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Abstract

U
nderstanding the principles involved in visually-based coordinated motor control is one of the

most fundamental and most intriguing research problems across a number of areas, including

psychology, neuroscience, computer vision and robotics. Humans perform visually driven actions

such looking at, reaching, and grasping a morning cup of co�ee on a daily basis, without much

e�ort and still very reliably. Yet, not very much is known regarding computational functions that

the central nervous system performs in order to provide a set of requirements for visually-driven

reaching and grasping. Additionally, in spite of several decades of advances in the �eld, the abilities

of humanoids to perform similar tasks are by far modest when needed to operate in unstructured,

unpredictable and dynamically changing environments.

In this thesis, we are interested in studying the principles behind the transformations from

the retinotopic target encoding to the representations that are used to generate eye-head and arm

movements. Next, we study how the movements of the eyes, arm and hand are generated and

coordinated in reach-to-grasp tasks. In addition to this, we investigate the tailoring of visual

resources with respect to spatio-temporal requirements of the motor system. We start from studying

the visuomotor principles in humans and monkeys and further proceed with investigating how they

can be useful to robotic applications. Once we create our computational models, we are able to

go in the backward direction, from robotics to neuroscience, by providing some hypotheses and

predictions regarding the functions of the central nervous system.

More speci�cally, our �rst focus is understanding the principles involved in human visuomotor

coordination. Not many behavioral studies considered visuomotor coordination in natural, unre-

stricted, head-free movements in complex scenarios such as obstacle avoidance. To �ll this gap, we

provide an assessment of visuomotor coordination when humans perform prehensile tasks with ob-

stacle avoidance, an issue that has received far less attention. Namely, we quantify the relationships

between the gaze and arm-hand systems, so as to inform robotic models, and we investigate how

the presence of an obstacle modulates this pattern of correlations.

Second, to complement these observations, we provide a robotic model of visuomotor coordina-

tion, with and without the presence of obstacles in the workspace. The parameters of the controller

are solely estimated by using the human motion capture data from our human study. This controller

has a number of interesting properties. It provides an e�cient way to control the gaze, arm and

hand movements in a stable and coordinated manner. When facing perturbations while reaching

and grasping, our controller adapts its behavior almost instantly, while preserving coordination

between the gaze, arm, and hand.
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Furthermore, in the third part of the thesis, we study the neuroscienti�c literature of the primates

(including humans). We here stress the view that the cerebellum uses the cortical reference frame

representation. The cerebellum by taking into account this representation performs closed-loop

programming of multi-joint, compound movements and movement synchronization between the eye-

head system, arm and hand. Based on this investigation, we propose a functional architecture of the

cerebellar-cortical involvement. Based on our theoretical work, we derive a number of improvements

of our visuomotor controller for obstacle-free reaching and grasping. Because this model is devised

by carefully taking into account the neuroscienti�c evidence, we are able to provide a number of

testable predictions about the functions of the central nervous system in visuomotor coordination.

Finally, in the last part of the thesis, we tackle the �ow of the visuomotor coordination in

the direction from the arm-hand system to the visual system. We develop two models of motor-

primed attention for humanoid robots. Motor-priming of attention is a mechanism that implements

prioritizing of visual processing with respect to motor-relevant parts of the visual �eld. Recent

studies in humans and monkeys have shown that visual attention supporting natural behavior is

not exclusively de�ned in terms of visual saliency in color or texture cues (which is a predominant

premise of the majority of attentional models), rather the reachable space and motor plans present

the predominant source of this attentional modulation. In this thesis, we show that motor-priming

of visual attention can be used to very e�ciently distribute robot's computational resources devoted

to visual processing.

We have validated our models with the humanoid robot iCub, in simulation and with the real-

world robot platform. We believe that the work presented in this thesis represents a contribution

relevant to both robotics and cognitive science.

Keywords: active vision, coupled dynamical systems, gaze, humanoid robot, learning, motor

control, motor-primed visual attention, neuroscience, reaching and grasping, visuomotor coordina-

tion
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Resumo

C
ompreender os princípios envolvidos no controlo motor baseado na visão é um dos problemas de

investigação mais fundamentais e intrigantes num conjunto de áreas que inclui a psicologia,

a neurociência, a visão computacional e a robótica. Os seres humanos executam ações guiadas

visualmente, como olhar, alcançar, e agarrar uma chávena de café diariamente, sem muito esforço

e com grande �abilidade. No entanto, não se sabe muito sobre as funções computacionais que o

sistema nervoso central realiza a �m de proporcionar um conjunto de requisitos para alcançar e

agarrar objetos recorrendo à visão. Além disso, apesar de várias décadas de avanços na área, a

capacidade actual dos humanóides para executar tarefas semelhantes é de longe bastante modesta

quando estas tarefas são realizadas em ambientes não estruturados, imprevisíveis e dinâmicos.

Nesta tese, estamos interessados em estudar os princípios por trás das transformações da cod-

i�cação retinotópica do alvo para as representações que são utilizadas para gerar os movimentos

dos olhos, cabeça e braço. Em seguida, vamos estudar como os movimentos dos olhos, do braço e

da mão são gerados e coordenados em tarefas de alcançar-para-agarrar. Além disso, investigamos a

adaptação de recursos visuais no que diz respeito aos requisitos espaciotemporais do sistema motor,

partindo do estudo dos princípios visuomotores em humanos e macacos e continuando com a inves-

tigação de como estes podem ser úteis para aplicações robóticas. Uma vez criados os nossos modelos

computacionais, somos capazes de ir na direção inversa, a partir da robótica para a neurociência,

fornecendo algumas hipóteses e previsões sobre as funções do sistema nervoso central.

Mais especi�camente, o nosso primeiro foco é entender os princípios envolvidos na coordenação

visuomotora humana. Não são muitos os estudos comportamentais que consideraram a coordenação

visuomotora em movimentos naturais, livres, com a cabeça liberta, em cenários complexos, tais

como o desvio de obstáculos. Para preencher essa lacuna, fornecemos uma avaliação da coordenação

visuomotora quando os seres humanos executam tarefas preênseis como o desvio de obstáculos, uma

questão que tem recebido muito menos atenção. Nomeadamente, quanti�camos as relações entre os

sistemas de olhar e braço-mão, de modo a construir modelos robóticos e investigar como a presença

de um obstáculo modula esse padrão de correlações.

Em segundo lugar, para complementar estas observações, fornecemos um modelo robótico de

coordenação visuomotora, com e sem a presença de obstáculos na área de trabalho. Os parâmetros

do controlador são apenas estimados usando os dados de captura de movimentos humanos do nosso

estudo humano. Este controlador tem uma série de propriedades interessantes, sendo capaz de

fornecer uma maneira e�ciente de controlar os movimentos do olhar, do braço e da mão de uma

forma estável e coordenada. Na presença de perturbações durante o alcançe, o controlador adapta
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o seu comportamento quase instantaneamente, preservando ao mesmo tempo a coordenação entre

olhar, braço e mão.

Além disso, na terceira parte da tese, estudamos a literatura neurocientí�ca sobre os primatas

(incluindo os humanos). Aqui frisamos a visão de que o cerebelo usa a representação cortical referen-

cial. O cerebelo, levando em conta essa representação realiza uma programação em circuito fechado

de movimentos multi-articulares, movimentos compostos e sincronização de movimentos entre o

sistema de olho-cabeça, braço e mão. Com base nessa investigação, propomos uma arquitetura

funcional do envolvimento cerebelar-cortical. Com base no trabalho teórico, derivamos uma série

de melhorias do nosso controlador visuomotor para alcançar e agarrar na ausência de obstáculos.

Como este modelo é concebido com uma cuidada aderência a resultados da neurociência, somos

capazes de fornecer um número de predições testáveis sobre as funções do sistema nervoso central

no que diz respeito à coordenação visuomotora.

Finalmente, na última parte da tese, abordamos o �uxo da coordenação visuomotora na direção

do sistema braço-mão para o sistema visual. Desenvolvemos dois modelos de preparação motora de

atenção para robôs humanóides. A preparação motora de atenção é um mecanismo que implementa

a priorização do processamento visual em relação a partes relevantes do ponto de vista motor

do campo visual. Estudos recentes em humanos e macacos demonstraram que a atenção visual

suportando comportamentos naturais não é exclusivamente de�nida em termos de saliência visual,

cor ou textura (o que é uma premissa predominante da maioria dos modelos de atenção), pelo

contrário, o espaço acessível e planos motores são a fonte predominante desta modulação de atenção.

Nesta tese, mostramos que a preparação motora da atenção visual pode ser usada para distribuir de

forma muito e�ciente os recursos computacionais de um robô dedicados ao processamento visual.

Validámos os nossos modelos com o robô humanóide iCub, em simulação e com a plataforma

física do robô. Acreditamos que o trabalho apresentado nesta tese representa uma contribuição

relevante tanto para a robótica como para a ciência cognitiva.

Palavras-chave: visão activa, sistemas dinâmicos acoplados, olhar, robô humanóide, apren-

dizagem, controlo motor, preparação motora da atenção visual, neurociência, alcançar e agarrar,

coordenação visuomotora
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Riassunto

Comprendere i principi applicabili nel controllo motorio basato sulla visione è uno dei problemi

di ricerca fondamentali e tra i più a�ascinanti nell'ambito di diverse discipline, tra cui psicologia,

neuroscienza, visione arti�ciale e robotica. Gli esseri umani sono in grado di compiere azioni guidate

dalla visione come guardare, raggiungere e a�errare una tazzina di ca�è quotidinamente, senza

sforzo, ma comunque in modo alquanto preciso. Tuttavia, non si sa molto riguardo alle funzioni

computazionali che il sistema nervoso centrale svolge per fornire un insieme di requisiti ai compiti di

raggiungimento e a�erramento guidati dalla visione. Inoltre, nonostante molti anni di progressi sul

campo, l'abilità degli umanoidi nell'e�ettuare compiti analoghi è �nora modesta, quando occorre

che operino in ambienti non strutturati, imprevedibili e che evolvono dinamicamente.

In questa tesi ci interessiamo allo studio dei principi che regolano le trasformazioni dalla codi�ca

retinotopica dell'obiettivo visuale alle rappresentazioni impiegate per generare movimenti occhio-

testa e occhio-braccio. Inoltre studiamo in che modo i movimenti di occhi, braccia e mani sono

generati e coordinati durante compiti di raggiungimento e a�erramento. Inoltre, esaminiamo come

le risorse visuali vengano adattate ai requisiti spazio-temporali del sistema motorio. Iniziando

dallo studio dei principi visuo-motori negli esseri umani e nelle scimmie, proseguiamo analizzando

come tali principi possano essere utili per applicazioni robotiche. Dopo aver costruito dei mod-

elli computazionali, possiamo procedere nella direzione opposta, dalla robotica alla neuroscienza,

formulando ipotesi e previsioni riguardanti le funzioni del sistema nervoso centrale.

Nello speci�co, per prima cosa ci siamo concentrati sui principi applicabili alla coordinazione

visuo-motoria umana. Pochi sono gli studi comportamentali che hanno considerato la coordinazione

visuo-motoria in movimenti naturali, senza restrizioni e in cui la testa è libera di muoversi in sce-

nari complessi, come l'aggiramento di ostacoli. Al �ne di colmare questa lacuna, forniamo una

valutazione della coordinazione visuo-motoria da parte di esseri umani durante compiti di a�er-

ramento con aggiramento di ostacoli: questo è un tema che ha ricevuto assai meno attenzione in

letteratura. In particolare, quanti�chiamo le relazioni tra direzione dello sguardo e sistemi com-

prensivi di braccio e mano, così da fornire informazioni a modelli robotici, e approfondiamo in che

modo la presenza di ostacoli in�uenza questo tipo di correlazioni.

In secondo luogo, per completare le osservazioni di cui sopra, forniamo un modello robotico di

coordinazione visuo-motoria, con e senza la presenza di ostacoli nello spazio di lavoro. I parametri

del controllore vengono stimati usando solamente dati di motion capture derivanti dal nostro studio

e�ettuato con esseri umani. Questo controllore mostra delle proprietà interessanti: consente di

controllare in maniera e�ciente i movimenti di sguardo, braccia e mani in modo stabile e coordi-
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nato. Quando si imbatte in perturbazioni durante il raggiungimento e l'a�erramento di oggetti,

il nostro controllore adatta il suo comportamento quasi istantaneamente, mantenendo tuttavia la

coordinazione tra sguardo, braccia e mani.

Inoltre, nella terza parte della tesi, studiamo la letteratura di neuroscienza riguardante i primati

(compresi gli esseri umani). Insistiamo sulla prospettiva secondo cui il cervelletto usa la rappresen-

tazione del sistema di riferimento corticale. Nel considerare questa rappresentazione, il cervelletto

compie un controllo ad anello chiuso di movimenti multi-giunto e composti, oltre a occuparsi della

sincronizzazione dei movimenti tra il sistema occhi-testa, le braccia e le mani. In base a questa anal-

isi, proponiamo un'architettura funzionale del coinvolgimento tra cervelletto e corteccia. Partendo

dal nostro lavoro teorico, apportiamo una serie di migliorie al nostro controllore visuo-motorio du-

rante i compiti di raggiungimento e a�erramento privi di ostacoli. Dal momento che questo modello

è sviluppato da un'attenta considerazione delle prove neuroscienti�che, possiamo fornire una serie

di predizioni veri�cabili riguardo ai ruoli che il sistema nervoso centrale ricopre nella coordinazione

visuo-motoria.

In�ne, nell'ultima parte della tesi, a�rontiamo il problema del �usso di coordinazione visuo-

motoria percorrendo il verso che va dal sistema braccia-mani verso il sistema visuale. Sviluppiamo

due modelli di attenzione stimolata dai movimenti (motor-primed attention) per robot umanoidi.

La stimolazione di attenzione basata sui movimenti è un meccanismo che fa attribuire un ordine di

priorità dell'elaborazione visuale in relazione alle parti del campo visivo con rilevanza in termini di

movimento. Recenti studi su esseri umani e scimmie hanno mostrato che l'attenzione visuale sup-

portata da comportamenti naturali non è esclusivamente de�nita in termini di salienza visuale di

segnali legati al colore o al materiale (questi sono i presupposti della maggior parte dei modelli di at-

tenzione in letteratura), mentre invece la fonte predominante di questa modulazione dell'attenzione

è costituitita dallo spazio di lavoro raggiungibile e dai piani motòri. In questa tesi, mostriamo che

la stimolazione motoria dell'attenzione visuale può essere usata per distribuire in modo e�ciente

quelle risorse computazionali che nei robot sono dedicate al processamento visuale.

Abbiamo convalidato i nostri modelli sul robot umanoide iCub, in simulazione e con la pi-

attaforma robotica reale. Riteniamo che il lavoro presentato in questa tesi rappresenti un contributo

rilevante sia per la robotica che per le scienze cognitive.

Parole chiave: visione attiva, sistemi dinamici accoppiati, direzione dello sguardo, robot

umanoidi, apprendimento, controllo motorio, stimolazione di attenzione basata sui movimenti (motor-

primed attention), neuroscienza, raggiungimento e a�erramento, coordinazione visuo-motoria.
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1 Introduction

1.1 Motivation

H
umans execute visually driven actions, such as preparing a morning cup of co�ee in the kitchen.

Humans very reliably manipulate with the cup and kitchenware tools without disastrous

consequences such as spilling the hot liquid or colliding with sharp obstacles on the way. Tasks

like this appear to us as profoundly simple, straightforward and easy to do. However, beneath this

easygoing appearance, resides a very powerful and sophisticated neural machinery that directs the

orchestra of intermingled and complex neural computations needed to solve various computational

functions.

On the other hand, in spite of the last several decades of theoretical and technological break-

throughs in the �eld, the abilities of autonomous humanoid robots to perform similar tasks are by

far modest when compared to the human performance. This is particularly apparent when robots

are needed to operate in unstructured, unpredictable and dynamically changing environments. For

this reason, biologically inspired mechanisms have a tremendous potential in bridging this gap and

for endowing robotic systems with a set of skills that are comparable to those found in humans. The

second bene�t of implementing biologically inspired visually driven mechanisms in robotic systems,

but not less important than the former one, is the possibility to test the plausibility of various neu-

roscienti�c hypotheses and theories by implementing them on an arti�cial physical system (Sandini

et al., 2004, 2007; Vernon et al., 2010; Metta et al., 2010).

Human motor control requires complex integration of multiple sensory modalities, such as vi-

sual, tactile and proprioceptive information (Prablanc et al., 1979; Jeannerod, 1984; Desmurget

et al., 1998a; Purdy et al., 1999; Crawford et al., 2004). A sensorimotor system of an agent placed

in the dynamic and unpredictable world must obey the real-time requirements for performing a set

of tasks: visual scene analysis, sensorimotor reference frame transformations, motion replanning,

calculating and issuing motor commands and synchronizing the movements of di�erent limbs, while

constantly monitoring execution of all movement stages. In the �rst stage of the process, the vi-

sual scene is projected on the retina and the targets are represented in retinal coordinates. In the

last stage, in order to accomplish actions de�ned in space, body movements require activation of

muscles that revolve proximal and distal limb segments around joints, constituting a kinematically

redundant, high-dimensional and nonlinear system. Thus, the need for synergistic and coordinated

actions of di�erent e�ectors such as the eyes, head, arm, hand and torso, and, if the motor goal is
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beyond the peripersonal space, the whole-body action, imposes demands for: (a) a series of refer-

ence frame transformations and (b) adjutory synchronization commands to appropriately sequence

and coordinate the motion of di�erent e�ectors. The neural algorithms that provide us with these

abilities are amazingly powerful and yet beautifully elegant: they are highly optimized for computa-

tional e�ciency, modular and capable of performing computations simultaneously in both parallel

and sequential fashion.

While humans and other primates have mastered gazing, reaching and grasping task to a great

extent, modern humanoid robots are far from being able to autonomously and reliably accomplish

the tasks we take for granted and do with ease. In robots, the visual and motor system remain

largely independent modules. In this thesis, we exploit three paradigms (and the interplay between

them) from the human visuomotor system that can endow robots with a higher degree of dexterity

and autonomy: active vision that is coupled and synchronized with the motor system constituting a

coherent, but still modular, mechanism, which can rapidly react to perturbations in the environment.

Some computer vision problems that are inherently ill-posed when using passive vision become well-

posed when employing an active vision strategy1 (Gibson, 1950; Bajcsy, 1988; Bajcsy and Campos,

1992). Aloimonos et al. (1988) and Ballard (1991) have shown that an observer engaged in the active

vision strategy gains a number of advantages over a passive observer, namely in terms of the cost of

visual computation, the stability of algorithms and the uniqueness of solutions when determining

shapes, determining structure from motion and computing depth. In active visual systems, visual

servo control is computationally easier and more robust to errors in measurements as well (Ballard,

1991). Coupling mechanisms between di�erent control modules play an important role for ensuring

a proper coordinated execution of complex tasks, such as visually guided reaching where the torso,

head (including the eyes), arm and hand are simultaneously engaged. A proper coordination pattern

between modules is especially crucial when performing prehensile tasks in the face of perturbations

(Shukla and Billard, 2011). Finally, a real-world environment can be rather highly dynamic and

unpredictable. The agent must be able to re-plan and react in a time range of several milliseconds

to changes that can happen unexpectedly. Not being able to rapidly and synchronously react to

perturbations can cause fatal consequences for both the robot and its environment.

Vision is one of the most important functional modules, if not the most important one, to

provide support to motor control in both arti�cial and biological systems. The evolutionary motive

of vision, according to some authors, stems from the need for improved motor control (Churchland

et al., 1994; Wilson, 2002). Yet, vision is one of the most computationally demanding modules.

In spite of this fact, humans and non-human primates have the ability to rapidly and graciously

perform complicated tasks with a limited amount of computational resources. One of the reasons for

their superior performance in visuomotor tasks is an e�cient distribution of the visual resources to

select only relevant information for reaching and grasping among the plethora of visual information.

Humans are able to e�ciently and routinely manage this challenging task of selective information

1Active vision systems employ gaze control mechanisms to actively position the camera coordinate system in order
to manipulate the visual constraints.
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processing, in a seemingly e�ortless manner, by means of highly customized attentional mechanisms.

When dynamically changing environmental conditions demand rapid motor reactions, there is no

time to compute the full visual model of the world (Ballard, 1991; Wilson, 2002). The humans and

non-human primates use attention to select important visual information, and cheaply compute

only a relevant subset of them on the �y. Furthermore, visual attention (covert and overt) is

tightly coupled with the motor system. Numerous �ndings from visual neuroscience and psychology

provide evidence that visual attention is bound and actively tailored with respect to spatio-temporal

requirements of manipulation tasks (Hayhoe et al., 2003; Baldauf et al., 2006; Baldauf and Deubel,

2008; Geisler, 2008; Baldauf and Deubel, 2009).

In most of the humanoid robots, the computational demands for processing stereo images rep-

resent very often a bottleneck for real-time manipulation, where replanning and computation of

visuomotor actions are time-locked within a time range of only a few milliseconds. Most of the

approaches in robot vision are based on the standard, �o� the shelf�, image processing techniques,

ignoring most, if not all, the information regarding the current motor state and planned motor

actions. This implies that the visual system and the arm-hand system are usually considered as two

largely independent modules that communicate only in the direction from vision to manipulation,

which implies that during visual processing the valuable information from the manipulation system

is mostly ignored. This decoupling of visual processing from the motor information manifests itself

in an ine�cient, hence slow, visual processing.

In this thesis, we focus on the problem of visuomotor coordination in reaching and grasping

tasks. We �rst study humans in visuomotor tasks and complement our behavioral experiment with

the investigation of the neuroscienti�c literature in monkeys, to extract the fundamental principles

of visuomotor coordination. Based on these principles we target to solve three complex problems

in humanoid robotics:

� Computation of a sequence of transformations from the retinotopic encoding to reference

frames suitable to generate eye-head and arm movements.

� Generating movements of the eyes, arm and hand and appropriately coordinating the move-

ments of these e�ectors.

� Tailoring vision with respect to spatio-temporal requirements of the motor system.

Hand-tuning the parameters of block elements of a visuomotor coordination scheme of a hu-

manoid robot with ∼ 40+ actuated joints from the hips up and ∼ 2 × 320 × 240 pixels in the

stereo cameras would be a daunting, if rather impossible, task. For these reasons, in this thesis,

we embrace babbling-like exploration and programming by demonstration learning paradigms. The

recent advancement in machine learning, namely in the domain of non-linear regression, provides a

very convenient means to deal with this problem by learning from a set of empirically obtained data.

However, even with the powerful machine learning tools in our hands, the combinatorial explosion

of straightforwardly learning visuomotor parameters would make the task of learning visuomotor
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coordination very di�cult. To circumvent this problem, we introduce priors in our modeling by

studying the human and monkey visuomotor principles. By doing this, we constrain our modeling

and make learning feasible, and the size of the resulting set of parameters reasonably small to be

able to e�ciently run inference computations in real-time.

1.2 Thesis outline

The major contributions presented in this thesis have been published in peer-reviewed confer-

ences and journals. Here we brie�y present the topics presented in each chapter together their

associated contributions.

In Chapter �Human Motion Study of Reaching and Grasping with Obstacle Avoidance�, we investi-

gate the role of obstacle avoidance in visually guided reaching and grasping movements. We report

on a human study in which subjects performed prehensile movements with obstacle avoidance where

the position of the obstacle was systematically varied across trials. These experiments suggest that

reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as

an intermediary target. Furthermore, we demonstrate that the notion of workspace traveled by the

hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting

obstacles on the way when performing reaching. We �nd that the gaze proactively coordinates the

pattern of the arm-hand motion during obstacle avoidance. This study also provides a quantitative

assessment of the coupling between the gaze-arm-hand motion. We show that the coupling follows

regular phase dependencies, and that it is unaltered during obstacle avoidance. The human study

from this chapter provides quantitative information about the eye-arm-hand organization to sup-

port the development of the robotic model of visuomotor coordination presented in the subsequent

chapter.

Chapter �Robotic Visuomotor Controller Based on the Human Motion Capture Study� describes

a robotic visuomotor controller developed based on the observations of our human study and by

using the gaze-arm-hand data acquired in the human trials. Our controller extends the Coupled

Dynamical Systems (CDS) framework and provides fast and synchronous control of the eyes, the

arm and the hand within a single and compact framework, mimicking similar control system found

in humans. The generalization abilities of the CDS framework ensure the coordinated behavior

of the visuomotor controller, even when the motion is abruptly perturbed outside the region of

the provided human demonstrations. Similar to classical visual servoing, it performs a closed-loop

control, hence it ensures that the target can be reached under perturbations. We validate our model

for visuomotor control of a humanoid robot. The observed forward planning mechanism for obstacle

detection in our human study has motivated the development of a similar scheme for the robotic

controller. The observation that the visuomotor system treats the obstacle as an intermediary target

tremendously reduces the computational and architectural complexity of our visuomotor model for

obstacle avoidance.
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In �Improvements of the Robotic Visuomotor Controller Based on the Lessons from Neuroscience�,

we present improvements to the visuomotor model presented in Chapter 3. We derive this new

model by investigating the main computational principles reported in the neuroscienti�c literature

regarding the reference frames used for programming visuomotor movements, the cerebellar con-

tribution to multivariate synchronization of motor control and the functional organization of these

systems. We stress the view that the cerebellum uses the cortical reference frame representation,

and, based on this representation, performs closed-loop programming of multi-joint, compound

movements and movement synchronization between di�erent e�ectors (i.e. the eye-head system,

arm and hand). We then attempt to unify these considerations in our computational model. In

order to complement our theoretical and modeling work, we validate the model's e�ectiveness in

experiments with the humanoid robot iCub. Because this model is derived by carefully taking into

account the neuroscienti�c computational principles, we are able to provide some complementary

theoretical predictions to be tested in future work.

Chapter �Models of Motor-primed Visual Attention for Humanoid Robots� aims to complement

the vision-to-motor direction of coordination, presented in the previous chapters, by modeling the

�ow of in�uence in the other direction, from the motor system to the vision system. This chapter

presents a novel, bio-inspired, approach to an e�cient allocation of visual resources for humanoid

robots in the form of a motor-primed visual attentional landscape. The attentional landscape is a

more general, dynamic and a more complex concept of an arrangement of spatial attention than the

popular �attentional spotlight� or �zoom-lens� models of attention. Motor-priming of attention is a

mechanism for prioritizing visual processing to motor-relevant parts of the visual �eld, in contrast

to other, motor-irrelevant, parts. In particular, we present two techniques for constructing a visual

�attentional landscape�. The �rst, more general, technique, is to devote visual attention to the

reachable space of a robot (peripersonal space-primed attention). The second, more specialized,

technique is to allocate visual attention with respect to motor plans of the robot (motor plans-

primed attention). Hence, in our model, visual attention is not exclusively de�ned in terms of

visual saliency in color, texture or intensity cues, it is rather modulated by motor information.

This computational model is inspired by recent �ndings in visual neuroscience and psychology. In

addition to two approaches to constructing the attentional landscape, we present two methods for

using the attentional landscape for driving visual processing. We show that motor-priming of visual

attention can be used to very e�ciently distribute limited computational resources devoted to the

visual processing. The proposed model is validated in a series of experiments conducted with the

iCub robot, both using the simulator and the real robot.

In �Conclusion and Future Work� , we provide a discussion and summarize the thesis, its interdisci-

plinary contributions and the hypotheses regarding the human visuomotor system. We then propose

several future directions for improvements of the presented work and some possible directions that

could be natural extensions of the work.
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2 Human Motion Study of Reaching

and Grasping with Obstacle

Avoidance

Manipulation and grasping skills are complex and rely on the conjunction of multiple sensing modali-

ties, including vision, tactile and proprioceptive information (Prablanc et al., 1979; Jeannerod, 1984;

Purdy et al., 1999). Vision provides important information in the early stages of motion planning

(Prablanc et al., 1979; Abrams et al., 1990; Spijkers and Lochner, 1994; Rossetti et al., 1994). It is

also used to perform closed-loop control to drive the hand in space unobstructed visually (Abrams

et al., 1990; Paulignan et al., 1991b), while tactile information becomes crucial in the last stage of

prehension and to compensate when vision cannot be used1 (Jeannerod, 1984; Purdy et al., 1999).

Vision is particularly useful to plan the motion so as to avoid obstacles without touching them

(Johansson et al., 2001). It also enables to react rapidly in the face of a sudden perturbation, such

as an obstacle entering the workspace (Aivar et al., 2008). There is a tight coupling between the

visual and motor system when driving the prehensile motion (Prablanc et al., 1979; Land et al.,

1999; Johansson et al., 2001). While this coupling has been documented at length in the literature

on free space movements (Johansson et al., 2001; Hayhoe et al., 2003; Bowman et al., 2009), little

is known about how this coupling is exploited to enable fast and reliable obstacle avoidance, and in

particular when the obstacle appears after the onset of the motion. Such fast and on-line control

of the hand motion in response to visual detection of an obstacle is crucial for humans, but also

for robots. Indeed, in spite of impressive advances in robotics over the last decades, robots are still

far from matching the human versatility in the control of their motion, even when performing the

most simple reach and grasp motion.

