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Abstract

Detecting people is an important goal of many automated systems. De-

pending on the setting, such goal can be achieved using different kinds of

sensors and recognition techniques. This thesis focusses on the problem

of Pedestrian Detection, i.e., the detection of people assuming standing or

walking stances, in images acquired from a moving camera. This version of

the problem has clear applications in the fields of mobile robotics (to inform

Human-Robot Interaction systems) and automotive (providing input to Ad-

vanced Driver Assistance Systems), among others. Detecting pedestrians is

a hard problem, but years of successful research led to great advances in

detection accuracy and speed.

This thesis deals with three research topics related to Pedestrian Detec-

tion. First, it concentrates on the methodology used for defining Ground

Truth labels for the data sets: Pedestrian Detection systems are based on

Machine Learning and, as such, they require labelled data both for training

and testing. As the performance of the detectors improves, the labelling

information is enriched, so that training data is better exploited and test

data better highlights differences between the performances of different al-

gorithms. Second, it studies the effect of High Definition images on detec-

tion performance: as the price of High Definition cameras drops, their use

becomes more common in Video Surveillance settings. It is, therefore, im-

portant to establish a benchmark for Pedestrian Detection for such imaging

conditions, in order to point out the weaknesses of the current approaches

and to foster the development of detectors which exploit the high resolution

images. Third, it employs a Pedestrian Detector in the design of a fully au-

tomated person Re-Identification system: Video Surveillance systems rely

on human operators for the execution of many tasks. The automatization of

some of such tasks is desirable, as it would allow focussing the work of the
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human resources on the high-level aspects of the job. The work I performed

in the three areas is outlined in the following paragraphs.

Regarding the first topic, I introduce the concept of sample “purity”,

identifying as “impure” the examples imaged in non-ideal conditions for de-

tection: examples affected by partial occlusion or smaller than the detection

window. I show that including slightly occluded pedestrians in the training

set improves performance, even on fully visible examples, while incorpo-

rating very small pedestrians improves detection on pedestrians imaged at

similar scales. Furthermore, I show that matching height ranges during ex-

periment design and using an accurate test Ground Truth are crucial for a

fair evaluation of detection performance. During this work I developed a

richer and more accurate annotation for the widely used INRIA person data

set.

With respect to the second topic, I collected the High Definition Ana-

lytics data set, a tool for the evaluation of Pedestrian Detectors in a Visual

Surveillance scenario and for the assessment of the impact of High Definition

images on the performance of Video Surveillance algorithms. I performed

experiments on the data set using two detectors representative of two op-

posite philosophies in the state of the art. The part-based detector proved

to be better on people imaged at close range, while the monolithic detector

performed slightly better on fully visible people. Experiments on High Def-

inition images show that they allow for the detection of pedestrians farther

away than regular definition images do, at the price of more False Positives

and longer processing times. Re-Identification experiments show that the

proposed data set is very challenging and that Re-Identification algorithms

based on simple features do not take advantage of High Resolution images.

Finally, to address the third challenge, I design a fully automated person

Re-Identification in which a Pedestrian Detector is integrated with a stan-

dard Re-Identification module. I show that precision and recall statistics are

useful to characterise the performance of the integrated system and devise

two improvements with respect to the naive integration scheme. The False

Positives class deals with the False Positives generated by the detector, while

the Occlusion Filter uses geometrical reasoning to reject detections with a

high probability of being misclassified. The two improvements afford higher

Re-Identification precision at the price of a drop in recall.

I am confident that the ideas I explore in this thesis, along with the data
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set and the annotation we collected, will assist the scientific community in

designing the next generation of Pedestrian Detectors.
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Chapter 1

Introduction

Detecting humans in images is a challenging task that attracts the attention

of the scientific community and industry alike. The problem assumes differ-

ent contours depending on whether the sensor used to capture the images is

fixed or mobile, whether the detection is performed on a single image or on

a sequence of images, and whether the sensor is a single camera or a richer

sensor providing depth information. One further distinction can be drawn

between the methods that do and do not restrain the articulation of the

people.

This work focusses on Pedestrian Detection (PD), i.e., the detection of

people assuming poses that are common while standing or walking, in images

acquired by a mobile camera. PD is important as it enables the estimation

of the presence and the position of humans in the vicinity of a vision sen-

sor. The most immediate applications of PD are in the field of automotive

(smart cars and Advanced Driver Assistance Systems) and in that of mobile

robotics. Advanced Driver Assistance Systems need to be aware of pedes-

trians in the vicinity of the vehicle they are operating on, in order to warn

the driver (or override his/her commands) in case of danger. Mobile robots

need to detect people in their surroundings, as the first step in complex

Human–Robot Interaction systems. Other areas of application for PD are

Video Surveillance, smart spaces and entertainment.

The PD task is complex, mostly because of the high variability that

characterizes the pedestrians projections on the camera image plane. The

appearance of a pedestrian on the image is influenced by the person’s pose,

his or her clothing, occlusions, and the atmospheric conditions that con-

1



2 CHAPTER 1. INTRODUCTION

tribute to the illumination of the scene. Background clutter also plays a

role in making the detection difficult. PD has been the subject of extensive

research by many research groups, with the number of scientific publications

including “Pedestrian Detection” in their title steadily increasing during the

last decades (see Figure 1.1), and companies such as Mobileye [Mob] bring-

ing the technology to the market. The obvious, implicit goal of PD research

is that of improving detection accuracy, but another goal has received wide

attention: that of developing fast detectors. Real-time detectors are a re-

quirement for many practical applications, in particular when vehicles or

mobile robots are involved. The degree of success of PD research can be ap-

preciated observing that the Crosstalk cascade detector [Dollár et al., 2012a]

(published in 2012) is almost 150 times faster than the now classic Histogram

of Oriented Gradients (HOG) detector [Dalal and Triggs, 2005] (published in

2005), while also achieving a significant improvement in detection accuracy

(see [Dollár, b]).

Figure 1.1: A plot of the number of published papers including “Pedestrian
Detection” in their title as a function of the year of publication. Publi-
cations on Pedestrian Detection steadily increased over the last 20 years.
Reproduced from [Benenson et al., 2014b].

The dominant approach to PD consists in the detection-by-classification

paradigm. Such approach requires the use of an image-window classifier,

designed to estimate whether a pedestrian is present in a given image win-
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dow. The essence of the approach consists in running the classifier on a

grid of locations on the image, collecting each positive classification as a

detection. It is common practice to run the classifier on multiple scaled

versions of the input image and to follow the classification step with a fil-

tering step aimed at obtaining just one detection per imaged object. The

detection-by-classification paradigm is reviewed in detail in Chapter 3.

1.1 Challenges and Contributions

In this thesis I tackle three main challenges of the PD problem. In the

remainder of this section I briefly introduce each contribution, summarizing

the conditions that motivated it, the contribution itself and the results it

led to.

Data Set Labelling and Ground Truth – Modern PD systems rely on

Machine Learning techniques: the rules of a detection system, as opposed

to being designed by hand, are learnt from examples. Furthermore, the

evaluation of PD systems is based on sets of labelled test images. Given the

data-driven nature of PD algorithms, public data sets consisting of annotated

images and standard evaluation code are needed for a fair comparison of their

performances. Moreover, data sets play an important role in stimulating

advances in PD performance: with the improvements in PD technology data

sets become obsolete and are replaced by more challenging ones. Labelling

choices, such as defining the minimum visibility and the minimum height

of the training examples, have received little attention, but they do have

an effect on the performance of the resulting detector. Furthermore, a fair

comparison of detectors on some data sets is hindered by the way labels are

used at test time.

To address these issues, I investigate the impact of sample purity on de-

tection performance. I define as impure the examples which are imaged in

non-ideal conditions for the detection-by-classification paradigm: the ones

imaged under partial occlusion and the ones imaged with heights smaller

than that of the detection window. I explore the effect on detection per-

formance of the inclusion of examples with different degrees of impurity in

the training set, with the goal of defining rules for selecting the examples in

the training set that will lead to the best possible detector. I introduce an

improved labelling for the popular INRIA person data set [Dalal and Triggs,
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2005] which includes information on the visibility of the pedestrians, and is

more thorough than the original one. The new labelling is exploited in the

experiments.

One result of this work indicates that having accurate Ground Truth

labels and carefully designing the experiments is important for a fair eval-

uation of PD’s. Another result consists in the recommendation on which

examples to include in training in order to maximize detection performance:

including examples with low levels of impurity is beneficial. Incorporat-

ing slightly occluded examples (up to 10% occlusion) in training improves

detection also on fully visible pedestrians. Including very small examples

(two octaves smaller than the detection window) in training improves de-

tection on pedestrians of a similar size. Finally, the experiments confirm

that the degree of occlusion a pedestrian is imaged with correlates with the

probability of a detection algorithm missing her/him.

High Definition Video Surveillance – The data sets commonly used

for PD represent automotive scenarios [Ess et al., 2007; Dollár et al., 2009;

Wojek et al., 2009; Geiger et al., 2012], with the notable exception of the

INRIA data set which consists in a collection of holiday pictures [Dalal and

Triggs, 2005]. However, one clear application of PD is in Video Surveillance

scenarios, in which static cameras are endowed with a different perspective

view from that of cameras mounted on cars, and possibly set in indoor envi-

ronments. Considerations related to data set bias [Torralba and Efros, 2011;

Khosla et al., 2012] suggest that detection performances measured on a data

set specific for Video Surveillance would approximate the performance in

real-world Video Surveillance applications more accurately than the perfor-

mance measured on different (e.g., automotive) scenarios. This motivates

the development of a PD data set representative of a Video Surveillance

scenario. Furthermore, common PD data sets are based on low resolution

images (mostly VGA: 640×480 pixels). This hinders the investigation of the

effect that High Definition images have on PD and other algorithms. Estab-

lishing a high resolution benchmark for PD would also serve as a stimulus for

the development of Pedestrian Detectors specific for High Definition images.

I designed the High Definition Analytics (HDA) data set for benchmark-

ing Video Surveillance algorithms, in particular PD, person tracking and

Re-Identification (RE-ID) algorithms. The data set includes image streams

captured both at high and standard resolution, allowing the study of whether
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high resolution affords for better Video Surveillance performances. The en-

vironment for the recordings is chosen so that it is possible to evaluate the

performance of PD’s in a Video Surveillance setting. The labelling and the

evaluation code are designed so that PD, person RE-ID and fully automated

Re-Identification (PD+REID) systems can be evaluated.

In the experiments, I compare the performance of two algorithms rep-

resentative of the two main paradigms in the state of the art on the HDA

data set: the Fastest Pedestrian Detector in the West [Dollár et al., 2010]

and the Grammar Models detector [Girshick et al., 2011], for the mono-

lithic and the part-based philosophies respectively. The part-based detector

proves to be better at detecting pedestrians imaged at short range, possibly

because of its ability of accommodating displacements of the body parts.

The monolithic detector, on the other hand, proves to be slightly better at

detecting fully visible pedestrians. Comparing the performance of the two

algorithms on the HDA and the INRIA data set highlights that the data

sets possess different peculiarities. Exploring detection on High Definition

images confirmed that they allow for the detection of pedestrians stand-

ing farther from the camera than regular definition images do, but, due to

the nature of the sliding window detection paradigm, also generated more

False Positives and required more processing time. Experiments on RE-ID

indicate that, together with CAVIAR4REID, the HDA data set is the most

challenging to date. While the difficulty on CAVIAR4REID stems from low

resolution images, pedestrians on HDA are hard to re-identify because of the

heterogeneity in the imaging conditions (illumination changes, occlusions,

etc.). Further experiments show no advantage in RE-ID when using High

Definition images. This might be due, however, to the simple features we

use in our implementation of a RE-ID algorithm.

Fully Automated Re-Identification – The classic set up for a RE-ID

experiment requires human intervention for the selection of the test examples

(i.e., image windows centred on pedestrians), leading to RE-ID systems of

little practical use. The task performed by the human operators can in

principle be executed by a PD module, leading to a PD+REID system. The

naive integration of a PD and a RE-ID module, however, suffers because of

the way the errors committed at the PD stage affect the performance of the

whole system. This consideration served as motivation to design a better

integration scheme.
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The last contribution of this thesis consists in the design of a fully au-

tomated RE-ID system. In collaboration with Dario Figueira (see Taiana

et al. [2014]; Figueira et al. [2014]), we propose two improvements to a naive

integrated system: the False Positive class and the Occlusion Filter. The

False Positive class models the False Positives detections generated by the

PD module in a given scenario. By establishing a correct RE-ID class for the

False Positives, it allows for the plotting of a sensible Cumulative Matching

Characteristic (CMC) curve, which is the standard way to compare RE-ID

algorithms. The Occlusion Filter exploits geometrical reasoning to filter the

detections, so that only detections which have a high probability of depicting

fully visible pedestrians are passed on to the RE-ID module, while ambiguous

and hard to classify detections are discarded. Finally, we introduce the use

of precision and recall statistics as a way to complement the information

conveyed by the CMC curve.

Results indicate that the introduction of the False Positive class leads to

an increase in RE-ID precision, at the price of a drop in recall. The use of the

Occlusion Filter produces a similar, albeit smaller in module, change in the

performance: an increase in precision and a decrease in recall. Furthermore,

we show that precision and recall statistics are useful for characterising the

performance of RE-ID and PD+REID systems alike.

Previous publications related to the work presented in this thesis in-

clude [Taiana et al., 2013, 2015], which explore the effect of sample purity

on PD; [Nambiar et al., 2014], which introduces the HDA data set; and [Ta-

iana et al., 2014; Figueira et al., 2014], which focus on the development of a

PD+REID system.

1.2 Outline of the document

In Chapter 2 I lay the bases for the ideas presented in the rest of the doc-

ument. I review the state of the art for PD, the most popular data sets

used in the field, and the associated benchmarking techniques. Moreover,

I list applications of PD in the fields of automotive, Video Surveillance and

Human–Robot Interaction. In Chapter 3 I describe the standard architec-

ture for PD, highlighting insight gained during my implementation of various

detectors, most notably the implementation of the Fastest Pedestrian De-

tector in the West. In Chapter 4 I propose my ideas on the effect of impure
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samples on the PD problem, at training and test time. In Chapter 5 I de-

scribe the HDA data set, characterising the data and reviewing the design

choices taken in order to make it useful for benchmarking Video Surveillance

algorithms in High Definition images. In Chapter 6 I motivate and describe

the proposed PD+REID system, including two improvements over the naive

integration architecture. In Chapter 7 I report the experiments and the

results supporting the discussion. Finally, I draw conclusions and list ideas

for future work in Chapter 8.
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Chapter 2

Background and Related

Work

2.1 Pedestrian Detection

2.1.1 Detection Paradigms in the State of the Art

Pedestrian Detectors (PD’s) in the state of the art are based on a limited

number of paradigms: Hough transform, branch-and-bound or detection-

by-classification, with the latter being used in the overwhelming majority

of detectors. Detectors based on the Hough transform [Gall et al., 2011;

Lehmann et al., 2011] rely on detecting small image patches (corresponding

to a head or a foot, for instance) and a voting scheme. Each detected patch

votes for the presence of a person in a set of locations on the image. Votes

are accumulated in the Hough space and detections are computed by finding

maxima in such space. Votes in the Hough transform scheme are based on

very local information, it has been shown that combining source of global

information improves the detection accuracy [Leibe et al., 2005]. Efficient

Subwindow Search [Lampert et al., 2009] is a detection technique based on

the branch-and-bound scheme: it explores the set of all possible rectangles

on one image, finding the one with the highest detection confidence. The

search space is explored by hierarchically splitting it into disjoint subsets.

Subsets of rectangles whose upper bound on the confidence indicates that

they can not contain the maximum are discarded, leading to fast detections.

The detection-by-classification paradigm is the most successful one in PD. I

describe it in the following paragraph and assume its use in the rest of this

9
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work.

2.1.2 Detection-By-Classification Paradigm

The fundamental block of a PD based on detection-by-classification is the

window classifier, which takes as input one image window of a specific size

and evaluates whether it contains a person of the corresponding height.

The output of the classifier is a real value expressing the confidence on the

presence of a person in the window at hand. The sliding window approach

consists in applying the window classifier on a grid of locations on one image,

thus obtaining a set of confidence values. This technique allows for the

detection of fixed-size pedestrians over one image, and, in order to succeed

in multi-scale detection, it must be combined with image pyramids. One

image pyramid is a collection of images obtained by successive scalings of one

original image. Running the detection window on each layer of the pyramid

allows for the detection of pedestrians of different sizes, but can give rise

to multiple detections for a single pedestrian. Non-Maximum Suppression

techniques are used with the intent of merging the positive confidence values

originated by the same pedestrian, thus obtaining a detection system that

returns only one detection for each pedestrian appearing in the image.

2.1.3 Evolution of Pedestrian Detection Techniques

Advances in PD stem mostly from research in the areas of visual feature

extraction and Machine Learning (ML), the most common classifiers being

based either on AdaBoost [Freund and Schapire, 1995] or Support Vector

Machines [Cortes and Vapnik, 1995]. Early work on visual PD focussed

on hybrid detection/tracking systems which relied on hand-crafted mod-

els [Hogg, 1983; Rohr, 1993]. Seminal work relying on ML-based PD was

presented in [Oren et al., 1997; Gavrila and Philomin, 1999]. The authors

of [Viola and Jones, 2001, 2004] introduced Integral Images for faster feature

computation, AdaBoost for combining many weak classifiers into a strong

classifier and a Cascaded Detector for increasing the detection speed. That

work focussed on the recognition of frontal faces and used Haar-like fea-

tures, which failed to perform as well in the person detection task. The

architecture, nonetheless, became very popular for PD algorithms.

Dense features, computed on a regular grid over the image, have been
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very successful. One example of such features, which is ubiquitously used

in detection, is the Histogram of Oriented Gradients (HOG). Introduced

in [Dalal and Triggs, 2005] and reminiscent of SIFT [Lowe, 1999], it rep-

resents gradient information in a way that enables robust classification. A

recent trend is that of combining multiple features: the Integral Channel

Features [Dollár et al., 2009] exploit 10 channels of information based on

colour and gradient. The authors of [Walk et al., 2010] combine Gradient

Histograms, Local Binary Patterns (to exploit texture information), Colour

Self Similarity (second order statistics of colour) and Histograms of Flow

(to exploit movement information). Some authors push the trend further,

by combining full detectors [De Smedt and Goedemé, 2015]. One dualism

in the literature contrasts monolithic detectors (see [Dalal and Triggs, 2005;

Dollár et al., 2012a; Benenson et al., 2012]), which compute features at fixed

locations on the detection window and deal with articulation implicitly, to

part-based detectors (see [Mohan et al., 2001; Felzenszwalb et al., 2010;

Pishchulin et al., 2012]), which explicitly model the articulation of the hu-

man body and allow for variable placing of the features corresponding to

the human limbs.

Several of the best detectors in the state of the art are derived from the

Integral Channel Features detector [Dollár et al., 2009]. Following the con-

sideration that boosted decision trees induce decision boundaries piecewise

orthogonal to the features (single-feature splits), while the features for PD

can be highly correlated, Locally Decorrelated Channel Features were intro-

duced in [Nam et al., 2014]. The Informed Haar-like Features introduced

in [Zhang et al., 2014] are in practice second-order Integral Channel Fea-

tures: the value of a feature consists in the difference between the integral

computed on two areas on one of the image channels (in some cases a third

“ignore” area is considered). The geometry defining the support of each

feature is tailored to the PD problem, rather than selected randomly.

2.1.4 Partial Occlusion

Partial occlusion was identified early as a source of difficulty in the detection

of pedestrians, so methods aiming at improving the detection rate on the

partially occluded pedestrians were developed. Although some attempt at

solving the occlusion problem were made using monolithic detectors (e.g.,

in [Leibe et al., 2005]), part-based detectors are the ones that have been
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most frequently employed for tackling this task (see [Mohan et al., 2001;

Wu and Nevatia, 2005; Wang et al., 2009; Enzweiler et al., 2010; Ouyang

and Wang, 2012]). This choice is naturally motivated by fact that the part-

based paradigm intrinsically affords the possibility for each part to either

be visible or occluded.

Upon noticing that inter-pedestrian occlusion (one person partially oc-

cluding another) is the preponderant source of occlusion for pedestrians,

algorithms were proposed that employ a “double pedestrian detector”: a

detector specifically trained to detect two persons at once. The detectors

presented in [Pepikj et al., 2013; Tang et al., 2014] exploit multiple compo-

nents and are able to detect both single persons and pairs of pedestrians,

while in [Ouyang and Wang, 2013; Ouyang et al., 2015] the authors devise

a probabilistic approach for fusing the detections of a “double pedestrian

detector” with those obtained by a traditional single pedestrian detector.

The joint use of 16 monolithic classifiers, each of which specific for a given

level and geometry of occlusion (i.e., from the bottom or from one side of

the detection window), is described in [Mathias et al., 2013]. The authors

design a two-step Non-Maximum Suppression for fusing the output of the

multiple detectors, exploiting knowledge on the fact that the higher level of

occlusion one detector is designed to work with, the worse its performance

is. Furthermore, strategies are described that allow the detectors to share

many features, resulting in a substantial improvement of both training and

detection time.

2.1.5 Fast Pedestrian Detection

Another line of work, initiated by the aforementioned introduction of Inte-

gral Images and Cascaded Detectors, concentrates on reducing the detection

time. More recently, the Fastest Pedestrian Detector in the West (FPDW) al-

gorithm [Dollár et al., 2010] introduced the possibility of estimating features

for many layers of the image pyramid instead of computing them explicitly,

while the 100 FPS detector [Benenson et al., 2012] was designed to compute

features at just one scale exploiting different classifier models built during

training. Research on making faster detectors also focusses on Object Pro-

posals [Zitnick and Dollár, 2014; Hosang et al., 2014], a technique based on

the assumption that all objects of interest share properties which differenti-

ate them from the background. Running an Object Proposal filter prior to
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running detectors for different kind of objects quickly and greatly reduces

the number of image windows to be classified by each detector.

