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à contagiante liberdade com que o Prof. João Sentieiro lidera. Espero ter conseguido assimilar

uma fracção da sua inegável capacidade para formar equipas e motivá-las.
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metódica organização.
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Resumo

Nesta tese propõe-se uma nova metodologia para resolver o problema de correspondência

em sequências de imagens. Este é um problema chave em Visão por Computador e, até

à data, não existe nenhum método genérico para o resolver. A metodologia proposta

suporta a maioria dos critérios de correspondência, usando um único formalismo. As

tarefas de correspondência e eliminação de pontos espúrios são realizadas num único

passo, e a solução óptima — global — é encontrada em tempo útil.

As tarefas de selecção de caracteŕısticas e sua correspondência são formuladas como

um problema de optimização inteira. O custo é transformado numa função côncava e

o domı́nio do problema é relaxado para um conjunto convexo. Este novo problema é

equivalente ao primeiro e a sua estrutura especial permite que sejam aplicados algoritmos

eficientes que garantem a optimalidade da solução.

Esta formulação permite que sejam utilizados critérios globais, que utilizam todos

os pontos e a totalidade do conjunto de posśıveis correspondências entre eles, em vez

de considerarem pares de pontos isoladamente. Nesta tese alguns critérios globais são

apresentados sob a forma expĺıcita de polinómios que servem como função de custo na

nossa metodologia.

Um dos critérios em questão consiste na rigidez. A rigidez traduz o critério principal

utilizado na reconstrução 3D por triangulação, mas raramente é utilizada como critério

de emparelhamento; geralmente a correspondência e a reconstrução são encaradas como

tarefas distintas. Nesta tese a rigidez é utilizada em conjunto com modelo de câmara

ortográfico escalado, em sequências de imagens não calibradas. As correspondências são

calculadas por forma a optimizar o mesmo critério que é utilizado no cálculo de forma

e movimento pelo método de factorização.

Palavras-chave: Visão por Computador, Problema de Correspondência, Emparelha-

mento de Caracteŕısticas, Reconstrução Tridimensional, Minimização Côncava,

Optimização.
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Abstract

In this thesis we propose a new methodology to reliably solve the correspondence pro-

blem between points on image sequences. This is a key step in most problems of Com-

puter Vision and, so far, no general method exists to solve it. Our methodology is able to

handle most of the commonly used assumptions in a unique formulation, independent of

the domain of application and type of features. It performs correspondence and outlier

rejection in a single step, and achieves global optimality with feasible computation.

Feature selection and correspondence are formulated as an integer optimization pro-

blem. To find its global optimal solution we build a concave objective function and relax

the search domain into its convex-hull. The special structure of this extension assures its

equivalence to the original problem, and it can be optimally solved by efficient algorithms

that avoid combinatorial search.

This formulation has the advantage of allowing the use of global criteria, which

consider the whole set of features and the whole set of possible correspondences, instead

of one isolated pair of points at a time. We develop explicit polynomial cost functions

for a few global criteria, and use them in our methodology.

One such criterion is rigidity. Rigidity is the main assumption used in 3D reconstruc-

tion by triangulation, but it is not often used for correspondence. Shape extraction and

point correspondence are treated, usually, as two different computational processes. We

consider the rigidity criterion in fully uncalibrated scaled-orthographic image sequences.

Correspondences are set such that they optimize the same criterion used to compute

shape and motion by the factorization method.

Keywords: Computer Vision, Correspondence Problem, Feature Matching, Structure

from Motion, Concave Minimization, Optimization.
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Chapter 1

Introduction

Estimating point correspondences on image sequences is a long standing fundamental

problem in Computer Vision. Most methods for 3D reconstruction, object recognition

and camera self-calibration start by assuming that image feature-points were extracted

and put to correspondence.

There are three main difficulties involved in this problem. First, there are no general

constraints to help reduce ambiguity. Second, it exhibits high complexity due to the

huge dimensionality of its combinatorial search space. Finally the existence of outliers

must be considered, since features can be missing or added through a sequence of images,

due to occlusions and errors of the feature extraction procedure.

So far, no general method exists to cope with these three difficulties simultaneously.

In order to deal with ambiguity, correspondence methods impose domain-specific re-

strictive assumptions — matching criteria. To reduce problem complexity, most of

the existing algorithms establish a similarity measure between feature-pairs in different

frames, and assume that matches between different pairs of features are independent of

each other. On the other hand, some methods consider the whole set of features and

the whole set of possible correspondences, instead of a single pair of points at a time.

Though harder to use, these global criteria are much more restrictive, providing the

most reliable and ambiguity-free correspondence methods.

One such criterion is rigidity. Rigidity is the main assumption used in 3D reconstruc-

1



2 CHAPTER 1. INTRODUCTION

tion by triangulation, but it is not often used in correspondence. The assumptions and

models used to match image points are frequently unrelated to those used to estimate

their 3D coordinates. Shape extraction and point correspondence are treated, usually,

as two different computational processes. On one hand, shape estimation algorithms

usually require known correspondences, solving for the unknown shape and motion. On

the other hand, feature matching algorithms often disregard the 3D estimation process

and require the knowledge of camera parameters or use other assumptions. Further-

more, while matching algorithms tend to rely on local information, shape computation

algorithms rely on rigidity as a global scene attribute.

1.1 Thesis overview

In this thesis, we propose a new methodology to reliably solve point correspondence

problems. Our methodology is generic, in the sense that it is able to handle most of the

commonly used assumptions in a unique formulation. Feature selection and correspon-

dence are both formulated as a single integer optimization problem that considers the

whole space of possible point selections and correspondences. We find its global solution

avoiding combinatorial search without having to impose additional assumptions. We

do so by relaxing the discrete search domain into its convex-hull and finding an equi-

valent concave cost function. The result is a concave programming problem that can be

optimally solved by existent efficient algorithms.

We use this methodology with a few global matching criteria, devising different

correspondence methods. When using the rigidity criterion, correspondences are set in

such a way that they optimize the same criterion used to compute shape and motion. In

other words, we link shape computation to image feature matching, by choosing point

correspondences that maximize a single global criterion — rigidity. This method is

an instance of the original correspondence methodology, consequently it takes feature

selection and outlier rejection into account, in a compact and integrated way. Deviations

from rigidity under scaled-orthography are represented by a polynomial cost function,

for which a concave version can be easily computed.
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1.2 Previous Work

In this section we review the most important approaches to the correspondence problem.

Comprehensive surveys on the correspondence problem can be found in [109, 33, 106].

Computer vision problems dealing with image sequences are modeled either in conti-

nuous-time or in discrete-time. In the first case, structure and motion can be computed

directly from image intensities — direct approach [68, 92] — or from their space-time

derivatives [24, 71]. In the discrete-time case, image sets are taken with wide-baselines.

Apart from some exceptions [3], the first processing stage consists of computing disparity

fields, or extracting feature points and putting them in correspondence. Throughout this

review we will primarily refer to feature-based wide-baseline uncalibrated situations.

Overview of correspondence methods

Correspondence can be interpreted as an optimization problem. Each method translates

the assumptions into an objective function — criterion — and a set of constraints.

Constraints are conditions that must be strictly met. Examples are order [70, 83],

epipolar constraint [70, 83] — rigidity as a constraint — uniqueness [31], visibility [89]

and proximity. Tracking-like algorithms [52, 85, 96] impose strict proximity constraints,

so they should be considered as continuous-time methods.

The objective function reflects a condition that can be relaxed, but which value

should be optimized. The most commonly used objective function is image correla-

tion [101, 52] — image similarity assumption. Other usual choices are point proxim-

ity [52, 108] or smoothness of disparity fields [95, 70].

Finally, correspondence algorithms differ also on the computational framework used

to solve optimization problems. Dynamic programming [70, 10], graph search [83],

bipartite graph matching [25, 18], and convex minimization [52] guarantee optimali-

ty. Non-optimal approaches include greedy algorithms [107], simulated annealing [91],

relaxation [31], alternating optimization and constraint projection [12], randomized

search [95, 101] and voting strategies [20].

In most of the existent methods, domain specific algorithms are developed, select-
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ing combinations of appropriate assumptions. The most common combination include

epipolar, order, smoothness, proximity and uniqueness [52, 44, 40]. In [81], smoothness

of motion, proximity and uniqueness are used in an algorithm able to cope with occlu-

sions. The combination of uniqueness constraints with simple geometric or image-based

criteria often results on optimization problems for which highly efficient algorithms are

available. For example, in [84, 77, 86] correspondence is formulated as a Procrusterian

problem, that can be solved with an SVD decomposition. In [31, 80] a series of matching

problems are formulated using uniqueness as a major constraint, considering spurious

features. The resulting nonlinear problem is solved with the softassign algorithm [30].

Prior knowledge can also be used to simplify the solution to the correspondence

problem, or even turn it trivial. In [98, 99] the knowledge if calibration is used to trans-

form images into a phase-space domain. In [90] a similar representation is used, in which

reconstruction and interpolation of views become trivial tasks, even with occlusions.

Vision systems often have to deal with the existence of spurious features and oc-

clusions. Algorithms that explicitly handle these situations are more likely to behave

robustly. The work in [101] presents a pruning mechanism that performs outlier rejec-

tion in sets of previously matched features. Likewise, in [111] classical techniques are

used to compute an initial set of matches, which are then used to estimate the epipolar

geometry applying a least median squares technique while rejecting the outliers.

Rigidity constraint

One of the most useful criteria for correspondence is rigidity. In most situations, ob-

jects can be seen as rigid and static. Ultimately any object is rigid when observed

at a single time instant. Rigidity has been used before in the correspondence frame-

work [12, 95, 18, 83, 19, 11], though usually in calibrated scenes or in conjunction

with other assumptions. In [19], points are observed by a calibrated trinocular system,

and distances between projection rays are minimized. The problem is formulated as

a maximum-weight bipartite graph matching problem, and solved by an efficient algo-

rithm. In [61] rigidity is used as a constraint to remove optical flow ambiguities.
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In [11, 12] rigidity is used to solve the correspondence problem between several

projections of a curve in 3D space. The solution results from iterating between shape

computations and curve parameterization. In [95], preservation of the affine structure

is checked for different correspondences of sets of five points in three images.

The approach in [22] is an example where matching and 3D reconstruction are deeply

related. Correspondences, shape and motion are simultaneously optimized by an Expec-

tation Maximization algorithm. Spurious features are not explicitly taken into account.

The use of rigidity constraint and prior knowledge about camera geometry reduce

the complexity of matching. Examples are epipolar constraints [110] and multi-view

motion constraints [88]. Other approaches use a minimal set of correspondences which

help in computing the correspondences for the complete set of features [87]. In [60], a

Kalman filter tracks an initial set of points, using an affine structure model. The authors

claim that the procedure is robust to occluded and spurious points.

Most of the work using rigidity for correspondence deals with orthographic, scaled-

orthographic or paraperspective [2] models. In [8], a closed form solution to a metric

that penalizes affine deformations under weak-perspective is used in a image-to-model

alignment scheme. A series of algebraic relations expressing rigidity under paraperspec-

tive are devised in [7], though no practical matching algorithm is presented. In [51],

rigidity and proximity are used to match points under scaled-orthography.

Factorization method

In this thesis, the use of the rigidity criterion — Chapter 3 — is intimately related to

the factorization method for structure from motion. Next, we present a short overview

of the evolution of this method. A complete survey can be found in [43].

The factorization method was first introduced by Tomasi and Kanade [97]. Its

popularity is due to the soundness of its formulation, its robustness and computational

simplicity. An observation matrix is factored in an orthographic projection matrix and

a shape matrix, using SVD decomposition and solving a simple overconstrained linear

system. All the points and all the frames are used simultaneously.
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In [1], the observation matrix is modified to accommodate confidence weights for

feature trajectories. The computational cost is also reduced because shape and motion

are computed by factorization of a different matrix, which is rank-1 without noise.

Directional uncertainty is modeled in [41], where the covariance-weighted error of the

observation matrix approximation is minimized. Further statistical study of the method

is reported in [66]. In [45] different noise models are introduced, and optimal solutions

are devised for each one of them.

The method was also extended to handle feature types other than points [65, 79].

In [64] a recursive formulation of the method is developed. Shape is refined as the

observations are taken. A recursive formulation that is able to handle occlusions and

inclusion of new features is described in [14]. In [21], the factorization framework is used

to segment multiple objects moving independently. It uses rigidity as a single criterion,

so transparency is considered. The factorization method was also extended to different

projection models, namely paraperspective [78, 32] and perspective [94].

1.3 Original Contributions

In this thesis a new methodology to reliably solve point correspondence problems is

proposed. The methodology combines the following advantages:

• It is able to handle the usual assumptions in a unique formulation.

• It considers the whole space of possible point selections and correspondences, so
outliers are rejected in a compact and integrated way.

• The global optimal solution is found with feasible computation.

The validation of the methodology comprises the proof of integrality of special sets

of partial permutation matrices. Under the framework of the methodology, we propose

global optimal solutions to several correspondence problems, namely:

• Matching of uncalibrated scaled-orthographic image sequences: correspondences
are set such that they minimize the residual of the factorization method.
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• Optimal block matching: the sum of image-block correlations is globally maxi-
mized; a uniqueness constraint is imposed and spurious points are rejected.

• Matching of a calibrated trinocular perspective system: correspondences are set
such that all epipolar constraints are consistent.

• Registration of 2D and 3D point clouds: correspondences are set such that a linear
transformation between point sets exists; outliers are rejected.

Most of the contributions reported in this thesis were first published in [56, 57, 58, 59].

1.4 Structure of the Thesis

The thesis is organized as follows:

Chapter 2: correspondence is formulated as a concave programming problem. The

required mathematical constructs are first introduced. The methodology is then

outlined and, finally, important details are described.

Chapter 3: the rigidity criterion is expressed as an explicit polynomial function, that

can be used in the methodology presented in Chapter 2. The link with struc-

ture from motion estimation is made, by proving that the factorization method

is chained in the optimization problem that is solved. Finally, some practical

extensions are introduced in the method.

