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RESUMO
Considera-se o problema da reconstrução tridimensional obtida a partir de uma ou

mais imagens, quando as projecções perspectivas dos pontos 3D de interesse são

conhecidas, e também algumas propriedades geométricas, tal como planaridade,

colinearidade, simetria, ângulos entre direcções etc. Assim, o método proposto

aplica-se sobretudo à reconstrução de ambientes e objectos arti�ciais, onde estas

propriedades geométricas são comuns.

O método decompõe-se em duas fases. Na primeira, o problema da recon-

strução é transformado num problema de álgebra linear cujas soluções são identi�-

cadas com as do problema inicial. Além disso, examinando a dimensão do espaço

das soluções do problema linear, é possível determinar se os dados são su�cientes

para de�nir uma reconstrução única.

Na segunda fase, a reconstrução de máxima verosimilhança é obtida. O prob-

lema de reconstrução é transformado num problema de optimização sem restrições

em que é usada uma parametrização diferenciável dos pontos tridimensionais sujeitos

às restrições geométricas.

Estas duas técnicas combinam-se num método de reconstrução que apresenta

melhorias respeito a métodos previamente publicados, quer por oferecer uma grande

�exibilidade de uso, quer por dar um resultado cuja precisão pode ser caracterizada

estatisticamente. O método é avaliado usando dados sintéticos e reais.

PALAVRAS-CHAVE

Visão por computadores, fotogrametria, reconstrução 3D, reconstrução a partir de uma imagem,

máxima verosimilhança, restrições geométricas.
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ABSTRACT
We consider the problem of tridimensional reconstruction obtained from one or more

images, when the 2D perspective projections of 3D points of interest are available,

together with some geometric properties, such as planarities, alignments, symme-

tries, known angles between directions etc. Because these geometric properties occur

mainly in man-made environments and objects, the presented method applies mostly

to these cases.

The method has two phases. In the �rst, the reconstruction problem is trans-

formed into one of linear algebra, and the solutions to the initial problem are identi-

�ed with that of the second. Thus, examining the dimension the space of solutions

allows to determine whether the provided information is su�cient to uniquely de�ne

a reconstruction.

In the second phase, the maximum likelihood reconstruction is obtained. The

reconstruction problem is transformed into a problem of unconstrained optimization

by using a di�erential parameterization of the 3D points subject to geometric con-

strained.

These two techniques combine into a reconstruction method that improves

over the current state-of-the-art by o�ering a great �exibility of use and by providing

a reconstruction that is statistically characterized. The method is benchmarked

using synthetic and real-world data.

KEYWORDS

Computer vision, photogrammetry, 3D reconstruction, single-view reconstruction, maximum like-

lihood, geometric constraints.
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Chapter 1

Introduction

In a picture taken by a camera, depth information about the scene is lost, but most human beings

can interpret the image and somehow recover the original shape. In contrast, we are presently

unable of programming a computer to do the same thing, except in limited cases. For the time

being, the human visual system is in most respects superior to computer vision algorithms, which

explains why many computer vision systems still rely on a human operator to do part of the work.

By observing an image like that in Figure 1.1 (left), a human being gets a good feeling of

the shape of the viewed object, but cannot determine precise metric properties of the scene, such

as angles or ratios of lengths. For example, it is hard to accurately determine the ratio of the

height to the width of the building. Tools from geometry, on the other hand, allow us to relate

2D measurements to 3D points and, using some algebra and estimation theory, it is possible to

calculate some information about the original 3D object. A computer is best adapted to implement

these numerical calculations. For example, Figure 1.1 (right) shows a model computed from the

image on the left, with the help of a human operator. In this model, measurements of angles and

ratios of distances can be done, and the precision of the obtained �gures can be estimated.

This thesis proposes a methodology to recover the 3D structure of objects from one or more

images, exploiting auxiliary geometric information provided by a user. We combine the advantages

of a human operator and that of a computer and develop a method for measuring precisely 3D

objects observed in one or more 2D images. We improve over the state-of-the art by using geometric

properties of scenes that were not exploited previously, such as the symmetry in certain objects.

Also, we arguably claim that the available information is treated in a more appropriate way, which

results not only in e�ective algorithms, but also allows to give a precise probabilistic meaning to

the estimated quantities.
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Figure 1.1: Left: A human being observing this picture is able to decompose this scene in trian-
gles, and other planar surfaces and in prisms, parallelograms and pyramids.
Typical man-made scenes are rich in planarities, right angles and symmetry : the outlined trian-
gular façades lie on vertical planes, the panel on the right side is rectangular, and the building has
vertical planes of symmetry passing through the topmost point.
Right: By using 2D points (white dots) localized in the image at left and some geometric informa-
tion known a priori, it is possible to compute this reconstruction. The positions of the 3D points
(white dots at left) are estimated, and textured planar surfaces are used to improve the visual
aspect.
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The �structured scenes� that we consider are sets of 3D points that verify certain geometric

properties such as planarity, parallelism and other forms of geometric regularity. The reconstruction

method that we develop is well adapted architectural scenes, but others can be treated, as long as

su�cient geometric �structure� can be found. These geometric properties are easily identi�ed in

an image by a human being, whereas a computer cannot, as of today, be programmed to do the

same.

The task required from the human operator, the �user�, thus consists in de�ning a polyhedral

representation of the reconstructed object and giving some information about the orientation of the

facets. For the user, it is relatively simple to choose what part of the scene should be reconstructed,

select a meaningful set of planar surfaces in the scene and determine the orientation of these facets.

The following example gives a more explicit idea of the information provided by the user.

First, he or she will identify the 2D projections of 3D points of interest, which form the edges of

a polyhedral object that approximates the scene. In Figure 1.1 (left), these points are identi�ed

by white dots. Then, some �X�, �Y� and �Z� directions, and possibly others are chosen, which are

�aligned� with the features of the object. For example, the �Z� direction typically is taken to be

vertical, while the �X� and �Y� directions are horizontal, perpendicular to each other, and parallel

to some edges of the object. The user will then indicate some geometric properties involving the

identi�ed points and these directions. For example, the user could have indicated that the two

triangles outlined in Figure 1.1(left) are contained in planes orthogonal to the �X� direction. Also, it

is clear that the object is symmetric with respect to a vertical plane orthogonal to the �Y� direction,

passing through the top of the object. The user could indicate this property by identifying a point

that belongs to the plane of symmetry and pairs of points that are symmetric with respect to that

plane. As one sees, a human operator can easily identify the desired information.

Once this collection of 2D points and geometric properties are given, the problem of 3D re-

construction consists in �nding 3D points such that their perspective projection (Figure 1.2) best

coincides with the 2D points. This is a problem of geometry and, because there are errors in the

observations, one of probability. The bulk of this thesis is concerned with �nding an appropriate

solution.

Before going into the details, we show that solving the proposed problem has is some practical

utility. Then, we examine the previously published solutions, and put in evidence strong and weak

points. In the last section of this chapter, we outline the method that is the subject of this thesis

3
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Figure 1.2: Geometry of the Perspective Projection model. The observed 2D points are
obtained by perspective projection. That is, the original 3D point lies on the line de�ned by
the optical center and the observed 2D point. In practice, however, small errors occur in the
observations, and the three points are not exactly aligned.

and brie�y explain how it addresses shortcomings of other methods.

1.1 Motivation

Man-made environments and images thereof are very common, and there are many situations in

which metric information about the original scene is sought, but only one image is available, so

that a classical reconstruction method [55] cannot be used. Having metric information allows to

perform measurements of 3D objects using images.

Architecture, biometrics and forensic science are possible recipients of such measurement meth-

ods [13]. Metric information is also needed to obtain virtual models of buildings or indoor scenes,

which are easier to visualize than simple measurements. Urbanists, architects, real-estate compa-

nies, movie-makers and producers of computer games could all be interested in obtaining models

of buildings [19] from few images. In some cases, buildings that have disappeared can be modeled

from as little as a single image, for example, an old photograph or a painting [13].

Other types of scenes that verify some geometric regularity can also be analyzed. For example,

[57, 69] analyze images of sports events. In [57], the 3D posture of a sportsman is reconstructed

from a single image, by exploiting known ratios of lengths in human limbs. By generating novel

4



views of the sportsman, a better understanding of the situation on the �eld of game can then be

gained. In [57], the authors estimate, using a probabilistic framework, the position of a soccer ball

in the �eld, and determine whether a goal has or not been scored.

Although some of these applications are accessible to general reconstruction methods [71, 55],

others, most notably those in which a single image is available, are possible only because some

techniques were developed that exploit speci�c geometric properties of the scenes that are being

treated.

Also, in the case of architectural scenes, it has been noticed [6] that the quality of the obtained

3D measurements can be greatly improved if some geometric properties of the scene are taken into

account, such as planarities, orthogonalities, parallelism etc. Because classical method do not take

advantage of this fact, new techniques have been proposed and are still being developed.

Finally, the evolution of computers seems an invitation to reconstruction systems in which part

of the information is provided by a user, while numerical computations are executed automatically.

Not only has the computational power of computers increased, the interface with the user has

also become much more intuitive, allowing him or her to enter information and commands more

conveniently.

The conjunction of many applications, new methods and ergonomic user interfaces has rendered

reconstruction methods accessible and attractive beyond the circle of researchers and students who

developed them.

Having given motivation to solve the problem of reconstructing structured scenes, we now see

how previous work has addressed it, and then indicate how this thesis improves on the actual

state-of-the-art.

1.2 Related work on the reconstruction of structured scenes

The methods that can be found in the literature can be roughly classi�ed as �model-based� (or

�CAD-based� [75]) and �constraint-based�. In the former, a model object is �tted to image features

[49, 20, 42], while the latter [13, 48, 60, 62, 67] rely on geometric properties, such as planarity,

alignment etc, to obtain a reconstruction. Some techniques share aspects of both constraint and

model-based methods [76].

5
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Figure 1.3: Parameterized models provide a convenient way of representing common shapes.
Left: A parallelogram can be represented by the lengths l1, l2, l3, and the angles �1, �2 and �2.
Right: A house-like object can be represented by the four lengths shown in the �gure.

1.2.1 Model-based approaches

Rectangles, parallelograms, circles, prisms are commonly found in man-made environments and

many objects can be modeled as a combination of these shapes. The main idea behind model-based

approaches is to obtain the reconstruction as an assemblage of �primitive shapes� that best �ts the

image data. Typically, the user speci�es one [41, 69] or more models [49, 19] and localizes them

approximately in the image. The model is then �tted to the image.

One reason for which it is convenient to use such combinations of primitive shapes is that each

one can be conveniently characterized by a small collection of numbers. For example, a rectangle

parallelogram is uniquely de�ned by three lengths, or a general parallelogram, by three lengths

and three angles (Figure 1.3, left). Other objects such as the house in Fig. (1.3, right) can also be

concisely represented. This representation is relatively simple in mathematical terms and is easy

to use in computer algorithms.

In methods that use an assemblage of many shapes, the relative position of objects can also

be de�ned conveniently. For example, it is possible to say that one shape is �on top of� another,

or that they lie on the same plane etc. In mathematical terms, the referentials in which di�erent

objects are represented are subject to some constraints, and parameterized accordingly.

As a result of this modeling process, the collection of 3D points that de�ne the object, for

example some of its edges or corners, are represented as a function of some parameters. In other

terms, the object is parameterized by a �shape function� :

X =M (�) ; (1.1)

6



where X is a vector holding all the coordinates of 3D points, � is a real-valued vector holding all

the parameters and M is the function that associates the 3D points to the parameters.

The reconstruction is obtained by minimizing a cost function that measures discrepancy between

the 2D observations and the projections of the model :

Cost =
NX
i=1

kxi �Pi (M (�) ; R;T;K)k2 (1.2)

where x1; :::;xN are the image observations, Pi is a �projection� function and R, T andK represent

the orientation(s), position(s) and calibration(s) of the camera(s). Of course, the actual cost

function is usually not written in this exact way, but it has similar properties.

One of the most useful characteristic of this cost function is its di�erentiability, which facilitates

the localization of its minimum [56]. For this property to hold, it is necessary that the function in

Eq. (1.1) be di�erentiable, which can easily be guaranteed by construction. Another noteworthy

characteristic of the cost function in Eq. (1.2) is that it may involve observations (the xi) in many

images. As a consequence, single and multi-view datasets can be treated in similar ways. Finally,

the cost function can often be given a probabilistic interpretation, so that the reconstruction is

actually a maximum likelihood estimator and it is possible to analyze its precision [34]. From

this exposition, is clear that model-based methods are well-behaved mathematically and that they

present many interesting properties.

The main limitation of model-based methods is that they can only reconstruct scenes for which

a model is available, or which can be decomposed into simpler shapes. In order to extend the

generality of the method, there are basically two solutions. One is to add primitive shapes, which

requires that the producer of the method works out the details of some �shape functions� Eq. (1.1).

Another is to decompose the scene in many objects, which requires more work from the user, and is

not always possible. Model-based methods are thus well adapted to some sorts of common objects,

while some others require more work to be reconstructed.

Model-based methods have also been developed in the photogrammetry community, where

they are called �CAD-based�, because they are often integrated to CAD software [75]. Also, in the

context of arti�cial intelligence, model-based methods of one form or another are commonly found

in fully automatic reconstruction and recognition systems [8].

In summary, the main characteristic of model-based methods is that they require the recon-

structed scene to be decomposed into some geometric models, which somewhat limits their �eld of
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application. Past this disadvantage, they are adapted to least-squares estimation and work with

single and multiple views alike.

1.2.2 Constraint-based methods

Other methods, which we call �constraint-based� rely on more generic properties of the scene, such

as planarity, parallelism, known angles etc. A great variety of such methods have been developed

for the single- [57, 62, 13, 67, 76] and multi-view [5, 11, 68, 65, 3] cases, and we now review their

underlying principles and the characteristics that distinguish one from another.

Whereas model-based methods rely on the same principles in the single and multi-view cases,

this is most often not the case in constraint-based methods. Indeed, the multi-view methods are

usually derived from general reconstruction methods, while single-view methods are obtained by

exploiting known geometric properties in a more direct manner. We begin this section by examining

how constraint-based methods di�er in their use of geometric information.

Then, these methods are gauged according to other important characteristics, the �rst of which

being whether the obtained reconstruction actually veri�es the geometric constraints speci�ed by

the user. The second discriminating criterion is whether the method checks whether the user gave

input data that is coherent and su�cient to de�ne a unique reconstruction.