In this chapter, we study behavioral principles of the visuomotor coupling between the eye-

arm-hand systems, when this coupling is modulated by the presence of an obstacle. Identifying

and modeling the mechanisms at the basis of human visuomotor control in the presence of the

obstacle is relevant for understanding how the human visuomotor system is organized. It could

provide a promising research direction to improve the design of similar controllers in robots, as well.

Here, we hypothesize that the visuomotor system preserves a coordinated manner in gaze-arm-

hand control in complex natural tasks with head-free movements, such as visually-aided obstacle

avoidance. We hypothesize that the central nervous system (CNS) favors task segmenting when

performing obstacle avoidance instead of holistic programming. The rationale for this is that the

�rst strategy o�ers a simpli�ed computational approach compared to the second one. Furthermore,

1 Humans can perform prehensile actions without visual feedback, by relying on tactile and acoustic senses.
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in order to identify obstacles, we expect to observe some sort of anticipatory visuomotor planning.

If this forward planning exists, it should be observed in proactive gaze �xations of the object when

it obstructs intended arm movements. In other words, if the object identi�ed as an obstacle is the

intermediary target for the visuomotor system, it is expected that it will be visually �xated during

reaching. The opposite should be true, if the object is not identi�ed as the obstacle, we do not

expect that the gaze would �xate it, due to the demand to bind visual resources only to the parts

of the visual �eld that are relevant to the requirements of the motor system. Under the assumption

that visuomotor coordination remains preserved in obstacle avoidance tasks, motor segmenting and

forward planning should be also observed in the arm kinematic parameters and in the pattern of the

correlations between the gaze and arm parameters. If, indeed, the aforementioned task segmenting

strategy exists, the pro�le of coordination of the gaze and arm with respect to the obstacle, under

the hypothesis that the obstacle acts as an intermediary target, should be similar to the pattern

observed with respect to the target. The gaze-arm correlations when approaching to avoid the

obstacle (the �rst stage of the movement) should be very similar to the correlations in the second

segment of the movement (when the obstacle is passed by and the eye-arm system aims for the

target).

The human study provides quanti�able information about the eye-arm-hand coupling to support

the design of the robotic model's parameters, presented in the subsequent chapter.

We next provide a short review on existing works, focusing on the role of visual information in

guiding manipulation and visuomotor coordination mechanisms in humans.

2.1 Background research

2.1.1 The general role of visual information in guiding reaching and

grasping

Vision provides a plethora of by far the most valuable and most reliable information about the

state of the environment on which the planning and motor systems depend heavily. The object's

extrinsic properties (spatial location and orientation) are used to control the reach component,

whereas the object's intrinsic properties (shape, size, weight, centroid and mass distribution) are

used in programming the grasp component (Jeannerod, 1984). The role of vision in manipulation is

best shown in behavioral experiments where visual feedback is deprived by modulating experimental

conditions.

Several studies have shown that manipulation without any visual feedback in highly structured,

static scenarios can almost match the performance of the full-vision manipulation (Castiello et al.,

1983; Purdy et al., 1999). After a number of practice trials, manipulation of subjects who did not

have any visual feedback only slightly di�ered from full-vision manipulation in terms of the kinematic
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measures of both the reach and grasp components. However, if manipulation without visual feedback

is performed in an unstructured environment, without previous kinesthetic assistance from a teacher

or extensive trial-and-error learning, the performance (e.g. overall success rate, accuracy of reaching,

speed of movement, etc.) drastically degrades compared to trials where vision was not deprived

(Purdy et al., 1999).

Vision is used to guide every stage of prehensile movements, from pre-planning, initial reach,

high-speed mid-section of the movement, to the deceleration and grasping phases. Prablanc et al.

(1979) and Rossetti et al. (1994) showed that seeing the limb before the onset of movements improves

the reaching accuracy. In addition to this, Pelisson et al. (1986) found that the initial information

about the target a�ects the �nal reaching accuracy. Similarly, the sight of the current position

of the limb and the goal in the later stage of the movements improves the end point accuracy

(Prablanc et al., 1979; Pelisson et al., 1986). In studies of manipulation where no visual feedback

on the moving limb (Gentilucci et al., 1994; Berthier et al., 1996) and the target (Jakobson and

Goodale, 1991) is available, a dramatic increase in the overall movement time and the grip aperture

was observed. Finally, visual information assists �ne control of the arm and hand in the closing

phase of grasping (Paillard, 1982). The gaze is driven to the grasping points on the target object

during a prehensile task, for the purpose of planning reliable placement of the �ngers (Brouwer

et al., 2009). These studies suggest that vision is used for on-line control of both the reaching and

grasping components of a prehensile movement.

A number of studies have shown that both peripheral and foveal vision contribute to reaching

and grasping. Sivak and MacKenzie (1990) found that when central vision was blocked, it a�ected

both the transport and grasp components (longer movement times, lower peak accelerations and

peak velocities, larger maximum grip apertures and longer time after the maximum grip aperture).

When peripheral vision was not available, however, they observed that it a�ected the transport

component only, and the grasp component remains unaltered. In their follow-up study, González-

Alvarez et al. (2007) found that peripheral and foveal visual cues jointly contribute to both reaching

and grasping.

Further evidence that vision is used for on-line control of movements comes from perturbation

studies. The studies of Paulignan et al. (Paulignan et al., 1991b,a) have shown that subjects were

able to instantly modulate, by relying on visual feedback, the arm and hand movements with respect

to on-line perturbations of the position and shape of the target object, with only minimal increase

in the response time (∼100ms) compared to the motion in the absence of perturbations. Aivar et al.

(2008) studied adjustments of the hand movements with respect to abrupt online perturbations of

obstacles and/or the target. They found similar latencies to those reported by Paulignan et al.

(Paulignan et al., 1991b,a) for the responses to the perturbations of the target position and slightly

longer adaptation latencies for the obstacles.

2.1.2 Visuomotor coordination in reaching and grasping
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The human visual and motor systems are not independent, they operate in coordination and

share control signals adapting to mutual demands, even when doing simple and well-practiced

routines (Land et al., 1999; Hayhoe et al., 2003). A body of literature documented how the gaze

precedes movements. The gaze shows an anticipatory strategy leading a whole body movement

during navigation (Grasso et al., 1998; Hicheur and Berthoz, 2005; Rothkopf and Ballard, 2009).

The gaze precedes the arm and the hand movement in manipulation tasks with a tool in the hand

(Johansson et al., 2001). Similar pattern, the gaze leading the arm, is observed in a task where

subjects contacted multiple target objects arranged in a sequence (Bowman et al., 2009). Abrams

et al. (1990) found that the gaze leads limb movements in rapid tasks as well. Furthermore, it is

also observed that the gaze leads the arm and the whole body movements in reach-for-grasp tasks

(Land et al., 1999; Hayhoe et al., 2003; Hesse and Deubel, 2011). Physiological studies of reaching

and grasping report that the arm transport and the hand preshape components are coordinated

by the motor system in reach-for-grasp maneuvers, even in the presence of perturbations (Castiello

et al., 1993; Haggard and Wing, 1995). Furthermore, there is a strong evidence that control signals

also �ow from the hand to the eyes, not only in the opposite direction (Fisk and Goodale, 1985;

Neggers and Bekkering, 2000).

While we have emphasized until now the importance of active gaze control to drive the arm-

hand motion, it is noteworthy that humans can also grasp an object without �xating it and even

perform more complicated tasks such as obstacle avoidance by solely relying on peripheral vision

(Prablanc et al., 1979; Abrams et al., 1990; Johansson et al., 2001). In spite of the fact that humans

may reach without looking at the target, in natural and unrestricted tasks, the gaze seems to

lead the arm-hand movement. This mechanism is likely a safeguard mechanism to ensure accurate

reaching in the face of obstacles. Indeed, when saccades to the target and obstacle were prohibited,

signi�cantly decreased manipulation accuracy was observed (Abrams et al., 1990; Johansson et al.,

2001), and manipulation resulted in frequent collisions with the obstacle (Johansson et al., 2001).

These experiments provide further evidence that coupling between active vision and the motor

system is an important and fundamental mechanism, synchronously orchestrated between di�erent

regions in the central nervous system (CNS).

2.2 Human Motion Study of Reaching and Grasping with

Obstacle Avoidance

We start from the hypothesis that the eyes precede the arm motion, so as to guide the planning

of the arm transport component. There is ample evidence of such saccadic eye movements toward

the target during reaching; see e.g. (Land et al., 1999; Johansson et al., 2001; Hayhoe et al., 2003;

Hayhoe and Ballard, 2005), however, few studies have analyzed visuomotor behavior in trials where

the position of the obstacle was systematically varied. We assume that the obstacle acts as an

intermediary target when performing obstacle avoidance. This movement-segmented strategy sub-
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Figure 2.1: Snapshots from the WearCam video from the start of the task (left) until successful
grasp completion (right), in (a) no-obstacle and (b) obstacle scenarios. The cross superposed on
the video corresponds to the estimated gaze position. The color of the cross indicates whether the
gaze is the �xation state (red) or the saccade state (green).

stantially reduces the complexity of motor control compared to the holistic control policy (Alberts

et al., 2002; Johansson et al., 2009; Hesse and Deubel, 2010). Furthermore, we hypothesize that

there exists a visuomotor forward control scheme in which the presence of the obstacle is used to

modulate the path of the arm. This modulation depends on the distance of the original path to the

target. We also assume that the obstacle avoidance maneuver consists in passing the obstacle on the

side of the obstacle where the collision would have occurred. This choice participates in a minimum

e�ort strategy with only a small modulation of the intended path. We report our analysis of the

visuomotor obstacle avoidance scheme in the following sub-sections. Figure 2.1 shows snapshots

taken from the WearCam video illustrating the mechanism of the gaze leading the arm motion and

�xating the obstacle on the path when reaching the target.

The �rst part of this section describes the experimental procedure followed during our human

motion study. In the second part, we analyze the results of this study and state our �ndings of

visuomotor coordination that constitute a basis for developing our computational model.

2.2.1 Experimental setup

Eight unpaid subjects from the university sta� participated in this experiment (5 males and

3 females; mean age 27.1 years and std. 3 years). Subjects were right-handed and did not have

any neurological or ophthalmological abnormalities. Subjects were unaware of the purpose of the
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experiment.

Subjects sat in a height-adjustable chair facing a rectangular table with task-relevant objects

placed on the surface of the table (Figure 2.2). Subjects sat in front of a table such that the sagittal

plane �cut� the width of the table at approximately the midline, and the distance from the frontal

part of the trunk to the edge of the table was ∼10 cm. The initial positions of the right hand, the

target object and the obstacle object were predetermined and they were laid along a line parallel to

the coronal plane of the body, 18 cm displaced from the edge of the table on the subject's side. The

distance measured in the table plane from the initial hand position (hand centroid) to the obstacle

was 25 cm, and from the obstacle to the target it was 20 cm (i.e. 45 cm from the starting hand

position to the target). Starting positions were indicated by markers on the table. The two objects

used for manipulation were IKEA glasses, color tinted to enable automatic color-based segmentation

on video recordings. The wine glass (max. diameter 7.5 cm, height 13 cm) was the object to be

grasped (target) and the champagne glass (max. diameter 5 cm, height 21 cm) was the object to be

avoided (obstacle).

2.2.2 Task

Grasping during all trials was conducted with the right hand. The left hand remained on the

table, to provide support for the trunk to reduce the movements of the trunk in the coronal plane.

At the start of grasping, the subjects were instructed to look at the colored patch mounted on the

data glove. A sound signal indicated the start of execution of grasping, instructing the subjects

that they were free to unlock gaze from the colored patch, mounted on the data glove, and start

a trial. Once the grasping motion was completed, the subject was instructed to go to the starting

position.

Each subject performed 8 trials of reaching and grasping the target (wine glass). In all the trials,

the obstacle (champagne glass) was present. The location of the champagne glass was changed at

each trial. Starting from 6 cm from the edge of the table on the subject's side, we progressively

displaced the champagne glass at each trial in increments of 4 cm along the midline of the desk

(parallel to the sagittal plane of the subject's body in resting position). An alternative to this

approach is to place the obstacle in a randomly indexed position for every trial. By incrementally

displacing the obstacle in each trial, we implicitly force subjects to change their previous obstacle

avoidance strategy, whereas with random displacements, the hand path which assured successful

obstacle avoidance in the previous trial (e.g. obstacle in position 4) could be reused for a new trial

(e.g. obstacle in position 2), without much adaptation.

For all trials, subjects were instructed to perform manipulation in a natural manner, without

any additional instructions that could a�ect their visuomotor behavior. The subjects had one trial

of practice before recording to ensure that they had understood the instructions. Subjects were

unaware of the purpose of the experiment. Figure 2.2 illustrates our setup for this experiment.
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Figure 2.2: Experimental setup to record eye-arm-hand coordination from human demonstrations
in grasping tasks where the obstacle (dark blue disk) is progressively displaced in each trial. Obstacle
positions (superposed as transparent dark blue disks) are numbered from obs1 to obs8, numbered
with respect to the increasing distance from the subject. obs1 is the starting position of the obstacle,
6 cm from the edge of the table. We progressively displaced the champagne glass for each trial in
increments of 4 cm along the midline of the desk. obs8 is the farthest position of the obstacle (34 cm
from the edge). In this trial, the human subject is grasping the target object (wine glass) avoiding
the obstacle (champagne glass).
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2.2.3 Apparatus

A head-mounted eye-tracker designed in our laboratory (LASA EPFL), the WearCam system

(Noris et al., 2010), was used for gaze tracking and for recording the scene as viewed from the

subject's standpoint. The system uses two CCD cameras to record a wide �eld of view (96°×96°). It
uses Support Vector Regression to estimate the gaze direction from the appearance of the eyes. The

system has an accuracy of 1.59°. The video and gaze position from the WearCam were recorded in

384×576 MJPEG format at 25Hz. The WearCam video from our experiment can be seen in Figure

2.1. The XSensTM inertial motion capture system was used for recording the trunk motion and

arm motion. The sensors were mounted on the trunk, the upper arm, the forearm and the hand.

The system provided information about three joints of the trunk motion (roll, pitch and jaw), three

joints that model the shoulder (�exion-extension, abduction-adduction and circumduction), two

joints in the elbow (�exion-extension and pronation-supination) and two wrist angles (abduction-

adduction and �exion-extension). The 5DTTM data glove, with �exure-sensors technology, was

used for recording the �nger joint angle motion. The data from the XSensTM IMU motion capture

sensors and the 5DTTM data glove were recorded at 25Hz.

The OptiTrackTM multi-camera system was used for tracking the 3D positions of the hand and

the objects in the scene. The speed of data recording from the multi-camera system was 150Hz,

and the accuracy was ∼2mm.

2.2.4 Calibration and data processing

The WearCam system was calibrated at the beginning and the end of the task for each subject

by using the procedure explained in Noris et al. (2010). The state of the WearCam was veri�ed

after each trial by checking its relative position with respect to the head and observing the video

that was streamed. We checked the state of the multi-camera system by observing the performance

of real-time detection of the objects in the workspace, and we recalibrated it when the accuracy

was not satisfactory. The data glove and the motion capture sensors were calibrated after each

trial by requesting the subject to adopt an upright straight posture of the torso and to perform a

sequence of opening and closing �ngers. The state of the data glove and the motion capture sensors

was veri�ed by using an in-house GUI tool that shows the body posture of the subject by using

real-time readings from the sensors.

All recorded signals were �ltered with a preprogrammed peak-removal technique that consisted

of removing outliers from sensor misreadings and replacing them with linearly interpolated values

between two closest valid readings. All signals were re-sampled at 25Hz. Synchronization and

parsing of signals were performed by using time-stamps for recorded signals and veri�ed by observing

recorded videos on a frame-by-frame basis. The signals were smoothed with a moving average �lter.

Piecewise spline �tting was done, which did additional smoothing as well. Finally, we visually
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assessed comparative plots of both raw signals, and synchronized and smoothed signals in order to

make sure that �ltering and smoothing did not distort general signal pro�les.

We detected gaze �xations as all instances where the gaze remained steady for at least 80ms

with the gaze motion not exceeding 1° of the visual �eld (Inho� and Radach, 1998; Jacob and Karn,

2003; Dalton et al., 2005). We say that a person is looking at either of the two objects (target

or obstacle) if a gaze �xation is contained within the object blob, or it is within a 5-pixel radius

around the object blob. This 5-pixel radius accounts for imprecision in the blob segmentation, and

in the estimation of the gaze position. It also accounts for the fact that the �functional fovea�

forms a 3-degree circular region around the center of the gaze, which means that the visual system

can obtain high-quality visual information �xating very close to the edges of interesting objects

(Rothkopf and Ballard, 2009). We empirically obtained this speci�c value of a 5-pixel tolerance by

computing the average closest distance between the estimated gaze point detected in the �xation

state (but outside the segmented blob) and the boundary of the blob. This was done for a number of

sub-parts of the reach-for-grasp task for which it is well-known that motoric actions impose strong

demands for foveal visual information about the object's state. One of the sub-parts of the task,

when gaze �xations at the target object are expected with a high probability, is the moment just

before the wine glass is grasped, as it is reported from previous studies that the gaze consistently

�xates grasping parts before �ngers touch the object (Brouwer et al., 2009).

2.2.5 Analysis of recordings from human trials

Visuomotor strategy and visuomotor coupling in obstacle avoidance

Figure 2.3(a) reveals the obstacle avoidance strategy that the subjects employed with respect

to the position of the obstacle. It can be seen that the subjects preferred to avoid the obstacle

from the anterior side if the obstacle was positioned between the subject's body and the line that

is de�ned from the starting position of the hand to the target object (obs1-4). If the obstacle was

positioned in the anterior direction from the line (obs5-8) then the preferred obstacle avoidance

strategy was to veer from the posterior side when reaching to grasp the target object. It can

be seen that the subjects are very consistent in their obstacle avoidance strategy, except for the

obstacle position number 4 (obs4), for which 5 subjects avoided the obstacle from the anterior side,

and 3 subjects veered from the posterior side. Post-hoc analysis of the recorded videos from the

experiment revealed that 3 subjects who veered for obs4 from the posterior side kept the posture of

the torso more upwards than other subjects during manipulation, hence for them veering from the

posterior side was a choice that required less e�ort. The results presented here provide a basis for

the computational model of our obstacle avoidance strategy regarding the choice of the preferred

obstacle avoidance side, as discussed in the next chapter.
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Figure 2.3: Results from the experiment with human subjects where the obstacle was progressively
moved along the midline of the table: (a) In�uence of the position of the obstacle on a strategy
to avoid the obstacle from anterior/posterior side, (b) In�uence of the obstacle position on gaze
�xations at the obstacle during manipulation, and (c) Safety distances from the hand to the obstacle
when avoiding it from anterior/posterior side.
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An important part of the forward planning scheme is that an object in the workspace is tagged

as an obstacle if it is estimated that the hand will collide with it. As the object identi�ed as an

obstacle is the intermediary target for the visuomotor system, it is expected that it will be visually

�xated during reaching. Figure 2.3(b) shows the proportion of trials for each obstacle position

in which the obstacle object was visually �xated. It can be seen that the champagne glass was

always �xated when it was positioned at location 1 through 4 (obs1-4 in the �gure). For position

obs5, the obstacle was �xated in only 80% of the trials. The amount of �xation rapidly drops to

20% for position obs6, and to zero for positions obs7 and obs8. As expected, once the obstacle is

su�ciently far, it is no longer of interest. These results are consistent with Tresilian (1998), who

argued that objects treated as obstacles by the motor system are very likely to be visually �xated

during manipulation. Thus, our results indicate that the most likely explanation of visual ignorance

of the champagne glass when it is placed at obs6-8 is that the visuomotor planning scheme did not

identify it as an obstacle.2

Based on the study by Dean and Brüwer (1994) and the results of our human experiment where

the safety distance between the hand and obstacle was kept (Lukic et al., 2012), we hypothesized

that the control system would keep the same safety margin of ∼ 0.14±0.01m across all trials where

the champagne glass was considered as an obstructing object (namely for position 1 through 6). In

the other position, this safety margin would not be preserved as the obstacle would then be ignored.

In Figure 2.3(c), we plotted the minimum distance (the mean and the standard deviation)

between the hand and the champagne glass for all positions of the champagne glass. It can be seen

that the distance is quite consistent for obs1 to obs6, and starts increasing for obs7 and obs8. These

results also indicate that an obstacle object positioned such that it does not obstruct the original

prehensile motion is not identi�ed as an obstacle, and it is not treated as the intermediary target.

A two-way ANOVA3(factors: subjects and a binary variable that represents whether the obstacle

was �xated/not �xated in a trial) on the distance hand-obstacle reveals a signi�cant e�ect of the

obstacle �xations factor (F (1, 63) = 78.3, p < 0.001), and no e�ect of the subject factor (F (7, 63) =

0.47) and no factor interaction (F (7, 63) = 0.35). These results re�ect the fact that the distance

between the hand and the obstacle is signi�cantly di�erent when the subjects visually �xate the

obstacle, compared to the case without gaze �xations at the obstacle object in the trial. We interpret

these results as a con�rmation of the in�uence of forward planning on visuomotor coordination.

When forward planning estimates that the object obstructs intended movement, the motor system

treats the obstacle as an intermediary target. The gaze �xates the obstacle, and the hand keeps

a consistent safety distance from the object. If the object is placed in a position where it does

not obstruct movements (obs6-8), it is not �tagged� as an obstacle. The visuomotor system ignores

2At the end of all trials, we asked 2 subjects to try to reach the target when the champagne glass (obstacle) was
present, but without modi�cation of the path (as in the no-obstacle setup). Unsurprisingly, the arm/hand collided
with the champagne glass always when it was positioned at obs2, obs3, obs4, in 6 out of 8 trials the hand collided
for obs1 and obs5. The hand never collided when the obstacle was in positions obs6, obs7 and obs8.

3ANOVA (analysis of variance) is a statistical method which compares the variances around two or more means,
to determine whether signi�cant di�erences exist between distinct conditions of the experiment. See Montgomery
and Runger (2010) for more.
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Figure 2.4: Arm velocity pro�les, time normalized and averaged over all subjects for the two
conditions (gaze �xated the obstacle or not). The stars represent the time bins for which a post-hoc
t-test shows a signi�cant di�erence between the �xation conditions (p < 0.05).

objects that are irrelevant to manipulation: they are not visually salient for the gaze (Land, 1999;

Hayhoe et al., 2003; Rothkopf et al., 2007; Rothkopf and Ballard, 2009), and the hand is controlled

without keeping some safety distance with respect to them.

We show that in the trials, where the location of the obstacle is varied, gaze �xations at the

obstacle indicate that the arm keeps the safety distance from the obstacle. To further analyze the

coupling between the gaze and the arm when performing obstacle avoidance, we investigated the

in�uence of the gaze on the velocity pro�le of the arm. Alberts et al. (2002) and Hesse and Deubel

(2010) showed that the velocity pro�le usually reaches a local minimum when the arm passes by

the obstacle. In our experiment, the obstacle seems to in�uence the motion solely in trials when the

gaze stops at the obstacle. Hence, we would expect that the arm would slow down at the obstacle

only in these trials when the gaze �xates the obstacle. In the absence of the obstacle on the path

toward the target, there should be no need to visually guide the arm to avoid it. Figure 2.4 compares

the mean arm velocities across the trials in which the gaze �xated the obstacle versus the trials

where the gaze did not �xate the obstacle. The observation of such a minimum velocity con�rms

the hypothesis that the obstacle acts as an intermediary target during movements (Alberts et al.,

18



2002; Hesse and Deubel, 2010). In contrast, and as hypothesized, the velocity pro�le in obstacle-free

trials follows a regular bell-shaped pro�le.

We apply a two-way ANOVA on the velocity pro�les recorded during trials with two factors: a)

an obstacle �xations factor representing the type of trial, coded as a binary variable, to distinguish

between the conditions in which the obstacle was �xated versus not �xated; b) a time bin index

(the total time of each trial is divided into 10 equal time bins) to determine when, during a trial,

an in�uence of the presence/absence of the obstacle could be observed. We observe a strong e�ect

of the obstacle �xations factor (F (1, 6199) = 109.9, p < 0.001). This con�rms that the arm velocity

pro�le is indeed signi�cantly reduced when passing by the obstacle. There is also a signi�cant

e�ect of the time bin factor (F (9, 6199) = 1849.44, p < 0.001), indicating that during the progress

of the task arm velocity changed. As expected, the interaction between the factors is signi�cant

(F (9, 6199) = 41.44, p < 0.001) showing that the velocity pro�les in trials where the gaze �xates the

obstacle changes di�erently as the task progresses from the trials where the obstacle is not �xated.

We run post-hoc t-tests between the �xated and not �xated trials to determine time bins for which

the velocity arm pro�les di�er between the two conditions (Figure 2.4).

The �nding that the gaze �xations at the obstacle modulate the arm velocity pro�les supports

the hypothesis that the gaze-arm coupling exists when humans perform prehension with obstacle

avoidance.

Gaze-arm correlations

To see whether the gaze-arm mechanism follows a quasi-constant lag, we analyze trial-by-trial

correlations between the gaze and arm positions (computed as the Euclidean distance) with respect

to the obstacle (in the �rst segment of the movement) and correlations between the gaze and arm

distances with respect to the target (in the second segment of the movement) as the task progresses.

We plot the histogram of the Pearson's correlation coe�cient between the gaze and the arm distances

computed on a trial-by-trial basis when approaching the obstacle (Figure 2.5(a) and (b)) and the

target (Figure 2.5(c) and (d)). We see the prevalence of very high visuomotor correlations for both

objects. The distribution of trial-by-trial correlation coe�cient between the gaze and arm distances

to the obstacle has a sample mean of 0.917, and the 25%, 50% (median) and 75% percentile

correspond to 0.876, 0.956 and 0.986, respectively. Similarly, the correlation coe�cient between

the gaze and arm distances to the target has the sample mean 0.799, and the 25%, 50% (median)

and 75% percentile correspond to 0.721, 0.847 and 0.921, respectively. A two-way ANOVA for the

correlations to the obstacle (factors: subjects and obstacle position) does not reveal a statistical

signi�cance of the subject factor (p = 0.186) and no e�ect of the obstacle position factor (p = 0.77).

A two-way ANOVA for the correlations to the target (factors: subjects and obstacle position) shows

no statistical signi�cance subject (p = 0.164) and no e�ect of the obstacle position (p = 0.934) as

well.

The correlations between the gaze and arm trajectories when reaching to avoid the obstacle are
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Figure 2.5: The correlation coe�cient between the gaze and arm distances with respect the ob-
stacle and the target computed on a trial-by-trial basis when avoiding the obstacle. The motion is
segmented into two parts: from the starting position to the obstacle and from the obstacle to the
target and we compute the correlations for the corresponding parts of the movements: (a) Histogram
of the gaze-arm correlation coe�cient when reaching to avoid the obstacle and (b) corresponding
values for di�erent �xated obstacle positions, (c) Histogram of the gaze-arm correlation coe�cient
when reaching the target and corresponding values for di�erent �xated obstacle positions (d).
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quasi-constant across trials and subjects, and they are almost the same as those observed for the

target. These observations suggest that the eyes and the arm might be driven to both the obstacle

and the target by the same mechanism of spatial coordination.

Fixation durations at the obstacle

We now present the results of our analysis of gaze �xation durations at the obstacle. It is

well established that the gaze �xation durations, together with the position of the gaze, provide

a measure of cognitive processing when performing an ongoing task, being positively correlated

with cognitive load required for processing visual information (Rayner, 1998; Deubel et al., 2000;

Jacob and Karn, 2003; Hayhoe and Ballard, 2005; Tatler et al., 2011). Gaze �xations in visually

guided manipulation allow very speci�c task-dependent acquisition of visual information (Triesch

et al., 2003). This selectivity in information processing is re�ected in the duration of �xations (i.e.

a variability in �xation duration corresponds to a variability in visual features being selectively

acquired from the early visual structures and further processed in the higher cortical structures).

Figure 2.6(a) shows the histogram of the �xation durations at the obstacle where the data are

pooled from all subjects. The distribution is positively skewed with the sample mean �xation

duration at 146.4ms, where the 25%, 50% (median) and 75% percentile correspond to 80ms,

120ms and 160ms, respectively. The predominance of short �xations observed in our experiment is a

common feature of a gaze �xation pattern in natural manipulation tasks (Land, 1999; Hayhoe et al.,

2003; Hayhoe and Ballard, 2005), where the average durations of �xations are shorter compared

to durations observed in picture viewing and reading (Rayner, 1998; Henderson and Hollingworth,

1999). In spite of the predominance of brief durations of �xations in prehension movements, it

has been shown that they do support movement control. Several studies have shown that visual

information necessary for movement control can be computed within a single �xation (Ballard et al.,

1995; Land et al., 1999). This indicates quite e�cient visual processing of some easy-to-compute

visual features required for online arm movement control. A two-way ANOVA (factors: subjects

and an index variable that represents a position of the obstacle) shows no signi�cant e�ect of

the subject factor (p = 0.321) and no e�ect of the obstacle position factor (p = 0.564, see Figure

2.6(b)) indicating that �xations times are consistent both across subjects and obstacle positions.