Chapter 4: the problem of concave function minimization under linear constraints is

discussed. A comprehensive bibliographic review is presented. Implementation of

three different algorithms is briefly described.

Chapter 5: the methodology is used with rigidity and other criteria. Experiments are

described and results discussed.

Chapter 6: the most important features and limitations of the methodology are stated.

Some extensions are presented as avenues for future work.
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1.5 Notation

⊗ Kronecker product

� Hadamard (or Schur) element-wise product

0[m×n] m× n matrix of zeros

1[m×n] m× n matrix of ones

αf Scale factor for the scaled-orthographic camera in frame f

αk Weights of a convex combination

ε Absolute bound on the entries of noise matrices

εi Concavization coefficients of Jε

Λ Matrix of the camera scale factors

λ4 4-th (smallest) singular value ofW

Π⊥ Projection operator onto the null space of CX1

Σ Matrix of singular values ofW

a Component of z orthogonal to the row-space of S0

A Matrix of the linear constraints

Ai, bi Submatrces of A and b

Af Block f of a block-diagonal matrix A

b Right-hand side of the constraints

B Row-wise matrix of variable compactation

Bi Matrices of the quadratic forms that make Jrig

B Unit hypercube in IRp1p2

C Centering matrix

C A compact convex constraining set

dss Short for doubly substochastic

DSs(p1, p2) Set of p1 × p2 doubly substochastic matrices

EX, EY Matrices of additive noise terms of X′, Y′

f, g Frame number indices

F Number of frames in the image sequence

H Hessian of function J

i, j, k Generic indices
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if , jf Orthonormal coordinate system for image f , in world coordinates

I Set of indices of a row selection of A

I1, I2 Partition of I

I[n] n-dimensional identity matrix

J Scalar cost function

Jε Concave equivalent to J

Jrig Polynomial rigidity cost function

Jseq Multi-frame rigidity cost function

J Matrix of the quadratic part of cost function J

L,N Generic matrices

m Number of constraints of a problem

m�
3 Last row of the motion matrix

M Motion matrix (columns are if , jf ). Also a generic matrix

M0 First 2 rows of the motion matrix

M̂P Estimate of M up to a linear transformation of the columns

n Dimensionality of a problem. Number of ones on a support matrix S

N Dimensionality of feature representations

Orig
N Set of the best N solutions to the problem under rigidity criterion

p Index for feature number

p1, p2, . . . Number of features on the successive images

pt Rank of correspondences (number of points put in correspondence)

pp Short for partial permutation

P A partial permutation or doubly substochastic matrix variable

P∗ The optimal (exact) solution of the correspondence problem

IP Multi-frame variable. Collection of Pf matrices

Pp(p1, p2) Set of p1 × p2 partial permutation matrices

Pc
p(p1, p2) Set of p1 × p2 column-wise partial permutation matrices

Ppt
p (p1, p2) Set of p1 × p2 partial permutation matrices of rank pt

q Vectorized version of variable P

qc Compact version of q
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Q Linear transformation of Ŝ and M̂, imposed by metric constraints.

Also a shape interaction matrix

R̃ Observation matrix on the rank-1 formulation

R̃P Observation matrix on the rank-1 formulation, as a function of P

sp 3D coordinates of the p-th point (p-th row of S)

ss Short for substochastic

S Shape matrix (3D coordinates). Also a support matrix

S0 First two columns of the shape matrix

ŜP Estimate of S up to a linear transformation of the columns

Sc
s (p1, p2) Set of p1 × p2 column-wise substochastic matrices

Spt
s (p1, p2) Set of p1 × p2 doubly substochastic matrices of rank pt

tf Camera translation in frame f

ufp , v
f
p Row/collumn coordinates of the p-th point on the f -th frame

u′f , v′f Vector of row/column coordinates of noise-affected points on frame f

U, V Matrix of left/right singular vectors ofW

vec() Vectorization operator

W Noise-free matrix of centered observations

W′ Noise-affected matrix of centered observations

WP, W′
P Observation matrices, as a function of P

W∗ Observation matrix, with the optimal (correct) correspondence

xij , yij j-th coordinate of the i-th feature of the first/second image

xfij j-th coordinate of the i-th feature of the f -th image

X, Y Collection of noise-free observations from the first/second image

X′, Y′ Collection of noise-affected observations from the first/second image

Xf Collection of noise-free observations from the f -th image

X′
f Collection of noise-affected observations from the f -th image

z Relative depths (last column of the shape matrix)



Chapter 2

Correspondence as an

optimization problem

In this chapter, we formulate correspondence as an optimization problem. This

formulation is generic, in the sense that it can handle most of the commonly

used assumptions in a unique formulation. Both problems of feature selection and

correspondence are formulated as a single optimization problem, so both tasks are

performed in an integrated way. Furthermore, its global solution can be found

avoiding combinatorial search without having to impose additional assumptions.

We do so by relaxing the discrete search domain into its convex-hull. The special

structure of the constraints and objective function assure that the relaxation is

exact, so the result is an equivalent problem that can be optimally solved by

efficient algorithms. As shown in Chapters 3 and 5, this formulation has the

advantage of allowing the use of global criteria, such as rigidity.

Section 2.1 introduces the problem formulation and its relaxation. The full

methodology is outlined in Section 2.2 and the implementation details are pre-

sented in the subsequent sections. For the sake of simplicity, we start with the

two-image case. Extension to sequences is discussed in Section 2.7.

11
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Figure 2.1: Two images from the Hotel sequence, with extracted corners.

2.1 Problem formulation

Consider the images of a static scene shown in Figure 2.11. Segment p1 feature-points

on the first image and p2 on the second — the white dots. Some of these are projections

of the same 3D points. Arrange their representations in two matrices X and Y as

X =




x1,1 · · · x1,N

...
...

xp1,1 · · · xp1,N


 , Y =




y1,1 · · · y1,N

...
...

yp2,1 · · · yp2,N


 (2.1)

The N -dimensional features can represent image coordinates of feature-points or any

image-related quantity like intensities of neighboring pixels. The type of information

conveyed by the features does not affect our formulation.

Using the previous definitions we formulate the correspondence problem as the inte-

ger minimization Problem 1 where J is a scalar objective function.

Problem 1 P∗ = arg min
P

J(X,Y,P)

s.t. P ∈ Pp(p1, p2)

P is constrained to Pp(p1, p2), the set of p1 × p2 partial permutation matrices (pp-

matrices). A pp-matrix is a permutation matrix with added columns and rows of zeros.

The optimal P∗ is a zero-one variable that selects and sorts some rows of Y, putting

them to correspondence with the rows of X. Each entry Pi,j when set to 1 indicates that

1Data was provided by the Modeling by Video group in the Robotics Institute at CMU
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Figure 2.2: A partial permutation matrix representing a particular selection and per-

mutation of rows of Y.

features Xi· (row i of X) and Yj· (row j of Y) are put to correspondence. Figure 2.2

shows an example.

To guarantee robustness in the presence of outliers, P must allow some features not

to be corresponded, so it cannot be a simple permutation. pp-matrices represent, at

most, one correspondence for each feature, and allow some features not to be matched.

If row Pi· is a row of zeros then feature Xi· is not matched. If column P·j is a column

of zeros then feature Yj· is not matched.

Both correspondence and outlier rejection are intrinsic to this formulation because

each element of Pp(p1, p2) permutes only a subset of all the features. The global optimal

solution to Problem 1 is the best among all possible point samples and permutations.

We generalize the usual definition of pp-matrices to non-square matrices, saying that

any p1 × p2 real matrix P is a pp-matrix iff it complies with the following conditions:

Pi,j ∈ {0, 1} , ∀i = 1 . . . p1 , ∀j = 1 . . . p2 (2.2)
∑p1

i=1Pi,j ≤ 1 , ∀j = 1 . . . p2 (2.3)
∑p2

j=1Pi,j ≤ 1 , ∀i = 1 . . . p1 (2.4)

To avoid the trivial solution P∗ = 0, we establish a fixed number of correspondences

pt ≤ min(p1, p2) by considering a slightly different set of matrices Ppt
p (p1, p2). We call

these rank-pt partial permutation matrices (rank-pt pp-matrices). Constraining the opti-

mization problem to Ppt
p leads to a process of picking up just the best pt correspondences.

Like in most robust methods [101], pt should be kept near the minimum number of fea-

tures required by the assumed model or lower than the estimated number of inliers.
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The case with pt = p2 ≥ p1 yields a very simple formulation, which is particularly useful

when very few reliable features are extracted from the first image, while the second

image is densely sampled. We refer to the resulting set of matrices by Pc
p(p1, p2), the

set of column-wise partial permutation matrices (column-wise pp-matrices). Definitions

and properties of Ppt
p and Pc

p can be found in Appendix A.1.

2.1.1 Reformulation with a compact convex domain

Problem 1 is a brute force integer minimization problem. In general, there is no efficient

way to optimally solve such type of problems. Nonetheless there is a related class of

optimization problems for which there are efficient, optimal algorithms. Such a class

can be defined as Problem 2.

Problem 2 P∗ = arg min
P

Jε(X,PY)

s.t. P ∈ DSs(p1, p2)

where Jε is a concave version of J , defined later — equation (2.17). DSs(p1, p2) is the

set of doubly substochastic matrices, defined by conditions (2.3), (2.4) and:

Pi,j ≥ 0 , ∀i = 1 . . . p1 , ∀j = 1 . . . p2 (2.5)

Problems 1 and 2 can be shown to be equivalent2 — Section 2.3. The latter belongs

to the class of concave programming (CP) problems, which is one of the best studied

classes of problems in global optimization — Chapter 4. This new formulation has the

advantage that several efficient and practical algorithms are available for its resolution.

These algorithms take advantage of the linearity of the constraints and the concavity

of the cost function. Their efficiency is also improved if the constraints are written in

canonical form and the cost function is an explicit polynomial.

The equivalence of these problems means that we can guarantee that the solution

of the relaxed problem is still a pp-matrix, with integer (0-1) entries. The same sort of

relaxation can be made to Ppt
p and Pc

p — see Appendix A.1.

2Two optimization problems are equivalent when they have the same global solution
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2.2 Outline of the methodology

Section 2.1 described how to formulate a generic correspondence problem as a concave

minimization problem. Matching criteria can be any, as long as features are represented

by equal-length vectors. If cost functions are class C2 — continuous second derivatives

— then a concave equivalent can always be found. Each choice of criterion produces a

particular correspondence method, for which the global optimal solution is guaranteed

to be found with feasible computation.

An outlier rejection mechanism is directly embedded in the formulation. Further-

more, prior knowledge can be included in the form of extra support constraints that

cannot be expressed as linear equations of the variables. We use these extra constraints

to reduce the dimensionality of the problem while keeping the special structure of the

linear constraints. The whole process is outlined as follows:

1. Extract points of interest and build X, Y — equation (2.1).

2. Use X, Y to build a cost function J(P).

3. Build the concave equivalent Jε(P) — Section 2.5.

4. Write DSs(p1, p2) in canonical form — Section 2.4.

5. Eventually add extra constraints — Section 2.6.

6. Solve Problem 3 using a CP algorithm — Chapter 4.

The remaining sections of this chapter present the details. Section 2.3 presents the

fundamental proof of the equivalence between Problems 1 and 2. Section 2.4 presents

the canonical form of the relaxed constraints. Section 2.5 describes how the concave

equivalent Jε(P) can be found. Sections 2.6 and 2.7 describe extensions where extra

constraints and sequences of images are included.
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Figure 2.3: Efficient solution to the combinatorial problem.

2.3 Equivalence of Problems 1 and 2

Theorem 1 states the fundamental reason for the equivalence of Problems 1 and 2. In

[37] its proof if given.

Theorem 1 A strictly concave function J : C → IR attains its global minimum over a

compact convex set C ⊂ IRn at an extreme point of C.

The constraining set of a minimization problem with concave objective function can be

replaced by its convex-hull, provided that all the points in the original set are extreme

points of the new compact set. This is what happens in DSs. In Appendix A.2 we

prove that, for given p1 and p2, DSs(p1, p2) is the convex-hull of Pp(p1, p2) and the set of

vertices of DSs(p1, p2) is exactly Pp(p1, p2). A crucial part of this demonstration consists

on showing that DSs is an integral polytope — all vertices have integer coordinates.

Finally, note that the cost function J(P) needs not to be concave by construction,

since we also present a way of building a concave equivalent Jε(P). Figure 2.3 sum-

marizes the whole process. It remains valid even in the presence of the rank-fixing

constraint, because the vertices of Spt
s (p1, p2) are exactly the elements of Ppt

p (p1, p2),

and the vertices of Sc
s (p1, p2) are the elements of Pc

p(p1, p2) — see Appendix A.2.

Relaxing the constraints of a combinatorial problem into its convex-hull is a well

known method of simplifying its solution [53, 69, 26]. This is particularly useful in

problems with constraining integral polytopes, because the relaxation is exact [38, 37, 9].
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This means that the optimal solution of the relaxed problem is still integer, so there is

no need to project the solution on the neglected 0-1 constraints — e.g. rounding.

Exact relaxation is usually treated as an academic exercise, because useful constrain-

ing polytopes are seldom integral. A classical exception is the set of doubly stochastic

matrices, which is an integral polytope [35, 36, 13]. It is the convex-hull of the set of

permutation matrices.

