percentile
25%

Percentile Median 75%
Percentile

95%
Percentile Outlier % MAE RMSE SD

C4N2 23.83 33.42 43.14 125.00 148.30 0.00 30.55 9.80 48.89
C5N5 23.41 48.56 72.36 96.50 165.50 4.50 41.06 6.92 48.79

Comparing the results obtained in this section with the ones obtained in Section 6.7.3, we
can see that the translation error is about four times higher (Table 6.21 and Table 6.23) and
the rotation error is about 6.5 times higher (Table 6.22 and Table 6.24) when not using the
pose boosting stage.
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Figure 6.36: Real sequence obtained translation (meters) error (C4N2 and C5N5) without
using the pose boosting stage: X (left), Y (center) and Z (right).
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Figure 6.37: Real sequence obtained rotation (degrees) error (C4N2 and C5N5) without using
the pose boosting stage: α (left), β (center) and γ (right).

6.7.4.4 Conclusions

The pose boosting stage is essential in the filtering to be able to add particle diversity and
decrease the possibility of being stuck in local maxima. As described in Figure 6.36 and
Figure 6.37, the obtained error is too high, not fulfilling the automatic landing requirements.

6.7.5 Real captured video sequence qualitative analysis

We have applied the combination UKF + UBiF with N = 2 (C4N2) to real UAV sequence
videos for a qualitative analysis since we do not have ground-truth information from the cap-
tured video sequences. We have obtained outstanding results, as we can see from the qualitative
analysis of Figure 6.40 and Figure 6.41.

6.8 GPU performance analysis

Section contents
6.8.1 Tests description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.8.2 Distortion correction evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.8.3 Particle rendering and Model simplification evaluation . . . . . . . . . . . . . . . 91
6.8.4 GPU-based color similarity metric evaluation . . . . . . . . . . . . . . . . . . . . 92
6.8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

We need to render the 3D CAD model for each tested possibility (Figure 6.42) to compute the
similarity metric (Section 5.4.1). This operation is very time-consuming, and we can use the
GPU capabilities to get parallel processing and increase the real-time capability of the system.
We will use the Compute Unified Device Architecture (CUDA), that is a parallel computing
platform and programming model developed by the NVIDIA company [Sanders & Kandrot,
2010; Wilt, 2013; Cheng et al. , 2014].
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Figure 6.38: Real background C4N2 without pose boosting (estimate represented in red).
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Figure 6.39: Real background C5N5 without pose boosting (estimate represented in red).
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Figure 6.40: C4N2 tracking sequence I (estimate represented in red).
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Figure 6.41: C4N2 tracking sequence II (estimate represented in red).
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Figure 6.42: OpenGL rendering example.

6.8.1 Tests description

One of the major bottlenecks of the CPU/GPU interaction is the transfer throughput between
them [Farber, 2011; Cook, 2012]. The tested CPU/GPU scheme is described in Figure 6.43,
where are illustrated the different stages and data transfer between the CPU and the GPU. We
will analyze the obtained error and processing time of the distortion correction15 (Section 6.8.2),
the pose rendering (Section 6.8.3), and a GPU-based color similarity metric (Section 6.8.4).
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Figure 6.43: CPU/GPU tested scheme.

6.8.2 Distortion correction evaluation

The captured frame is sent to the GPU once per iteration and takes about 0.24 ms. The
distortion correction is made using a preloaded remap matrix. This map is obtained using
the camera calibration parameters (Section 3.1.7) and takes approximately 115 ms to calculate
using the CPU. The transfer between the CPU and the GPU takes about 0.94 ms. Two
different remap interpolation methods were applied: (i) linear, and (ii) bilinear [Jain et al.
, 1995; Szeliski, 2010]. Using 1280x720 pixel images, we obtain the correspondent GPU and
CPU corrected frames. They were compared, obtaining the Bhattacharyya similarity metric
between histograms [Gómez-Luna et al. , 2013] and registering the execution time. The remap
in the GPU is about 38 times faster than in the CPU for the linear and bilinear interpolation,
without losing the accuracy of the result, as described in Table 6.25.

15 The distortion correction can also be compensated directly in the particle rendering using OpenGL (Fig-
ure 6.44), but here we are analyzing its use.
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Table 6.25: Remap computational time (ms) and histogram distance.
Interpolation Local Time (ms) Histogram similarity (error)

Linear CPU 2
Linear GPU 0.054 0.997

Bilinear CPU 3
Bilinear GPU 0.078 0.966

6.8.3 Particle rendering and Model simplification evaluation

The particle rendering is performed using OpenGL, transferring the obtained particle to a
CUDA (Figure 6.44) compatible format (device to device memory transfer). The used model,
in this case, has 38478 vertices and 57272 faces (Reference Mesh). We can decrease the com-
plexity of the used CAD model (vertices and faces), ensuring a compromise between error and
speed. We must guarantee a simplification maintaining the object appearance, minimizing
the obtained error. Several tools were used, getting the best simplification results using the
Blender software [Blender.org, 2019] with the option decimate.

FRAME

GPU
(CUDA)

OPENGL
(PBO)

CAD OBJECT
(OFFLINE)

ONCE 
PER ITERATION

Figure 6.44: OpenGL and CUDA interaction.

Figure 6.45: Model simplification: Test 1 to 5.

Table 6.26: Particle creation computational time (FPS).
Test Vertices Faces Rendering speed (FPS)

Reference Mesh 57272 38478 2376
1 21860 28635 2421
2 12480 14317 2470
3 6789 7158 2644
4 7788 8589 2684
5 3511 2863 2704

When analyzing Figure 6.45, it is possible to see that when we increase the model simpli-
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fication, some areas that need more detail will become poorly represented. This simplification
is the primary source of error since we cannot get much object detail using fewer vertices and
faces, especially in this kind of geometric objects with lots of discontinuities. The particle
creation computational time is represented in Table 6.26, where we can see the increase of
performance from the model simplification. The rendering error is obtained fixing the model
projection in a central position and varying the projection angles using a uniform distribution
restricted in the interval [−180◦, 180◦] comparing it with the reference mesh in 100000 random
poses. From the analysis of Table 6.26, Table 6.27 and Figure 6.46, we can see that the ob-
tained error is small with a median value of 3.38% and rendering speed of 2704 FPS for test
5. If we need to render the UAV 100 times per filter iteration, we will obtain approximately
27 FPS, which is suitable for a real-time application.

Table 6.27: Model simplification error (%).
Error (%)Test Mean value Median value

1 0.08 0.07
2 0.34 0.29
3 1.02 0.89
4 0.54 0.44
5 3.66 3.38
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Figure 6.46: Model simplification error (%).

6.8.4 GPU-based color similarity metric evaluation

After the generation of particles, the similarity metric is the most time-consuming step since we
need to test several poses for each captured frame. Using the CPU, as described in Section 6.5,
the color similarity metric takes about 5 ms at 5 meters. Adapting the similarity metric to the
GPU implementation, the color similarity metric (Figure 6.47) calculation takes about 0.71 ms
(1408 FPS) after the particle rendering (Table 6.28) at 5 meters (approximately seven times
faster).
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Figure 6.47: Inner (gray) and outer (blue) regions using GPU.

Table 6.28: GPU-based color similarity metric processing time (ms).
Task Time(ms)

Compute inner histogram and obtain outer histogram region 0.30
Compute outer histogram 0.40

between histograms 0.01
Total ∼= 0.71

6.8.5 Conclusions

The GPU implementation is essential to obtain a real-time processing capability, and for that,
we need to simplify the used UAV CAD model and use a GPU-based similarity metric. The
distortion correction can be compensated directly in the particle rendering, decreasing the
processing time. For each particle, and performing the distortion correction directly in the
particle generation, we need 0.37 ms for the particle rendering (using test 5 as described in
Table 6.26) and 0.71 ms for the GPU-based color similarity metric evaluation (Table 6.28). If
we use a GPU with better characteristics, we can easily decrease the needed processing time.
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Chapter 7

Conclusions and Future work

If you can look, see. If you can see, notice.

José Saramago
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This chapter presents the conclusions and describes future work.