2.1.6 Evolution of Pedestrian Detection Performance

Both detection accuracy and speed improved considerably along the years.

Comparing the Viola-Jones detector [Viola and Jones, 2001] from 2001 with

the Crosstalk Cascade detector from 2012, it can be seen that detection

speed increased by a factor of 75, achieving 35 Frames Per Second for a VGA

image, while the Log-Average Miss Rate (the average miss detection rate

as computed on the logarithmic False Positives Per Image axis, see [Dollár

et al., 2012b] for details) dropped from over 80% to 30% [Dollár, b], as

measured on the Caltech Pedestrian data set [Dollár et al., 2012b]. The

detector based on Locally Decorrelated Channel Features[Nam et al., 2014],

introduced in 2014, achieves a Log-Average Miss Rate of 25%.

2.1.7 Comparison to Human Performance

Discussing the possibility of a limit for the performance of PD systems, it is

interesting to evaluate the PD performance achieved by humans. The accu-

racy of humans has been shown to be two to three orders of magnitude better

than that of current automated detectors (see [Benenson, 2015]1). Human

errors consist mostly in Missed Detections on the hardest 5% of the pedes-

trians, while False Positive detections are rare. Assuming the performance

of automated PD systems continues improving at the current rate [Benenson

et al., 2014a], superhuman accuracy will be achieved in less than five years.

When the analysis is extended to include the time spent evaluating the pres-

ence of pedestrians in one image, the performance of automated detectors

is shown to already surpass that of humans: automated systems can work

at over 100 frames per second, while humans require a time in the order of

seconds to process one image.

2.1.8 Open Challenges

The focus for PD research at the moment lies on improving the detection

rates on pedestrians imaged at low resolutions or under heavy occlusion,

1The cited paper is currently under review, I would like to thank Rodrigo Benenson
for sharing his findings before publication.
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which remain unsatisfactory [Dollár, a], while further decreasing the amount

of False Positive detections. On a longer time scale, I expect that the focus

will shift on detecting people imaged in arbitrary poses, releasing some of

the constraint of PD.

The description of interesting aspects of the detectors in the state of

the art continues in Chapter 3, where the references are grounded in the

discussion on the detection-by-classification architecture.

2.2 Data Sets and Benchmarking Techniques for

Pedestrian Detection

Data sets for Machine Learning-based visual detectors consist of a collection

of annotated images. The purpose of such data sets is twofold. First, the

data of the training set is used to extract the positive and negative examples

for training a detector. Second, the data of the validation and test set is

used at evaluation time to determine which detections are correct and char-

acterize the performance of the detector. However, because of finite size,

every data set is bound to represent only a subset of the real world. This

implies that every data sets suffers from some level of bias [Torralba and

Efros, 2011; Khosla et al., 2012], making a data set acquired in one setting

(automotive, industrial, and so on) particularly appropriate for estimating

the performance of detectors in that specific setting. For instance, when

interested in analysing the performance of PD’s in the context of self-driving

cars, it is advisable to train and test the detectors on a data set acquired in

an automotive setting, e.g., the Caltech pedestrian data set [Dollár et al.,

2012b]. The publication of data sets is an important step towards a fair

comparison of the performances of PD systems, but it is not sufficient. Stan-

dard evaluation code is also needed as different evaluation procedures can

lead to discrepancies in the reported performances.

Data sets are created not only with the intent of comparing the per-

formance of algorithms, but also with the goals of exposing the limitations

of contemporary algorithms and stimulating advances in the state of the

art. Advances in performance are furthermore stimulated by associating

the publication of data sets with detection contexts, as in the case of the

PASCAL Visual Object Classes challenge [Everingham et al., 2010, 2014] or

the case of ImageNet [Russakovsky et al., 2104]. The lifetime of a data set
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is limited: as the understanding of the problem by the scientific community

grows, hurdles are conquered and data sets become obsolete.

Many data sets specific for PD have been published over the years. A

first notable example is the MIT pedestrians data set [Oren et al., 1997], in-

troduced in 1997. It includes frontal and rear views of pedestrian and only

positive windows, i.e., fixed-size rectangular images designed to contain a

person. The INRIA person data set [Dalal and Triggs, 2005] was introduced

by Dalal and Triggs in 2005. It is divided in training set and test set, it

provides both positive and negative examples and it provides full images in

which the pedestrians are annotated. The ETH pedestrians data set [Ess

et al., 2007] was introduced in 2007. It was recorded with a mobile platform

moving along a sidewalk, equipped with a stereo camera. It depicts a sce-

nario typical for a mobile robot. The TUD-MotionPairs/TUD-Brussels data

set [Wojek et al., 2009] (TUD) and the Caltech pedestrian data set [Dollár

et al., 2012b] were introduced in 2009 and contain sequences of images taken

in automotive scenarios. The size of the data sets has grown over time, from

924 positive examples (MIT data set) to 350 000 labels over 250 000 images

(Caltech data set). Another data set worth mentioning is the KITTI Vision

Benchmark Suite [Geiger et al., 2012, 2013], released in 2012. The KITTI

data set allows for evaluating algorithms on several visual tasks performed

in the automotive context, including the detection of pedestrians and the

estimation of their 3D orientation.

In spite of having been published in 2005, the INRIA data set [Dalal and

Triggs, 2005] is still very commonly used both for training and for evaluating

PD’s. The performance of the detectors on that data set has been improving

steadily: the missed detection rate at 0.1 False Positives Per Image (FPPI)

has dropped from around 50% to around 20% since its publication (see

[Dollár et al., 2012b]). Yet, there is still room for improvement, which

explains why that data set is still widely used as a benchmark [Dollár et al.,

2012a; Pedersoli and Vedaldi, 2011; Sangineto et al., 2012; Benenson et al.,

2012] and for training PD’s: 13 out of 16 algorithms reviewed in [Dollár

et al., 2012b] are trained on it. However, its labelling is starting to show

its limitations: many people appearing in the images are not labelled, there

is no specific label for image areas which are ambiguous and there is no

indication on the visibility ratio of each person. In Chapter 4 I discuss the

concept of sample purity and describe the new labelling for the INRIA data
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set that I created for performing experiments on the role of sample purity

in the training and evaluation of PD’s.

2.3 Applications of Pedestrian Detection

2.3.1 Automotive

The automated detection of people in urban environments has been a subject

of research since as early as 1969 [Bartlett, 1969]. The main goal of PD from

a moving vehicle is to avoid vehicle-pedestrian collisions, either by warning

the driver of a potentially dangerous situation or by actively slowing the

vehicle down. Reducing the number of accidents involving pedestrians has

a big impact on society: authorities report 4743 pedestrians fatalities in the

USA, during 2012 [USA, 2012]. Automotive applications arguably drive the

development of visual Pedestrian Detectors, as confirmed by the number of

influential PD data sets collected in urban road environments [Oren et al.,

1997; Ess et al., 2007; Wojek et al., 2009; Dollár et al., 2012b]. Smart vehicles

exploit rich sensors such as lidars for PD [Broggi et al., 2009], among other

tasks, but PD’s based exclusively on vision are advantageous in terms of

price.

Requiring that a PD system be run on a car forces several constraints

on the algorithm and its implementation: the system has to operate in real

time and it needs to be robust in the face of swift illumination changes

and varying weather conditions. Furthermore, the system has to be able to

detect people when they are far enough from the vehicle, so that appropriate

action can be taken to avoid a collision. This translates to the PD being able

to detect people who appear small on the acquired images. In the case of

an active collision avoidance system, it is important that virtually no false

alarms are generated, because a false alarm which slows the vehicle down

without a reason creates a dangerous situation in the flow of traffic.

2.3.2 Surveillance

The goals of Video Surveillance (VS) include detecting, counting and track-

ing objects of interest (people, vehicles, etc.), as well as recognizing the

activities being performed by such objects. The ability to detect humans

is important and can be instrumental in achieving several of the goals of
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VS. The traditional pipeline of VS consists in three steps. First, motion

is detected (typically through techniques of Background Subtraction [Zhao

and Nevatia, 2004; Cristani et al., 2010; Brutzer et al., 2011]) and areas of

the image are segmented based on it, then each segment is classified into

one of the classes of interesting objects and, eventually, objects are tracked

over time [Hu et al., 2004; Cristani et al., 2013]. One VS problem which has

attracted significant attention in the recent past is that of person RE-ID in

camera networks. Given a set of pictures of previously observed persons, a

practical RE-ID system must locate and recognise such people in the stream

of images flowing from the camera network.

Several data sets have been proposed for benchmarking VS algorithms,

including the ones specific to PD I mentioned in Section 2.2. The CAVIAR

[CAV] data set, introduced in 2004, was one of the first to provide video se-

quences instead of single frames. It was also the first to provide annotations

of people location, identity and activity, making this data set useful for many

problems. The CAVIAR 1st set was acquired with a single camera at INRIA

Labs Grenoble for activity recognition. CAVIAR’s 2nd set was acquired in a

shopping mall in Lisbon using two cameras with overlapping fields of view,

making it more interesting for RE-ID and multi-camera tracking. In 2011,

some sequences of CAVIAR were customised for the RE-ID problem and

compiled into one data set (CAVIAR4REID [Cheng et al., 2011a]), which

contains a total of 72 individuals: 50 appearing in two camera views and

22 appearing in just one. The PETS data set, of which various extensions

were published over time (see for instance [James and Ali, 2009]), targets

the research fields of people tracking, people counting, crowd analysis and

action recognition. In 2011 a collection of 90 videos from publicly avail-

able data sets was compiled into the PDds data set [Garćıa-Mart́ın et al.,

2012] . Such videos were labelled uniformly for PD and object classification

tasks. Overall the collection contains 28358 frames, divided in 16 different

subclasses depending on the complexity of background texture, as well as

on people appearance variability and people/object interactions. This is

probably one of the most complete data sets for VS but it lacks scenarios

in which the same persons are imaged from different cameras. This hinders

its usefulness for the RE-ID and multi-camera tracking community. Besides

CAVIAR4REID, other data sets have been designed specially for the RE-ID

problem. The i-LIDS data set for Re-Identification [Zheng et al., 2009] (pub-
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lished in 2009) contains appearances of 119 people and was built from the

i-LIDS Multiple-Camera Tracking Scenario. The presence of occlusions and

quite large illumination changes makes the RE-ID task challenging on i-LIDS.

The VIPeR data set [Gray and Tao, 2008], introduced in 2007, contains two

views of 632 pedestrians captured from different viewpoints.

Most recent state-of-the-art algorithms in RE-ID focus on the matching

problem: they require manually cropped rectangular Bounding Boxes (BB’s)

enclosing people, both for training (gallery) and for testing (probes) [Zhao

et al., 2014; Liu et al., 2014]. However, in most RE-ID applications of interest,

it is necessary to detect the location and size of people in the images in an

automated way.

One choice for detecting people in a network of cameras is following

the classical VS pipeline. But relying on movement detection (i.e., with

Background Subtraction) is subject to some shortcomings: swift illumina-

tion changes, changes in the camera gain, shadows, movements of objects

different than people (fluttering tree leaves, pets, robots, vehicles, etc.) can

all be sources of false detections. Furthermore, since Background Subtrac-

tion techniques rely on the assumption of a static background, they do not

adapt easily to the case of moving cameras (pan–tilt–zoom cameras, cam-

eras mounted on robots or unstable cameras which shake due to the wind).

Extensions of Background Subtraction that work with moving cameras ex-

ist [Sheikh et al., 2009], but I am not aware of any work applying them to

the PD problem.

One class of algorithms which allows for the detection of people both in

static and moving cameras is that of pattern recognition-based Pedestrian

Detectors. Such detectors can only detect people assuming a limited range

of poses, but are largely immune to the problems that affect Background

Subtraction, making them a better candidate for detecting people in an

automated RE-ID system.

Methods that actively integrate PD and RE-ID are still scarce in the lit-

erature. In [Corvee et al., 2012; Bak et al., 2012] pedestrian are detected

and tracked, then each track is associated with a person ID. The work pre-

sented in [Mogelmose et al., 2013] relies on richer (RGB-D) sensors and, like

the aforementioned approaches, employs temporal filtering in an attempt to

provide clean data to the RE-ID module. None of these works studies the

influence of detection errors on the performance of the integrated system.
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The authors of[Li et al., 2014] compare RE-ID performance using either hand-

labelled or automatically detected Bounding Boxes, but limit the analysis to

the effect of misaligned Bounding Boxes, ignoring False Positive detections

and Missed Detections. InChapter 6 I report my work on the integration of

a PD and a RE-ID system, including two innovation which lead to a better

performance of the PD+REID system.

2.3.3 Human–Robot Interaction

Human–Robot Interaction (HRI) is the field of study which focusses on the

natural, safe and efficient interaction between humans and autonomous de-

vices. Estimating the presence and the position of people in the surrounding

of a robot is fundamental for such interaction to occur. The level of success

in this task is typically measured by the “human awareness” metric [Stein-

feld et al., 2006].

HRI applications aim at detecting people regardless of their poses (people

can be standing, sitting, lying down, etc.), in such cases generic Human

Detectors (HD) should be used instead of PD’s, which rely on the assumption

of a heavily restricted pose range. Nonetheless, Pedestrians Detectors fulfil

the requirements of some HRI applications and are employed in such cases.

Human Detection has been used as part of HRI systems with diverse

goals, ranging from enabling general interaction between humans and robots

(see [Ruiz-del Solar et al., 2013; Jafari et al., 2014; Naseer et al., 2013]), to

ensuring safety in industrial environments (see [Morzinger et al., 2011; Ryb-

ski et al., 2012]), to providing care to elderly people (see [Gross et al., 2011;

Volkhardt et al., 2013]). Human Detection technology employs different

sensors (and combinations of sensors), including visible-light cameras, laser

rangefinders, infrared cameras and RGBD cameras, with the latter being

very common in recent years. RGBD sensors provide an advantage in terms

of detection performance, but visible-light cameras coupled with a PD per-

form better in some configurations. For instance, using one omnidirectional

camera [Mekonnen et al., 2013] allows the robot to monitor a much larger

portion of the surrounding area than would be possible with an RGBD sen-

sor.
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Chapter 3

Standard Architecture of

Pedestrian Detectors

In this chapter I describe the detection-by-classification approach for Pedes-

trian Detection (PD), which is the de facto standard architecture for PD.

The building blocks of such architecture are: feature extraction, a win-

dow classifier based on Machine Learning (ML), the sliding window scan

pattern, image pyramids and Non-Maximum Suppression. An overview on

how the modules are used in the system can be seen in Figure 3.1. I cor-

roborate the description of the architecture with the details from a con-

crete example, my implementation of the Fastest Pedestrian Detector in

the West (FPDW) [Dollár et al., 2010] and with considerations related to

detection accuracy and speed. I choose to implement FPDW because its

detection speed makes it suitable for robotic applications and because of its

good detection accuracy. Eventually, in Section 3.4 I list the detectors I

implemented and report the experiments I performed in seeking to improve

their performance.

I start by describing the window classifier, because it is the central mod-

ule for PD. I assume the use of generic features during its discussion (Sec-

tion 3.1). I analyse feature extraction in Section 3.2 and describe the meth-

ods used to detect pedestrians imaged with arbitrary size and in arbitrary

position (the sliding window approach, image pyramids and Non-Maximum

Suppression) in Section 3.3.

21
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Figure 3.1: Visualization of the work flow of a standard PD system. Step 1:
construction of the image pyramid. Step 2: padding of the image pyramid.
Step 3: computation of the image features. Step 4: sliding-window-based de-
tection. Step 5: Non-Maximum Suppression and mapping of the detections
to the input image.

3.1 Window Classifier

The fundamental block of a detection-by-classification PD is the window

classifier. It takes as input the features extracted from one image window of

fixed size and computes a confidence value, also known as score. The score

expresses the confidence of the classifier on the presence of a person in the

window at hand. The function which maps a point in feature space to a score

is learned using a set of labelled examples. A vector of features is extracted

from each training window and an ML-based algorithm is used to learn the

confidence function. Positive image windows for training are chosen so that

each contains a centred pedestrian, while the negative ones are chosen so

that they do not contain pedestrians. All the collected windows are scaled

to match the size of the window classifier.

The most common ML methods used in PD are Support Vector Machines

(SVM’s) [Cortes and Vapnik, 1995] and AdaBoost [Freund and Schapire,

1995], I briefly describe SVM’s, while focussing more on AdaBoost. This
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stems from AdaBoost leading to the implementation of faster detectors,

which are essential for robotics applications. SVM’s are linear classifiers

whose goal is to compute the optimal separating hyperplane between two

classes of examples. Optimality is defined in terms of margin: in the basic

case of linearly separable classes, the optimal hyperplane is defined as the

one which maximizes the distance to the closest point in the training set.

SVM’s have been extended to work with non-separable classes and to pro-

duce non-linear classification boundaries. Non-linear classification abilities

are achieved via the “kernel trick”: a linear decision boundary is applied in a

large, transformed version of the feature space which projects to a nonlinear

boundary in the original feature space. The “kernel trick” consists in choos-

ing the function that maps from the original to the enlarged feature space

so that dot products in the transformed space can be computed quickly in

terms of the variables in the original space. Variants of SVM’s applied to the

PD problem include Histogram Intersection Kernel SVM [Maji et al., 2008],

latent SVM [Felzenszwalb et al., 2010], and multiple kernel SVM [Vedaldi

et al., 2009].

3.1.1 AdaBoost

AdaBoost is an ensemble method which builds a Strong Classifier (StC) as

the combination of a number of Weak Classifiers (WkC). WkC’s are defined

as simple classifiers which attain a classification accuracy above the level

of chance. The most basic WkC is the decision stump: it computes its

classification comparing the value assumed by one feature with a threshold.

The most successful kind of WkC used in PD is the depth-2 decision tree

(see Figure 3.2). It consists in the connection of three decision stumps,

arranged as a tree. A depth-2 tree is more powerful than a stump because

it bases its decisions on the value of two features, rather than just one. The

superiority of depth-2 trees for PD has been confirmed empirically in [Dollár

et al., 2009], [Benenson et al., 2013] and [Benenson et al., 2014a]. Using

deeper trees is not common in PD, possibly due to the increased tendency of

more complex models towards overfitting. In my implementation of FPDW,

I use depth-2 trees as WkC’s.
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Features (f0..fm)

WeakClassifiern

(fi-θ1) ⋅ d1 ≥ 0

(fj-θ2) ⋅ d2 ≥ 0

prediction := -1

(fk-θ3) ⋅ d3 ≥ 0

prediction := +1

out := prediction⋅α

α
i, j, k
θ1, θ2, θ3

d1, d2, d3

Parameters

Weighted prediction

NO YES

YES
YES

NO
NO

Figure 3.2: Depth-2 decision tree: a popular Weak Classifier for AdaBoost-
based PD. The value assumed by a first feature is compared to a threshold.
Based on the result, one of the two nodes of the second level is activated.
This triggers the evaluation of a second feature against a specific threshold.
This last result decides the sign of the prediction computed by the Weak
Classifier. The confidence which weights the prediction (α) is learnt during
the training. The features used in the three nodes of a depth-2 classifier are,
in general, different from each other.

Algorithm 1 AdaBoost (adapted from [Viola and Jones, 2001])

Input data consists in the features computed from each example window
(xi) and the corresponding label (yi, which assumes the values 0 and 1
for negative and positive examples, respectively): (x1, y1), . . . (xn, yn). The
number of negative and positive examples are l and m.

1: Initialize weights w1,i = 1
2l ,

1
2m for negative and positive examples, re-

spectively.
2: for t = 1 to T do
3: Normalize the weights: wt,i ← wt,i

n∑
j=1

wt,j

4: Select the weak classifier (ht) which achieves the lowest error, given
the current weights. Error is computed as: εj =

∑
i
wi |hj(xi)− yi|.

5: Update the weights: wt+1,i = wt,iβ
1−ei
t , where ei = 0 if example xi

is classified correctly, ei = 1 otherwise, and βt = εt
1−εt .

6: end for

The final strong classifier is: h(x) =

1,
T∑
t=1

αtht(x) ≥ 1
2

T∑
t=1

αt

0, otherwise.

(where αt = 1
βt

)
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The learning algorithm of AdaBoost starts by assigning weights to the

examples of the training set, then it works iteratively alternating two steps.

First, it learns a WkC based on the current weights of the examples and

assigns it a confidence value based on how well it performs. Second, it

adjusts the weights of the examples based on the classification obtained:

the weight of the examples which are misclassified by the latest WkC are

increased, the others decreased. This guarantees that the subsequent WkC

gives more importance to the examples which are misclassified at this stage.

See Algorithm 1 for the original formulation of AdaBoost.
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Figure 3.3: Three different ways for building a Strong Classifier based on
Weak Classifiers: Basic Strong Classifier (a), Attentional Cascade (b), Soft
Cascade (c). In (a) all the Weak Classifiers in the structure must be eval-
uated in order to classify one example. In (b) the Weak Classifiers are
grouped in several Strong Classifiers. The evaluation can be interrupted
after the evaluation of each Strong Classifier. In (c) the evaluation can be
interrupted after the evaluation of each Weak Classifier.
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At classification time, each WkC produces a classification (either positive

or negative) which is weighted by its confidence value. In the basic StC built

with AdaBoost, the output is the sign of the sum of the weighted votes of all

the WkC. In PD the signum operation is omitted and the sum of the weighted

votes is interpreted as the confidence on the detection. Examples with a

confidence below a user-specified threshold (typically zero) are classified as

negative (see Figure 3.3(b) ). I label the resulting StC as Basic Strong

Classifier.