2.4 Constraints in canonical form

Most concave and linear programming algorithms assume that problems have their cons-

traints in canonical form. We will now express the canonical form of the constraints that

define DSs, in the canonical form, that is, we will re-state Problem 2 as

Problem 3 P∗ = arg min
P

Jε(X,PY)

s.t. Aq ≤ b , q ≥ 0
q = vec(P)

A[m×n] and b[m×1] define the intersection ofm left half-planes in IRn. The natural layout

of the variables is a matrix P, so we use q = vec(P), where vec() stacks the columns of

its argument into a column vector. Condition (2.3) can now be written as

P.1[p2×1] ≤ 1[p1×1] (2.6)

Applying the vec() operator [54] to both sides of this inequality we obtain

(
1�[1×p2]

⊗ I[p1]

)
q ≤ 1[p1×1] (2.7)

where ⊗ is the Kronecker product, and condition (2.3) becomes equivalent to

A1q ≤ b1 (2.8)

with

A1 = 1�[1×p2]
⊗ I[p1] , b1 = 1[p1×1] (2.9)
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We can write similar inequalities for condition (2.4) and conditions (A.1) and (A.2) of

Appendix A.1, which are used in the definitions of Spt
s and Sc

s . First define

A2 = −1�[1×p2]
⊗ I[p1] , b2 = −1[p1×1] (2.10)

A3 = I[p2] ⊗ 1�[1×p1] , b3 = 1[p2×1] (2.11)

A4 = 1�[1×p1p2]
, b4 = pt (2.12)

A5 = −1�[1×p1p2]
, b5 = −pt (2.13)

The following equations are the canonical constraints that define our sets of interest

P ∈ DSs(p1, p2) ⇔ qi ∈ IR+
0 , ∀i ∧


 A1

A3


q ≤


 b1

b3


 (2.14)

P ∈ Spt
s (p1, p2) ⇔ qi ∈ IR+

0 , ∀i ∧




A1

A3

A4

A5



q ≤




b1

b3

b4

b5




(2.15)

P ∈ Sc
s (p1, p2) ⇔ qi ∈ IR+

0 , ∀i ∧



A1

A2

A3


q ≤



b1

b2

b3


 (2.16)

2.5 Concave equivalent to a class C2 cost function

This section describes a way of finding a concave function Jε : DSs(p1, p2)→ IR having
the same values as J at every point of Pp(p1, p2). To be precise, we will only guarantee

concavity inside DSs(p1, p2), not over the entire IRp1p2 , but this is enough to verify the

conditions of Theorem 1.

Consider Problem 3, where J(q) is a class C2 scalar function. Each entry of its

Hessian is a continuous function Hij(q). The concave version of J(q) is

Jε(q) = J(q)−
p1p2∑
i=1

εiq
2
i +

p1p2∑
i=1

εiqi (2.17)

If P ∈ Pp, all entries Pij are either 0 or 1. In this situation, the extra terms in equa-

tion (2.17) cancel, so we conclude that Jε(q) = J(q) whenever q = vec(P) and P ∈ Pp.
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Figure 2.4: Finding Jε(q), concave in [0, 1] and such that Jε(q) = J(q),∀qi ∈ {0, 1}.

On the other hand Pp(p1, p2) is bounded by hypercube B = {q ∈ IRp1p2 : 0 ≤ qi ≤ 1, ∀i}.
All Hij(q) are continuous functions so they are bounded for q ∈ B — Weierstrass’ the-
orem. This means that we can always choose a set of finite values εi, defined by

εi ≥ 12


max

q


 p1p2∑

j=1,j �=i

|Hij(q)|

 + max

q
(Hii(q))


 (2.18)

which impose a negative strictly dominant diagonal to the Hessian of Jε, that is to say

∂2Jε(q)
∂q2

i

< −
p1p2∑

j=1,j �=i

∣∣∣∣∣
∂2Jε(q)
∂qi∂qj

∣∣∣∣∣ , ∀i (2.19)

A strictly diagonally dominant matrix having only negative elements on its diagonal is

strictly negative definite [35], so these values of εi will guarantee that Jε(q) is concave

for q ∈ B and, therefore, also for q ∈ DSs(p1, p2). The same is true for Ppt
p (p1, p2) and

Pc
p(p1, p2) sets. Figure 2.4 illustrates this process for a simple 1D example.
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Figure 2.5: An example of a support matrix representing the epipolar constraint

2.6 Inclusion of other constraints

In this section we describe how to complement Problem 3 with constraints that cannot

be expressed as linear equations on the variables. The use of a priori conservative

constraints — like epipolar or bounds on the disparity — reduces the dimensionality of

the problem and the number of ambiguous solutions.

First express the new constraints by an indicator matrix S — Figure 2.5. S is the

support of solution P∗. If entry (i, j) of S is set to 0, then entry (i, j) of variable P is

permanently set to 0. This means that point i on the first image cannot correspond to

point j on the second image. On the other hand, entry (i, j) of S is set to 1 if entry

(i, j) of P should remain as a variable.

We then squeeze our variable vector q, eliminating the entries fixed to 0. Thus we

obtain a new variable qc of dimension n =
∑

i,j Sij . This new variable is such that

q = Bqc (2.20)

where B is [p1p2 × n] row-wise pp-matrix — the transpose of a column-wise pp-matrix

— such that vec(S) = B.1�[n×1]. Finally, the new constraints are implicitly included in

Problem 4 through variable qc

Problem 4 qc∗ = arg min
qc

Jε(X,Y,Bqc)

s.t. ABqc ≤ b , qc ≥ 0

In Appendix A.3 we show that these constraints also define an integral polytope —

vertices remain integer — so that the 0-1 relaxation is still valid.
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2.7 Handling image sequences

For the sake of simplicity, the descriptions so far were valid for the two-image case only.

In this section we extend the methodology for sequences of images.

With F frames, feature-points are extracted and arranged in F matrices

Xf =




xf1,1 · · · xf1,N
...

...

xfpf ,1
· · · xfpf ,N


 , f = 1, . . . , F (2.21)

Correspondences are represented by a set of F − 1 pp-matrices collected in variable

IP = [P1 | · · · | PF−1] and Problem 1 is extended to

Problem 5 IP∗ = arg min
IP

J(X1, . . . ,XF , IP)

s.t. P1, . . . ,PF−1 ∈ Pp

The obvious consequence is an increase on the dimensionality and number of constraints.

Furthermore putting the cost function in explicit polynomial form may become even

harder. The relaxation to DSs constraints is straightforward. The new vectorized

variable is q = vec (IP) so the canonical constraint matrix A is block-diagonal

A =



A1 0

. . .

0 AF−1


 (2.22)

A block diagonal matrix with TU blocks is also TU — Appendix A.4 — so the relaxation

is still exact.
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Chapter 3

Maximizing rigidity

This chapter describes a method to solve the correspondence problem between

points of a fully uncalibrated scaled-orthographic image sequence. The formulation

presented in Chapter 2 is applied, using a single global criterion — rigidity. Among

all possible point selections and permutations, the method matches points that

maximize rigidity. In other words, correspondences are set such that shape and

motion computation is optimal. This way, we link shape computation to image

feature correspondence. Furthermore, we show that our criterion is optimal under

bounded noise conditions.

The rigidity criterion is inserted in the formulation introduced in Chapter 2,

so feature selection and outlier rejection are taken into account in a compact and

integrated way.

In Section 3.1 the problem which we propose to solve is precisely stated. Sec-

tion 3.2 formulates the problem and Section 3.3 outlines the full method. The

implementation details are presented in the subsequent sections. For the sake of

simplicity, we start with the two-image nondegenerate case. We then extend the

method to handle sequences of images — Section 3.6 — and explain how to deal

with possible degenerate cases — Section 3.7.

23
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Figure 3.1: Two modified images from the Hotel sequence, with extracted corners.

3.1 Problem statement

Consider the images of Figure 3.1. Segment p1 points on the first image and p2 > p1 on

the second. Arrange their row and column coordinates up and vp in matrices X and Y

X =




u1
1 v1

1

...
...

u1
p1

v1
p1


 , Y =




u2
1 v2

1

...
...

u2
p2

v2
p2


 (3.1)

Some of these features are projections of the same 3D points. We wish to recover their

3D coordinates assuming no prior knowledge except that the object is rigid and the

camera is scaled-orthographic. To do so we apply the factorization method [97] to the

observations inX andY. A selection mechanism must first arrange some of the observed

features in a matrix of measurementsW. Corresponding features must lie in the same

row ofW. Note that we make no local image assumptions, no calibration information

is known and no constraints on disparity are used.

Without noiseW is, at most, rank-3, even when scale changes. We propose to search

for the correspondences that best generate a rank-three W matrix. In the presence of

noise,W is always full-rank, so we must be able to answer the following questions:

1. Is it possible to generalize the rank criterion in the presence of noise?

2. Can we find the best solution to this problem within reasonable time?

In this chapter we give a positive answer to these questions, by formulating the corres-

pondence problem as an optimization problem with polynomial cost function.
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3.2 Optimal matching

Our goal is to determine a matrix P∗ ∈ Pc
p(p1, p2), such that X and P∗Y have the cor-

responding features in the same rows. Pc
p is the set of column-wise partial permutation

matrices (pp-matrices) — see Appendix A. Such a constraint guarantees robustness in

the presence of outliers by allowing some features no to be corresponded — Chapter 2.

Each pp-matrix P encodes one way of selecting and grouping the measurements in

the following matrix of centered observations

WP = W (P) = [CX | CPY][p1×4] (3.2)

The observations are normalized to zero mean (centroid) with

C[p1×p1] = I−
1
p1
1[p1×p1] (3.3)

where 1[p1×p1] is a square matrix of ones. The optimal correspondence P
∗ generates the

observation matrix

W∗ =W (P∗) (3.4)

which is the transpose of the usual measurement matrix of the factorization method [97].

This way of grouping the data is particularly useful becauseW∗ satisfies a simple rank

property, known in the literature as the Rank Theorem. Theorem 2 is a re-statement

of this result for the case of scaled-orthographic cameras under the framework of the

correspondence problem. Its proof is presented in Appendix B.

Theorem 2 A scaled-orthographic camera taking noise-free measurements from non-

degenerate — full 3D — objects, provides rank-3 observation matrices W∗ = W (P∗)

whenever P∗ is the correct partial permutation.

A single mismatched point generates a row of WP outside of the 3-dimensional

row-space of W∗. WP will be full-rank even in the absence of noise. This property

is exploited in the noise-free correspondence problem formulated as the following opti-

mization problem:
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Problem 6 P∗ = arg min
P

rank (WP)

s.t. P ∈ Pc
p(p1, p2)

The correct correspondence is a solution to Problem 6. However, Theorem 2 is an

implication only, so more than one solution may exist. For example, an object deforming

with a 3D linear transformation generates rank-3W∗ matrices. Permutation of points

on the same epipolar line do not change the rank ofW with two images. Appendix C

describes degenerate cases in detail. Sections 3.6 and 3.7 describe ways of handling these

cases. For now, assume that Problem 6 has a single nondegenerate solution.

3.2.1 Approximate rank

Consider now the case of noisy measurements. The observations in equation (3.1) are

now arranged as

X′ = X+EX (3.5)

Y′ = Y +EY (3.6)

where EX and EY are additive noise terms. The observation matrix becomes

W′
P =

[
CX′ | CPY′] (3.7)

Even when P is the correct correspondence, W′
P is full rank, because noise affects its

largest singular value. The factorization method [97] provides an efficient way of dealing

with noise, finding the best rigid interpretation of noisy observations. It finds a shape

matrix S and an orthographic projection matrix M that solve1.

min
M,S

∥∥W′
P − SM

∥∥2 (3.8)

To solve this problem, the factorization method finds the rank-3 matrix that best ap-

proximates W′
P. In the 2-image case, this is done by neglecting the smallest singular

value of the following partition of the SVD decomposition ofW′
P

W′
P = UΣV� (3.9)

= U1Σ1V�
1 +U2λ4V�

2 (3.10)
1In our notation, W is the transpose of the observation matrix in [97]
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with

U = [ U1︸︷︷︸
3

| U2︸︷︷︸
1

] } p1 (3.11)

Σ =


 Σ1 0

0 λ4


 } 3
} 1

(3.12)

︸︷︷︸
3

︸︷︷︸
1

V� =


 V

�
1

V�
2


 } 3
} 1

(3.13)

︸︷︷︸
4

In the 2-image case, the approximation error of this rank-3 fitting is measured by

λ4 (W′
P), the smallest singular value ofW′

P.

We use λ4 (W′
P) as a generalization of the rank criterion of Problem 6. In the

presence of noise, the correspondence problem is formulated as follows

Problem 7 P∗ = arg min
P

λ4
(
W′

P

)
s.t. P ∈ Pc

p(p1, p2)

Solving this problem corresponds to finding the correspondence that minimizes the ap-

proximation error of the solution given by the factorization method, that is

arg min
P

λ4
(
W′

P

)
= arg min

P

(
min
M,S

∥∥W′
P − SM

∥∥2
)

(3.14)

Equation (3.14) expresses the link between correspondence and reconstruction. The

inner minimization is implicit in λ4.

In Section 3.5 we show that, for bounded noise, the λ4 criterion is optimal, in the

sense that the solution of Problem 7 is equal to the solution of Problem 6 when no noise

is present. In practice, we use yet another related criterion — Section 3.4 — which

allows us to obtain an explicit polynomial cost function. It can also be interpreted as a

minimization of the approximation error of the factorization method.
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3.3 Outline of the method

In Section 3.2 we described how to use the rigidity criterion in the methodology of

Chapter 2. An outlier rejection mechanism is directly embedded in the formulation,

and prior knowledge can be easily included. Sections 3.4 and 3.5 present the details.

Section 3.6 explains how to extend the method to solve sequences of images. Section 3.7

explains how to deal with the degenerate cases described in Appendix C. The whole

process is outlined as follows:

1. Extract interest points and build X1. . .XF — equation (2.21).

2. Use X1. . .XF to build cost function Jrig(P) — equation (3.15).

3. Generate Orig
N of equation (3.41) — steps 3. to 6. of Section 2.2.

4. Solve Problem 9 searching in Orig
N — Section 3.7.

3.4 Explicit polynomial cost function

Chapter 4 accounts for the practical importance of having a cost function in explicit,

low-order polynomial form. In chapter 5 we will present polynomial cost functions for

a number of different criteria. In this section we devise an explicit polynomial cost

function representing the rigidity criterion.

We will now show that Problem 6 has an equivalent explicit biquadratic polynomial

cost function like

Jrig(P) =
(
q�B1q

) (
q�B2q

)
−
(
q�B3q

)2
(3.15)

where Bi are matrices independent of q = vec(P).