7.1 Conclusions

This thesis introduces and describes a 3D model-based monocular vision system for UAV pose
tracking. The presented architecture was based on a UPF scheme, combining some of the
existing approaches and developing new ones to improve system performance (Section 3.5).
The developed algorithm features a UAV detection method based on DNNs, a pose boosting
methodology with a pre-trained database, motion filtering using a UKF combined with a
UBiF or UBiGaF, and a pose optimization step to refine the estimate due to the approximated
nature of image-based similarity metrics (as sub-optimal approximations to the true observation
likelihood function). We have used a decoupled motion model to simplify the formulation
(Section 3.1.4) that showed good results in our problem.

Acquiring real ground truth data is time-consuming and expensive. Instead, we created a
“realistic” simulation environment (Section 6.2) that allowed us to quantify the performance
of the system and was essential to analyze each of the components separately.

For target detection (Section 6.3), we have trained YOLO and SSD using a synthetic
database and performed transfer learning to real data. The performance of the tested detectors
was analyzed using 679 real captured images, obtaining a AUC of 72% for YOLO and a AUC
of 53% when using SSD. YOLO also allows real-time image processing since we can perform
detections at ≈ 30 FPS.

Inspired by the BPF [Okuma et al. , 2004], we have developed a novel pose boosting
methodology that can generate suitable UAV pose hypotheses to feed the PFs. Pose boosting
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applied to the UAV detections can achieve, by itself, a MAE of approximately 0.06 meters
for X and Y and an error between [−1.18, 1.27] meters for Z in the worst case (using ten
database particles). The obtained rotation error was very similar in all the tested distances,
obtaining a MAE of approximately 73.60 degrees for α and γ and 41.91 degrees for β in the
worst case (using ten database particles). The obtained results showed that the pose boosting
presents an overall low translation error, but must be combined with additional methods to
be able to decrease the obtained rotation error. The pose boosting stage also proved to be
essential to recover from local maxima and obtain errors compatible with the automatic landing
requirements (Section 6.7.4).

To approximate the observation likelihood function required for the PFs, we have devel-
oped and tested three different similarity metrics (color, contour, and DT, as described in
Section 5.4.1) in the developed environments (Section 6.2). The contour similarity metric pre-
sented a very sensitive and noisy behavior. The color and the DT similarity metrics have, due
to the UAV geometric model symmetry, peaks around 180 degrees error that can lead to local
maxima. Close to the correct pose, the DT similarity metric showed a good behavior in the
non-clutter scenario (normal environment) but a noisy behavior in the high clutter environ-
ment. The color similarity metric worked well in all the tested scenarios and is very selective
around the correct pose estimate. The color similarity metric also has the advantage of being
four times faster than the DT similarity metric when using the CPU.

For the last stage of our filtering pipeline, to compensate for the sub-optimality of the
similarity metrics, we have tested four different intra-frame pose optimization algorithms (PFO,
PSO, modified PSO, and GAbF, as described in Section 6.6). All methods significantly improve
the quality of the final estimate, in particular in the orientation dimension, where the error gets
concentrated near zero and 180 degrees. This error happens due to the symmetry of the UAV
geometry, where complementary poses achieve similar weights. The lowest error was obtained
using the GAbF scheme, but since it is quite computationally intense, we have decided to use
the PFO for its better compromise between speed and accuracy.

Finally, we have performed a complete system analysis on several landing sequences in a di-
versified set of scenarios (from simple to complex). Overall, the best results were obtained with
the UKF combined with a UBiF or a UBiGaF. For a simple background, the best compromise
between speed and accuracy was obtained using the UKF + UBiGaF without pose optimiza-
tion. The real contribution of the pose optimization scheme became evident in the complex
background obtaining an increase of performance in more than 50%. Both filters showed an ex-
cellent performance in the complex background, but the best performance was obtained when
combining the UKF + UBiF with two pose optimization iterations and the UKF + UBiGaF
with five pose optimization iterations. We have concluded that the pose optimization stage is
essential to obtain good results, even when comparing to an equivalent increase of the number
of particles in the algorithms without the pose optimization stage (Section 6.7.2).

To improve the real-time capability of the system, we have explored a complete GPU based
implementation (Section 6.8), for distortion correction, particle rendering, and similarity metric
evaluation. In the GPU, we can perform distortion correction using the bilinear interpolation
38 times faster and evaluate particles seven times faster than in the CPU. The UAV CAD
model simplification can increase the rendering speed up to 12% with a median error of 3.38%.

The achieved tracking precision levels are suitable for automated landing. There are, how-
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ever, some improvements that still can be made to decrease the error and increase the real-time
capability of the system, as described in Section 7.2.

7.2 Future work

The developed work was described throughout the document detailing the system architecture
and the obtained performance. The proposed tracking system architecture is robust and can
easily be expanded and adapted to different applications. We have tackled many issues, but
there are still some that could not be explored during this thesis period. The main identified
issues are (Figure 7.1):

� Camera control - If we use a Pan-Tilt-Zoom (PTZ) camera, it is essential to develop
a control system that maintains the UAV on the captured frame and compensates the
ship balance;

� Motion and Observation models - The filter transition model accuracy can be in-
creased by including the PTZ camera and GCS commands. Additionally, the filter ob-
servation model accuracy can also be increased by using a PTZ camera combined with
an Inertial Measurement Unit (IMU);

� Real-time system capability - To be possible to implement the developed system
architecture in real-time, we have to decrease the needed processing time for certain
proposed stages. This processing time decrease can be done using other algorithms or
better hardware (CPU and GPU);

� Real field tests - It is essential to validate the entire system with more real video
sequences in different operation scenarios. During these tests, it is crucial to obtain the
UAV ground truth using the UAV sensors. This would allow to:

X Train the UAV detector using real data;
X Analyze the ideal camera position, resolution, and FPS;
X Improve our knowledge about the ideal relative landing speed, UAV motion model,

and the landing trajectory.

� Target detection and Pose boosting - We can improve the target detection and pose
boosting stages using different algorithms or use DNNs to obtain the initial UAV pose
estimation directly instead of using the pre-trained database.

Future
Work

Motion & 
Observation

models

Camera
control

Real field 
tests

Target 
detection 

& Pose 
boosting

Real-time 
capability

Figure 7.1: Future work.
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Appendix A

Unscented Kalman Filter
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To filter along time the measurements obtained by our system, we will use a discrete-time
UKF [Kraft, 2003; Crassidis & Markley, 2003; Van Der Merwe et al. , 2001; Zhou et al. ,
2011; Cheon & Kim, 2007]. As described in Section 3.1.4, we consider that the UAV follows
a constant velocity model and that linear and angular motions are independent. The adopted
translational model is described in Section A.1, and the rotational model in Section A.2.
The adopter filter state transition and observation models are described in Section A.3, the
unscented sigma points creation in Section A.4, the filter prediction step in Section A.5, and
the measurement update in Section A.6.

A.1 Translational model

Given the stated assumptions (Section 3.1.4), the linear motion state vector is defined as
(Section 3.1.2):

tTt = [uTt ,vTt ] (A.1)

where uTt = [X,Y, Z] is the linear position and vTt = [vx, vy, vz] is the linear velocity. The time
evolution of the state for the linear dynamics is (3.12):

tt+1 = Fl(tt, ξlt) =
[

I3×3 ∆t · I3×3

03×3 I3×3

]
tt + ξlt (A.2)

where ξlt ∼ N (0,Ql
t) is a Gaussian noise random variable with zero mean and covariance Ql

t.
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A.2 Rotational model

The angular velocity is represented by ωTt = [ωx, ωy, ωz] (Section 3.1.2). Its time evolution is
modeled as:

ωt+1 = Fω(ωt, ξωt ) = [ωt + ξωt ] (A.3)

where ξωt ∼ N (0,Qω
t ) is a Gaussian noise random variable with zero mean and covariance Qω

t .

To represent the absolute orientation, we use a unit quaternion (3.6). The time evolution
of the angular position can be written as (Section 3.1.5):

qt+1 = qt ⊗ δqωt ⊗ δqrt = qTt ⊗Ω(ωt)⊗Ω(ξrt ) (A.4)

where ⊗ represents unit quaternion multiplication (orientations composition), δqωt and δqrt are
quaternions representing the integration of the effect of the angular velocity and rotation noise
as described in (3.13) and Ω(.) is obtained according to (3.14). The effect of the noise vector
ξrt is considered as a random angular velocity disturbance and has a covariance matrix Qr

t .