We will see below that vanishing point estimation and camera calibration play a crucial role in

constraint-based methods, so that this section ends with a discussion on these topics.

i) A-priori geometric information

All constraint-based methods [5, 3, 65, 68, 11, 62, 13, 67] use known planarities, and in some cases

[68], this is the only used geometric property. Also, known angles are often used. Finally, there have

been attempts at using more general polynomial constraints [3]. We �rst consider how multi-view

methods have exploited geometric information and then continue with single-view methods.

Multiview constraint-based methods share many aspects of general reconstruction methods

[71, 55]. Like these, they take as input the coordinates of 2D points that have been tracked along

many images. However, the input data also includes some geometric properties of the reconstructed

scene. The computational procedure of the constraint-based methods can often be likened to a

general method which has been modi�ed so that geometric information be taken into account.

In the multiple-view case, Szeliski and Torr [68] propose many ad-hoc ways to exploit planarities,

e.g. to reduce the number of observations needed to obtain a reconstruction. Also, a specialized
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Figure 1.4: Left: If only 2D points are available and no other assumption is made, there is no
unique reconstruction : the vertices of the cube and the polyhedron both project to the same 2D
points. Planarity relations that exist for vertices of the cube are not veri�ed in the object at the
right.
Right: If 2D points and planarity information are available and no other assumption is made, the
reconstruction is still not uniquely de�ned : the vertices of the two objects project to the same
2D points. The vertices of the rightmost object veri�es the same planarity relations as that of the
cube, but parallelism between some segments is not preserved.

optimization method is proposed, which successively estimates the camera orientation and position,

estimates the 3D points and projects these points onto planes. This last step consists in �tting a

plane to points and replacing them by their projection on the plane. However, it is not clear what

happens when points belong to more than one plane. The authors report that known planarities

alone �do not signi�cantly reduce the reconstruction error� [68, p. 182].

Sparr [65], still with multiple views, also proposes an iterative scheme in which reconstruction

steps alternate with projection steps that enforce known planarities and parallelisms. However, it

is again unclear whether all these properties are always veri�ed by the �nal reconstruction.

Boufama et al [5] assume that not only some planarity relations are known, but also that the

orientation of the planes is known and that the normal to each plane is one of three orthogonal

directions, labeled �X�, �Y� and �Z�. Likewise, only alignments that are parallel to one of these

directions are considered. These geometric properties are used within a least-squares approach in

which the reconstruction problem is transformed in an optimization problem. While, without the

knowledge of orthogonality relations, it would only be possible to obtain a projective reconstruction

[24], this system obtains a Euclidean reconstruction from two uncalibrated views.

There are thus many ways of exploiting known geometric properties when performing multi-

view reconstruction.

From a single-view, the information that is available is fundamentally di�erent. There is no
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such thing as �tracking� of points along many view, and there is no way to estimate the depth

of points from parallax. It is clear that, if only 2D points are available, then the depths of 3D

points may be arbitrarily set. Figure 1.4 (left) shows how two distinct object can project to the

same image. When a single view is available, it is thus necessary to use other clues to obtain a

reconstruction.

Knowing some planarity relations reduces the ambiguity, but is usually insu�cient to de�ne a

unique reconstruction [37] (Figure 1.4, right). Parallelism between planes can su�ce to de�ne a

reconstruction that is unique up to an a�ne transformation. Finally, known angles between plane

normals can be exploited to obtain a reconstruction up to a Euclidean transformation. In the

single view-case, it is thus necessary that the user gives a priori knowledge of, at least, parallelism

and preferably also angles. This contrasts with some multi-view methods [68, 65, 3] which need

less extended information.

The most commonly encountered situation, in the single-view case, is when some plane normals

are known to form three orthogonal directions [5, 20, 11, 67]. It is then possible to �x these

directions to some canonical values, such as [1; 0; 0], [0; 1; 0] and [0; 0; 1], and determine the

coordinates of these vectors in the camera frame [13, 62]. This is usually done by using the

vanishing point of the plane normals or the vanishing line of the planes [9]. We now explain how

the knowledge of plane normals can be used.

It is well known that points X1; :::;XN 2 R3 belong to a plane with normal v 2 R3 if and only

if there exists a number d 2 R such that, for all i in 1::N :

v>Xi = d: (1.3)

If v is known, then one has N linear equations that constrain the unknowns X1; :::;XN and d. In

contrast, if v were unknown, the constraint on the unknownsX1; :::;XN , v and d would be bilinear

and thus much harder to use than a linear equation.

In a man-made scene, the number of directions that are needed to describe the scene is typically

quite small. For example, three mutually orthogonal directions are su�cient to express the prop-

erties of the building in Figure 1.1. Although other directions are present -the slanted edges of the

roofs- the three directions �X�, �Y�, �Z� are su�cient for the purpose of describing the properties of

the object in such a way that a reconstruction can be obtained. Because of the special role played

by these directions, we will call them the �dominant directions� of the scene.
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Most single-view constraint-based methods obtain the reconstruction [13, 11, 62, 67] by com-

bining many planarities with the information given by 2D points.

Shum et al [62, 63] solve a linear system consisting of planarity constraints obtained from

Eq. (1.3) and constraints obtained from the 2D observations. The resulting system is overcon-

strained and the user is asked to choose some constraints that will be exactly veri�ed, while those

remaining will be solved in the least-squares sense.

Sturm and Maybank [67, 66] use a di�erent system of linear equations, that involves the �height�

of each 3D plane (variable d in Eq. (1.3)) and the distance from each point to the optical center

(its �depth�). A �rst reconstruction is obtained by solving this system. Other points, plane heights

and plane normals can subsequently be estimated by combining 2D information and previously

estimated quantities.

In Criminisi et al [17, 13, 14, 15, 16], three independent directions are used, two being parallel

to a �reference� plane. Ratios of lengths of segments parallel to one of the directions within the

plane can be measured, as well as ratios of lengths of segments parallel to the third direction

and originating on the plane. By using di�erent reference planes, and assembling the measure-

ments together, a reconstruction is obtained. With this method, the scene must be decomposable

into parallel planes linked together by segments, which somewhat restricts the application of the

method. Criminisi's method for reconstruction is thus based on assembling measurements taken

along di�erent directions.

As can be seen from these three examples, there exist many ways to obtain a reconstruction

from 2D observations, geometric information and known plane normals. There is a certain number

of characteristics that can be taken into account when comparing these methods. For example, [62]

obtain the whole reconstruction at once, whereas [67] build a �rst reconstruction to which points

are later added, and [13] obtain a reconstruction by combining measurements taken along di�erent

3D directions. Also, [67] can estimate new plane normals during the reconstruction process, while

[13, 62] require that all normals be estimated beforehand. Note, however, that all methods, even

[67], require that initially, at least three independent but not necessarily orthogonal 3D directions

be known. All these methods are thus dependent on a previous step in which vanishing points

(and maybe calibration) are estimated, so that some plane normals can be considered as known.

The single-view algorithms that we have considered so far exploit known planarities, parallelism

and orthogonalities. Other types of constraints have been used to a lesser extent, which we now
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Figure 1.5: Left: The relative scale of the two objects cannot be determined unless one assumes
e.g. that they lie on a same �ground� plane.
Right: The relative position of the two objects-camera pairs cannot be determined, despite both
objects being known to lie on the same ground plane.

detail.

First, since a reconstruction can only be obtained up to a translation, rotation and scaling,

some point coordinates can be arbitrarily �xed, which reduces the number of unknowns to be

estimated [62] and simpli�es the analytical study of the problem [13]. These practices are mostly

done for convenience and, although they may actually in�uence the outcome of the method, they

do not change the capabilities of the method.

In the multi-view context, Bondyfalat et al [4, 3] propose to use polynomial equations in the

coordinates of the 3D points to express more general geometric properties. In this way, planarity

can be expressed even if the plane normal is not known a priori, and other properties may be

used as well, e.g. known distances or ratios of distances. The method relies on manipulating

polynomials symbolically, eliminating variables until a subset thereof is left that parameterizes

the whole reconstructed object. The heavy computation that may be needed constitutes a serious

drawback. Maybe for this reason, only planarity, alignment and orthogonality relations are used

[3, p. 227]. Although this method shows some promise, it appears impractical in its present state.

In summary, planarity, parallelism and orthogonality are the most important properties used

in constraint-based methods. Others can and have been used, but in a more limited fashion.
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ii) Su�cient user information

An issue which has received very little attention is that of determining whether the geometric

information provided by the user is su�cient to de�ne a unique reconstruction, and whether this

information is coherent. This question does not concern model-based methods, which usually

have an interactive user interface that guides the user so that su�cient information is always

given. Also, multi-view constraint-based methods that are derived from general reconstruction

algorithms [3, 65, 68] either do not require a �minimum� amount of geometric information, or it

is trivial to determine whether this amount has been given [5]. This issue is thus mostly relevant

to constraint-based single-view methods, which cannot obtain a unique reconstruction without a

substantial amount geometric information.

Even in these methods, the issue has barely been addressed because they use a limited type

of geometric information : planarities, parallelism and angles. In this case, the only possible

consequence of insu�cient information, illustrated in Figure 1.5 (left) is the presence of many

�unconnected� objects whose reconstruction can be obtained independently, but whose relative

scale cannot be determined. While some methods detect this situation [62, 67], it is usually

implicitly assumed that a single object is being reconstructed.

Another possible problem occurs when the user mistakingly gives geometric constraints incor-

rectly. For example, if the user confuses �X� and �Y� and says that a �X=Constant� plane should

be reconstructed as a �Y=constant� plane, then the reconstruction will be ��attened� and have an

aspect totally di�erent from that expected. This case is never mentioned in literature, where it

is assumed that the geometric information given by the user is correct. On a related issue, [62]

mention the possibility of the constraints being altogether impossible to satisfy.

It thus appears that, except Shum et al [62], previous work considers that the user provided

su�cient and coherent information. Otherwise, (s)he shall get what (s)he deserves, whether a

computer error or a strange-looking reconstruction. This attitude is justi�ed for the previously

published systems, in which the risk of an error occurring is either inexistent by design (model-

based methods) or relatively small (constraint-based methods).

However, we shall see later in this thesis that, if more general types of geometric information

are used, then the possibility increases that a constraint-based method will be given insu�cient

or incoherent information. This may happen for example when symmetry information is given,

or when a single-view methods, that does not use matched points, is extended for the multi-view
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case. For example, Figure 1.5 (right) shows two objects viewed separately by two cameras, with

no overlap, but with the knowledge that both cubes lie on the same plane. It is then possible to

position arbitrarily the two camera-object pairs on the plane and even swap one pair to the other

side of the plane. Only Shum et al[62] consider the extension of their method to the multi-view

case, and require that some points be tracked between views, which eliminates the possibility of

this ambiguity.

The notion of su�cient geometric information applies to whole datasets, rather than to any

particular element. If we take the point of view of counting the number of �independent parameters�

that de�ne the reconstruction, and the number e�ectively given by the data, the di�culty appears

when counting the number of �independent parameters� provided by the geometric information.

For example, how many parameters are eliminated by the knowledge that a parallelepiped is as

wide as it is high? As soon as more general geometric constraints are used, simple arguments are

not satisfactory to determine whether a dataset is su�cient.

In summary, testing whether the data given by the user is su�cient and coherent has not

been a major issue. Model-based methods appear immune to the problem, while constraint-based

methods were limited to cases in which the question is easily resolved. However, if these methods

are to be extended, more subtle ambiguities and incoherences may appear and it is important to

be able to detect these cases.

iii) Compliant reconstruction

Whether the obtained reconstruction actually veri�es the geometric constraints that the user spec-

i�ed is another important issue. Some methods, from the way the reconstruction is obtained, do

not guarantee that all constraints are met. Moreover, this issue is rarely addressed in the literature,

and authors usually do not explicitly state whether this may happen or not. One reason for this

situation may be that, when the method succeeds, the reconstruction should be nearly compliant

with all the constraints, so that, visually, one is not likely to note the discrepancy. In this section,

we review some reconstruction methods according to their treatment of the question.

First, some methods always return a compliant reconstruction. This is the case, understandably,

in model-based methods, where all 3D points belong to an object. This is also the case with some

constraint-based [5, 13, 3] methods, either because the reconstruction is represented in such a way

that all the constraints are always veri�ed [3], or as a consequence of the reconstruction procedure
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[13].

Many other methods [64, 62, 68, 67, 60] do not guarantee that all geometric constraints are

veri�ed by the reconstruction, for example the single-view methods [62, 67, 60] that work by

solving an over-constrained system of equations obtained from the observations and from the a

priori geometric knowledge, like Eq. (10). Because this system is over-constrained, it is solved in the

least-squares sense, and the reconstruction does not necessarily verify all the geometric properties

provided by the user. The problem is partially solved in [62], by asking the user to choose what

constraints will be exactly veri�ed1 and which will only be approximately met.

Another case in which geometric constraints may not be veri�ed is when the constraints are

enforced one after the other, and enforcing one may break another. This happens in the multi-view

system [11], where an unconstrained reconstruction is obtained, which is later made to approxi-

mately verify the geometric properties. In [64, 68], where reconstruction steps alternate with steps

that enforce the geometric properties, it appears that enforcing one constraint may break another

one, so that it is unclear whether the reconstruction is guaranteed to verify all the constraints.

Pose and calibration from a single view

The availability of camera calibration parameters is important for 3D reconstruction, because it

determines the type of information that can be obtained about the observed scene.

When a camera is calibrated, the 2D pixel coordinates can be related to metric measurements,

whereas otherwise pixel coordinates are given in an unknown referential of the image plane. In the

�rst case, pixel coordinates can be likened to physical measurements. For example, one typically

assumes that 2D coordinates are given in an orthogonal 2D frame centered on the principal point.

Also, because the focal length is known, it is possible to measure the angle between 2D points given

as pixel coordinates. In contrast, uncalibrated coordinates are given in a referential whose origin

and axes are unknown. Not surprisingly, more 3D information can be obtained from calibrated 2D

observations.

Without calibration, only an a�ne reconstruction is obtained from a single view. As a conse-

quence, the angles between the vectors that form the basis in which the reconstruction is obtained

are not known. It is still possible, however, to compare distance measurements taken along a given

direction [57, 13]. When calibration is known, the reconstruction is obtained up to a rigid trans-

formation and it is thus possible to measure angles and arbitrary lengths. It is thus important to

1These are called �hard� and �soft� constraints.
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estimate the calibration of the camera, and fortunately, it is possible to do so in many cases.