We start by considering yet another description of the rigidity criterion. If we assume

bounded noise, we can show that Problem 6 is equivalent to Problem 8

Problem 8 P∗ = arg min
P

det
(
W′�

PW
′
P

)

s.t. P ∈ Pc
p(p1, p2)
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In the absence of noise the result is direct. The full proof is in Section 3.5. The criterion

of Problem 8 can be transformed into equation (3.15). Start by using the fact that

for any two matrices M[l×m] and N[l×n], if L[l×(m+n)] = [M | N] and N is full-rank —
see [35, 36, 54] — then

det
(
L�L

)
= det

(
M�M

)
det

{
M�

[
I[m] −N

(
N�N

)−1
N�

]
M
}

(3.16)

With L =W′
P = [CX′ | CPY′] and since C is symmetrical and idempotent, then

det
(
W′�

PW
′
P

)
= det

(
X′�CX′)det (Y′�P�Π⊥PY′) (3.17)

with Π⊥ = C−CX′
(
X′�CX′

)−1
X′�C. Since the first determinant in equation (3.17)

is positive and independent of P, we can simplify the cost function, stating

argmin
P
det

(
W′�

PW
′
P

)
= argmin

P
det

(
Y′�P�Π⊥PY′) (3.18)

Now define Y′ = [u′2 | v′2], where u′2 and v′2 are respectively the row and column
coordinates of points on the second image. This leads to

det
(
W′�

PW
′
P

)
= det


 u

′�
2 P

�Π⊥Pu′2 u′�2 P�Π⊥Pv′2

v′�2 P�Π⊥Pu′2 v′�2 P�Π⊥Pv′2


 (3.19)

For any two matrices L[l×m] and M[m×n]

vec(LM) =
(
M� ⊗ I[m]

)
vec(L) (3.20)

The observations u′2 and v′2 are vectors so, using equation (3.20), we obtain

u′�2 P
�Π⊥Pv′2 = vec(Pu′2)

�Π⊥vec(Pv′2)

= q�
(
u′2 ⊗ I[p2]

)
Π⊥ (v′�2 ⊗ I[p2]

)
q (3.21)

There are similar expressions for the other combinations of u′ and v′, so

argmin
P
det

(
W′�

PW
′
P

)
= argmin

P

[(
q�B1q

) (
q�B2q

)
−
(
q�B3q

)2
]

(3.22)

with q = vec(P) and

B1 =
(
u′2 ⊗ I[p2]

)
Π⊥ (u′�2 ⊗ I[p2]

)
(3.23)

B2 =
(
v′2 ⊗ I[p2]

)
Π⊥ (v′�2 ⊗ I[p2]

)
(3.24)

B3 =
(
u′2 ⊗ I[p2]

)
Π⊥ (v′�2 ⊗ I[p2]

)
(3.25)
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3.4.1 Rank-1 factorization

The rank-1 factorization [1], uses a useful different observation matrix R̃. In this section

we show that, when P = P∗ is the correct correspondence, the term Π⊥PY′ of equa-

tion (3.17) is exactly the observation matrix R̃. Each given P corresponds to a different

observation matrix R̃P.

In rank-1 formulation, shape and motion — Section 3.2.1 — are decomposed as

S = [ S0 | z ] (3.26)

M =


 M0

m�
3


 (3.27)

S0 and M0 can be any, as long as they are consistent with the first observation. In

particular we use S0 = CX′, so z are the relative depths.

Using this notation, the optimization problem solved in equation (3.8) becomes

min
m3,a

∥∥∥R̃P − am�
3

∥∥∥2
(3.28)

where a is the component of z orthogonal to S0, and

R̃P =
[
I− S0

(
S�0 S0

)−1
S�0

]
W′

P (3.29)

= Π⊥PY′ (3.30)

Π⊥ is the orthogonal projector onto the null space of CX′. Without noise, R̃∗ =

R̃P∗ is rank-1. With noise, equation (3.28) is solved by the rank-1 matrix that best

approximates R̃P. The approximation error of this fitting is measured by the second

singular value of R̃P = Π⊥PY′, that is

arg min
P

λ2

(
Π⊥PY′) = arg min

P

(
min
m3,a

∥∥∥R̃P − am�
3

∥∥∥2
)

(3.31)

For bounded noise, this value varies monotonically with det
(
Y′�P�Π⊥PY′

)
. To prove

this we can use the reasoning of Section 3.5. In conclusion, minimizing equation (3.18)

corresponds to finding the correspondence that minimizes the approximation error of

the solution given by the rank-1 factorization method.
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3.5 Optimality of rigidity cost functions

Proposition 1 states that, when Problem 6 is not degenerate, then both λ4 (W′
P) and

det
(
W′�

PW
′
P

)
are, in some sense, optimal criteria.

Proposition 1 When Problem 6 has a single non-degenerate solution, it is possible to

find a scalar ε > 0 such that if
∣∣∣EX

(i,j)

∣∣∣ < ε and
∣∣∣EY

(i,j)

∣∣∣ < ε ∀ i, j then the solution of

Problems 7 and 8 is exactly P∗, the solution of Problem 6 without noise.

Proof: A unique P∗ is also solution to Problems 7 and 8 without noise, because

rank (W∗) = 3 ⇔ λ4 (W∗) = 0 ⇔ det
(
W∗�W∗) = 0 (3.32)

Non-degeneracy means that there is a nonzero difference between the best and

second best cost values of Problems 7 and 8. This is to say that

∃ δ1 > 0 : λ4(W∗) + δ1 < λ4(WP) , ∀ P �= P∗ (3.33)

∃ δ2 > 0 : det
(
W∗�W∗

)
+ δ2 < det

(
W�

PWP

)
, ∀ P �= P∗ (3.34)

λ4(W′
P) and det

(
W′�

PW
′
P

)
are continuous functions of the entries of W′

P so

they are also continuous functions of the entries of EX and EY . By definition

of continuity, ∃ ε > 0 such that if |EX
(i,j)| < ε and |EY

(i,j)| < ε ∀ i, j then equa-

tions (3.33) and (3.34) still hold forW′. This guarantees that, under these noise

constraints, P∗ is still the optimal solution to Problems 7 and 8.

This proof for Proposition 1 does not present a constructive way to compute ε, so

we did an empirical evaluation of the practical validity of the noise bound. Points were

segmented on the images of Figure 3.1. This is an inherently noisy process. A set of

randomly generated P matrices, with controlled number of wrong matches, were used to

compute λ4(W′
P) and det

(
W′�

PW
′
P

)
. Figure 3.2 shows their statistics. In both cases,

the global minimum is reached for the correct correspondence P∗, even with feature

location noise. This shows that the bound ε is a realistic one.

Finally note that the average values of the criteria increase monotonically with the

number of mismatches. This means that suboptimal solutions with objective values
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Figure 3.2: Minimum, maximum and average of λ4(W′
P) and det

(
W′�

PW
′
P

)
as func-

tions of the number of mismatches.

close to optimal will, on average, have a small number of mismatches. This is useful

to devise a stopping criterion for our algorithm — Chapter 4. Furthermore, note that

the plot for det
(
W′�

PW
′
P

)
is shown in logarithmic scale. The λ4 �→ det

(
W′�

PW
′
P

)
mapping has the useful effect of making the global minimum deeper.

3.6 Multi-frame formulation

In this section we extend the cost function of equation (3.15) to the multi-frame for-

mulation of Section 2.7. With F frames, the original Problem 6 is extended to variable

IP = [P1 | · · · | PF−1]. The new observation matrix is

W′
IP =

[
CX′

1 | CP1X′
2 | · · · | CPF−1X′

F

]
[p1×2F ] (3.35)

The observation matrix of the rank-1 formulation — Section 3.4.1 — is

R̃IP = Π⊥C
[
P1u′2 | P1v′2 | · · · | PF−1u′F | PF−1v′F

]
(3.36)

where u′f and v′f are respectively the row and column coordinates of the points on

frame f , and Π⊥ is the orthogonal projector onto the null space of CX1. Without

noise, and for the correct correspondence, rank (WIP∗) = 3 ⇔ rank
(
R̃IP∗

)
= 1. Any

selection of two columns of R̃IP∗ is a rank-1 matrix. We denote each possible pair of

columns of R̃IP by

R̃1
f,g(IP) = Π⊥C

[
Pf−1u′f | Pg−1u′g

]
(3.37)
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Figure 3.3: Minimum, maximum and average of Jseq(IP) as functions of the number of

mismatches.

R̃2
f,g(IP) = Π⊥C

[
Pf−1u′f | Pg−1v′g

]
(3.38)

R̃3
f,g(IP) = Π⊥C

[
Pf−1v′f | Pg−1v′g

]
(3.39)

For bounded noise, we can use the arguments of Section 3.5 to show that the criterion

rank
(
R̃IP∗

)
= 1 is equivalent to the cost function

Jseq(IP) =
∑

(i,f,g)∈I
det

(
R̃i�

f,g(IP)R̃
i
f,g(IP)

)
(3.40)

with I = {(i, f, g) : i = 1, . . . , 3 ; f, g = 2, . . . , F} \ {(1, f, f), (3, f, f) : f = 2, . . . , F}.
I excludes the cases R̃1

f,g, R̃
3
f,g with f = g, which are trivially rank-1. Each term

of Jseq(IP) is a biquadratic function like equation (3.15), so the multi-frame rigidity

maximization problem has a cost function like equation (3.15) where B1, B2 and B3 are

sums of
(

3F 2−5F+2
2

)
terms like those in equations (3.23), (3.24) and (3.25).

Finally, we can experimentally verify that the introduced noise bound is realistic —

like in Section 3.5. Points were segmented on three images from the Hotel sequence.

This is an inherently noisy process. A set of randomly generated IP matrices, with

controlled number of wrong matches, were used to compute Jseq(IP). Figure 3.3 shows

their statistics. The global minimum is reached for the correct correspondence IP∗, even

with feature location noise. This shows that the bound ε is a realistic one.
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3.7 Using metric constraints to resolve ambiguities

Appendix C describes situations where the solution to Problem 6 is degenerate — mul-

tiple global optima. With degeneracy, the demonstration of Section 3.5 is not valid

anymore. This means that, with noise, the solution to Problem 8 may not be P∗.

However, P∗ is among the best solutions to Problem 8. We use a procedure that

will be described in Section 4.5 to generate a set Orig
N of the best N solutions, given by

Orig
N =

{
Pk, k = 1 . . . N : Jrig(Pk) ≤ Jrig(P) , ∀P /∈ Orig

N

}
(3.41)

We then use a different criterion to choose P∗ among the elements of Orig
N .

When noise is bounded, N does not need to be larger than the number of degenerate

solutions to Problem 6. This is precisely stated in Proposition 2.

Proposition 2 If Problem 6 has M degenerate solutions, then it is possible to find a

scalar ε > 0 such that if
∣∣∣EX

(i,j)

∣∣∣ < ε and
∣∣∣EY

(i,j)

∣∣∣ < ε ∀ i, j then P∗ ∈ Orig
N , ∀ N ≥M .

Proof: Without noise, the solution set Orig
M of Problem 8 is the same as that of Prob-

lem 6, because

rank (W∗) = 3 ⇔ det
(
W∗�W∗) = 0 (3.42)

Furthermore, there is a nonzero difference between Jrig (P∗) and the cost value of

any non-optimal solution to Problem 8. This is to say that

∃ δ > 0 : det
(
W∗�W∗)+ δ < det

(
W�

PWP

)
, ∀ P /∈ Orig

M (3.43)

Since det
(
W′�

PW
′
P

)
is a continuous function of the entries ofW′

P then it is also

a continuous function of the entries of EX and EY . By definition of continuity,

∃ ε > 0 such that if |EX
(i,j)| < ε and |EY

(i,j)| < ε ∀ i, j then equation (3.43) still holds

forW′. This guarantees that, under these noise constraints, P∗ ∈ Orig
N , ∀ N ≥M .

Once more, the practical significance of bound ε is left for empirical evaluation. The

experiments in Chapter 5 show that bound ε is realistic. Furthermore N can be choosen

small enough to find P∗ by exhaustive search.
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The degenerate cases discussed in Appendix C.2 are solved by choosing, among the

elements of Orig
N , the one that best agrees with the metric constraints. For each P ∈ Orig

N

define

W′
P ≈ ŜPM̂P (3.44)

estimated using the factorization method. The motion matrix is partitioned in frames

M̂P =
[
M̂1

P | · · · | M̂F
P

]
(3.45)

The decomposition of equation (3.44) is not unique. Without noise, there is an invertible

3× 3 matrix QP that makes

M̂f�
P Q�

PQPM̂
f
P = Kf�

P Kf
P

=


 1 0

0 1


 , ∀f = 1 . . . F (3.46)

With noise, and for F ≥ 3, an overconstrained system of linear equations can be built
to solve for Q�

PQP in least squares sense. P∗ is the solution with smallest residual in

this system. In short, it is the solution to Problem 9

Problem 9 P∗ = arg min
P

F∑
f=1

∥∥∥I[2] −Kf�
P Kf

P

∥∥∥2

s.t. P ∈ Orig
N

Choose a small N and solve Problem 9 by exhaustive search. Finally, once P∗ and

Q∗�
P Q

∗
P are found, Q

∗
P is found by SVD

Q∗�
P Q

∗
P = UΣU� (3.47)

Q∗
P = Σ

1
2U� (3.48)

Shape and motion are computed by

S∗ = ŜP∗Q�
P∗ (3.49)

M∗ = QP∗M̂P∗ (3.50)
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Chapter 4

Concave programming for DSs

problems

Concave Programming (CP) problems1 fall in a broader class of the so called Global

Optimization problems. The latter are problems with nonconvex cost functions,

with or without constraints. Global optimization problems have, in general, several

local minima where function values may differ substantially. Usually, there is no

local criterion for deciding whether a local solution is global. For this reason,

standard (local) nonlinear programming algorithms cannot be applied. The single

exception is linear programming. Linear functions are simultaneously concave and

convex, so local methods are well suited for linear programming.