Because quaternions (3.6) are not a minimal representation of orientation, it is not straight-
forward to represent the state covariance. To address this issue, we represent the orientation
dynamics in terms of error-quaternions with respect to the current state [Crassidis & Markley,
2003; Kraft, 2003; Pessanha Santos et al. , 2015]. A local error quaternion is defined as
eT = [δ%T , δq4] (3.6), but a minimal representation is adopted using a vector of generalized
Rodrigues parameters [Jiang & Ma, 2005; Crassidis & Markley, 2003]:

d = R(e) = f
δ%

a+ δq4
(A.5)

where a = 1 and f is a scale factor. We choose f = 2(a+ 1) so that ‖ d ‖= ρ (ρ is the angle of
rotation (3.7)) for small angles [Crassidis & Markley, 2003]. The inverse transformation from
d to e denoted R−1(d) is given by:

δq4 =
−a ‖ d ‖2 +f

√
f2 + (1− a2) ‖ d ‖2

f2+ ‖ d ‖2 (A.6)

δ% = f−1(a+ δq4)d (A.7)

with this parameterization, the incremental rotation dynamics is given by [Crassidis & Markley,
2003]:

dt+1 = Fr(dt,qt,ωt, ξrt ) = R(qt ⊗R−1(dt)⊗Ω(ωt)⊗Ω(ξrt )) (A.8)

Finally, using this representation, the state vector for the angular dynamics is defined as:

rTt = [dTt ,ωTt ] with covariance Qa
t =

[
Qr
t 03×3

03×3 Qω
t

]
(A.9)

At each time step, the error vector dt is reset to zero. After its update, dt is accumulated
to the absolute orientation quaternion qt = qt ⊗R−1(dt).
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A.3 State transition and Observation models

The state transition model is represented as (Section 3.1.5):

xt+1 = Fi(xt, ξt) i = 1, 2 (A.10)

where ξt ∼ N (0,Qt) is a Gaussian noise random variable with zero mean and covariance Qt.
For the translational motion, we have xt = tt, F1 = Fl (A.2), and Qt = Ql

t (Section A.1). For
the angular motion, we have xt = rt, F2 = [Fr,Fω] (A.8, A.3), and Qt = Qa

t (Section A.2).
The observation model is represented as (Section 3.1.6):

zt = H(xt,ηt) (A.11)

where ηt ∼ N (0,Rt) is a Gaussian noise random variable with zero mean and covariance
matrix Rt. For the translational motion, we have zt = ut + ηt and Rt = Rl

t. For the angular
motion, our observation is the orientation error quaternion, encoded by incremental Rodrigues
parameters zt = R(qt ⊗ δqηt ) where qt is given by the coarse pose estimate, as described in
Section 5.2.

A.4 Sigma points

In the UKF, a Gaussian approximation to the distributions of the n-dimensional state and
process noises are used to generate a set of points (sigma points) that are sufficient to represent
their statistics using a UT [Rui & Chen, 2001a; Julier, 2002; Li et al. , 2003]. The process noise
covariance Qt−1 (n× n matrix) and the state covariance Pt−1 (n× n matrix) are transformed
into a 2n set of points δxt−1(i) that represent perturbations to the current state according to:

δxt−1(i) = ±
(√

ι · (Pt−1 + Qt−1)
)
i

i = 1, ..., 2n (A.12)

the parameter ι is a scaling parameter given by:

ι = α2(n+ k) (A.13)

where α is a positive real (0 ≤ α ≤ 1) parameter that controls the high order effects resulting
from the existing nonlinearity, k is another real parameter (k ≥ 0) that will control the distance
between the sigma points and their average [Doucet et al. , 2000]. The matrices Pt−1 and
Qt−1 are symmetric and positive definite, so it is possible to use the Cholesky decomposition
to compute

√
ι · (Pt−1 + Qt−1) [Higham, 1990]. The computation of the sigma points Xi is

now done by adding directly δxt(i) to the mean value of the state vector xt according to:

Xi = xt−1 + δxt−1(i) i = 1, ..., 2n and X0 = xt (A.14)

A.5 Prediction

The process model F(.) is then applied to the obtained sigma points Xi, generating the trans-
formed sigma points X ′i :
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X ′i = F(Xi, 0) i = 0, ..., 2n (A.15)

No additional noise is considered at this step because the noise was already added at the
sigma point’s creation step (A.14). The a priori state estimate is obtained calculating the
mean of the transformed sigma points X ′i according to:

x̄t =
2n∑
i=0

Wm
i X ′i (A.16)

The weights are given by [Rui & Chen, 2001a; Haykin et al. , 2001]:

Wm
0 = λ

n+ λ
and Wm

i = W c
i = 1

2(n+ λ) (A.17)

with λ given by:

λ = α2(n+ k)− n (A.18)

To estimate the a priori state covariance each propagated sigma point is removed from its
mean to create the set of error vectors:

δx̄t(i) = X ′i − x̄t (A.19)

then:

Pxx
t =

2n∑
i=0

W c
i δx̄t(i) δx̄t(i)T (A.20)

where the scaling weights W c
i are given by (A.17), except W c

0 alternatively given by [Cheon &
Kim, 2007]:

W c
0 = λ

n+ λ
+ (1− α2 + β) (A.21)

where β is a non-negative term which incorporates knowledge of the higher-order moments(the
chosen α and β determine the accuracy of third and higher-order moments for non-Gaussian
inputs [Haykin et al. , 2001]) of the distribution [Doucet et al. , 2000].

The transformed sigma points are now projected into the measurement space according to:

Zi = H(X ′i , 0) (A.22)

The measurement expected value is computed as:

z̄t =
2n∑
i=1

Wm
i Zi (A.23)

A.6 Measurement update

The measurement covariance estimate Pzz
t is given by:
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Pzz
t =

2n∑
i=0

W c
i [Zi − z̄t] [Zi − z̄t]T (A.24)

The innovation vector νt is obtained comparing the actual measurement zt to the measure-
ment estimate z̄t:

νt = zt − z̄t (A.25)

The innovation covariance Pνν
t is obtained adding the measurement noise Rt to the mea-

surement covariance Pzz
t :

Pνν
t = Pzz

t + Rt (A.26)

The cross-correlation matrix Pxz
t is obtained from Zi and X ′i , according to:

Pxz
t =

2n∑
i=0

W c
i [X ′i − x̄t] [Zi − z̄t]T (A.27)

The Kalman gain is then computed from:

Kt = Pxz
t (Pνν

t )−1 (A.28)

Finally, the a posteriori state estimate is obtained according to:

xt = x̄t + Ktνt (A.29)

and the state covariance Pt is given by:

Pt = Pxx
t −KtPνν

t KT
t (A.30)

The UKF schematic view is described in Figure A.1.
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Figure A.1: UKF schematic view.
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Resampling strategies
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One of the objectives of the resampling strategy is to avoid particle degeneracy1, and it is essen-
tial that the random measure approximate the original distribution and prevent the existence
of bias [Ristic & Clark, 2012; Verma et al. , 2003; Hall, 1985]. The tested traditional resam-
pling strategies are described in Section B.1, and the tested traditional resampling variations
in Section B.2.