Caprile and Torre [9] detail the relation between the vanishing points and the pose and calibra-

tion of the camera2. Despite being mainly concerned with stereo, that article clearly exposes the

geometrical issues that arise and it is considered to be a stepping-stone in the problem of single-

view calibration. In that article, it is shown that, from the vanishing points of three orthogonal

3D directions, at most three intrinsic parameters3 can be estimated. The priority is given to the

estimation of the parameters that are most likely to vary, the focal length and principal point, and

it is shown that this task is impossible for some con�gurations of the camera.

Also, it is shown that, once the camera is calibrated, the vanishing point of a 3D direction

can be identi�ed with the coordinates, in the camera frame, of that direction. Thus, estimating

the vanishing point of a 3D direction, is equivalent to estimating the 3D direction itself. For this

reason, most reconstruction methods �rst estimate the vanishing points and then consider that the

3D directions are known, which simpli�es the reconstruction problem, as explained in Section 1.2.2.

Because the method of Caprile and Torre appeared as the most practical solution, it was studied

in detail and extended in various ways. For example, it has been shown how to use known angles

that are not right angles and how to use vanishing points of more than three pairs of directions

[35]. Kanatani [43] performs a sensitivity analysis of the estimation of the focal length, based on

the sensitivity analysis of a vanishing point from 2D segments. An analytic expression yields an

estimate of the focal length from a pair of vanishing points corresponding to orthogonal directions.

This study gives insight on the in�uence of 3D line con�guration on the precision, but unfortunately

ignores the e�ects of unknown skew, aspect ratio and principal point. This line of research, however,

requires the previous estimation of vanishing points of the 3D directions of interest.

Using vanishing points, although the most popular, is not the only way of obtaining calibration

and camera orientation from a single image. A known 3D object has often been used [47], but, this

is unpractical because most images do not contain an object for which measurements are available.

A more practical approach uses any six vertices of a generic parallelepiped. Chen et al [10] use the

projection of a parallelepiped whose angles are known, and give an analytic calibration method.

Another methods is presented by Wilczkowiak et al [76], who show how known ratios of length of

parallelepiped edges can be used. This method is thus able to exploit not only known angles, but

2This result seems to have been known earlier in the photogrammetry community : Hartley and Zisserman [35,
p. 213] allude to the same result in [27]. Also, [73, p. 81] says that this result can be found in [78].

3Here, we only consider the focal length, skew, aspect ratio and principal point, which are de�ned on p. 25. The
e�ects of radial and tangential distortion[47] are ignored.
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also known ratios of distances, which cannot be used when calibrating from vanishing points.

However, these methods can hardly be considered to be more general than those based on

vanishing points. First, they require that 2D projections of vertices of a parallelepiped be identi�ed,

which is usually su�cient to localize the vanishing points in the image. Moreover, it is often the

case that the edges of a parallelogram are partially visible, enough to compute vanishing points,

but that the vertices are occluded, so that the method cannot be applied directly. Although

these methods show an interesting direction for research, methods based on vanishing points are

nowadays more common.

1.2.3 Performance analysis

Having introduced the principles used in reconstruction methods, we now address the question of

their precision. As can be expected, all the methods yield exact reconstructions if the input data is

noiseless. But, in the presence of noise, the output will be corrupted. All methods are not equally

sensitive to noise and it is important to determine how noise a�ects the quality.

Many multi-view methods claim that using geometric constraints improves the precision [3, 68],

but it is exceptional that a publication gives some quantitative information on the error in the

reconstruction. Most often, the quality of a method is assessed by showing some good-looking

reconstructions [20, 3, 62, 67, 12]. While this shows that the method works in some cases, and

suggests that it is not badly �awed, this is an insu�cient warrant of quality.

A better approach to performance evaluation is benchmarking on datasets for which the ground-

truth is known. This method gives insight that is useful, but does not extend beyond the setups

that were tested. Despite being relatively easy to do, benchmarking is usually not performed at

all [20, 62, 67], or only on parts of the algorithm [11].

Knowing the order of magnitude of the error in real-world cases, when the ground-truth is

unknown, is of great importance for some applications. This is sometimes possible [57, 13], when

one makes some assumptions on the error in the observations, and when one is able to propagate

[34, 46] it to the output. For this last condition to hold, it must be possible to de�ne, at least

locally, the output as a di�erentiable function of the input. This is possible when the output is

computed analytically from the input, and also when the output is de�ned as the minimum of a

function, as in Eq. (1.2) on page 7. A method that is de�ned in either of these ways thus lends

itself well to performance analysis. Having a di�erentiable functional relation between the input
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and the output is thus important for performance analysis.

In the following sections, we will see how performance analysis is done in model and constraint-

based methods and discuss the assumptions that authors make about the error in the input data.

Model-based methods

Most model-based methods [49, 20, 41] are, in theory, well adapted to performance analysis, be-

cause they are obtained by minimizing a di�erentiable function and can be interpreted as maximum

likelihood estimators, under the assumption of additive Gaussian independent errors in the obser-

vations.

In practice, however, we are aware of no model-based method developed in the computer

vision community that actually does this error analysis. It should be noted that the �ShapeQuest�

commercial package [1] claims optimality and gives an estimate of the precision, but we cannot

con�rm this because a precise description of the method is lacking.

Constraint-based methods

Constraint-based methods that obtain the reconstruction by estimating intermediate quantities

(vanishing points etc) and solving systems of equations [62, 65, 68, 67] do not provide an obvious

way to �nd a functional relation between the input and output. Although some methods [62, 67]

may do least-squares �tting in the �nal stage of the algorithm, it is practically impossible to

characterize the error in the reconstruction, because the output is not de�ned as a di�erentiable

function of the input.

Some publications, however, give a big importance to precision. Reid and Zisserman [57] and

Criminisi [13] take a probabilistic approach, and propagate the error from the observations to the

intermediate quantities and to the reconstruction. But even then, [13, p. 100] the study is done

under simplifying assumptions and does not concern the full reconstruction, but rather individual

measurements.

Finally, multi-view constraint-based methods in which a well-de�ned cost function is optimized

[5, 3] could be studied using the framework of estimation theory [34]. However the issue of precision

was not addressed in a quantitative way in these publications.
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The assumption of Gaussian errors in the observations

Finally, we give a remark on the probabilistic foundation of methods that adopt a least-squares

approach. The usual justi�cation for doing least-squares �tting is that the obtained reconstruction

is then a maximum likelihood estimate, under the assumption that the errors in the observations

are Gaussian, independent and identically distributed. Most often, this assumption, which we will

call the �Gaussian hypothesis�, is not mentioned, and the reader is left to guess that it is taken

implicitly. If justifying the least-squares approach is seldom done, we are aware of only Torr et al

[72] that actually justi�es the Gaussian hypothesis itself, and in a slightly di�erent context. In that

article, the empirical probability density function of the residues in automatically matched points

is studied, whereas in the present thesis, we mostly consider points that have been identi�ed in a

single image. Because of the scarceness of experimental evidence, the Gaussian assumption should

be treated with some caution.

1.2.4 Summary of previous work

We now conclude our review of reconstruction methods that exploit the geometric properties of

structured scenes. In summary, there are two main approaches to the reconstruction of structured

scenes, the �constraint-based� and the �model-based�. Model-based approaches can be used for

reconstructing speci�c objects [49] that cannot be conveniently described by geometric properties

alone. However, a model must be given for each type of reconstructed object, a disadvantage that

is partially removed by combining many objects together [20]. Constraint-based approaches can

treat more general scenes, but they are limited by the small collection of geometric properties on

which they rely. Also, model-based techniques appear better adapted to precision analysis, because

estimation theory can be used to characterize their output.

1.3 Method overview and original contributions

Having described the state of the art in the reconstruction of structured scenes, we now start

presenting the method that is developed in this thesis. We �rst list the chronological steps of the

reconstruction procedure, and outline the speci�city of our approach :

Input: A user provides some 2D points and some geometric information, in the form of planarities,

alignments and known angles. In addition, it is possible to indicate known ratios of distances
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between parallel planes. Many real-world scenes display this last type of property, but we

are aware of no method that fully exploits it.

Vanishing points and calibration: Maximum likelihood estimates of the vanishing points are

computed, from which, if a right trihedron is known, calibration is computed.

Geometric information as linear constraints: All the geometric information is summarized

into a system of linear equations that will be solved exactly. The geometric properties given

by the user are thus exactly veri�ed.

Reconstruction as a linear problem: A linear system is built, whose rank determines whether

the input data de�nes a unique reconstruction. If this is not the case, the algorithm stops,

because the input data is insu�cient. Otherwise, the 2D observations are used to form a

third system of equations, and a non-optimal reconstruction is obtained by solving it in the

least-squares sense.

Maximum likelihood reconstruction: Assuming that the errors in the input 2D points are

independent, identically distributed and Gaussian, the likelihood function takes the form of

a sum of squares. By de�ning a di�erentiable parameterization of the estimated quantities,

the likelihood function is itself di�erentiable and the maximum likelihood estimate can be ob-

tained by using a slightly modi�ed Levenberg-Marquardt algorithm. Also, an approximation

of the covariance matrix of the estimator is computed.

As can be seen, a constraint-based technique has been developed, which addresses the main short-

comings of these methods. Most notably the user may specify extended the geometric properties,

the reconstruction is optimal in a well-de�ned probabilistic sense and its precision is approximately

known. We now detail these points.

Extended geometric information : known ratios of distances between planes

The method we propose is more general than most other constraint-based methods4 because it can

exploit one more type of geometric constraints. Whereas constraint-based methods rely exclusively

on planarity, alignment and known angles, we add the possibility of expressing other geometric

properties, such as symmetry and periodicity, which are very common in real-world scenes.

4There exist some cases in which [67] may be used, but our method cannot, namely, situations in which they
may estimate plane normals from previously reconstructed points, whereas our method needs all the normals to be
initially estimated from vanishing points.
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Figure 1.6: Left: In this 5-point dataset, it is possible to express the symmetry of the pyramid
with respect to �Y=Constant� plane passing through point 1, by saying that the signed distances
from planes �2 to �1 and from planes �2 to �3 are opposite one of another.
Right: It is also possible to indicate that the parallelepiped is as long as it is wide, by saying that
the (signed) distances from �1 to �2 and from �3 to �4 are equal.

This is done by saying that the ratio of distances between some parallel planes are known.

Figure 1.6 shows two examples of how this type of information can be used. It should be noted

that the pyramid on the left could not be reconstructed from a single view if it were not for the

knowledge of symmetry. Indeed, the topmost point is isolated from the others and its distance to

the camera could be arbitrarily set, if it were not constrained to lie on a plane �2 that is midway

between �1 and �3. Other examples are given in Section. 6, where most real-world datasets could

not be obtained by other published methods.

Known ratios of distances between parallel planes are easily expressed in mathematical terms,

in a way similar to Eq. (1.3). As a consequence, all the geometric information is used in a homo-

geneous way, and this extra type of information does not imply any complication of the algorithm.

Moreover, the uniform treatment given to the geometric information allows to devise a simple test

on the su�ciency and coherence of the geometric information provided by the user.

Also, it has been noticed that multiple views can be treated in almost the same conditions as

the single-view case. The presented method can thus be used with multiple views, even when no

point is tracked between views.

In summary, this type of geometric information allows to extend the reach of constraint-based

methods in multiple ways : more diverse objects can be reconstructed, and any number of views
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can be exploited without substantially changing the method.

Maximum likelihood estimation and performance analysis

From the review on performance evaluation, in Section 1.2.3, it appeared that constraint-based

methods do not lend themselves well to either optimal estimation or sensitivity analysis. We show

that this is not necessarily the case, by presenting a method for maximum likelihood reconstruction

which also allows to determine the precision with which the reconstruction is obtained.

In summary, the principal claims about the method developed in this thesis can be listed in

the following way :

1. Augmenting the �eld of application of constraint-based methods.

2. Justifying the least-squares approach by validating the Gaussian hypothesis.

3. Implementing a maximum likelihood estimator.

4. Benchmarking it on synthetic data.

5. Being able to estimate the precision of reconstructions obtained without ground truth.

The contribution of this thesis lies not only in the reconstruction method that is presented, but

also in the validation of the methodology, which is done both by verifying that the least-squares

approach is appropriate, and by benchmarking the reconstruction method.

1.3.1 Thesis structure

Having presented the problem that we wish to address, reviewed the current state-of-the-art, and

indicated the improvements that we intend to bring, we may now go into the detail of our approach.

To begin with, we introduce the vocabulary and the mathematical notation that will be used to

describe the problem. Then, in Chapter 3, a sub-problem is treated, namely the estimation of

vanishing points and of the calibration of the camera. With these estimates available, we develop

in Chapter 4 an algebraic method of reconstruction. Then, in Chapter 5, the maximum likelihood

reconstruction method is presented. Benchmarking of these methods is performed in Chapter 6,

where some real-world datasets are presented. Finally, Chapter 7 presents some conclusions on

this work and suggests some possible extensions.
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Chapter 2

Problem formulation

In this section, the reconstruction problem is formally de�ned, so that it can be studied using

mathematical tools in the following chapters. We introduce the notation and vocabulary that will

be used throughout the thesis and delineate the problem by specifying the quantities that we want

to estimate, the observation model that relates these quantities to the 2D observations, and the

geometric information that is given by the user.

2.1 Estimated quantities

Problems of 3D reconstruction are primarily concerned with the estimation of the positions of 3D

points. In the present case, we will estimate a discrete set of points of interest X1; : : : ;XN 2 R3,

usually the vertices of a polyhedron that approximates the scene. The positions and orientations

of the optical center(s) of one or more cameras are also estimated and will be written T1; :::;TF

and R1; :::; RF , the orientations being represented by 3� 3 rotation matrices. We assume that not

all 3D points are equal, and that no point coincides with the optical center of a camera.

As is customary, the 3D pointsXm and camera positionsTf are identi�ed with their coordinates

in a referential formed by a basis fv1;v2;v3g of R3 and a point of origin. The physical meaning

of these coordinates depends on whether a Euclidean or an a�ne reconstruction is sought. This in

turn depends on whether the input data allows to calibrate the camera(s), and will be discussed

in Section 2.3.

In the case of Euclidean reconstruction, these estimated coordinates will be related to the

�true� values by an unknown rigid transformation, that is, the composition of a scaling, rotation

and translation. Physical quantities that are invariant by this type of transformation, such as
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angles and ratios of distances, can be measured in the reconstruction.