These results are in agreement with the prior results of Johansson et al. (2001), who observed the

predominance of brief �xations at the obstacle. An interesting result comes from one of their obstacle

avoidance experiments. When active gaze movements were inhibited during obstacle avoidance,

they observed a great variability in the minimum distance kept between the obstacle and the hand.

We can speculate that the existence of these brief and quite consistent �xation times re�ect the

consistency in processing simple visual features of the obstacle in order to guide the arm and hand,

because the existence of brief �xation periods does not allow to compute some complex features

such as in reading (Rayner, 1998). Considering the predominance of brief �xation times and an

increased variability in estimating the position of the obstacle, one of these features computed is
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Figure 2.6: Distribution of gaze �xation durations at the obstacle: (a) Histogram of �xation
durations pooled from all subjects across all �xated obstacle positions, (b) The mean and the
standard deviations of times for di�erent �xated obstacle positions. In this plot we show only
�xations times and the standard deviations for positions at which the obstacle is �xated (obs1-6),
positions obs7-obs8 are omitted from the �gure because subjects never �xated the obstacle when it
was placed at these positions.
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most likely the spatial position of the obstacle. The spatial location of the obstacle can be rapidly

computed from retinal (foveal and parafoveal visual information) and extraretinal information (the

relative position of the eyes and the head) available at the moment of �xation by the specialized

neural circuitry of the dorsal visual stream (Goodale and Ha�enden, 1998; Goodale, 2011), and it

is a necessary feature in order to safely guide the arm around the obstacle.

In summary, this analysis of the duration of the gaze �xations provides support to the view

that the CNS computes simple features during �xations at the obstacle in order to aid obstacle

avoidance. The spatial location of the obstacle is likely one of the main features computed during

these gaze �xations on the obstacle.

Gaze and arm exit times from the obstacle

We provide a quantitative assessment of the relation between the gaze exit time and the arm exit

time from the obstacle4. If some coordination exists between the gaze and the arm when performing

obstacle avoidance, these two measures should be correlated. Moreover, the magnitude of the lag

between them (i.e. the di�erence between the exit times of the gaze and arm from the zone of the

obstacle) should be kept relatively tight compared to the overall time necessary to complete the

movement. When plotting the onset time of the gaze versus the arm onset time from the obstacle

we pooled data from all subjects, except for Subject 15. We can see from Figure 2.7(a) that these

two variables are linearly correlated (Pearson's correlation coe�cient r = 0.897, p < 0.001). The

slope of the �t indicates that, on average, the gaze exits the obstacle zone slightly earlier than the

hand. Figure 2.7(b) shows the histogram of the di�erence between the gaze exit times and arm exit

times, where positive values indicate that the gaze exists the obstacle �rst. The distribution has the

sample mean at 220.78ms, where the 25%, 50% (median) and 75% percentile correspond to 120ms,

200ms and 280ms, respectively. A two-way ANOVA (factors: subjects and an index variable that

represents a position of the obstacle) shows no signi�cant e�ect of the subject factor (p = 0.18) and

no e�ect of the obstacle position factor (p = 0.549), indicating that the di�erence between gaze

and arm exit times were consistent both across subjects and obstacle positions (Figure 2.7 (c)).

The predominance of positive di�erences gives evidence that the gaze leaves the obstacle before the

hand leaves it. However, the median time of this lag corresponds to only 8.3% of the median time

4The gaze exit time from the obstacle is de�ned as the time from the beginning of the trial until the onset of a
saccade away from the �xated obstacle. The arm exit time is de�ned as the time from the beginning of a trial until
the moment when the arm reaches the closest distance to the obstacle and starts moving toward the target.

5The coordination of the gaze and arm exit times from the obstacle for Subject 1 substantially di�ered from the
rest of the subjects. She has shown signi�cantly di�erent amount of the gaze-arm lag when exiting the zone of the
obstacle (mean: 448ms, std: 210.5ms) compared to the rest of the subjects (mean: 220.78ms, std: 135.75ms) and
this di�erence achieved statistical signi�cance (one-way ANOVA: F (1, 39) = 10.93, p = 0.002). A careful analysis
of the video from the eye tracker revealed her visuomotor strategy. Interestingly, her eye and arm movements were
normal, and the gaze guided the arm in all trials. However, she mostly used the coordination strategy where the gaze
�rst visits the obstacle and the moment when gaze switches toward the target she started to move the arm, i.e. start
of her arm movement was signi�cantly postponed. In all the other measures, she did not signi�cantly di�er from the
rest of the subjects.
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Figure 2.7: Gaze exit times vs arm exit times from the obstacle: (a) Scatter plot of gaze exit times
vs arm exit times from the obstacle pooled from Subjects 2-8 across all �xated obstacle positions, (b)
Histogram of gaze-arm exit time di�erences from Subjects 2-8 across all �xated obstacle positions,
where positive values mean that the gaze exits the obstacle zone before the arm, (c) The mean and
the standard deviations of gaze-arm exit time di�erences for di�erent �xated obstacle positions.
In this plot we show only �xations times and the standard deviations for positions at which the
obstacle is �xated (obs1-6), positions obs7-obs8 are omitted from the �gure because subjects never
�xated the obstacle when it was placed at these positions.
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(2.4 s) needed to complete the whole reaching movement with obstacle avoidance. This means that

this period of apparent asynchrony after the gaze switched toward the target while the arm is in

the obstacle zone takes only a small fraction of the overall movements. For the remaining 91.7%

of the task gaze and arm movements are synchronously driven to the same goal (to the obstacle

during the �rst segment of the movement, and toward the target after the obstacle is passed). Land

et al. (1999) observed in their tea-making experiment that the gaze and arm movements are highly

coupled during execution of each subtask, but when it comes to a transition toward a new target

the gaze switches approximately 0.5 s before the movement of the arm to the previous object is

completed. Johansson et al. (2001) found that the di�erence between the gaze exit times and arm

exit times was quite tight when executing sequential tasks, but the gaze starts moving toward the

new target slightly before the hand does (∼100-200ms), as well. The results were similar for a

number of di�erent movement sub-targets, including the obstacle6.

From our results and from the two aforementioned studies, it is evident that the gaze and

arm exit times, when completing one movement segment and switching to a new target, are tight

compared to the average duration of movements. Nevertheless, it remains to be discussed why this

lag is not exactly zero, meaning that the gaze and the arm switch to the next target at exactly the

same time. We here provide two alternative explanations.

First, this lag may be due solely to the well-known delays in processing the visuomotor control

loop. Such delays are of the order of 100-250ms (Wolpert et al., 1998, 2001), which amounts to

the time delays in our experiments. Although the dorsal visual stream is capable of performing

fast visuomotor transformations, it is possible that switching toward the new target is easier for

the gaze than for the arm, due to both the greater physiological complexity of the arm control

system and increased delays resulting from longer neural pathways. However, one could state an

alternative explanation that relates to the fundamental control strategy in the CNS. Because the

arm avoids the obstacle at some safety distance, and the experimental task is designed such that

obstacle position is kept constant during the trials, the �bu�ered� position of the obstacle from

the last �xation at the obstacle is a very good reference point for the arm. Land and Furneaux

(1997) have shown that information bu�ering of spatial coordinates acts as an adjutory mechanism

when transitions between visuomotor sequential tasks occur. The arm is at the moment when the

gaze leaves the obstacle displaced at some distance from to the obstacle and hence neither much

adjustment is needed nor very precise visual information is needed to avoid the obstacle. This could

be an e�cient strategy in terms of the attentional resources considering that there is neither much

6It is important to note that Johansson et al. (2001) focused most of their analysis on gaze and arm timing
with respect to entering or exiting the so-called �landmark zones�. They de�ned the landmark zone as an area
with the radius 3 ° of visual angle (2 cm) in the work plane in all directions from the corresponding objects in the
workspace, including the obstacle. They found that the gaze and arm have almost identical exit times from the
obstacle landmark zone. Considering that an approximate overall vertical arm displacement in their experiment was
12 cm, these landmark zones established a coarse representation of the workspace. However, from the plots where
precise spatio-temporal measures were presented (Figure 6A in their paper), it can be seen that the di�erence between
the median gaze and arm exit times at the exact location of the obstacle di�er approximately 200ms in favor of gaze
exiting �rst the obstacle. Similar measures of the gaze-arm exit lag hold for the other intermediary targets (e.g.
support surface, target switch, bar tool, etc.).

25



surprise in the task, nor the extreme precision is required. This suggests that the CNS employs

�loose� transition between the subtasks, saving valuable, limited attentional resources, whenever

prior information about the task suggests that not much change in the workspace is expected and

not much accuracy is needed. In the task where sequential movements had very high precision

constraints by means of the requirements of precisely touching a target, the gaze exit times were

almost always tightly synchronized with the arm exit times (Bowman et al., 2009). The experiment

of Bowman et al. (2009) shows that the �tight� switching strategy holds as well.

This analysis shows that the gaze and arm exit times from the obstacle are highly correlated,

suggesting strong visuomotor synchronization with respect to the obstacle. The time di�erence

between the gaze and the arm times when switching from the obstacle is non-zero positive, but it

remains small compared to the overall task duration.

2.3 Summary and discussion

In this chapter, we presented a human study in which 8 volunteers performed reach and grasp

movements to a single target in the presence of an obstacle. We analyzed the kinematics of vi-

suomotor coordination to provide quantitative measurements on the phase relationships across the

e�ectors.

Our human study contributed a quantitative assessment of the eye-arm coordination when

performing obstacle avoidance, an issue that has received little attention to date. Precisely, it

demonstrated that obstacle avoidance is included in forward planning and modulates the coordi-

nated pattern of the eye-arm motion in a distinctive way. The results of the study: a) quanti�ed

the phase relationship between the gaze and arm systems, so as to inform robotic models; and b)

provided insights how the presence of an obstacle modulates this pattern of correlations. We showed

that the notion of workspace traveled by the hand is embedded explicitly in a forward planning

scheme that allows subjects to determine when and when not to pay attention to the obstacle.

We hypothesized that the visuomotor system treats the obstacle as an intermediary target. Our

evidence of a systematic pattern that the gaze precedes and leads the motion of the arm through the

di�erent landmarks, de�ning the stages of a sequential task, supports this hypothesis (Johansson

et al., 2001).

In summary, the mechanism of the eyes leading the arm was observed in all trials. This study

corroborated other �ndings in the literature on a strong coupling between the arm and eye motion,

where the eyes lead the arm in a systematic and coordinated pattern. Additionally, the study

supported the hypothesis that the obstacle may act as an intermediary target.

The coordination between the gaze, arm and hand noticed in our human study is implemented

in the robotic model that we will present next. The reported existence of the forward planning

mechanism for obstacle detection has inspired us to implement the equivalent scheme for robotic

obstacle avoidance. In addition to this, the observation that the visuomotor system treats the
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obstacle as the intermediary target tremendously reduces the computational and architectural com-

plexity of our visuomotor model for obstacle avoidance scenarios. We should emphasize that this

study was particularly instrumental in providing us with quantitative data onto which to ground

the parameters of our computational model, as we describe next.
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3 Robotic Visuomotor Controller

Based on the Human Motion

Capture Study

I
n the introductory chapter, we raised up that the problem of visuomotor coordination boils down

to two main computational problems. The �rst fundamental problem of visuomotor coordina-

tion is the computation of a sequence of transformations from gaze-centered target encoding to

coordinate representations suitable to generate arm and hand movements. The second fundamental

problem, once the reference frames are computed, is how to: (a) generate movements of the eyes,

arm and hand and (b) how to appropriately coordinate the movements of these e�ectors. The �rst

problem has been extensively addressed in both neuroscience and robotic community (Ho�mann

et al., 2005; Natale et al., 2005, 2007; Hulse et al., 2009; Jamone et al., 2012, 2013). On the other

hand, the second problem, on which we focus in this chapter, has received far less attention. Simi-

larly, robotic active gaze allocation to aid complex tasks, such as obstacle avoidance, has not been

studied to the appropriate extent. In this chapter, we jointly tackle the problems of coordinated

visuomotor control and the gaze integration in a complex prehensile task such as obstacle avoidance.

In this chapter, we present a novel computational model of the coordinated visuomotor control

when performing reaching and grasping with and without the presence of obstacles. To guide

our modeling, we used the human study described in the previous chapter, in which 8 volunteers

performed reach and grasp movements to a single target in the presence of an obstacle. The human

study corroborated the coordination pattern of the gaze, arm and hand noticed in previous studies

and extended this by con�rming that this pattern is present in more complex tasks when the obstacle

is introduced in the workspace. We implement this visuomotor coordination pattern in our robotic

model. In the human study, we have shown that the notion of workspace traveled by the hand is

explicitly embedded in a forward planning scheme that allows subjects to determine when and when

not to pay attention to the obstacle. This observation has inspired us to implement a scheme for

our model for robotic obstacle avoidance. The results from humans provided signi�cant evidence

that the visuomotor system considers the obstacle as an intermediary target in prehensile tasks.

Treating the obstacle as an intermediary target of the visuomotor system tremendously simpli�es

the computational model of the visuomotor controller, from the robotic viewpoint. Finally, in

our human study, we found that humans keep a minimum safety distance between the hand and

the obstacle when performing prehensile arm movements. We implement this observation in our

robotic model, as well. The human study provided quanti�able information about the eye-arm-hand

coupling to support the design of the model's parameters.
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In our modeling, we extend the Coupled Dynamical Systems (CDS) framework, originally used

for arm-hand coordination (Shukla and Billard, 2011), to model the eye-arm-hand coordinated

pattern measured in the human study. The CDS framework provides fast and synchronous control

of the eyes, the arm and the hand within a single and compact framework, mimicking similar control

system found in humans. The parameters of our computational model are estimated based on the

data recorded in the human study.

Particularly, we extend the CDS framework for visuomotor coordination to encapsulate: a)

model of the eye-arm-hand coupling and b) modulation by an obstacle. In our work, we exploit a

biologically inspired notion of forward models in motor control (Wolpert et al., 1998, 2001) and use

a model of the dynamics of the reaching motion to predict collisions with objects in the workspace

when reaching and grasping the target object. We use the observation from the human study that

the obstacle may act as an intermediary target, in order to develop our obstacle avoidance scheme.

The objects, which are tagged as obstacles after propagating the forward model, are treated as

intermediary targets for the visuomotor system. This approach leads to a simple and computa-

tionally lightweight scheme for obstacle avoidance. As an alternative to computationally costly

sampling-based algorithms (Kavraki et al., 1996; Ku�ner Jr and LaValle, 2000), our approach uses

the ability of Dynamical Systems to instantly re-plan the motion in the presence of perturbations.

In our obstacle avoidance scheme, the gaze is an important element of the coupled visuomotor mech-

anism that is actively controlled and tightly bound to manipulation requirements and plans. We

validate the usefulness of this model for robot control, by implementing it in experiments involving

the visually-guided prehensile motion with obstacle avoidance, in simulation and the real humanoid

robot iCub (Metta et al., 2010).

We next provide a short review of the state of the art in robotic visually-aided manipulation.

3.1 Background research

3.1.1 Visually-aided robotic reaching and grasping

Solutions to robotic visual-based reaching follow either of two well-established approaches: tech-

niques that learn visuomotor transformations (Ho�mann et al., 2005; Natale et al., 2005, 2007; Hulse

et al., 2009; Jamone et al., 2012), which operate in an open-loop manner, or visual-servoing tech-

niques (Espiau et al., 1992; Mansard et al., 2006; Natale et al., 2007; Chaumette and Hutchinson,

2008; Jamone et al., 2012), which are closed-loop methods. Techniques that learn the visuomotor

maps are very appealing because of their simplicity and practical applications. However, these

methods su�er from several drawbacks. Models of the visuomotor transformations are learned by

using exploratory schemes employed by a robot that are similar to babbling employed during infant

development (Vernon et al., 2010). The number of exploratory movements that the robot needs
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to visit during the exploration is usually of the order of several thousand, or even higher. Such

extensive exploration, needed to learn a model, limits the applicability of these methods because it

is highly ine�cient in time and energy spent. The accuracy of the reaching movement is limited

by the accuracy of the eye-arm mapping estimate. Moreover, during the online control, there is

no coordinated control of the e�ectors, in terms of the active, online modulation between the gaze

and the arm. These methods often employ the �rst-�xate-then-start-reach strategy, which is not

biologically plausible, considering that the humans simultaneously issue eye and arm commands in

head-free visually-guided reaching and grasping tasks (Johansson et al., 2001; Pelz et al., 2001; Hay-

hoe et al., 2003). Finally, the reaching path is often generated by relying on interpolation between

the starting arm state and the computed goal arm state.

On the other hand, visual servoing approaches control the speed of the arm, based on mea-

surements of the visual error between the hand and the target. This approach ensures zero-error

reaching, but it requires having the target object and the hand simultaneously in the �eld of view.

Visual servoing does not allow us to produce a family of human-like motion pro�les in reaching

tasks. The previous work done on the visuomotor coordination did not explicitly address the syn-

chronization pattern of the arm transport and grip component.

A control policy of a robotic hand (or a gripper) is usually a pre-programmed routine that is

invoked after the arm reaches the target object, thus its control mechanism is not embodied in the

coupled eye-arm control, as in humans.

3.1.2 Robotic obstacle avoidance

Robots operating in cluttered environments have to be able to plan their motion, avoiding

collisions with objects in the workspace. There is a large number of obstacle avoidance methods

and providing a broad review is not our intended goal. We now provide a brief synopsis of the main

trend across these approaches. Recently the most popular methods are sampling-based algorithms

(Kavraki et al., 1996; Ku�ner Jr and LaValle, 2000). Sampling-based algorithms are very powerful,

but cannot meet the demands of rapid motion planning that humans perform almost e�ortlessly

in a fraction of a second. Additionally, robotic obstacle avoidance methods do not consider how

the gaze control is involved in the process of obtaining information about the state of obstacles

and targets, they usually assume that the environment is somehow known beforehand. Seara

et al. (2003) developed an algorithm to actively control the gaze of a humanoid robot in order to

support visually guided walking with obstacle avoidance. However, in robotic obstacle avoidance

applications involving manipulation information about the environment is obtained either by using

passive stereo systems (Khansari-Zadeh and Billard, 2012), or by relying on some special sensors

such as Microsoft KinectTM, laser rangers, etc.1 (Srinivasa et al., 2012). Having a gaze control

strategy for obstacle avoidance is crucial in order to �xate obstacles. Fixations at the obstacles

1These sensors are not controlled in terms of the active vision paradigm.
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provide accurate visual information about their state, and this information is used to proactively

guide the arm-hand system. Failure to provide visual information about obstacles can result in fatal

collisions.

3.2 Computational approach and system architecture

In the �rst part of this section, we introduce the principle of robot control by using time-

invariant Dynamical Systems (DS) and the probabilistic approach for estimating the parameters of

the system. Furthermore, we extend this formulation for modeling and control of coupled dynamics.

Finally, we show how the basic model of eye-arm-hand coordination in the obstacle-free grasping

can be extended to handle the obstacle in the workspace.

3.2.1 A single DS and GMM/GMR

The motion of our system is represented through the state variable ξ ∈ Rd, symbolizing retinal

coordinates representing the gaze state, Cartesian coordinates for the arm state, and �nger joint

angles for the hand state. N recorded demonstrations of the task yield the data set
{
ξnt , ξ̇

n
t

}
, ∀t ∈

[0, Tn] ; n ∈ [1, N ], of the robot's states and state derivatives at particular time steps t, where Tn

is the number of samples in the n-th demonstration. We posit that the recorded data samples are

instances of the motion governed by a �rst-order autonomous di�erential equation:

ξ̇ = f(ξ) + ε (3.1)

where f : Rd → Rd is a continuous and continuously di�erentiable function, with a single equilibrium
point ξ̇∗ = f(ξ∗) = 0, and ε is a zero-mean Gaussian noise term. The noise term encapsulates both

sensor inaccuracies and errors inherited from human demonstrations. Time-invariance provides

inherent robustness to temporal perturbations. In order to achieve robustness to displacement in

the position of the target, the robot's state variable ξ is represented in the target's reference frame.

We use the Gaussian Mixture Model (GMM) to encode the motion in a probabilistic framework.

The GMM de�nes a joint probability distribution function P(ξnt , ξ̇
n
t ) over the set of data from

demonstrated trajectories as a mixture of K Gaussian distributions (with πk, µkand Σk being the

prior probability, the mean value and the covariance matrix of the k-th Gaussian, respectively):

P
(
ξnt , ξ̇

n
t

)
=

K∑
k=1

πkN (ξnt , ξ̇
n
t ;µk,Σk), (3.2)
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Figure 3.1: Learning and reproducing a motion with a single time-invariant DS. Given a set of
demonstrations (red points), we build an estimate of the underlying dynamics. The asymptotic
stability of the DS guarantees that the target (black star) will be reached. The DS, for a given
robot state, computes a velocity vector that moves the robot state toward the target, hence it can
be illustrated with streamlines (blue lines) in the state space that steer the robot state toward the
target.

where each Gaussian probability distribution is de�ned as:

N (ξnt , ξ̇
n
t ;µk,Σk) =

1√
(2π)2d | Σk |

e−
1
2

(([ξnt ,ξ̇nt ]−µk)T (Σk)−1([ξnt ,ξ̇nt ]−µk), (3.3)

where the mean and the covariance matrix are de�ned as:

µk =

(
µkξ
µk
ξ̇

)
and Σk =

 Σk
ξξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇ξ̇

 . (3.4)

We use the Stable Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011)

to compute the GMM parameters. The SEDS ensures global stability of the noise-free estimate of

the underlying dynamics, denoted as f̂ .

Taking the posterior mean estimate of P(ξ̇nt | ξnt ) yields an estimate of
ˆ̇
ξ = f̂(ξ), a function that

approximates the model dynamics through a mixture of K Gaussian functions:

ˆ̇
ξ =

K∑
k=1

hk (ξ)
(
Akξ + bk

)
, (3.5)
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where hk (ξ), Ak and bk are de�ned as:
hk (ξ) = πkN (ξ;µk,Σk)∑K

i=1 π
iN (ξ;µi,Σi)

Ak = Σk
ξ̇ξ

(Σk
ξξ)
−1

bk = µk
ξ̇
−Akµkξ .

(3.6)

A toy example with a 2-dimensional DS, which illustrates the principles of encoding the demon-

strated motion and robot control by using a time-invariant DS, is presented in Figure 3.1.

3.2.2 Coupled Dynamical Systems

Recent work (Shukla and Billard, 2011) has shown the bene�ts of explicitly learning a coupling

between the arm DS and the �nger DS over modeling motions of the physical systems with a single

extended DS. The problem associated with learning one high-dimensional dynamical model that

guides the motion of two physical systems is that an explicit following of correlations shown in

demonstrations between the two coupled dynamics is not guaranteed. This could be a problem

if the robot is perturbed far from the region of the demonstrated motion, as the behavior of the

dynamical systems may not be correctly synchronized. The loss of coordination between the reach

and grasp components might lead to failure of the overall prehensile task even when the individual

dynamical systems converge to their attractors. An approach adopted in Shukla and Billard (2011)

is to separately learn two dynamics and then learn a coupling between them. This approach ensures

that the two DS will converge to their attractors, following a learned pattern of coordination between

them. The approach, where the arm and hand DS are learned separately and then coupled explicitly,

ensures that the behavior of the two systems is correctly synchronized, even when the motion is

abruptly perturbed far from the motion recorded in human demonstrations. For more details about

general properties of the CDS, see Shukla and Billard (2011).

Extended CDS architecture and learning

We extend the original CDS architecture with in total �ve building �blocks�: three dynamical

systems and two coupling blocks between them. They are organized in the following order: eye

dynamics → eye-arm coupling → arm dynamics → arm-hand coupling → hand dynamics, where

the arrow direction indicates the direction of control signals. The gaze DS is the master to the

arm DS, and the arm DS is the master to the hand DS. There is a coupling block between each

master and its slave. The major assumption is that the modulation signals between them �ow

only in the direction from the master to the corresponding slave, i.e. the dynamics of the slave is

modulated with control signals coming from its master, not vice versa. The master system evolves

independently of its slave. Figure 3.2 illustrates the architecture of the CDS, and the principles of
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Figure 3.2: CDS-based robotic eye-arm-hand coordination. Left (green) part of the �gure shows
how the CDS model is learned. Reproduction of the motion on the robot is shown on the right side
of the �gure (red part). CDS consists of �ve building �blocks�: three dynamical systems (the eyes,
the arm and the hand) and two coupling models: eye-arm coupling and arm-hand coupling.

learning and the reproduction of the coordinated motion.

The state of the eyes is denoted by ξe ∈ R2, the state of the arm is ξa ∈ R3, and the state of

the hand is ξh ∈ R9. The eye state ξe is represented as the distance between the position of the

gaze and the position of a visual target in retinal coordinates (i.e. retinal error). The arm state ξa

is represented as the distance in Cartesian coordinates between the palm center and the �nal palm

position with respect to the target object. The hand state ξh is expressed as the di�erence between

the current hand con�guration and the goal hand con�guration, i.e. hand con�guration adopted

when the target object is grasped. In other words, the attractors of the eye, arm and hand DS are

placed at the target projection in the retinal plane, its Cartesian position in the workspace and at

the corresponding hand con�guration when the target is grasped, which is formally expressed as:
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ξ∗e = 0, ξ∗a = 0 and ξ∗h = 0, respectively.

Our CDS model of eye-arm-hand coordination is built in the following manner. We �rst learn

separately joint probability distributions that encode the eye dynamics P(ξ̇e, ξe | θe), arm dynamics

P(ξ̇a, ξa | θa) and the hand dynamics P(ξ̇h, ξh | θh). Then we learn the joint distribution for eye-arm

coupling P(Ψe(ξe), ξa | θea) and arm-hand coupling P(Ψa(ξa), ξh | θah), where θe, θa, θh, θea and θah

denote the GMM parameters, and Ψe(ξe) and Ψh(ξh) denote the coupling functions. The GMMs

that encode the dynamics of the eyes, arm dynamics and the hand dynamics are learned using the

SEDS algorithm, for more details see Khansari-Zadeh and Billard (2011). The GMMs that model

eye-arm and arm-hand coupling are learned with the Expectation-Maximization (EM) algorithm

(Bishop, 2007).

Two open parameters, α and β, allow for an additional �ne-tuning of the characteristics of the

slave response (a and h subscripts denote whether they modulate the arm motion or the hand

motion, respectively). The speed is modulated with the scalar α, and the amplitude of the motion

is tuned by changing the value of the scalar β. Some robots can move faster than humans, hence

by using larger values for αa and αh, one can exploit the robot's fast reaction times. One can tailor

the amplitudes of reactions to perturbations, suitable for a robot platform and a given task, by

modulating the values of βa and βh.

Figure 3.3 illustrates the CDS model learned from demonstrations.

CDS reproduction

Algorithm 1 shows how the robotic eye-arm-hand coordination is performed with the CDS. The

eye DS evolves independently in time and leads the whole system. The eye state velocity ξ̇e is

generated by conditioning the eye dynamics model on the current eye state. The learned GMMs

are conditioned by computing the Gaussian Mixture Regression (GMR) function (Eq. 3.5), for more

about the GMR see Sung (2004). The eye state variable is incremented by adding the computed

velocity multiplied by the time step ∆t to its current value ξe. The desired arm state value ξ̃a is

inferred from the eye-arm coupling model by conditioning on the eye-arm coupling function Ψe(ξe).

The arm velocity ξ̇a is computed by conditioning the arm dynamics model on the di�erence between

the current and desired value ξa− ξ̃a. The arm state variable is incremented by adding the computed

velocity multiplied by ∆t to its current value ξa. The desired hand state value ξ̃h is obtained by

conditioning the arm-hand coupling model on the arm-hand coupling Ψa(ξa). The hand velocity ξ̇h

is inferred by conditioning the hand dynamics model on ξh − ξ̃h. Finally, the hand state variable is

incremented by adding the computed velocity multiplied by ∆t to its current value ξh. The eyes,

arm and hand reach commanded states and the loop is reiterated until the target object is grasped.

3.2.3 Eye-arm-hand coordination for obstacle avoidance
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Figure 3.3: Learned CDS eye-arm-hand coordination model: a) eye dynamics, b) eye-arm coupling,
c) arm dynamics, d) arm-hand coupling and e) hand dynamics. For simplicity of graphical repre-
sentation, we plotted the CDS model for one gaze position, one arm position and one hand position.
The eye state is presented with horizontal gaze coordinate, denoted as ξ1

e .The arm state is presented
with Cartesian coordinate that corresponds to the direction of the major hand displacement in the
task, denoted as ξ2

a. The hand state is represented by the thumb proximal joint, denoted as ξ3
h.

Superposed to the datapoints, we see the regression signal (plain line) and the di�erent Gaussian
distributions (elliptic envelopes) of the corresponding Gaussian Mixture Models.
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The extension of the CDS eye-arm-hand controller for obstacle avoidance is grounded on our

hypothesis that the obstacle acts as the intermediary target for the visuomotor system in reaching

and grasping tasks, see Chapter 2.

In order to de�ne which objects in the workspace are obstacles for the realization of the intended

reach-and-grasp tasks, we use a planning scheme to estimate the consequences of future actions.