In this chapter we deal with the problem of minimizing linearly constrained

concave functions. Such problems arise from our formulation of correspondence

problems. We start with an overview of the most important methods and algo-

rithms for concave programming. We then describe implementations of three dif-

ferent concave programming algorithms, specialized to handle large-scale, sparse,

Totally Unimodular constraints. Finally we explain how the algorithms can be

used to generate a list of solutions with close to optimal cost values.

1Also called Concave Minimization problems

37
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4.1 Overview of CP methods

Most global optimization problems belong to the class of non-polynomial (NP) problems.

Nevertheless, there are a few special cases for which it is possible to apply efficient

algorithms. Among these, concave minimization is the best studied class of problems [74,

75, 72, 4, 38, 73, 76]. It is characterized by having concave cost function and linear

constraints. In its most general form, the CP problem is stated as

Problem 10 q∗ = arg min
q

J(q)

s.t. q ∈ C

where J : IRn → IR is concave and C is a full dimensional polytope of IRn.

During the last three decades, several efficient and practical algorithms have been

devised to solve the CP problem. Though NP in worst case [28], their time complexity

is some times heuristically bounded by polynomials [27, 37, 100]. Checking for local

optimality in a nonconvex problem is NP-hard, with the exception of concave problems,

for which local optimality can be verified in polynomial time [28].

Concave programming approaches are primarily classified as being either determin-

istic, stochastic or suboptimal (approximate). Deterministic algorithms are those that

guarantee the global optimal solution in finite time. Suboptimal algorithms are usually

more efficient, but do not guarantee optimality. Stochastic algorithms are suboptimal

but also return probabilistic measures of confidence for their answers.

4.1.1 Deterministic approaches to CP

Deterministic algorithms for concave minimization [34, 29] usually combine some of the

techniques described next.

Cutting-plane and cone-covering

Most of the classic approaches to solve CP were inspired in the work by Tuy [102]. This

cutting-plane method starts at a specific vertex of the constraints and defines a new

set of constraints — a cone — that contains the feasible region. Values of a bounding
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concave extension of the cost function are used to define cuts that successively reduce

the constraining cone, until it reduces to a point.

Subsequent cutting-plane methods [48, 62, 23] basically propose new cuts and new

ways of dealing with degeneracy. Among existing optimal methods, cutting-plane and

cone-covering provide the most efficient algorithms, but are hard to implement.

Extreme-point enumeration

Enumerative techniques [72, 16, 17, 67, 105] rely on the fact that the solution to a CP

program lies at a vertex of the constraining polytope. The basic idea is to start from a

vertex and rank the nearby vertices to choose where to move next. Global optimality is

tested exploiting cost function concavity. The extreme-point ranking approach provides

the simplest and most intuitive method of concave programming, but may degenerate

to a complete inspection of all vertices.

Branch-and-bound

Branch-and-bound [26, 69] is one of the most popular techniques for global optimization.

It is specially efficient to solve mixed-integer problems, where only a small fraction of the

variables is integer. Concave programming algorithms can also be solved by branch-and-

bound — ultimately, extreme-point enumeration algorithms perform branch-and-bound

— though they may also degenerate to a complete inspection of all vertices.

Interior-point methods

Recent work in [63] describes an exact algorithm combining gradient descent and poly-

tope cuts for minimizing a generic concave function with linear constraints. The paper

also presents an interior-point method to find a lower bound to a concave problem in

polynomial-time. Good lower bounds can be used to improve the performance of enu-

meration and branch-and-bound algorithms [16].

Finally, the work reported in [28, 104, 103] proposes a global optimization algorithm

for the solution to a large class of nonconvex problems. The algorithm solves the original
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problem iteratively through a series of primal and relaxed dual subproblems, which pro-

vide upper and lower bounds on the global solution. It combines some of the strategies

above, and takes advantage of the existence of linear variables.

4.1.2 Stochastic and approximate methods

Recently, special attention has been paid to suboptimal concave minimization algo-

rithms. There has been a large number of applications requiring the solution to large-

scale problems, namely in control theory [4] and computational chemistry [29]. Some

highly efficient suboptimal algorithms have been reported as being able to produce good

solutions [39, 93, 82]. The main research issues are low-complexity bound computation,

sparse large-scale representations and algorithm parallelization.

[42, 26] describe implementations of Frank and Wolfe, and Keller algorithms and

claim good performances on large-scale sparse problems. These methods find a unique

local minimum and do not cycle in concave problems. They are known to provide

good local solutions with small time complexity. They are good candidates for local

algorithm of bootstraping procedures. They can also be extended by adding cuts and

perturbations.

Karmakar [46] extended his well known interior-point method to solve nonlinear

problems. The algorithm finds good local optima and tests for global optimality. It solves

a succession of problems using gradient descent constrained to an ellipsoid inscribed in

the constraining polytope. Each time a local minimum is found, a new cut is added.

Finally, simulated annealing [15] is also experiencing growing popularity.

4.2 An extreme point ranking algorithm for CP

In this section we describe an extension of the exact method of [16] for concave minimiza-

tion. Its implementation is straightforward. Worst case complexity is non-polynomial

but, like the simplex algorithm, it typically visits only a fraction of the extreme points.

The algorithm chooses a starting vertex and ranks its neighbors according to the
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values of a linear underestimator. The best neighbor is used as starting point for the

next iteration. Consider the following nonlinear problem

q∗ = arg min
q

J(q)

s.t. q ∈ C (4.1)

where C is a compact nonempty convex subset of IRn and J is concave. Compute a lower

bounding linear function K(q) and define the lower bounding problem

q0 = arg min
q

K(q)

s.t. q ∈ C (4.2)

Jl = K (q0) is a lower bound on J∗, and Ju = J (q0) is an upper bound on J∗. Define

{qk} as the set of all extreme points of C such that K (qk) ≤ Ju. The solution to the

original problem belongs to this set, that is, q∗ ∈ {qk}. The following algorithm is based
on the previous observations and solves the concave problem of equation (4.1).

0. Find q0, Jl and Ju. q∗k is the current best.

1. Let k ← 0. Initialize q∗0 ← q0.

2. Let k ← k + 1. Let qk ← next best of K(q).

3. a) If K (qk) > Ju then STOP: q∗ = q∗k.

b) Otherwise Jl ← K (qk).

4. If J (qk) < Ju then Ju ← J (qk) and q∗k ← qk.

5. Goto 2.

As iterations run, the current best solution follows an ever improving sequence of

extreme points of C, and the bounds on J∗ become tighter and tighter. Since C is a
finite-dimensional polytope, it has a finite number of extreme points, so the solution is

achieved after a finite number of iterations.
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4.2.1 Lower bound for quadratic problems

This method is particularly useful for quadratic problems, because tight bounding func-

tions can be computed by linear programming. Consider the following quadratic problem

min
q

J(q) = c�q+ q�Jq

s.t. q ∈ C (4.3)

Denote the ith column of J by ji and define ui (for i = 1, . . . , n) as

ui = min
q

j�i q

s.t. q ∈ C (4.4)

Since C is compact and nonempty, then these n linear problems have finite solution. The
computed values are used to compute the following bounding problem

min
q

K(q) =
n∑

i=1

(ci + ui) qi

s.t. q ∈ C (4.5)

This is a lower bounding problem because

J(q) =
n∑

i=1

ciqi +
n∑

i=1

(
q�ji

)
qi (4.6)

4.2.2 Implementation details

Step 2. can be implemented using existing efficient methods of ranking the extreme

points of a linear program [105, 72, 67].

We implemented a simplex algorithm specialized for large-scale, sparse, Totally

Unimodular constraints. It deals with redundancy and degeneracy using some tests

from [47, 50, 112] and a non-rational base perturbation scheme of [49]. Phase I uses an

artificial variable free approach [5]. We used this algorithm to solve all linear problems.

The representations and fundamental operators of this algorithm are the basis for

our implementation of the extreme point ranking procedure proposed in [67]. This

procedure is used in our implementation of the concave minimization algorithm of [16].
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We use a threshold on the difference between bounds as stoping criterion. So, the

stopping criterion used in Section 4.2 is replaced by

3. a) If Ju − Jl ≤ t then STOP: q∗ = q∗k.

Cost grows fast with the number of mismatches — Section 3.4 — so this suboptimal

strategy returns solutions close to optimal (optimal most of the times) and reduces

dramatically the number of iterations.

4.3 A greedy algorithm for CP

We implemented a suboptimal greedy algorithm to solve quadratic CP problems. Con-

sider the quadratic problem of equation (4.3). The algorithm starts with a p1×p2 matrix

of zeros. It then successively develops partial solutions by activating — setting to 1 —

one variable at each iteration. At iteration k, generated matrices are stored in a set Lk.

This set contains rank-k partial permutations, built by activating some entries of the

elements of Lk−1. Setting variable qi to 1 represents a cost increase of

ci + J(i, i) + 2
∑
j∈J

J(i, j) (4.7)

where J is the index set of active variables of the partial solution under consideration.
It also represents a potential cost increase of

2
∑
j∈J

J(i, j) (4.8)

where J is the complement of index set J . At iteration k, the algorithm generates Nk

solutions that minimize a weighted sum real and potential costs. Nk follows a predefined

increasing succession, so that the algorithm explores only a fraction of the tree of all

possible partial solutions.

Rigidity cost functions of Chapter 3 have deep global minima. This means that

the cost value has large gradients in the neighborhood of its global optimum. In this

case, suboptimal solutions with cost value close to optimal cannot differ much from the

optimal solution. In other words, local algorithms such as this, should work well.
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4.4 A deterministic annealing algorithm for CP

In this section we describe an approximate method to solve concave problems with

partial permutation constraints. Using the notation of Problem 10 in Section 4.1 with

q = vec(P), the algorithm consists of the following steps:

0. Initialize with stationary point q∗ = q0 = arg maxq J(q)

1. For k = 1 to N , repeat bootstrap:

1.1 q∗ ← arg min (J(q∗k) , J(q∗)).

1.2 Reinitialize qk ← q0 + e and β ← β0.

1.3 While β < βf do β ← ββr and repeat softassign:

1.3.1 Unconstrained local step: qk ← qk − δ ∇J(qk).

1.3.2 Softassign annealing: q← exp(βq).

1.3.3 Greedy elimination:

a) Cancel p1 − pt rows of Pk with least salient entries.

b) Cancel p2 − pt cols of Pk with least salient entries.

1.3.4 Sinkhorn: repeat until qk converges to q∗k:

1.3.4.1 ∀ nonzero row i do Pk(i, j)← Pk(i,j)∑p2
j=1

Pk(i,j)
,∀j.

1.3.4.2 ∀ nonzero column j do Pk(i, j)← Pk(i,j)∑p1
i=1

Pk(i,j)
,∀i.

The algorithm consists of thee concatenated loops. The outmost loop performs bootstrap

with randomly perturbed initializations. It is responsible for keeping record of the best

solution found. The innermost loops are a slight modification of the softassign algorithm

of [30, 31, 80]. Softassign is a deterministic annealing algorithm that iterates between

local optimization of the relaxed problem — without any constraints — and a constraint
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imposing step. We added the elimination step 1.3.3, so that the solutions are partial-

permutations. The saliency measure used in this step was maxj
|Pk(i,j)|∑
l �=j

|Pk(i,l)| for rows,

and transposed for columns. The rational behind this elimination is that rows and

columns without a salient entry are far from subspace polytope borders of norm 1, so

they are projected on zero-norm subspace borders.

In our algorithm, deterministic annealing temperature β varies between β0 and βf

with increase ratio βr. δ is the step size of the unconstrained local optimization and e

is a random perturbation vector.

The innermost loop — Sinkhorn normalization — is proved to converge to a doubly

stochastic matrix. Furthermore, using large βf , the algorithm returns a 0-1 matrix, so

the solution is a pp-matrix.

4.5 Generating solutions with similar cost

The simplest way of globally generating all N best solutions of a concave problem is to

solve the problem N times, each time adding a cut that removes the latest best vertex.

In the framework of Section 4.2, this task is simplified if the generated vertex tree

is stored. Adding a cut consists on removing the corresponding node and updating

neighborhood relations through the tree. Once this is done, the best solution of the new

problem is found by inspection.

In the algorithm of Section 4.4 we avoid the unwanted solutions adding penalty terms

to the cost function during the unconstrained local minimization step.
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Chapter 5

Experiments

In this section we consider some of the most frequently used assumptions for

correspondence and cast them in our global correspondence framework. Each main

assumption results on a particular correspondence method, suitable for a given

application. For each considered assumption, we develop an explicit cost function

and describe the details of the resulting method. Finally, the implementation

difficulties are discussed.

In Section 5.1 we use the 2-frame rigidity criterion of Chapter 3. In Section 5.2,

correlation matching is cast into our optimization formulation. In Section 5.3, cor-

relation and rigidity maximization are combined in a multi-frame, fully automated

correspondence method. In Section 5.4 we devise a method that finds correspon-

dences consistent with all epipolar constraints of a calibrated trinocular system.

In Sections 5.5 and 5.6 we describe methods of performing registration of 2D and

3D point clouds.

The resulting methods are tested with real images. In some cases, points

are extracted and put to correspondence, and shape reconstruction is performed.

In other cases, correspondences are used for different tasks. In some examples,

robustness is compared with benchmark algorithms.

47
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Figure 5.1: Two images from the Hotel sequence, with manually segmented points.

5.1 Matching by maximizing 3D rigidity

We implemented a correspondence algorithm that minimizes Jrig of equation (3.15),

constrained to the set of column-wise partial-permutation matrices. The relaxed problem

is solved using the concave programming algorithm described in Section 4.2. Rigidity

was the only criterion used. This method is best suited to problems with wide-baseline

and little or none a priori knowledge about the scene, since no other criterion is used.

Results

Figure 5.1 shows two images of the Hotel sequence, having large disparity. No prior

knowledge about the scene or the cameras is used, except the fact that the orthographic

model is appropriate. No local image assumptions were used. Points were manually

selected in both images — 26 points on the first image and 52 on the second. The

wireframe is drawn for better perception. The method was applied as described before,

using rigidity as the only criterion, and assuming that all the points on the first image

had a match on the second. Figure 5.2 shows the reconstruction of the matched points.