B.1 Traditional strategies

The implemented traditional resampling strategies were [Beadle & Djuric, 1997; Carpenter
et al. , 1999; Gordon et al. , 1993; Li et al. , 2015b; Liu & Chen, 1998; So, 2003; Douc &
Cappé, 2005]:

• Multinomial - Generates N independently distributed random numbers ujt (t is the time
instant and j is the random number index) from one standard uniform distribution over
(0, 1] and use them to select particles from the state vector2 xmt (m is the particle state
vector index). The particle is chosen when the following condition is met

∑m−1
n=0 w

n
t <

ujt ≤
∑m
n=0 w

n
t (wnt are the weights assigned to the particles);

• Stratified - Divides the particles into subgroups called strata. The particles are separated
by N disjoint intervals, and the random numbers ujt are drawn independently from each
one of these intervals according to ujt ∼ U

(
j−1
N , jN

]
with j = 1, 2, . . . , N ;

• Systematic - Also divides the particles into subgroups called strata. The random number
u1
t is drawn from u1

t ∼ U
(
0, 1

N

]
and the rest are obtained according to ujt = u1

t + j−1
N

with j = 2, 3, . . . , N ;
• Residual - Consists in two stages, in the first stage, is performed a deterministic repli-

cation of each particle with weight wjt bigger than ℵ = 1
N . The number of replicated

1 Only a few of the particles will have significant weight.
2 In our study, the state vector characterizes the UAV pose in a specific time instant (Section 3.1.2).
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particle in this stage is given by Nt =
∑N
m=1bN wmt c (N is the total particle number).

In the second stage, is applied a random sampling (e.g. multinomial resampling) with
probability p equal to the remaining of the particle weights residuals, the total number
of replicated particles in this stage is given by Rt = N −Nt. The residual of the weight
is obtained according to ŵmt = wmt −

Nm
t

N . The first stage is a deterministic replication,
and the number of times a particle is resampled is given by the second stage. Using e.g.
multinomial resampling, a particle is resampled between bNwmt c and bNwmt c+Rt.

B.2 Traditional strategies variations

Some variations of the traditional resampling strategies were also implemented, such as [Bolic
et al. , 2003; Budhiraja et al. , 2007; Crisan & Lyons, 1999; Jianping et al. , 2009; Liu & Chen,
1998; Liu et al. , 1998]:

• Residual systematic - This resampling approach accumulates the fractional contri-
bution of each particle in the searching sequence until it is large enough to generate a
sample;

• Branch-Kill - The number of replicated particles xmt is given by Nm
t = bNwmt c with

probability 1−p or given byNm
t = bNwmt c+1 with probability p with p = Nwmt −bNwmt c;

• Optimal - It automatically sets a threshold value ℵ, and all particles whose weights wjt
are above this threshold are preserved rather than replicated. The other particles are
resampled with probability equal to their weights and assigned a weight ℵ;

• Reallocation - It is based on a fixed threshold ℵ = 1
N where N is the sample size. The

particles with weight wjt larger than ℵ are replicated Nwjt times with weights given by
wj

t

bNwj
t c

, and the particles with smaller weight than ℵ are resampled with probability Nwjt
with weights ℵ;

• Metropolis - It uses a Metropolis-Hastings [Hastings, 1970; Chib & Greenberg, 1995]
move step for searching in a particle set for a particle with a large weight to replace the
current particle. The depth of the search S is predefined, and it is desirable that the
number of times a particle be sampled to be proportional to its weight wjt ;

• Minimum Sampling - Consists in two stages, in the first each particle is resampled
bNwitc leading to a total of (M particles M =

∑p
i=1bNwitc) and in the second step the

particles with relatively large weight residual (top N −M) will be further sampled one
more each.
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When we use traditional filtering techniques (e.g. UKF [Crassidis & Markley, 2003; Kraft,
2003]) for attitude estimation, we have to consider a small angle assumption to quantify the
existing uncertainty. To overcome this, we have explored the Bi (Section C.1) and the BiGa
(Section C.2) distributions from the directional statistics field. The use of these distributions
in a filtering structure is described in Section 5.3.

C.1 Bingham
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The Bi distribution is an antipodally symmetric distribution1 that represents a zero-mean
Gaussian distribution in Rd projected on the unit hypersphere Sd−1 [Gilitschenski et al. ,
2016; Fallaize & Kypraios, 2016; Bingham, 1974]. The PDF for the Bi distribution is obtained
by [Bingham, 1974; Mardia & Jupp, 2000]:

PB(q; M,Z) = 1
F (Z) exp(qT MZMT q) (C.1)

1 Opposite points on S have equal probability.
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where q ∈ Sd−1 ⊂ Rd : ||q || = 1 is a unit vector2, M ∈ Rd×d is an orthogonal ma-
trix3 describing the orientation of the distribution, F (Z) is the normalization constant and
Z = diag(z1, z2, ..., zd−1, 0) with nondecreasing negative diagonal elements is the concentration
matrix that controls the spread of the distribution around its mean (Figure C.1). Adding a
multiple of the identity matrix to4 Z or changing the order of a column of M and the corre-
sponding Z columns does not change the distribution [Bingham, 1974], so we can force the last
entry of Z to be zero for computational simplicity, and because of this, the last column of M
represents the distribution mode [Bingham, 1974; Kurz et al. , 2013, 2014b].

Figure C.1: Bi PDF with: Z = diag(−5,−5, 0) ∧ M = I3×3 (left), Z = diag(−25,−25, 0) ∧
M = I3×3 (center) and Z = diag(−500,−500, 0) ∧M = I3×3 (right).

C.1.1 Normalization constant

The main difficulty in the utilization of the Bi distribution consists in the computation of
the normalization constant since the distribution must integrate to one over its domain. The
normalization constant is obtained by:

F (Z) =
∫
Sd−1

exp(qT MZMT q) dq =
∫
Sd−1

exp(qT Zq) dq (C.2)

where F (Z) does not depend on the matrix M since the orientation of the distribution peaks
does not change its value. Since we are using this distribution in a real-time approach, we
choose to interpolate tabulated values from a precomputed lookup table [Gilitschenski et al.
, 2014; Niezgoda et al. , 2016; Glover et al. , 2012; Srivatsan et al. , 2017] for computational
efficiency.

C.1.2 Product

The product of two Bi distributions is closed under multiplication after renormalization and is
given by [Glover & Kaelbling, 2014]:

PB1(q; M1,Z1) · PB2(q; M2,Z2) = 1
F (Z) exp(qT MZMT q) (C.3)

2 When using quaternions d = 4.
3 A square matrix whose columns and rows are orthonormal vectors.
4 The concentration matrix changes linearly and after the recalculation of F (Z) to stay in the unit hypersphere,

the obtained Bi distribution does not change.



C.1. BINGHAM 109

where F (Z) is the new normalization constant, M are the unit eigenvectors and D are the
eigenvalues on the diagonal in ascending order of (M1Z1MT

1 + M2Z2MT
2 ), Z = D− λddId×d

and λdd is the largest eigenvalue.

C.1.3 Rotation

When we are in S3 is possible to change (rotate) the orientation of a Bi distribution PB (q; M,Z)
(C.1) by a fixed quaternion g ∈ S3 according to [Glover & Kaelbling, 2013; Kurz et al. , 2014b;
Gilitschenski et al. , 2016]:

PB (r; M⊗ g,Z) when r = q ⊗ g (C.4)

where⊗ represents the composition of orientations, M⊗g ≡ [m1 ⊗ g,m2 ⊗ g,m3 ⊗ g ,m4 ⊗ g]
and m are the columns of M. Since the quaternion multiplication is not commutative we have
that r ∼ PB (g ⊗ M,Z) when r = g ⊗ q.

C.1.4 Covariance

The covariance is a sufficient statistics5 for the Bi distribution since the Bi distribution is the
maximum entropy distribution6 on the hypersphere, which matches the sample inertia matrix7

[Mardia, 1975]. The covariance of the Bi PDF is given by [Bingham, 1974]:

Cov(q) = E(qqT )− (E(q))2 = E(qqT ) (C.5)

where (E(q))2 = 0 is a consequence of the antipodal symmetry and E(qqT ) is given by:

E(qqT ) = M · diag
(

d
dz1

F (Z)
F (Z) , . . . , 1−

∑d−1
i=1

d
dzi
F (Z)

F (Z)

)
·MT (C.6)

where the values of the gradient of F with respect to Z are precomputed and accessed by
interpolation as made for the normalization constant. The covariance of the composition8

of two Bi distributions can be obtained using the method of moments [Glover & Kaelbling,
2013; Prentice, 1984; Collins & Weiss, 1990]. The composition covariance Cov(q1 ⊗ q2) can
be represented using the method of moments by [Glover & Kaelbling, 2013; Prentice, 1984;
Collins & Weiss, 1990]:

5 No other statistic that can be calculated provides any additional information.
6 The most appropriate distribution to model the given set of data.
7 The statistics used to estimate the covariance matrix, also known as scatter matrix.
8 The composition is a directional analog to the addition of random vectors in a linear space.
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(C.7)

where E(q1qT1 ) = aij and E(q2qT2 ) = bij (4×4 matrices). Using this method, we can approxi-
mate the resulting composition covariance directly from their covariance matrices combination.