In the case of an a�ne reconstruction, the estimated and true coordinates are related by an

unknown a�ne transformation, that is, a translation and right multiplication by an arbitrary

nonsingular 3� 3 matrix, which depends on the geometry of the camera. It is thus not possible to

measure angles, which are not invariant to a�ne transformations, or to measure the ratio of two

distances that are taken along di�erent directions.

2.2 Observation model

We now de�ne in mathematical terms how these estimated quantities are observed. We assume

the 2D observations x1; :::;xN 2 R2 are the perspective projections of the 3D points X1; :::;XN ,

corrupted by additive noise because the camera has optical imperfections, �nite resolution and

because the user is likely to commit errors when localizing the 2D points in the image. Assuming

xm has been observed in image f , one has [35, 9] :

�m

2
64 xm

1

3
75 = K

h
r
f
1 r

f
2 r

f
3

i
| {z }

Rf

(Xm �Tf ) +

2
64 "m

0

3
75 ; (2.1)

where �m is the �depth�, Tf is the position of the camera in world coordinates and K is the matrix

of intrinsic parameters, which are assumed not to vary when many images are available. The errors

in the observations are modeled by the terms "m, which are realizations of identically distributed,

independent Gaussian variables with covariance

cov ("m) = �2I2;

where I2 is the 2� 2 identity matrix and � is the unknown standard deviation of the error. The

individual elements of the rotation matrices Rf be written :

Rf =
h
r
f
1 r

f
2 r

f
3

i
=

2
66664
rf11 rf21 rf31

rf12 rf22 rf32

rf13 rf23 rf33

3
77775 ;

so that the depth is :

�m =

3X
i=1

rfi3 (Xmi � Tfi) : (2.2)
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Finally, the matrix of intrinsic parameters, or �calibration matrix�, is assumed to be of the form

K =

2
66664
� 0 u0

0 � v0

0 0 1

3
77775 ; (2.3)

where � is the focal length of the camera and [u0 v0]
> is the principal point . In other work [23, 35],

the matrix of intrinsic parameters often assumes the more general form :

K =

2
66664
�1 � u0

0 �2 v0

0 0 1

3
77775 ; (2.4)

where �1=�2 is the aspect ratio of the camera and � is its skew . We prefer the simpler model in

Eq. 2.3 because, in the most common case (when only three dominant directions are present), only

three intrinsic parameters can be estimated (Section 3.2). Also, because the aspect ratio and skew,

for a given sensor, do not vary with time, whereas the focal length and principal point are known

to vary when a camera focuses or zooms [47]. In some cases, namely if one or more vanishing

point is at in�nity, it is not possible to estimate the principal point reliably [9], and we will use

the simpler camera model :

K =

2
66664
� 0 0

0 � 0

0 0 1

3
77775 : (2.5)

Moreover, if two vanishing points are at in�nity, the focal length cannot be estimated either and

it is given an arbitrary value.

In the following chapters of this thesis, it will be convenient to have a function P that associates

to a 3D point X, a rotation matrix R, a camera position T and camera calibration matrix K, the

perspective projection of X,

x = P (X; R;T;K) = �

2
64 1 0 0

0 1 0

3
75KR (X�T) ; (2.6)

where � is de�ned as in Eq. (2.2). We call this function the observation function. For convenience,
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we shall group all the parameters Xm, Rf , Tf and K into a single entity

X = (X1; :::XN ; R1; :::; RF ;T1; :::;TF ;K) ; (2.7)

and de�ne the mth observation function Pm that associate the mth observation to the parameters

X . If, e.g., the mth observation comes from the fth image, one would have :

Pm (X ) = P (Xm; Rf ;Tf ;K) : (2.8)

Finally, we introduce another function with the same name P :

P (X ) =

2
66664
P1 (X )

...

PN (X )

3
77775 : (2.9)

This function can easily be disambiguated from that in Eq. (2.6) by the number of arguments and

the context.

It should be noted that P is everywhere many-to-one. One easily sees that P (X; R;T;K) is

invariant if X and T are translated and scaled arbitrarily. Also, the observations are invariant if

X and T are transformed by an arbitrary rotation R0 while the inverse rotation is applied to the

camera. In other terms, for any scalar �, vector �X 2 R3 and rotation matrix R0, one has :

P (X; R;T+�X;K) = P
�
�R0 (X+�X) ; RR>0 ; �R0 (T+�X) ;K

�
: (2.10)

This same invariance can be extended to the function in Eq. (2.6).

2.3 Input data

Finally, we precisely de�ne the input data from which the estimated quantities will be computed.

This includes the 2D pixel coordinates x1; : : : ;xN , and when many images are used, one knows in

which image each xm is observed. Moreover, it is assumed that the original image size (w; h) is

known, and the input 2D points have been shifted and scaled so that the xm belong to [�1; 1]�

[�1; 1] rather than [0; w]�[0; h]. With this transformation, the center of the image has coordinates

[0; 0] (expressed in pixels). It is well known [36] that normalization of the input data can greatly

improve the conditioning of numerical computations done using these coordinates.
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2.3.1 Planarity, alignment and parallelism

In addition to the 2D observations, some geometric information is given concerning the 3D points

X1; : : : ;XN 2 R3. Amongst other things, information about planarity and alignment is given :

subsets of 2D points are known to be the projections of coplanar or collinear 3D points.

Moreover, some relations of parallelism are known between planes and lines. One may thus

group together planes and lines that are parallel and consider the 3D directions that characterize

their orientations. Because the resulting 3D directions play a particularly important role in single-

view reconstruction, we will call them the �dominant directions� of the considered scene. Typically,

at least three independent dominant directions are used, which most often are orthogonal two-by-

two and called �X�, �Y� and �Z�. These directions will be written v1; :::;vD . Because the �rst three

directions will be used as a basis in which the reconstruction is obtained, we assume that they are

independent. Just like the 3D points Xm, the dominant directions vi will be identi�ed with their

coordinates in the basis fv1;v2;v3g, so that v1 = [1 0 0]>, v2 = [0 1 0]> and v3 = [0 0 1]>.

There are two natural ways to de�ne the orientation of a plane, either with a direction that

is orthogonal to the plane, or by two directions that are parallel to it. The �rst form cannot be

used if an a�ne reconstruction is sought, because the orthogonality relation on which it relies is

not preserved by a�ne transformations. It is thus necessary, in that case, to express planarity by

two directions parallel to the plane, rather than by its normal.

Also, one should note that alignment information can be dispensed with altogether, because

each line can be de�ned as the intersection of two planes. For example, saying that some points

belong to a line parallel to the �X� direction is equivalent to saying that they belong to a plane

parallel to the �X� and �Y� directions, and that they also belong to a plane parallel to the �X� and

�Z� directions. Because this simpli�es the treatment of geometric information, we assume that all

alignment information is represented as planarity information.

To give a better idea of how planes are used, one should say that a plane does not necessarily

correspond to a facet of the object and that a plane may be de�ned to contain as little as a single

point. For example, going back to the example in Figure 1.6, on page 21, the plane �2 contains a

single point. Moreover, when multiple views are being used, one plane may contain points that are

observed in di�erent images. In fact, in this thesis, it is in this way that points are tracked from

one image to another. Indeed, saying that a 2D point xm, in one image, and point xn, in another

image, correspond to a same 3D point, is equivalent to saying that the original 3D points Xm
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Figure 2.1: This simple dataset illustrates the type of known ratios of distances between parallel
planes that are commonly found in real-world situations. Saying that the pyramid is symmetric
with respect to a �U-Z� plane passing through its top is equivalent to saying that the distance from
point 8 to point 9 along the �V� direction is equal to minus one times the distance from point 8 to
point 10 along that direction. This can be written as 8; 9

V
= �8; 10

V
, where 8; 9

V
is the distance

between points 8 and 9 along the �V� direction. Also, because the pyramid is symmetric around a
vertical line passing through its top, one has 8; 9

V
= 8; 11

U
, and because the parallelepiped 1-7 is

a cube, 1; 2
Y
= �1; 4

X
= 1; 5

Z
.

and Xn are equal. This equality will be expressed by de�ning three planes, e.g. �X=Constant�,

�Y=Constant� and �Z=Constant� that contain points Xm and Xn. Since the intersection of these

three planes is a single point, Xm and Xn are necessarily equal. Planarity information is thus not

limited to expressing the �atness of object faces.

2.3.2 Known ratios of signed distances between parallel planes

Other geometric properties are commonly found in man-made scenes, such as symmetry and repe-

tition. These properties can be expressed using distances between 3D points. In this work, they are

expressed in such a way that they can be translated into linear constraints. This is made possible

by asking the user to specify the direction along which the distances are measured.

Figure 1.6(right) (page 21) and the associated text on page. 21 showed how known ratios of

distances between parallel planes could be used for that purpose, and we now illustrate how this

is done in practice.

Consider, for example, that we are interested in a Euclidean reconstruction of the pyramid in
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Figure 2.1. This object is symmetric with respect to a �U-Z� plane passing through its top, which

is equivalent to saying that the distance from point 8 to point 9 along the �V� direction is equal to

minus one times the distance from point 8 to point 10 along the �V� direction. We may write this

as 8; 9
V

= �8; 10
V
, where 8; 9

V
is the distance between points 8 and 9 along the �V� direction.

Likewise, the fact that the pyramid has a square base can be written 9; 10
V
= 11; 10

U
(note that

one distance is measured along the �V� directions and the other along the �U� direction). In the

present work, the user speci�es this type of geometric information by giving the indices of pairs of

points and directions that are involved.

In more precise terms, the relation which we wrote 8; 9
V

= �8; 10
V
can be expressed by the

equation

v>5 (X9 �X8) = �v>5 (X10 �X8) ; (2.11)

where v5 is the vector of coordinates of the �V� direction and Xi holds the coordinates of the ith

point. One easily notes that, in this equation, one could substitute X10 by X11, or by any other

point Xi such that v>5 (X10 �Xi). That is, any point belonging to the plane orthogonal to v5

and passing through X10 could be used instead of X10. This equation clearly shows that distances

between planes are being considered, rather than between points.

As said above, in the case of a�ne reconstruction, the orientation of planes should be speci�ed

by two linearly independent directions that are parallel to the plane. Looking again at the relation,

written 8; 9
V
= �8; 10

V
in the Euclidean case, one sees that the planes that it involves are parallel

to the �U� and �Z� directions, so that it could be written 8; 9
U;Z

= �8; 10
U;Z

in shorthand notation.

The converse of Eq. (29) would then be :

(v3 � v4)
>
(X9 �X8) = � (v3 � v4)

>
(X10 �X8) :

Also, it should be noted that, in the a�ne case, one cannot relate distances taken along di�erent

directions, because they are not invariant to a�ne transformation. It is thus not possible to express

that the base of the pyramid is square (or even that it is a rectangle, since the angle between its

edges are not estimated). The use of known ratios of signed distances between pairs of parallel

planes is thus more limited in the a�ne case than in the Euclidean case.

In some cases, however, a single dominant direction can be used to specify the direction in

which the distance is taken, even when an a�ne reconstruction is sought. This can be done when

the two considered points lie on a segment that is parallel to the dominant direction. For example,

29



the distance 8; 9
V
could be used to express a known ratio of signed distances taken along a line1.

Going back to the Euclidean case, an issue arises when the user says that the base of the

pyramid is a square e.g. with the relation 10; 9
V

= 10; 11
U
. Indeed, if the direction of the �U�

axis is inverted, then distances measured along this direction are also inverted, so that the correct

relation would be 10; 9
V
= �10; 11

U
. When this problem occurs, it is solved by asking the user to

specify in the image plane the direction along which distances are positive.

This concludes the discussion on how known ratios of distances can be speci�ed by the user

and on related geometric issues. Using this type of information is important because the geometric

properties that are considered are quite common in man-made scenes, and often allow to obtain a

reconstruction in situations that no other presently published method could treat.

2.3.3 Known angles between dominant directions

Finally, after information on points and planes, the user may also indicate constraints on the

dominant directions. First, some directions may be �xed, which is equivalent to choosing the

orientation of the frame in which the reconstruction is obtained. Also, the user may indicate known

angles as well coplanarity relations between directions. In order to bene�t from simpli�cations in

the implementation, some restrictions are set on the usage of these constraints, which are detailed

in Section 5.2.1.

As we have said in the introduction, known angles can be used to obtain the calibration of

a camera from a single view, and it is the possibility of calibrating the camera that determines

whether a Euclidean or a�ne reconstruction is obtained. This type of information is thus very

important for the reconstruction problem.

We take the most commonly used approach, which is to estimate three or less intrinsic param-

eters from three mutually orthogonal vanishing points. Although more general methods could be

considered, this is the only calibration method that is used in this thesis. As a consequence, we will

obtain Euclidean reconstruction only when three dominant directions are known to be orthogonal,

and an a�ne reconstruction otherwise.

Because the vanishing points are needed in the initial steps of the reconstruction, we assume

that enough geometric information has been provided to estimate the vanishing point of each

dominant direction. The vanishing points are estimated from the intersections of two or more 2D

1No useful relationship of this kind appears in this dataset.
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lines, which consist in the 2D projections of two or more 3D points that belong to a 3D line parallel

to the considered direction. The alignment of 3D points is deduced from the intersection of distinct

planes that contain the points. In order to estimate the vanishing points, it is thus necessary to

assume that su�cient planarity information has been provided.

2.3.4 Summary of geometric information

In summary, the geometric information consists of the following elements :

� Planarity information: Subsets of 2D points whose corresponding 3D points are known to

belong to a 3D plane parallel to two of the dominant directions, which are also given. One can

specify the 2D points by a set of indices included in f1; :::; Ng, and the dominant directions by

a pair of indices in f1; :::; Dg. If a Euclidean (rather than a�ne) reconstruction is sought, the

orientation of a plane may be de�ned by a single dominant direction to which it is orthogonal.

� Known ratios of signed distances between parallel planes are represented by two pairs of

parallel planes (P ;P 0) and (Q;Q0) and the knowledge of the ratio � of the distances between

them. In the case of an a�ne reconstruction, one must furthermore assume that all four

planes are orthogonal, while, in the case of a Euclidean reconstruction, and if the four planes

are not parallel, it is necessary to indicate the direction of positive distances for the involved

directions.

� Known angles between pairs of dominant directions and coplanarities between triplets of

dominant directions. Information of this type is not absolutely necessary. If given at all, we

assume that the �rst three dominant directions form a right trihedron, from which calibration

will be estimated. In this last case, a Euclidean reconstruction is obtained rather than an

a�ne reconstruction.
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Chapter 3

Estimating vanishing points,

calibration and dominant directions

In this chapter, we estimate the principal directions v1; :::;vD which will be used by the reconstruc-

tion method presented in the next chapter. This is done by estimating the corresponding vanishing

points and, if possible, using a method similar to that of Caprile and Torre [9] to calibrate the

camera.