3.1.2 Attentional Cascade and Soft Cascades

In [Viola and Jones, 2001, 2004] Viola and Jones introduced the Attentional

Cascade: noticing that the majority of the image windows to be evaluated

are negatives (see Section 3.3 for an explanation of this phenomenon), they

devised a classifier based on a series of StC’s: each StC is designed to reject

a large fraction of the False Positive examples, while allowing most True

Positive examples to continue towards the following StC. All the examples

that a StC classifies as positives are passed on to the following StC in the

series (see Figure 3.3(b) ). Simple StC’s (StC’s built using few WkC’s) are

located at the beginning of the cascade, while increasingly complex StC’s

follow. This architecture has the effect of rejecting easy negative examples

with little computation, focussing the computation effort on discriminating

positive examples from the hard negative ones. The resulting system is

much faster than the Basic Strong Classifier, but building it is cumbersome

(see [Viola and Jones, 2004]).

In [Zhang and Viola, 2007], Zhang and Viola introduced a variant of

Attentional Cascade which is much easier to build, the Soft Cascade. In-

stead of using StC’s as building blocks, Soft Cascades use WkC’s: decisions

on example rejection are taken after the evaluation of each WkC (see Fig-

ure 3.3(c) ). In my implementation of FPDW, I use AdaBoost to build a Soft

Cascade consisting of 1 000 WkC’s.

In spite of the very different nature of the AdaBoost and SVM algo-

rithms, the detection accuracy they exhibit in the PD problem is similar

(see [Benenson et al., 2014a]). One key difference between the two methods

resides in detection speed: the fastest PD systems in the state of the art are

all based on AdaBoost and some variant of Soft Cascades (see [Dollár et al.,

2012a; Benenson et al., 2013; Dollár et al., 2014]). As a note I observe that
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training an AdaBoost-based classifier is slower than training an SVM-based

one (in spite of the coding optimizations and approximations commonly used

in practice): AdaBoost consists in an iterative process, while computing the

optimal hyperplane for SVM’s is a convex optimization problem.

3.1.3 Monolithic VS Part-Based Classifiers

Part-based classifiers differ from the monolithic approach I assumed so far:

monolithic classifiers acknowledge the articulation of the human body only

implicitly while part-based models explicitly model body parts displace-

ments. The very successful Deformable Parts Model (DPM) detector by

Felzenszwalb et al. [Felzenszwalb et al., 2010] uses a monolithic detector as

a base (root detector), then refines the score of a detection based on the

detection of body parts. The best location for each part inside the root

detection window is determined based both on the appearance of the part

and on the distance of such part from its ideal placement. The final score

for the detection of a person is a combination of the score of the root de-

tector and the score of the parts detectors, weighted by how expected their

placement inside the root detector window is. In spite of their popularity,

part-based detectors are outperformed by the monolithic ones in the task

(see [Benenson et al., 2014a]).

3.1.4 Bootstrapping

The PD problem is intrinsically unbalanced: the goal is to learn a classi-

fier which can differentiate between the appearance of pedestrians and the

appearance of anything else. One consequence of this is that generating ex-

amples for the negative class is easy: any window on one image which does

not contain a pedestrian can be used as a negative example. The abundance

of negative examples poses a practical problem: training a classifier with an

enormous number of examples can be unnecessarily slow or otherwise de-

manding in terms of computational resources. Bootstrapping allows for the

use of great numbers of negative examples without the need of employing

them all at the same time. In the boostrapping framework, a detector is

trained multiple times, alternating two steps: the training and the mining

for hard negatives. The mining for hard negatives is performed running the

detector at hand on a set of negative images: images which do not contain
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pedestrians. Each image corresponds to several thousands image windows.

Every detection the detector generates in such cases corresponds to an error:

a hard negative example that the detector was not able to classify correctly.

Such negatives are collected and used to augment the negative training set

for the next epoch of training. In the PD community, it is common to use

3–5 epochs of bootstrapping, after which the advantages provided by the

method tend to fade.

3.2 Feature Extraction

The feature extraction stage of the PD architecture has the goal of filtering

the raw pixel information from the input image, mapping it to meaningful

mid-level features which afford better classification at the following stage.

Different kinds of features were designed over time to extract different types

of information, ranging from local brightness, to colour, oriented gradients,

texture, etc. Global features such as Principal Component Analysis (PCA)

were employed in PD [Munder and Gavrila, 2006]. Each global feature is

computed as a function of the value of all the pixels in the detection window.

In contrast, local features are computed based on the values of local subset

of pixels. Local features have been shown to be more effective than the

global ones [Munder and Gavrila, 2006], so I focus the discussion on the

former.

Oren et al. [Oren et al., 1997] introduced the use of Haar-like wavelets

as features for PD. Such features define rectangular areas on the detection

window and compare the average brightness of sets of such areas (see Fig-

ure 3.4(a) ). The bright-and-dark pattern features computed by the Haar-

like wavelets have proven extremely successful in the detection of frontal

faces [Viola and Jones, 2004], but failed to perform at the same level in

the case of PD. Research soon moved its focus to features describing image

edges. The system described in [Gavrila, 2000] uses edge templates and the

Chamfer system (a hierarchical shape-matching scheme based on distance

transforms) as the first step of a Pedestrian Detector. For that system, one

template corresponds to the entire silhouette of a person in a specific pose.

The shape-matching step is then followed by a Radial Basis Function classi-

fier. In [Leibe et al., 2005], edge templates and the Chamfer system are used

in combination with a segmentation algorithm based on local information.
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Introduced in [Wu and Nevatia, 2005, 2007], Edgelets are an example of

edge-based features for which each feature encodes the characteristics of a

short segment of the pedestrian’s silhouette (see Figure 3.4(b) ).

Arguably the single greatest improvement in PD performance came with

the introduction of the Histograms of Oriented Gradients (HOG) features [Dalal

and Triggs, 2005]. HOG compute descriptors over image cells (small square

portions of image windows) pooling the gradient information. Different gra-

dient orientations contribute to different bins of the resulting histogram

(see Figure 3.4(c) ). Image gradient information is inherently richer than

edge information, as it can represent soft transitions as well as abrupt tran-

sitions in image brightness. Another advantage of the HOG features is the

robustness to small image variations: the spatial pooling of the gradients

used in the construction of the histograms provides invariance towards small

image translations and changes in gradient patterns (i.e., one straight edge

imaged in a cell will produce similar features to multiple shorter edges with

a similar orientation). Robustness in the face of slight changes in gradient

orientation is afforded by the angular binning: gradients within a range of

orientations all contribute to the same angular bin.

The Integral Channel Features (ICF) detector [Dollár et al., 2009] and

other many other modern PD methods based on ICF (including FPDW and

the Roerei detector [Benenson et al., 2013]) use features closely related to

HOG, albeit designed for a cleaner integration in the detection-by-classification

paradigm. The extraction of ICF consists in computing image channels

(transformations of the input image) and building features in the shape

of the sum over one rectangular region of one such channel. Some of the

channels encode information about gradient along a specific direction, while

others represent the colour and brightness information of the input image

in the LUV colour space. Finally, one channel encodes the module of the

image gradient (see Figure 3.4(d) ). As a result, this kind of features can

encode robust gradient information, but also robust brightness and colour

information. Robustness is a result of spatial pooling and angular binning,

much in the same way as it is for the HOG features.
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(a) Haar-like features, in a face detec-
tion application. Image reproduced
from [Viola and Jones, 2001]

(b) Edgelets, image reproduced
from [Wu and Nevatia, 2005]

(c) Histograms of Oriented Gradi-
ents, image reproduced from [Dalal
and Triggs, 2005]

(d) Integral Channel Features, image reproduced from [Dollár et al.,
2009]

(e) First layer of filters learned in a
convolutional network, image repro-
duced from [Sermanet et al., 2013]

Figure 3.4: A visualization of different kinds of features: Haar-like features
(based on image brightness), Edgelets (based on specific edges), HOG (based
on gradient information), ICF (based on gradient, brightness and colour
information) and the low level filters learned in a convolutional network
model.

Other interesting features proposed over the years include the Local Bi-

nary Pattern [Wang et al., 2009] (used to encode information on texture),



32CHAPTER 3. STANDARDARCHITECTUREOF PEDESTRIAN DETECTORS

Color Self Similarity[Walk et al., 2010] (a meta feature able to represent rela-

tionships such as: “the color in the area of the left and right shoulder usually

matches”), and Shapelet [Sabzmeydani and Mori, 2007] (mid-level features

built on parts of the detection window, aggregating gradient responses).

Clearly, the quality of one input image affects that of the computed features

and, eventually, the detection performance. Normalizing input images prior

to computing the features has been shown to positively affect the detec-

tion performance (see [Benenson et al., 2013]). Strong of the recent success

of Deep Learning approaches in a variety of CV problems: Convolutional

Networks were applied to PD for the first time in [Sermanet et al., 2013],

while [Luo et al., 2014] introduces Switchable Restricted Boltzmann Ma-

chines in the context of Switchable Deep Networks. The performance of

such detectors is on par with that of other methods in the state of the art

(see [Benenson et al., 2014a; Hosang et al., 2015]).

3.2.1 Padding

The classification windows used in PD usually do not enclose a pedestrian

tightly: this stems from the observation that the information in the area

around the object of interest (its context) can provide valuable information

for the classification, e.g., pedestrians usually stand on a sidewalk or on the

street. Thus, the detection windows for PD are designed to include a padding

area around the person (see Figure 3.5). This choice has implications on

the whole detection system: training examples must include padding, test

images have to be padded (see the following section for details on how this

affects the construction of the image pyramid), care should be taken at

detection time to remove the padding space when computing the detection

BB’s.
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Figure 3.5: Padding for the detection window: the detection window is not
designed to enclose pedestrians tightly. It instead includes a region sur-
rounding the pedestrian, with the intent of exploiting context information.

So far I focussed on the simple case of monocular, single-frame PD. Ex-

tensions to the binocular (stereo) case and to systems which take into ac-

count video sequences (multiple frames) are straightforward: features are

computed not only starting from the input image, but also from depth in-

formation (estimated via stereo) and movement information, typically esti-

mated as a function of optic flow [Dalal et al., 2006; Walk et al., 2010].

My implementation of FPDW is based on the Integral Channel Features

and uses a detection window of 96 × 32 pixels, plus a 16-pixel padding. I

use the code by the author of FPDW to compute the image channels and my

implementation for the Integral Images and the computation of the features.

3.3 Invariance to Position and Scale

In the previous sections, I examined the window classifier: a system which

aims at detecting pedestrians when presented with an image window of the

correct size, exhibiting a pedestrian of the correct size centred along its

vertical axis. The utility of the window classifier per se is very limited, but

when combined with the sliding window scan scheme and image pyramids

it allows for the detection of all the pedestrians in one image.

3.3.1 Sliding Window

The sliding window approach makes it possible to use such a classifier to

detect pedestrians of a given size anywhere in one image. It consists in run-

ning the classifier on a grid of locations on one image, obtaining a response
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for each point on the grid (see Figure 3.6). One common value for the dis-

tance of any two points on the grid is 4 pixels for both the vertical and the

horizontal direction. In a typical case, the majority of the points on the

grid will be classified as “no person” by the detector, while the rest will be

classified as “person” and will be associated with a confidence value.

Figure 3.6: The sliding window approach to detection: a window classifier
is run on a grid of locations on the image. This allows for the detection of
pedestrians of a fixed height all over the image. The padding area of the
detection window is marked with a blue shading.

3.3.2 Image Pyramids

In order to detect pedestrians of different sizes, it is possible to run the

sliding window on several scalings of the input image: the image pyramid.

In PD, it is common to use pyramids with 8–16 layers per octave (one octave

being the size range which goes from one image height to its half or its

double). Running the same window classifier on a shrunk version of the input

image corresponds to running a larger window classifier on the input image

(see Figure 3.7). One detection obtained using this scheme corresponds to

a detection BB of specified size and position on the input image.
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Figure 3.7: Detecting pedestrians of different sizes: the same classification
window is applied to all the layers of the image pyramid (left). Applying the
same window on a shrunk version of the image corresponds to applying a
bigger detection window on the raw input image and results in the detection
of taller pedestrians (right). Maintaining the dimensions of the detection
window for the entire pyramid requires that the size of the padding on each
layer be the same.

3.3.3 Border Effects

One detail is important when detecting people imaged close to the image

borders: image padding needs to be done after image scaling. This ensures

that the padding for every layer of the pyramid has the same size of that

assumed by the detection window. In case padding is applied to the raw

input image and it is then scaled with it, the resulting amount of padding

is different for the different layers of the pyramid, leading to problems. Tall

pedestrians close to the image border can fail to be detected due to not

having enough padding, while the excess of padding can generate spurious

detections when searching for short pedestrians.

3.3.4 Scale and Space Sampling

The spacing of the grid for the sliding window and the number of layers

in the image pyramid concur in determining the number of image windows

that have to be evaluated for detecting pedestrians on one image. The

number resides in the vicinity of 100000 for a VGA image, meaning that the

classification problem is very unbalanced: elements of the positive class are

extremely less common than those of the negative class.

3.3.5 Non-Maximum Suppression

Combining image pyramids with the sliding window approach can give rise

to the undesirable presence of multiple detections for a single pedestrian.

Non-Maximum Suppression (NMS) techniques are used with the intent of
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merging the positive confidence values originated by the same pedestrian,

thus obtaining a detection system that returns only one detection for each

pedestrian appearing in the image. A variety of NMS methods exist. A very

effective one consists in forming sets of the detections whose BB’s overlap

significantly (according to the PASCAL VOC criterion with a 0.6 threshold,

see Section 4.1), and comparing the detections of one set pairwise, discarding

the least confident detection at each step (see [Dollár et al., 2012b]).

3.3.6 Feature Interpolation and Multiple Models

One major boost in detection speed was introduced with the FPDW detec-

tor [Dollár et al., 2010]: exploiting knowledge on natural image statistics,

FPDW only computes the features for one image for each octave, while the

features for the other layers are estimated with a fast approximation.

Most PD approaches learn one model for the window classifier and apply

it to each layer of one image pyramid. This implies disregarding the differ-

ences in image formation for objects imaged at different scales. Multi-scale

approaches acknowledge such differences by learning one model for each oc-

tave of the image pyramid (see Figure 3.8). Such approaches show improved

detection performance compared to the basic ones, but the improvements

are minor (see [Benenson et al., 2014a]). One advantage provided by such

approaches is that the features need to be computed only at the base scale

(see [Benenson et al., 2012]), further improving the temporal performance

respect to FPDW.
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N models, 1 image scale 1 model, N image scales
(a) Naive approach (b) Traditional approach

1 model, N/K image scales N/K models, 1 image scale
(c) FPDW approach (d) VeryFast approach

Figure 3.8: Multi scale detection approaches. The naive approach (a) disre-
gards the similarity between pedestrians imaged at similar scales and learns
a model for each scale. The traditional approach (b), in a somewhat dual
fashion to (a), disregards the difference between pedestrians imaged at dif-
ferent scales and learns only one model. The approach introduced by FPDW

(c) uses just one model like (b), but approximates the features in most layers
of the image pyramid instead of computing them explicitly. The VeryFast
approach presented in [Benenson et al., 2012] uses one model per image oc-
tave and computes the features only at the base scale of the image. Image
adapted from [Benenson et al., 2012].

3.4 Practical Experience with Pedestrian Detec-

tors

During the work of this thesis I implemented various PD algorithms and

explored ways to improve their performance. This work did not lead to

detection performance improvements in the state of the art, but the process

was very valuable in terms of the experience I gained.
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3.4.1 Adaptive Contour Features-based detector

I took the initial steps in PD implementing a simple detector based on Ad-

aBoost and the granule features of Adaptive Contour Features [Gao et al.,

2009]. The granules in these features are square patches of different sizes on

the detection window. The output of a granule encodes the orientation and

the magnitude of the strongest edge present on the corresponding square.

One feature consist in one or more chains of such granules. The Adaptive

Contour Features are attractive because they encode the contour of the per-

son in a robust way and can be used to perform segmentation as well as

detection (see Figure 3.9 for a brief description of the features). In the ex-

periments with this detector I trained and tested on isolated image windows,

rather than on full images, as was commonly done at the time. I built just

one Strong Classifier combining the output of several Weak Classifiers. I ob-

tained some preliminary results (see Figure 3.10 for a plot of classification

error as a function of the number of Weak Classifiers used, also exploring the

importance of bootstrap during training), but decided against implementing

the full detector because building granule chains is a complex task based on

heuristics. Heuristics are not inherently bad, but I decided to focus on more

systematic approaches.
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(a) One Adaptive Contour Feature,
visualizing the granules which consti-
tute it.

(b) Three more complex Adaptive
Contour Features.

(c) Detection and segmentation re-
sults using Adaptive Contour Fea-
tures.

Figure 3.9: Adaptive Contour Features. Each square represents a granule,
while a set of granules constitutes one feature. Images reproduced from [Gao
et al., 2009].
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Figure 3.10: Classification error of my granule-based detector as a function
of the number of weak classifiers. The training error is higher after one
round of bootstrapping than after the first training. This is expected be-
cause bootstrapping augments the negative training set with hard-to-classify
examples. The error on the validation set is comparable for the two cases,
but, in general, a few rounds of bootstrapping are expected to reduce the
validation error.

3.4.2 Edgelet-based detector

At a later stage I implemented a monolithic detector based on Edgelets [Wu

and Nevatia, 2005, 2007]. Edgelets, as well as Adaptive Contour Features,

work with information related to the silhouette of an object. One edgelet is a

short segment of line on the detection window. The feature value associated

with an edgelet encodes the affinity between the edgelet line and the edge

information present on the image (see Figure 3.11). Edgelet features need

to be quite dense, my implementation employed almost one million features

to cover a 28 × 54 pixel image window. As a result both training and

applying the detector was slow: one full training on the INRIA data set took

around one week to be performed. The classifier was built using AdaBoost,

but in this case it was an Attentional Cascade rather than a single Strong

Classifier: the cascade was composed of 24 Strong Classifiers of increasing

complexity. The number of Weak Classifiers used in each Strong Classifier

varied between 10 and 120. This detector was implemented including the
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sliding window paradigm and image pyramids, so it was able to detect people

of arbitrary size and position on one image. However, the Non-Maximum

Suppression step was missing, so there was no attempt to merge the multiple

detections originated on one person. It was using the Edgelet detector that

I developed the considerations on invariance to position and scale reported

in Section 3.3. The resulting detector proved to be reasonable in terms

of accuracy (see Figure 3.12), but was quite slow and very demanding in

terms of working memory. Working on improving the accuracy of a detector

which is slow at training or at detection time is impractical. Comparing

two versions of the same detector featuring some algorithmic changes means

training (and testing) each version several times, using different values for

its parameters or even with just a different initialization for the randomizer.

Considering that the training of my detector based on edgelets took around

one week to complete, I decided to implement another detector.

Figure 3.11: Edgelet features and their application on the Sobel response of
the input image. One edgelet consists in one short segment of a line defined
on the detection window. The more similar the edge information on the
image to the shape of one edgelet, the higher the response of such edgelet.
Image reproduced from [Wu and Nevatia, 2007]
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Figure 3.12: Detections generated by my Edgelet-based detector on two rep-
resentative images from the INRIA data set. The quality of the detections
is reasonable, with many True Positives, a few False Positives and the occa-
sional Missed Detection. The lack of the Non-Maximum Suppression step is
highlighted by the people which are associated to multiple, similarly sized
detections (especially visible in the top image). The goal of Non-Maximum
Suppression is to pick only the best of such detections.

3.4.3 HOG-based detector

I implemented a detector based on Histograms of Oriented Gradients (HOG)

and AdaBoost. It was both faster and more accurate than the Edgelet-based
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detector. I used it for some experiments, for instance the one comparing

the detection performance obtained using stumps or depth-2 trees as Weak

Classifiers, or the experiment augmenting the negative training set with

examples of parts of pedestrians (parts like legs ans arms sometimes happen

to generate False Positives). I stopped using this detector when the code for

computing the channel pyramids for FPDW was made public by its authors.

At that point I implemented a detector based on that.

3.4.4 Implementation of FPDW

I chose to implement the Fastest Pedestrian Detector in the West (FPDW) be-

cause of several reasons. First, its speed at detection time makes it suitable

for real-time robotics applications. Second, its detection accuracy excelled

at the time of its publication. Third, the low number of features it needs to

use in order to achieve good accuracy (a few thousands). Such low number

of features ensures that training the detector with AdaBoost is fast. Fourth,

FPDW is based on the Integrated Channel Features (ICF), which encode gra-

dient, brightness and color information (rather than contour information like

Edgelets) and are easily extendable. Furthermore, ICF’s have a very clean,

systematic design. As already described along this chapter, FPDW is based

on ICF features, but it approximates most layers of the image pyramid in-

stead of computing them explicitly. This is the key to its detection speed.

FPDW uses AdaBoost to build a Soft Cascade classifier, based on depth-2

decision trees.

3.4.5 The quest for detection accuracy

During the development of this thesis, I performed several experiments

aimed at improving the detection accuracy of the detector I was using.

I tried to exploit the observation that sometimes detectors classify as

people visual objects that have almost no similarity to a person (see Fig-

ure 3.13), giving origin to “weird False Positives”. I believe the detector in

such cases is missing the big picture: it is accumulating votes from many

local features, but missing some more global cues.
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Figure 3.13: Two examples of False Positives (generated by FPDW) that
have very little similarity with a person. Notice how the two detections are
not centred on some human-like structure and that the detected areas are
covered with thin edges.

I devised one experiment which computed features not only on the orig-

inal image, but also on a segmented version of it. The idea behind this was

that image edges can be generated either by object boundaries in the de-

picted scene (for instance the discontinuity between the leg of a person and

the wall in the background), or by very thin structures or object texture.

The first kind of edge should still be visible in a segmented version of an im-

age, while the second should disappear. In principle, a detector with access

to gradient information computed both on the natural and the segmented

image should outperform one with access only to the former. The results of

this version of the detector were not convincing, though, possibly because

segmentation was performed on the input images at their base size, instead

of on each layer of the image pyramid.