Discussion

In this example there were no degenerate situations. The optimal solution is correct —

zero wrong matches. The noise bound ε is realistic — Section 3.5 — even though feature

points were selected manually, with no concern with accuracy.
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Figure 5.2: Views of a 3D wire-frame and a texture-mapped reconstruction of the Hotel.
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This 26 point example required the solution of a biquadratic problem of dimension

1352. The number of feasible solutions is around 1070. The optimal solution was found

at iteration 874312, yet the algorithm visited over 107 vertices until bounds were closer

than a predefined threshold — Section 4.2. The global minimum of det
(
W′�W′

)
is

deep, so this stopping is enough to almost guarantee the optimal solution.

The high dimensionality of the resulting problem represented the greatest difficulty.

However, this is an extreme situation. With some reasonable assumptions, dimension-

ality could be reduced drastically. Furthermore, as far as we know, no other method

globally optimizes the rigidity criterion.

5.2 Correlation matching

Matching by correlation of image patches is by far the most popular method for stereo

correspondence. It is well suited to solve situations with short baselines and small photo-

metric distortion. This criterion provides the simplest formulation of the correspondence

problem, so it can be efficiently used to match large numbers of features. However, other

assumptions must be used in order to solve emerging ambiguities and perform outlier

rejection. Our formulation solves both problems in a natural way.

To use this criterion, features consist of image patches with N pixels centered around

the previously segmented points of interest. Row i of X (and Y) is the row vectorization

of a patch around the ith feature-point of the first (and second) image. We normalize

the rows of X and Y to zero mean and unit norm, producing matrices X̂ and Ŷ. The

sum of the correlation coefficients of the rows of X and Y is given by the matrix inner

product of X̂ and Ŷ. The objective function of this method is

Jcorr(P) = −tr
(
PŶX̂�) (5.1)

Using algebraic properties of the trace operator [54] we get

Jcorr(q) = −vec
(
X̂Ŷ�)� q (5.2)

which is linear in q = vec(P). Problem 3 of Section 2.4 with this linear cost function was
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Figure 5.3: Two images — 480×512 pixels, 256 gray levels — from the Kitchen sequence,
with added noise. Wireframe is for better perception only.

Figure 5.4: Two images — 480×512 pixels, 256 gray levels — from the Kitchen sequence,
with spurious features. Wireframe is for better perception only.

solved using a simplex algorithm. Our implementation takes advantage of the sparse

TU structure of the constraints, and deals with degeneracy.

Results

We used the above described method to generate a list of candidate matches. These can-

didates were pruned for outliers using a random sampling algorithm described in [101],

which uses an extra rigidity assumption. This outlier rejection algorithm randomly

chooses small sets of feature pairs to estimate Fundamental matrices. It then computes

the median distances between points and corresponding epipolar lines, and chooses the

Fundamental matrix that minimizes this criterion.

We compared the results of this method with those resulting from the application
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Figure 5.5: Average number of incorrect matches found in 100 trials for increasing levels

of data corruption.

of the original procedure of [101], where the initial list of candidate pairs is built by a

greedy correlation algorithm.

We selected some image pairs with large disparity from the Kitchen sequence1. Ima-

ges were corrupted with zero-mean Gaussian noise, with increasing standard deviation

— Figure 5.3. We then applied a corner detector that locally tuned the position of a set

of 75 manually segmented feature points. A second data set was built adding spurious

points — Figure 5.4. We measured the number of incorrect matches returned by the two

algorithms in repeated experiments performed on data with increasing levels of noise.

The results are summarized on Figures 5.5, 5.6 and 5.7.

Each linear problem was solved in a fraction of a second by a simplex algorithm

running on a Pentium processor. In the case of 75 features plus 150 outliers, the car-

dinality of Pp(p1, p2) is roughly 10260. Exhaustive search would be impractical, while

the simplex algorithm visits less than 500 solutions. A total of 65100 experiments were

performed, taking several hours of processing.

1Data was provided by the Modeling by Videotaping group in the Robotics Institute, CMU.
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Figure 5.8: Wireframes and texture-mapped VRML reconstructions using 50% of out-

liers in data, and noise with 50% of images standard deviation.

Discussion

The original method of [101] consistently produced higher number of mismatches, spe-

cially when outliers are present. We observed that, when the greedy algorithm returns

more than 40% of outliers among the candidates, the validation procedure starts rejec-

ting many good matches. This tends to raise the percentage of wrong matches.

The simultaneous rejection and correspondence of features is a reliable strategy. The

reconstruction in Figure 5.8 was obtained in spite of 50% outliers in data, and noise with

50% of the signal standard deviation. With such an amount of image noise, the corner

detector returned features with location errors up to 8 pixels. These errors produced a

highly distorted reconstruction, but the correspondences were all correct.
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5.3 Fully automated reconstruction

We used the methods of Sections 5.1 and 5.2 to produce a fully automated reconstruction.

We selected 6 images — fully uncalibrated — in the whole Hotel sequence range —

Figure 2.1. This image sequence presents two challenges. First, any image pair is

related by large disparities, so proximity constraints cannot be used. Second, there are

repeated image-patterns, so correlation criterion is highly ambiguous.

We applied a corner detector to smoothed images, extracting 16 points from the

first image and 60 points from each one of the subsequent images. We then used the

multi-frame formulation of Section 3.6 to compute 16 correspondences across the whole

sequence. The nonlinear problem was solved using the algorithm of Section 4.4, which

was also used to generate Orig
N with N = 100 — equation (3.41).

We then chose the element of Orig
N most consistent with the metric constraints (Prob-

lem 9 of Section 3.7) recovering motion between each image pair — epipolar constraints.

Then, an edge detection algorithm was used to segment 5000 feature-points on each

image. The epipolar constraints were used to build support matrices, reducing the di-

mensionality of the problem. Correspondences between consecutive image pairs were

computed using the method of Section 5.2, setting pt = 3000. We then looked for fea-

tures put to correspondence across all 6 images, and built an observation matrix W

with 1000 observation. The row space ofW was computed by SVD, and the 100 points

most distant to its rank-3 subspace were removed. This was done to remove possible

outliers. Finally, the factorization method was applied to the remaining 900 points.

Results

The results of Figure 5.9 were generated without any human intervention or any prior

knowledge. We observed that an average of 1.8 wrong matches were computed in the

first stage, but the motion estimates were good enough. The full process took around

4 hours of processing. It is hard to find any wrong match among the final 900, because

there is no ground truth. Inspection of the images of Figure 5.9 does not reveal any

evident spurious point nor major global distortion on the reconstruction.
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Figure 5.9: Four views of a 3D cloud with 900 points, automatically generated from 6

uncalibrated views.
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Figure 5.10: Notation for a trinocular system.

5.4 Matching in a calibrated trinocular system

Consider a trinocular system in generic configuration — focal points are not colinear

— for which we know all Fundamental Matrices. Figure 5.10 shows the notation. Each

known Fundamental matrix Fk,l defines pl epipolar lines Lm
k,l ,m = 1, . . . , pl on image

k. A point on image k corresponding to the m-th point on image l must lie close to

Lm
k,l. We arrange the distances between every possible pair of point and the epipolar

line in matrices D1,2, D2,3 and D1,3. Dk,l(i, j) contains the distances between points

i = 1, . . . , pk of image k and the epipolar lines Lj
k,l.

We want to compute a set of correspondences that minimize the sum of distances

between each point and the corresponding epipolar line. The variable of this problem

is IP =
[
P�

1,2 | P2,3

]
. We close the loop by estimating the compound correspondence

P̂1,3 = P1,2P2,3. The objective function is

Jtri =
p1∑
i=1

p2∑
j=1

(
P1,2 �D1,2 +P2,3 �D2,3 + P̂1,3 �D1,3

)
+

+ λ
[
Jcorr(P1,2) + Jcorr(P2,3) + Jcorr(P̂1,3)

]
(5.3)

where � is the element-wise product. The addition of correlation terms Jcorr — Sec-

tion 5.2 — is used to remove ambiguities. The value of weight λ is chosen experimentally.

By algebraic manipulation, we obtain the objective function

Jtri (q) = q�Jtriq+ c�triq (5.4)
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Figure 5.11: Church images (384× 512 pixels) and extracted points.

with q = vec (IP). We reduce the dimensionality of the problem using the support

matrices Sk,l(i, j) = Dk,l(i, j) ≤ δ , ∀i, j.
An entry (i, j) of Sk,l is set to 1 if the i-th point on image k is close to Lj

k,l. These

constraints are included in the problem as described in Section 2.6. We recover each one

of the full variables through vec (Pk,l) = Bk,l pc
k,l.

Jtri is, in general, not concave, so a concave version Jε was computed using equa-

tions (2.17) and (2.18), before the minimization algorithm was applied.

Results

We applied the described method to the images of Figure 5.11. Points were extracted

by an edge detector with a bucketing procedure to increase feature sparsity. A total

of 500 points were extracted from the first image and 1500 from the remaining. The

second and third images contain, at least, 1000 outliers, so the problem was solved in

the presence of more than 65% of outliers in the data.

We then manually segmented 20 points from each image, and used them to compute

fundamental matrices between each pair of images. The width of the epipolar bands was

set to 15 pixels, because of large errors on the fundamental matrices and large distances

between consecutive points on an edge. Maximum disparity was set to 50 pixels.

The quadratic problem was solved using the greedy algorithm of Section 4.3. The

result was an observation matrix W with 500 observations. The row space of W was

computed by SVD, and the 50 points most distant to its rank-3 subspace were removed.
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Figure 5.12: Views of a 3D could with 450 points, generated from 3 calibrated views.

This was done to remove existing outliers. Finally, the factorization method was applied

to the remaining 450 points. The resulting reconstruction is shown in Figure 5.12.

Discussion

We visually detected around 10% gross mismatches in P1,2 and P1,3. The CP algo-

rithm used is suboptimal, so some of the matches were not consistent with all epipolar

constraints. By subspace projection we were able to remove most of these mismatches.

There is also a large amount of noise on the reconstructed points. When several

candidates exist on the intersection of two epipolar bands, they are disambiguated using

the correlation term of the cost function. Correlation is not a good criterion to match

edges, because of directional uncertainty. To correct this, either better estimation of the

epipolar geometry or a different disambiguating criterion should be used.
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5.5 2D point registration

In this section we develop a method to perform 2D registration of images using an affine

2D model. We propose to search for the correspondences that best fit to a 2D affine

transformation of the feature-point set on the first model image. We also describe an

application to lip-tracking. Figures 5.13 and 5.14 show an example.

As in Chapter 3, we represent row and column coordinates of feature points in

matricesX andY. Our goal is to find a pp-matrix P∗ such that CX and CP∗Y are best

related by a linear transformation. This is cast to the following cascaded optimization

problem, where L is a 2D linear transformation

Problem 11 P∗ = arg min
P

(
min
L
‖CX−CPYL‖2

)

s.t. P ∈ Pc
p(p1, p2)

Again, this is equivalent to choose P such that the observation matrix

WP = [CX | CPY] (5.5)

is rank-2. This case, however, is easier to solve since CX spans the whole subspace were

the observations must lie. We can a priori compute Π — the orthogonal projector on

the space of columns of CX — and use it in the objective function

J2D(P) = ‖ΠCPY‖2 (5.6)

The maximum of this second order polynomial solves the registration problem. Since

no model points are rejected, this is equivalent to minimizing the projection on the null

space of CX. In practice, we use the following approximation

J̃2D(P) = |ΠuCPu|+ |ΠuCPv|+ |ΠvCPu|+ |ΠvCPv| (5.7)

where Πu and Πv are basis vectors of the column space of CX, and u and v are the

two columns of CY. This is equivalent to solve a linear problem with objective function

J̃ i
2D(P) = ± (ΠuCPu)± (ΠuCPv)± (ΠvCPu)± (ΠvCPv) , i = 1, . . . , 16 (5.8)

for one of the 16 possible combinations of signs. We solve all 16 linear problems, set the

signs that make all terms positive and choose the solution with largest objective.
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Figure 5.13: Lip tracking template.

Figure 5.14: Extracted edges on 5 of the 20 test images. Matched edges are marked

with bigger dots.

Results

We applied the described method to a sequence of images of a talking person. A set

of 20 feature points was manually extracted on the first image — Figure 5.13. This

set of points is the shape model. On each subsequent image, 130 edge points were

automatically extracted around the mouth area, and used to build the objective function

of equation (5.8). Figure 5.14 shows extracted points on 5 of the 20 test images. Matched

points are marked with bigger dots. The last image was artificially rotated, to test

situations with large deformations and disparities. The linear problems were solved

using a simplex algorithm and the proper solution chosen. Finally, matched points were

used to estimate the linear deformation L of Problem 11. Figure 5.15 shows results

obtained from the application of these linear deformations to the model. Each frame

took around 8 seconds of processing time on a Pentium processor. This is dramatically

shorter time than what it takes for the higher-order problems of Section 5.1.
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Figure 5.15: Results of lip tracking on 5 of the 20 test images. These point sets are

affine transformations of the point set of Figure 5.13.

We compared the performance of this method with three well known, simple and

effective methods for matching 2D point patterns and curves. The first method is

Iterative Closest Point (ICP) [108]. This method finds closest points between the two

images satisfying a maximum tolerance Dmax for distance. It then removes outliers

through a statistical analysis of distances. Rigid motion is then computed solving a

system of equations in least squares sense. We computed a full affine transformation of

the centered data, instead. The computed transformation is then applied to all points.

The procedure is iterated until it converges.

The second benchmark method was proposed by Scott and Longuet-Higgins [84].

This method uses the principles of proximity and exclusion (one-to-one match). It

minimizes the sum of squared distances between matched points. It starts computing a

Gaussian-weighted distance matrix

Gi,j = e−
‖x1

i
−x2

j‖2

2σ2 (5.9)

where xfi is the coordinate vector of the i-th feature from frame f . An affinity matrix

is then computed by P = UV� where columns of U and V are the left and right

singular vectors of G. Large entries of P indicate strongly coupled features, so they are

considered good matches, as long as the uniqueness constraint is held.