More speci�cally, the motion of the arm toward the target is estimated by integrating the dynamics

of the extended CDS until each DS reaches its attractor. We integrated only the eye-arm part

do
General :
− query frames from cameras
− read the current hand position from forward kinematics
− read the hand joints from encoders
− recognize and segment the target object
− estimate the position of the target in both retinal

and Cartesian coordinates
− compute ξe, ξa and ξh
Gaze :

if gaze is not at target then

ξ̇e ← E
[
P
(
ξ̇e | ξe

)]
ξe ← ξe + ξ̇e∆t
− solve gaze IK
− move the eyes and head to new joint conf.

end if
Eye− arm coupling :

ξ̃a ← E [P (ξa | Ψe (ξe))]
Arm :

if the arm is not at target then

∆ξa ← ξa − ξ̃a
ξ̇a ← E

[
P
(
ξ̇a | βa∆ξa

)]
ξa ← ξa + αaξ̇a∆t
− solve arm IK
− move the arm and the torso to new joint conf.

end if
Arm− hand coupling :

ξ̃h ← E [P (ξh | Ψa (ξa))]
Hand :

if the hand is not at target then

∆ξh ← ξh − ξ̃h
ξ̇h ← E

[
P
(
ξ̇h | βh∆ξh

)]
ξh ← ξh + αhξ̇h∆t
− move the hand to new joint conf.

end if
until object grasped

Algorithm 1: CDS eye-arm-hand coordination
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of the whole CDS, ignoring the hand's DS, as our collision checking scheme is relatively simple.

The arm end-e�ector is modeled as a point that moves along the estimated trajectory. Obstacle

objects in the workspace are modeled as cylinders. The dimensions of a modeling cylinder should

enclose the actual dimensions of the object, but should also account and compensate for the fact

that the hand was modeled as a point. This is achieved by expanding the modeling cylinder for

some predetermined, �xed distance (we used 5 cm for both radius and height) from the dimensions

where it �ts exactly around the object. By taking this approach, we are able to reliably detect

collisions with the �ngers in our forward planning scheme, even though the hand is modeled as a

point. The argument for using this simplistic collision checking scheme is our attempt to minimize

additional computational load in the control loop.

An object is tagged as an obstacle when the trajectory of the end-e�ector intersects with a

cylinder modeling the object (certain collision), or when the cylinder lies within the area where it is

very likely that it will collide with the forearm (very likely collision). For the motions we consider

here and by observing the iCub's body, we de�ne this area as the slice of the workspace enclosed

by the estimated trajectory of the end-e�ector and the coronal plane of the body.

As suggested earlier on, we consider the eye-arm-hand coordination as a composition of two

segments: a motion from the starting position toward the obstacle and from the obstacle toward

the target object. Individual segments of the coordinated motion (from the starting point to the

obstacle, and from the obstacle to the target) are performed in a manner presented in Algorithm 1.

In the �rst part of the task, the arm DS moves under the in�uence of the attractor placed at the

via-point. The hand DS is driven by the attractor placed at the hand con�guration when the palm

reaches the closest point (along the trajectory computed ahead of time) to the obstacle. Coupling

the hand motion with respect to the obstacle is advantageous because it provides a preshape of the

hand such that collisions between the �ngers and the obstacle are eluded during obstacle avoidance

manipulation, even in scenarios where the obstacle is suddenly perturbed during the ongoing task

(see Figure 3.5). Our approach for adapting the reaching hand motion to avoid obstacles is motivated

by several studies that have reported signi�cant e�ects of the obstacle on all aspects of grasp

kinematics (e.g. grip duration, grip aperture, time to peak aperture, distance to peak aperture, etc)

(Saling et al., 1998; Tresilian, 1998; Mon-Williams et al., 2001). Tresilian (1998) interprets these

e�ects as subtle adjustments of the transport and grip components that support obstacle avoidance.

In their obstacle avoidance experiment, Saling et al. (1998) observed a systematic high correlation

of arm transport parameters (transport time, time to peak velocity, time to peak acceleration, etc.)

with almost all grip kinematic parameters (grip closure time, time to peak aperture, time to peak

opening velocity, grip opening velocity, etc.). This result is a very strong indication that the arm

and the hand remain coupled even when obstacles cause considerable alternations of the prehensile

motion, compared to the no-obstacle condition.

The goal hand con�guration for passing the obstacle at the closest distance is obtained by

observing the average hand con�gurations of our subjects in obstacle avoidance trials. We adapted,

with slight modi�cations, the computed average hand con�guration to match the kinematics of the
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iCub's hand. We did a similar procedure to obtain the goal hand con�gurations with respect to the

target object.

The position of the via-point is determined with respect to the obstacle, such that its displace-

ment vector from the obstacle position is oriented in either an anterior or posterior direction, for

the length that corresponds to some safety distance dsafety between the centroid of the palm and

the obstacle. We choose the direction of a displacement of the via-point (anterior or posterior) to

correspond to the side of the obstacle where a collision is estimated to occur. In the second part of

the task, after the obstacle is passed, the CDS is driven toward the object to be grasped. As men-

tioned before, hand adaptation, with respect to the obstacle, serves to support collision avoidance;

whereas hand adaptation, with respect to the target, ensures coordinated and stable grasping of the

target as the arm reaches it. Prede�ning the safety distance at which the hand passes the obstacle

is based on the study of Dean and Brüwer (1994), who found that participants kept a minimum

distance between the pointer and obstacles when performing planar pointing arm movements. In

our human study, the measured mean value of this safety distance is 0.142m with a small value of

standard deviation 0.01m, which can be considered as a consistent observation of the mechanism

employed by the motor control system to keep the limb at the safety distance from the obstacle, as

presented in Dean and Brüwer (1994).

The arm end-e�ector passing through the via-point at dsafety from the obstacle and hand adapta-

tion, with respect to the obstacle, ensures that the hand will not collide with the obstacle. However,

the end-e�ector obstacle avoidance mechanism, we just described, considers solely collisions with the

end-e�ector and hence ignores a collision with the rest of the arm. We bene�t from controlling the

arm in Cartesian coordinates and from having an e�cient inverse kinematics (IK) solver (Pattacini

et al., 2010) that is able to handle two tasks: to �nd suitable joint con�guration (primary task)

and to keep solutions as close as possible to a desired arm rest posture (secondary task). By having

the IK method that can solve for the goal Cartesian position by trying to keep joints close to a

given rest posture, we can modulate the robot's motion in the operational space by providing joint

rest postures suitable for obstacle avoidance. Our approach to the problem of �nding suitable joint

postures is to learn these joint postures from human demonstrations, as human demonstrations in

obstacle avoidance tasks encode inherently favorable joint con�gurations.

Here we learn correlations between the joints that provide major contributions to obstacle avoid-

ance manipulation and arm position in the operational space. The joints chosen to de�ne the rest

position are torso pitch and yaw, and shoulder joints corresponding to adduction-abduction and

�exion-extension. Hence, we proceed with learning the joint probability distribution P(q, x), where

q ∈ R4 denotes the joint rest posture and x ∈ R3 denotes the Cartesian position of the palm.

An adaptation of the arm posture for obstacle avoidance is done in the following manner. When

reaching for a visuomotor target (the obstacle object or the grasping object), the CDS system infers

the state velocities, as explained earlier. By integrating the arm velocity, we obtain a new arm

state. By taking the posterior mean estimate of P(q | x), we infer a favorable rest posture. Finally,

the IK solver optimizes for joint angles that correspond to the desired Cartesian position, while
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Figure 3.4: A scheme that illustrates forward planning and obstacle avoidance. After forward
integrating the CDS model, an obstacle object (dark blue disk) is identi�ed as an obstructing
object if the estimated arm motion (dashed orange line) intersects with a cylinder (dark blue circle)
that models the obstacle (certain collision), or when the cylinder lies within the area where it is very
likely that it will collide with the forearm (very likely collision). If the obstacle object is identi�ed
to obstruct the intended motion, then the motion of the visuomotor system is segmented: from the
start to the obstacle and from the obstacle to the target. When reaching to avoid the obstacle,
the arm DS moves under the in�uence of the attractor placed at the via-point with respect to the
obstacle (dark blue star). The direction of a displacement of the via-point (anterior or posterior) is
chosen to correspond to a side of the obstacle where a collision is estimated to occur: anterior side
(a) or posterior side (b). If forward planning scheme does not detect a collision with the obstacle
object (c), the visuomotor system is driven to the target object, i.e. the obstacle is ignored. The
light red star represents the goal arm position with respect to the target object (light red disk).
Figures show execution of eye-arm-hand coordination from the start of the task (left) until successful
grasp completion (right).
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attempting to keep the four joints as close as possible to the suggested values from the model.

Figure 3.4 illustrates the obstacle avoidance scheme. While this does not ensure that the robot's

arm will never collide with the obstacle, in practice, we found that this resulted in a successful

obstacle avoidance motion.

3.2.4 Robot vision system

The requirements for real-time adaptation to perturbations in dynamic environments impose

the demand for real-time update of information obtained from the sensory system. In order to

compute the position of objects in every cycle of the control loop, the total time devoted to visual

computation in our system has to be reduced to the order of ∼10ms for both cameras in the

binocular setup of the iCub robot. This is a very hard constraint to achieve in a robotic system,

even by using modern computing hardware with multicore processing units. In order to achieve the

aforementioned requirement, we designed the visual system to use minimal computational resources.

We use an image processing scheme similar to the one proposed in Metta et al. (2004). We

convert 320×240 images streamed from the cameras to 150×150 log-polar images. By transforming

the images to the log-polar domain, we reduce the amount of visual information to be processed,

a�ecting neither the �eld of view nor the image resolution at the �xation point. Besides the

computational bene�ts, log-polar mapping is biologically plausible because it approximates the

cone distribution in the retina and the mapping from the cone cells to the primary visual cortex

of primates (Bernardino and Santos-Victor, 1999; Javier Traver and Bernardino, 2010). The image

processing is done in the RGB color space, by using a pixel-by-pixel color segmentation algorithm.

The same procedure is applied for detection of the target and the obstacle, thus for simplicity of

explanation we will here use the term �object�. After the images are segmented, we apply binary

morphological operations to remove outliers, and we group segmented regions in blobs. The centroid

of the biggest blob in each image is back-projected from the log-polar domain to the original image

coordinates. The distance between the principal point of one camera (we chose the right camera)

and the center of the object blob in the visual �eld represents the eye state ξe, which is the input to

the gaze DS. The position estimation of the objects in the workspace is done by triangulating the

centroids of the blobs for the left and right camera. The other camera is controlled in a coordinated

manner such that both cameras have a �xation point at the estimated head-object distance in the

Cartesian coordinates. The distance between the hand and the estimated position of the object

represents the arm state ξa that is the input to the arm controller. Algorithm 1 illustrates the �ow

of visuomotor information processing in our model.

The decreasing visual acuity from the fovea to the periphery implies that we get a more precise

estimate of the object position at the point of �xation, and the less accurate estimation in the

periphery of the visual �eld. Because we control the gaze and embed the gaze state to the motor

control mechanism, we can inherently and e�ciently deal with imprecision in the position estimation

associated with non-uniform visual acuity in log-polar images. The CDS drives the gaze, arm and
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hand toward the object using the pose information (in retinal and Cartesian coordinates) obtained

from the vision system. As the gaze moves toward the object in every cycle of the control loop, we

update the system with a more precise re-estimate of the object position. Before the hand comes

close to the object, the gaze �xates the object, and we get the precise information about the object

position, which is crucial for successful grasping and obstacle avoidance. Our time-independent CDS

automatically adapts to the re-estimate of the object positions obtained from such a non-uniform

resolution processing scheme.

For experiments with the real iCub robot, we use the Viola-Jones detector (Viola and Jones,

2001) in addition to the basic color-based segmentation. We use the additional detector in order to

eliminate false-positives detections that are a common consequence of color-based segmentation in

an unstructured workspace. In other words, we use this detector to verify our color-based detection.

The Viola-Jones detector operates on the images streamed from the camera, not in the log-polar

domain. When both detectors agree, we update information about the positions of the objects in

the workspace, when the detectors do not agree we rely on the previously agreed position. Because

the Viola-Jones detector is more computationally demanding, we run it once in every 4 cycles of

the control loop.

3.3 Results

3.3.1 Model learning

We learn the CDS model by using the data gathered during the human trials, described in

Chapter 2. The parameters of the SEDS algorithm (i.e. maximum number of iterations, optimiza-

tion criterion, etc.) and the number of Gaussian mixtures (Section 3.2.1) are determined by using

a grid-search with 10-fold crossvalidation on the RMSE between the recorded motion and retrieved

trajectories from the model. The list of parameter combinations is sorted in ascending order with

respect to the value of the RMSE. For each combination of parameters, we visually assess regression

plots retrieved from the model. This method is necessary because the small value of the RMSE

between the trajectories retrieved from the model and the demonstrated trajectories does not nec-

essarily imply that the inferred paths always have natural-looking and smooth pro�les. In other

words, the measure of the RMSE provided an initial pool of good candidates, whereas we made the

�nal choice based on the smoothness and the �natural� pro�le of retrieved paths. The plots for the

model we chose are represented in Figure 3.3.

We use Ψe(ξe) =‖ . ‖, Ψa(ξa) =‖ . ‖ and the values of parameters αa, αh, βa and βh are

set to 1. For the choice of the eye-arm coupling function, we tested performance of four di�erent

coupling functions: (1.) Ψe(ξe) = ξ2
e (vertical gaze coordinate), (2.) Ψe(ξe) = ξ1

e (horizontal gaze

coordinate), (3.) Ψe(ξe) = ξe (both gaze coordinates) and (4.) Ψe(ξe) =‖ . ‖. We used the average
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Figure 3.5: Experiments of visually-guided reaching and grasping in the iCub's simulator, with
the presence of the obstacle and perturbations. The obstacle is an intermediary target for the
visuomotor system, hence obstacle avoidance is divided into two sub-tasks: from the start position
to the obstacle (via-point) and from the obstacle to the grasping object. Figures show execution of
eye-arm-hand coordination from the start of the task (left) until successful grasp completion (right).
Figures in the upper row (a) present a scenario when the target object (red champagne glass) is
perturbed during the motion (perturbation occurs in the third frame from the left). Visuomotor
coordination when the obstacle is perturbed during manipulation is shown in the bottom row
(perturbation in the second frame). The orange line shows the trajectory of the hand if there is no
perturbation. The purple line is the actual trajectory of the hand from the start of the unperturbed
motion, including the path of the hand after perturbation, until successful grasping. In both
scenarios (target perturbed and obstacle perturbed), the visuomotor system instantly adapts to the
perturbation and drives the motion of the eyes, arm and the hand to a new position of the object.

absolute point-to-point di�erences from all demonstrated trajectories and retrieved trajectories from

the models as a measure of how well these coupling functions perform. The best results are obtained

by the norm coupling function. Our motivation for using ‖ . ‖ function for arm-hand coupling is

based on the previous work on hand-arm coupling, see Shukla and Billard (2011). The choice of

these particular coupling functions can be considered biologically plausible. The choice of ‖ . ‖ for
arm-hand coupling is supported by the physiological studies (Haggard and Wing, 1991, 1995) that

reported strong coupling of the hand preshape with respect to the distance from the target object in

reach-for-grasping tasks. The choice of ‖ . ‖ for eye-arm coupling function is supported by the fact

that retinal distance in foveated vision directly a�ects the quality of visual information that is used

by the motor system for planning and performing manipulation, as visual acuity decreases with

distance from the fovea (Land et al., 1999; Land, 1999; Liversedge and Findlay, 2000; Hayhoe and

Ballard, 2005). All α and β parameters are set to 1 in order to ensure an unaltered reproduction

pro�le of visuomotor coordination learned from recorded human demonstrations.
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Figure 3.6: The visuomotor system ignores an obstacle object when it is not relevant to manip-
ulation, i.e. the obstacle object that does not a�ect the intended motion is not visually salient for
the gaze. Analysis of the WearCam recordings from the human trials (a) reveals that subjects do
not �xate the obstacle object (blue champagne glass) in the workspace when it does not obstruct
intended reaching and grasping movements. Our CDS eye-arm-hand model shows the same behav-
ior (b), ignoring the obstacle object (green cylinder), when the forward planning scheme estimates
that the object does not obstruct the prehensile movement. The snapshots show task from the start
(left) until completion of the successful grasp (right).

3.3.2 Model validation for robot control

We conduct a set of experiments with the iCub robot to evaluate the performance of our ap-

proach for the visuomotor coordination. Due to hardware constraints of the real robot, we perform

perturbation experiments and experiment with obstacle avoidance in the iCub simulator. Unper-

turbed obstacle-free reaching and grasping experiments are conducted with the real robot.

In our experiments, we validate the ability of the CDS controller on the iCub robot to reproduce

the same task of visually guided obstacle-free reaching and grasping similar to the one that humans

performed in our trials, together with the advocated robustness of the model to perturbations and

the ability to handle the obstacles in the workspace.

We present here the most demanding experiment we perform to validate our approach. In each

run, the object to be grasped is placed at a randomly computed position within a 15 cm cube in

the workspace. Figure 3.5 shows an obstacle scenario where we test coordinated manipulation with

sudden perturbations of the target object and the obstacle, respectively. To introduce perturbations

on-the-�y during reaching for the target, we implement a pre-programmed routine in the simulator

to abruptly change the position of the object (target or obstacle) when the hand approaches it at

some prede�ned distance, which varies from trial to trial from 0.09m to 0.15m. The robot's end-

e�ector avoids the obstacle when reaching for grasping in two task segments: (1.) start position →
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via-point at dsafety from the obstacle and (2.) via-point at dsafety from the obstacle → grasping

object. This safety distance in the human trials is dsafety = 0.142 ± 0.01m. We rescale the safety

distance from human trials by 2, because the dimensions of the iCub are similar to those of a

3.5-year-old child, hence it has a smaller workspace than our adult subjects. Once the obstacle is

reached, the target for the visuomotor system is changed, and the eye-arm-hand motion is directed

to the object to be grasped. The IK solver adapts the arm rest posture to be as close as possible

to the output inferred from the model learned from human demonstrations. Figure 3.6 shows how

human subjects ignore the obstacle when it does not obstruct the intended motion, and the same

pattern produced by our visuomotor robotic controller.

Because the eye state is the distance between the position of gaze and the position of a visual

target in retinal coordinates, and the arm state is represented with respect to the position of the

object in the Cartesian space, both variables are instantly updated when the perturbation occurs,

see Figure 3.7. The DS of the eyes adapts independently to the perturbation. The behavior of the

DS of the arm is modulated via the eye-arm coupling function, and the hand DS is modulated via the

arm-hand coupling. Such modulation ensures that the learned pro�le of eye-arm-hand coordination

will be preserved, and that the hand will re-open as the object is perturbed away from it, see Figure

3.5. Besides the anthropomorphic pro�le of visuomotor coordination (Figure 3.8), the gaze-arm lag

allows for enough time to foveate at the object, to re-estimate object's pose and to compute suitable

grasp con�guration for the hand before it approaches too close to the object.

In setups where the arrangement of the obstacle and target di�ers to a moderate extent com-

pared the setup used in the human demonstrations, the robot successfully grasps the target object,

in both obstacle avoidance and no-obstacle tasks, as shown in the experiments presented in the

paper and in the accompanying online video. Scene setups that are signi�cantly di�erent, often

imply a substantially di�erent approach of the hand to the target object than the one seen in the

demonstrations. In our case, this occasionally results either in collision of the �ngers with the

object prior to grasping or incomplete closure of the �ngers on the target object. This is not due

to our gaze-arm-hand controller, but rather is due to the fact that we rely on a prede�ned set

of the �nal hand con�gurations obtained from human trials. With moderate changes to how the

hand approaches an object with complex geometry, like the champagne glass in our experiment, the

set of stable hand con�gurations sometimes can change signi�cantly. In order to increase the rate

of grasping in scenarios that substantially di�er from the setup in the demonstrations, we would

need to use one of the robotic grasp synthesis algorithms to generate the �nal hand con�guration

(Sahbani et al., 2012).

The experiments presented here, with several additional experiments, are available online at

http://lasa.epfl.ch/videos/downloads/LukicBiologicalCybernetics2012.mp4.

3.4 Summary and discussion
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Figure 3.7: Visuomotor adaptation to perturbation during the task, generated by a sudden dis-
placement of the target object. The upper part of the graph shows how the eye state variable,
represented by ξ1

e, adapts to perturbation. The middle graph part of the graph shows the arm
state variable denoted by ξ2

a, and the lower part shows the hand state variable ξ2
h. Gaze DS adapts

independently to spatio-temporal perturbations, whereas DS guiding the arm motion is modulated
via the coupling function Ψe(ξe), and the arm motion modulates hand DS via Ψa(ξa). The �gure
shows that all three systems successfully reach the target when perturbed.

In order to design a robotic model for coupled control of the gaze-arm-hand systems, we used the

�ndings and the data from the human study that was presented in Chapter 2. A stable model of the

high-dimensional visuomotor coordination was learned by using only several human demonstrations,

making it a very e�cient, fast and intuitive way to estimate parameters of a robot visuomotor

controller. The generalization abilities of the CDS framework (Shukla and Billard, 2011) ensure
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Figure 3.8: A comparison of human visuomotor coordination and visuomotor behavior of the real
robot. The visuomotor coordination pro�le the robot produces (b) is highly similar to the pattern of
coordination that was observed in the human trials (a). The �gures from left to right show snapshots
of the execution of eye-arm-hand coordination from the start of the task (left) until successful grasp
completion (right).

the coordinated behavior of the visuomotor controller, even when the motion is abruptly perturbed

outside the region of the provided human demonstrations. Similarly to visual servoing (Espiau et al.,

1992; Mansard et al., 2006; Natale et al., 2007; Chaumette and Hutchinson, 2008), it performs a

closed-loop control, hence it ensures that the target can be reached under perturbations. Coupling

pro�les for eye-arm and arm-hand systems can be modulated, thus allowing us to adjust the behavior

of each slave system with respect to control signals �owing from the corresponding master system.

Our eye-arm-hand controller drives the arm-hand motion in synchronization with the gaze and the

arm motion. This provides a means to build a compact model of the visuomotor coordination, in a

biologically inspired manner, without pre-programming the hand control policy. The major building

blocks that constitute the architecture of our controller are the gaze DS, the arm DS and the hand

DS. These blocks are coordinated by using the gaze-arm and the arm-hand coupling functions.

Each coupling function transfers the information about the state of a master controller to signals

that modulate the behavior of a slave controller. The gaze controller is the master controller of

the arm, and the arm controller is the master of the hand. This control architecture is supported

by the existing evidence of gaze leading the arm motion (Abrams et al., 1990; Johansson et al.,

2001; Hayhoe et al., 2003) and the existing reports on coupling between the transport and the grip

component in the studies of prehensile movements (Haggard and Wing, 1991, 1995).

Based on the �ndings from our human study, we then extended the CDS framework for visuo-

motor coordination on obstacle avoidance such that the task is executed in two segments: from the
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start to the obstacle and from the obstacle to the target. In our obstacle avoidance mechanism, the

gaze is as a constituting element of the overall visuomotor mechanism, and it is actively controlled

and intermingled with manipulation requirements and plans, as corroborated in the human study.

During obstacle avoidance, the primary modulation of the arm is controlled in the operational space,

which, together with controlled hand preshape, ensures that the end-e�ector avoids the obstacle.

The rest postures suitable for obstacle avoidance are provided to the IK solver. We learned these

rest postures from the data gathered when the subjects avoided the obstacle in reach-for-grasping.

It is important to mention that our obstacle avoidance scheme does not have the full strength

of methods such as Rapidly-Exploring Random Trees (RRTs) (Ku�ner Jr and LaValle, 2000) for

reaching in very complex workspaces, but it endows the visuomotor system with instant reactions

to perturbations, thus providing a means for the rapid handling of a relatively simple obstacle in

the workspace.

Limitations

In spite of the human-like behavior the model can produce, which is also useful for robotic

visuomotor control, the controller faces a number of limitations. In the controller, we programmed

gaze movements in retinal coordinates, whereas solving for the eye-neck joints was outsourced to an

external gaze inverse kinematics (IK) optimization solver (Pattacini, 2011). This approach required

visual feedback during saccades, which is not biologically plausible and sometimes not convenient

to have in a robotic system, due to occasional failures in camera drivers that can cause the loss of

visual input. The IK solver demands the exact mathematical model of the gaze kinematic chain,

which is sometimes di�cult to obtain in a real robot, due to kinematic imperfections. Additionally,

the demand for the exact mathematical model of the kinematic chain is somewhat counterintuitive

when we consider the well-known kinematic plasticity of the gaze motor system (Desmurget et al.,

1998b; Robinson and Fuchs, 2001; Xu-Wilson et al., 2009).

Next, in this model we used Cartesian representation for programming arm motor commands.

This representation is consistent with reference frames reported to be used when humans and pri-

mates perform arm movements during highly constrained tasks such as obstacle avoidance (Desmur-

get et al., 1998a). Cartesian motor programming requires the simultaneous computation (in the

loop) of a desired Cartesian position and solving an optimization problem to compute inverse kine-

matics for the purpose of transforming the desired Cartesian state to a set of joint angles of the

redundant arm. The evidence from the human and monkey studies suggests that this transforma-

tion can be adapted with respect to the changed sensorimotor mapping (e.g., this change could be

induced by using prism goggles) (Clower et al., 1996; Andersen and Buneo, 2003; Kurata and Hoshi,

1999; Meeker et al., 2002). Such an adaptation is not possible to accomplish with the IK-solver

that requires the exact predetermined kinematics, as the one we used in our controller (Pattacini,

2011).

Additionally, evidence both from behavioral experiments and single neuron recordings suggests
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that proximal limb movements in unobstructed prehensile movements are programmed in joint

coordinates (Shadmehr and Mussa-Ivaldi, 1994; Desmurget et al., 1998a; Kakei et al., 1999). Pro-

gramming arm movements in joint coordinates could o�er some practical computational bene�ts

over programming in Cartesian coordinates. The inverse kinematic map can be computed only once,

at the beginning of the movement, to obtain the goal con�guration, and later only if we detect that

the target object is spatially perturbed.

Finally, in our model the online coupling between the gaze-arm movements is based on retinal

coordinates, as the state of the gaze controller, and Cartesian coordinates, in which the state of the

arm system is represented. While this scheme is able to provide the human-like coordination pattern

on the robot, its biological plausibility is questionable. The studies of Vercher et al. (Gauthier

et al., 1988; Vercher and Gauthier, 1988; Lazzari et al., 1997) suggest that this coupling is most

likely implemented on the interchange of the proprioceptive information between the gaze and arm.

In the next chapter, we will address the aforementioned limitations by studying the neuroscien-

ti�c principles in visuomotor coordination in humans and monkeys. The neuroscienti�c principles

serve as the basis for a number of improvements of the controller.
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4 Improvements of the Robotic

Visuomotor Controller Based on

the Lessons from Neuroscience

I
n this chapter, we redesign the controller presented in Chapter 3 to address a number of its

limitations. The controller is solely developed by considering the results of human behavioral

studies, including our study with humans presented in Chapter 2. In order to further introduce some

improvements to the controller, we here focus on the evidence from neuroscience that is obtained

from neurophysiological, lesion and imaging studies in humans and non-human primates.

Namely, we �rst review the principles behind the interaction between the cortex and the cerebel-

lum, the role of the cerebellum in computing multi-joint limb movements and coupling movements

between the e�ectors. We stress the important aspect of the exchange of motor states between the

cortex and the cerebellum, and how the cerebellum uses this information for synchronous motor

control of the eyes, head, arm and hand.

Furthermore, we complement our theoretical work with a functional, computational model im-

plemented in a humanoid robot. From our investigation of the neuroscienti�c literature, we extract

a number of computational properties and the organizational structure of the primate visuomotor

system on which we ground several improvements that we bring to our model presented in Chapter

3.

More speci�cally, we revise the gaze control block such that the target remains selected in the

retinal coordinates. A learned inverse model based on the algorithm presented in Damas and Santos-

Victor (2013) is used to provide the goal eye-neck joint con�guration. Once the desired eye-neck

joint set is computed by querying the learned model, the gaze system is driven by using the internal

feedback loop consisting of a dynamical system (DS) that iteratively evolves the gaze toward the

desired joint con�guration and takes into account the e�erence copy of joint motor commands

(Quaia et al., 1999; Optican, 2005). This allows us to generate eye-head saccades without visual

feedback during saccades. Generating saccades without visual feedback is both biologically plausible

and useful for robotic active vision, because visual feedback introduces time delays due to visual

processing, and it is sometimes unavailable due to occasional issues with camera drivers. However,

if visual feedback and the eye-neck proprioceptive readings are available, the gaze control could be

easily switched to the mode of operation with visual and proprioceptive feedback signals.

For the arm control, we take into account the principle of programming arm movements in

joint coordinates, while the bene�ts of instant motor re-programming and coupled motor control

are retained from the previous version of the controller. We model this gaze-arm transformation
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of target encoding by taking inspiration from the transformation that goes from the gaze centered

representation of arm reaching targets in the posterior parietal cortex (PPC) to the representation

in the arm joint angles in the premotor cortex (PM) and primary motor cortex (M1). Similar to the

changes we bring to the gaze controller, computing the arm joints by using the inference from the

learned model (Damas and Santos-Victor, 2013) is more e�cient than by using an iterative inverse

kinematics optimization solver.