Another experiment stemmed by the intuition that the image content

on the area occupied by a pedestrian is usually qualitatively different from

the content of the area surrounding the person. I added one new feature to

ICF, meant to encode the difference in image content between the two areas

of a detection window (see Figure 3.14). Including this and other similar

features in the pool provided to the classifier made little difference on the

classification accuracy.
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Figure 3.14: One new feature to be added to the pool of ICF: the difference
between the area of the image window which is meant to contain the person
and the area which is meant to contain the background (labelled as “inside”
and “outside”, respectively).

One more experiment aimed at eliminating the “weird False Positives”

was based on feature co-occurrence. The intuition is that the voting patterns

of the weak classifiers can disambiguate between real pedestrians and “weird

False Positives”. I clustered weak classifiers based on how they voted for

the training examples and, at test time, penalized detections for which the

voting patterns were not consistent with such clusters. This experiment also

led to inconclusive results. In the course of this experiment I developed a

tool to visualize the votes of the features of each channel. Some example

visualizations are depicted in Figure 3.15.
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Figure 3.15: Visualization of the voting pattern on the detection of a per-
son (left) and on the False Positive detection originated on a bicycle wheel
(right). The vote of each feature is color coded based on its signum (green
for positive and red for negative) and weighted according to the vote weight.
Areas on the channels marked in green contribute to the detection, while
the areas marked in red contribute against the detection.

I devised some other experiments, but their initial findings were inconclu-

sive, so I did not pursue those experiments to their full extent. Considering

that some False Positives are generated in correspondence with limbs of peo-

ple (most notably, legs), I decided to use parts of pedestrians as negative

examples during the training. As a result, a reduction of such False Positives

was visible before the Non-Maximum Suppression step, but such step ob-

tained almost the same result, while serving other purposes. One experiment

regarded the use of image registration versus the use of jitter on training

examples, another studied the possibility of inverting the ICF features, in

an attempt to visualize the actual information encoded by the features. Yet

another experiment explored the possibility of tracking pedestrians in the

image pyramid space (see Figure 3.16).
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Figure 3.16: A visualization of detections (prior to applying Non-Maximum
Suppression) on the image (left) and in a representation of the image pyra-
mid space (right). Warmer colors correspond to higher detection confi-
dences.
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Chapter 4

Data Set Labelling and

Ground Truth

The training and the evaluation of learning algorithms depend critically on

the quality of data samples. I denote as pure the samples that identify clearly

and without any ambiguity the class of objects of interest. For instance, in

PD algorithms, I consider as pure samples the ones containing persons who

are fully visible and are imaged at a good resolution (larger than the detector

window in size). The exclusive use of pure samples entails two kinds of

problems. In training, it biases the detector to neglect slightly occluded and

small sized samples, (which I denote as impure), thus reducing its detection

rate in a real world application. In testing, it leads to the unfair evaluation

and comparison of different detectors since slightly impure samples, when

detected, can be accounted for as false positives. I study how a sensible use

of impure samples can benefit both the training and the evaluation of PD

algorithms. In order to do so, I improve the labelling of one of the most

widely used pedestrian data sets (INRIA) taking into account the degree of

sample impurity.

I observe that including partially occluded pedestrians in the training

improves performance, not only on partially visible examples, but also on

the fully visible ones. Furthermore, I find that including pedestrians imaged

at low resolutions is beneficial for detecting pedestrians in the same range

of heights, leaving the performance on pure samples unchanged. However,

including samples with too high a grade of impurity degrades the perfor-

mance, thus a careful balance must be found. The proposed labelling will
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allow further studies on the role of impure samples in training PD’s and on

devising fairer comparison metrics between different algorithms.

For the matters discussed in this document the only relevant person

height is that measured on the image (as opposed to the real-world height).

Thus, for the sake of conciseness I will write “short pedestrians”, meaning

“pedestrians imaged in such conditions that their projection on the image

is short”.

4.1 Labelling for Pedestrian Detection

The purpose of the labelling of a data set for is twofold. First, the annota-

tion of the training set enables the extraction of the positive and negative

examples for training the detector. Second, the annotations of the validation

and test sets are used during evaluation to determine which detections are

correct, corresponding to a pedestrian. Most PD evaluation schemes define

the Ground Truth (GT) labelling and the detections in terms of a collection

of rectangles on the images. Such rectangles are known respectively as GT

and detection Bounding Boxes (BB’s). Each detection BB is associated with

a confidence value and is meant to tightly enclose one pedestrian.

Training labels are used in the training of a PD algorithm. The positive

BB’s are cropped from the positive training image set and scaled to fit the

detection window size. Negative samples are chosen by randomly sampling

the negative training images (or the parts of the training images where no

people appear) with BB’s exhibiting the same aspect ratio as the positive

ones. They subsequently undergo the same scaling as the positive samples

do.

Labelling and Performance Evaluation: Test labels are used dur-

ing the evaluation of the performance of a PD algorithm. Evaluating such

performance on one image consists in matching detection and GT BB’s and

counting the occurrences of the result of the matching process. Two BB’s

(one detection and one GT label) are said to match if the area of intersection

of the two rectangles is larger than half of the area of their union (Pascal

VOC criterion, see Figure 4.1 and [Everingham et al., 2010]):

overlap =
area(BBGT ∩BBDET )

area(BBGT ∪BBDET )
> 0.5 (4.1)
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Figure 4.1: One example of one detection and one Ground Truth (GT)
Bounding Box (BB) on one image, (a). The areas involved in the com-
putation of a match according to the Pascal VOC criterion (b). A detection
and a GT BB’s are said to match when the intersection of the two rectangles
is larger than half their union.

The possible outcomes of the matching process are: True Positive (TP) when

one GT BB matches one detection BB (and so one pedestrian is correctly de-

tected), False Positive (FP) when a detection does not match any GT BB,

and Missed Detection (MD) when a GT BB does not match any detection.

A True Negative occurs when a candidate image window is classified as

negative and the corresponding BB does not match a GT BB. True Nega-

tives events are not usually accounted for in the PD setting, because they

do not provide insight on the performance of the detection system. Rather,

they depend heavily on the parameters of the detection-by-classification ap-

proach (step of the scanning grid and number of layer of the image pyramid

per octave). See Figure 4.2 for a graphical example of matching outcomes

and Table 4.1 for a comparison of the terminology used in the PD and in

the Pattern Recognition communities. Each GT BB can match at most one

detection BB. In case there be more detections potentially matching one GT

BB, the conflict can be solved by greedily assigning the detection with the

highest confidence to the match, leaving the others unmatched.

The common variables for summarizing the results of a detection experi-

ment (detection on a set of images) are the Missed Detection (MD) rate and

the number of False Positives Per Image (FPPI). The MD rate is defined as

the fraction of positive examples in the test set which goes undetected. FPPI

is defined as the total number of FP’s in the test set, divided by the number
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Figure 4.2: Example outcome of matching detection and Ground Truth (GT)
Bounding Boxes (BB’s): a True Positive (TP) is the result of a correct match
between detection and GT BB’s. An unmatched GT BB results in a Missed
Detection (MD), while an unmatched detection results in a False Positive
(FP).
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Table 4.1: Possible outputs of the matching process among detection and
Ground Truth (GT) Bounding Boxes (BB’s). A True Positive is the outcome
of a correct match between one detection and a GT BB. A detection that
does not match a GT originates a False Positive (FP). A GT BB that is
not matched originates a Missed Detection (MD) (often referred to as a
False Negative in the Pattern Recognition community). A True Negative
occurs when a candidate image window is classified as negative and the
corresponding BB does not match a GT BB.

Ground Truth
person no person

Detection
Outcome

detection True Positive False Positive

no detection
False Negative =
Missed Detection

True Negative

of images that constitute it.

Missed Detection rate =
#Missed Detections

#Positive examples
(4.2)

False Positives Per Image =
#False Positives

#Images
(4.3)

Both MD’s and FP’s are detection errors, thus, the lower the values of MD rate

and FPPI, the better the performance of one algorithm. Detectors associate

a confidence value (also called a score) with each detection. Varying the

value of the threshold on such confidence produces a curve in the MD/FPPI

space. The curves are usually presented in log-log plots (making them an

instance of Detection Error Tradeoff plots), see Figure 4.3 for one exam-

ple. Each point on the curve corresponds to an operating point for the PD

algorithm. Comparing PD algorithms through curves is not always straight-

forward, so the performance of one detector is typically characterized by the

Log-Average Miss Rate (LAMR), the average miss rate (as computed on the

logarithmic FPPI axis) between 10−2 and 100 FPPI (see [Dollár et al., 2012b]

for details).

Design Choices in Labelling: Labelling for Machine Learning is

not as straightforward as it seems: visual categories are not exactly defined.

Pedestrians, for instance, are defined as people assuming an upright stance,

but the exact point at which a posture is so extreme that a person is not

regarded as a pedestrian is not defined. Design choices, some of which dic-
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Det. 1
Det. 2
Det. 3

Figure 4.3: An example Missed Detection rate/False Positives Per Image
plot. Different curves correspond to different algorithms. Apoint on a curve
corresponds to a working point for one algorithm. In this plot the red
algorithm dominates the black one for the right side of the plot, while the
contrary is true for the left side. The yellow algorithm is the best of the
three as it clearly dominates the others for any working point.
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tated by the intended application domain for a PD, influence which examples

are considered as valid. The authors of the INRIA data set [Dalal, 2005], for

instance, consider cyclists as pedestrians. This choice is sensible in terms of

automotive applications: both pedestrians and cyclists are vulnerable road

users, an Advanced Driver Assistance System (ADAS) should detect both.

Another design choice relates the desirability of a PD system to detect things

which represent humans: should statues, mannequins and picture of people

be detected as people? Should the performance of a PD system be penalized

when it fails to detect one of such things? The answer to these questions

really depends on the application domain.

The “Ignore” class for labelling was introduced in [Dollár et al., 2009]

to acknowledge the fact that there is a grey area at the boundary between

the “Pedestrian” and the “Non-Pedestrian” categories and with the insight

that both detections and MD’s on an image area marked as “Ignore” should

not be penalized. Detections that match an “Ignore” BB’s are not counted

as TP’s nor FP’s and “Ignore” BB’s which are not matched by any detection

are not counted as MD’s. Matching a detection BB with an “Ignore” BB is

less strict than the regular matching between a detection BB and a “Person”

BB: it only requires that the overlap between the two is greater than half

of the area of the detection. Moreover, multiple detections can match the

same “Ignore” rectangle. This is so because an “Ignore” area can cover

more than one object to be ignored (i.e., a group of people so tangled which

is impossible to label each person individually), so a partial match is still

acceptable.

Defining the Height Range for One Experiment: When testing

PD algorithms, care should be taken to match several height ranges. First

(A), there is the height range of the people imaged in the test set. This

is implicitly defined by the images comprised in the test set. Second (B),

there is the height range of the GT labels, which is decided by the authors

of the data set. Ideally, it should correspond with the first range, but this is

not always the case. Third (C), there is the height range of the detections

generated by a particular PD system. This is typically a parameter for the

algorithms and is set by the experimenters to match the second range I

mentioned. Failing to do so leads to one algorithm generating detections

that cannot possibly match a GT label (when the detections range is wider

than the GT range) or to an algorithm not having a chance to detect some
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Scale

A: people

B: GT labels

C: detections

D: evaluation

Figure 4.4: Different scale ranges to be taken into account when designing
an experiment: A, the range of scales at which people appear in the test set;
B, the range of scales at which people are labelled; C, the range of scales
spanned by the detections produced by an algorithm and, finally, D, the
range of scales taken into account during the evaluation. Correct choices for
D are the subsets of the intersections of A, B and C. Other choices for D lead
to inconsistencies in the evaluation, e.g., penalizing detectors for detecting
unlabelled people.

of the labelled pedestrians (when the detections range is narrower than the

GT range). Last (D), there is the range of heights taken into account by

a specific evaluation mode. This should be selected by the experimenters

to be a subset of the intersection of the other three ranges: it is sensible to

compare the performance of algorithms for a range of heights for which there

are persons in the test set, such persons are annotated and the detectors

were allowed to produce detections (see Figure 4.4). I apply this concept

to the case of the Caltech Benchmark algorithms and the INRIA test set

in Section 7.1.1, showing that changing the Minimum Height in TEsting

from 50 to 90 pixels leads to a more correct evaluation of the performance

of the algorithms.

4.2 Sample purity

Considering the task of visual detection and the image pyramid architecture,

it is useful to define the concept of sample purity. I denote as pure the

samples that represent the class of objects of interest as imaged in ideal

conditions, i.e., when they are fully visible and imaged at a resolution larger

than the detection window in size. I consider the other samples as impure:
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the BB’s of occluded pedestrians exhibit only part of the visual information a

fully visible person would generate. Very small pedestrians generate peculiar

image information because of the discretisation of information typical of

digital image formation. Other sources of impurity are possible, such as

image blur and low image contrast. I have not studied them in the present

work because examples affected by high degrees of such sources of impurity

are extemely rare in the popular PD data sets. In the literature the occlusion

problem is referred to either in terms of the degree of visibility or in that

of occlusion. In the context of this thesis the two quantities carry the same

information, as highligted by the following equation:

occlusion = 1− visibility (4.4)

In the reminder of the thesis I use both quantities, each time selecting the

one that makes the exposition clearer.

Purity is not commonly taken into account in PD data sets, resulting in

training and evaluation based on a mixture of pure and impure samples. The

exclusive use of pure samples entails two kinds of problems. In training, it

biases the detector to neglect slightly occluded and small sized samples, (the

impure ones), thus reducing its detection rate in a real world application.

In testing, it leads to the unfair evaluation and comparison of different de-

tectors since moderately impure samples, when detected, can be accounted

for as FP’s. Including very impure samples is also detrimental: in training it

makes it hard for the learning algorithm to build a model from very difficult

examples (e.g., one example of a person in which only one hand is visible or

one example of a very small pedestrian). In testing, it requires algorithms

to detect pedestrians from very little evidence.

In order to evaluate the effect of sample purity in training and in testing,

the GT must be augmented with the visibility information: each BB needs

to be labelled with the degree of occlusion the pedestrian is imaged under.

The information regarding the image height of each person does not require

additional labelling: it is already encoded by the size of each BB.

In the next section I describe the INRIA data set and its original la-

belling, and I propose a new labelling that allows the effect of sample purity

to be studied.
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4.2.1 A new Labelling for the INRIA Data Set

I choose to use the INRIA data set for this analysis because it is one of the

data sets for PD most frequently used for training detectors. Its original

labelling follows closely the general description I presented in the previous

section. Each person is labelled with a rectangular BB. Only one label

is possible: “UprightPerson”, which includes both pedestrians and people

riding a bicycle. Sitting people are not included in the positive class. No

information is present on the amount of visibility each person is imaged

under.

The INRIA data set was designed in 2005 to support PD research. Since

then, PD’s have improved dramatically and, as a result, the original labelling

is now starting to show its limitations. A fair assessment of the performance

of detectors on the INRIA data set is hindered by three factors: first, many

persons appearing in the images are not labelled, second, there is no class

label for the regions of the images that are ambiguous or difficult to be

classified even by a person and thus should be ignored during the evaluation

and, third, an estimate of the visible part of each person is lacking. I discuss

each of these factors in the following paragraphs.

The lack of labelling of some of the people present in the data set (see Fig-

ure 4.5(a–d)) affects both training and testing. Regarding the training, the

lack of such labels prevents researchers to analyse the impact of what I deem

pure and impure training samples on the performance of the detector. Re-

garding the testing, each detection on one of the unlabelled persons counts

as a FP, instead of as a TP. So optimizing a detector using this labelling can

lead to the undesirable effect of detecting less small and occluded people.

Current state-of-the-art algorithms can detect at least some of the partially

occluded and smaller pedestrians that are not marked in the original la-

belling. Their performance are thus under-reported (see Figure 4.6 for an

example of how the performance of the Fastest Pedestrian Detector in the

West (FPDW) algorithm [Dollár et al., 2010] is affected). People who have

parts of their bodies outside the image boundaries are also not labelled,

leading to a similar phenomenon. It is important to notice that the spurious

FP’s originated by the unlabelled persons tend to assume high confidence

values, so they have a big impact on some regions of the performance curves

of the detectors.

There are, moreover, image patches for which it is difficult to decide
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Details from the INRIA test set highlighting some limitations.
(a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of persons
on a shop window, not labelled. (f) Some persons drawn on a wall, only
one of them is labelled. (g) Some mannequins, all labelled. (h) A poster
depicting a man, not labelled.

whether they should be labelled as a person or not. Such cases include

the appearance on the image of a mannequin, of photographs of people, of

reflections of people. It is not clear whether an algorithm that generates a

detection on one of such image areas should be rewarded or penalized: this

decision is very application-dependent. Only some of such occurrences are

marked as “person” in the original labelling, both in the training and the

test set, introducing noise in the evaluation process (see Figure 4.5(e–h)).

Finally, in the original labelling there is no information on the amount

of visibility each person is imaged under. Such information is not needed for

a simple training or test of a PD algorithm, but it is instrumental to assess

the effect the pure and impure fraction of the data have on the detection

performance.

Most of the pedestrians marked in the original labelling are fully visible

and larger than the size of the detection window used in the algorithm intro-

duced with the data set (96 pixels), making them “pure” for my purposes. A

small fraction of the labelled pedestrians, though, is imaged under a certain

degree of occlusion or are shorter than the detection window, making them

“impure”. The labelling, thus, results to be a mixture of pure and impure

examples, in unknown proportions. In this work, I extend the labelling to

include all, within reason, visible pedestrians and enrich it with the visibil-

ity information, allowing experiments to be run with training and test sets
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(a) (b)

Figure 4.6: The influence of labelling in the presence of mutual occlusion
on the evaluation. (a) A part of image 20 of the INRIA test set showing
the original labelling: only 5 persons out of 11 are marked. Some partially
occluded persons are merged in the annotation with a visible one. (b) The
classification of the detections produced by FPDW [Dollár et al., 2010] in TP’s
(green), False Positives (FP’s) (red) and FP’s which significantly overlap with
an unlabelled person (yellow) and thus should be considered TP’s. In the
whole test set, 26 out of 292 FP’s ascribed to FPDW significantly overlap with
an unlabelled person.

characterized by different degrees of purity.

I propose a new annotation for the data set in which I label all the

pedestrians with heights greater than 25 pixels, I associate with each person

the estimate of the extent of his/her visible part and mark ambiguous cases

(see Figure 4.5(e–h)) as such. The labelling was performed manually. As

in the original annotation, I use rectangular Bounding Boxes (BB’s) and I

consider both cyclists and pedestrians as belonging to the “Person” class.

I base my annotations on the scheme introduced in [Dollár et al., 2012b],

which consists in labelling individual persons as “Person”, large groups of

persons for which it is very difficult to label each individual as “People”,

and ambiguous cases as “Person?”. I label the test set according to such

scheme. The proposed annotation is available on the website of the author

of this thesis. For the training set, I do not label groups of people and

ambiguous cases as I believe such annotations not to be useful for training.

In the Caltech evaluation code, “People” and “Person?” BB’s are merged

in the “Ignore” class and treated as one, but I choose to use the two labels

considering that in the future the two sets can be treated differently. In the

evaluation code, the GT BB’s are centred horizontally and transformed to

assume an aspect ratio of 0.41 (width/height) prior to matching (see [Dollár

et al., 2012b] for details).
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4.2.2 Assessing the Influence of Impure Samples

In this work, I aim at determining the impact of pure and impure samples

in the training and evaluation of a detection system. I consider pure the

BB’s enclosing pedestrians who are fully visible and imaged with a height

larger than the height of the detection window in use. I deem the remaining

BB’s enclosing pedestrians as impure. Labelling the training set with the

visibility information (the height is implicitly encoded in each BB) enables

me to create various training sets with a different ratio between the pure

and the impure samples. The proposed training set is filtered each time,

controlling the amount of “short” and partially occluded examples used to

train the detection system.

Controlling the balance between pure and impure samples during testing

is allowed by the evaluation code. The minimum height and the minimum

visibility ratio of the GT rectangles in the test set are specified as a parameter

for the evaluation, so that all the BB’s that do not match the criterion are

set to “Ignore”.

The experiments exploring the role of sample purity are reported in Sec-

tion 7.1.2. One experiment confirms that that the degree of partial occlusion

of test samples negatively correlates with detection accuracy. Another shows

that selecting the correct height range for the test samples used in the eval-

uation is important for a fair comparison of the detection performances of

various algorithms. Regarding purity in training, experiments show that

including examples with low levels of impurity is beneficial. I observe that

including partially occluded examples (up to a certain degree of occlusion)

in the training set improves the detection performance both on fully visible

and on partially visible pedestrians. Moreover, I observe that the inclusion

of examples imaged with heights lower than that of the detection window

positively affects the detection of pedestrians in the same height range, while

the performance on taller examples remains unchanged.
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Chapter 5

The HDA data set

Data sets are fundamental for systems which rely on Machine Learning, like

Pedestrian Detectors (PD’s). The information they provide is used both for

training and testing such systems. Public data sets, consisting of anno-

tated images and evaluation code, lie the bases for a fair comparison of the

algorithms.

One of the goals pursued during the design and compilation of a new

data set is that of capturing the diversity that characterises the real world.

This ensures that the performance measured on the data set is representa-

tive of the one the system will achieve in a real setting. Clearly, due to the

limited size of the data sets, this goal can only be met in part: every data

set is subject to some form of bias [Torralba and Efros, 2011; Khosla et al.,

2012]. As a result, different data sets are better suited to estimate the per-

formance of algorithms in different scenarios. PD algorithms are typically

trained and evaluated on data sets representing automotive scenarios [Ess

et al., 2007; Dollár et al., 2009; Wojek et al., 2009; Geiger et al., 2012],

with the notable exception of the INRIA data set which consists in a col-

lection of holiday pictures [Dalal and Triggs, 2005]. However, PD has clear

applications in Video Surveillance scenarios, for which the conditions differ

significantly from the automotive ones: Video Surveillance usually consid-

ers cameras with high mount points, with a perspective very different from

that of cameras mounted on cars. Moreover, the environments in which the

cameras are embedded can be as different as an indoor office scene and the

lane of an urban street. In order to estimate the performance of a PD algo-

rithm in a real-world Video Surveillance application, it is desirable to train

63
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it and and test it on a data set representing a Video Surveillance scenario.