The third and final method was proposed by Shapiro and Brady [86]. It is a modi-

fication of the previous method, intended to solve situations with large translation,

rotation and scaling. It starts measuring intra-frame point distances, and uses them to
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Figure 5.16: Performance of four different lip-tracking algorithms.

compute the symmetric matrix:

Hf
i,j = e−

∥∥x
f
i
−x

f
j

∥∥2

2σ2 (5.10)

Each frame is represented by matrix Uf with the singular vectors of Hf . The first

elements of each row of U are the coordinates of a point in the reference system of the

principal modes of the point set. Correlation between all possible pairs of rows of U

is computed, and the results are stored in an affinity matrix P, that is used like in the

method of Scott and Longuet-Higgins.

To compare the performance of all four algorithms, we computed the average distance

between computed matches and manually segmented ground truth points. The results

are shown in Figure 5.16.

Discussion

Figure 5.16 clearly shows that our method is more robust. In return, it requires slightly

heavier computation.

Among all the benchmark algorithms, ICP is the best suited for this application.

Both the first and second benchmark methods use proximity as the major criterion.

They clearly fail on the last image, because they get stuck on local minima. The large
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Figure 5.17: Original images of the subjects.

Figure 5.18: Bottom rows are modified according to the examples on top.

rotation is never captured. The last algorithm fails because of the large number of

spurious points, which affects the shape modes.

Application

This algorithm can be used to track all facial features through image sequences. These

tracks can be used to compute shape and texture representations of face images [55].

This representation allows us to generate sequences of images of a person in action,

using a single image of that person.

For example, starting from the images of Figure 5.17, we were able to synthesize all

the images on the bottom row of Figure 5.18. The subjects mimic the actions of an

exemplifying actor — top row — whose face features were tracked.
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5.6 3D point registration

In this section we describe a method of performing 3D point registration, similar to

the 2D registration of Section 5.5. Non-contact 3D reconstruction systems provide only

partial views of the objects that must be combined in complete descriptions.

We group the 3D point coordinates in matrices

X =




x1
1 y1

1 z1
1

...
...

...

x1
p1

y1
p1

z1
p1


 , Y =




x2
1 y2

1 z2
1

...
...

...

x2
p2

y2
p2

z2
p2


 (5.11)

The goal is to find a 3D rigid transformation that aligns a fraction of these points, and

reject non-overlapping points. We propose to search for a general linear transformation

that aligns subsets of the data, solving Problem 12 where L is a 3D linear transformation

Problem 12 P∗ = arg min
P

(
min
L
‖CX−CPYL‖2

)

s.t. P ∈ Pp(p1, p2)

With 3D data, the approximate linear cost function — equation (5.8) — transforms to

J̃ i
3D(P) = ± (ΠxCPx)± (ΠxCPy)± . . .± (ΠzCPz) , i = 1, . . . , 512 (5.12)

where Πx, Πy and Πz are basis vectors of the column space of CX, and x, y, z refer

to the second set. There are 512 possible combinations of signs. Again, we solve all the

512 linear problems, set the signs that make all terms positive and choose the solution

with largest objective.

In order to eliminate points on both sets, we use Ppt
p (p1, p2) constraints. Points with

large coordinate values are priviledged, so wrong solutions appear when pt is small. On

the other hand, when pt is close to p1, some spurious points are not eliminated.

To overcome this difficulty we set pt to 90% of p1 and used a ransac procedure to

find the most consistent points. We solved Problem 12 using several random samples of

the first data set. The resulting transformations were applied to all the data, and points

with close matches were voted. After a number of trials, points with highest scores were

used to compute a final rigid transformation.
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Figure 5.19: Three views of a mask, with projected structured-light.

Figure 5.20: Three point sets to be registered.

Results

We used a structured-light 3D reconstruction system on the object of Figure 5.19, build-

ing 3 clouds of 3D points — Figure 5.20. The set in the middle is reference X.

Each set contains around 1600 points, from which 300 were randomly selected. The

ransac procedure consisted of 30 trials, each randomly choosing p1 = 100 points from the

reference set. Support constraints for disparity bounds were added to reduce problem

dimensions down to 6000. Linear problems were solved in approximately 1.2 seconds.

On each one of the 30 trials, the best 500 points were voted. At the end, points with

more than 10 votes were used in a final problem. The resulting matches were used to

compute the desired rigid transformation.

Finally, an ICP-like algorithm was used to refine the registration. It measures dis-

tances between points in one set and linearly interpolated surface patches on the other.

It uses local least-squares to compute the rigid transformation that minimizes the sum

of the 30% smallest distances. Figure 5.21 shows the registration of the 3 data sets.
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Figure 5.21: Two views of the registered 3D data sets.

Discussion

When point sets are related by large transformations and contain many spurious points,

ICP and similar methods fail, except if a good initial guess is provided. The proposed

method is suitable to automatically provide such initial guesses, but requires heavy

computation.

The biggest practical difficulty in 3D registration is the fact that, usually, many

spurious points must be eliminated from all data sets. Furthermore, there is usually

no exact match between data sets. To solve such situations with precision, point sets

should first be interpolated, and cost functions should be computed using interpolated

values.

Finally, performing surface interpolation on registered point clouds becomes a new

problem, because topological information is lost.
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Chapter 6

Conclusion

In this thesis, we proposed a new methodology to solve correspondence problems. Our

methodology handles different feature representations and different assumptions using

a unique formulation, in the form of a concave minimization problem. Correspondence

and outlier rejection are both taken into account, in a compact and integrated way.

In order to reduce the dimensionality of the resulting concave problems, extra as-

sumptions can be introduced in the form of support constraints. In some experiments,

we used the epipolar constraint and bounds of disparity as extra constraints.

Several matching criteria were cast to polynomial cost functions that were conve-

niently made concave. Uniqueness constraint and feature rejection are represented as

sets of linear constraints. The concave cost functions together with linear constraints

form concave programming problems that were solved by three different algorithms that

avoid combinatorial search.

Global matching criteria provide the most reliable correspondence methods, because

the whole set of features and the whole set of possible correspondences are considered.

Our methodology is able to handle global criteria, as long as a class C2 cost function can

be found. We used correlation, epipolar coherence, affine shape models and uncalibrated

3D rigidity under orthography as matching criteria. When using the rigidity criterion,

correspondences were set such that they optimized the residual of the factorization

method for shape and motion computation.
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Experiments showed that the methods can handle outliers, even in situations where

other robust methods fail. We have also shown that the methodology avoids the inclusion

of unwanted assumptions by requiring their explicit statement.

Developed methods were tested in real images and compared with benchmark algo-

rithms. Combining rigidity and correlation matching, we were able to perform a fully

automated 3D reconstruction of the Hotel sequence, without any prior calibration and

without using proximity constraints. This allows us to find correspondences in situations

that would be practically impossible to solve using other methods.

6.1 Limitations

The most important limitation of the methodology is the dimensionality of the opti-

mization problems. This constrains the practical size of data sets, specially when the

objective function is a high-order polynomial. We implemented the simplest available

optimal algorithm, so we were only able to deal with large data sets using either linear

cost functions — correlation matching and point registration — or suboptimal concave

programming algorithms. The addition of a priori constraints, in the form of support

matrices, eases this problem — Section 2.6.

Another important limitation of the methodology is the nonexistence of a general

way to perform feature selection on all images. In a general case, features on the first and

second images can be rejected using PP�X and PY. If P is a fixed-rank pp-matrix, then

PP� is an identity matrix with some zeros on the diagonal, so points on the first image

are rejected wherever P has a row of zeros. Though effective, this rejection mechanism

produces cost functions of higher degree.

Finally, each application example has its own specific limitations. The correspon-

dence method for calibrated trinocular systems does not correctly solve ambiguities.

Correlation is not a good criterion to match straight edges because of directional un-

certainty. The 2D registration method is unable to handle nonlinear transformations,

which may occur in facial deformations. The 3D registration method searches for general

linear transformations, and hence ambiguous solutions are likely to occur.
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6.2 Future work

Future work will be conducted having in mind to overcome the limitations of the method-

ology and extend its application. Next, we present the most important issues.

Implementation of efficient CP algorithms for high-order problems.

We plan to implement faster algorithms by exploiting the special structure of the prob-

lems. For example, the biquadratic rigidity cost function is the difference of two convex

functions. We have been considering a special class of algorithms — DC programming

algorithms — that deals efficiently with this type of cost functions.

Development of approximated lower-order cost functions

Low order cost functions allow us to use larger data sets. In Sections 5.5 and 5.6 we

described low-order approximate cost functions for 2D and 3D point registration. In the

near future we will search for lower-order approximations to the rigidity cost function.

Inclusion of new constraints

The methodology would benefit from the inclusion of new constraints, since ambiguous

cases would be reduced. For example, visibility is a generic and highly constraining

geometric relation. In [89], visibility is expressed as a set linear constraints, but the

integral property of the constraining polytope is destroyed.

Application to other problems

We are considering the application of the methodology to model matching problems.

Model matching is the comparison of a previously obtained 3D model with a partial 2D

view of the object. This problem is solved with the rigidity constraint once an efficient

mechanism to reject points from all images is devised. The model can also be recursively

updated and refined, as long as new images are observed and matched.

The methodology is also applicable to problems other than matching — Section 6.3.
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6.3 Close range topics

In this final section we briefly describe possible ways of tackling some of the problems

listed in Section 6.2.

Successive approximation CP algorithm

We have been developing an algorithm that reduces the CP problem to a system of

nonlinear equations. The algorithm searches for a level set of the cost function that

intersects the constraining polytope at a single point. It iteratively approximates a pair

of bounds kil and kiu by bisection, until they converge.

Consider the notation of the generic concave Problem 10 — Chapter 4. The algo-

rithm consists of the following steps:

1. Let i← 0. Initialize k0
l < J (q∗) and k0

u > J (q∗).

2. Let i← i+ 1. Compute ki = 1
2

(
ki−1
l + ki−1

u

)

3. Define a level set Li ≡ {
q : J(q) = ki

}
.

4. a) If Li ∩ C = ∅ then kil ← ki.

b) Otherwise kiu ← ki.

5. a) If kiu − ki < t the bounds collapsed, goto 6.

b) Otherwise goto 2.

6. Define i∗ ← i and L∗ = Li∗ . Solve L∗ = C.

If J(q) is polynomial, step 4. can be solved using the technique of [6] that checks

feasibility of systems of polynomial equations. Bounds get closer at each iteration and,

for small enough t, L∗∩C contain a single — possibly degenerate — extreme point of C.
That extreme point is the solution to the concave problem q∗. It is found solving the

system of equations of 6. Note that all but one equations of the system are linear.
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Application to 3D point triangulation

Triangulation of 3D point clouds is another challenging problem in Computer Vision.

Triangulation can be used directly for rendering, and it provides valuable topological

information for posterior curve and surface interpolation.

Next, we describe a tentative formulation of this problem, using our methodology.

First build a list with all possible m = n2+n
2 pairs of points — edges. A triangle is

represented by a set of 3 different edges. Register the area of all valid triangles in an

m×m×m 3-way array D. The full triangulation is represented by an indicator 3-way

array P that selects entries of D. A proper triangulation must meet these conditions:

1. Only sets of edges with 3 common points represent valid triangles.

2. Only a tetrahedron of P if valid — uniqueness of triangle representation.

3. Edges cannot belong to more than 2 triangles — avoid surface intersections.

4. Edges must belong at least to 1 triangle — avoid isolated edges.

Conditions 1. and 2. are represented by a support 3-way array S. Conditions 3. and 4.

are represented by a set of linear inequalities on the entries of P. Using this notation,

triangulation can be cast to a problem with Totally Unimodular constraints and the

following linear cost function, that measures total surface area:

Jtri(P) =
∑∑

P�D (6.1)

This cost function introduces a regularization effect. The rank of P — number of ones

— is constrained to pt. Again, prior knowledge is used to build support constraints that

reduce problem dimensionality.

The weakness of this formulation lies in its high sensitivity to the value of pt. If

pt is too low, the result is a set of unconnected small triangles. If pt is too high, the

problem will be infeasible. If the highest feasible pt is chosen, outlier rejection will not

be effective. In conclusion, this formulation lacks an extra constraint or regularization

term to assure triangle connectivity with low values of pt.
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Application to multi-body segmentation

We also plan to formulate the multi-body segmentation problem [21] using our method-

ology. Suppose that an orthographic camera observes an unknown number of indepen-

dently moving objects. Assume that we were able to track feature points belonging to

these objects but we do not yet know how to group the features into objects. Among

all possible row permutations of the observation matrix (WP = PW) we wish to find

which permutation has features from the same object in contiguous rows. Such a sorted

matrixW∗ =WP∗ is said to be in canonical form.

The method in [21] solves this problem using the rigidity constraint. It uses an

invariant square matrix Q = UU� where U are the left singular vectors of the observa-

tion matrixW. Q is called the shape interaction matrix. Without noise, entry Q(i, j)

is zero whenever features i and j belong to different objects. Each row permutation of

W corresponds to a row and column permutation QP = PQP� of the shape interac-

tion matrix. A correctly sorted shape interaction matrix Q∗ = QP∗ has block diagonal

structure, therefore the problem of segmenting multiple objects boils down to permuting

rows and columns of Q until it becomes block diagonal.

With noise, a pair of features i and j from different objects may exhibit a small

nonzero value of Q(i, j), so in [21] the energy of off-diagonal blocks is minimized. The

challenge consists on expressing this energy criterion as an explicit polynomial func-

tion Jmb on the entries of the observation matrix. Once this is done, the multi-body

segmentation problem is written as

P∗ = arg min
P

Jmb(PW)

s.t. P ∈ Pc
p (6.2)

P∗ not only sorts the rows of W in the correct way, but is also eliminates spurious

features.
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Appendix A

Partial-permutation and related

matrices

A.1 Definitions

As stated in Section 2.1, we generalize the usual definition of pp-matrices to non-square

matrices, defining them using conditions (2.2), (2.3) and (2.4).