C.1.5 Inference

It is possible to estimate the parameters of a Bi distribution which approximates a set of
samples [Bingham, 1974]. The inertia matrix for a set of M samples q = [q1, ...,qM ] is given
by [Bingham, 1974]:

S = 1
M

M∑
i=1

qiqTi (C.8)

The Maximum Likelihood Estimation (MLE) M̂ for a set of samples is an eigenvalue problem
since the columns of M̂ are eigenvectors κ of S [Bingham, 1974]. The MLE Ẑ can be found
setting the partial log-likelihood function on Z to zero. This leads to:

d
dzj

F (Z)
F (Z) = 1

M

M∑
i=1

(
κTj qi

)2 = κTj Sκj = 0 (C.9)

where κj are the eigenvectors of S (C.8). This calculation can be made using the Constrained
Optimization BY Linear Approximations (COBYLA) algorithm [Powell, 1998].

C.1.6 Sampling

Is hard to sample directly from the Bi distribution because of the normalization constant. To
solve this problem is used a Metropolis-Hasting sampler [Hastings, 1970; Chib & Greenberg,
1995] with proposal distribution given by a projected zero-mean Gaussian with covariance
S (either from (C.6) or (C.8)) and target distribution provided by the Bi density [Glover &
Kaelbling, 2013; Bingham, 1974].



C.2. BINGHAM-GAUSS 111

C.2 Bingham-Gauss
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To quantify the correlation between the angular velocity (Euclidean space Rd) and the attitude
on the orientation manifold (Sd−1), we will use the BiGa distribution. The definition of
conditional probability allows the distribution of two jointly distributed random vectors x and
y to be written as the product of the distribution of x and the distribution of y conditioned
on x:

p(x,y) = p(x) p(y | x) (C.10)

considering x = q and y = ω (C.10) is possible to use this definition and construct a distribu-
tion that consists in the product of a Bi distribution and a Gaussian distribution conditioned
on the Bi distributed random variables. The BiGa PDF is given by [Darling & DeMars, 2016a;
Jazwinski, 1970]:

PBG (q,ω; M,Z,mω,Pq,Pω,Pqω)

= PG(ω; mω + PT
qωP−1

q q,Pω −PT
qωP−1

q Pqω)PB(q; M,Z)
(C.11)

where M and Z are the orientation matrix and the matrix of concentration parameters of the
Bi part defined by Pq (C.8) and PG is a Gaussian PDF given by:

PG(ω;µ,σ2) = 1√
2πσ2

e−(ω−µσ )2
(C.12)

with mean µ = mω + PT
qωP−1

q q and variance σ2 = Pω −PT
qωP−1

q Pqω as shown in (C.11) and
described in Darling & DeMars [2016a]; Jazwinski [1970].

C.2.1 Distribution parameters

The parameters mω, Pω, Pq and Pqω (C.11) are given by9:

mω = EPBG
[ω] ∈ Rr (C.13)

Pω = EPBG

[
(ω −mω) (ω −mω)T

]
∈ Rr×r (C.14)

Pq = EPBG

[
qqT

]
∈ Rd×d (C.15)

Pqω = EPBG

[
q(ω −mω)T

]
∈ Rd×r (C.16)

C.2.2 Antipodal symmetry

We have to guarantee that this distribution is antipodally symmetric with q and −q represent-
ing the same attitude. The PDF described in (C.11) needs to be divided into two hemispheres
of the unit hypersphere to guarantee that condition [Darling & DeMars, 2016a]. The BiGa
PDF becomes represented as:
9 We have r = 3 and d = 4 in our study case.
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PBG =

PBG (q,ω; mω,Pω,Pq,Pqω) q ∈ S+

PBG (q,ω; mω,Pω,Pq,−Pqω) q ∈ S−
(C.17)

where S+ and S− represent the hemispheres. For each q its position on the hypersphere is
obtained analyzing its last nonzero element. If it is negative, the quaternion belongs to S−

otherwise belongs to S+.
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The created sigma points follow the same principle as used in the UT applied in the UKF [Dar-
ling & DeMars, 2015a,b; Julier, 2002; Julier & Uhlmann, 1997, 2004] described in Appendix A.
We need to use 4d− 2 samples that correspond in this case to fourteen samples (d = 4). Since
the distribution is antipodally symmetric, it is sufficient to consider only one pole (adapting
the respective weights).

D.1 Canonical representation

The canonical1 sigma points are given by [Gilitschenski et al. , 2016; Darling & DeMars, 2015b]:

q̃1,2 = [± sinα1, 0, 0, cosα1]T (D.1)

q̃3,4 = [0,± sinα2, 0, cosα2]T (D.2)

q̃5,6 = [0, 0,± sinα3, cosα3]T (D.3)

q̃7 = [0, 0, 0, 1]T (D.4)

where q̃7 is the sample located on the pole. For example, if we have d = 3, we will need
ten sigma points to approximate our Bi distribution, and the five corresponding to one pole
will be located as shown in Figure D.1 with red circles. The covariance of the estimated Bi
distribution is obtained by (C.6):

EPB

{
xtxTt

}
= M · diag(f1, f2, f3, f4) ·MT (D.5)

The deviation for each one of the canonical sigma points is obtained from αi:
1 The canonical distribution will be employed since it simplifies the needed mathematical approach because the

parameters will be dimensionless [Darling & DeMars, 2015a,b].
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αi = sin−1

(√
fi
wBi

)
= sin−1

√√√√( 3fi
3fi +

(
1− 1

N

)
f4

)
(D.6)

Figure D.1: An example of deterministic sampling with d = 3.

D.2 Weights calculation

The weights of the sigma points are given by:

w1,2 = wB1

4 =
f1 + 1− 1

N f4
3

4 (D.7)

w3,4 = wB2

4 =
f2 + 1− 1

N f4
3

4 (D.8)

w5,6 = wB3

4 =
f3 + 1− 1

N f4
3

4 (D.9)

where N is equal to the number of used sigma points. The weight for the central sigma point
is obtained by:

w7 = f4

N
(D.10)

D.3 From canonical to the final sigma points

Each canonical sigma point q̃ is multiplied by M (in the UBiF we use Me
t q̃ as described in

Section 5.3.1) originating the set of sigma points q that represent our PB . The sigma points
propagation is made adding a quaternion motion based on the angular velocities with some
added noise to each one of the sigma points. The same principles are applied in the creation
of the sigma points for the BiGa case (Appendix E), but in that case, we have to take into
account the angular velocity part (Euclidean vector).
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We follow the same approach to create the canonical sigma points as described in Appendix D
for the Bi case but adding a Euclidean part describing the angular velocity.

E.1 Canonical representation

The canonical sigma points that represent the deviation for the Euclidean part are defined as
[Darling & DeMars, 2015a,b]:

r̃1,2 = [

q̃1,2︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃1,2︷ ︸︸ ︷
[±δ, 0, 0]T ]T (E.1)

r̃3,4 = [

q̃3,4︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃3,4︷ ︸︸ ︷
[0,±δ, 0]T ]T (E.2)

r̃5,6 = [

q̃5,6︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃5,6︷ ︸︸ ︷
[0, 0,±δ]T ]T (E.3)

The angular deviations in the first three states of the attitude quaternion are introduced
while the Euclidean part is held constant at zero to guarantee that the perturbed quaternion
remains on the unit hypersphere according to:

r̃7,8 = [

q̃7,8︷ ︸︸ ︷
[± sinα1, 0, 0, cosα1]T ,

ω̃7,8︷ ︸︸ ︷
[0, 0, 0]T ]T (E.4)

r̃9,10 = [

q̃9,10︷ ︸︸ ︷
[0,± sinα2, 0, cosα2]T ,

ω̃9,10︷ ︸︸ ︷
[0, 0, 0]T ]T (E.5)

r̃11,12 = [

q̃11,12︷ ︸︸ ︷
[0, 0,± sinα3, cosα3]T ,

ω̃11,12︷ ︸︸ ︷
[0, 0, 0]T ]T (E.6)

The central sigma point is given by:
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r̃13 = [

q̃13︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃13︷ ︸︸ ︷
[0, 0, 0]T ]T (E.7)

The parameters αi and δ are given by:

αi = sin−1

(√
fi

wBi

)
(E.8)

δ =
√

r

wG
(E.9)

where wBi
is described in (E.12), (E.13), (E.14), wG is described in (E.10), and r is equal to

three in the study case.