Furthermore, despite the fact that High Definition cameras are commonly

available and frequently used in surveillance tasks, most PD data sets are

based on low resolution images (mostly VGA: 640×480 pixels).

Following these considerations, we decided to design the High Defini-

tion Analytics (HDA) data set with the following goals: (i) establishing a

benchmark for PD algorithms specific for an office scenario, (ii) providing

a benchmark featuring High Resolution images for Video Surveillance algo-

rithms, in particular PD, person tracking and Re-Identification (RE-ID), and

(iii), creating a benchmark for fully automated Re-Identification (PD+REID)

systems. We think that the availability of a benchmark for PD algorithms in

an office scenario will attract the attention of the Video Surveillance com-

munity on PD’s. The use of cameras equipped with both standard and High

Definition sensors will permit the study of the effect of High Definition on the

performance of the algorithms. Moreover, the presence of Hight Resolution

images will highlight the weaknesses of the Video Surveillance algorithms of

the current generation for that specific case and foster the development of

algorithms specific for High Definition images. To make a concrete exam-

ple, we expect that the algorithms in the state of the art not to achieve real

time performance on High Resolution images. Finally, we think that the

creation of a benchmark for PD+REID will help the establish a community

for the study of this problem, which we see as the natural evolution of classic

RE-ID.

Collecting a new data set involves a huge effort, especially in terms of

labelling the data and testing the evaluation code. Many members of our

research group took part in the making of the HDA data set, most notably

Athira Nambiar and Dario Figueira. It is to acknowledge their contributions

that I use the first person plural throughout this chapter.

5.1 The HDA data set

The HDA data set was acquired recording simultaneously from 13 indoor

cameras for 30 minutes. The cameras were distributed over three floors

of the Institute for Systems and Robotics (part of the Instituto Superior

Técnico in Lisbon, Portugal), a typical office scenario for Video Surveillance.

Approximately 85 people participated in the data collection, most of them
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appearing in more than one camera. The data set is heterogeneous: we used

three distinct types of cameras (standard, high and very high resolution),

different view types (corridors, doors, open spaces) and different frame rates.

This diversity is essential for a proper assessment of the robustness of video

analytics algorithms in different imaging conditions.

The data recordings for the HDA data set involved the use of 13 AXIS

cameras, some with standard VGA resolution (AXIS 211, AXIS 212PTZ,

and AXIS 215PTZ) some with 1MPixel resolution (AXIS P1344) and one of

4MPixel resolution (AXIS P1347). To save bandwidth, storage and labelling

time, the sequences were not acquired at high frame rates, but at rates of

5Hz, 2Hz and 1Hz for the VGA, the 1MPixel and the 4MPixel resolution

respectively. The camera poses in the three floors are depicted in Figure 5.1.

Table 5.1 describes the camera network details in brief. Figure 5.2 displays

one frame for each camera, highlighting differences in illumination, color

balance, depth range and camera perspective.

Table 5.1: Details of the labelled camera network.
CAM 02 17 18 19 40 50 53 54 55 56 57 58 59 60

640x480 3 3 3 3 3

1280x800 3 3 3 3 3 3 3 3

2560x1600 3

fps 5 5 5 5 5 2 2 2 2 2 2 2 2 1
floor 6 8 8 8 8 7 7 7 7 7 7 7 8 7

5.1.1 Labelling for the HDA data set

The labelling for the HDA data set consists in Bounding Boxes (BB’s) as-

sociated with a unique person identifier (ID) and an occlusion flag. Each

person/group of people in the images is labelled by such a BB. We opted

for using an occlusion flag instead of a value encoding the occlusion ra-

tio of a person because of the much faster annotation process required by

the former: given the elevated number of annotations in the data set, this

choice made the labelling task more manageable. The BB’s alone are used

as Ground Truth (GT) in the PD task, while the information conveyed by

the BB’s needs to be augmented by the person ID for evaluating the RE-ID

algorithms. The GT for benchmarking tracking algorithms is encoded by

the ID of the BB’s, together with the initial and final frame for each person

appearance in a video sequence. In the process of labelling, we used the
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(a) Floor 6 (b) Floor 7

(c) Floor 8

Figure 5.1: Camera poses: a visualization of the three floors of the building
at which the HDA data set was acquired. The cameras marked with a red
circle and an orange field of view are the ones used to record data.

following software tools: MATLAB R© with the Image Processing Toolbox,

Piotr Dollár’s Toolbox [Dollár, d] and Detection Code [Dollár, c].
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(a) Camera 02

(b) Camera 17 (c) Camera 18 (d) Camera 19 (e) Camera 40

(f) Camera 50 (g) Camera 53 (h) Camera 54 (i) Camera 56

(j) Camera 57 (k) Camera 58 (l) Camera 59 (m) Camera 60

Figure 5.2: Snapshots of the sequences acquired in the HDA data set. No-
tice the differences in illumination, color balance, depth range and camera
perspective.

This is the list of the labelling rules:

1. Each BB is drawn so that it completely and tightly encloses the person.

2. If a person is partially occluded, the BB is drawn estimating the whole

body extent.

3. Truncated people (i.e., people with projections partially outside the

image boundaries) have their BB’s cropped to image limits.

4. The occlusion flag is set to ’0’ for fully visible people, while for partially

occluded and truncated people it is set to ’1’.

5. A unique ID is associated with each person. In case determining the

identity of a person is impossible for the labeller, the special ID ‘per-

sonUnk’ is used.

6. Groups of people that are impossible to label individually are labelled

collectively as ‘crowd’. People in front of a ’crowd’ area are labelled

normally.
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The proposed labelling allows researchers to perform different experi-

ments on a single test set. For instance, one could choose to test one algo-

rithm ignoring Missed Detections on heavily occluded people, or detections

on crowded regions.

We show examples of labelling in Figure 5.3. The person ID is indicated

at the top of each BB. The HDA data set comprises annotations of 85 persons,

of which 70 are men and 15 are women. A statistical characterization of the

data is presented in Table 5.2 and Figure 5.4. One of the peculiarities of the

HDA data set resides in the exceptionally wide range of peoples’ BB heights:

from 69 to 1075 pixels (see Figure 5.4(c)).
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(a)

(b)

(c)

Figure 5.3: Labelling examples. (a) A fully visible (unoccluded) person. (b)
Two partially occluded people. (c) A crowd with three partially occluded
people in front of it. The ID of each person is indicated on top of the
Bounding Boxes.
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(a)

(b)

(c)

Figure 5.4: (a) Number of sequences each person appears in. Person 86
(yellow) and 87 (red) correspond to the labels ‘personUnk’ and ‘crowd’. (b)
Number of Bounding Boxes (BB’s) for each person. (c) Histogram of BB

height for the unoccluded people. The peaks of the VGA and the high
resolution distributions are visible. The BB’s span heights between 69 and
1075 pixels.



5.1. THE HDA DATA SET 71

Table 5.2: Data on the number of frames, the number of annotations and the
number of people for each sequence. The minimum and maximum height of
unoccluded Bounding Boxes (BB’s) are also reported. Camera 02 does not
have person height information due to its unconventional overhead perspec-
tive.

Camera 02 17 18 19 40 50

# frames 9819 9897 9883 9878 9861 2227

# BB’s 1832 3865 13113 18775 7855 1288

Min. height - 310 90 71 71 158

Max. height - 463 338 403 408 606

# persons 9 26 32 34 39 20

# frames 3521 3424 3798 3780 3721 3670 1728

# BB’s 465 8703 576 3190 2291 894 1182

Min. height 69 153 619 384 395 598 212

Max. height 681 608 717 688 681 775 1075

# persons 19 12 34 43 34 34 20

We report the experiments conducted using the HDA data set in Chap-

ter 7. Section 7.2.1 and Section 7.2.3 illustrate the performance of two

state-of-the art PD algorithms on different subsets of HDA, study the influ-

ence of High Definition images on detection performance and compare the

results obtained on the HDA and the INRIA data sets. The experiment show

that the part-based detector outperforms the monolithic one in a scenario

with strong perspective effects, while the monolithic performs slightly bet-

ter in the condition of full visibility. The experimental data confirms that

High Resolution images enable the detection of people imaged at greater

distances, but have a tendency to generate more False Positives (FP’s) and

require longer processing times. Lastly, the considerable difference in de-

tection performance on the HDA and the INRIA confirms the usefulness of

creating a data set for PD which represents the Video Surveillance scenario.

Section Section 7.3.1 and Section 7.3.2 focus on the RE-ID problem, eval-

uating the influence of High Resolution images on the performance and com-

paring the RE-ID results obtained on HDA and on other data sets. The ex-

periments show that basic RE-ID algorithms, using simple colour histograms

as features, do not take advantage of High Resolution images. We speculate

that more sophisticated features would better exploit high resolution infor-

mation, leading to a better RE-ID performance on high resolution images.
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The results indicate the HDA data set as the most challenging to date, to-

gether with CAVIAR4REID. While the difficulty in re-identifying people in

CAVIAR4REID stems mostly from the low resolution of the images, in HDA

the problem is hard because of the mixture of cameras with different resolu-

tions, different perspectives and ranges, the presence of harsh illumination

changes, severe occlusions, and the fact that several subjects add or remove

items of clothing from one view to the next.

Chapter 6 discusses our proposals regarding a PD+REID system and Sec-

tion 7.4 relates experiments performed on the HDA data set that confirm the

usefulness of our proposals.



Chapter 6

Pedestrian Detection in

Re-Identification

This chapter describes the work I performed on designing and implementing

a fully automated Re-Identification (PD+REID) system. In Section 6.1 I

describe the problem of Person Re-Identification, including the standard

approach used to frame it and solve it. I introduce the problem of fully

automated Re-Identification in Section 6.2, while in Section 6.3 I describe

the integrated Pedestrian Detection + Re-Identification system that tackles

it. In the remaining two sections (Section 6.4 and Section 6.5) I introduce

two improvements to the basic integration scheme which lead to an increase

in performance.

The work reported in this chapter was performed in close collaboration

with Dario Figueira. The cases in which his contribution was preponderant

are highlighted in the text.

6.1 Person Re-Identification

The goal of a Re-Identification (RE-ID) system is to locate and recognise

known people in the stream of images flowing from a camera network. Such

network is usually set to cover heterogeneous scenarios with non-overlapping

(or low overlapping) fields-of-view.

RE-ID has been subject of much research in computer vision due to its

usefulness in a large number of applications, e.g. Video Surveillance (VS),

smart spaces, border control, crime prevention, and robotics, to quote a few.
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Most real-world VS systems rely, to a large extent, on human supervision and

intervention. A human operator is assigned to constantly monitor a large

number of cameras that must be watched, interpreted and acted upon. This

has, of course, several shortcomings: it is costly, inaccurate and subject to

human errors. An effective RE-ID system would provide valuable information

to a human operator working in VS, e.g., extracting from the camera network

data the video clips in which a suspect is present, given one query image in

which he/she appears.

Figure 6.1: A typical Re-Identification (RE-ID) algorithm is based on a
gallery set: a data base that contains cropped images depicting the per-
sons to be re-identified at evaluation time. People cropped from another
set of images (probes) are matched to such data base with the intent of
recognising their identities. Classically, RE-ID algorithms are evaluated with
manually cropped probes. In this work I study the effect of using automatic
probe detection in the full RE-ID system.

Re-identifying people in a camera network is challenging due to a mul-

titude of factors: visual similarity among different people, occlusions, poor

quality of video data and varying imaging conditions (illumination, viewing

angle, distance ranges, etc.). Finally, people may change their clothing and

other appearance traits over time (possibly for disguise purposes).

In the classic set up for a RE-ID experiment, training and test examples

are manually selected: each region occupied by an upright, fully visible

person is cropped from the raw images. The identity of the person is stored
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alongside the image crop. RE-ID consists in estimating the identity of one

example from the test set (probe) using some sort of matching among the

training examples (gallery) and the probe (see Figure 6.1).

6.2 Fully Automated RE-ID

Fully automated RE-ID can be accomplished by using a software module to

detect people and crop their image regions, and carefully designing the con-

nection of that module to a standard RE-ID module. Detecting people can

be achieved by the standard Video Surveillance framework or by pattern

recognition-based Pedestrian Detectors (PD’s). The standard Video Surveil-

lance framework first step is to segment regions of an image into foreground

and background based on movement, typically using a Background Subtrac-

tion algorithm. The second and final step consists in the classification of

each foreground image segment into either person or not person. Relying

on the detection of movement makes such detectors vulnerable in a series of

conditions: rapid changes in the brightness of the image (due to illumination

changes, moving shadows, changes in the camera parameters or TV screens

captured by the camera) and moving objects other than people (vehicles,

robots, tree leaves, etc.) can all be a source of false detections. Groups of

people moving together also pose a problem, as they might be segmented

as just one object and be classified either as one person or no person at all.

Moreover, Background Subtraction methods assume static backgrounds and

do not adapt easily to the case of moving cameras, e.g., cameras mounted

on moving robots, cameras mounted on unstable supports (high poles sub-

ject to wind) or pan-tilt-zoom cameras. Although extensions of Background

Subtraction that work with moving cameras do exist [Sheikh et al., 2009],

they are not, to the best of my knowledge, applied to the PD problem.

Pattern recognition-based PD’s, on the other hand, allow for the detection

of people both in static and moving cameras. They are largely immune to

the problems that affect Background Subtraction, but can only detect people

imaged in a restricted range of poses. I choose to use pattern recognition-

based PD’s in the proposed fully automated RE-ID system because of the

increasing presence of robotic platforms equipped with cameras and because

the pose constraints imposed by PD’s are not limiting for the RE-ID systems in

the state of the art: RE-ID systems also assume to be working with standing
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or walking people. I identify the combined PD and RE-ID system as PD+REID.

6.3 Integration of PD and RE-ID

The integration of PD and RE-ID poses several challenges. The False Positives

(FP’s) and Missed Detections (MD’s) generated by the PD have an impact on

the performance of the compounded system: FP’s lead to cropped images

that are impossible to correctly associate to the ID of a person, while MD’s do

not generate cropped images, making the identification of a missed person

impossible. Moreover, even true positive detections can turn the standard

RE-ID problem, which involves manually selected Bounding Boxes (BB’s),

into a more difficult one. First, the size and position of a detection BB are

bound to be less precise than the corresponding BB selected by a human

operator. Second, common test sets for person RE-ID consist exclusively of

fully visible people, while detections can match people imaged under varying

degrees of occlusion.

Another challenge that arises from working with an integrated system

is that of performing a fair evaluation, taking into account all the kinds of

error that can occur in the compounded system. The correct output for

the compounded systems are Correct Identifications (CI’s): a CI happens

when a person is detected and the most likely class estimated by the RE-ID

module (the rank-1 estimate) is correct. The errors the PD+REID system

can generate are: FP’s and MD’s at the level of the PD module, and Incorrect

Identifications (II’s) at the level of the RE-ID module (when rank-1 estimate

does not match the true ID of the person).

It is common to evaluate standard RE-ID systems using Cumulative

Matching Characteristic (CMC) curves. A CMC curve shows how often,

on average, the correct person ID is included in the best K matches for

each test image. When evaluating an integrated system, the CMC curve

penalizes detection FP’s, but ignores MD’s. In order to appreciate the ef-

fect of MD’s, we decided to complement the CMC curves plot with preci-

sion and recall statistics (credit for this idea belongs to Dario Figueira):

• Precision = Correct Identifications
True Positive Detections + False Positive Detections = Correct Identifications

Number of Detections

• Recall = Correct Identifications
True Positive Detections + Missed Detections = Correct Identifications

Number of Person Appearances
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Because of the combination of detection errors and RE-ID errors, the

naive, direct connection of a PD system to a RE-ID one yields poor results.

In order to limit their influence, I introduce two improvements to the naive

integration scheme: the False Positive class (FP class) and the Occlusion

Filter (OF). The use of a FP class stems from observations by Dario Figueira:

FP detections (the ones which do not correspond to a person in the image)

are impossible to be correctly classified by the RE-ID system. Defining a

FP class means explicitly modelling the typical FP’s of a data set, making

a correct classification of FP detections possible. This in turn allows for a

coherent evaluation of the performance of the integrated system. The OF

is a processing block which lies between the PD and RE-ID systems, its goal

being to reduce the incidence of partially occluded detections in the data

fed to the RE-ID system. See Figure 6.2 for the block diagram of the fully

automated PD+REID system.

In the next three sections, I describe (i) the baseline system, resulting

from naive integration of PD and RE-ID, (ii) the FP class, and (iii) the OF.

I list experimental results confirming the usefulness of the improvements I

propose in Section 7.4. In the experiments I limit the complexity of the

problem by constraining the scenario with the closed-space assumption: I

require that the access to the surveilled area be granted exclusively to people

listed in the training data. This avoids having to manage the case of an

unknown person appearing in the test set.

6.4 False Positives Class

Integrating a PD and a RE-ID module without appropriately managing the

FP’s produced by the PD is suboptimal. It leads to poor performance in

real-world applications and to inconsistencies in the evaluation of the per-

formance of the integrated system. Each FP detection corresponds to an

image window not centred on a person. This means that there is no correct

person ID to be associated with such image window. The RE-ID module will

always fail to classify it, generating II’s, which will degrade the performance

of the integrated system. From a practical point of view, when a Video

Surveillance operator is interested in locating the appearances of a person

in a video stream, the FP detections constitute a problem because some of

them will appear in the results of such search (e.g., the operator looks for
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Figure 6.2: Architecture of the proposed FP+REID! (FP+REID!) system.
The images acquired by a camera network are processed by a Pedestrian
Detection algorithm to extract candidate Bounding Boxes (BB’s). The BB’s

are optionally processed by the Occlusion Filter (OF) Lastly, the RE-ID mod-
ule computes the features corresponding to each BB and classifies it. The
classification can optionally take into account a False Positive (FP) class.

a appearances of PersonX and the system returns an image without Per-

sonX, but with a FP detection, not centred on a person and erroneously

re-identified as PersonX). From the point of view of performance evalua-

tion, the II’s resulting from FP detections give rise to CMC curves which

do not reach 100% accuracy, rendering the comparison between RE-ID and

PD+REID systems not straightforward. Observing that the appearance of

the FP’s in a given scenario is not completely aleatory, but is worth mod-

elling (see Figure 6.3), I introduce a FP class for the RE-ID module. This

means that FP detections for a given scenario are collected during training

and used to build the gallery entry for the FP class. In these conditions a

correct output for when a FP is presented on the RE-ID’s input exists: the

FP class. This change allows me to coherently evaluate the performance of

the integrated system, generating well behaved CMC curves.

6.5 Occlusion Filter

The OF is a filtering block between the PD and the RE-ID modules. It

exploits geometrical reasoning to reject BB’s depicting partially occluded

people, which can harm the performance of the RE-ID stage, because a BB’s
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Figure 6.3: An example of the False Positive detections which are used to
train the False Positive Class.

Detector

Test

detection

Bounding

Boxes

Test

Images
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Identi�er
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Filter,
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Figure 6.4: Block diagram of the Detection subsystem employed in the inte-
grated PD+REID system. First, a detector is run on the test images. Then,
the resulting BB’s are filtered by the Occlusion Filter (OF) and the corre-
sponding crops are generated. Such crops form the input data for the RE-ID

system.

including a person appearing under partial occlusion and one including the

same person imaged under full visibility conditions generate different fea-

tures. When the partial occlusion is caused by a second person standing

between the camera and the original person, the extracted features can be

a mixture of those generated by the two people, making the identity clas-

sification especially hard (see illustration in Figure 6.5). For this reason, it

would be advantageous for the RE-ID module to receive only BB’s depicting

fully visible people.

Though the visibility information is not available to the filter, it can be

estimated quite accurately with a heuristic based on scene geometry: in a

typical scenario the camera’s perspective projection makes pedestrians closer

to it extend to relatively lower regions of the image. The filter computes

the overlap among all pairs of detections in one image and rejects the one

in each overlapping pair for which the lower side of the BB is higher (as

illustrated in Figure 6.6). Considering the mismatch between the shape

of the pedestrians’ bodies and that of the BB’s, it is clear that an overlap

between BB’s does not always imply an overlap between the corresponding
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(a) (b)

Figure 6.5: Example of body part detection for feature extraction in two
cases: (a) a person appearing in full visibility condition and (b) under partial
occlusion. The behaviour in (a) is correct, while in (b) part of the features
describing the appearance of the occluded person are actually computed
on image regions belonging to the occluding person. The contrast of both
images was enhanced for visualization purposes.

pedestrians’ projections on the image. I define an overlap threshold for the

filter, considering as overlapping only detections whose overlap is above such

threshold.

The experiments regarding the FP class and the OF are described in Sec-

tion 7.4. The results show that introducing the FP class leads to an increase

in RE-ID precision, at the price of a drop in recall. Moreover, using the FP

class enables a meaningful evaluation of the combined system with a CMC

curve. The introduction of the OF leads to a small improvement in the

precision of the RE-ID system (thanks to the removal of ambiguous and hard

to classify detections), at the same time inducing a correspondingly small

drop in recall.
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Figure 6.6: An example of geometrical reasoning: two detection Bounding
Boxes (BB’s) have a high degree of overlap (yellow area). The woman is
deemed as occluded because of the comparison between the lower sides of
the two BB’s (see the arrows): the lower boundary of her BB is higher in the
image than that of the man.
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Chapter 7

Experiments and Results

The following experiments were designed for testing the ideas presented in

Chapter 4, Chapter 5, and Chapter 6. In Section 7.1 I present results on the

influence of purity in the training and testing of Pedestrian Detection (PD).