Image information and geometric information are used to compute as many vanishing points

as possible, from which the relative orientation of the cameras is computed. The vanishing points

are identi�ed with the coordinates of the principal directions, in the basis associated to the sensor,

which is not necessarily orthogonal. If possible, the principal directions will be represented in an

orthogonal basis, so as to later obtain a Euclidean reconstruction. More precisely, if the three �rst

principal directions are known to form a right trihedron, then the corresponding vanishing points

are used to compute the camera calibration.

Because the problem of estimating the principal directions is somewhat marginal to this thesis,

the reader may skip this chapter in a �rst reading. In the �rst two sections, the vanishing points

and calibration are computed. Because the same treatment is done on the data of each image, we

may consider that a single image is present and drop the image number f from our notation. The

principal directions are estimated in the last section, using the information previously obtained

from all the available images.
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3.1 Maximum likelihood vanishing point estimation from 2D

lines

In this section, we show how the geometric info allows to identify projections of parallel 3D lines

and how to locate their intersection, which is the vanishing point of that direction. For each image

and principal direction vi, the geometric information allows to identify collections of 2D points

that lie on the projection of a 3D line parallel to vi, by �nding the intersections of planes that

de�ne a line parallel to vi.

Each 2D line consists of a subset of the points fx1; :::;xNg. If it consists in � 2 N points, it is

de�ned by the indices fm1; :::;m�g � f1; :::; Ng of the points it contains, and we may identify the

line with this set of indices. If two lines
�
m1

1; :::;m
1
�1

	
,
�
m2

1; :::;m
2
�2

	
are found, it is possible to

�nd their intersection, which is the vanishing point of the dominant direction vi. If a single line

is found and the vanishing line of a plane parallel to vi is known (e.g. from two vanishing points

that lie on it), it is still possible to estimate the vanishing point of vi as the intersection of the

observed line and of the vanishing line of the plane [62].

The main di�culty in estimating vanishing points appears when three or more lines are present,

and, because of noise in the observations, do not intersect in a single point. The remaining of this

section gives the details on how to compute the maximum likelihood estimate of a vanishing point.

We consider the vanishing point gi of the principal direction vi and assume that Q line

segments are observed. Each segment is de�ned by the 2D points it contains, and we write

I1 = (m1
1; :::;m

1
�1); : : : ; IQ = (mQ

1 ; :::;m
Q
�Q) the lists of indices of points that belong to these

segment. With this notation, segment number j consists of points xmj

1

; :::;xmj
�j

, where �j is the

number of points it contains.

As said in Section 2.2 (p. 24), we assume that the error terms in the observations are indepen-

dent, Gaussian and have covariance �2I2, for some unknown �. The maximum likelihood estimate

of the vanishing point is the intersection g of lines l1; :::; lQ that best �t the 2D data. More precisely,

g can be de�ned by

g � l1 � l2; where

(l1; :::; lQ) = arg min
l1;:::;lQ

QX
j=1

�jX
k=1

d
�
lj ;xmj

k

�2
;

under the constraint that all lj intersect in g:
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In this equation, � denotes equality up to a scale factor and d (l;x) is the Euclidean distance

between the line l and the point x. Image lines are represented by a 3�1 vector l and the set of 2D

points contained in this line is
�
x 2 R2j

�
x> 1

�
l = 0

	
. With this representation, l1 � l2 represents

the intersection of l1 and l2.

We show in Appendix A that, for a given g, the optimal lj are easily found. For any j, the line

lj passing through g that minimizes
�jX
k=1

d
�
lj ;xmj

k

�2
is either the line l̂j (Figure 3.1, left) that passes through g and �xj =

P
k xmj

k

=�j (the centroid

of the set of points), l̂j = g � �xj , or the line l̂0j (Figure 3.1, right) orthogonal to l̂j and passing

through g. One then has to minimize a function of g alone, de�ned by :

q (g) =

QX
j=1

min

( �jX
k=1

d
�̂
lj ;xmj

k

�2
;

�jX
k=1

d
�̂
l0j ;xmj

k

�2)
: (3.1)
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Figure 3.1: The line passing through g that minimizes the sum of distances to the xi is either l̂
that passes through the centroid �x of the xi (left), or l̂0 that is orthogonal to l̂ (right).

In practice, Eq. (3.1) can be computed without doing a sum over k at each time. Moreover

the likelihood function can be extended to the whole projective plane, including points at in�nity

(Appendix A.3). This function is continuous, and we use the Nelder-Mead algorithm [56] to locate

its minimum. In order to avoid falling in local minimum, the initial position is chosen amongst

626 points nearly uniformly located on the half-sphere
�
g 2 R3j kgk = 1; [0 0 1]>g � 0

	
.
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3.1.1 Experimental results

We now study experimentally the precision of the vanishing point estimation method.

Mean absolute error v.s. noise We �rst consider the sensitivity to noise in the observations.

Two setups are used, one with four segments (Figure 3.2 left) spanning �=3 radians, consisting of

four points each, the other with two segments, �=3 radians apart, consisting of two points each.

The point on the segment closest to the vanishing point is two times closer than the farthest. The

points are translated so that their center of mass coincides with the origin of coordinates and scaled

so that the �eld of view corresponds to approximately 90 degrees.

Gaussian independent and identically distributed (i.i.d.) noise terms are added to these 2D

points, with a standard deviation between 0:1% and 3:1% of the mean distance of the 2D points

to the center of mass of the 2D points. This range of noise levels is wider than that encountered in

real-world situations, when error lies between 0:3 and 1% (see Section 6) of the standard deviation

of the data. The maximum likelihood vanishing point is estimated and the error between the

estimated and true vanishing point is measured by the angle between them.

This process is repeated 30 times. The mean absolute error is taken for each error level and

plotted in Figure 3.2 (right). The smooth curve plots the error obtained from four segments of four

points, whereas the dashed curve plots the error obtained from two segments of two points. This

�gure shows that the error evolves approximately linearly with the error level in the observations,

indicating that the maximum likelihood estimator is behaves well at the considered noise levels.
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Figure 3.2: Left: Setup consisting in four line segments, each de�ned by four 2D points. Right:
E�ect of noise on the error in vanishing points estimated from a setup similar to that on the right
and from a setup consisting of just two segments of two points. The curves show that the mean
absolute error increases approximately linearly with the amplitude of the noise.
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Mean absolute error v.s. angle between segments We now study how the error in the

estimated vanishing points varies when the vanishing point moves to in�nity. The setup in this

experiment has two segments consisting of four points each. The distances from the 2D points

to the vanishing point are in the interval [1; 2]. The angle between the segments is made to vary

between 0 radians (parallel segments) and �=2 radians (orthogonal segments). Gaussian i.i.d noise

terms are added to the 2D points, whose standard deviation is 1% of that of the 2D points. The

maximum likelihood vanishing point is estimated, and the error between the estimated and true

vanishing point is measured by the angle between them.

This process is repeated 30 times. The mean absolute error is taken for each angle and plotted

in Figure 3.3 (right), which shows that the error is, to a large extent, independent of the angle

between the segments.
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Figure 3.3: Left: Setup consisting in two line segments, each de�ned by four 2D points. Right:
E�ect of angle between segments on the error in vanishing points estimated from the setup on the
left. The curve shows that the mean absolute error in estimating the vanishing point does not vary
very much with the angle between the two intersecting lines.

3.2 Calibration from vanishing points

If the three �rst dominant directions form a right trihedron, and K has the form in Eq (2.3) or

(2.5) (page 25), then it is well known [9] that �, u0 and v0 can be estimated from the vanishing

points g1, g2 and g3, except in the following cases :

� If a single vanishing point is at in�nity1, the principal point [u0 v0 1]
> cannot be uniquely

determined. In that case, we assume u0 = v0 = 0, and estimate � only.

1A point on the projective plane, with homogeneous coordinates [x1 x2 x3] is said to be �at in�nity�, or �on the
line at in�nity�, if and only if x3 = 0.
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� If two vanishing points are on the line at in�nity, � cannot be estimated either and we will

obtain an a�ne reconstruction.

3.2.1 Details of calibration

We now detail how the calibration is obtained from three vanishing points g1, g2 and g3, corre-

sponding to orthogonal 3D directions. From the observation model (Eq. 2.1), one has :

[g1 g2 g3]

2
66664
�1 0 0

0 �2 0

0 0 �3

3
77775 = KR;

whereR is the orthogonal matrix representing the orientation of the camera and the �i are unknown

scale factors. From this equation, one easily deduces :2
66664
�21 0 0

0 �22 0

0 0 �23

3
77775 = [g1 g2 g3]

�1
KK> [g1 g2 g3]

�>
: (3.2)

We take as estimates of �, u0 and v0, the values that minimize the sum of squares of o�-diagonal

terms of the right hand side of Eq. (3.2). These terms are easily seen to be di�erentiable functions

of �, u0 and v0, so that one has to minimize a di�erentiable function. This minimization is done

using the Nelder-Mead [56] algorithm.

3.2.2 Experimental results

We have benchmarked the process of calibration from the vanishing points of three orthogonal

directions. We focus on the e�ect of one or two vanishing points going to in�nity, when the

principal point or focal length (respectively) cannot be estimated.

We designed the setup so that, by varying the angle � between the world �Z� axis and the

optical axis (the normal to the image plane), from 0 to �=2, one goes from one critical setup (one

vanishing point at in�nity) to the other (two vanishing points at in�nity), while passing by setups

that are adequate for calibration. Figure 3.4 shows how the dominant directions are oriented with

respect to the optical axis.

� The �X� and �Y� axes are symmetric with respect to the plane containing the �Z� axis and

the optical axis.
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� The vectors v1, v2 and v3, representing the �X�, �Y� and �Z� axes, are the columns of the

3 � 3 matrix corresponding to a rotation around the axis [�1 1 0], with angle � , where � is

the angle between the �Z� axis and the optical axis (Figure 3.4).

Thus, when � = 0, two vanishing points (that of �X� and �Y�) are at in�nity. When � = �=2, one

vanishing point (that of �Z�) is at in�nity and for intermediate values of � , all vanishing points are

�nite.

Variable
AngleZ

X

Y

Image plane

Axis
Optical

τ

Figure 3.4: Setup used for benchmarking the calibration process : the �Z� axis forms an angle from
0 to �=2 radians with the image plane, while the �X� and �Y� axes point upward.

The vanishing point gi are obtained by (see Equation 2.1) :

g~i �

2
66664
� 0 u0

0 � v0

0 0 1

3
77775vi + Error;

where � denotes equality up to a scale factor, � is uniformly distributed in [1; 2] (not an uncommon

value, in real-world situations, when the pixel coordinates are normalized in [�1]� [�1]) and u0,

v0 are i.i.d Gaussian variables with mean 0 and variance 0:05; these values are in accordance with

that mentioned in [47]. The �Error� term is Gaussian, with amplitude chosen in such a way to

correspond to an angular error of either 0:2 degrees (Figure 3.5, top) or 0:4 degrees (Figure 3.5,

bottom). These values correspond approximately to lower and upper bounds for errors, as shown

in Section 3.1.1.

The calibration parameters are estimated in two distinct cases : in one (dashed curves), only

the focal length � is estimated, whereas in the other, �, u0 and v0 are estimated. In both cases,

estimates are obtained by minimizing the sum of squared o�-diagonal terms in Eq. (3.2).

The error in focal length is measured by the absolute value of the di�erence between true
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and estimated values. The error in the principal point is measured by the norm of the di�erence

between true and estimated values. The estimation process is repeated 50 times for each value of

the angle � between the �Z� axis and the image plane, and the mean error is plotted.

Figure 3.5 shows the error as a function of the angle between the �Z� axis and the image plane,

when the error in the vanishing points is 0:2 (top) or 0:4 (bottom) degrees respectively. The

dashed curves plot the error obtained when only the focal length � is estimated (and one assumes

u0 = v0 = 0), while the continuous curves plot the error obtained when �, u0 and v0 are estimated.

The error in the principal point is plotted on the left (a,c) while the error in the focal length is

plotted on the right (b,d).
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Figure 3.5: Error when calibrating from vanishing points subject to 0:2 (top a,b) or 0:4 (bottom
b,c) degrees of error. Left (a,c) : Mean error in the estimated principal point vs. angle between
�Z� and the optical axis. Right (c,d): Mean error in the estimated focal length vs. angle between
�Z� and the optical axis.

The principal observations that arise from these curves are :
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� The continuous curve in Figure 3.5 (bottom left) shows that, when �, u0 and v0 are estimated,

the principal point (u0; v0) is not estimated reliably : except for angles below 5 degrees, the

error is never less than half the amplitude of the estimated quantity itself, and outside of the

range of [25; 75] degrees, the error is often greater than that of the estimated quantity.

� The same curve in Figure 3.5 (top left) shows that, when the error is 0:2 degrees, the principal

point can be more reliably estimated, on a wider range of angles.

� When two vanishing points are near the line at in�nity (� < 20o), the absolute error in the

estimated focal length increases quickly, as is expected and was noted in [67].

� The estimation of the focal length never improves much from estimating the principal point,

and degrades a lot at the extremes of the angle range.

From these remarks, we conclude that, unless one is sure that the error level in the vanishing points

is small, and that no vanishing point is within 15 degrees from the line of in�nity, it is better to

only estimate the focal length. This result is in agreement with similar claims in the literature [67,

Section 3].

3.3 Estimation of principal directions

In the basis formed by the �rst three dominant directions, the coordinates of these directions are

v1 = [1 0 0]>, v2 = [0 1 0]> and v3 = [0 0 1]>. The coordinates of the other dominant directions

v4; : : : (if any) can then be estimated by :

vi =
h
g
f
1 g

f
2 g

f
3

i�1
g
f
i :

If many (for many f) estimates of vi are available, the mean is taken and normalized to have unit

norm. Of course, if only three dominant directions are present, no estimation is needed, since their

coordinates are simply [1 0 0]>, [0 1 0]> and [0 0 1]>.

3.4 Summary of algorithm

This section provides a brief summary of how the techniques presented in this chapter are used to

obtain estimates of the vanishing points, of the dominant directions (those that are not �xed) and

-if possible- of the calibration. This is done in the following steps :
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1. Determine in each image what 3D directions are projected in two or more lines and compute

the ML estimate of the corresponding vanishing points.