A [p1 × p2] pp-matrix P is rank-pt iff it also complies with condition (A.1)

p1∑
i=1

p2∑
j=1

Pi,j = pt (A.1)

The set of rank-pt pp-matrices of dimension p1 × p2 is denoted by Ppt
p (p1, p2). The case

pt = p2 ≥ p1 is simpler because conditions (2.4) and (A.1) can be changed to a single

condition (A.2):
p2∑
j=1

Pi,j = 1 , ∀i = 1 . . . p1 (A.2)

The resulting set of matrices Pc
p(p1, p2) is denoted the set of column-wise partial permu-

tation matrices. Finally, rank can be bounded if condition (A.1) is changed to

p1∑
i=1

p2∑
j=1

Pi,j ≤ pt (A.3)
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A.1.1 Relaxations

As stated in Section 2.1.1, we define DSs — the set of doubly substochastic matrices —

by conditions (2.3), (2.4) and (2.5). Section A.2 shows that, for given p1 and p2, DSs is

the convex-hull of Pp, and that every element of Pp is a vertex of DSs.

The convex-hull of Ppt
p is Spt

s — rank pt doubly substochastic matrices. It is defined

by conditions (2.3), (2.4), (2.5) and (A.1). As shown in Section A.2, for given p1, p2 and

pt, the vertices of Spt
s belong to Ppt

p and every element of Ppt
p is a vertex of Spt

s .

Finally, Sc
s stands for the set of column-wise substochastic matrices. It is the convex-

hull of Pc
p, and is defined by conditions (2.3), (2.5) and (A.2). In Section A.2 it is shown

that Sc
s is the convex-hull of Pc

p, and that every element of Pc
p is a vertex of Sc

s .

A.2 Integral property of DSs and related sets

In this section we prove the following Propositions

Proposition 3 For given p1, p2, the elements of Pp(p1, p2) are the vertices of DSs(p1, p2).

Proposition 4 For given p1, p2, the elements of Ppt
p (p1, p2) are the vertices of Spt

s (p1, p2).

Proposition 5 For given p1, p2, the elements of Pc
p(p1, p2) are the vertices of Sc

s (p1, p2).

These results are generalizations of Birkhoff’s theorem — see [35, 13, 69] — which states

that the set of n× n doubly stochastic matrices is a compact convex set whose extreme

points are permutation matrices. Our proofs are inspired in the approach of [69].

All three results comprise a necessity and a sufficiency condition. We need to prove

that being an element of Pp(p1, p2) is both a sufficient and a necessary condition for a

p1 × p2 matrix to be an extreme point of DSs(p1, p2). In Section A.2.1 we prove that

every element of Pp is an extreme point of DSs — sufficiency — showing how to write

any dss-matrix as a convex combination of pp-matrices. This also proves that DSs is a

bounded convex polytope. By the same token we can prove sufficiency for Ppt
p and Pc

p,

so we omit this step. Necessity is proved in Section A.2.2, showing that vertices of DSs,
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Spt
s and Sc

s have integer coordinates. Since they are constrained to the interval [0, 1],

then they can only be either 0 or 1, so condition (2.2) is satisfied by the vertices.

A.2.1 Sufficiency

Consider that P is a [p1 × p2] pp-matrix. If we suppose that P is not an extreme point

of DSs(p1, p2), then it will be possible to find two matrices P1,P2 ∈ DSs(p1, p2) such

that P1 �= P2 �= P and two positive scalars α1, α2 with α1 + α2 = 1 such that

α1P1 + α2P2 = P (A.4)

Non-negativity conditions assure that the entries of P1 and P2 that correspond to zeros

of P are zero. Since P has, at most, one nonzero entry per row and per column, then

the same happens to P1 and P2. Their row and column sums are lower or equal than

1 — they belong to DSs — so every nonzero entries must be equal or smaller than 1.

The only solution left is P1 = P2 = P which contradicts the initial assumption. In

conclusion, all elements of Pp(p1, p2) are extreme points of DSs(p1, p2).

A.2.2 Necessity

We now show that the constraint matrices of equations (2.14), (2.15) and (2.16), that

define DSs, Spt
s and Sc

s , satisfy the conditions of Theorem 3 — proved in [69].

Theorem 3 If A is an m × n Totally Unimodular (TU) matrix, then the polytope

C = {q ∈ INn : Aq ≤ b} is integral for all b ∈ ZZm for which C is not empty.

A matrix A is TU if the determinant of every square submatrix of A is 0, 1 or −1. To
show that a given A matrix is TU we use the following result, also proved in [69].

Theorem 4 A is an m×n TU matrix iff for each of its row selections using row index

set I ⊆ {1, . . . ,m}, there exists a partition I1, I2 of I such that
∣∣∣∣∣∣
∑
i∈I1

aij −
∑
i∈I2

aij

∣∣∣∣∣∣ ≤ 1 , ∀j = 1, . . . , n (A.5)
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A follows
Equation A.5

Theorem 4 A is TU Theorem 3

b is integer

Vertices of
are integer
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P

s

p

are
the elements of

Figure A.1: Outline of the proof for necessity in Proposition 3

We know in advance that DSs, Spt
s and Sc

s are not empty. Also, the definitions of these

polytopes use integer b vectors — equations (2.9), (2.10), (2.11), (2.12) and (2.13).

Therefore, showing that their A matrices satisfy equation (A.5) ensures that the condi-

tions of Theorem 3 are met and, therefore, that DSs(p1, p2), Spt
s (p1, p2) and Sc

s (p1, p2)

are integral polytopes. Figure A.1 shows an outline of the entire demonstration.

Integral property of DSs

The matrix A of equation (2.14) satisfies the conditions of equation (A.5) if, for every

row selection I, we choose a partition so that I1 selects only rows from block A1 and I2

selects only rows from block A3. Each block contains at most one nonzero element per

column, so condition (A.5) always holds. Since A is TU, b is integer and DSs(p1, p2) is

not empty then we conclude that all the vertices of DSs(p1, p2) are integer.

Integral property of Spt
s

The matrix A of equation (2.15) satisfies the conditions of equation (A.5) if, for each

row selection I, we choose a partition in the following way:
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If I does not include neither A4 nor A5: Build the partition as in Section A.2.2, that

is, I1 should include only rows from block A1 and I2 should include only rows

from block A3. Each block contains at most one nonzero element per column, so

condition (A.5) always holds.

If I includes both A4 and A5 simultaneously: Put all rows from A1 in I1 and the re-

maining in I2 — from A3, A4 and A5. Every column contains entries 1 and −1
which will cancel out, so column sums will still be constrained to {−1, 0, 1}.

If I includes A4 but not A5: Put all elements from A1 and A3 in I1. I2 will indicate

a single row A4. The I1 part of each column will sum either 0, 1 or 2, and every

column will be subtracted by an entry 1 from I2. In short, column sums will be

constrained to {−1, 0, 1} as desired.

If I includes A5 but not A4: Put all rows in I1 and leave I2 empty. Column sums will

be, once more, constrained to {−1, 0, 1}.

Integral property for bounded rank

The 0-1 relaxation is still valid if pp-matrices have bounded rank — condition (A.1)

changed by condition (A.3), so A5 does not appear in the constraints. The demonstra-

tion is similar to that of Section A.2.2, but cases with A5 can be discarded.

Integral property of Sc
s

The matrix A of equation (2.16) is in the conditions of equation (A.5). For each row

selection I, choose a partition in the following way:

If I does not include A2: Choose a partition just like for DSs.

If I includes both A1 and A2: Choose a partition like for DSs, and put all the rows of

A2 in the same partition as those of A1.

If I includes A2 but not A1: Choose a partition like for DSs, and put all the rows of

A2 in the same partition as those of A3.
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A.3 DSs with support constraints remains integral

In this section we show that the constraints of Problem 4 in Section 2.6 still define an

integral polytope. This is enough to show that the solution of Problem 4 is an element of

Pp — or Ppt
p or Pc

p. In Section A.2.2 we show that it is only required that the constraint

matrix AB remains Totally Unimodular (TU). Note that B is a submatrix — a column

selection — of a [p1p2 × p1p2] identity matrix so AB is a submatrix of A. Since A is

TU — Section A.2.2 — and since, by definition, any submatrix of a TU matrix is also

TU then AB is necessarily TU, so Problem 4 has an integer solution.

A.4 Block-diagonal TU matrices

In this section we prove that if a block-diagonal matrix A has TU blocks then A is also

TU. This result is used in Section 2.7.

Consider that A has F blocks (Af with f = 1, . . . , F ). Each block Af has dimension

mf × nf , so the total dimension of A is m × n with m =
∑F

f=1 mf and n =
∑F

f=1 nf .

Recall Theorem 4 that states a necessary and sufficient condition for a matrix to be TU.

Each row selection of A, using row index set I ⊆ {1, . . . ,m}, corresponds to a certain
row selection If of each block Af , for which it is possible to build partitions If1 , I

f
2 that

will ensure that equation (A.5) holds. We known this because Theorem 4 is a necessary

condition for TU so, since each block Af is TU by definition, then they must satisfy the

conditions of the theorem. We can, therefore, build the partition

I1 =
F⋃

f=1

If1 , I2 =
F⋃

f=1

If2 (A.6)

The nonzero entries of each column of A belong to a single block — A is block-diagonal

— so equation (A.5) holds for all columns of A. We can apply the sufficiency of Theo-

rem 4 and conclude that A is TU.
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Rank Theorem in

scaled-orthography

Theorem 2 is a generalization of the Rank Theorem of [97], and our proof follows their

approach. Consider the image coordinates of extracted feature-points, grouped together

in a matrix of centered observations

W[p1×2F ] = [CX | CPY] (B.1)

where P is a Pc
p(p1, p2) matrix, C is the centering matrix of equation (3.3), and the

measurements are not corrupted by noise. Refer to Figure B.1, where the origin o of

the world coordinate system is at the centroid of the object points sp = (xp, yp, zp). In

scaled-orthographic model, the projection of a centroid is the centroid of the projections.

We consider sp and tf as row vectors, in order to simplify the notation. The projection(
ufp , v

f
p

)
of each point sp onto frame f is given by

ufp = αf
(
sp − tf

)
if (B.2)

vfp = αf
(
sp − tf

)
jf (B.3)

Under scaled-orthography, points are projected along kf = if × jf and scaled with
factors αf . When P = P∗ is correct then PY has the features placed in the same order
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Figure B.1: The camera, the object and their coordinate systems.

as those of X, so the centered observation matrices yield

ũfp = ufp −
1
p1

p1∑
p=1

ufp

= αf
(
sp − tf

)
if − 1

p1

p1∑
p=1

αf
(
sp − tf

)
if

= αf


sp − 1

p1

p1∑
p=1

sp


 if (B.4)

The origin of the world coordinate system is at the centroid of the object, therefore∑p1
p=1 sp = 0, and so ũ

f
p = αfspif . Similarly ṽfp = αfspjf soW can be written as

W = SMΛ (B.5)

where S — shape matrix — gathers the sp vectors, M =
[
i1 j1 · · · if jf

]
represents the

camera rotation, and Λ contains the scale factors organized in the following way

Λ =




α1

. . .

αp1


⊗ I[2] (B.6)

Since S is p1 × 3 and M is 3× 2F , then matrixW is, at most, rank three.



Appendix C

Maximizing rigidity: degenerate

cases

In Theorem 2 we only state a necessary condition for rigidity. If spurious points exist,

it is possible that different point selection and permutations generate different rank-3

observation matrices and, consequently, different possible object reconstructions. In this

appendix we present two different types of degenerate cases, and explain how they can

be handled.

C.1 Multiple candidates

Consider the situation depicted in Figure C.1, where motion is assumed to be known a

priori and feature coordinates are exact — no noise. The epipolar line crosses edges in

two different locations. Both locations are consistent with the motion so there are at

least two possible optimal solutions for Problem 6. With noise, any one of them — not

necessarily the correct — can become the optimal. This situation some times occurs in

practice, if some features are to be rejected. They are well handled when pt is close to

p2 — uniqueness constraint. Anyway, all the solutions share a common row space, so

the estimated motion will always be correct.

Using more than two images decreases the number of degenerate cases dramatically.
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Figure C.1: A scaled-orthographic stereo pair with known motion. The epipolar line

corresponds to the highlighted point

Figure C.2: A sequence of 3 scaled-orthographic images with known motion. Epipolar

lines in full correspond to the highlighted point. Dashed epipolar lines correspond to

each one of the candidate matches.

Add a third image to the observations, with known motion — Figure C.2. The high-

lighted point generates an epipolar line on each one of the subsequent images. Each

candidate generates its own epipolar line on the third image, and each one of these

has their own candidates matches. However there is one single correspondence solution

among the three images that is consistent with all epipolar lines. In practice it is hard

to find multi-image examples with multiple solutions.

In conclusion, finding a rank-3 correspondence between points of two or more im-

ages is equivalent to finding set of point correspondences for which a consistent set of

epipolar constraints can be found. Using longer image sequences decreases the number

of solutions with consistent motion. The best practice is, therefore, to use the largest

possible number of images, in the multi-image framework of Section 3.6.
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Figure C.3: A stereo pair with candidate matches with linearly related coordinates.

C.2 Linearly-dependent observations

In this section we describe a degenerate situation that can occur independently of the

number of frames. A method to solve it is presented in Section 3.7.

Consider again the example in Figure C.1. Assume that the points were segmented

without noise, and that correspondences were correctly established. Such measurements

generate a rank-3 observation matrix

W1 = [ CX | CP∗Y ] (C.1)

For the correct P∗, W1 is rank-3. Now apply a 2D linear transformation L to the

coordinates of the rightmost observations.

W2 = [ CX | CP∗YL ] (C.2)

These are depicted in Figure C.3, superimposed with the original ones. W2 is obviously

still rank-3. In conclusion, if the p2 points include those of Figure C.3, then there will be

at least two exact solutions to this noise-free correspondence problem. In the presence of

noise, the cost values of these solutions are perturbed and the emergent optimal solution

is randomly chosen. The best practice consists of generating the best N solutions —

with cost value close to optimal — and choose the one most consistent with the metric

constraints — Section 3.7.
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