E.2 Weights calculation

The weights for the sigma points one to six are given by:

w1,...,6 = wG

4r = 2rfs+1

N4r = 2fs+1

4(2r + 2s+ 1) (E.10)

where s is equal to three in the study case, N is equal to thirteen (the number of sigma points)
and fs+1 is obtained analyzing the second moment of the canonical BiGa distribution (the
zeroth and first moment is one and zero respectively) according to:

EpBG

{
q̃q̃T

}
= diag [[f1, f2, f3, f4] , [1, 1, 1]] (E.11)

where the covariance can be obtained as described in (C.6) for the Bi part of the BiGa distri-
bution alone. The weights for the sigma points seven to twelve are given by:

w7,8 = wB1

4 =
f1 + 1− 1

N−
2r
N f4

s

4 (E.12)

w9,10 = wB2

4 =
f2 + 1− 1

N−
2r
N f4

s

4 (E.13)

w11,12 = wB3

4 =
f3 + 1− 1

N−
2r
N f4

s

4 (E.14)

The weight for the central sigma point is given by:

w13 = wC

2 = f4

2N (E.15)

E.3 From canonical to the final sigma points

Each sigma point is transformed from the canonical representation using the following relations
[Darling & DeMars, 2016a]:
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q = Mp (E.16)

ω =
√

Pω + PT
qωP−1

q Pqω Z + PT
qωP−1

q Mp + mω q ∈ Ss+ (E.17)

ω =
√

Pω + PT
qωP−1

q Pqω Z − PT
qωP−1

q Mp + mω q ∈ Ss− (E.18)

where p corresponds to the quaternion part and Z correspond to the Euclidean part of the
created canonical sigma points r̃ originating the Z sigma points. This transformation is similar
to what is performed in the Bi case but now taking into account the Euclidean part of the
sigma point vector as seen in (E.17) and (E.18).

The parameters mω, Pω, Pq and Pqω as described in (C.13) to (C.16) can be obtained
from the sigma points according to:

mω ≈ 2
N∑
i=1

wifω
(
Zi
)

(E.19)

Pω ≈ 2
N∑
i=1

wi
(
fω
(
Zi
)
−mω

) (
fω
(
Zi
)
−mω

)T (E.20)

Pq ≈ 2
N∑
i=1

wifq
(
Zi
)
fq
(
Zi
)T (E.21)

Pqω ≈ 2
N∑
i=1

wifq
(
Zi
) (
fω
(
Zi
)
−mω

)T (E.22)

where Zi is the sigma point i, fω is the angular velocity part of the considered sigma point
and fq is the quaternion part of the considered sigma point.
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Gonzales, Christophe, & Dubuisson, Séverine. 2015. Combinatorial resampling particle filter:
An effective and efficient method for articulated object tracking. International Journal of
Computer Vision, 112(3), 255–284.



BIBLIOGRAPHY 129

Gordon, Neil J, Salmond, David J, & Smith, Adrian FM. 1993. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. Pages 107–113 of: Radar and Signal
Processing, IEE Proceedings F, vol. 140. IET.

Grant, Alan, Williams, Paul, Ward, Nick, & Basker, Sally. 2009. GPS jamming and the impact
on maritime navigation. Journal of Navigation, 62(02), 173–187.

Grisettiyz, Giorgio, Stachniss, Cyrill, & Burgard, Wolfram. 2005. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective resampling. Pages
2432–2437 of: Proceedings of the 2005 IEEE international conference on robotics and au-
tomation. IEEE.

Guenard, Nicolas, Hamel, Tarek, & Mahony, Robert. 2008. A practical visual servo control for
an unmanned aerial vehicle. IEEE Transactions on Robotics, 24(2), 331–340.

Gui, Yang, Guo, Pengyu, Zhang, Hongliang, Lei, Zhihui, Zhou, Xiang, Du, Jing, & Yu, Qifeng.
2013. Airborne Vision-Based Navigation Method for UAV Accuracy Landing Using Infrared
Lamps. Journal of Intelligent and Robotic Systems, 72(2), 197–218.

Guo, Rong-Hua, & Qin, Zheng. 2007. An unscented particle filter for ground maneuvering
target tracking. Journal of Zhejiang University-SCIENCE A, 8(10), 1588–1595.

Guo, Wenyan, Han, Chongzhao, & Lei, Ming. 2007. Improved unscented particle filter for
nonlinear Bayesian estimation. Pages 1–6 of: Information Fusion, 2007 10th International
Conference on. IEEE.

Hall, Peter. 1985. Resampling a coverage pattern. Stochastic processes and their applications,
20(2), 231–246.

Hartley, Richard, & Zisserman, Andrew. 2003. Multiple view geometry in computer vision.
Cambridge university press.

Hartwig, Sebastian, & Ropinski, Timo. 2019. Training Object Detectors on Synthetic Images
Containing Reflecting Materials. arXiv preprint arXiv:1904.00824.

Hastings, W Keith. 1970. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1), 97–109.

Haug, Anton J. 2012. Bayesian Estimation and Tracking: A Practical Guide. John Wiley and
Sons.

Havangi, Ramazan, Nekoui, Mohammad Ali, Taghirad, Hamid D, & Teshnehlab, Mohammad.
2013. An intelligent UFastSLAM with MCMC move step. Advanced Robotics, 27(5), 311–
324.

Haykin, Simon S, et al. . 2001. Kalman filtering and neural networks. Wiley Online Library.

Hazeldene, Adam, Sloan, Adam, Wilkin, Christopher, & Price, Andrew. 2004. In-flight orien-
tation, object identification and landing support for an unmanned air vehicle. Pages 13–15
of: Proceedings of the IEEE International Conference on Autonomous Robots and Agents.



130 BIBLIOGRAPHY

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, & Sun, Jian. 2014. Spatial pyramid pooling in
deep convolutional networks for visual recognition. Pages 346–361 of: European Conference
on Computer Vision. Springer.

Higham, Nicholas J. 1990. Analysis of the Cholesky decomposition of a semi-definite matrix.
Manchester Institute for Mathematical Sciences School of Mathematics.

Ho, Yu-Chi, & Lee, Robert CK. 1964. A Bayesian approach to problems in stochastic estimation
and control. Tech. rept. Division of Engineering and Applied Physics, Harvard University,
Cambridge, Massachusetts.

Howse, Joseph, Puttemans, Steven, Hua, Quan, & Sinha, Utkarsh. 2015. OpenCV 3 Blueprints.
Packt Publishing Ltd.

Hubbard, David, Morse, Bryan, Theodore, Colin, Tischler, Mark, & McLain, Timothy. 2007.
Performance evaluation of vision-based navigation and landing on a rotorcraft unmanned
aerial vehicle. Pages 5–5 of: Applications of Computer Vision, 2007. WACV07. IEEE Work-
shop on. IEEE.

Huh, Sungsik, & Shim, David Hyunchul. 2010. A vision-based automatic landing method for
fixed-wing UAVs. Journal of Intelligent and Robotic Systems, 57(1-4), 217.

Humpherys, Jeffrey, Redd, Preston, & West, Jeremy. 2012. A fresh look at the Kalman filter.
SIAM review, 54(4), 801–823.

Iltis, Ronald A. 1990. Joint estimation of PN code delay and multipath using the extended
Kalman filter. IEEE Transactions on communications, 38(10), 1677–1685.

Inc, Insitu. 2016. ScanEagle. URL https://insitu.com/information-delivery/unmanned-
systems/scaneagle#3.