Finally, the modi�ed gaze-arm coupling, now based on the transformation of the proprioceptive

information from the eye-neck joints of the gaze system to the arm state in joint coordinates, brings

better biological plausibility to our controller (Gauthier et al., 1988; Vercher and Gauthier, 1988;

Lazzari et al., 1997).

In this work, we aim to contribute to both robotics and systems neuroscience by proposing a

functional framework that integrates the cortical reference frames and the cerebellar coupled control,

which have been considered so far as mostly independent research problems in both areas. This

framework appears to unify a number of independent experimental observations from the primate

visual neuroscience. The properties of the proposed computational model o�er, within a compact

framework, several attractive bene�ts for visually-driven manipulation in humanoid robots. We

show that this controller is capable of reproducing several experimental results from monkey and

human studies, namely, the saccade adaptation in target-jump tasks and the pro�le of decoupled

arm-hand movements similar to cerebellar patients. Additionally, we propose a novel behavioral

experiment that can either con�rm or refute our model.

In the next section, we provide a short review of the state of the art in neuroscience regarding

the investigation of the visuomotor principles, tackle a number of well-known models and outline

the missing pieces we aim to �ll with this work.

4.1 Background research

4.1.1 Neuroscientific models of gaze control and visuomotor

coordination

In this section, we �rst summarize the main focuses of research in neuroscience of human and

monkey visuomotor control. We then focus on several well-known neuroscienti�c models concerning

the gaze control, hand control and gaze-arm coupling.

Considering the work on neural structures involved in visuomotor control, two complementary

streams of research appeared. The �rst stream of research has been focused on investigating corti-

cal structures such as the posterior parietal cortex, the premotor and the motor cortices, including

the superior colliculus, a subcortical structure, and studying their role in reference frame trans-

formations (Rizzolatti et al., 1997; Goodale and Ha�enden, 1998; Batista et al., 1999; Andersen
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and Buneo, 2003; Crawford et al., 2004; Andersen and Cui, 2009; Beurze et al., 2010; Crawford

et al., 2011; Goodale, 2011). The second major stream of research interest has been focused on

the cerebellar plasticity, modeling its role in compensating delays in the motor loop, movement

generation and synchronization of limb movements (Thach et al., 1992; Wolpert et al., 1998; Thach,

1998b; Kawato, 1999; Wolpert and Ghahramani, 2000; Wolpert et al., 2001; Miall and Reckess,

2002; Ohyama et al., 2003). In systems neuroscience, not many attempts have been made to pro-

pose computational functional models of how the cortex and the cerebellum interact in the context

of visually driven prehension (Castiello, 2005; Castiello and Begliomini, 2008; Middleton and Strick,

2000).

For gaze control, Optican and coauthors proposed a set of models of the cerebellar interaction

with the superior colliculus and frontal eye �elds in saccadic eye movements (Lefèvre et al., 1998;

Quaia et al., 1999; Optican, 2005). Their model, well-grounded in the neurophysiological evidence,

represents a very detailed schematic of the interaction between the cerebellum, superior colliculus

and brainstem nuclei for driving and stabilizing the eye movements. The most prominent feature of

their modeling is the role of the cerebellum (namely, the oculomotor vermis and the caudal fastigial

nucleus) as the key element in the local feedback loop that monitors the e�erence copy of the gaze

commands and, based on it, adaptively steers the saccade to the target end-position. On the other

hand, in their model, the superior colliculus and the cortical areas (frontal eye �eld (FEF), lateral

intraparietal area (LIP)) are responsible to determine the desired target in the retinal encoding.

Although this model is probably the most detailed and most prominent model of saccade generation,

it has a number of shortcomings when transferred to our problem. The model is solely concerned

with head-�xed, 2D saccades. The architecture of the model does not include the interaction with

the reach and grasp components, similar to the majority of the other saccade models. Additionally,

their mathematical model is de�ned by a number of hand-preset parameters, it is, therefore, di�cult

to learn and apply the model to di�erent setups.

Furthermore, for modeling visually-driven grasping, the majority of the work has been focused

on modeling the interaction between the anterior intraparietal area (AIP) and the premotor cortex

(PM) (Rizzolatti and Luppino, 2001; Fagg and Arbib, 1998). In this modeling, the three classes

of neurons (visual, mixed visual and motor and motor neurons) in the AIP transform visual repre-

sentation of the object to be grasped, over an intermediate visuomotor representation, to a motor

representation suitable to control the hand (Sakata et al., 1995; Fagg and Arbib, 1998; Murata

et al., 2000). The visual features of graspable objects that are initially encoded in the AIP are

the size, shape and orientation (Sakata et al., 1995; Murata et al., 2000). The hand motor con�g-

uration computed in the AIP is projected to the PMd and PMv (Rizzolatti et al., 1997; Luppino

et al., 1999; Castiello and Begliomini, 2008), where the �ner elaboration of motor actions is devised

(Castiello, 2005; Culham et al., 2006; Olivier et al., 2007; Castiello and Begliomini, 2008). The

PMv provides �ner selection and segmentation of grip actions based on a�ordances provided by

the AIP and this information is further transferred to the PMd (Rizzolatti et al., 1988), which

has the role of keeping, monitoring and visually updating memory representation of hand motor
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con�gurations for grasping (Raos et al., 2004; Castiello, 2005; Castiello and Begliomini, 2008). The

PMd motor-related temporally segmented information is transferred to the M1, which is involved

in issuing low-level control commands for performing precise, independent �nger movements (Lang

and Schieber, 2003; Castiello and Begliomini, 2008). Yet, this line of modeling misses to include the

cerebellum for hand control, which is the important element involved in the computation of syner-

gistic �nger movements (Jueptner et al., 1997a,b) and coupling the grasp with the reach component

(Rand et al., 2000; Zackowski et al., 2002).

Finally, for the interaction between the visual control system and the arm, Vercher and coauthors

proposed a series of models based on their monkey and human studies regarding the interaction be-

tween the smooth pursuit and arm motor system in tracking tasks (Gauthier et al., 1988; Vercher and

Gauthier, 1988; Lazzari et al., 1997). In their high-level conceptual model (Gauthier et al., 1988),

they stressed the important aspect of the interchange of the proprioceptive information between

the smooth pursuit and the arm system, and proceeded with building the computational model

(Lazzari et al., 1997), which can faithfully replicate a number of interesting observations from be-

havioral experiments. The visuomotor coupling block of their model corresponds to the cerebellum,

namely, it models the high level interaction between the �occulus, responsible for smooth pursuit

eye movements, and the dentate nucleus, responsible for eye-arm coupling and arm motor control.

However, this model is limited to producing 2D eye movements and planar arm movements, which

obviously represents a hard constraint for representing the complex coordination between head-free

eye-head saccadic movements and unrestricted, three-dimensional arm movements. Furthermore,

the hand control and arm-hand coupling are not included in their model.

Interestingly, in the context of the full eye-head-arm-hand coordination, to the best of our

knowledge, there is no such model yet, even at the functional level of abstraction. In this chapter,

we aim to �ll this gap by proposing both theoretical, schematic model, and its computational

implementation in the robot. The computational implementation of this model is expected to bring

a number of practical improvements over our robotic controller presented in the previous chapter.

4.2 Schematic model of the central nervous system for

visuomotor control

In this section, we present a schematic model of the elements of the central nervous system

(CNS) that are involved in visuomotor target encoding and coordinated visuomotor control. Before

proceeding with further reading, the reader should note that, in our modeling, we jointly take

into account the results obtained from monkey and human studies. Most of the neurophysiological

data reported in the literature were obtained from monkeys. We include results obtained from

humans, whenever applicable. The intermixing of the presented results is not problematic because

the visuomotor coordination principles and their anatomical substrates in humans and monkeys are

regarded as highly similar. For example, the eye-head saccade system of monkeys is very similar
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to the one in humans (Desmurget et al., 2000; Saeb et al., 2011). The anatomical and functional

homologues of the superior colliculus and lateral intraparietal area, parietal reach region and anterior

intraparietal area, the areas involved in eye movements, reaching and grasping, respectively, are

well established in both lesion studies and brain imaging, as reviewed in (Andersen and Buneo,

2002; Castiello, 2005; Culham et al., 2006; Castiello and Begliomini, 2008; Vesia and Crawford,

2012). Similarly, the organization of the visuomotor coordination, and the nature of the cerebellar

contribution to it, appear to be very similar between the species (Gauthier et al., 1988; Vercher

and Gauthier, 1988). Some subtle di�erences that arise, for example, from di�erent values of

mechanical parameters of the gaze system (Saeb et al., 2011), or from the di�erences in the time

course of adaptation of reactive saccades (Desmurget et al., 2000), are not an issue at the level of

abstraction we take in our modeling. Figure 4.1 presents the most relevant brain areas involved in

gaze-arm-hand target encoding and coordinated motor control.

4.2.1 Cortical reference frames for target encoding

Our modeling starts with the well-known hypothesis that motor commands are programmed in

egocentric coordinates (i.e. in coordinates relative to some parts of the body. This seems to be the

default and fundamental characteristics of the vision-for-action system (Goodale and Ha�enden,

1998; Crawford et al., 2004; Goodale, 2011; Crawford et al., 2011). There is ample evidence that

initial targets for gaze movements are encoded in relative retinal coordinates, and unconstrained

arm and hand movements are encoded in relative joint coordinates. We next discuss in more detail

how we use this information in our modeling.

Reference frames for target encoding in gaze control

A number of cortical areas are involved in selecting targets for gaze control (Figure 4.1(a)): the

lateral intraparietal area (LIP), frontal eye �elds (FEF), supplementary eye �elds (SEF) and the

superior colliculus (SC) (Andersen and Buneo, 2003; Krauzlis, 2005; Culham et al., 2006; Constantin

et al., 2007). These areas are strongly interconnected and constitute a distributed network devoted

to generating saccadic eye movements (Blatt et al., 1990; Andersen et al., 1990; Matelli and Luppino,

2001; Sparks et al., 2001; Paré et al., 2001; Ferraina et al., 2002; Andersen and Buneo, 2003). In our

model, the targets that trigger eye movements are encoded in relative retinotopic coordinates, i.e.

the distance vector between the retinal target projection and the location of the fovea, as reported in

LIP (Colby and Duhamel, 1996; Andersen and Buneo, 2002; Constantin et al., 2007), SC (Freedman

and Sparks, 1997; Krauzlis et al., 2000; Klier et al., 2001, 2003b; Bergeron et al., 2003; Constantin

et al., 2004; Krauzlis, 2005; DeSouza et al., 2011), FEF (Dassonville et al., 1992; Russo and Bruce,

1993; Tu and Keating, 2000; Constantin et al., 2007; Monteon et al., 2013) and SEF (Russo and
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Figure 4.1: Outline of the primary anatomical regions and pathways for visuomotor control in
the macaque CNS. For clarity of graphical representation of the corresponding areas and signal
routes between them, we separately present: (a) neural circuitry for saccades (eyes) and (b) neural
circuitry for reaching and grasping (arm and hand). For the same reason, the visual cortex, the
extrastriate visual cortical areas and some additional areas that are involved in the higher aspects
of visuomotor control (e.g. the inferior temporal cortex and the prefrontal cortex) are not presented
here as well. List of abbreviations: AIP: anterior intraparietal area; VIP: ventral intraparietal
area; LIP: lateral intraparietal area; PRR: parietal reach region; S1: primary somatosensory cortex,
M1: primary motor cortex; SMA: supplementary motor area; PMd: dorsal premotor cortex; PMv:
ventral premotor cortex; SEF: supplementary eye �elds; FEF: frontal eye �elds; CN: caudate nucleus
of the basal ganglia; SNr: substantia nigra pars reticulate; SC: superior colliculus; PMN: brainstem
premotor nuclei; VN: vestibular nuclei. The �gures are adapted from (Kandel et al., 2000; Rizzolatti
and Luppino, 2001; Krauzlis et al., 2004; Krauzlis, 2005; Vesia and Crawford, 2012)

Bruce, 1996; Russo et al., 2000; Martinez-Trujillo et al., 2004; Constantin et al., 2007)1.

The LIP, SEF, FEF and SC, encode the saccadic targets in relative retinal coordinates (Krauzlis,

2005), whereas the conversion from the retinal commands to eye and head joint movements is

implemented in the downstream structures, where the cerebellum takes the predominant role (Klier

et al., 2003b,a; Crawford et al., 2011). For example, in patients with speci�c cerebellar lesions,

the Listing's law for eye movements does not hold, which suggests that the retinal coordinates to

joint angle conversion occurs in the cerebellum. The initial target encoding in retinal coordinates

(performed in the LIP-SEF-FEF-SC network), and transformation of these coordinates to a set

of goal eye-neck joint angles to drive gaze movements by the internal feedback loop (i.e. internal

model; done by the cerebellum and the other regions of the brainstem) is the feature we implement

1Interestingly, neural recordings and electrical stimulation of the SEF have revealed that this area uses multiple
reference frames, including retinal, head-centered and space-centered coordinates for encoding saccadic targets.
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in our model, see Section 4.2.2 for more on the cerebellar contribution to gaze control.

Reference frames for target encoding in arm control

In our model, in the starting stage of visuomotor transformations, arm reaching targets are

encoded in gaze-centered coordinates, according to the evidence of such encoding in the parietal

reach region (PRR) of the superior parietal lobule (SPL) (Andersen et al., 1985; Batista et al.,

1999; Buneo et al., 2002; Medendorp et al., 2003; Buneo and Andersen, 2006; Bhattacharyya et al.,

2009; Crawford et al., 2011). The PRR is involved in encoding spatial targets for reaching, not

for issuing motor commands per se, which supports the view that the primary role of the PRR

in target selection and in sensorimotor transformations for target representation (Fernandez-Ruiz

et al., 2007; Crawford et al., 2011).

Gaze centered encoding in the SPL projects to the dorsal premotor cortex (PMd) (Kurata,

1991; Johnson et al., 1996; Galletti et al., 2003), and via the PMd to the primary motor cortex

(M1) (Johnson et al., 1996; Lacquaniti and Caminiti, 1998). The PMd, PMv and M1 are found to be

strongly active during visually guided reaching and pointing movements (Sasaki and Gemba, 1986;

Georgopoulos et al., 1988; Kettner et al., 1988; Schwartz et al., 1988; Caminiti et al., 1991; Fogassi

et al., 1992; Kurata and Ho�man, 1994). Evidence that the �ow of information from the posterior

parietal to the frontal areas is mostly involved in sensorimotor transformations, but not in directly

issuing motor commands, comes from the studies that have revealed that the PMd is not essential for

the direct generation of reaching movements but for encoding of the sensory representation about the

target location (Johnson et al., 1996). Along this sequence of sensorimotor transformations, Kakei

and coauthors in a series of their single-cell recording experiments found a spatial transition between

neurons in the PM to the M1 shows a gradual shift in coding from predominately spatial encoding

to a primary pattern of movement encoding in joint/muscle activations, respectively (Kakei et al.,

1999, 2001, 2003). Furthermore, sensorimotor-related neural activations on average occur earlier in

the PM than in the M1, which comes in support of the hypothesis of the sequential reference frame

transformation model directed from the parietal to the frontal areas (Kakei et al., 2001). In their

study, Beurze et al. (2010) found a similar, gradual transition from gaze-centered encoding in the

PPC to body-centered, joint-based coordinates in the M12. Motivated by the existing evidence, we

represent the �nal target representation of the arm target in arm joint coordinates.

Additional evidence about the reference frames used for programming arm movements comes

from the analysis of the kinematic measures of arm movements in behavioral studies. Similar to eye

movements, arm reaching movements are believed to be programmed in relative joint coordinates, as

observed in behavioral studies (Desmurget et al., 1998a; Crawford et al., 2004; Buneo and Andersen,

2006; Blohm et al., 2008). The behavioral study of Soechting and Lacquaniti (1981) has shown

the invariant pattern of covariation between the shoulder and the elbow joints during movements

2In the �nal stage of sensorimotor transformations, the regions of the M1 and PMd specialized in reaching are
found to project to the spinal cord (He et al., 1993; Johnson et al., 1996; Scott, 2003).
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of the arm. On the other hand, the pattern of spatial arm trajectories has shown substantial

variability when compared with the almost linear relations between joint activations. Soechting

and Lacquaniti (1981) interpreted the invariance between arm joints as the evidence that the arm

movements are programmed in joint coordinates. These results have been corroborated by a number

of subsequent studies (Soechting and Lacquaniti, 1983; Lacquaniti et al., 1986; Rosenbaum et al.,

1995; Desmurget and Prablanc, 1997; Osu et al., 1997). Desmurget et al. (1997) found in their

study a di�erence between two major strategies in motor programming of reaching movements.

They found that unconstrained reaching movements are planned in joint coordinates. However,

their results suggested that highly contained reaching movements, such as obstacle avoidance, are

programmed in Cartesian coordinates, as in our robotic model for obstacle avoidance presented in

Chapter 3.

Prism adaptation studies show that learning of sensorimotor reference frame transformation for

visually guided reaching occurs across the PPC (Clower et al., 1996; Andersen and Buneo, 2003),

the PMv (Kurata and Hoshi, 1999) and the PRR (Meeker et al., 2002). Motivated by the results

of the prism adaptation studies, the reference frame transformation from gaze centered to arm

centered encoding in our model is not rigid, it can be adapted.

Reference frames for hand control

The anterior intraparietal area (AIP) of the IPL is involved in transforming visual, shape based

representation of the object to be grasped, over an intermediate visuomotor representation, to

a motor representation suitable to control the hand (Sakata et al., 1995; Fagg and Arbib, 1998;

Murata et al., 2000). The hand motor con�guration computed in the AIP is projected to the

PMd and PMv (Rizzolatti et al., 1997; Luppino et al., 1999; Castiello and Begliomini, 2008), where

the �ner elaboration of motor actions is devised (Castiello, 2005; Culham et al., 2006; Olivier

et al., 2007; Castiello and Begliomini, 2008). Both the PMv and PMd are known to be active in

visual control of hand movements while grasping (Rizzolatti et al., 1988; Raos et al., 2004). The

PMd motor-related temporally segmented information is transferred to the M1, which is concerned

with lower-level motor control of grasping (Brochier et al., 2004). The M1 is involved mostly in

issuing control commands for performing precise, independent �nger movements (Lang and Schieber,

2003; Castiello and Begliomini, 2008), whereas synergistic �nger movements are probably computed

elsewhere. �Vectorial programming� of the whole-hand movements is most likely computed in the

cerebellum and these commands are sent to the M1 for segmentation and low-level control, via

the loop between the M1 and the cerebellum (Section 4.2.2). The grasping areas of the CNS are

presented in Figure 4.1(b).

4.2.2 Cerebellar dynamical control and motor coupling
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Our modeling of the cerebellar contribution to visuomotor control is built around the hypothe-

sis that the cerebellum plays a crucial role in the coupled control of movements of di�erent motor

e�ectors, including guiding and synchronizing visuomotor actions (Miall et al., 2000, 2001). Its

extensive network of anatomical connections with a great number of cortical visuomotor struc-

tures, including the PPC, M1, LIP-SEF-FEF-SC network and the low-level downstream structures

such as the brainstem, aid the role of the cerebellum as a motor coordinator (Stein, 1986; Thach,

1998b,a; Middleton and Strick, 2000). Lesions of the cerebellum induce substantially more dramatic

impairments of multi-joint movements compared to motor abilities to perform simple, single-joint

movements (Thach et al., 1992; Thach, 1998a; Miall et al., 2001). This suggests that one of the

primary roles of the cerebellum is in multi-joint movement coordination, indeed3. Furthermore,

single cell recordings from the dentate and interpositus nuclei of the cerebellum suggest that the

cerebellum is recognized to command motor correction signals on a real time basis in order to adapt

to perturbations induced during ongoing movements (Thach et al., 1992; Miall et al., 2001). Among

its multiple roles, the cerebellum is also known to have a role as a state predictor, for the purpose

of compensating delays in the sensorimotor loop and for estimating consequences of intended tasks

(Paulin, 1993; Wolpert et al., 1998; Wolpert and Ghahramani, 2000; Wolpert et al., 2001)4.

Traditionally, computational models of the cerebellum have been primarily concerned with

modeling the role of the cerebellum in compensation of delays in the sensorimotor loops (Miall

et al., 1993), predicting contexts based on internal forward models (Wolpert and Ghahramani,

2000; Wolpert et al., 2001), providing computational models for cerebellar motor learning (Kawato

and Gomi, 1992a,b) and head-�xed saccade control (Lefèvre et al., 1998). However, few attempts in

computational modeling have tackled the involvement of the cerebellum coordinating natural, unre-

stricted eye-head-arm-hand actions. This is a niche where our neuroscienti�cally-inspired modeling

e�ort is concentrated.

Cerebellar contribution to gaze control

In our model, saccadic targets are encoded in relative retinal coordinates as presented in the

LIP-SEF-FEF-SC network (Section 4.2.1). On the other side of this transformation, low-level

structures such as the reticular formation saccade generator of the brainstem already have access

to information about the joint angles of the eyes and the neck (Crawford et al., 2011). This

indicates that the computation of the saccade command velocity and conversion of the retinal error

to eye-head joint rotations must be utilized somewhere between these structures, most likely by

the cerebellum and the brainstem. Figure 4.1(a) presents the aforementioned gaze control routes

involving the cerebellum. In our model, we take into account the transformation of the retinal error

to the desired gaze eye-neck joints that de�ne the end-point �xation. It is well-known that the

3The cerebellum is a multivariate motor controller, as expressed by the methodology of control theory.
4The cerebellar estimation of consequences of motor actions has inspired us to develop the forward planning

mechanism for detection of obstacles presented in Chapter 3.
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cerebellum takes a role in long-term motor adaptation of forward and inverse models for saccadic

and smooth pursuit eye movements (Desmurget et al., 1998b; Robinson and Fuchs, 2001; Xu-Wilson

et al., 2009). The adaptive nature of this mapping has inspired us to introduce the machine learning

approach to implementing the retino-motor mapping for gaze control.

In addition to the role of the cerebellum in the conversion from the retinotopic encoding to

gaze motor commands, the cerebellum is a major feedback structure for online steering of gaze

movements, where a number of cerebellar regions are involved: the ventral para�occulus (VPF) (for

smooth pursuit) and the oculomotor vermis and the underlying caudal fastigial nucleus (for sac-

cades) (Quaia et al., 1999; Lefèvre et al., 1998; Robinson and Fuchs, 2001; Krauzlis, 2005; Optican,

2005). Thus, we model the internal feedback loop that steers the eye-neck system to the end-point

�xation as de�ned by the set of eye-neck angles. The output velocity commands derived from the

internal forward model are integrated to command the eye-head posture. The discrepancy between

the observed remarkable �nal accuracy of gaze end-points and the considerable inherent variability

in the gaze motor commands could not be due to an open loop controller, which suggests the exis-

tence of an internal feedback loop that correct the gaze in �ight (Scudder et al., 2002; Chen-Harris

et al., 2008; Xu-Wilson et al., 2009). Based on this evidence, a number of subsequent works have

suggested that the cerebellum is this internal feedback element that monitors and corrects gaze joint

motor commands in an online fashion (Robinson and Fuchs, 2001). Because the proprioceptive and

visual feedback is too slow to be used in online control, the cerebellum relies on the e�erence copy

of the motor commands to perform online correction of movements based on the residual motor

error (Lefèvre et al., 1998; Quaia et al., 1999; Xu-Wilson et al., 2009).

Cerebellar contribution to arm control and gaze-arm coupling

Following the evidence that the cerebellum has a prominent role in controlling goal-directed

arm movements, we include the cerebellar contribution to arm control in our model. From the fast

routing inputs from the M1 via the pons and the spinal cord (Thach et al., 1992), the cerebellum

can access to the cortical target representation for arm movements (Section 4.2.1). (The connec-

tions between the cerebellum, the arm-hand cortical motor areas and the brainstem are outlined

in Figure 4.1(b)). Cerebellar patients show kinematic de�cits while performing arm movements

such as reaching (Becker et al., 1990, 1991; Bastian et al., 1996; Zackowski et al., 2002), pointing

(Bonnefoi-Kyriacou et al., 1998) and throwing (Timmann et al., 1999). Cerebellar patients exhibit

greater end-point errors in arm reaching, and movements are performed slower compared to healthy

subjects (Zackowski et al., 2002), with improper inter-joint coordination (Becker et al., 1991). The

magnitudes of angular joint velocities were impaired, and the loss of proper temporal synchroniza-

tion between shoulder and elbow joints was observed (Becker et al., 1991). Based on the evidence

that the cerebellum computes arm joints in a simultaneous manner, in our model arm joint move-

ment commands are computed jointly, in a vectorial fashion. The main feature of arm movements

in cerebellar patients is the loss of coordination across many joints involved in the task (Bastian
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et al., 1996). Cerebellar patients have shown the �one-joint-at-the-time� strategy while reaching,

while healthy controls simultaneously controlled arm joints.

Next, the gaze-arm coupling block of our model is based on the hypothesis that the interpositus

and dentate nucleus are responsible for such coupling, and that the nature of this coupling is based on

the model that stores correlations between the gaze motor error and arm motor error, hence gaze-

arm coupling is state-based not time-based. Dysfunctions of the cerebellum produce substantial

drops in the performance of coordinated eye and arm movements (Bekkering et al., 1995; Miall

et al., 2000, 2001; Miall and Reckess, 2002). In patients with cerebellar ataxia, motor latencies for

movement initiation were increased when the patients were performing a step-tracking task with

simultaneous engagement of eye and arm movements compared to a task that required individual

eye or limb movements (Brown et al., 1993; van Donkelaar and Lee, 1994). Miall et al. (2001)

found that the cerebellar activation parametrically increases with the level of required visuomotor

coordination in a tracking task. Vercher and Gauthier (1988) have shown that lesions of the dentate

nucleus produce uncoupling of eye and arm movements. The input signal about the gaze state used

for the gaze-arm coordination is most likely utilized in the form of the e�erence copy of gaze motor

commands (Cotti et al., 2011). The visuomotor coordination between the gaze and the arm is

believed to be based on the cerebellar mapping between non-retinal gaze motor errors and motor

errors of the arm (Miall et al., 2000). Additional support that the input for gaze-arm coordination

is the gaze motor commands and not the retinal error are the results of visuomotor experiments

that suggest that the pattern of visuomotor coordination is preserved even in the total darkness

(Lazzari et al., 1997).

Cerebellar contribution to hand control and arm-hand coupling

The cerebellum is involved in coupling of arm reaching and hand grasping movements, as well. In

our model, based on the evidence from the literature, the interpositus and dentate implement arm-

hand coupling. In their brain imaging study, Jueptner and coauthors found signi�cant activations

of the cerebellar nuclei during learning and reproducing a set of �nger movements (Jueptner et al.,

1997a,b).

Regarding the arm-hand coupling, Rand et al. (2000), in their study with cerebellar patients,

found that the kinematic measures of the arm and hand systems in cerebellar patients varied sig-

ni�cantly compared to healthy control subjects, who exhibited very tight coupling between the arm

and the hand kinematic parameters (namely, times of the maximum velocity of the wrist and the

maximum grip aperture). Similarly, in the study of Zackowski et al. (2002) with cerebellar patients,

individual arm and hand components were a�ected. Interestingly, in their study, the de�cits in

coordination of these components were even more striking. The coupling between the components

was severely deteriorated compared to healthy controls. The patients frequently dropped the object

due to improper synchronization between the reaching and grasping components. The similar loss

of synchronization of the hand preshape with respect to goal-directed arm movements together with
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Figure 4.2: Based on our literature investigation, we propose a block scheme of visuomotor coor-
dination. The left part corresponds to the cerebral cortex, with the corresponding blocks relevant
for visual target selection, representation of saccade targets, reference frame transformation for arm
reaching and grasp planning. The right part of the �gure corresponds to the cerebellum and blocks
responsible for online control of the gaze, arm and hand and their synchronization. Parts that are
not directly relevant to our modeling, such as mid-stop relay stations such as the pons, SNr, etc.
are not represented in the diagram in order to simplify the graphical representation. Similarly,
ascending output signals from the cerebellum to the M1 are directly represented as arrows carrying
motor commands to their corresponding plants.
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the increased variability in arm trajectories was observed a throwing task, as well (Timmann et al.,

1999). The study of Mason et al. (1998) where they selectively inactivated the dentate and inter-

positus nuclei by muscimol injections provided further insights on how arm and hand movements

are coupled in the cerebellum. They found that the inactivation of the anterior interpositus and

adjacent dentate impaired control of grasping, leaving arm reaching mostly intact. On the other

hand, inactivation of the posterior interpositus and adjacent dentate a�ected reaching without af-

fecting grasping. Moreover, the study of Mason et al. (1998) suggested that the connections of the

anterior hand regions and the posterior reaching regions contribute to coupling of arm and hand

movements.