2. If possible, estimate other vanishing points from a single line and the vanishing line of a plane

parallel to that direction.

3. If the three �rst dominant directions are known to form a right trihedron,

(a) Estimate calibration matrix K.

(b) Transform observations

2
64 xm

1

3
75 into K�1

2
64 xm

1

3
75 and the vanishing points gfi into

K�1g
f
i so that all coordinates are expressed in an orthogonal basis.

4. Estimate the dominant directions (expressed as their coordinates in the basis formed by

fv1;v2;v3g).
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Chapter 4

Reconstruction as a linear equality

problem

In this chapter, we show that, once dominant directions have been estimated, the reconstruction

problem is equivalent to solving a system of linear equations. In the absence of errors in the

observations, the set of solutions to the reconstruction problem can be identi�ed with that of the

linear problem and the dimension of the later indicates whether the solution is unique up to a scale

factor and translation.

In the presence of errors in the observations, the rank of the system is altered, so that it cannot

be used to determine the unicity of the solution. This di�culty can be overcome by noticing that

it is always possible to build a �twin� linear system, whose rank does not depend on the error in the

observations and whose corank is equal to four if and only if the dataset de�nes a reconstruction

up to scale and translation.

4.1 Geometric constraints

We now show how the geometric information -coplanarity and known ratios of lengths- can be

expressed as a system of linear equations on the coordinates of the 3D points. All solutions to

the reconstruction problem will verify exactly these equalities. We build a basis for the set of

coordinates (a linear subspace) that verify these equalities. Examining this basis, one checks

whether the user provided coherent geometric information.
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Planarity information Two 3D points m; n belong to a plane parallel to the directions vi; vj ,

if and only if their coordinates Xm; Xn verify the equation :

(vi � vj)
> (Xm �Xn) = 0: (4.1)

Metric information Saying that points (m;n) (resp. (p; q)) lie on a pair of parallel planes P ; P 0

(resp. Q; Q0) with normal v (resp. w) and that one knows the ratio � of the distances from P to

P 0 and from Q to Q0, is equivalent to saying that :

v> (Xm �Xn) = �w> (Xp �Xq) : (4.2)

The normals may be speci�ed as the cross product of two dominant directions, or, if an Euclidean

reconstruction is sought, by a dominant direction (see Section 2.3, page 27).

By grouping all the equations (4.1) and (4.2) provided by the geometric information, one gets

a system of equations, the geometric constraints :

B (v1; :::;vD)X = O; (4.3)

whereX =
�
X>
1 ; : : : ;X

>
N

�>
is the 3N�1 vector holding all the point coordinates and B (v1; :::;vD)

is a P�3N matrix holding the coe�cients in equations (4.1) and (4.2). The notation B (v1; :::;vD)

is used to emphasize that this matrix only depends on the directions (v1; :::;vD) 2 R3N and will

often be replaced by B for brevity.

It is clear that Eq. (4.3) always has nonzero solutions, since, if one choose arbitrarily X1 =

::: = XN 2 R3 nfOg, all the constraints Eq. (4.2) and (4.1) are necessarily veri�ed. The dimension

M of the nullspace of B is thus greater or equal to 3 and there exists a 3N �M matrix U whose

columns form an orthonormal basis of this nullspace. In practice, this matrix is computed by doing

the singular value decomposition [26] of B.

The matrix U thus forms a basis of the set of (collections of) 3D points that verify all the

geometric constraints, since all the solutions to Eq. (4.3) are of the form

X = U (v1; :::;vD)V (4.4)

for some V 2 RM . Again, the notation U (v1; :::;vD) is used to emphasize the fact that this

matrix depends only on the dominant directions, but U will be used for brevity. Each triplet of
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X1 X2

vi vj=

Case

X2

vj

X1 vi

vi vj

Case

=

Figure 4.1: Left : If the dominant directions vi and vj are di�erent, then points X1 and X2 that
belong simultaneously to a plane with normal vi and a plane with normal vj are constrained to
belong to a line. Right : If the dominant directions vi and vj are parallel, the same planarity
properties only constrain the points X1 and X2 belong to a plane, and there is one extra degree
of freedom.

rows numbered f3m� 2; 3m� 1; 3mg of U correspond to the coordinates Xm. In intuitive terms,

M (the corank of B) is the number of �degrees of freedom� of the object formed by the 3D points

subject to the geometric constraints.

Examining U allows us to perform a check on the coherence of the geometric information : if

any triplets f3m � 2; 3m � 1; 3mg and f3n� 2; 3n� 1; 3ng (m 6= n) of rows of U , corresponding

to observations in the same image, are equal, this indicates that all solutions to Eq. (4.2) verify

Xm = Xn. That is, a single 3D point has two distinct observations xm and xn in the same image,

which is likely to indicate an error in the geometric information.

This situation may occur when the user adds some spurious points to a plane, when (s)he does

a mistake in the orientation of a plane or in the sign of some ratios of distances. Such errors

become more likely when dozens of points and planes are present, in which case it becomes more

important detect these situations.

Assumptions on B We now consider an assumption on the matrix B that is important for the

study of the algebraic properties of the reconstruction problem. We assume that, for all the values

vi that we will be considering, the rank of B does not vary when the vi are slightly perturbed.

Geometrically, this means that the restrictions given to the 3D points do not change in nature

when the vi are slightly changed, meaning that we are away from critical con�guration (some vi
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almost parallel etc).

Figure 4.1 illustrates the distance between critical and non-critical situations. At the left, if

vi and vj are slightly altered, the points X1 and X2 will still be constrained to lie on a line

perpendicular to both vi and vj . On the right is a setup forbidden by our assumption on B, where

the points X1 and X2 are constrained to belong to a plane, but, if vi is slightly changed, then the

points will be constrained to belong to a line.

It can be shown that the rank of B (v1; :::;vD) reaches its maximum for almost all values of

the vi. This is easily done by noting that the minors of B (v1; :::;vD) are polynomial functions of

the vi's coordinates and thus either are identically zero, or have isolated zeros. If M is the highest

integer such that there exists a nonzero minor of B ( for some v1; :::;vD), then the maximum rank

of B is M and B has this rank for almost all values of v1; :::;vD because the corresponding minor

is almost always nonzero.

The assumption stated at the beginning of this section says that for all values of vi that we

will be considering, the rank of B will be M . In practice, this means that the rank of B is not

altered by the errors in the estimated vi and that U is always 3N �M . This assumption does not

constitute a limitation of any kind because it is veri�ed in all practical situations.

4.2 Observation constraints

Having seen how the geometric information is used to constrain the 3D points X, a linear system

is now built from the 2D observations, that further constrains the coordinates of the reconstructed

3D points. Each observed 2D point xm de�nes a 3D line to which the corresponding 3D point

Xm must belong, which will be expressed by a system of a�ne equations that the coordinates X

should verify.

Since
�
x>m 1

�>
was obtained by perspective projection

�

2
64 xm

1

3
75 = KRf (Xm �Tf ) =

�
g
f
1 g

f
2 g

f
3

�
(Xm �Tf ) ; (4.5)

and recalling that two 3D vectors (here the left and right hand sides of this equation) are collinear
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if and only if their cross product is zero, one necessarily has2
66664

0 �1 xm2

1 0 �xm1

�xm2 xm1 0

3
77775

| {z }
Sm

�
g
f
1 g

f
2 g

f
3

�
(Xm �Tf ) = O3�1; (4.6)

where the product by Sm is the Rodrigues1 matrix of
�
x>m 1

�>
. Because this matrix has rank 2,

the system of equations in Eq. (4.6) has rank 2, which expresses that only two scalars xm1 and

xm2 are observed to constrain the three coordinates of Xm.

By concatenating the equations Eq. (4.6) obtained from each point x1; :::;xN , one obtains a

linear system of observation constraints :

AX+ LT = O3N�1; (4.7)

where X =
�
X>
1 : : :X

>
N

�>
, T =

�
T>1 : : :T

>
F

�>
and A and L are 3N � 3N and 3N � 3F matrices

holding the coe�cients that multiply elements of X and T, respectively. The matrix A is block-

diagonal of the form :

A =

2
66664
S1

. . .

SN

3
77775 2 R3N�3N ;

where Sm is the Rodrigues matrix of
�
x>m 1

�>
, and L has the form :

L =

2
66664

�e>'1 
 S1
...

�e>'N 
 SN

3
77775 2 R3N�3F ;

where 'm 2 f1; :::; Fg is the index of the image in which point xm is observed and e'm is a F � 1

vector whose elements are all zero, except that in position 'm, which is equal to one.

1The Rodrigues matrix of a vector v = [v1; v2; v3] 2 R3 is the 3� 3 matrix

Sv =

"
0 �v3 v2
v3 0 �v1
�v2 v1 0

#

such that for all w 2 R3, v �w = Svw.
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Solving simultaneously Eqs. (4.3) and Eq. (4.7) is thus equivalent to solving :

AUV + LT = [AU jL]

2
64 V

T

3
75 = O3N�1; (4.8)

where X = UV, which enforces that the geometric constraints are all veri�ed.

Although we now have a linear system whose solutions verify both the observation and geometric

constraints, two important questions remain :

� Does this system de�ne a solution that is unique up to scale and translation?

� Do errors in the observations change the nature of the set of solutions to Eq. (4.8)?

These questions are answered in the following section.

4.3 Test of unicity of the solution

As was said in the introduction, it is important to determine whether the dataset provided by the

user determines a reconstruction that is unique, up to scale and translation. In this section, we

give a mathematical de�nition for a unique reconstruction and show how to determine whether a

given dataset de�nes a unique reconstruction, in a way that is insensitive to the noise in the 2D

observations of the dataset.

4.3.1 Noiseless case

Before treating the real-world situation, in which the observations are subject to errors, we consider

the noiseless case, in which the unicity of a reconstruction can be de�ned and tested in a natural

way.

De�nition 1 A dataset is said to de�ne a unique reconstruction if and only if there exist vectors

X� = [X�
1; : : : ; X

�
N ] 2 R

3N and T� = [T�1; : : : ; T
�
F ] 2 R

3F such that, for all X and T that verify

simultaneously Eqs. (4.3) and (4.7), there exists a scale factor � 2 R and a vector �T 2 R3 such

that :
Xm = �

�
X�
m +T�'m

�
+�T (8m 2 f1:::Ng) and

Tf = �T�f +�T (8f 2 f1:::Fg)
(4.9)

where 'm 2 f1:::Fg is the index of the image in which xm is observed.

In this de�nition, � is the scale and �T the translation. Note that one could have used Eq. (4.8)

rather than Eqs. (4.3) and (4.7) in the de�nition of a unique reconstruction.
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If a dataset de�nes a unique solution, then the existence of a unique reconstruction is equivalent

to saying that all simultaneous solutions to Eqs. (4.3) and (4.7) are of the form :2
64 X

T

3
75 =

2
64 X� j 1N�1 
 I3

T� j 1F�1 
 I3

3
75
2
64 �

�T

3
75 ;

where 1N�1 2 RN is a vector whose elements are all equal to one.

If one calls V� the (unique) vector of RM such that X� = UV�, then the existence of a unique

reconstruction is also equivalent to saying that all the solutions to Eq. (4.8) have the form :2
64 V

T

3
75 =

2
64 V� j 1N�1 
 I3

T� j 1F�1 
 I3

3
75
2
64 �

�T

3
75 :

Since the set of the
�
V>T>

�>
de�ned by this equation, for all � 2 R and �T 2 R3 is a linear

subspace of dimension four of R3N+3F , and since this subspace coincides with the nullspace of

[AU jL], the existence of a unique reconstruction implies that [AU jL] has corank four. In Ap-

pendix B, we show that the converse is also true, so that, if the corank this matrix is four, then

all the simultaneous solutions to Eqs. (4.3) and (4.7) have the form in Eq. (4.9). In other words,

one has the following proposition :

Proposition 1 There is a unique reconstruction if and only if the matrix [AU jL] has corank four.

This proposition a�rms that, if [AU jL] has corank four, then the solution is necessarily unique.

That is, it cannot happen that this matrix has corank four, but the solutions to Eqs. (4.3) and

(4.7) have another form than that of Eq. (4.8).

Because the rank of a matrix can be computed reliably [26], this proposition provides an easy

way of determining whether a dataset de�nes a unique reconstruction, in the absence of noise.

If there is noise in the observations xm, Eqs. (4.3) and (4.7) may have no nontrivial simultaneous

solution, in which case the de�nition of a unique reconstruction becomes useless. It is thus necessary

to give a de�nition of the unicity of a reconstruction that is valid even in the presence of noise in

the observations.

A natural way of doing so is to say that a dataset de�nes a unique reconstruction if, assuming

the observations were obtained without noise, a unique reconstruction were de�ned, in the sense of

De�nition 1. Unfortunately, this is not of direct use, because, in order to verify whether a dataset

de�nes a unique reconstruction, is is necessary to know the noiseless observations.
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Figure 4.2: Left: When the optical center is contained in one of the reconstructed planes, observa-
tion of 3D points and the knowledge that they belong to the plane are not su�cient to determine
their position. Right: If the optical center is not contained in that plane, the same information
uniquely de�nes the positions of the points.

4.3.2 �Twin� matrices : dealing with noisy data

However, it is possible to use the new de�nition, at the price of a little extra work. Indeed, one

can build matrices ~A and ~L such that
h
~AU j ~L

i
has the rank that [AU jL] would have if there were

no noise in the observations. Because of this property,
h
~AU j ~L

i
is called the �twin matrix� and is

used to determine whether a unique reconstruction is de�ned. In this section, we explain how this

matrix is built and indicate the assumptions under which this test is guaranteed to be valid.

The idea of the test comes from noting that, to a large extent, the unicity of a reconstruction

does not depend on the actual positions of the 3D points and cameras or on the camera orientation

and calibration. By building a collection of 3D points that verify the geometric properties and pro-

jecting these points using Eq. (4.5) (or Eq. 2.1), one obtains a collection of noiseless observations.

These observations are then used to build matrices ~A and ~L in the exact same way that A and L

were built in Section 4.2.

Going more in the details of the procedure, by generating a random vector ~V 2 RM and de�ning

~X = U ~V, one sees that ~X is a vector of coordinates of 3D points that verify all the geometric

constraints. This is a consequence of the columns of U forming a basis of the space of coordinates

of 3D points that verify all the geometric constraints. Although U depends on the estimated

dominant directions v1; :::;vD , we have assumed in Section 4.1 (page 45) that the con�guration of

these vectors is such that the errors in their estimated values do not a�ect the size of U .