In Section 7.2 I list results in PD on the High Definition Analytics (HDA)

data set. Section 7.3 presents results on Re-Identification (RE-ID) on the

same data set, while Section 7.4 reports results on the integration of a PD in

a fully automated person RE-ID scheme. Throughout this chapter I refer to

algorithms and data sets defined in other parts of this thesis, that informa-

tion is summarized in Table 7.1. Dario Figueira played a fundamental role

in all the experiments involving person RE-ID. To acknowledge this fact, in

the text describing such experiments I use the first person plural.

Exp. Group Section Exp. Data PD Alg. RE-ID Alg.

Purity 7.1 0, 1, 2, 3 INRIA My FPDW, ACF, –
Caltech Algs. –

HDA PD 7.2 4, 5, 6 HDA My FPDW, –
Grammar Models

HDA RE-ID 7.3 7, 8 HDA – Nearest Neighbour
HDA PD+REID 7.4 9 HDA ACF Nearest Neighbour

Table 7.1: A summary describing the goal of the experiments, plus the data
sets and the algorithms used in each experiment.
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7.1 The Influence of Sample Purity on Pedestrian

Detection

For clarity, I describe the evaluation protocol and the test labels I use in the

experiments in Section 7.1.1. I motivate the choices regarding the protocol

and support them comparing results obtained using the standard and the

proposed protocol. I describe the experiments in Section 7.1.2.

7.1.1 Experiment 0 - Evaluation Protocol and Test Labels

In the beginning of this section I define the parameters for running an ex-

periment and the measures used to evaluate its results. Then, I discuss

the height ranges relevant for the evaluation and the relationships among

them. Finally, I highlight the impact of a more accurate test set labelling

on the evaluation of the performance of the detectors, laying the bases for

the experiments.

Parameters and Evaluation Variables for an Experiment

Performing a detection experiment in this context consists in choosing one

detection algorithm, setting the visibility and height conditions for training

and testing and finally running the training and testing of the detector. The

variables I set are:

• Minimum Height in TRaining (MHTR)

• Minimum Height in TEst (MHTE)

• Minimum Visibility in TRaining (MVTR)

• Minimum Visibility in TEst (MVTE)

For evaluating the results of one experiment I use the de facto stan-

dard measures of Missed Detection (MD) rate and False Positives Per Im-

age (FPPI). MD rate represents the fraction of positive examples which are

not detected. FPPI is defined as the average of False Positive Per Image.

The performance of one detector is described by a curve in the MD rate/FPPI

space. Each point on the curve corresponds to an operating point for the

PD algorithm. The performance of one detector is summarized by the Log-

Average Miss Rate (LAMR), the average Miss Detection rate (as computed
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on the logarithmic FPPI axis) between 10−2 and 100 FPPI. Please refer to

Section 4.1 for a more in-depth explanation of the evaluation protocol.

Height Ranges Matching for a Fair Evaluation

As described in Section 4.1, the height range used during evaluation should

be a subset of the intersection of three other ranges: the range of scales at

which people appear in the test set, the range of scales spanned by the de-

tections produced by an algorithm and, finally, the range of scales for which

people are labelled in the Ground Truth (GT). This is not the case when

comparing the detections provided in the Caltech benchmark for algorithms

in the state of the art on the original INRIA test set, using the “Reasonable”

evaluation mode. The “Reasonable” mode corresponds to setting the MHTE

to 50 pixels and the MVTE to 0.65 (see [Dollár et al., 2012b] for details).

The visibility constraint is ignored for the original labelling, since the lat-

ter provides no visibility information. In sum, people taller than 50 pixels

are considered as “Person”, while the rest of the Bounding Boxes (BB’s) are

set to “Ignore”. For the vast majority of the detectors whose output is dis-

tributed with the Caltech benchmark, the minimum output detection height

lies at around 90 pixels (see Table 7.2, column 2). Thus, when evaluating

the performance of those detectors on the INRIA data set with the “Rea-

sonable” mode, the height ranges of the detections and that specified by the

evaluation mode do not match: the GT annotations of heights comprised

between 50 and 90 pixels can never be matched by the output of most of the

detectors. This introduces a bias in the evaluation: the affected detectors

can never reach a MD rate of zero.

I define an evaluation mode that matches the range of resolution of

the detections, the “Reasonable90” mode, which ignores pedestrians imaged

with heights under 90 pixels or with visibilities under 0.65. I compare the

reported performance of PD algorithms using the original labelling and se-

lecting either the “Reasonable” or the “Reasonable90” evaluation mode. I

argue that “Reasonable90” is a more appropriate test mode for the con-

sidered experimental setting since it matches the range of heights of the

detections provided in the Caltech benchmark. I evaluate the detections of

a number of state-of-the-art algorithms provided with the Caltech bench-

mark and the detections generated by my implementation of the Fastest

Pedestrian Detector in the West (FPDW), trained on the original labelling.
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Scale

20 50 900 900

D: "Reasonable"
evaluation

C: detections

B: GT labels

A: people

E: "Reasonable90"
evaluation

Figure 7.1: Scale ranges evaluating the performance of the detectors consid-
ered in the Caltech Benchmark, on the INRIA test set, with the “Reason-
able” mode. A, the range of scales at which people appear in the test set,
starting roughly at 20 pixels and ending at around 900; B, the range of scales
at which people are labelled, starting at around 50 pixels; C, the range of
scales spanned by the detections published with the benchmark, for various
algorithms, starting at around 90 pixels; D, the range of scales taken into
account by the “Reasonable” evaluation mode, starting at 50 pixels; Finally,
E, the range of scales taken into account by the “Reasonable90” evaluation
mode, starting at 90 pixels. The GT labels with heights between 50 and 90
pixels cannot be matched by the detections provided with the data set: us-
ing the “Reasonable” evaluation mode underreports the performance of the
detectors. The “Reasonable90” evaluation mode, on the other hand, allows
for a more truthful assessment of the performance.

I display the MD rate/FPPI curves for one representative algorithm, for

the two modes, in Figure 7.2. Using the “Reasonable90” evaluation mode

reports slightly lower MD rates, especially at relatively high (100) FPPI levels

(see the results for all the tested algorithms in Table 7.2, columns 3–5). This

result is expected, as passing from “Reasonable” to “Reasonable90” some

labels which were impossible for the algorithms to match were removed from

the test set. The number of such labels is low since in the original test set

only a small fraction of the people with heights between 50 and 90 pixels

are labelled.
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MD at 100FPPI

Algorithm Min. det.
height

Reasonable
(MHTE=50)

Reasonable90
(MHTE=90)

Difference

FtrMine [Dollár et al., 2007] 100.0 0.340 0.324 -0.016
LatSvm-V1 [Felzenszwalb et al., 2008] 79.0 0.175 0.159 -0.015
HOG [Dalal and Triggs, 2005] 100.0 0.231 0.215 -0.015
HikSvm [Maji et al., 2008] 100.0 0.221 0.207 -0.014
PLS [Schwartz et al., 2009] 100.0 0.226 0.212 -0.014
HogLbp [Wang et al., 2009] 96.0 0.190 0.173 -0.017
FeatSynth [Bar-Hillel et al., 2010] 100.0 0.109 0.089 -0.019
MultiFtr+CSS [Walk et al., 2010] 93.7 0.109 0.093 -0.016
FPDW [Dollár et al., 2010] 100.0 0.093 0.075 -0.018
ChnFtrs [Dollár et al., 2009] 100.0 0.087 0.072 -0.015
LatSvm-V2 [Felzenszwalb et al., 2010] 91.3 0.081 0.058 -0.024
My FPDW 95.6 0.093 0.081 -0.013
CrossTalk [Dollár et al., 2012a] 99.2 0.098 0.079 -0.020

Mean -0.017

Table 7.2: The performances of a set of state-of-the-art PD algorithms re-
ported with the original INRIA labelling and the “Reasonable” or the “Rea-
sonable90” evaluation modes. Min. det. height refers to the minimum
height for the detections produced by each algorithm, in pixels. The min-
imum height for the detections provided with the Caltech benchmark lies
between 90 and 100 pixels for most of the detectors. This makes setting
the lower height limit during evaluation to 90 pixels more sensible than
the default 50 pixels of the “Reasonable” mode. The MD rate at 100 FPPI

is reported to be lower when testing with the “Reasonable90” evaluation
mode than with the “Reasonable” one. This is due to the latter contain-
ing GT labels with heights under 90 pixels, which are impossible to detect
correctly given the detections distributed with the Caltech benchmark. See
Figure 7.2 for a graphical comparison of the performance of LatSvm-V2 in
the two cases.
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Figure 7.2: The reported performance of the LatSvm-V2 algorithm [Felzen-
szwalb et al., 2010] using the original labelling and the “Reasonable” or the
“Reasonable90” evaluation modes, in red and green respectively. Perfor-
mance is summarized in the legend with the Log-Average Miss Rate. Using
the “Reasonable90” evaluation mode instead of the “Reasonable” one re-
ports slightly lower MD rates. This is expected as some GT annotations that
are impossible for the detector to match (given the detections provided in
the Caltech benchmark) are accounted for in the “Reasonable” mode and
ignored in the “Reasonable90” mode.
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A deeper analysis of the INRIA test set reveals that only a fraction of the

pedestrians is labelled: the higher the level of occlusion, the more unlikely

people are to be labelled, while the smallest pedestrians are unlabelled as a

whole.

The proposed test labelling and its influence on evaluation

Evaluating detection algorithms is typically done by means of annotated test

sets. Ideally, the Ground Truth annotation should be perfect. In practice,

though, labelling a test set is an error-prone process which reflects the goal

of the labeller. At the time of compilation of the INRIA person data set,

the focus was on the detection of high-resolution, fully visible pedestrians.

Meanwhile, the performance of PD’s has improved and the focus has shifted

to partially occluded and low-resolution pedestrians. The original labelling

of the INRIA test set cannot provide a good evaluation for the detections

in such conditions. I propose a new annotation that enables the evaluation

of the performance of algorithms on pedestrians imaged at low resolutions,

and improves the accuracy of the results reported for taller pedestrians.

The proposed annotation for the test set contains a total of 879 labels,

806 of which for “Person” and 73 for “Person?” or “People”. In comparison,

the original annotation has 589 labels equivalent to “Person”. The proposed

annotation contains more labels than the original one, especially at low

heights, but also at medium heights (see the comparison between the two

annotations in Figure 7.3(a) ). The fraction of “Ignore” BB’s for the new

annotation is considerable, Figure 7.3(b) illustrates the amount of labels

that are set to “Person” and “Ignore” for the “Reasonable90” evaluation

mode, as a function of height. One example of the proposed annotation,

together with the effect it has on the evaluation of the detections produced

by the FPDW algorithm, can be seen in Figure 7.4.

Comparing the performance reported by testing using either the original

or the proposed annotations, it can be observed that the proposed anno-

tation reports better performances for the algorithms at low FPPI values

and better differentiates the performance of the various detectors. I use

the same set of algorithms mentioned in the previous subsection and the

“Reasonable90” mode: MHTE = 90 pixels, MVTE = 0.65. I display the MD

rate/FPPI plot for one representative algorithm and the two annotations, in

Figure 7.5. Two effects can be seen: the miss rate is minimally higher at
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(a) (b)

Figure 7.3: Characterization of the original and the proposed labellings of
the INRIA test set. (a) Histograms of the height of “Person” labels for the
original (blue) and the proposed labelling (red). The proposed annotation
outnumbers the original one, particularly at low heights. (b) Histogram for
the proposed labelling and the “Reasonable90” mode, showing the amount
of “Person” and “Ignore” BB’s in red and yellow, respectively. The number
of “Ignore” is considerable and does influence the assessment of the detection
performance.

high FPPI values for the proposed labelling, I ascribe this to the introduc-

tion of more occluded pedestrians in the test set, which makes the problem

more difficult. The other effect, the most significant one, is the average

drop of 8.9% for the MD rates at low FPPI values (10−2) (see the results for

all the tested algorithms in Table 7.3, columns 2–4). I ascribe this to the

removal of the spurious False Positives (FP’s) generated on top of unlabelled

pedestrians. Such FP’s tend (correctly) to be associated with high values of

confidence, ruining the reported performance, especially when the number

of FP’s is low. A working point on the curve at (10−2) FPPI for this data set

means that there I am dealing with just three FP’s. Adding even only one

spurious FP in such conditions will damage the performance in a noticeable

way. The algorithms that perform better overall are the ones that benefit

the most from using the proposed labelling (see Table 7.3, columns 4 and

5).

I showed that the fair evaluation of the performance of a detector in

one experiment requires setting a height range for the evaluation in a prin-

cipled way. Such height range should be a subset of three other ranges: the

range spanned by people heights in the test set, the one spanned by Ground
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(a) (b)

(c) (d)

Figure 7.4: Comparison of one evaluation performed with the original (a,b)
and the proposed (c,d) INRIA test set labelling. The detections were ob-
tained with FPDW. (a) The original GT labels. (b) Evaluation with the
original labels: True Positives (TP’s) in green, False Positives (FP’s) in red
and yellow. The yellow FP’s significantly overlap with unlabelled persons,
hence it is unfair to consider those as errors. (c) The proposed GT labels:
pink labels are the ones that the evaluation code set to “Ignore” because of
excessive occlusion given the chosen evaluation mode. (d) Evaluation with
the proposed labels: TP’s in green, False Positives (FP’s) in red, ignored
matches in pink. Two detections match “Ignore” BB’s (dashed pink lines),
while one “Ignore” BB is not matched by any detection (not shown in this
image). None of these events influence the evaluation of the performance of
the detector.
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MD at 10−2FPPI

Algorithm Original
labelling

Proposed
labelling

Difference LAMR,
proposed
labelling

FtrMine [Dollár et al., 2007] 0.918 0.900 -0.019 57%
LatSvm-V1 [Felzenszwalb et al., 2008] 0.806 0.835 +0.029 43%
HOG [Dalal and Triggs, 2005] 0.744 0.702 -0.042 42%
HikSvm [Maji et al., 2008] 0.766 0.681 -0.085 39%
PLS [Schwartz et al., 2009] 0.674 0.596 -0.078 38%
HogLbp [Wang et al., 2009] 0.665 0.629 -0.036 35%
FeatSynth [Bar-Hillel et al., 2010] 0.754 0.738 -0.015 29%
MultiFtr+CSS [Walk et al., 2010] 0.469 0.425 -0.044 21%
FPDW [Dollár et al., 2010] 0.576 0.386 -0.189 18%
ChnFtrs [Dollár et al., 2009] 0.581 0.383 -0.198 18%
LatSvm-V2 [Felzenszwalb et al., 2010] 0.448 0.319 -0.129 17%
My FPDW 0.577 0.307 -0.270 16%
CrossTalk [Dollár et al., 2012a] 0.511 0.333 -0.178 15%

Mean -0.089

Table 7.3: The performances of a set of state-of-the-art PD algorithms re-
ported with the original or the proposed labelling. In both cases the eval-
uation mode is “Reasonable90”, which correspond to a Minimum Height
in TEst (MHTE) of 90 pixels and a Minimum Visibility in TEst (MVTE) of
0.65. LAMR indicates the Log-Average Miss Rate for each algorithm. Using
the proposed labelling reports considerably lower MD rates at 10−2 FPPI.
This effect is likely due to the pedestrians who are unlabelled in the original
annotation and who are labelled in the proposed one. The effect is stronger
for the detection algorithms with a better performance (lower LAMR). See
Figure 7.5 for a visualization of the performance of the LatSvm-V2 detector
in the two evaluation cases.
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Figure 7.5: The reported performance of the LatSvm-V2 algorithm [Felzen-
szwalb et al., 2010] using the original and the proposed labelling, in green
and blue respectively. The evaluation mode is “Reasonable90” in both cases.
Performance is summarized in the legend with the Log-Average Miss Rate.
Using the proposed annotation instead of the original one reports consider-
ably lower MD rates at low FPPI values. I ascribe this effect to the pedes-
trians that are unlabelled in the original annotation and have been labelled
in the proposed one: the corresponding detections are evaluated as FP’s

with the original annotation and as TP’s with the proposed one. Using the
proposed annotation also reports slightly increased MD rates at high FPPI

values. I attribute this effect to the introduction in the test set of more
occluded pedestrians, which are arguably more difficult to detect than the
fully visible ones.
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Truth labels and the one spanned by the detections generated by the detec-

tor. Specifically, when testing algorithms on the INRIA test set, using the

detections from the Caltech benchmark, the “Reasonable90” mode provides

for a fairer evaluation than using the default “Reasonable” mode. Addi-

tionally, I presented a new labelling for the INRIA test set and showed the

influence the more accurate test annotations have on the reported detection

performance of the algorithms.
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7.1.2 Experiments on the Influence of Sample Purity

In this section I present the results of three experiments that measure the

influence of different degrees of impurity in the testing and training of PD’s.

The first experiment measures the impact of partial occlusion in the test

set on the detection performance, while the last two experiments assess

the influence on performance of using partially occluded and low resolution

examples during the training of the detector. Information on the goal of each

experiment and the labelling and the detectors used in each experiment is

summarized in Table 7.4. For all the experiments I use the evaluation code

by Piotr Dollár. The original annotation of the INRIA data set and the

evaluation code are available on the Caltech Pedestrian Benchmark website1,

the proposed annotation is available on the author’s website.

Exp. Description Train. labelling Test labelling Det. Algorithm

1 Partial occl. in testing Original Proposed FPDW + Caltech Algs.
2 Partial occl. in training Proposed Proposed ACF

3 “Short” ex. in training Proposed Proposed ACF

Table 7.4: Summary of the experiments: the variable whose influence is
studied in each experiment, the algorithms and the training and test la-
belling used in each experiment are listed. “Caltech Algs.” refers to a set
of algorithms whose detections are distributed with the Caltech Pedestrian
Detection Benchmark (see Table 7.2 for a list of the detectors).

Experiment 1 - Influence of partial occlusion in the test set on

detection performance

In this experiment I evaluate the impact of the amount of partial occlusion

of the examples in the test set on the detection performance. I tackle, thus,

a single source of impurity. It has been shown in [Dollár et al., 2012b] that

even a modest amount of occlusion (visibility ratio as low as 0.65) has a

highly detrimental effect on the performance of PD’s. Those results were

obtained using the Caltech data set. I perform a similar experiment on the

INRIA data set and confirm that the finding has general validity. I use the

detections generated by my implementation of FPDW, trained on the original

training set, as well as the detections of several algorithms distributed with

the Caltech benchmark. I define 7 test modes which correspond to as many

1Caltech Pedestrian Benchmark website
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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test sets. I filter the proposed test set with different constraints on the

visibility to create the 7 test sets. The first test set contains only fully visible

pedestrians, while the successive sets include pedestrians imaged under an

increasing degree of occlusion. I include in this experiment only pedestrians

imaged with heights greater than 90 pixels.

I observed that lowering the minimum degree of visibility of the test

examples negatively affects the detection performance (see Figure 7.6(a) for

the MD rate/FPPI curves of FPDW tested with different degrees of visibility

and Figure 7.6(c) for a visualization of the relationship between Minimum

Visibility in TEst (MVTE) and the Log-Average Miss Rate for various de-

tectors). This confirms the generality of the observation obtained on the

Caltech data set.

In order to better gauge the impact of partial occlusion on detection

I partitioned the INRIA test set into three visibility classes and evaluated

the performance of FPDW: detecting on pedestrians with a good visibility

(at least 0.7 visibility) leads to a Log-Average Miss Rate of 15%, while

detecting on pedestrians with average and scarce visibilities (between 0.4

and 0.7, or under 0.4 visibility) leads to Log-Average Miss Rate of 59% and

75%, respectively (see Figure 7.6(b) ).

Conclusion This experiment shows that partial occlusion correlates

with the difficulty in detecting pedestrians: the higher the amount of oc-

clusion, the harder it is for a detector to detect people. This result holds

for the INRIA test set and all the tested detectors, including the part-based

ones.

Proposed labelling of INRIA for learning

The original labelling for the training set consists of 1237 “Person” BB’s,

while the proposed annotation contains a total of 1997 such BB’s, a 60%

increment. The largest increase in labelled pedestrians resides in the low

height fraction of the data, but still remains significant for heights of up

to 300 pixels (see Figure 7.7(a) ). Each label in the proposed training set

is associated with a visibility ratio, enabling different training sets to be

created by setting a threshold on such quantity. Most of the newly labelled

pedestrians are imaged under good visibility conditions (see Figure 7.7(b) ).

The two following experiments are devoted to assessing the importance
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Figure 7.6: The effect of partial occlusion in testing on the accuracy of
PD’s. (a) Reducing the minimum visibility of the pedestrians in the test set
decreases the detection performance of my implementation of FPDW. (b)
The detection accuracy of FPDW varies greatly as a function of visibility.
The three lines represent results obtained using the good visibility, average
visibility and scarce visibility partitions of the test set. In the legends of (a)
and (b) the performance of the test combinations is summarized with the
Log-Average Miss Rate (LAMR, see text for details). (c) The effect of partial
occlusion on the performance of several algorithms in the state of the art.
The performance of the detectors is again summarized with the LAMR. A
clear relationship holds for all the algorithms: the better the visibility, the
lower the LAMR, i.e., the better the performance.
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Figure 7.7: Characterization of the original and the proposed labellings of
the training set. (a) Histograms of the height of “Person” labels for the
original (blue) and the proposed labelling (red). The proposed annotation
outnumbers the original one, particularly at lower heights. (b) Histogram
for the full proposed labelling and for the subset whose BB’s are marked with
a visibility ratio of at least 0.65, in red and yellow respectively. Most of the
new BB’s correspond to pedestrians imaged with a good visibility.

of including impure, e.g., small and partially occluded positive examples in

the training set. I evaluate the effect of partial occlusion in Experiment 2,

while I gauge the impact of including small pedestrians in the training set

in the Experiment 3. I use the Aggregate Channel Features (ACF) detector

and the proposed labelling both for training and for testing. I choose to

use the ACF detector for these experiments because of the great reduction

in training time it allows for, compared to my implementation of FPDW.