A series of perturbation studies of Haggard and Wing (Haggard and Wing, 1991, 1995, 1998)

has provided solid evidence that the arm and the hand are coupled by the state-based, time-

invariant principle of coordination. Considering that the dentate and the interpositus implement

this coupling, as revealed by neuroscienti�c studies, we propose that state-based, time-invariant,

coordination is a principle of visuomotor coupling implemented in the dentate and the interpositus.

This principle is implemented in our computational model.

Based on our literature investigation, we created a functional schematic model of cortico-

cerebellar involvement in reference frame transformations and motor control for visuomotor co-

ordination. This model is presented in Figure 4.2.

4.3 Computational model for visuomotor control

4.3.1 Model premises

We next present a model for visuomotor control that is built upon the investigation presented

in the previous section. Our model represents a computational implementation of the schematic

illustrated in Figure 4.2. It shares, on a functional level of abstraction, a number of resembling

features with the corresponding parts of the primate cortico-cerebellar circuitry involved in visuo-

motor control. The model incorporates: (a) target encoding transformations and representations

for eye, arm and hand control that are reported to be used in the cortex and (b) the coupled control

principles that are found in the cerebellum. It should be emphasized that this architecture is nei-

ther a detailed model nor an exhaustive model of the CNS. Rather, it is a functional mathematical

abstraction that shares a number of similarities with the biological, functional organization and

biological computational principles involved in primate visuomotor control. Our primary reason

why we focus on a functional model, instead of a very detailed model, is to keep the model detailed

enough to be a useful abstraction for systems neuroscience, but still limited in scope to make the

model computationally tractable for robotic implementation.
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The biological features of our model are reference frames (and their transformations) used for

motor control and the organization of the coupled motor control between di�erent e�ectors. We

model the reference frame transformations by using the In�nite Mixture of Linear Experts (IMLE)

algorithm (Damas and Santos-Victor, 2013). We devise the cerebellar coupling by using the Coupled

Dynamical Systems framework, the same computational approach that has been presented in the

previous chapter. It is important to note that both algorithms are not implemented by using the

connectionist, more biologically plausible, approach. However, the functionality they provide is

particularly useful to mimic some fundamental aspects of the motor control circuitry reported from

neuroscience studies in primates. The aimed contribution of this work to systems neuroscience

is to propose a functional and a mathematical model of visuomotor coordination that shares a

resemblance to the functional high-level organization and the interaction between the cerebellum

and the cortex. The features of our model that share a resemblance to the corresponding features

of the primate visuomotor circuitry are, namely:

1. Visual targets for gaze commands are selected in retinal coordinates (summarized in Section

4.2.1) whereas gaze commands are programmed multi-joint in eye-neck coordinates (summa-

rized in Sections 4.2.1 and 4.2.2 )

2. Arm movements are programmed in joint coordinates (summarized in Section 4.2.1)

3. Hand movements are programmed in joint coordinates (summarized in Section 4.2.1)

4. Eye, arm and hand motor commands are represented in terms of the motor error, i.e. relative

coordinates (summarized in Section 4.2.1)

5. Retinal errors are converted to eye and neck joint commands in the cerebellum and the other

brainstem nuclei (summarized in Sections 4.2.1 and 4.2.2)

6. The cerebellum monitors the gaze movements by observing the e�erence copy of gaze motor

commands (summarized in Section 4.2.2)

7. Multi-joint motor commands are programmed synchronously (summarized in Section 4.2.2)

8. Gaze and arm motor commands are coupled based on the e�erence copy derived from the

gaze motor commands (summarized in Section 4.2.2)

9. Arm and hand motor commands are coupled based on the e�erence copy derived from the

arm motor commands (summarized in Section 4.2.2)

10. Motor commands and the target representation are not memorized and stored in a long-term

fashion; they are updated and computed in real-time (more on this can be found in (Goodale

and Ha�enden, 1998; Goodale, 2011))

11. Motor coupling is based on the transformation of the motor error between the two e�ectors

(summarized in Section 4.2.2)
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12. Motor coupling is time invariant, i.e. it only dependent on the state, not on time (summarized

in 4.2.2)

All enlisted properties can be summed up and jointly tackled under the two �umbrella� problems:

the problem of reference frame transformations and the problem of coupled motor control. We next

proceed with our computational modeling.

4.3.2 Modeling reference frame transformations

The �rst fundamental problem of visuomotor coordination is a computation of a sequence of

transformations from the gaze-centered encoding to the representations suitable to generate arm

and hand movements. The direct kinematic problem is de�ned as computing the output variables

(e.g. Cartesian position of the end e�ector) based on the inputs (e.g. arm joint angles). This

problem is a well-de�ned mapping, suitable for both learning approaches and analytical solutions.

On, the other hand, the inverse problem of computing the inputs (arm angles) based on a set of

desired outputs (e.g. desired Cartesian position of the end e�ector) is a far more complicated map-

ping. For such inverse problems in highly redundant systems, such as the gaze and arm systems

in primates and humanoid robots with a high number of degrees of freedom, in�nitely many in-

verse solutions may exist. Until recently, this problem could not be successfully tackled by using

learning approaches. The two main bene�ts of the learning algorithms, as compared to alternative

optimization based approaches (Pattacini, 2011) are: (a) no need to have the prior information on

the precise kinematic model and (b) although learning can be a time consuming iterative process,

inference can usually be solved rapidly, as compared to iterative optimization computations, which

makes learning very attractive for the problems we tackle here5. The IMLE learning algorithm

for multi-valued regression (Damas and Santos-Victor, 2013), recently developed in our laboratory

(VISLAB IST), has demonstrated to be successful in simultaneously providing forward and inverse

kinematic predictions in highly-redundant systems. We next provide a brief description of this

algorithm.

IMLE algorithm

The IMLE algorithm is a probabilistic learning algorithm. It is built on the main assumption

that the input-output data mapping can be approximated by a mixture of local linear experts (i.e.

local models). The algorithm has the ability to learn multi-valued functions, by associating di�erent

linear models to share the same region of the input space. If an input training point is presented as

zi ∈ Rd and a corresponding output is xi ∈ RD, then the generative model of the IMLE algorithm

is described as follows:
5The discussed properties of learning algorithms are the universal properties applicable to the majority of machine

learning algorithms, however, some particular machine algorithms can di�er in various aspects, including the time
needed for learning and inference.
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P (xi | zi, wij ; Θ) ∼ N(µj + Λj(zj − νj),Ψj), (4.1)

P (zi | wij ; Θ) ∼ N(νj ,Σj), (4.2)

where the mean νj and the covariance matrix
∑

j de�ne a Gaussian input region for each expert j.

Parameters µj , the mean, and the matrix of regression coe�cients Λj de�ne the linear relation from

inputs to outputs of each expert. Ψj matrix models the uncorrelated noise at the output dimensions.

The latent variable wij assigns training data points to particular experts. The parameters of the

IMLE, jointly represented as Θ, are estimated by using the extended expectation-maximization

(EM) procedure.

Once the model parameters are learned, when performing multi-valued inverse predictions, for

each query point the IMLE �nds a minimal set of predictions by performing post-hoc clustering

procedure and statistical hypothesis testing in order to assess the validity of the predictions. The

IMLE algorithm has very low computational complexity, which makes it very suitable for both

online learning and forward and inverse predictions. For more on this algorithm, please consult the

original article (Damas and Santos-Victor, 2013).

Gaze reference frame transformation

In order to provide head-free (the eyes and head) saccadic eye movements, the cerebellum

implements a mapping from the retinal target representation to the eye-neck joint angles (Sections

4.2.1 and 4.2.2). To provide saccadic eye movements with vergence, i.e. being able to �xate in

stereoscopic depth, this transformation must take into account the biretinal target representation

(the retinal error from the left and right image planes) (Tweed, 1997).

We represent the gaze joint angle displacement that provides object end-point �xation as 4qg ∈
R6 (de�ned in the following order: neck pitch, neck roll, neck yaw, eyes tilt, eyes version and eyes

vergence angle, respectively) and the biretinal error as ξg ∈ R4,

ξg =

[
pc − pt,right
pc − pt,left

]
, (4.3)

where the position of the fovea is pc and the position of a visual target in retinal coordinates is pt,i,

i = {left, right}. Then a direct mapping can be formulated as:

ξg = fg(4qg). (4.4)

By randomly moving the �xation target and by using the �xation behavior provided by another gaze

module (Pattacini, 2011), we obtain training data points (4qg,i, ξg,i) to train the IMLE algorithm

to estimate this mapping. Once the IMLE model is trained, in the run-time after the visual target
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is segmented and the biretinal error is obtained ξ∗g , we query the IMLE module for the inverse

solutions, i.e. to provide the desired joint displacement that will provide successful target �xation:

4̃qg = ˜f−1
g (ξ∗g). (4.5)

Once the desired displacement is inferred, the goal target position in gaze joints qt can be obtained

as:

qt = qc − 4̃qg, (4.6)

where qc is the vector of eye-neck proprioceptive joint readings from encoders.

Gaze-arm reference frame transformation

The �ow of reference frame transformations from the gaze-centered target encoding in the PPC

to the encoding of the target position in arm joint coordinates in the PM/M1 provides primates

with very successful visually guided reaching abilities (Section 4.2.1). This functionality drives the

modeling we present in this section. We formulate this reference frame transformation as follows:

xt = fga(qt), (4.7)

where qt represents the �xated target position in the gaze joint reference frame, and xt is the goal

arm joint con�guration at the target object (arm joints are de�ned in the following order: shoulder

pitch, shoulder roll, shoulder yaw, elbow, wrist pronation-supination, wrist pitch and wrist yaw,

respectively). It is worth to note that this representation constrains natural-looking visually-driven

reaching behavior, because it assumes that the gaze �rst �xates the target in order to provide the

reference frame transformation for the arm. After the gaze lands on the target, the movements

of the arm can be programmed. This constraint prohibits producing natural looking visuomotor

coordination pro�les, because it has been consistently observed in psychological studies that the gaze

and arm are simultaneously controlled when performing prehensile movements driven by head-free

gazing (Johansson et al., 2001; Hayhoe et al., 2003; Lukic et al., 2014b). By using the functionality

of the gaze reference frame transformations we presented in the previous section, we can compute

the desired reference frame transformations for the arm that allows reaching and grasping a visual

target that lies outside the fovea. For the extrafoveal target, we �rst obtain the biretinal error ξg

and use Eqs. 5.2 and 5.4 to compute a �nal set of gaze joints when the target is �xated qt. Once

we have this, we can obtain xt by using Eq. 5.10.

Similar to the gaze system, the gaze arm-reference frame transformation is learned by using

the IMLE. The input-output training point pairs (qt,i, xt,i,) are obtained by moving the arm to

randomly selected points in the workspace and subsequently �xating the center of the palm.
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4.3.3 Modeling coupled motor control

The second fundamental problem of visuomotor control is how to generate movements of the

eyes, arm and hand and how to appropriately coordinate the movements of these e�ectors. This has

been addressed in Chapter 3. In this chapter, we use the same approach with some subtle changes,

which we will brie�y describe here. In our model, the CDS corresponds to the part of the model

that amounts for the coupling e�ects in the cerebellar nuclei.

In our case, the gaze state ξe ∈ R6 is represented as the distance between the current gaze joint

con�guration qc and the goal position of the target in gaze joint coordinates qt (i.e. gaze joint error),

ξe = qc − qt, where qt is obtained as explained in Section 4.3.2. This is the di�erence with respect

to the previous version of the controller, where the dynamics was encoded in the form of retinal

error. The gaze control scheme now implemented in the gaze joint coordinates is a biologically

plausible way and it is most likely implemented in the oculomotor vermis and the caudal fastigial

nucleus (Sections 4.2.1 and 4.2.2). Similarly, the arm state ξa ∈ R7 is represented as the distance in

joint coordinates between the assumed arm con�guration xc and the goal arm con�guration when

the target object is reached xt: ξa = xc − xt. In the previous version of the controller, we used

Cartesian encoding for the arm movements. The current, relative encoding of arm movements in

arm joint coordinates is a more biologically plausible strategy than in the previous version of the

controller, where we used Cartesian encoding for the arm movements. Arm movement generation

in joint coordinates is a pattern observed both in neural and behavioral studies (Section 4.2.1). The

hand state ξh ∈ R9 is expressed as the di�erence between the current hand con�guration hc and

the goal hand con�guration when the object is grasped ht: ξh = hc − ht, the same representation

we used in Chapter 3.

We �rst select a target for saccadic eye movements in the retinal coordinates and encode it in

the form of the retinal error. The initial retinal error encoding is a biologically plausible strategy

orchestrated by the LIP-SEF-FEF-SC network (See Sections 4.2.1 and 4.2.2). Then, we transform

the biretinal error in the gaze joint coordinate encoding (Section 4.3.2). The gaze movement velocity

vector is computed based on the gaze joint error.

Two stages of gaze control: the �rst, the conversion of the retinal coordinates to eye and neck

joint angle and, the second, gaze programming in joint coordinates is an organization observed in

the primate visuomotor control (Section 4.2.2).

In order to control the arm in joint coordinates, we need to have an available representation of

the target in this reference frame. For this, we use the steps presented in Section 4.3.2.

Algorithm 2 presents our implementation of the block scheme for reference frame transformations

and motor coupling proposed in Figure 4.2 based on our literature investigation.

4.4 Results
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do
General :
− query frames from cameras
− recognize and segment the target object
− compute the position of the object in

− retinal coordinates : pt,i, i =
{

left, right
}

− biretinal error : ξq =
[
pfovea − pt,right; pfovea − pt,leftright

]
− read the head joints from hand encoders : qc

− read the arm joints from arm encoders : xc

− read the hand joints from hand encoders : hc

Gaze :

if gaze is not at target then
qt ← QueryIMLEforEyesAndNeckJoints(xiq)
ξe ← qc − qt
ξ̇e ← E

[
P
(
ξ̇e | ξe

)]
ξe ← ξe + ξ̇e∆t
qc ← ξe + qt
MoveEyesAndNecktoUpdatedJoints(qc)

end if

Eye− arm coupling :

ξ̃a ← E [P (ξa | Ψe (ξe))]

Arm :

if the arm is not at target then
if the first pass or the target is perturbed then

xt ← QueryIMLEforGazeArmJointTransform(qt)
end if
ξa ← xc − xt
∆ξa ← ξa − ξ̃a
ξ̇a ← E

[
P
(
ξ̇a | βa∆ξa

)]
ξa ← ξa + αaξ̇a∆t
xc ← ξa + xt
MoveArmToUpdatedJoints(xc)

end if

Arm− hand coupling :

ξ̃h ← E [P (ξh | Ψa (ξa))]

Hand :

ξh ← hc − ht
if the hand is not at target then

∆ξh ← ξh − ξ̃h
ξ̇h ← E

[
P
(
ξ̇h | βh∆ξh

)]
ξh ← ξh + αhξ̇h∆t
hc ← ξh + ht
MoveHandToUpdatedJoints(hc)

end if
until object grasped

Algorithm 2: Improved algorithm for eye-arm-hand coordination
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4.4.1 Improvements with respect to the previous controller

While our new controller is able to reproduce the same task of visually guided obstacle-free

reaching and grasping similar to humans in our motion capture trials and as the controller presented

in Chapter 3, there are several important di�erences between this new controller and the previous

controller. Figure 4.3 shows several snapshots of learning and testing of the gaze controller and the

arm controller, respectively.

We re-designed the arm controller to encode the motion in joint coordinates instead of using the

Cartesian coordinates, and the gaze controller to encode gaze commands in gaze joints instead of

retinal error. The second di�erence is that we use the full state coupling instead of the norm-coupling

functions for the gaze-arm and arm-hand coupling. Both of these changes increased the dimensions

of the joint probability density functions that model the corresponding dynamical systems of the gaze

and arm and coupling blocks. Hence, in theory, these changes should increase the computational

complexity of the problem. However, the time of computation of all 5 blocks of the CDS, as for the

previous version, remains under 1ms6, while we gain several advantages.

For gaze control, interestingly, both gaze IMLE inference and gaze IK controller have comparable

computational complexity, with the computation time under 1ms. Hence, for the gaze controller,

introducing the IMLE does not signi�cantly change the computational time, as in the arm's case.

Nevertheless, the bene�t of being able to adapt this mapping is the improvement over the previous

version of the controller with the IK solver that required the mathematical model of the gaze

system kinematics. The second advantage for the gaze control, once we changed encoding of the

gaze controller, is that we are able to command gaze movements in a visual-open loop manner,

which is attractive in terms of the computational e�ciency (no need to rescan the stereo images

after each integration step if the target is static) and more convenient, as well (if the camera drivers

occasionally fail, this situation is not problematic, because there is no requirement to segment the

images after each integration pass, as in the previous controller).

The advantage for arm control is that, by directly programming arm movements in joint coor-

dinates, we avoid the computation of IK in each pass of the control loop, the task that requires on

average 25ms (this time can be up to 40ms). For computation of the target encoding in arm joints,

the gaze-arm joint mapping is only computed at the beginning of reach-to-grasp movements and

when the visual system detects that the object to be grasped is perturbed. The time to compute

the gaze-arm joint mapping by using the IMLE is under 1ms. For most of the real-world tasks,

even in dynamic, unpredicted scenarios when perturbations normally happen, the proportion of

the time when the object is steady is usually signi�cantly greater than the time during which it is

being perturbed. In other words, most of the objects to be grasped are more in a steady state than

they are perturbed in the workspace. We exploit this premise to gain the computational e�ciency.

6The CDS code is implemented in C++ and the presented tests are run on a computer with an Intel i7 2.7 GHz
dual-core processor and 4 GB of RAM. All reported times are averages calculated for 200 passes through the control
loop.
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Figure 4.3: Biretinal-gaze joint mapping learning (a) and performing (b), and gaze-arm mapping
learning (c) and performing (d), respectively. The �gures in each row from left to right show
snapshots of the execution two �xation saccades (biretinal-gaze mapping) and the execution of two
visually-driven reaches (gaze-arm mapping), respectively. The �gures are ordered to correspond to
before and after �xations snapshots from the simulator. The �rst row (a) corresponds to saccades
used to train the gaze mapping with the IMLE. The second row (b) shows the performance of the
controller once the IMLE and gaze DS are learned. The IMLE is used to obtain the inverse mapping
and the gaze DS, an internal feedback element, steers the saccade to the end point. Similar to the
gaze rows, row (c) corresponds to visually guided reaches by using babbling to train the gaze-arm
mapping with the IMLE and row (d) shows the performance of the learned model.
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The second bene�t is the use of the full coupling between the dynamical systems, which yields

better visuomotor coordination in practice. Consider, for example, the arm DS, which is now a 7

dimensional mapping instead of the previously used 3-dimensional Cartesian representation. If we

conditioned on the norm function of the gaze state, it would be di�cult to reliably infer a 7 dimen-

sional vector of desired arm joints based a scalar value. With the use of the full state coupling, this

mapping becomes robust because it is conditioned on more complete information. Similar rationale

applies to the choice of the arm-hand coupling as well.

In the next sections, we further validate our model by replicating two mechanisms widely ob-

served in human and monkey experiments: the decoupling of the reach and grasp components after

cerebellar lesions, and saccade adaptation task. In addition, we propose a novel behavioral study.

4.4.2 Replicating the observations from Rand et al. study

In order to further validate our model, we attempt to replicate some e�ects observed in the

human studies. Rand et al. (2000), in their study with a group of cerebellar patients, found that

the most striking di�erence between the cerebellar patients and healthy controls was observed in

the coupling between the reach and grasp components. While healthy control subjects exhibited

very tight coupling between the arm and hand kinematic parameters, the arm-hand coupling in

cerebellar patients was signi�cantly a�ected. The uncoupling between the grip and the transport

component was most obvious in the pro�le of the grip aperture. In the cerebellar patients, the grip

aperture had a steeper rising pro�le, and the time of the maximum grip aperture was achieved, on

average, ∼20% earlier compared to the healthy controls. Their study suggests that the cerebellum

is a center responsible for arm-hand coupling, and for that reason in the cerebellar patients the arm

and hand movements were decoupled (i.e. movements of the grip were not properly adjusted with

respect to the reaching component, they behaved as if they were independent). The subsequent

study of Zackowski et al. (2002) corroborated the arm-hand decoupling e�ects reported by Rand

et al. (2000).

If the hypothesis that the dentate and interpositus nuclei of the cerebellum implement arm-

hand coupling is indeed valid, arti�cially �lesioning� our model by removing the arm-hand coupling

block, which in our model correspond to the dentate-interpositus of the cerebellum, should produce

the arm-hand decoupling e�ects as observed in the cerebellar patients (Rand et al., 2000). This

validation would favorably support our model. The plots from Figure 4.4 show that removing the

arm-hand coupling block produces the pro�les of the grip movements, which compared to normal

(coupled) arm-hand movements, are very similar to the results observed in Rand et al. (2000).

More speci�cally, decoupling the arm and hand causes that the hand system evolves independently

of the arm, which is observed in the steeply ascending pro�le of the grip opening and signi�cantly

earlier achieving the maximum grip aperture. In other words, virtual lesioning of our model by

removing the corresponding coupling block produces similar e�ects to those observed in patients

with cerebellar pathology. After removing the arm-hand coupling, the reaching and grasping were
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Figure 4.4: Comparison of the grip pro�le when the arm and hand are coupled (blue) versus the
case where the (virtual) lesion removes arm-hand coupling and the arm and the hand systems evolve
independently (red). The grip aperture is normalized between 0 (starting hand posture) and 100%
(maximum grip aperture). The time is normalized, as in the graphs of Rand et al. (2000). The
time di�erence of ∼20% between the maximum grip aperture of normal (coupled arm-hand) and
cerebellar patients in the experiment of Rand et al. (2000) is observed in our study, as well.

not actively synchronized during the task, hence our robot occasionally did not manage to grasp

the object in a successful manner, similar to the cerebellar patients (Zackowski et al., 2002).

4.4.3 Double-step saccade adaptation experiment

Here, we demonstrate the saccade adaptation ability of our model. The double-step saccade

paradigm is a widely used experimental protocol for studying the adaptation of the gaze control

system in humans and monkeys (Robinson and Fuchs, 2001; Optican, 2005; Tian et al., 2009). In the

most common variant of this experiment, a saccadic target is �rst presented at one position in the

visual periphery (i.e., extrafoveal location). Immediately after a saccade to the target is elicited, the

target makes a jump (onward, backward, top, down or a combination of them) to another position
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in the neighborhood of the �rst location. This arti�cially induces an error signal in the saccade

programming that should be compensated by adapting the gaze system. Because saccades are fast

ballistic eye movements, due to visual blur, they do not rely on visual feedback in �ight. This means

that after the initial saccade is elicited, the gaze �rst lands at the �rst target position (before the

target jump). Once visual feedback is available during the �xation, the corrective saccade can be

programmed to land at the second, �nal target position. If the target is systematically displaced in

these double-step trials, after several hundred (in humans) up to ∼1500 saccades (in monkeys), the

CNS learns to adapt the saccade mapping in order to directly, in a single saccade, hit the expected

location of the target (second target position, after the jump). This adaptation of the mapping is

a gradual process.

Figure 4.5: Double-step saccade adaptation experiments. The �rst row (a) shows the behavior
of the model at the beginning of the saccade adaptation trials. The �rst snapshot corresponds
to the initial con�guration of the robot and the scene before the saccade is initiated. Based on
the biretinal error, the saccade is programmed and initiated. Immediately after this the target is
perturbed to a new position (indicated by the red arrow). The gaze lands at the position where
the target would be if the perturbation did not occur. The corrective saccade (third snapshot, �rst
row), based on the updated biretinal error of the target after the �xation, is issued, and the gaze
successfully lands at the target. After 1000 iterations, the IMLE learns the adapted mapping, and
it is able to compute the gaze joints that provide a direct target �xation after the saccade jump (b).
The saccade adaptation in double-step target jump experiments is the behavior widely observed in
monkey and human studies.

Once we have the initial biretinal-gaze joint mapping (Figure 4.3), we proceed with the double-

step adaptation of our model. Similar to the babbling-like exploratory procedure outlined in Figure

4.3(a), we randomly place the initial target position in the workspace. The target is perceived and

encoded in the form of the biretinal error, based on which the saccade end position is computed

by querying the corresponding IMLE model, as explained in Section 4.3.2. Immediately after the

saccadic gaze movement is initiated by the gaze DS (Section 4.3.3), the target jumps to the second

position, by the �xed displacement vector. To make the learning more challenging, we displace

74



the target both along the y-axis of the workspace (left-right direction from the robot's view) and

z-axis (vertical displacement), by 2.5 cm in both directions. This spatial displacement is perceived

as vertical and horizontal o�set in the stereo image planes. At the beginning of the double-step

saccade adaptation experiment, the model behaves exactly as humans or monkeys. It initiates the

gaze commands to the �rst target position, then the gaze lands at that position (without using

visual feedback during the �ight). When the �rst saccade is completed, a corrective saccade is

issued. The corrective saccade steers the gaze to the �nal target position (position after the jump,

Figure 4.5 (a)). Once the object is �xated, an updated relative gaze joint displacement is computed

4̃qg = qbefore_1st_saccade − qafter_2nd_saccade, and the IMLE mapping (Eq. 5.10) is incrementally

adapted.

After 1000 double-step saccade performing-and-learning trials, the number comparable to human

and monkey saccade adaptation studies (Robinson and Fuchs, 2001; Optican, 2005; Tian et al.,

2009), the model learns to successfully accommodate for the target jump by directly issuing the

saccade to the expected position after the target jump (Figure 4.5 (b)), as humans or monkeys do.

In our model, the gaze IMLE model corresponds to the oculomotor vermis-caudal fastigial nucleus

complex. The oculomotor vermis and caudal fastigial nucleus are reported to take part in gaze

learning in double-step saccade adaptation experiments, both in humans and monkeys (Desmurget

et al., 2000; Robinson and Fuchs, 2001; Optican, 2005; Tian et al., 2009).

4.4.4 Predictions of the model: new experiment with primates

Because our model shares a high level of parallelism with the visuomotor control principles

implemented in the cerebellum and the cerebral cortex, some fundamental testable predictions

could be established. In our model, gaze-arm-hand motor coupling is implemented in a manner

that the e�erence copy of the gaze motor commands from the oculomotor vermis and the caudal

fastigial nucleus (gaze control) is transferred to the dentate-interpositus (arm-hand coupled control).

Therefore, it is important to propose a real-world experiment that could validate this assumption

of our model. To achieve this, we again take some inspiration from the neuroscienti�c literature.

In their fMRI study, Miall et al. (2000) found that the activation of the oculomotor vermis,

the cerebellar area traditionally related to movement of the eyes (Section 4.2.2), was increasingly

active in combined manual and ocular tracking compared to ocular tracking alone. On the other

hand, in the interpositus, the area related to the arm-hand movements and coupling (Section 4.2.2),

Robinson (2000) has observed a signi�cant number of neurons that respond during saccade related

activity.

Expanding this line of research, from our model, we can propose an experiment with humans or

monkeys that could shed more light on the coordination principles implemented in the cerebellar

nuclei. Namely, our model suggests that the perturbation (for example, induced by the transcranial

magnetic stimulation (TMS) pulse) of the oculomotor vermis-caudal fastigial nucleus system during

the simultaneous control of the gaze and the arm in a visually guided reaching task, would not
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only a�ect the gaze movements by the expected change of the e�erence copy of the gaze motor

commands, but that the perturbation would be observed in the arm's kinematics, as well. The

rationale behind this is that the disrupted e�erence copy of the gaze motor commands from the

vermis-CFN would be transferred to the dentate-interpositus, responsible for arm-hand coupled

control, as in our model.

4.5 Summary and discussion

In the preceding sections, we have tackled the target encoding used for visuomotor control and

the coupled motor control of the eyes, arm and hand. Many neural centers are involved in visuo-

motor actions. Although the eyes, arm and hand represent di�erent systems, their motor actions

share common principles and during execution of a visuomotor task, these systems are carefully

coordinated. The neural structures for visuomotor control need to solve two main tasks: (a) an

appropriate representation of reference frames used for the respective e�ectors and (b) coordinated

control of these e�ectors.

The reference frames used for motor visuomotor control have three common principles: (a)

they are egocentrically represented, (b) they are represented in terms of the di�erence between the

current and the desired state, (c) they are updated on a real-time basis. The eye movements are

programmed on the basis of retinal error, and the retinal commands are in the later stages converted

to eye and neck joint angles. Unconstrained arm and hand movements are encoded in relative joint

coordinates. These reference frames are not stored in an o�ine manner; they are updated in an

online fashion as the task progresses.

Similarly, motor commands for these e�ectors have a number of common principles: they are

feedback controlled based on the aforementioned motor error representation, the movements of many

joints of an e�ector are synchronously programmed and inter-e�ector commands are synchronized

in the loop. The reference frames for visuomotor control are represented across a network of cortical

areas that are connected to the cerebellum via the recurrent signal routing loops. The cerebellum

is the primary neural center for computing synchronous multivariate motor commands.

In this chapter, we have presented the �rst model, to our knowledge, that is able to unify, on

a functional level of abstraction, a number of principles observed from neuroimaging data, studies

of brain lesions and neurophysiological results. This model is not a very detailed model of neural

circuitry, its contribution is rather to serve as a sketch of the main computational principles involved

in visuomotor control and the functional interaction between the cortex and the cerebellum.