Finally, by generating random camera positions ~T1; :::~TF , all the elements are available to

compute noiseless observations ~xm, using Eq. (4.5). From these observations, matrices ~A and ~L

are obtained as in Section 4.2.
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Just as we had assumed that the dominant directions do not in�uence the rank of B, we must

now assume that the value of ~X and ~T1; :::~TF do not in�uence the rank of
h
~AU j ~L

i
. In geometric

terms, we are excluding the situations in which small variations in ~X or in the ~Tf change the nature

of the reconstruction problem. Such a situation is shown in Figure 4.2 (left). Such a situation may

also occur when two cameras have the same position, while one assumes that they are distinct,

e.g. because the position of a 3D point is determined only by information from stereo, i.e. from

the intersection of two distinct optical rays.

Outside of these critical situations,
h
~AU j ~L

i
and [AU jL] have, in the absence of noise, the

same rank, and the following a�rmation holds :

Proposition 2 There is a unique reconstruction if and only if the �twin matrix�
h
~AU j ~L

i
has

corank four.

Since the rank of the twin matrix does not depend on the noisy observations, this criterion is

immune to noise in the observations or in the vanishing points.

4.4 Computing a solution

We now assume the dataset de�nes a unique reconstruction, and will show how to obtain the

coordinates of the reconstructed 3D points and camera positions.

We �rst obtain the reconstruction as the four-dimensional space of all reconstruction that

are equal, up to scale and translation. This space cannot be obtained directly as the nullspace

of [AU jL], since, because of noise in the observations, this matrix does not have corank four2.

Instead, we use the nullspace of the matrix with corank four that is closest, for the Frobenius

norm, to [AU jL]. The space of solutions thus obtained is :8><
>:
2
64 V

T

3
75 = Hw

9>=
>;
w2R4

(4.10)

where the columns of H are the right singular vectors of [AU jL] corresponding to the four smallest

singular values. It is often more convenient to represent the solution space by :8><
>:
2
64 X

T

3
75 =

2
64 UH1

H2

3
75w

9>=
>;
w2R4

;

2By construction, it has corank at least three, since for any �T 2 R3, [AU jL]
�
1(N+F )�1 
�T

�
= O3N�1. In

the presence of noise, [AU jL] has corank exactly three.
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where H =
�
H>
1 H>

2

�>
and H1; H2 have M and 3F rows respectively (corresponding to V and

T).

Until now, we have identi�ed a reconstruction with the four-dimensional space of all reconstruc-

tion that are equal, up to scale and translation. We now show how a particular reconstruction

can be obtained by imposing four additional constraints to X and/or T. It is clear that there are

many ways of doing so. For example, we choose the center of mass of the Xm to coincide with the

origin of coordinates and the mean value of the norms kXmk to be equal to one. This constraint

is expressed as :

[11;N 
 I3]UH1| {z }
G

w = O3; (4.11)

where 11;N is a row vector of ones with size 1 �N , I3 is the 3 � 3 identity matrix and 
 is the

Kronecker product. The 3 � 4 matrix G has rank three and all solutions to Eq. (4.11) are of the

form �w0, where � is an arbitrary scale factor and w0 is any nonzero vector in the nullspace of G.

Finally, the constraint on the norm is expressed as �2w>
0 H

>
1 H1w0 = 1, which is easily solved

for �. The desired reconstruction is then :

X = �UH1w0 and

T = �H2w0:
(4.12)

4.5 Summary of algorithm

The procedure used to determine the coherence and su�ciency of the available data, and to obtain

a reconstruction can be summarized as :

1. Build the matrix B from the vanishing points gfi , the planarity information and the metric

information.

2. Determine a basis U for the nullspace of B.

3. Verify that no 3D point is observed twice in the same image (stop otherwise).

4. Build the matrix A from the vanishing points gfi and the observations xm.

5. Build ~A, ~L and the twin matrix
h
~AU j ~L

i
. Verify that it has corank equal to four (stop

otherwise).
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6. Compute the four-dimensional space of solutions by computing the singular vectors of [AU jL]

corresponding to the smallest singular values.

7. Compute a particular solution using other constraints.

The reconstruction method is benchmarked in Chapter 6, where its performance will be compared

with that of the optimal method described in the next chapter.
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Chapter 5

Maximum likelihood 3D

reconstruction

Up to now, we have presented a reconstruction method that, in the absence of error in the obser-

vations, recovers exactly the original scene -up to a scale factor and a translation. However, in

real-world situations, there is some error in the observations and as a consequence the reconstruc-

tion also has some error. Two important goals are to con�ne this error as much as possible and

to gauge its amplitude. While the algebraic method presented in the last chapter is convenient

for studying geometric aspects of the reconstruction problem, it is not the best for these two last

requirements.

In this chapter, we de�ne and implement the maximum likelihood method, which can be char-

acterized in probabilistic terms and whose precision can be assessed. We �rst set the probabilistic

framework and de�ne the likelihood function in Section 5.1, where it is assumed that the reader

is familiar with estimation theory. The maximum likelihood estimate is obtained by maximizing

the likelihood function, that is, by solving an optimization problem. This is a problem of con-

strained optimization, because the estimated quantities are subject to the geometric constraints

speci�ed by the user. We choose to transform this problem into a smaller problem of unconstrained

optimization by de�ning a di�erential parameterization of the feasible set.

The optimization procedure is outlined in Section 5.2 and the study of the performance of the

maximum likelihood estimator is presented in Section 5.3.
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5.1 Likelihood function

The maximum likelihood estimate is de�ned as the 3D reconstruction and camera parameters that

are most likely to have produced the given observations. The exact form of the likelihood function

derives from the probabilistic assumptions about the errors in the observations -the �m in the

projection equation Eq. (2.1) :

�m

2
64 xm

1

3
75 = KRf (Xm �Tf ) +

2
64 "m

0

3
75 :

In our case, these terms are assumed to be Gaussian, independent, with zero mean and covari-

ance :

cov ("m) = �2I2:

We verify empirically this hypothesis in Section 6.1 and thus legitimize the adopted estimation

approach.

With this assumption, the probability of observing points x =
�
x>1 ; :::;x

>
N

�>
(obtained by

Eq. (2.1)) is :

P
�
x j �X

�
=

NY
m=1

1

2��2
e
� 1
2�2

kxm�Pm( �X)k
2

; (5.1)

where �X (See Eq. (2.7), p. 26) holds all the true parameters �Xm, �Rf , �Tf and �K, Pm (:) is the

mth observation function, de�ned in Eq. (2.8), and k:k is the 2-norm [7]. This equation can also

be written :

P
�
x j �X

�
=
�
2��2

��N
e
� 1
2�2

kx�P(X )k2

; (5.2)

where P (X ) is the observation function introduced in Eq. (2.9). The mapping that associates to

a given X , P (x j X ), is called the likelihood function.

The maximum likelihood estimator is the function that associates, to a given observation x 2

R2N , the vector X̂ that maximizes P (x j X ) while verifying the geometric constraints. As is most

often the case, we choose to minimize the inverse logarithm of P (x j X ), which takes the more

convenient form :

Q (x;X ) = 1
2�2

kx�P(X )k2 + Constant; (5.3)

where all the terms that do not depend on X are grouped in the �Constant� term. It is clear that

the location of the minimum of Q (x;X ) does not depend on �, which needs not be known for the
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purpose of estimating X . The maximum likelihood estimator is thus de�ned by :

X̂ (x) = arg min
X

Q (x;X ) Subject to the geometric constraints; (5.4)

where the geometric constraints are the planarities, parallelism, ratios of lengths, known angles

etc, de�ned in Sections 2.3.1, 2.3.2 and 2.3.3. The feasible set of this optimization problem thus

consists of con�gurations

X = (X1; :::;XN ; R1; :::; RF ;T1; :::;TF ;K) 2 R3N+12F+9

where the 3D points verify the geometric constraints, the Rf are rotation matrices and K is a

calibration matrix. By counting three parameters for each 3D point and camera position and nine

for each matrix Rf and for K, the feasible set is seen to be a subset of R3N+12F+9.

5.2 Solving the optimization problem

Some aspects of the optimization problem are particularly important. First, there are typically

hundreds of variables to be estimated, which could lead to very high computational costs. For-

tunately, the cost function is di�erentiable, which allows to use e�cient optimization algorithms

[56]. Finally, the parameters are subject to the geometric constraints speci�ed by the user, which

brings some extra di�culty.

There exist many possibilities for solving equality constrained optimization problems. One is

to parameterize the estimated quantities in such a way that the mapping between the parameters

and the quantities be de�ned on an open set, yielding an equivalent unconstrained problem that

can be solved using well-known optimization tools [56]. The parameterization usually complicates

the computation of the cost function, but it also reduces the dimension of the problem. Other

possibilities include the �exact penalty function� method or a �feasible direction� method [59]. In

the former, the solution is obtained as the limit of a sequence of solutions of optimization problems.

The method of feasible directions is based on constraining the search to the directions contained

in the tangent space to the feasible set, and may give a solution that is outside of the feasible set.

In the present work, it is chosen to parameterize the feasible set by a di�erentiable function

X (�) de�ned on RP (for some P ). For all � 2 RP , the associated con�guration X (�) belongs to

the feasible set, and any con�guration in the feasible set can be reached by the parameterization

function. With this parameterization, the negative log-likelihood function is written :
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Q (x;�) = 1
2�2

kx�P(X (�))k2 +Constant: (5.5)

Because the function X (�) is a surjection onto the feasible set, the original problem of �nding the

optimal X is clearly equivalent to that of �nding the optimal � 2 RP . Because the function X (�)

is de�ned on RP , the reconstruction problem is transformed into an unconstrained optimization

problem.

The question is now to �nd the function X (�). This is done in the next two sections by �rst

de�ning a parameterization of the 3D points and then of the camera positions, orientations and

calibration.

5.2.1 Parameterization of the 3D points

The 3D parameterization of the 3D points X1; :::;XN subject to the geometric constraints is to

some extent analogous to the computations described in Chapter 4. First, the dominant directions

are computed from some parameters �1; :::;�D :

v1 = v1 (�1)

...
...

vD = vD (�D) :

(5.6)

Then, a 3N �M matrix U (�1; :::;�D) is computed from the vi (and thus from the �i), whose

columns form a basis of the space of 3D coordinates of points that verify all the geometric con-

straints (i.e. a basis of the nullspace of the matrix B of Chapter 4). Finally, the 3D points are

obtained from this matrix and from a vector of parameters V 2 RM .

X = U (�1; :::;�D)V: (5.7)

The main di�erence with respect to Chapter 4 is that, now, the dominant directions vi are

not �xed and U (�1; :::;�D) should be de�ned as a di�erentiable function. The remainder of this

section de�nes the vi (�i) and U (�1; :::;�D).
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Dominant directions:

The dominant directions are computed in such a way that the geometric constraints imposed to

them by the user (Section 2.3.3, p. 30) are veri�ed. We assume that the directions are numbered

so that they can be computed sequentially, each one being de�ned by one of the following rules :

Known direction: vi = Known. E.g. v1 = [1; 0; 0]
>. No parameter is needed.

Arbitrary direction: vi = �i= k�ik for some �i 2 R3 n fOg.

Fixed angle: vi is constrained to form a known angle � with some previously computed vj (i.e.

j < i). The direction is computed from a vector � 2 R3 n f�vj j � 2 Rg, which is projected

orthogonally onto the 3D circle
�
v j v>vj = cos (�) ; kvk = 1

	
.

Coplanarity: vi is coplanar to some previously computed vj and vk (j < i, k < i and j 6= k).

This is the same as �xing the angle between vi and vj � vk to �=2.

Two orthogonalities: vi is constrained to be orthogonal to two non-collinear directions vj and

vk (j < i, k < i and j 6= k) and can thus be computed by vi = vj � vk= kvj � vkk. No

parameter is thus required.

One �rst notes that no parameter �i is needed for known directions and for directions de�ned by a

cross-product, so that these parameters can be omitted from the implementation. For simplicity1,

we keep these useless �i in our notation and assume e.g. that they belong to a single-element set

f0g. Also, since a direction vi may depend on the previously computed directions vj , j < i, it is

more rigorous to write vi (�1; :::;�i).

Some details of the computation of the vi (�1; :::;�i), most notably that of a direction forming

a �xed angle with another direction, are given in Appendix C.1. The di�erentials @
@�j

vi (�1; :::;�i)

(for 1 � j � i), are also given there.

Beyond being di�erentiable, one should note that the vi (�1; :::;�i) are not in general injective

functions, since distinct parameters �i may yield the same directions vi. For example, if vi (�i) =

�i= k�ik, is an arbitrary direction, then for all �i 2 R3 n fOg and all � 2 R n f0g, one has

vi (�i) = vi (��i).

1Alternatively, if D0 � D direction parameters are actually used, one could consider the parameters �1; :::;�D0 ,
where �i is the parameter that de�nes the direction v�i and, for all i 2 f1; :::;D0g, �i 2 f1; :::;Dg is the index of
the direction de�ned by �i. Keeping all the �i in our notation avoids having to de�ne an extra sequence �i.
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Finally, the initial values for the �i, required by the optimization algorithm, are given by the

dominant directions obtained in Chapter 3.

Constrained points:

Having parameterized the dominant directions vi, we only need to de�ne U (�1; :::;�D) before using

Eq. (58) to obtain the 3D points. The computation of the 3N �M matrix U (�1; :::;�D) is done in

essence like in Chapter 4, where the matrix of geometric constraints B (Eq. (44)) is built from the

vi (and thus from the �i) and U (�1; :::;�D) is taken to be an orthonormal basis of its nullspace.

However, some provisions must be taken to ensure that the resulting function is di�erentiable, and

that its di�erential can in practice be computed.

The main di�culty in de�ning U (�1; :::;�D) comes from the fact that the nullspace of B usually

has in�nitely many orthonormal bases. Indeed, if U is a 3N �M matrix whose columns form an

orthonormal base of the nullspace of B and O is an arbitrary M �M orthogonal matrix, then the

columns of UO also form an orthonormal base of the nullspace of B.

In order to uniquely de�ne a function U (�1; :::;�D), its value at some point
�
�01; :::;�

0
D

�
is

�xed to an arbitrary matrix U0 whose columns form an orthonormal base of the nullspace of

B
�
�01; :::;�

0
D

�
and the value of U (�1; :::;�D) at other points is de�ned by :

U (�1; :::;�D) = arg min
U
fkU � U0kF j U forms an orthonormal basis of Null (B (�1; :::;�D))g ;

(5.8)

where k:kF is the Frobenius norm. The proof that this procedure de�nes a di�erentiable function

on a neighborhood of
�
�01; :::;�

0
D

�
is given in Appendix E, together with practical means to compute

U (�1; :::;�D) and its di�erential. One aspect that will be important later, is that the di�erentials

@
@�i

U (�1; :::;�D) are simpler to compute at
�
�01; :::;�

0
D

�
than at other points.