I filter the full training set varying two thresholds, one on the minimum

height, the other on the minimum visibility:

• MHTR ∈ {25, 50, 100}

• MVTR ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

I train the detector with the training set resulting from each of the 18 combi-

nations and, for comparison, I train it also with the original INRIA set. To

account for the stochastic parts of the ACF algorithm, I repeat each training

10 times with a different randomisation seed (leading to 180 full trainings)

and compute the average of the resulting performances.

For a complete analysis of the influence of positive example height and

visibility on the performance of PD, varying the training set is not enough.

In these experiments I use the proposed labelling also for the test set. This
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allows me to set the minimum height and minimum visibility for a person

to be considered in the test set:

• MHTE ∈ {25, 50, 100}

• MVTE ∈ {0.65, 1.0}

This yields a total of 6 evaluation modes. I adjusted the depth of the image

pyramid so that it is possible to detect pedestrians 25 pixels tall or taller.

Experiment 2 - Influence of partial occlusion in the training set

on detection performance

In this experiment I evaluated the impact of varying the MVTR while fixing

the rest of the experiment parameters: MHTR, MHTE and MVTE. I repeated

the test for each of the 18 fixed parameters combinations (MHTR ∈ {25, 50, 100},
MHTE ∈ {25, 50, 100}, MVTE ∈ {0.6, 1.0}). In each case, MVTR spanned

the 0.5–1.0 interval with 6 equally spaced values.

For the first analysis, I fixed MHTR to 25 pixels, MHTE to 100 pixels

and MVTE to 0.65. I compared the performance of the ACF detector when

trained including examples with different degrees of visibility. I display the

performance achieved by the different training modes (as measured by the

LAMR) in Figure 7.8(a). It can be seen that including partially occluded

pedestrians (up to 0.8 visibility) in the training is advantageous, as it leads

to lower LAMRs.

In the second part of the experiment I set the MHTR and MHTE to 100

pixels and the MVTE to 1.0, i.e., I tested on fully visible pedestrians. The re-

sults depicted in Figure 7.8(b) show that including partially occluded pedes-

trians in the training is advantageous even when testing exclusively on fully

visible pedestrians. Lowering the required training visibility past the op-

timal amount, however, adversely affects performance. This behaviour is

common to all the 18 combinations of training and testing constraints (see

the average behaviour in Figure 7.8(c) ).

Training restricting the minimum height of the pedestrians to 25, 50

or 100 pixels leads to different optimal visibility thresholds for the training

set (see Figure 7.8(d) ). It is not clear at this point if this effect is due to

peculiarities of the different training subsets, to their different numerosities

(see Table 7.5), to the increasing difficulty in labelling when dealing with

smaller pedestrians or to some other phenomenon.
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Figure 7.8: (a) The performance of ACF trained with different levels of
occlusion and evaluated with a Minimum Visibility in TEst (MVTE) of 0.65.
Including partially visible examples in training is advantageous: the best
performance is obtained with a Minimum Visibility in TRaining (MVTR)
value of 0.8. (b) Including partially visible examples in training is useful even
when testing exclusively on fully visible pedestrians (MVTE of 1.0). (c) The
result is general: averaging over the 18 combinations of fixed parameters (see
text for details) still indicates that including partially occluded examples in
the training set is useful. (d) Restricting the Minimum Height in TRaining
(MHTR) leads to different optimal values for MVTR. The reason originating
this effect is unclear at the moment (see text for conjectures).

Height Training Test

>25,<50 59 47
>50,<100 294 150
>100 1644 682

Table 7.5: The number of positive examples in the proposed labelling, in
each of three height bins.
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Conclusion This experiment shows that including pedestrians imaged

under moderate partial occlusion in the training is advantageous, even when

testing exclusively on fully visible pedestrians. The optimal minimum visi-

bility for including pedestrians in the training set varies depending on other

factors, but gravitates around the value of 0.8.

Experiment 3 - Influence of “short” examples in the training set

on detection performance

In this experiment I assess the impact of the inclusion of examples smaller

than the detection window in the training set. I observe that including small

pedestrians in the training has a strong positive effect on the detection of

pedestrians in a similar range of heights. I consider the same training modes

as in the previous experiment. In order to test for the influence of training

pedestrians of different heights on the detection performance, I partition the

pedestrians in three classes. Pedestrians between 25 and 50 pixels tall form

the “short” class, those between 50 and 100 pixels tall form the “medium”

class and those over 100 pixels tall form the “tall” class. The numerosity

for each class in both training and testing with the proposed labelling is

reported in Table 7.5. I introduce three new testing modes based on this

partition of the heights. I consider training with the “tall” class the baseline

(as 100 pixels coincides with the detection window height) and I evaluate

the effect of including smaller pedestrians in the training. I report results

averaged over the 6 training visibility ratios.

Testing on the full test set (pedestrians taller than 25 pixels) indicates

little change when training with different subsets of the proposed data set

(see Figure 7.9(a) ). Testing on the “short”, “medium” and “tall” classes

separately gives a better insight: when testing on the “short” class, includ-

ing elements of the same height range is very beneficial, while including

elements of the “medium” class is beneficial, but to a lesser extent (see Fig-

ure 7.9(b) ). The advantage is not visible, though, when testing on the full

set. I ascribe the lack of impact on the full set to the small numerosity of the

“short” class: in the test set its elements account for less than 1/15th of the

element of the “tall” class. A comparison of the best detection performances

for the “short” range, obtained with various MHTR is visible in Figure 7.10.

Improving the detection performance on the “small” pedestrians is funda-

mental for automotive applications: pedestrians which appear small on the
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image are the ones who stand far from the car, detecting such a pedestrian

in a dangerous situation would give the driver of the car enough time to

respond to an emergency.

When testing on the “medium” class, including elements of the same

height range has a small positive effect on detection accuracy (see Fig-

ure 7.9(c) ), while including elements from the “short” class produces little

change. When testing on the “tall” class, the inclusion of shorter examples

in training produces negligible variations (see Figure 7.9(d) ).
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Figure 7.9: Log-Average Miss Rate obtained varying minimum training
height, ACF detector. The four plots display the results obtained with two
test modes: full visibility (MVTE= 1.0) in green and Minimum Visibility in
TEst (MVTE) of 0.65 in blue. (a) When testing on pedestrians spanning
the whole range of heights, the different training conditions fail to produce
different performances. (b) When testing on short pedestrians, it is impor-
tant to include examples of similar size in the training. Including examples
of medium height is also advantageous. (c) When detecting medium height
pedestrians it works to include “middle sized” pedestrians in the training
set, but including the small ones does not help. Including smaller pedestri-
ans does not change the detection performance on the big pedestrians much
(b). Overall, since in the INRIA test the pedestrians with heights under 50
pixels are just 47 out of 879, the improvement of detection accuracy on this
range has a small impact on the accuracy measured on the full test set (c).
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Figure 7.10: Best detection performances for the “short” range, testing with
full visibility. Including pedestrians imaged at heights between 25 and 50
pixels in the training (red line) produces a detector which dominates the
others for most FPPI values.

Conclusion This experiment shows that including training examples

two octaves smaller than the detection window has a positive effect on the

detection of pedestrians in the same range. I speculate that short pedestrians

contribute to the detection system knowledge on the appearance of people

when imaged at low resolutions.
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7.2 Pedestrian Detection on the HDA Data Set

In this set of experiments I gauge the quality of the PD problem presented

by the HDA data set and exploit the data set to compare the performance of

two detectors under different imaging conditions. I compare the performance

of the detectors on HDA and on the INRIA data set, concluding that each

data set is better suited to evaluate performances in the scenario it depicts.

Moreover, I exploit the High Definition images of HDA to perform a study

on the influence of High Definition on PD performance.

I evaluate the performance of two PD systems on the HDA data set:

the Fastest Pedestrian Detector in the West (FPDW) [Dollár et al., 2010]

and the Grammar Models detector [Girshick et al., 2011] (also known as

Discriminatively Trained Deformable Part Models, release 5). These two

systems are state-of-the-art representatives of two distinct paradigms for PD:

monolithic (human as a whole) and part-based (human as a composition of

parts), respectively. I use the code provided by the authors [Girshick et al.]

for Grammar Models, with a model trained on the Pascal VOC 2010 data

set [Everingham et al., 2010], while for FPDW I use my own implementation,

trained on the INRIA person data set.

For evaluation I use a customized version of the code provided by [Dollár

et al., 2012b]. Detections and missed detections on a ‘crowd’ area of the

image are not penalized. My data set annotation is consistent with the

behaviour of the evaluation algorithm for most of the labels. However,

because the GT BB’s in HDA are designed to enclose the full extent of the

projection of a person on one image, this can lead to BB’s that are not

horizontally centred on the targets, mainly when the pose of a person’s

arms or legs is very asymmetrical. In such cases the matching algorithm

can report a FP or a MD instead of a TP.

In Experiment 4 (Section 7.2.1) I compare the PD performance obtained

by two state-of-the-art algorithms on subsets of the HDA data set. In Ex-

periment 5 (Section 7.2.2) I compare the PD performance obtained on the

HDA and on the INRIA data sets. In Experiment 6 (Section 7.2.3) I assess

the effect on PD performance of High vs. Low Resolution images.
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7.2.1 Experiment 4 - PD Performance in Different Scenarios

of HDA

In order to evaluate the characteristics of the HDA data set with respect to

PD algorithms, I partition the video sequences based on characteristic views.

I form the groups ‘long range’ (sequences of corridors, 19, 40, 50 and 60),

‘mid range’ (sequences of big rooms 18 and 54) and ‘short range’ (sequences

of cameras pointed towards doors or inside small rooms 17, 53, 56, 57, 58

and 59). I leave sequence 02 out (see top image in Figure 5.2), as in that

case the camera is pointed down from the ceiling: the projections of people

onto the image plane are so different from the typical pedestrian projections

that both detectors completely fail at the recognition task.

Considering that only Grammar Models handles occlusions explicitly, I

evaluate the detections using two modes: in the ‘base’ mode I consider all

the BB’s composing the GT, while in the ‘full visibility’ mode I only consider

the BB’s that are completely visible. Moreover, Grammar Models estimates

a BB enclosing the full person even when it observes only a part of it. This

can lead to detection BB’s with parts well outside the image. Such BB’s

would not match the GT of people only partially inside the image, as in the

GT the BB’s are bounded to the image limits. I thus crop each detection so

that it lies inside the image.

I present the results in the form of MD rate/FPPI plots in Figure 7.11.

The overall performance indicator shown is the LAMR (see Section 7.1.1 for

the definition).

Conclusion The performances of FPDW and Grammar Models are quite

similar for the long and the mid range sequences, with a little advantage for

FPDW in the fully visible mode. For the short range setup instead, Grammar

Models is the clear winner. I speculate that the advantage of Grammar

Models in the short range sequences depends on its part-based structure,

which can accommodate the perspective deformations between training and

test data better than the monolithic structure of FPDW.

7.2.2 Experiment 5 - Comparing PD Performance on HDA

and on INRIA

In this experiment I compare the performances of FPDW and Grammar Mod-

els on the proposed HDA data set and on the INRIA person data set [Dalal
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Figure 7.11: MD rate/FPPI plots for different groups of image sequences
(rows) and for two different evaluation modes (columns). Lower curves and
curves more on the left side of the plots indicate better performance.
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and Triggs, 2005]. I use the proposed annotation for the INRIA data set,

which includes information on the degree of occlusion that affects each per-

son. The two data sets are quite different in nature: the INRIA data set

consists in a collection of holiday photos, while the HDA data set portrays a

typical Video Surveillance scenario.

The performance of the two algorithms varies from one data set to the

other: using the Full visibility evaluation mode reports moderate differ-

ences between FPDW and Grammar Models, while using the Base mode the

differences are more extreme (see Figure 7.12). This confirms that the per-

formance of a detector depends heavily on the application scenario and that

data sets specific to different applications are needed.

The large difference in the results between the Base and the Fully visible

evaluation mode, on both data sets, confirms that occlusion poses a severe

challenge to PD algorithms. The fact that FPDW outperforms the Grammar

Models detector on the INRIA data set is to be expected: FPDW was trained

on INRIA and, as shown in [Benenson et al., 2014a], detection performance

degrades when testing on a test set which does not match the training set

used.

Conclusion The performances of the two detectors on the HDA and the

INRIA data sets are quite different. This confirms the usefulness of designing

a data set representing a typical Video Surveillance scenario for PD. I expect

the performance measured on the HDA data to be more representative of that

achievable in a real Video Surveillance setting than the one measured on the

INRIA data set.

7.2.3 Experiment 6 - PD Performance at Different Image

Resolutions

In this experiment I assess the impact of image resolution on the PD task.

The imaged height of a pedestrian has a strong correlation with the difficulty

of detection: smaller pedestrians are more difficult to detect. Most state-

of-the-art methods struggle with heights under 80 pixels and even humans

start having difficulties for heights under 30 pixels (see [Dollár et al., 2012b]).

This grants a clear advantage to detection performed on higher resolution

images: some people with imaged height under the 30 pixels threshold with

a VGA camera would exhibit a height above that threshold if imaged with

a higher resolution camera.
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Figure 7.12: MD rate/FPPI plots comparing the performance of FPDW and
Grammar Models on the INRIA and the HD data sets. There is a clear
difference in the performances on the two data sets, confirming the usefulness
of creating a data set for PD representing a Video Surveillance scenario.
Results on other data sets for FPDW and Grammar Models are publicly
available (see [Dollár et al., 2012b] and [Girshick et al., 2011], respectively).
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I downsample the images of the high and medium resolution sequences

to a resolution of 640 × 400, using bilinear interpolation, and compare the

performance of the detectors on the two versions. I set the detectors up

so that they are able to detect pedestrians at all of the imaged heights

that appear in the data set, both at the original and at the downsampled

resolution.

Two effects contribute to change the performance of a detector when

it is run on the lower resolution version of an image. First, the detec-

tor incurs in more MD’s due to the aforementioned phenomenon. Second,

the “sliding window” paradigm of the PD algorithms implies that a detec-

tor has to evaluate a much smaller number of windows when run on the

lower resolution version of an image. Statistically, this leads to the detector

generating less FP’s, while the number of TP’s remains constant. The two

contributions create a balancing effect. It must be noticed that evaluating a

different number of windows translates to different execution times for the

two resolution modes, detecting pedestrians in low resolution images being,

of course, faster.

Figure 7.13 graphically presents the results. The performance of Gram-

mar Models on the far range sequences degrades when run on lower reso-

lution images, while the performance of FPDW doesn’t change significantly

(see Figure 7.13(a) ). I observe that the farthest, and thus, smallest pedes-

trians are the ones where the difference is felt. I speculate that Grammar

Models suffers more than FPDW from the reduction in resolution because it

relies on part detectors which require finer image details to work at their

best.

For the mid range sequence, the performance of both algorithms changes

very little when changing the resolution (see Figure 7.13(b) ). I speculate

this happens because the people in this sequence are not small enough to

trigger the phenomenon that can be observed in the long range sequences.

For the short-range sequences a clear reduction in FP’s (especially for FPDW)

at high FPPI rates/low detection confidence can be observed. I ascribe this

reduction to the smaller number of windows classified, as well as to the

smoothing of image compression artifacts performed by the bilinear inter-

polation: image areas containing artifacts which are classified as persons

with a low confidence in the original images, are classified as background in

the LR images. Camera 59 was excluded from the short range set because of
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a specific occurrence: in the original size images, the fire extinguisher sign

was very often detected as a person by FPDW, while this did not happen

in the subsampled images. This peculiar event had a big influence on the

results, but was deemed not to be of general interest.
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Figure 7.13: MD rate/FPPI plots comparing the performance of the detectors
on the original and the Low Resolution (LR) version of the images, for the
three ranges I defined. Long range comprises camera 50 and 60, mid range
is just camera 54, while short range includes cameras 53, 56, 57 and 58.

Conclusion This experiment shows that HR cameras can be advanta-

geous for detecting people, especially at greater distances, but at the same

time this approach has a tendency for generating more FP’s and is slower

than using standard resolution cameras. When processing time is not an

issue, the practitioner should set each camera to the lowest possible resolu-

tion that enables the detection of people at the farthest visible point of a

given scenario. This ensures the least amount of MD’s while also minimizing

the number of FP’s.
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7.3 Pedestrian Re-Identification on the HDA Data

Set

In these experiments we evaluate the HDA data set from the RE-ID point of

view. Moreover, we exploit the High Definition images of HDA to assess the

role of resolution in RE-ID.

We use a RE-ID architecture which is common to many algorithms in

the state of the art [Cheng et al., 2011b; Figueira et al., 2013]. The input

is provided in the form of cropped images, both for training (gallery) and

for testing (probes). A body-part detector is run on each input image and

one colour histogram is built based on each detected region. Then, the

histograms are concatenated to form the feature vector for classification.

Finally, we use a simple Nearest Neighbour classifier for assigning a person

ID to a test example. We use two different algorithms to detect body parts:

Andriluka’s [Andriluka et al., 2009] (PS) and Fenzenswalb’s [Girshick et al.]

(DTDPM v5).

To evaluate the performance of RE-ID algorithms we use the Cumula-

tive Matching Characteristic (CMC) curve. Such curve shows how often the

correct person ID is included in the best K matches for each test image.

The overall algorithm performance is measured by the nAUC, the normal-

ized Area Under the CMC curve. The larger the area, the better the RE-ID

performance.

7.3.1 Experiment 7 - Comparing RE-ID Performance on HDA

and Other Data Sets

This experiment compares the RE-ID performance on the HDA data set

with that obtained on other publicly available data sets (CAVIAR4REID,

iLIDS4REID and VIPeR, described in Section 2.3.2). The design of the

experiment is different from that of Experiment 5. In that case the perfor-

mance of pre-trained detectors was evaluated on different data sets, while

in this experiment one evaluation consists in training and testing one RE-ID

algorithm on a given data set.

The gallery and the probes (training and test data) for the HDA data set

were collected by manually selecting one detection per person, per camera.

In total, we collected 250 detections from 67 pedestrians. Only instances in

which people are fully visible were chosen for this experiment. For the other
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data sets we used the gallery and probes they provide.

As common in RE-ID work, the evaluation was repeated 100 times ran-

domising the data and the results are reported after averaging over the

repetitions. For each subset, the training and the test set for one of the 100

repetitions were formed selecting one image per pedestrian for training and

one image per pedestrian for testing. Results are shown in Figure 7.14.
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Figure 7.14: Comparing RE-ID performance on different data sets iLIDS,
VIPeR, CAVIAR and HDA. PS and DTDPM indicate the algorithm used
to detect the body parts used as a base for building the colour histograms.
See text for details. HDA proves to be one of the most challenging data sets
(low nAUC and low correct re-identifications at low ranks).

Conclusion We observe that, together with CAVIAR4REID, the HDA

data set is one of the most challenging. The difficulty of performing RE-ID

on CAVIAR4REID stems mostly from the low resolution of its images: it

is difficult to differentiate people even for a human operator. The difficulty

in re-identifying people on the HDA data set, on the other hand, stems from

the mixture of cameras with different resolutions, different perspectives and

ranges, the presence of harsh illumination changes, severe occlusions, and

the fact that several subjects add or remove items of clothing from one view

to the next (i.e., removing a jacket), making HDA one of the most challenging

RE-ID data sets to date.



7.3. PEDESTRIAN RE-IDENTIFICATION ON THE HDA DATA SET113

7.3.2 Experiment 8 - RE-ID Performance at Different Image

Resolutions

This RE-ID experiment is aimed at evaluating the influence of using high

vs. low resolution cameras on the RE-ID performance. In principle, higher

resolution should allow for the extraction of more discriminative features,

which should lead to better RE-ID performances.

High Resolution Cameras VS Low Resolution Cameras

For the first part of the experiment we use actual high and low resolution

data: we partition the HDA data set based on resolution and compare the

RE-ID performance on the different subsets. The two gallery and probe sets

for this experiment result from a partition of the gallery and probe sets

described in Experiment 7. Detections generated on images from camera

50 and above were used for the HR set, while detections generated on im-

ages from camera 40 and below for the LR set (see Table 5.2). In total,

we collected 150 detections from 35 pedestrians for the HR subset and 100

detections from 32 pedestrians for the LR subset. The evaluation was re-

peated 100 times randomising the data and the results are reported after

averaging over the repetitions, using the same scheme as in Experiment 7.

In Figure 7.15 we can observe that both PS and DTDPM v5 perform

better in high resolution cameras than in regular ones, supporting the hy-

pothesis that high resolution images carry more discriminative information

than low resolution ones. It is important to highlight, though, that in this

part of the experiment we compare two sets of images which differ for more

factors than just the resolution, e.g., illumination and camera perspective.

Such factors could be the cause for the difference in performance.

Isolating the Effect of Resolution

In the second part of this experiment we compare the RE-ID performance on

the high resolution subset with that on the same subset, after its resolution

is artificially reduced to VGA via bilinear interpolation. This allows us

to measure the effect exclusively due to the difference in resolution. We

performed the same analysis as in the first part of the experiment and,

in this case, no strong difference in the RE-ID performance was observed

between the high resolution and the low resolution case.
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Figure 7.15: CMC curves comparing performances on High Resolution (HR)
and Low Resolution (LR) subsets of the HD data set (higher curves corre-
spond to better performance). The RE-ID performance is higher on the HR
set, but this appears to be related to other factors peculiar to the two set of
images, rather than resolution. See text for details.

Conclusion No clear evidence exists for recommending the use of high-

resolution images for RE-ID with the algorithm we employed. The improve-

ments obtained in the first part of this experiment may be due to better

image quality or simpler environmental conditions in the high resolution

subset, or to some other factor we did not control during the experiment.