This model is also useful for robotics, because it combines desired properties of the model learn-

ing methods and visual servoing, which are often considered as separate approaches in visuomotor

control. The architecture of the model is modular, which makes it suitable for further biological

modeling and extending. For example, we did not include modules that share a resemblance with

the inferior temporal cortex and the prefrontal cortex, the areas involved in higher level object

recognition, task planning and motor sequencing. The modular architecture of the assumed ap-
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proach could easily provide further integration of such models. The functional abstraction of our

approach in modeling cortical-cerebellar visuomotor control could make possible more detailed bi-

ological modeling of the gaze, arm and hand subsystems within the IMLE and CDS frameworks

as a �computational umbrella�, as long as the main CDS requirements for the stability of coupled

dynamical systems are respected. The modular architecture of our approach could make it possible

to add new modules when new evidence is gathered.

Finally, in this chapter, we have proposed a novel experimental paradigm that can provide

additional insight into the nature of the cerebellar motor coupling, and consequently, con�rm or

reject our model.
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5 Models of Motor-primed Visual

Attention for Humanoid Robots

I
f we imagine a robot bartender in a real-world context, equipped with an active stereo camera

system that has the task to grasp a glass, �ll it with a beverage of choice, and serve it to a

guest. In a visually-aided manipulation, based on the standard computer vision processing approach,

during reaching and grasping for the target object, in every cycle of the control loop, vision scans

every part of both stereo images searching for the target object and potential obstacles, in order

to update the robot's knowledge about their state (position, orientation and other properties of

interest that might change during a task). Assume that the motion of the arm has been initiated

and is directed toward a speci�c object, say a wine glass (the obstacles will by de�nition be all

objects that obstruct an intended movement). Here, a question arises: why would one want to

scan the peripheral parts of the stereo images for obstacles, since they correspond to regions in the

workspace ten meters or so from the wine glass that is at around 30 cm from the hand? Clearly,

the space scanned should be restricted to a region of space that is motor-relevant.

Contrary to robots, humans and non-human primates have the ability to rapidly and graciously

perform complicated tasks with a limited amount of computational resources. The attentional

system e�ciently selects only a subset of information relevant for reaching and grasping among

the plethora of visual information. The attentional system operates e�ciently and routinely man-

ages the challenging task of selective information processing, in a seemingly e�ortless manner, by

means of highly customized attentional mechanisms. When dynamically changing environmental

conditions demand rapid motor reactions, there is no time to compute the full visual model of the

world (Ballard, 1991; Wilson, 2002). The humans and non-human primates use attention to select

important visual information, and compute only a relevant subset of them on the �y.

In visual attention, two mechanisms are recognized: covert attention and overt attention (Werner

and Chalupa, 2004). Covert visual attention corresponds to an allocation of mental resources for

processing extrafoveal visual stimuli. Overt visual attention consists in active visual exploration

involving saccadic eye movements (Figure 5.1). These two mechanisms are instantiations of the same

underlying mechanism of visual attention, hence intermingled both functionally and structurally,

working in synchronization and complementing each other. Covert attention selects interesting

regions in the visual �eld, which are subsequently attended with overt gaze movements for high-

acuity foveated extraction of information (Ho�man and Subramaniam, 1995; Findlay and Gilchrist,

1998; Liversedge and Findlay, 2000). Visual attention (covert and overt) is tightly related to the
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motor control system. Numerous evidence from visual neuroscience and psychology suggests that

visual attention is bound and actively modulated with respect to spatio-temporal requirements

of reaching and grasping (Hayhoe et al., 2003; Baldauf et al., 2006; Baldauf and Deubel, 2008;

Geisler, 2008; Baldauf and Deubel, 2009). While saliency-based attentional mechanisms have been

very in�uential in robotics, on the other hand, motor-primed attentional e�ects have received little

attention to date (Begum and Karray, 2011). Figure 5.1 illustrates how attention is drawn toward

manipulation-relevant regions of the visual �eld, even in a common, well-rehearsed natural task

such as tea serving.

In this chapter, we hypothesize that such a biologically-inspired, explicit, active adaptation of

attention with respect to motor plans can endow robot vision with a mechanism for the e�cient

allocation of limited visual resources. This approach contributes to the state of the art in visual-

based reaching and grasping, tackling visual attention from a new, alternative perspective where

visual attentional relevance is not de�ned in terms of low-level visual features such as color, texture

or intensity of the visual stimuli, but rather in terms of manipulation-relevant parts of the visual

�eld as visually relevant regions. In our model, the attentional mechanism becomes a fundamental

building element of the motor planning system and vice versa. At each cycle of the control loop,

the visual and motor systems modulate each other by exchanging control signals. In this work, we

show that modulation of visual processing, which emerges from the motor system, can drastically

improve visual performance, in particular, the speed of visual computation, one of the most critical

aspects of the system. The proposed approach is evaluated in robotic experiments using the iCub

humanoid robot.

We next brie�y review related work on computational modeling of visual attention, its use in

robotics, and the biological evidence onto which we ground our approach to tackle the existing

problems.

5.1 Background research

5.1.1 Computational modeling of attention and robotic attention

Most of the modern work on computational modeling of attention draws inspiration from the

feature integration theory of attention from psychology (Treisman and Gelade, 1980). The feature

integration theory argues that low-level, pre-attentive features attract visual attention in a bottom-

up, task-independent manner. The intuition behind this approach is that a non-uniform spatial

distribution of features is somehow correlated with their informative signi�cance. The in�uence of

the low-level features on capturing attention is motivated by the functions of the neural circuitry in

the early primate vision and experimental �ndings in scene observation tasks (Wolfe, 1998; Reinagel

and Zador, 1999; Geisler, 2008).
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Figure 5.1: Experimental setup with a natural task. The subject is required to pour the tea into
two cups and one bowl that are placed close to the horizontal midline of the table. 4 pictures of
various objects are placed close to the border of the table, and 2 pictures are placed on the wall
facing the subject. These pictures play the role of visually salient distractors because they share the
same visual features with the objects, but remain completely irrelevant for manipulation through
the entire task. The overt attention, i.e. gaze movements, together with the scene as viewed from
the subject's standpoint are recorded by using the WearCam system (Noris et al., 2010). The order
of the �gures from left to right corresponds to the progress of the task. The cross superposed on
the video corresponds to an estimated gaze position. It can be seen that the gaze is tightly bound
to an object that is relevant to spatio-temporal requirements of the task. In spite of the presence of
salient distractors, the gaze remains tightly locked on the current object of interest. This behavior
cannot be predicted by the feature-based saliency maps, even with top-down extensions because
in manipulation tasks perceptual processing is biased toward manipulation-relevant regions of the
visual �eld, not toward the most textured or distinctively colored stimulus.
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By far, the most in�uential computational implementation grounded in this theory is the concept

of the saliency map (Itti et al., 1998). In the aforementioned model low-level features such as color,

orientation, brightness and motion are extracted in parallel from the visual input. The visual input

is represented as a digitized 2D image. Low-level features from the visual stimuli compete across

local neighborhoods, and multiple spatial scales building spatial banks of features that correspond

to center-surround contrast computed across di�erent scales. The feature banks are normalized

and aggregated by a weighted sum to create a master saliency map. The focus of attention is

driven by the interplay between a winner-take-all mechanism (WTA) and an inhibition of return

mechanism (IOR) that operates on the �nal saliency map. This pure bottom-up approach, driven

by the early perceptual pop-out features, has been subsequently extended to guided visual search

by an additional weighting of the feature channels with a top-down bias that comes from the prior

knowledge about objects (Navalpakkam and Itti, 2005; Frintrop, 2006).

Related work in robotics is heavily in�uenced by the aforementioned Itti-Koch computational

model of attention. Whereas most of the computational models implicitly assume covert attention

shifts, i.e. no movements of the head and the eyes are involved, most robots are equipped with

an active camera system, which makes them suitable for active, overt visual exploration. These

robotic applications inherently rely on a saliency map-based scheme to evaluate visual stimuli, and

then, instead of shifting covert focus of attention, they actively initiate saccadic movements of the

cameras to bring the �xation to the most salient point in the visual �eld (Begum and Karray,

2011). A number of robotic applications are primarily concerned with implementing saliency maps

in order to achieve biologically-inspired saccadic and smooth-pursuit eye movements either with a

single pan-tilt camera or a complete robot head (Manfredi et al., 2006). These schemes have been

extended to biologically inspired log-polar vision (Metta, 2001; Orabona et al., 2005). Saliency-

based attention has been studied in conjunction with exploration, development and learning for

humanoid robots (Orabona et al., 2005). Attentional-based vision has been addressed as an aid to

sociable robots to improve human-robot interaction (Breazeal et al., 2001; Aryananda, 2006) and

in imitation learning (Doniec et al., 2006; Ogino et al., 2006).

5.1.2 Current shortcomings of attention-based models for robot vision

and their biological solutions

Although the e�orts made in the robotic community have been very fruitful, expanding theoreti-

cal foundations and providing practical applications of attentional mechanisms, the most prominent

use of attentional schemes still remains applied to object tracking, scene exploration, mimicking the

human visual system for robotic studies of development and for providing human-like visual be-

havior for sociable robots (Begum and Karray, 2011). A very signi�cant drawback of attentional

models based on early perceptual saliency, for the purposes of visually driven motor control, is that

an attentional relevance is computed solely on the structure determined from low-level visual stimuli
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projected on the retina, whereas neither the 3D structure of the environment, physical constraints

such as body kinematics nor motor action plans are taken into account. The use of attention for

active, real-time vision-based manipulation that relies on reliable visual information at each cycle

of the control loop continues to be very limited. This is an issue we aim to address in this work. In

particular, we identify the following three issues as critical: i) speed of computation, ii) distribution

of focus of attention and iii) salient features.

Speed of computation and distribution of focus of attention

Attention in primates evolved as a cheap, e�cient and inherently embedded mechanism to select

a small subset of abundant visual information for further, high-level processing. The primary

reason for this is to e�ciently optimize the use of scarce computational resources. However, as

previously mentioned, most work in robotics related to attention is motivated by the saliency model

of Itti and Koch (Itti et al., 1998). Regardless of the massively parallel architecture, constructing a

saliency map is an extremely intense computational task. The best reported times on CPU-based

implementations, highly specialized for e�ciency, are of an order of 50 ms for a single map (Kestur

et al., 2012), the time which doubles for a stereo system, after which, in addition, some high-

level visual processing is done in the later stages in the visual processing pipeline. This prohibits

applications of the classical saliency map approaches for fast real-world robotic problems such as

real-time adaptation to perturbations in grasping tasks with obstacle avoidance.

The majority of models of attention assume that a focus of attention, the so-called attentional

spotlight, is a circular shaped region of a �xed radius (Posner et al., 1980), which is centered at

a point with the highest saliency in the visual �eld. Zoom-lens models extend the attentional

spotlight concept by allowing the radius of an attentional �window� to change with respect to task

demands (Eriksen and James, 1986). Both the spotlight and zoom-lens models restrict applicability

of attentional mechanisms for real-world robotic scenarios in complex tasks because only one location

in the visual �eld is (covertly) selected as the focus of attention, toward which the further attentional

interest is oriented (covertly or overtly). A number of recent studies from visual neuroscience and

psychology suggest that covert attention can take on a complex spatial arrangement (Baldauf and

Deubel, 2010). Baldauf et al. have found that covert attention supports pre-planning of a rapid

sequence of movements toward multiple reaching goals, by distributing peaks of attention along

an intended reaching path (Baldauf et al., 2006; Baldauf and Deubel, 2008). These �ndings show

that covert attention can be distributed not only at one location, as overt attention, but rather

simultaneously forms a complex �attentional landscape� in the visual �eld. Schiegg et al. found

that covert attention can be split into multiple foci that are deployed in a way to pinpoint individual

locations of intended contact points of the �ngers during precision grasping (Schiegg et al., 2003).

The experiments with non-human primates have shown that visual receptive �elds can even adapt

after several minutes of the tool use by elongating their shape to covertly overlay the tool held in

the hand (Làdavas, 2002; Maravita and Iriki, 2004).
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Salient features and the role of motor information

Computational models of attention have shown good performance and signi�cant statistical similar-

ity to human strategies in simple scene viewing and guided search tasks (Itti et al., 1998; Reinagel

and Zador, 1999), but describing human gaze behavior in more complex tasks is far beyond their

capabilities. We hypothesize that this is attributable to the fact that only low-level image features

are taken into account by the models that compute attentional relevance, whereas the strong top-

down bias from motor information is completely ignored. This is rather surprising, considering that

there are numerous evidences that report on the very signi�cant coupling between the motor sys-

tem and attention allocation. Even in pure perceptual tasks, where vision does not support ongoing

arm movements, the peripersonal space1 receives a prioritized covert visual processing compared to

the extrapersonal space (Maringelli et al., 2001; Làdavas, 2002; Losier and Klein, 2004), with the

peaks of the attentional relevance of visual stimuli close to the hands (Reed et al., 2006; Abrams

et al., 2008; Cosman and Vecera, 2010; Davoli et al., 2012). The importance of visual specialization

of the peripersonal space is even observed at the level of the parts of the central nervous system.

Neurophysiological studies in humans and non-human primates have revealed specialized circuits in

the putamen, parietal cortex and ventral premotor cortex that are devoted to processing of visual

stimuli within the peripersonal space (Fadiga et al., 2000; Weiss et al., 2000; Rushworth et al., 2001;

Làdavas, 2002; Reed et al., 2006). Previc, in his well-known theory of visual �eld specialization,

hypothesized that the visual prioritization of the peripersonal space emerges from functional rela-

tionships between the vision and motor systems (Previc, 1998). In this view, the peripersonal space

is inherently more visually salient than the extrapersonal space because it supports motor activities

with the hands.

Behavioral studies that analyzed the distribution of covert attention in visuomotor tasks have

shown interesting results. Covert attention is brought to objects relevant to manipulation, even

when reaching for multiple targets in a sequence (Baldauf et al., 2006), or in parallel by engaging

bimanual manipulation (Baldauf and Deubel, 2008). The starting position of the hand (Eimer et al.,

2006) and its goal position (Baldauf and Deubel, 2009) receive prioritized visual processing when

preparing arm movements. Deubel and Schneider found that deployment of covert visual attention

at an obstacle occurs when the obstacle obstructs intended arm movements, however, in cases when

it does not obstruct intended manipulation it is not covertly attended (Deubel and Schneider, 2004).

Deployment of covert attention could be modulated by motor plans as tightly as to support planned

�nger movements during grasping (Schiegg et al., 2003).

Very few, if none, of the mechanisms reviewed in this subsection, are utilized in the modern

computational attentional methods embedded in robotic visually-driven reaching and grasping.

Taken together, biological studies indicate an apparent dependence and an active modulation of

1The peripersonal space is de�ned as the space around the body within which an agent (a human, monkey or
a robot) can manipulate objects without using locomotion to move the body, whereas the extrapersonal space is
postulated as the space beyond the peripersonal space and its representation is used for navigation and orienting, see
(Previc, 1998) for more.
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Figure 5.2: The �gure displays the main idea of the proposed approach: nonuniform image process-
ing driven by a motor-primed visual attentional landscape. Visual space is prioritized depending
on its motor relevance; i.e., visual attention is biased toward motor-relevant parts of the workspace
projected to the stereo images. The white line represents a forward-planned (mentally-simulated)
movement toward the object to be grasped (red glass). The reddish blend superimposed on the
snapshots of the left and right cameras is a visualization of the intensity of the visual attentional
landscape. The attentional landscape has a higher intensity closer to motor relevant parts of the
visual �eld. The images are processed in a manner that the spatial distribution of their attentional
landscapes is taken into account (motor-relevance is prioritized). The anchors of the scanning win-
dows (blue squares) are sampled with respect to their relevance, i.e. more dense visual scanning is
done where the attentional landscape has higher values, and less dense scanning where it has low
values. Ignoring irrelevant parts of the images a�ords signi�cant computational savings, whereas
the processing of motor-relevant parts of the visual scene supports visually-guided reaching and
grasping.

visual attention on motor information. All these results suggest that low-level feature-based saliency

is suppressed when an actor is engaged in visually-aided physical tasks, regardless whether the task

is manipulation or navigation, whether the interaction with the object is performed in a parallel

or in a sequential manner, and regardless whether gaze movements are suppressed or not. In plain
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words, in physical tasks, motor-relevant parts of the visual �eld are visually salient.

The aforementioned behaviors observed in these studies are elegantly explained and uni�ed by

the premotor theory of attention proposed by Rizzolatti and coauthors (Rizzolatti and Craighero,

2010). This theory argues that visual attention is a feature that emerges from the motor neural

circuits that generate actions, i.e., cortical structures that are involved in arm movements are also

responsible for constructing covert visual attention that accompanies the movements. In developing

our model, we take the exact approach as argued by the premotor theory of attention: the attentional

landscape is primed by the motor system. By equalizing motor-relevant as attention-salient, we aim

at tackling the reviewed current weaknesses in the existing attention models. We demonstrate in

this chapter that motor-primed visual attention is a very e�cient mechanism. Figure 5.2 illustrates

the main principles of our approach.

We proceed further with the section that describes how the peripersonal space-primed attention

and motor plans-primed attention landscapes are computed.

5.2 Peripersonal space-primed and motor plans-primed

attention

In this section, we proceed with modeling the in�uence of the motor system in the modulation

of visual resources. From the evidence presented in the previous section, we took inspiration for this

work. Here, we hypothesize that such a modulation of visual processing would provide more e�cient

visual processing compared to the standard, uniform image processing that is not modulated by

the motor system. More speci�cally, we present two methods to bias the visual processing with

respect to the state of the motor system: (a) peripersonal space-primed mechanism, and (b) motor

plans-primed attentional modulation. The peripersonal space-primed mechanism is the concept of

attention based on the idea that visual attention should be biased toward the reachable space of

a robot. The biasing of the attention with respect to the reachable space has been observed in

the monkey and human experiments, reviewed in the previous section. The motor plans-primed

attention is motivated by the evidence that visual attention is dynamically bound to motor plans of

a monkey/human in behavioral experiments (a robot in the case of our modeling). The peripersonal

space-primed mechanism is a more general method to tailor visual attention with respect to the

motor system because it biases attention to the whole reachable space. On the other hand, motor

plans-primed attention is a more speci�c method, and computationally more e�cient because it

bounds the attention only to a subset of the reachable space that is de�ned by the current motor

plan.

In order to distribute visual attention with respect to both the peripersonal space and motor

plans of a robot, we �rst need to obtain a transformation that will map the points from the spatial

coordinates to the image planes. We next describe a method to compute projections from the

workspace to the image plane. Once this transformation is obtained, it is used to construct the two
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variants of visual attentional landscapes.

5.2.1 Mapping of the workspace to the image plane

Projections to the image plane

Let the Cartesian workspace position be represented as x ∈ R3, and the kinematic con�guration

at the current time of the torso-neck-arm represented with the torso, neck, and head joints as

q ∈ R9, the transformation function of the form:

pi = fi(c), (5.1)

where c ∈ R12, c =

[
x

q

]
, and pi ∈ R2 represents the projection of a 3D point, taking into account the

kinematics of the torso, neck and eye, to the image plane of the i-th camera, where i = {left, right}.
A classical, straightforward approach would be to compute a sequence of kinematic transforma-

tions through the torso-neck-head kinematic chain in order to obtain the extrinsic camera param-

eters, and use them together with the intrinsic parameters of the camera to obtain the projective

transformation. For a stationary camera, calibration of all the camera parameters can be easily

accomplished by formulating the problem as linear regression and solving it by using the least-

squares approach. However, for cameras mounted on a moving robot's head, the problem includes

the torso-neck-head joints. This imposes the need for calibration of the kinematic chain, because

most often a real robot di�ers from its nominal kinematic model. Hence, the linear problem of

calibration for a static camera becomes highly nonlinear for a camera mounted on the head as we

include the torso-neck-head joints as independent variables.

Clearly, an alternative solution is to rely on a non-linear approximation using any of the standard

machine learning techniques for non-linear regression. Similarly to what happens with human

newborns, the robot starts by exploring in a babbling-like manner a set of kinematic con�gurations.

During this exploration it segments an object (e.g., a small colored ball) placed at a randomly

chosen position from a set of known positions in the workspace. The data obtained during the

exploration (encoder readings of the joints in the torso-neck-head chain, the position of the object

in the workspace and its projection to the camera planes) is used to learn a mapping function. A

problem associated with this approach is that the babbling-like exploration with the real robot is

very costly because in order to build a reliable estimate of this nonlinear mapping, the size of a

training set needs to be arbitrarily large to be representative, usually of an order a few thousand

data samples.

Here, we take an intermediate step that represents a compromise between the two previously

described approaches. The idea is to take advantage of the simulator of a robot in order to obtain a
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Figure 5.3: Exploratory behavior used to learn an adaptable model of the visuomotor transforma-
tion. The snapshots from the simulator (a-d) show several examples of exploratory con�gurations.
The torso-neck-head-eye-joints (9 DoF) are sampled from the uniform distribution within their
respective joint limits, and, similarly, the position of the green ball is sampled from the uniform
distribution de�ned within the reachable space. For each sampled con�guration, the encoders are
read, and the locations of the segmented ball in the stereo images are obtained. After the explo-
ration, these data points are utilized to learn a neural network model of the workspace to the stereo
image projections. The advantage of having such a model is that the model can be easily adapted
to data points obtained from the real robot by taking similar exploratory procedure, in order to
adapt the model to the discrepancies between the mathematical model and the kinematics of the
real robot.

large number of training samples by employing babbling, and use this data set to estimate an initial

set of parameters for the mapping model (Figure 5.3). This model is then incrementally adapted

with the data obtained from the real robot, which accounts for only a small fraction of the data

obtained in the simulator.

Learning the map

A feed-forward neural network is a suitable machine learning algorithm for our application for

a number of reasons (Haykin, 1998). Feed-forward neural networks can compute multi-input-multi-

output functions. Their output is very fast to compute in real-time because the computation consists

of a short sequence of matrix-vector multiplications, followed by (non)linear transfer functions.

Feed-forward neural networks are suitable for incremental learning, either in a batch or a stochastic,
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online mode. This allows us to �rst estimate this function from the data in the simulator, and then

adapt it with the data from the real robot.

The parameters of an architecture of neural networks for transformation from the workspace to

the image coordinates (i.e. number of layers and the number of hidden units, etc.) are determined

by using grid-search on the mean squared error (MSE) between the recorded image projections

and retrieved projections from the model. We tested 10 di�erent network architectures, and for

each architecture, we performed 10 learning runs in order to ensure robustness with respect to

random initialization of network parameters. We used the Levenberg�Marquardt optimization

algorithm with early-stopping in order to prevent over�tting (Haykin, 1998). The recorded data set

is randomly partitioned for 70% of the data devoted to training, 15% data for validation, and 15%

data for testing. The lowest MSE on the testing set is obtained using two hidden layers with 25

nodes in each hidden layer. Transfer functions in the hidden layer are hyperbolic tangent sigmoid,

and in the output layer are linear. The data set is normalized to obtain zero mean and unity

variance. In order to get the real-time performance, a network class is implemented in C++ by

using linear algebra functions from OpenCV library (Bradski and Kaehler, 2008). The time needed

to transform 50 points by using neural nets to the image planes of both cameras is less than 1ms.

5.2.2 Peripersonal space-primed attention

In order to be able to distribute visual attention with respect to the peripersonal space of a

robot, (a) we need to have a transformation that will map the peripersonal space to the image

planes (as described in the previous section 5.2.1), and (b) we need to obtain a representation of

the peripersonal space that we will map to the stereo images as the robot takes di�erent postures.

We next proceed with describing how we obtain the representation of the peripersonal space and

how we learn the peripersonal space-primed attentional landscape.

Representation of the peripersonal space

For modeling the reachable space, classical methods such as polynomial discriminants and geo-

metric approaches compute the boundaries of the robot's reachable space (reviewed by Kim et al.

(2014)). The limitations of these methods are that they can only be applied to special kinematic

chains and they model the boundary of the reachable space, without any notion regarding which

locations of the reachable space are more likely to be attended. We take an exploratory, sampling

based approach that overcomes these two di�culties.

We model the peripersonal space by commanding the robot to explore reachable positions by

randomly varying the arm joint angles. More speci�cally, we sample the joint values from the

uniform distribution de�ned over the feasible joint ranges, and we read the achieved 3D end-e�ector

positions from the robot's forward kinematics. Once this exploration is carried out, we store recorded
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Figure 5.4: Exploratory behavior used to model the peripersonal space for the right arm of the
iCub robot. Figure (a) represents several exploratory movements captured in the simulator and
superimposed. Figures (b-d) show the sampled cloud of data points with respect to the robot's
body in XY (b), XZ (c) and YZ plane (d).

reachable points in a database. Figure 5.4 shows the exploratory procedure that we take and the

obtained, sampled representation of the peripersonal space.

Attentional landscape

After obtaining the representation of the peripersonal space, we model the distribution of atten-

tion with respect to the peripersonal space. We sample the eye-neck-head joints from the uniform

distribution within the joint limits and, for each sampled con�guration, we project the previously

sampled cloud of the reachable space points by using the previously learned mapping (presented in

Section 5.2.1) to the stereo images. This procedure is shown in Figure 5.5.
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Figure 5.5: Exploratory behavior used to learn a model of peripersonal space-primed attention
(a-c). The �gures represent several exploratory movements. For each randomly generated neck-
head-eye posture, we project the sampled set of reachable points to the stereo image planes. Using
bivariate Gaussian distributions to model the elliptical envelopes of projections of the bubble-shaped
cloud to the image planes is an intuitive choice. In this case, the bivariate Gaussians, one for the
right and one for the left image, are parametric representations of the peripersonal space attention
for the stereo setup given the current posture of the robot. The reddish heat maps correspond
to the values of the density of the projections. Finally, the mapping from the neck-head-eye joint
angles to the parametric representation of attention is learned by using these data. This mapping
is used in the run-time to infer how peripersonal attention should be distributed given the set of
the neck-head-eye joint angles.

91



The bubble-shaped cloud of the end-e�ector locations that models the peripersonal space (Figure

5.4) projects as an ellipsoid-shaped scatter to the left and right cameras (Figure 5.5). We use a

bivariate Gaussian distribution to model the scatter of the projected points on the image planes,

which represents a parametric representation of a peripersonal attentional landscape, as formulated:

Λi,t(p;µi,t,Σi,t) =
1√

(2π)4 | Σi,t |
e−

1
2

((p−µi,t)T (Σi,t)
−1(p−µi,t)), (5.2)

where t is the index of the currently sampled con�gurations and the corresponding projections,

i = {left, right}, and µi,t and Σi,t are the mean and the covariance matrix, respectively. In

this case, the bivariate Gaussians, one for the right and one for the left image, are parametric

representations of the peripersonal space attention for the stereo setup given the current neck-head-

eye posture of the robot.

Before we proceed with learning of a function that maps the neck-head-eye posture to the

parametric representation of the attentional landscape (the mean and the covariance), we must

take into account that the covariance matrix, inferred from such a mapping and used to compute

the attentional landscape, must be symmetric and positive de�nite to ensure the validity of the

Gaussian distribution. One solution is to enforce this by projecting the inferred covariance matrix

(only symmetric but no guarantees of positive-de�niteness) onto the set of symmetric positive

de�nite matrices by using the constrained convex optimization programming. However, addressing

this problem involves iterative optimization procedures, which we want to avoid for maximizing

computational e�ciency. Here we use an alternative approach. We �rst decompose the covariance

matrix into the product of a lower triangular matrix Li,t and its transpose by using the Cholesky

factorization:

Σi,t = Li,tL
T
i,t, Li,t =

[
L1,i,t 0

L2,i,t L3,i,t

]
. (5.3)

Next we proceed with learning a mapping λi,t = gi(qt), de�ned from the current joint angles

q ∈ R6 to the tuple λi,t ∈ R5, λi,t = [µ1,i,t, µ2,i,t, L1,i,t, L2,i,t, L3,i,t]
T , which is an ordered, column-

vector arrangement of the elements of µi,t and Li,t. This mapping is learned with a feed-forward

neural network, by using a similar procedure to the one explained in Section 5.2.1. In the run-time,

for a given con�guration q∗, we infer λ̃i,t, i.e.,µ̃i,t, L̃i,t, from function gi. We then compute the

attentional landscape as follows:

Λi,t(p; µ̃i,t, L̃i,t) =
1

C
e−

1
2

((p−µ̃i,t)T (L̃i,tL̃
T
i,t)

−1(p−µ̃i,t)), (5.4)

where C is a normalization constant. The reconstructed covariance matrix, computed as the prod-

uct L̃i,tL̃
T
i,t, is a symmetric positive de�nite matrix. Considering that the Cholesky lower triangular

matrix represents the measure of deviation from the isotropic Gaussian, we can constrain com-

putation of the attentional landscape within the ellipse obtained by multiplying the unit circle
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D = {p ∈ R2 | ‖p‖2 = 1} with L̃i,t and translating the product by µ̃i,t:

Ei,t = σL̃i,tD + µ̃i,t. (5.5)

σ ∈ R is a free parameter that corresponds to the number of standard deviations at which one wants

to compute the ellipse, and it is usually set at σ = 3. The value of the attentional landscape outside

the 3σ-ellipsoid is insigni�cant to a�ect the distribution of attention and can be neglected. For this

reason, we cut-o� the attentional landscape at zero outside the 3σ-ellipsoid to avoid computing Eq.