J. Huang, V. Rathod, D. Chow C. Sun, & Zhu, M. 2017. Tensorflow object detection API.

Jähne, Bernd, Haussecker, Horst, & Geissler, Peter. 1999. Handbook of computer vision and
applications. Vol. 2. Citeseer.

Jain, Ramesh, Kasturi, Rangachar, & Schunck, Brian G. 1995. Machine vision. Vol. 5.
McGraw-Hill New York.

Jalal, Mona, Spjut, Josef, Boudaoud, Ben, & Betke, Margrit. 2019. SIDOD: A Synthetic
Image Dataset for 3D Object Pose Recognition with Distractors. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops.

Jammalamadaka, S Rao, & Sengupta, Ambar. 2001. Topics in Circular Statistics. Vol. 5.
World Scientific.

Jazwinski, Andrew H. 1970. Stochastic processes and filtering theory. Academic Press, New-
York.

Jiang, Lei, Wu, XiaoJun, & Kittler, Josef. 2018. Pose Invariant 3D Face Reconstruction. arXiv
preprint arXiv:1811.05295.



BIBLIOGRAPHY 131

Jiang, Xue-Yuan, & Ma, Guang-Fu. 2005. Spacecraft attitude estimation from vector measure-
ments using particle filter. Pages 682–687 of: 2005 International Conference on Machine
Learning and Cybernetics, vol. 2. IEEE.

Jianping, Zheng, Baoming, Bai, & Xinmei, Wang. 2009. Increased-diversity systematic re-
sampling in particle filtering for BLAST. Systems Engineering and Electronics, Journal of,
20(3), 493–498.

Josef, B. 2006. Vision with Direction: A Systematic Introduction to Image Processing and
Computer Vision.

Joseph Tan, David, Tombari, Federico, Ilic, Slobodan, & Navab, Nassir. 2015. A versatile
learning-based 3d temporal tracker: Scalable, robust, online. Pages 693–701 of: Proceedings
of the IEEE International Conference on Computer Vision.

Julier, Simon J. 2002. The scaled unscented transformation. Pages 4555–4559 of: American
Control Conference, 2002. Proceedings of the, vol. 6. IEEE.

Julier, Simon J, & Uhlmann, Jeffrey K. 1997. New extension of the Kalman filter to nonlinear
systems. Pages 182–193 of: AeroSense97. International Society for Optics and Photonics.

Julier, Simon J, & Uhlmann, Jeffrey K. 2004. Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3), 401–422.

Kantas, Nikolas, Doucet, Arnaud, Singh, Sumeetpal S, Maciejowski, Jan, & Chopin, Nicolas.
2015. On particle methods for parameter estimation in state-space models. Statistical science,
30(3), 328–351.

Keilwagen, Jens, Grosse, Ivo, & Grau, Jan. 2014. Area under Precision-Recall Curves for
Weighted and Unweighted Data. PLOS ONE, 9(3), 1–13.

Khan, M Khalid, & Nystrom, Ingela. 2010. A modified particle swarm optimization applied
in image registration. Pages 2302–2305 of: Pattern Recognition (ICPR), 2010 20th Inter-
national Conference on. IEEE.

Kim, H Jin, Kim, Mingu, Lim, Hyon, Park, Chulwoo, Yoon, Seungho, Lee, Daewon, Choi,
Hyunjin, Oh, Gyeongtaek, Park, Jongho, & Kim, Youdan. 2013. Fully autonomous vision-
based net-recovery landing system for a fixed-wing UAV. IEEE/ASME Transactions On
Mechatronics, 18(4), 1320–1333.

Kim, Pyojin, Coltin, Brian, & Kim, H Jin. 2018. Low-drift visual odometry in structured
environments by decoupling rotational and translational motion. Pages 7247–7253 of: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE.

Kingston, Derek, Beard, Randal, McLain, Tim, Larsen, Michael, & Ren, Wei. 2003. Au-
tonomous vehicle technologies for small fixed wing UAVs. Page 6559 of: 2nd AIAA” Un-
manned Unlimited” Conf. and Workshop & Exhibit.

Kiru Park, Johann Prankl, Michael Zillich, & Vincze, Markus. 2017. Pose Estimation of Similar
Shape Objects using Convolutional Neural Network trained by Synthetic data. OAGM-ARW
Joint Workshop.



132 BIBLIOGRAPHY

Klausen, Kristian, Moe, Jostein Borgen, van den Hoorn, Jonathan Cornel, Gomola, Alojz,
Fossen, Thor I, & Johansen, Tor Arne. 2016. Coordinated control concept for recovery of a
fixed-wing UAV on a ship using a net carried by multirotor UAVs. Pages 964–973 of: 2016
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.

Klein, Georg, & Drummond, Tom. 2003. Robust visual tracking for non-instrumented aug-
mented reality. Page 113 of: Proceedings of the 2nd IEEE/ACM International Symposium
on Mixed and Augmented Reality. IEEE Computer Society.

Klein, Georg, & Murray, David W. 2006. Full-3D Edge Tracking with a Particle Filter. Pages
1119–1128 of: British Machine Vision Conference (BMVC).

Klein, Vladislav, & Morelli, Eugene A. 2006. Aircraft system identification: theory and practice.
American Institute of Aeronautics and Astronautics Reston, Va, USA.

Klimkowska, A, Lee, I, & Choi, K. 2016. Possibilities of UAS for maritime monitoring. The In-
ternational Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
41, 885.

Kong, Weiwei, Zhang, Daibing, Wang, Xun, Xian, Zhiwen, & Zhang, Jianwei. 2013. Au-
tonomous landing of an UAV with a ground-based actuated infrared stereo vision system.
Pages 2963–2970 of: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE.

Kong, Weiwei, Zhou, Dianle, Zhang, Daibing, & Zhang, Jianwei. 2014. Vision-based au-
tonomous landing system for unmanned aerial vehicle: A survey. Pages 1–8 of: 2014 inter-
national conference on multisensor fusion and information integration for intelligent systems
(MFI). IEEE.

Kong, Weiwei, Zhang, Daibing, & Zhang, Jianwei. 2015. A ground-based multi-sensor system
for autonomous landing of a fixed wing UAV. Pages 1303–1310 of: 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE.

Kosaka, Akio, & Nakazawa, Goichi. 1993. Vision-Based Motion Tracking of Rigid Objects
Using Prediction of Uncertainties. Pages 2637–2637 of: IEEE International Conference on
Robotics and Automation (ICRA), vol. 1.

Kotecha, J. H., & Djuric, P. M. 2003. Gaussian particle filtering. IEEE Transactions on Signal
Processing, 51(10).

Kotecha, Jayesh H, & Djuric, Petar M. 2001. Gaussian sum particle filtering for dynamic
state space models. Pages 3465–3468 of: 2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2001. Proceedings (ICASSP’01)., vol. 6. IEEE.

Kraft, Edgar. 2003. A quaternion-based unscented Kalman filter for orientation tracking. Pages
47–54 of: Proceedings of the Sixth International Conference of Information Fusion, vol. 1.

Krizhevsky, Alex, Sutskever, Ilya, & Hinton, Geoffrey E. 2012. Imagenet classification with
deep convolutional neural networks. Pages 1097–1105 of: Advances in neural information
processing systems.



BIBLIOGRAPHY 133

Krzeszowski, Tomasz, Kwolek, Bogdan, & Wojciechowski, Konrad. 2010. Articulated body
motion tracking by combined particle swarm optimization and particle filtering. Pages 147–
154 of: International Conference on Computer Vision and Graphics. Springer.

Kurz, Gerhard, Gilitschenski, Igor, & Hanebeck, Uwe D. 2013. Recursive nonlinear filtering
for angular data based on circular distributions. Pages 5439–5445 of: American Control
Conference (ACC), 2013. IEEE.

Kurz, Gerhard, Gilitschenski, Igor, & Hanebeck, Uwe D. 2014a. Nonlinear measurement update
for estimation of angular systems based on circular distributions. Pages 5694–5699 of:
American Control Conference (ACC), 2014. IEEE.

Kurz, Gerhard, Gilitschenski, Igor, Julier, Simon, & Hanebeck, Uwe D. 2014b. Recursive
Bingham Filter for Directional Estimation Involving 180 Degree Symmetry. Journal of
Advances in Information Fusion, 9(2), 90–105.