Nevertheless, we believe that more discriminative features than the ones used

in this work (simple colour histograms) can better exploit high-resolution

information, leading to a better RE-ID performance on high-resolution im-

ages.
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7.4 Experiment 9 - PD for Fully Automated Re-

Identification

In this last experiment we evaluate the performance of a fully automated Re-

Identification (PD+REID) system, comparing it to the performance reported

by the same RE-ID module in a classical RE-ID experiment. We introduce

the False Positive (FP) class and the Occlusion Filter (OF), as improvements

over the naive integration scheme. We show that the use of the FP class

enables a meaningful comparison between the performance computed in a

classical RE-ID experiment and that measured on the integrated system. We

show the usefulness of the precision and recall statistics to characterise RE-ID

performances and, finally, we observe that the use of the FP class and the

OF have a positive impact on RE-ID performance of the integrated system.

7.4.1 Setup

We use the HDA data set (see Chapter 5), the ACF detector (see Chapter 3)

and the same basic algorithm described in Section 7.3 for RE-ID (using the

PS body part detector by Andriluka [Andriluka et al., 2009]). We simulate

the closed-space assumption for the RE-ID problem by using the images from

7 cameras (ID’s from 50 to 59) for creating the gallery (training set), while

images from camera 60 are used for collecting the probes (test set).

7.4.2 Baselines: the MANUAL modes

We define two evaluation modes based on hand-cropped images of people:

the “MANUALclean” and the “MANUALall” modes. The “MANUALclean”

implements the de facto standard evaluation method for RE-ID algorithms:

the test examples are hand-cropped images of fully visible people. The

“MANUALall” mode is more challenging, because it uses all of the hand-

labelled persons in the test set, including the partially visible ones. First,

we compare the RE-ID results obtained using the two manual modes, then

we compare such results with those obtained by the integrated PD+REID

system.

The annotation for camera 60 comprises 1182 BB’s. Because of the

closed-space assumption, we build the test set for the MANUALall evalua-

tion modality using only the 1097 BB’s which depict people who appear both
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in camera 60 and in some of the training cameras. For the MANUALclean

modality, we use only the fully visible pedestrians in the test set: 467 out

of 1097.

For the experiments with the PD+REID system, the ACF detector pro-

duces 2579 BB’s in the test video sequence, 1167 of which are FP’s. In the

evaluation modes in which the OF is active, 233 detections are filtered out,

leaving a total of 2309 BB’s.

The results of the experiments are visualized in Figure 7.16 (CMC curves)

and Figure 7.17 (P/R points). Table 7.6 lists the corresponding numerical

values: the precision and recall statistics for rank-1, including the F-score

(harmonic mean of precision and recall), while CMC curves are summarized

by the values of the rank-1 point and those of the normalized area under

the curves (nAUC).
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Figure 7.16: CMC curves of the six RE-ID experiments with the experimental
setups described in the text.

Comparing the MANUALall with the MANUALclean experiment allows

us to measure the difference in performance caused by the introduction

of partially occluded exemplars in the test set. The MANUALclean and

MANUALall baseline cases perform as expected. MANUALclean receives

the cleanest possible input (only fully visible pedestrians) and exhibits the
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Figure 7.17: Visualization of the precision-recall values as per Table 7.6.

Exp. # BB’s Precision Recall F-score 1st Rank nAUC
(%) (%) (%) (%) (%)

MANUALclean 462 30.1 15.8 20.7 18.7 90.6
MANUALall 1097 18.6 23.1 20.6 31.2 82.4

DIRECT (FP OFF, 2542 8.5 22.5 12.4 5.2 29.1
OCC OFF)
FP OFF, OCC ON 2309 8.5 20.8 12.1 5.4 27.8
FP ON, OCC OFF 2542 14.7 14.4 14.6 62.3 91.3
FP ON, OCC ON 2309 16.2 12.9 14.4 66.7 93.5

Table 7.6: Statistics for the different evaluation modes presented in the text.
We list the number of Bounding Boxes (# BB’s) processed in each case,
and report the results in terms of Precision, Recall, F-score, the CMC

curves’ 1st rank and its normalized area (nAUC). Note that we define the
precision and recall statistics so that they are not affected by the quality of
RE-ID in the FP class, while CMC is affected by them. This leads to the very
high 1st Rank values for the modes with FP class turned ON. These values
are of little practical interest. The precision-recall values can be visualized
in Figure 7.17.

highest precision of all experiments. MANUALall, on the other hand, re-

ceives BB’s for all the pedestrian appearances (including the ones affected by

partial visibility) and reaches the highest values for recall. The CMC curve

of MANUALclean outperforms that of MANUALall for all ranks, confirming

that partial occlusion is detrimental for RE-ID.

7.4.3 Naive integration

Comparing the two manual modes with the naive integration of PD and RE-ID

(the DIRECT mode) we observe a drop in performance for the PD+REID sys-

tem (see Figure 7.16). This loss is mostly due to the fact that FP detections

are always misclassified in the DIRECT mode. The CMC curve is thus lim-

ited in the highest accuracy value it can reach. Such loss is mitigated when
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we consider the two integration modules discussed in Chapter 6: the FP

class and the OF.

7.4.4 Dealing with False Positives

We highlight the improvement provided by using the FP class in Figure 7.16.

Such gain is due to two factors: (i) Adding a FP class allows all detections

to be correctly identified at some rank, enabling the CMC curve to reach

100% accuracy; (ii) In this experiment, most of the FP are quite easy to

re-identify, as they are generated by static objects in the scene (i.e, doors,

fire extinguishers). This causes the low-rank part of the curve to lay even

higher than that of the manual modes. Note that we define the precision

and recall statistics so that they are not affected by the quality of RE-ID in

the FP class.

7.4.5 Dealing with Partial Occlusion

In this experiment the OF was set to reject BB’s with an occlusion of at

least 30% (See Figure 7.18). The improvement afforded by the OF when

the FP class is activated can be seen in Figure 7.16: the orange dash-dot

curve is always higher than the blue dotted one. The results reported in

Table 7.6 comply with our expectations. Filtering out difficult to re-identify

cases leads to an increase in precision. At the same time, because the OF

reduces the number of detections passed on to the RE-ID module, it induces

a drop in recall. When the FP class is deactivated, comparing between the

”DIRECT” vs ”FP OFF, OCC ON” modes, we do not see any increase in

accuracy or precision, possibly because the general values for these statistics

are so low that the increase afforded by the OF is not significative.

Conclusion In this experiment we defined two evaluation modes for

RE-ID based on GT bounding boxes. We showed that the mode which in-

cludes only fully visible people (MANUALclean) achieves the highest RE-ID

precision of all modes, while the one which includes all appearances, disre-

garding the degree of occlusion (MANUALall), achieves the highest recall.

We showed that the naive integration of PD and RE-ID achieves a good recall,

but poor precision, and cannot be compared to the manual modes on a CMC

curve. Integrating a FP class leads to an increase in precision, at the price of

a drop in recall. Using the FP class enables comparing the integrated system
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Figure 7.18: The performance of a PD+REID system as a function of the
value of the minimum overlap threshold for the OF. The plot refers to an
experiment that we reported in [Taiana et al., 2014]. That experiment is
similar to Experiment 9, so we decided to include only this plot in this
thesis. The maximum in the plot indicates that it is best for the OF to
reject detections with an overlap value of at least 0.3.

to a manual one via a CMC curve, but the comparison is not completely fair,

because FP examples are easier to re-identify than people. Using the OF in

combination with the FP class leads to a small improvement in precision and

a correspondingly small drop in recall. The proposed system with FP class

and OF achieves the highest precision among the fully automated methods.
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Chapter 8

Conclusions

This thesis focusses on the field of Pedestrian Detection (PD) and its appli-

cations. The work concentrated on three main areas. First, I explored the

effect of data labelling on the training and on the evaluation of Pedestrian

Detectors. I concluded that a careful selection of the labelled examples in

the training set may have a significant impact on detection performance. I

showed that a fair comparison of detection algorithms depends on the qual-

ity of the test set labelling and experiment design. I confirmed that partial

occlusion in the test samples has a negative correlation with detection per-

formance. Second, I designed a data set to measure PD performance in a

Video Surveillance scenario and assess the effect of High Definition images

on the performance of Video Surveillance algorithms. Third, I proposed

the integration of a PD algorithm and a Re-Identification (RE-ID) module

to build a fully automated Re-Identification (PD+REID) system. I intro-

duced two schemes which improved the performance of the naive integrated

system: the False Positive class and the Occlusion Filter. Furthermore, I

highlighted the usefulness of precision and recall statistics to characterize

the performance of the integrated system. Each contribution is reported in

detail in the following paragraphs.

I proposed a new labelling for the popular INRIA person data set, which

enables the user to assess the effect of impure data on PD’s. The proposed

labelling is richer and more accurate than the original one, making the data

set better suited for benchmarking modern PD systems. I showed that se-

lecting the correct height range for the test samples used in the evaluation

is important for a fair comparison of the detection performances of various

121
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algorithms. I confirmed that the degree of partial occlusion of test samples

negatively correlates with detection accuracy, even for part-based detectors.

I observed that including partially occluded examples (with a visibility of

at least 90%) in the training set improves the detection performance both

on fully visible and on partially visible pedestrians. Moreover, I observed

that the inclusion of examples imaged with heights lower than that of the

detection window positively affects the detection of pedestrians in the same

height range, while the performance on taller examples remains unchanged.

This result is especially relevant for the case of automotive applications, in

which detecting pedestrians far from the vehicle allows sufficient time for the

automated driving system or the driver to respond. Summarizing, I showed

that for achieving the best possible performance it is useful to include ex-

amples affected by a low level of impurity in the training set of a detector.

The results related to the effect of sample purity on detection have been

published in [Taiana et al., 2013, 2015].

Another contribution of this work was to design and create the High

Definition Analytics (HDA) data set for benchmarking Video Surveillance al-

gorithms and assess the role of High Definition images on their performance

(See Chapter 5). The set up of HDA allows for the evaluation of Pedestrian

Detection algorithms in a video analytics scenario, as well as the bench-

marking of PD+REID algorithms. We believe that the HDA benchmark will

stimulate the development of Video Surveillance algorithms specific for High

Definition images. The HDA data set is heterogeneous, including footage ac-

quired with different resolutions, from different view points, under different

lighting conditions, etc. Such diversity is a key for a robust evaluation of the

performance of Video Surveillance algorithms. I evaluated the performance

of two PD systems which are representative of the two main paradigms in the

state of the art: the Fastest Pedestrian Detector in the West (FPDW) [Dollár

et al., 2010] for monolithic detectors and Grammar Models [Girshick et al.,

2011] for part-based detectors on various scenarios of HDA. The Grammar

Model detector proved to have an edge when detecting people imaged at a

short range. I believe such advantage stems from the ability of a part-based

detector to accommodate shifts of the body parts with respect to their most

common position. The monolithic detector, on the other hand, performs

slightly better in the condition of full visibility. Detection performance on

the HDA and INRIA data sets proved to be considerably different, confirm-
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ing the usefulness of creating a data set for PD which represents the Video

Surveillance scenario. Experiments on the role of High Definition confirmed

the intuition that higher definition images allow for the detection of farther

pedestrians, but due to the image pyramid/sliding window scheme they also

lead to more False Positive detections and require longer processing times.

In an effort to evaluate the characteristics of the HDA data set in terms of

RE-ID, we compared the performance of two versions of a simple RE-ID system

on HDA and other RE-ID data sets. We observed that the HDA data set is, to-

gether with CAVIAR4REID, the most challenging to date, arguably because

of the mixture of cameras with different resolutions, different perspectives

and ranges, the presence of harsh illumination changes, severe occlusions,

and the fact that several subjects add or remove items of clothing from one

view to the next. Furthermore, we performed experiments aimed at evaluat-

ing the effect of high resolution images on RE-ID performance. The results of

such experiments show that for basic RE-ID algorithms, using simple colour

histograms as features, high resolution images are not advantageous. Nev-

ertheless, we expect that more sophisticated features would better exploit

high resolution information, leading to a better RE-ID performance on high

resolution images. We believe this makes the HDA data set a valuable tool

for the RE-ID community to explore features specific to high resolution im-

ages. The description of the HDA data set and the results of the related PD

and RE-ID experiments have been published in [Nambiar et al., 2014].

The last contribution of this thesis consists in the design of a fully au-

tomated Re-Identification (PD+REID) system (see Chapter 6). The classic

set up for a RE-ID experiment requires human intervention for the selection

of the test examples, leading to RE-ID systems of little practical use. A fully

automated Re-Identification system consisting in the integration of a RE-ID

and a RE-ID module allows to overcome such limitation. We showed that

precision and recall statistics are useful for characterising the performance

of RE-ID and PD+REID systems alike. We proposed two improvements to a

naive fully automated Re-Identification system: the False Positive (FP)False

Positive class models the FP detections generated by the PD module in a

given scenario. The use of the FP class leads to an increase in RE-ID preci-

sion, at the price of a drop in recall. Furthermore, it enables a meaningful

evaluation of the combined system with a Cumulative Matching Character-

istic (CMC). The Occlusion Filter (OF) exploits geometrical reasoning to
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filter the detections, so that only detections which have a high probability

of depicting fully visible pedestrians are passed on to the RE-ID module.

The introduction of the OF leads to a slight improvement in the precision of

the RE-ID system (thanks to the removal of ambiguous and hard to classify

detections), at the same time inducing a corresponding drop in recall. The

results related to the development of a fully automated Re-Identification

system have been published in [Taiana et al., 2014; Figueira et al., 2014]·

8.1 Future work

In the following paragraphs I list concrete steps for possible developments

of the work presented in this thesis.

Positive Training Example Value – Lapedriza et al. notice in [Lapedriza

et al., 2013] that some positive examples are better than others for train-

ing detectors. They define the concept of training value for an example as

the performance of a detector trained using only such positive example and

a negative training set. The performance is evaluated on the rest of the

training set, including positive and negative examples. The authors show

that excluding the positive examples with the worst value from the training

leads to an increase in detection performance, with respect to the base case

(see Figure 8.1). I plan to compare the training value of examples with their

level of impurity. I expect that the level of occlusion negatively correlate

with training value. If this holds, it would be interesting to characterise the

examples which have a low level of impurity and, at the same time, a low

training value. Such examples might indicate sources of impurity I am not

yet considering, e.g., image blur and unusual poses. I expect that pursuing

this development would require three months’ work in case the detector im-

plemented during this thesis can be easily integrated in Lapedriza’s scheme.

In case the use of the Exemplar Support Vector Machine used by Lapedriza

and described in [Malisiewicz et al., 2011] turns out to be necessary, I expect

the achievement of meaningful results to be delayed by one month.
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Figure 8.1: Visual explanation of the concept of “positive training value”,
image reproduced from [Lapedriza et al., 2013]. (a) lists positive examples
from the entire training set. (c) and (d) show positive training examples
with high and low training value, respectively. (b) plots the performance of
two detectors as a function of the number of positive examples used in their
training. The black line corresponds to a detector for which the positive
training examples are added to the training set in no particular order, while
for the detector corresponding to the red line, the examples are added to
the training set in decreasing order of training value. The performance of
the “red” detector dominates that of the “black” detector, testifying to the
usefulness of computing “positive training values”. The maximum of the
red plot corresponds to the training set which leads to the best detection
performance. Interestingly, such training set is a subset of the total training
set, meaning that it is better to discard the positive examples with the worst
value before training.

Detecting Waving People from a Mobile Robot – Pedestrians De-

tectors do not rely on the assumption of static cameras. This feature per-

mits their deployment on mobile robots, with clear applications in the field of

Human-Robot Interaction. Running a Pedestrian Detector on mobile robots

like Vizzy (see Figure 8.2) would enable them to be aware of the presence

of people in their surroundings. However, once a robot reaches such level of

awareness, a mechanism for humans to attract its attention becomes neces-

sary. Such mechanism can be provided by connecting a Pedestrian Detector

to a gesture detector, such as the waving detector described in [Moreno and

Santos-Victor, 2013]: exploiting such a system, humans would just need to

wave one hand at the robot to require assistance. The integration of a Pedes-
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trian Detector with a gesture detector requires additional work to associate

people detections along consecutive frames and to manage PD errors: False

Positives and Missed Detections. Such work can be performed by a Particle

Filter-based tracker (like the one described in [Okuma et al., 2004]), which

must be aware of the movements of the robot and of how such movements

influence the projection of people onto the image. I expect the development

of the tracker and the integration of the Pedestrian Detector, the tracker

and the hand waving detector to take approximately five months.

Figure 8.2: Vizzy, the mobile robot of VisLab.

Bounded Stumps as Weak Classifiers – Decision stumps are Weak

Classifiers very frequently employed in Pedestrian Detectors. One decision

stump partitions the range of values possible for a feature according to one

threshold, into a positive and a negative interval (see Figure 8.3(b) ). How-

ever, a decision stump does not differentiate between value ranges of the

feature for which there is evidence in the training set (there are positive or

negative examples) and the ranges for which there is no training evidence:

examples in both areas are classified with the same level of confidence. This

appears to be suboptimal. Bounded stumps, stumps which cast a neutral

vote for the areas of the feature space with no training evidence, seem to be-
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have in a more sensible way in the aforementioned case (see Figure 8.3(c) ).

Bounded stumps consist in three thresholds: the usual threshold separating

positive and negative examples, and two additional thresholds which delimit

the ranges of the feature for which no training information is available. I

plan to compare the efficacy of normal decision stumps and bounded deci-

sion stumps in a Pedestrian Detector based on AdaBoost. However, some

peculiarities of the current PD approaches, namely the fact that some of the

features are bounded (Integral Channel Features, as well as Histograms of

Oriented Gradients saturate at the value of 0.2) might limit the impact of

using bounded stumps. I expect this line of work to require two months for

producing results.
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(c) Bounded stump classification

Figure 8.3: Bounded stumps as weak classifiers. (a) depicts a toy classifi-
cation problem with two features, positive and negative training examples
(indicated by the + and - symbols, respectively) and one test example. (b)
shows the classification operated by a decision stump learnt on the problem:
examples in the light blue and light red areas are classified as positives and
negatives, respectively. (c) depicts the classification operated by a bounded
decision stump. Compared to a regular stump, this classifier benefits from
the addition of two light green areas, which cast a neutral vote. Such ar-
eas correspond to the ranges of the decision feature for which there is no
evidence in the training set.
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Smith. Bender – A General-Purpose Social Robot with Human-Robot

Interaction Abilities. Human-Robot Interaction, 2013.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C Berg, and Li Fei-fei. ImageNet Large Scale Visual Recogni-

tion Challenge. IJCV-SUBMITTED, 2104.

Paul Rybski, Peter Anderson-Sprecher, Daniel Huber, Chris Niessl, and Reid

Simmons. Sensor fusion for human safety in industrial workcells. IROS,

2012.

Payam Sabzmeydani and Greg Mori. Detecting pedestrians by learning

shapelet features. CVPR, 2007.

Enver Sangineto, Marco Cristani, Alessio Del Bue, and Vittorio Murino.

Learning discriminative spatial relations for detector dictionaries: An ap-

plication to pedestrian detection. ECCV, 2012.



BIBLIOGRAPHY 137

William R Schwartz, Aniruddha Kembhavi, David Harwood, and Larry

Davis. Human detection using partial least squares analysis. ICCV, 2009.

Pierre Sermanet, Koray Kavukcuoglu, Sandhya Chintala, and Yann Le-

Cun. Pedestrian detection with unsupervised multi-stage feature learning.

CVPR, 2013.

Yaser Sheikh, Omar Javed, and Takeo Kanade. Background subtraction for

freely moving cameras. ICCV, 2009.

Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz,

Alan Schultz, and Michael Goodrich. Common metrics for human-robot

interaction. Human-Robot Interaction, 2006.

Matteo Taiana, Jacinto Nascimento, and Alexandre Bernardino. An im-

proved labelling for the INRIA person data set for pedestrian detection.

IbPRIA, 2013.

Matteo Taiana, Dario Figueira, Athira Nambiar, Jacinto Nascimento, and

Alexandre Bernardino. Towards fully automated person re-identification.

VISAPP, 2014.

Matteo Taiana, Jacinto Nascimento, and Alexandre Bernardino. On the

purity of training and testing data for learning: The case of pedestrian

detection. Neurocomputing, 2015.

Siyu Tang, Mykhaylo Andriluka, and Bernt Schiele. Detection and tracking

of occluded people. IJCV, 2014.

Antonio Torralba and Alexei Efros. Unbiased look at dataset bias. CVPR,

2011.

Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew Zisserman.

Multiple kernels for object detection. ICCV, 2009.

Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. CVPR, 2001.

Paul Viola and Michael Jones. Robust real-time face detection. IJCV, 2004.

Michael Volkhardt, Friederike Schneemann, and Horst-Michael Gross. Fallen

person detection for mobile robots using 3d depth data. Systems, Man,

and Cybernetics, 2013.



138 BIBLIOGRAPHY

Stefan Walk, Nikodem Majer, Konrad Schindler, and Bernt Schiele. New

features and insights for pedestrian detection. CVPR, 2010.

Xiaoyu Wang, TX Han, and Schuicheng Yan. An HOG-LBP human detector

with partial occlusion handling. ICCV, 2009.

Christian Wojek, Stefan Walk, and Bernt Schiele. Multi-cue onboard pedes-

trian detection. CVPR, 2009.

Bo Wu and Ram Nevatia. Detection and Tracking of Multiple, Partially

Occluded Humans by Bayesian Combination of Edgelet based Part De-

tectors. IJCV, 2007.

Bo Wu and Ramakant Nevatia. Detection of multiple, partially occluded hu-

mans in a single image by bayesian combination of edgelet part detectors.

ICCV, 2005.

Cha Zhang and Paul Viola. Multiple-Instance Pruning For Learning Efficient

Cascade Detectors. NIPS, 2007.

Shaoting Zhang, Christian Bauckhage, and Armin Cremers. Informed haar-

like features improve pedestrian detection. 2014.

Rui Zhao, Wanli Ouyang, and Xiaogang Wang. Learning mid-level filters

for person re-identification. CVPR, 2014.

Tao Zhao and Ramakant Nevatia. Tracking multiple humans in complex

situations. PAMI, 2004.

Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Associating groups of

people. BMVC, 2009.

Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals

from edges. ECCV, 2014.