5.4 at these pixels to gain computational e�ciency.

5.2.3 Motor plans-primed attention

The peripersonal space primed attention could be seen as a general, multipurpose technique, to

compute the distribution of attention to the image regions that correspond to the entire peripersonal

space. It might or might not involve reaching and grasping movements. However, because periper-

sonal space-primed attention is bound by the whole reachable space, it does not utilize particular

motor plans of a robot. Additional constraining of the attentional landscape around motor plans-

relevant regions results in additional computational savings and more localized visual processing.

We here present a way to further constrain the attentional landscape, with respect to motor plans

of the robot. This is a more specialized technique than peripersonal space-primed attention.

We use our robotic eye-arm-hand controller, presented in Chapter 3, to generate reaching and

grasping movements and to forward-plan the arm-hand reaching trajectory. Learned eye-arm-hand

Coupled Dynamical Systems (CDS) are used in order to �mentally simulate� the consequences of

intended actions, more speci�cally, to compute (i.e. plan) an intended trajectory and to identify

obstacles. This mentally simulated arm reaching trajectory is transformed to the image planes of

the stereo cameras. The projected mentally-simulated trajectory is used to compute an attentional

landscape, i.e. a saliency map. We utilize the mentally-simulated trajectory in order to bias visual

resources to motor-relevant parts of the visual �eld, which we describe in the next section.

Attentional landscape

The mentally-simulated trajectory of the arm, from the current position to the �nal position at

the current time t, is represented as xnt ∈ R3, ∀n ∈ [1, Nt], where Nt represents the total number of

discrete samples. This mentally-simulated trajectory at every cycle of the control loop t is obtained

from the CDS controller. The kinematic con�guration at the current time t of the torso-neck-head

is represented with the torso, neck, and head joints qt ∈ R9, ∀t. We use the previously learned

transformation function, presented in Section 5.2.1, to perform this mapping:

pni,t = fi(c
n
t ), ∀n ∈ [1, Nt] , (5.6)
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where cnt ∈ R12, cnt =

[
xnt

qt

]
, and pni,t ∈ R2 represents the projection of the trajectory to the image

plane of the i-th camera, where i = {left, right}.
After we project the mentally-simulated trajectory to the image planes, we construct an atten-

tional landscape which associates high saliency close to the mentally-simulated trajectory perceived

in the image coordinates. To compute the attentional landscape, i.e. a measure of visual processing

priority (saliency map), we use a bivariate kernel smoothing function, where kernels are placed at

every point of the projection of the mentally-simulated trajectory to the image planes. Formally,

we compute an attentional landscape for each camera i as follows:

Λi,t(p) =
1

Nthhhv

Nt∑
n=1

K(p− pni,t), (5.7)

where p ∈ R2 corresponds to two-dimensional pixel coordinates of the image plane,

K(p− pni,t) = k

(
ph − pn,hi,t

hh

)
k

(
pv − pn,vi,t

hv

)
, (5.8)

where k(.) represents a kernel, and hh and hv are kernel widths along the horizontal and vertical

image dimensions. We tested both Gaussian kernels and triangular kernels, and we choose to use

triangular kernels because they are faster to calculate. The triangular kernel is expressed as follows:

k(z) =

 1−
∣∣∣z∣∣∣ ,

0

∣∣∣z∣∣∣ ≤ 1

otherwise
. (5.9)

The kernel smoothing function assigns high values of saliency close to the mentally-simulated tra-

jectory projected to the image planes of stereo cameras, which decrease in the directions away from

the trajectory (Figure 5.2). The attentional landscape is used to guide image processing in order

to e�ciently distribute limited visual resources. The part of the image with higher saliency draws

more visual processing, and the opposite is true. In the next section, we explain how we distribute

visual processing with respect to the visual attentional landscape, both peripersonal space-primed

and motor plans-primed.

5.3 Attention-driven visual processing

In Section 5.2, we presented two techniques of attentional landscapes that can be utilized to

distribute visual attention emerging from the motor system. In order to detect objects relevant for

the task at hand, a robot must process stereo images. In this section, we propose two methods to

use the attentional landscape to guide visual processing. These two techniques make our approach

general enough to be used as a pre-modulating technique to almost any kind of standard image
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processing detectors and segmentation techniques (pixel-by-pixel color segmentation, histogram-

based detectors, Viola-Jones, SIFT, SURF, etc.). The two processing schemes that will be presented

apply to both peripersonal space-primed and motor plans-primed attention.

5.3.1 Thresholding and sampling

One simple approach, suitable for pixel-by-pixel color processing and interest point detectors-

descriptor approaches, is to distribute visual processing to the region of the image where an atten-

tional landscape Λi,t(p) is higher or equal than some threshold di. It is easy to empirically estimate

the computational time for processing the entire image and from this value estimate cost per pixel.

By sorting pixels with respect to ascending values of their saliency, we can pick a number of pixels

corresponding to the available computational resources. From this sorted array, we can easily com-

pute the threshold di on the attentional landscape. The approximate value of the threshold can be

determined in ∼3 ms for 4800 subsampled pixels by using the Quick Sort algorithm.

The second attention-driven, visual processing method is concerned with modulating the image

processing techniques employ image processing within a scanning window, e.g. Viola-Jones detector,

histogram-based detector, Rowley-Baluja-Kanade detector, etc. Here the task is to determine the

position of the scanning windows with respect to an attentional landscape Λi,t(p), in order to have

more dense scanning where the saliency is large, and less dense scanning in spatial regions with

low saliency. Because we use either a kernel smoothing function or a Gaussian function to build

an attentional landscape, we can treat the attentional landscape as a bivariate probability density

function and use any kind of sampling techniques to sample spatial locations of scanning windows.

Again, we can empirically obtain a cost associated to process the image in each window, and from

the total visual resources, calculate the number of points to sample from the attentional landscape.

We use the Gibbs sampling method (Murphy, 2012). We choose the Gibbs sampling instead of other

sampling procedures such as the general Metropolis-Hastings algorithm2, because the acceptance

rate of sampled proposed values is 1, which makes it a very e�cient procedure. The procedure

operates as follows:

1. start with an initial pixel location: pi,0 = [hi,0, vi,0]T

2. for j = 1, 2, . . . ,M

3. sample hi,j from the conditional distribution Λi,t(h | vi,j−1) by using the inverse transform

sampling

4. sample vi,j from the conditional distribution: Λi,t(v | hi,j) by using the inverse transform

sampling

2The Gibbs sampling algorithm can be viewed a special case of the Metropolis-Hastings algorithm.
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5. store pi,j = [hi,j , vi,j ]
T , increment j and loop over steps 3-5 for the given number M of

scanning windows

6. return the set of sampled points: P = {pi,1, . . . , pi,M} (locations of scanning windows)

The Gibbs sampler and inverse transform sampling function embedded in it are implemented with

look-up tables as C-arrays for e�ciency. The time for querying the Gibbs sampler is ∼3ms for an

attention landscape of size 320×240 for 50 sampled scanning windows.

Adjustment when sampling from the peripersonal space-primed attentional

landscape

In Section 5.2.2, we presented a method for modeling the peripersonal space attention with one

bivariate Gaussian per stereo image. The bivariate Gaussian is suitable for modeling the projection

of the 3D peripersonal space blob to the image plane, as we illustrate in Figure 5.5. Once this

representation is obtained, it is used to perform image processing according to it. For processing

by using the thresholding-based approach, this representation of the attentional landscape can be

directly used, however, for the sampling-based approach, we �nd that it is better to slightly balance

it. The steeply rising pro�le of the Gaussian distribution biases sampling toward its centroid. When

we sample a smaller number of windows, this could lead to the case that the objects that lie closer

to the boundary of the reachable space are missed. For this reason, we propose using a balanced

version of the peripersonal space-primed attention (Section 5.2.2) when doing sampling-based image

processing. A balanced peripersonal space-primed attentional landscape is de�ned in the form of a

mixture between the obtained bivariate Gaussian (Eq. 5.4) and the uniform distribution U(p):

Λi,t(p; µ̃i,t, L̃i,t) = π
1

C
e−

1
2

((p−µ̃i,t)T (L̃i,tL̃
T
i,t)

−1(p−µ̃i,t))+

(1− π)U(p), U(p) =

 c,

0

c ∈ domain

otherwise
, (5.10)

where π ∈ [0, 1] is the mixing probability, which is a parameter that can be hand-tuned according

to the desired behaviors. Creating the mixture between the Gaussian and the uniform distribution

�attens the original Gaussian pro�le, which results in more spread out sampling and, hence, better

coverage of image regions that correspond to the spatial regions lying closer to the boundaries of

the peripersonal space. Again, we constrain computations within the 3σ-ellipsoid Ei,t.

5.3.2 Closing the loop: from covert attentional landscape to overt eye

movements and manipulation
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It is noteworthy to mention that we recompute and sample the attentional landscape maps at

every cycle. This implies that there is no requirement to implement the IOR mechanism and deal

with the problems with the change of coordinates associated with standard saliency models (Begum

and Karray, 2011), which simpli�es our approach and hence reduces the overall computational time.

As described in the previous section, when the attentional landscape is constructed, the top-

down visual scan is performed in the spatial regions that have high relevance. These two stages

correspond to covert visual attention. In the case of motor-primed attention, after the targets

(and/or obstacles) are detected, the overt gaze movements are initiated toward the �rst intermediary

target in a synchronous manner together with the arm and the hand motion by using our CDS eye-

arm-hand controller (Lukic et al., 2012, 2014a). In a no-obstacle task, the eye-arm-hand system

is directly driven toward the target. In tasks with obstacle avoidance the eye-arm-hand system is

driven toward the obstacle, which is treated as an intermediary target for the visuomotor system,

as explained in Chapter 3. When the obstacle is avoided, the system is driven toward the object to

be grasped.

5.4 Results

We validate our method in the iCub simulator and the real robot with a task of visual explo-

ration for initial object detection (peripersonal space-primed attention), and reaching and grasping

a kitchenware object (motor plans-primed attention). Resolution of the stereo cameras in the setup

is 320×240. We verify this approach with two well-known standard image processing techniques.

For the �rst visual detector, we select a scanning window hue-saturation histogram-based detector.

We implement this detector by using functions from the OpenCV library (Bradski and Kaehler,

2008). For the second detector, we selected SURF (Bay et al., 2006)3. SURF is a powerful detector

because it provides visual features that are robust to moderate changes of the perspective. Because

it computes feature point descriptors, it provides the ability to detect partially occluded objects.

However, SURF (together with a family of similar detectors like SIFT, GLOH, etc.) is very com-

putationally demanding, with the cost being double for a binocular system, hence it has limited

applicability for manipulation where the stereo vision is used in the loop. The total time to process

a stereo pair of images in the standard, full-blown way, is for the histogram based detector with the

window size 20×20 is 168ms and for SURF with the Hessian threshold set to 300 is 515.5ms.

We �rst test both detectors in the context of peripersonal space-primed attention. The time

needed to infer the parametric representation of the attentional landscape by using feed-forward

neural networks is negligibly small, close to a tenth of a millisecond. Computing the peripersonal

attentional landscape image requires 35.5ms. These are computations common for both image pro-

cessing techniques. Sampling from the relevance images, for the histogram-based detector, requires

7ms for the stereo setup for 50 image windows per image. Performing sparse image processing for

3We used the implementation available from the OpenCV library.
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Figure 5.6: Experiments of visual exploration for object detection (a-b) and visually-guided reach-
ing and grasping in the iCub's simulator (c-e), in two di�erent scenarios with two detectors, and the
real robot (f). The reddish blend shows the superimposed attentional landscape used to drive visual
processing (for the peripersonal space-primed attention with the histogram-based detector (a) we are
sampling from a modi�ed version, computed as in Eg. 5.10 with π = 0.2). The �gures (a) and (b)
represent snapshots from the experiments where visual processing is prioritized to the peripersonal
space (peripersonal space-primed attention), for histogram-based detector and SURF, respectively.
The blue squares are scanning image windows for which visual features are computed. The robot
adopts a random con�guration, and the object adopts a random position within the reachable space.
Figures (c-f) show the context of motor plans-primed attention, namely, the execution of eye-arm-
hand coordination from the start of the task (left) until successful grasp completion (right). The
white line corresponds to a mentally-simulated arm trajectory that is projected to the image planes
of stereo cameras. Figure (b) corresponds to the obstacle scenario with histogram-based detector.
Figure (c) corresponds to the obstacle scenario with histogram-based detector. Figure (d) corre-
sponds to the no-obstacle scenario with SURF detector. The blue circles correspond to detected
strong feature points. Figure (e) shows how a combination of both approaches: the peripersonal
space-primed attention is used to bootstrap initialization of the motor plans-primed attention. The
bottom row (f) corresponds to the no-obstacle scenario with histogram-based detector with the real
robot.
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these windows takes 26.5ms. These times sum up to 69ms for the peripersonal-space histogram

based visual detection. We can see that with our approach we can save 99ms for each pass through

the control loop (speed up factor ∼2.4×). For SURF, thresholding takes 6.5ms and processing 30%

of the image pixels with the highest salience takes 280ms, which sums up to the total time of 322ms

for our approach. We can see that this saves 193.5ms per pass (∼1.6× faster). Figures 5.6(a-b)

show the simulated results, and Tables 5.1 and 5.2 report times for the peripersonal space-primed

attention with the histogram based detector and SURF, respectively.

For motor plans-primed attention, we use a similar approach; the only di�erence is that this,

more specialized visual attention, is used to aid the ongoing movements. For both detectors, the

common computations involve a projection of the mentally-simulated trajectory to the image plane

and computing a motor-primed attentional landscape. The cumulative time for calculating a pro-

jection of the forward-planned trajectory to the image planes and computing attentional image

landscapes is 19ms (1ms for projection and 18ms for computation of the landscapes). For the

histogram-based detector, sampling time for 50 windows is the same as in the peripersonal version,

7ms, and similarly, the image processing time is 28ms. The overall time for motor plans-primed

histogram-based image processing is only 54ms, i.e. ∼3.1×(114ms) faster than the naive image

processing with a uniformly sliding window. For motor-plans primed attention with SURF, again,

thresholding requires 6.5ms and processing 30% of the image pixels of the most relevant pixels

takes 281ms. The total time for our approach with SURF is 306.5ms, which is ∼1.7×faster than
the classical, full-blown image processing. Figures 5.6(c-d) show the scenarios and Tables 5.3 and

5.4 report times for the with the histogram detector and SURF, respectively. Figure 5.6(f) presents

the experiments with the motor plans-primed attention and the histogram-based detector with the

real iCub robot.

The presented schemes could be used independently of each other, as previously discussed, and as

shown here, however, they could work even better if used together. In order to plan the movements

for actions (for estimation of future movements and for updating the visual scene by using visual

processing driven by motor plans-primed attention), a robot must have some initial guess where

the object might be. Of course, to initialize the procedure one could scan the entire images �rst

and then in the further iterations apply reduced processing by utilizing the motor attention and

updating the knowledge about the object state from the vision system. However, for this initial

exploration, we could use the peripersonal space attention to constrain the initial visual search.

Once the robot starts to move, it switches to the motor plans-primed mechanism. Figure 5.6(e)

shows how these two attentional mechanisms work together.

Clearly, the presented experiments show that if we choose to intelligently process the images,

prioritizing valuable image resources to motor relevant plans of the images, we can speed up visual

computations by up to a factor of 3 times compared to the standard uniform image processing

approach, where all pixels have the same priority and hence they are processed accordingly, without

any discrimination what is motor relevant from what is not.

Finally, it is important to mention that, in addition to speeding up visual processing, this
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approach facilitates the accuracy of visual detections during an ongoing prehensile movement. The

common problem with visual detections in cluttered scenes (as the one in Figure 5.6 (f)) is that

there could be a signi�cant number of false positives after image processing is done. Because we

bound visual processing to motor plans of a robot, we signi�cantly reduce false positive detections.

In the context of the conducted experiments, there are no false positive detections of the objects in

the parts of the visual �eld that are irrelevant to motor plans, because the relevant objects are not

likely to be there.

The computation times presented here are the averages computed for 200 measurements. The

experiments are run on a computer with an Intel i7 2.7 GHz dual-core processor and 4 GB of RAM.

We have included a supplementary video �le which contains the experiments presented here. The

video will be available online at http://lasa.epfl.ch/~lukic/IEEE_Tran_2014.wmv.

5.5 Summary and discussion

In this chapter, we have presented one general approach, with two di�erent, but complementary,

computational realizations, where visual attention is computed by using modulation signals origi-

nating from the robot's motor system. In sharp contrast to the classical approach in computational

models of attention and corresponding robotic implementations, where visual saliency is computed

based on low-level visual features such as color, edges and intensity contrast, emphasis is put here

on tuning the robot vision with respect to the notion of the peripersonal space and forward-planned

reaching and grasping movements.

The approach presented here is inspired by the results from psychology and visual neuroscience

suggesting that visual attention emerges from the motor system, as elegantly summarized under

the premotor theory of attention (Rizzolatti and Craighero, 2010). The peripersonal space around

the body (in both humans and non-human primates) inherently attracts more visual resources than

the extrapersonal (beyond reach) space, with and without supporting arm movements (Graziano

and Gross, 1995; Previc, 1998). A number of more recent studies with humans show that the

specialization in the peripersonal space could be additionally �ne-tuned in order to support reaching

and grasping movements (Baldauf and Deubel, 2010).

According to the aforementioned results from the psychology and neuroscience, we have de-

veloped two attentional techniques to drive visual processing in humanoid robots: peripersonal

space-primed and motor plans-primed models of visual attention. Peripersonal space-primed atten-

tion is based on the idea that visual processing supporting reaching and grasping should prioritize

the reachable (peripersonal) space of the robot. On the other hand, motor plans-primed attention

is constructed around the idea that during movements, the image parts corresponding to the space

around motor plans should receive higher priority for visual processing. The peripersonal space-

primed attention model is a more general concept and could be used for a variety of applications,

including visual exploration of the reachable space, but also during the ongoing movements, as well.
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Nevertheless, we advocate its use for visual exploration, but not during actual movements, because

motor plans-primed attention o�ers a more specialized framework, which results in higher compu-

tational savings. We have taken a machine learning, data-driven exploratory approach to construct

the visuomotor transformations and to obtain an implicit notion of the peripersonal space used for

guiding visual processing. The bene�ts of such an approach are that learned models be adapted, if

needed, to the visuomotor transformations involving the imperfections of the kinematics and cam-

eras of real robot, and that it overcomes limitations of the classical methods used for representation

of the peripersonal space, while still being very e�cient to compute (less than a millisecond to

compute the outputs of feedforward neural networks). Once the attentional landscape is computed

(either peripersonal space-primed or motor plans-primed) it could be used to drive almost any

standard image processing technique. We have presented experiments with two popular techniques,

with the histogram-based color detector and SURF. For the histogram-based detector, we treat

the attentional landscape as the bivariate probability density function and sample locations of the

scanning windows by using the Gibbs sampling technique. For SURF, we apply a threshold based

segmentation to constrain computation of SURF features within the parts of the image with higher

motor relevance.

Furthermore, in the presented experiments, we have shown how the peripersonal space-primed

and motor plans-primed attention can work together. Peripersonal space-primed attention is used

to bootstrap initialization of the motor plans-primed attentional mechanism. In order to use motor

plans-primed attention, the robot �rst needs to possess some previous belief where the object might

be. This prior information about the object location is used in an iterative procedure: to compute

motor plans, which are used to control the robot and for visual updating of the object location

by means of motor plans-driven visual processing. The initial guess where the object might be

placed could be obtained by �rst scanning the entire stereo images in the classical way and then

proceeding with the iterative procedure until the task ends. However, peripersonal space-primed

attention o�ers a way to constrain the initial visual search, which is a more e�cient method than the

naive and expensive scanning of the whole images. Once the object to be grasped (and objects to

be potentially avoided) is detected, the robot then selects its motor plans, and it switches its visual

attentional mechanism to the motor plans-primed, more specialized and more e�cient, attentional

model that supports visual processing during movements.

Taken together, in this chapter, we have shown that our approach can e�ciently distribute

limited visual resources in a robot system, signi�cantly reducing resources compared to the classical

uniform image processing, but still allowing for a robot to perform complicated tasks, such as

manipulation with obstacle avoidance.
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6 Conclusion and Future Work

I
n this chapter, we make a summary of the main contributions of the thesis. We bring to light

some limitations of the proposed work and propose several future directions for improvements

that could be natural extensions of this dissertation.

6.1 Thesis contributions

There are four main contributions of this thesis:

First, we presented a novel behavioral experiment with humans, in which we investigated the

visuomotor coordination in humans in complex motor tasks, such as prehension with obstacle avoid-

ance lead by head-free gaze movements. Our study indicates that visually-guided reaching with

obstacle avoidance is organized in a sequential manner, and that the visuomotor system treats the

obstacle as an intermediary target, favoring movement segmenting instead of holistic task program-

ming. Furthermore, we found that the forward planning mechanism might be proactively involved

in guiding the motor system and detecting potential obstacles guiding reaching and grasping. We

have extended the well-known fact that the gaze actively leads the arm-hand system, by showing

that this coupling is preserved even in the presence of an obstacle.

Second, the observations from our human study provided the basis on which we developed a

robotic eye-arm-hand controller. The controller is solely estimated by using the human motion

capture data. The controller is based on our extension of the Coupled Dynamical Systems frame-

work. The properties of this framework provide the model with the ability to rapidly generate

stable coordinated movements and almost instantly reprogram movements when perturbations oc-

cur, mimicking the behavior of humans. This controller shares similar properties with classical

visual servoing because the movements are generated in a closed-loop fashion. However, it is also

related to learning-based visuomotor robotic models because it employs machine learning techniques

to learn movement generation and motor coordination.

Third, we investigated the neuroscienti�c literature, focusing on the main computational princi-

ples behind the target encoding, programming and coordination of visuomotor movements. In our

modeling, we emphasized the hypothesis that the cerebellum uses the cortical target encoding, and,

based on this representation, performs closed-loop programming of multi-joint, compound move-

ments and movement coordination between the eye-head system, arm and hand. We uni�ed these

considerations in the block-schematic model we proposed. In addition to our theoretical modeling,
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we provided a computational model for robotic visuomotor control in obstacle-free prehension. In

obstacle-free reaching and grasping, our computational model o�ers a number of improvements over

the �rst robotic model we have developed. The improvements are, namely, in terms of the com-

putational e�ciency (faster computation), introduced plasticity of the target representation (e.g.,

with this plasticity it is now possible to accomplish saccade adaptation) and the improved overall

biological plausibility of our model (more biologically plausible target encoding for the gaze and

arm and more plausible gaze-arm coupling). To the best of our knowledge, this model represents

the only functional framework to unify, on a functional level of abstraction, the aforementioned

computational and organizational principles borrowed from the neural motor control in the context

of the full eye-arm-hand visuomotor control, both among robotic and neurophysiological models.

Fourth, we presented a new view on the modeling of the allocation of visual resources in the

form of a motor-primed visual attentional landscape. This work was motivated by recent �ndings

in human and monkey visual neuroscience and psychology. Spatially distributing visual attention

in the form of the attentional landscape is a more general and a more complex concept than

the attentional spotlight and zoom-lens paradigms. Attentional motor-priming prioritizes visual

processing to motor-relevant parts of the visual �eld. Namely, we presented two models of motor-

primed visual attention allocation. The �rst, more general, model devotes visual attention to the

reachable space of a robot. The second, more specialized, technique allocates visual attention

close to motor plans of the robot. Furthermore, we presented two methods for using the attentional

landscape for driving visual processing. We showed that attentional motor-priming is a very e�cient

mechanism in terms of saving the limited resources for the visual computation.

6.2 Limitations and Future Work

6.2.1 Gaze fixation pattern at the target

In our robotic modeling, we selected the centroid of the object (obstacle and target) as the �xation

point for the gaze. However, this simpli�ed scheme of selecting the �xation points on the object

might be upgraded in order to improve both biological plausibility and the computational bene�ts

of using active vision. From physiological studies, it is known that the gaze �xations are driven to

regions of the target contact points in grasping, whereas in viewing tasks the gaze is directed to

the object's centroid (Brouwer et al., 2009). The explanation for this result is that �xations during

grasping are focused on the object's contact parts because the eyes provide visual feedback for motor

control of the �ngers in grasping scenarios. These contact parts are mostly close to the boundary

of an object. The gaze is more likely to fall on the edges of obstacles, in both manipulation tasks

(Johansson et al., 2001) and in navigation (Rothkopf and Ballard, 2009), which can be explained by

taking visual information for path planning for obstacle avoidance. We observed the same e�ects

in our human trials. However, at this point there are not yet computational models that tackle
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problems of selecting optimal �xation points on the target object and obstacles. We consider that it

would be tremendously useful to tackle this scienti�c problem. Recent work on active segmentation

might o�er the computational ground for tackling these problems (Mishra et al., 2009a,b).

6.2.2 Safety margin for obstacle avoidance

For the obstacle avoidance scheme we presented, we assumed a constant value for the safety margin

between the arm's via point and the obstacle. The results of our human experiment, when the

obstacle is moved along the midline of the desk, indicated that this safety distance was kept quasi-

constant across subjects, and for all trials where the hand would have touched the obstacle if moving

with the regular pattern of the motion. However, there is no reason to think that this safety margin

is a constant, preset factor. Some studies showed that this safety margin was modulated by the

speed of movement (e.g. faster prehensile movements are associated with a greater safety distance)

(Tresilian, 1998; Mon-Williams et al., 2001) and �a variety of psychological factors related to the

cost that a person attaches to a collision� (Tresilian, 1998). It would be of great importance, both

for motor control science and robotic obstacle avoidance applications, to model this safety distance,

rather than to consider it as a preset factor (Bendahan and Gorce, 2006). One approach to model

this safety margin is to estimate it from the data recorded from human demonstrations by varying

task conditions across trials (e.g. shape and size of an obstacle, relative positions of objects in the

workspace, required speed of manipulation, task objectives, etc.), and then learn it by using suitable

machine techniques.

6.2.3 More complex human obstacle avoidance studies

Robotic engineers have studied avoidance of multiple obstacles for a long time (Khatib, 1986; Lumel-

sky and Skewis, 1990; Simmons, 1996; Kavraki et al., 1996; Ku�ner Jr and LaValle, 2000), but it is

quite surprising that only a small number of studies in motor control, physiology and visual science

studied human manipulation in tasks where several obstacles occupy the workspace. In their study,

Mon-Williams et al. (2001) reported on the greater e�ect of two obstacles on the movement time,

maximum grip aperture and peak speed compared to the one-obstacle case. Rothkopf and Ballard

(2009), who studied human navigation in an immersed graphic environment, reported that subjects

�xate the edges of obstacles for the purpose of planning a walking path for obstacle avoidance.

Aivar et al. (2008) provided evidence that fast arm responses to the displacement of obstacles are

triggered by a reaction to the retinal motion of moving obstacles. Many important questions still

remain unanswered. Do humans assess multiple obstacles in a sequential manner, assigning pri-

orities to obstacles according to the estimated risk of collision, or simultaneously? How are the

eyes, arm and the hand coordinated when handling multiple obstacles in reaching and grasping

tasks? How do the human visuomotor and planning systems react when one or several obstacles are

perturbed in the workspace during prehensile tasks? Studying visuomotor coordination in natural

prehensile tasks with several non-target objects in the workspace could provide more insights into
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these questions.

6.2.4 Flow of visuomotor coordination

In our robotic models, the �ow of control signals is monodirectional, and it is oriented in the

direction eyes → arm → hand. This is a current limitation, because there is a number of studies

that have demonstrated that motor coupling and the reference frame transformations could be

performed in the other direction, as well. A number of studies have demonstrated that the control

signals also �ow from the hand to the eyes (Vercher and Gauthier, 1988; Gauthier et al., 1988; Fisk

and Goodale, 1985; Neggers and Bekkering, 2000), and from the hand to the arm (Timmann et al.,

1996; Zackowski et al., 2002). Hence, it would be of primary interest to include this direction of

visuomotor coordination, and assess its potential bene�ts over the monodirectional �ow of control.

Having the control signals �ow in the opposite direction, hand → arm → eyes, could be useful,

for instance, to trigger a reactive motion of the gaze and the arm when facing an unexpected

displacement of the hand, such as when the hand inadvertently touches an obstacle.

6.2.5 More complex visuomotor coupling

Finally, in our modeling, we assumed that there is a single block that de�nes the coupling

between each master and its corresponding slave e�ector. Considering the evidence from the psy-

chological studies, this might be too restrictive. Several studies have shown that the pro�le of

visuomotor coordination can be modulated depending on the task requirements (Vercher et al.,

1994; Pelz et al., 2001; Hayhoe et al., 2003), which suggests the existence of either multiple cou-

pling models or some parametric modulation inputs, descending from higher cortical areas such as

the frontal lobe, that modulate motor coupling.
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