Kwok, Ngai Ming, Fang, Gu, & Zhou, Weizhen. 2005. Evolutionary particle filter: re-sampling
from the genetic algorithm perspective. Pages 2935–2940 of: Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE.

Kwolek, Bogdan. 2013. Multi-object tracking using particle swarm optimization on target
interactions. Pages 63–78 of: Advances in Heuristic Signal Processing and Applications.
Springer.

Kyrki, Ville, & Kragic, Danica. 2011. Tracking rigid objects using integration of model-based
and model-free cues. Machine Vision and Applications, 22(2), 323–335.

Lange, Sven, Sunderhauf, Niko, & Protzel, Peter. 2008. Autonomous landing for a multirotor
UAV using vision. Pages 482–491 of: International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR 2008).

LeCun, Yann, Bottou, Leon, Bengio, Yoshua, & Haffner, Patrick. 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, Bum-Jong, & Park, Jong-Seung. 2006. Fast vision-based camera tracking for augmented
environments. Pages 1018–1023 of: Intelligent Computing in Signal Processing and Pattern
Recognition. Springer.

Lee, Bum-Jong, Park, Jong-Seung, & Sung, Mee Young. 2006. Vision-based real-time cam-
era matchmoving with a known marker. Pages 193–204 of: International Conference on
Entertainment Computing. Springer.

Lee, Taeyoung, Leok, Melvin, & McClamroch, N Harris. 2010. Geometric tracking control of
a quadrotor UAV on SE (3). Pages 5420–5425 of: 49th IEEE conference on decision and
control (CDC). IEEE.

Lefferts, Ern J, Markley, F Landis, & Shuster, Malcolm D. 1982. Kalman filtering for spacecraft
attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5), 417–429.

Lepetit, Vincent, Fua, Pascal, et al. . 2005. Monocular model-based 3d tracking of rigid objects:
A survey. Foundations and Trends R© in Computer Graphics and Vision, 1(1), 1–89.



134 BIBLIOGRAPHY

Li, Daizong. 2013. Design of a new VTOL UAV by combining cycloidal blades and fanwing
propellers. Pages 1–8 of: 2013 IEEE Aerospace Conference. IEEE.

Li, Peihua, Zhang, Tianwen, & Pece, Arthur EC. 2003. Visual contour tracking based on
particle filters. Image and Vision Computing, 21(1), 111–123.

Li, Tian-cheng, Villarrubia, Gabriel, Sun, Shu-dong, Corchado, Juan M, & Bajo, Javier. 2015a.
Resampling methods for particle filtering: identical distribution, a new method, and compa-
rable study. Frontiers of Information Technology & Electronic Engineering, 16(11), 969–984.

Li, Tiancheng, Sattar, Tariq Pervez, & Sun, Shudong. 2012. Deterministic resampling: Unbi-
ased sampling to avoid sample impoverishment in particle filters. Signal Processing, 92(7),
1637–1645.

Li, Tiancheng, Bolic, Miodrag, & Djuric, Petar M. 2015b. Resampling Methods for Particle
Filtering: Classification, implementation, and strategies. Signal Processing Magazine, IEEE,
32(3), 70–86.

Li-Chee-Ming, Julien, & Armenakis, Costas. 2015. A Feasibility Study on Using ViSPS 3d
Model-Based Tracker for UAV Pose Estimation in Outdoor Environments. The International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 329.

Liang-Qun, Li, Hong-Bing, Ji, & Jun-Hui, Luo. 2005. The iterated extended Kalman particle
filter. Pages 1213–1216 of: Communications and Information Technology, 2005. ISCIT
2005. IEEE International Symposium on, vol. 2. IEEE.

Lin, Shanggang, Garratt, Matthew A, & Lambert, Andrew J. 2015. Real-time 6DoF deck
pose estimation and target tracking for landing an UAV in a cluttered shipboard environ-
ment using on-board vision. Pages 474–481 of: 2015 IEEE International Conference on
Mechatronics and Automation (ICMA). IEEE.

Lin, Shanggang, Garratt, Matthew A, & Lambert, Andrew J. 2016. Monocular vision-based
real-time target recognition and tracking for autonomously landing an UAV in a cluttered
shipboard environment. Autonomous Robots, 1–21.

Lin, Shanggang, Garratt, Matthew A, & Lambert, Andrew J. 2017a. Monocular vision-based
real-time target recognition and tracking for autonomously landing an UAV in a cluttered
shipboard environment. Autonomous Robots, 41(4), 881–901.

Lin, Tsung-Yi, Dollár, Piotr, Girshick, Ross, He, Kaiming, Hariharan, Bharath, & Belongie,
Serge. 2017b. Feature pyramid networks for object detection. Pages 2117–2125 of: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.

Liu, Bin, Cheng, Shi, & Shi, Yuhui. 2016a. Particle Filter Optimization: A Brief Introduction.
Cham: Springer International Publishing. Pages 95–104.

Liu, Jane, & West, Mike. 2001a. Combined parameter and state estimation in simulation-based
filtering. Pages 197–223 of: Sequential Monte Carlo methods in practice. Springer.

Liu, Jane, & West, Mike. 2001b. Combined parameter and state estimation in simulation-based
filtering. Springer. Pages 197–223.



BIBLIOGRAPHY 135

Liu, Jun S. 1996. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing, 6(2), 113–119.

Liu, Jun S, & Chen, Rong. 1998. Sequential Monte Carlo methods for dynamic systems.
Journal of the American statistical association, 93(443), 1032–1044.

Liu, Jun S, Chen, Rong, & Wong, Wing Hung. 1998. Rejection control and sequential impor-
tance sampling. Journal of the American Statistical Association, 93(443), 1022–1031.

Liu, Wei, Anguelov, Dragomir, Erhan, Dumitru, Szegedy, Christian, Reed, Scott, Fu, Cheng-
Yang, & Berg, Alexander C. 2016b. SSD: Single shot multibox detector. Pages 21–37 of:
European Conference on Computer Vision. Springer.

Liu, Yuan, Wang, Jun, Song, Jingwei, & Song, Zihui. 2017. Globally Consistent Indoor Map-
ping via a Decoupling Rotation and Translation Algorithm Applied to RGB-D Camera
Output. ISPRS International Journal of Geo-Information, 6(11), 323.

Lourakis, Manolis, & Zabulis, Xenophon. 2013. Model-based pose estimation for rigid objects.
Pages 83–92 of: International conference on computer vision systems. Springer.

Lowe, David G. 1992. Robust model-based motion tracking through the integration of search
and estimation. International Journal of Computer Vision, 8(2), 113–122.

Lowe, David G, et al. . 1991. Fitting parameterized three-dimensional models to images. IEEE
transactions on pattern analysis and machine intelligence, 13(5), 441–450.

Lwin, Khin Nwe, Myint, Myo, Mukada, Naoki, Yamada, Daiki, Matsuno, Takayuki, Saitou,
Kazuhiro, Godou, Waichiro, Sakamoto, Tatsuya, & Minami, Mamoru. 2019. Sea Docking
by Dual-eye Pose Estimation with Optimized Genetic Algorithm Parameters. Journal of
Intelligent & Robotic Systems, 1–22.

Ma, Jason. 2003. Lacks significant S&T investment: Advanced arresting gear will be evolu-
tionary, not revolutionary. Inside the Navy, 16(35), 1–9.

Ma, Yanxin, Guo, Yulan, Zhao, Jian, Lu, Min, Zhang, Jun, & Wan, Jianwei. 2016. Fast and ac-
curate registration of structured point clouds with small overlaps. Pages 1–9 of: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

Ma, Yi, Soatto, Stefano, Kosecka, Jana, & Sastry, S Shankar. 2012. An invitation to 3-d vision:
from images to geometric models. Vol. 26. Springer Science & Business Media.

Mardia, Kanti V., & Jupp, Peter E. 2000. Directional Statistics. Vol. 494. John Wiley & Sons.

Mardia, KV. 1975. Characterizations of directional distributions. Springer. Pages 365–385.

Marjoram, Paul, Molitor, John, Plagnol, Vincent, & Tavaré, Simon. 2003. Markov chain Monte
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