As a �nal note, one must indicate how to choose U0. Since any matrix whose columns form

an orthonormal base of the nullspace of B
�
�01; :::;�

0
D

�
is adequate, we use the one returned by the

null() function of �Octave� [22], the matrix computation language that we use.

To summarize the two last sections, we have presented a di�erentiable parameterization of a

collection of 3D points subject to geometric constraints of the type de�ned in Section 2.3 and may

now turn to the parameterization of the other estimated quantities.
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5.2.2 Parameterization of the camera positions, orientations and cali-

bration

In this section, we outline the parameterization of camera orientations, positions and calibration

by di�erentiable mappings.

The orientation Rf of each camera is parameterized separately by a mapping Rf

�
'f
�
de�ned

on R3. There exist many possible ways to represent a rotation matrix [70] and we use a vector

'f 2 R
3 that is collinear to the axis of the rotation, with norm equal to its amplitude in radians :

Rf

�
'f
�
= ~'f ~'

>
f + cos (�f )

�
I3 � ~'f ~'

>
f

�
� sin (�f )S ~'

f
; (5.9)

where �f =


'f



, ~'f = 'f=


'f

 and S ~'

f
is the Rodrigues matrix of ~'f . Since Eq. (5.9) is not

de�ned at 'f = O, we take Rf (O) = I3 and show in Appendix C.2 that the resulting mapping is

di�erentiable.

It is also shown in that appendix that the di�erential of this function takes a particularly

simple form in 'f = O, and for this reason we take a provision to ensure that we never need to

compute the di�erential except in that case. Instead of using Eq. (5.9) directly, we left-multiply

this expression by a previous estimate of the rotation matrix, called Rf
0 . The actual mapping is

thus :

Rf (O) = Rf
0

Rf

�
'f
�

= Rf
0

�
~'f ~'

>
f + cos (�f )

�
I3 � ~'f ~'

>
f

�
� sin (�f )S ~'

f

�
if'f 6= O;

(5.10)

where �f =


'f

, ~'f = 'f=



'f

 and S ~'
f
is the Rodrigues matrix of ~'f . Having parameterized

the camera orientations, the F camera positions are and the camera calibration are parameterized

by :

T =

2
66664

T1

...

TF

3
77775 2 R3F and K =

2
66664

log (�)

u0

v0

3
77775 2 R3; (5.11)

where [u0; v0] is the principal point of the camera and � its focal length, which is thus guaranteed

to be positive. The di�erentials of these two mappings are trivial.

By concatenating the parameters of the mappings above in a single vector� = [�1; :::;�D;V;'1; :::;'F ;T;K] 2

RP and by joining the mappings de�ned in Eqs. (5.6-5.8, 5.10 and 5.11), one obtains a param-

eterization X (�) of the feasible set of the original optimization problem. This mapping, being
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built from di�erentiable mappings, is di�erentiable and its di�erential can be obtained by using

the chain rule.

Also of importance, the mapping X (�) depends on some �xed quantities U0 and R1
0; :::; R

F
0

that will be set so that computing the di�erential of X (�) is facilitated.

5.2.3 Modi�ed Levenberg-Marquardt algorithm

We assume that the reader is familiar with the Levenberg-Marquardt algorithm, whose details can

be found in many textbooks [59, 56]. The listing below outlines the algorithm, to which a step

-called �re-parameterize�- has been added. During that step, the parameterization of the feasible

set is changed by setting the values of Rf
0 and U0 to the current best values, and 'f are set to O.

Initialization: Initialize �, U0 and the Rf
0 and evaluate P (�).

Outer loop: While some stopping condition is not met :

Evaluate derivatives: Evaluate @
@�

P (�) at the current best �.

Inner loop: While some stopping condition is not met, search amongst a set of possible � :

Evaluate function: One evaluation of P (�) is needed for each evaluation of Q (x;�).

Re-parameterize: Set U0 := U (�1; :::;�D) and R
f
0 := Rf

�
'f
�
where the �i and 'f are

the current best values, and then set 'f := O.

One can check that these steps do not change the values of the Rf

�
'f
�
or of U (�1; :::;�D), so that

the value of Q (x;�) is left unchanged. Since the di�erential of the Rf

�
'f
�
and of U (�1; :::;�D)

take simpli�ed forms at 'f = O and U (�1; :::;�D) = U0, and the change of parameterization occurs

just before the di�erential of X (�) is be computed, only the simpli�ed forms of the di�erentials

need to be evaluated.

The innocuity of changing the parameterization of the feasible set at each outer loop comes from

the fact that Levenberg-Marquardt algorithm discards at each step all previous information about

the minimized function except the current best parameters and the value of the cost function at

that point. At the end of each iteration of the outer loop, we are thus free to change the optimized

function, since only the information from the new function will be used during the next iteration.

Having presented the main practical aspects of the implementation of the maximum likelihood

estimator, we turn to the theoretical study of its precision.
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5.3 Analytical covariance of the ML estimator

It is shown in [34] that if the function Q (x;�) has isolated minima, then one can get analytical

expressions for the covariance of the estimator. This is also the case when the minima Q (x;�)

are not isolated, but one has a di�erentiable function of constraints S (�), such that the minima

of Q (x;�) in the set f� jS (�) = Og are isolated.

As we already noted (Section 2.2) that P (�) remain unchanged if the camera positions T

and 3D points X are translated and/or scaled and that the parameterization of the dominant

directions (Section 5.2.1) is not injective, a suitable constraint function S (�) is needed, which we

de�ne below. Restricting the study to the set f� jS (�) = Og in e�ect constitutes a normalization

of the parameters.

Then, in Section 5.3.2, expressions for the covariance are given, which are derived in Section D

or, in a slightly di�erent form, in [34].

5.3.1 Parameter normalization

In the present work, the 3D points are normalized so that their center of mass coincides with the

origin of coordinates and their average norm kXmk is one. These requirements are expressed by

the equations :

(11�N 
 I3)X = O3�1 and (5.12)

X>X�N = 0: (5.13)

In order to render the functions vi (�i) injective, their domains are restricted to coincide with

their images. Only the vi (�i) that actually require a parameter are considered, i.e. those that

de�ne an arbitrary direction, or that forms a �xed angle � with another direction vj . In the

�rst case, its domain of de�nition is de�ned on the unit sphere
n
�i 2 R3 j �>i �i = 1

o
, and in the

second case, on the circle
n
�i 2 R3 j �>i �i = 1; �>i vj = cos (�)

o
2. In both cases, the parameter �i

belongs to the respective domain of de�nition if and only if it veri�es the equation :

�i = vi: (5.14)

2Note that this restriction of the domain of de�nition is done only in order to allow the theoretical study of the
estimator. For the purpose of actually optimizing the cost function, the original domain of de�nition can still be
used.
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By joining Eqs. 5.12, 5.13 and the Eqs. 5.14 (if any) arising from parameterized directions, one

obtains a system of equations of the form S (�) = O such that the function P (�) restricted to the

set
�
� 2 RP j S (�) = O

	
is injective. Because the function S (�) is moreover di�erentiable, it is

possible to study analytically the covariance of the maximum likelihood estimator using the tools

presented by Haralick, e.g. in [34]. The rest of this chapter outlines this study, which is detailed

in Appendix D.

5.3.2 Analytical expressions of the covariance

We assume that there exists a set of �true� parameters �� such that the observations x were

obtained by Eq. (2.1) and that the maximum likelihood estimate �̂ was obtained by minimizing

Q (x;�), de�ned in Eq. (5.5). By doing some �rst-order approximations (Appendix D), and calling

�� = ��� �̂ the error in the estimate , one obtains :

�� ' U
�
U>HU

��1
U>F" ; (5.15)

where U is an orthogonal basis of Null
�
@
@�

S
�
�̂
��

, F = @
@�

P
�
�̂
�
=�2 and H = @2

@��
Q
�
x; �̂

�
.

The derivation of this result can be found in Appendix D, p. 92. This expression shows that, in a

�rst approximation, the expectation of �� is zero; that is, the maximum likelihood estimator is

unbiased. From Eq. (5.15), one immediately gets :

cov (��) ' �̂ = U
�
U>HU

��1
U>; (5.16)

The two expressions above are obtained under the assumption of small error in the observation,

and are otherwise valid independently of the error model on the observations, which need not be

Gaussian.
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Chapter 6

Experimental results

This chapter describes the experiments that sustain the theoretical study of the two previous chap-

ters. First (Section 6.1), the assumption that, in real-world situations, the errors introduced in

the observations xm are Gaussian is veri�ed. Then (Section 6.2) the validity of the theoretical

study of the covariance of the maximum likelihood estimator is veri�ed empirically, using simu-

lation. Section 6.3 then benchmarks the algebraic reconstruction method de�ned in Chapter 4

and the maximum likelihood method of Chapter 5. Finally, Section 6.4 displays some real-world

reconstructions and the precision obtained in these cases.

6.1 Nature of the error in the observations

In this section, the assumption that the error in the observations is approximately Gaussian is

veri�ed experimentally by inspecting the histogram of the residues obtained from real-world re-

constructions.

Probability model for the residues: At the maximum likelihood estimate �̂ , the residue

xm �Pm
�
�̂
�
can be approximated by :

xm �Pm
�
�̂
�

' �xm + "m �
�
�xm + @

@�
Pm

�
�̂
�
��

�
= "m �

@
@�

Pm
�
�̂
�
��;

where �� = �� � �̂ is the error in the estimate and �xm = Pm
�
��
�
is the noiseless projection of

the �true� nth point. Grouping all the xm and using Eq. 5.15, one gets :

x�P
�
�̂
�

' "� FU
�
U>HU

��1
U>F"
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=
�
I � FU

�
U>HU

��1
U>
�
F| {z }

�
F>

":

Noting that �F> is a projector, the �light� singular value decomposition of this matrix can be

written :

�F> = VV>;

where V is a rectangular unitary matrix.

The mean and covariance of the �normalized residues� y = V>
�
x�P

�
�̂
��

are easily shown

to be :

E (y) = O

cov (y) ' �2I;

so that each element of y is an independent normal Gaussian random variable.

In order to gather residues from real-world situations, each of the setups that will be presented

in Section 6.4 were used. The normalized residues y were computed and the covariance estimated

by �̂2 = N�1 kyk2. The elements of �̂�1y are thus, if our model is correct, normal Gaussian

random variables.

From these elements, the empirical probability density function can be obtained by doing a

histogram. The histogram, obtained by grouping the 347 scaled residues in 24 bins (Figure 6.1,

left), shows that the empirical probability function is approximately normal. The rather good �t

between the empirical and assumed probability models justify the choice of the Gaussian probability

model. Most notably, the absence of outliers suggests that the sum-of-squares function Q (Eq. 5.3,

p. 56) is appropriate. If this were not the case, it would have been necessary to use a robust [39, 61]

version of Q.

6.2 Theoretical and empirical covariance of estimators

Since some approximation was involved in the derivation of Eq. (5.16), we must verify the validity

of this expression. In this section, using synthetic data for which the ground truth is known, we

compare the empirical error and that predicted by Eq. (5.16).

A setup consisting of 27 points disposed on a 3 � 3 � 3 irregular grid is built (Figure 6.2).

The camera orientation is given by a rotation matrix whose axis is is given by a N (O; I3) random
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Figure 6.1: Left: Histogram of scaled residues obtained from the real-world reconstructions in
Section 6.4. The good correspondence between the histogram and the Gaussian pdf shows that
the error, is approximately Gaussian.
Right: Histogram of the normalized errors in the parameters obtained from simulations in which
the errors on the observations are Gaussian.

d
6

d5

d4

d 3

d 2

d1

Camera

Irregular grid

Figure 6.2: Points on an irregular grid and camera position. The lengths di of the edges of the
grid are uniform random variables in [0:5; 1]. The object is then translated and scaled so that its
center of mass be [0 0 0]> and the mean norm of its vertices be 1. The world origin has coordinates
[T1 T2 5]

> in the camera frame, where the Ti are N (0; 0:5) random variables.
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vector, whose norm provides the angle of the rotation. The observations are obtained using a focal-

length-only camera (Eq. (2.5)). The natural logarithm of the focal length is a N(0; 0:1) random

variable. In all, the vector of parameters has 16 elements : nine for the 3D points, three for the

camera orientation, three for the camera position and one calibration parameter.

Gaussian white noise of 1% (40 dB) is added to the observations. The maximum likelihood esti-

mator is started from the vector of true parameters to which 3:2% (30 dB) of Gaussian white noise

is added. The covariance of the estimator is estimated using Eq. (5.16). Assuming this approxi-

mation is valid, one should have �� � N(O; �̂) and thus the random variable 	 =
�
�̂+
� 1

2

��

should be 	 � N (O; I), that is, each element of 	 is a N (0; 1) random variable. We call 	 the

vector of normalized errors .

Four hundred (400) such experiments were done. The 6400 (400 � 16) resulting normalized

errors were observed to have mean 0:0212 and covariance 1:05. Figure 6.1 shows the histogram of

the normalized errors with the superposed probability density function of a N (0; 1) variable. The

good correspondence of the theoretical and empirical probability density functions indicates that

the approximations that have been used to obtain Eq. (5.16) are valid for the considered noise

levels. Also, they con�rm that the implementation of the maximum likelihood estimator is correct.

6.3 Maximum likelihood vs. algebraic method

In this section, we compare the precision of the maximum likelihood estimator and the algebraic

method, using synthetic data. The same setup as in Figure 6.2 (Section 6.2, page on page 66)

was used. The level of error in the observations was made to vary between 0.0 percent (no noise)

and 3.12 percent (30dB). In real-world situations, the noise levels are usually between 0.3 percent

(50dB) and 1.0 percent (40dB). We prefer to measure the error in percents (%) or decibels, rather

than in pixels, so that these �gures be independent of the size of the image.

For each error level, the algebraic and maximum likelihood reconstruction methods were run 50

times and the mean error in the results is considered. Figure 6.3 shows the curves of the error in

the estimated 3D points (left), camera orientation (middle) and position (right). The error in the

3D points and camera positions is measured in percents of the mean amplitude of these quantities.

The choice of reporting errors as percentage rather than absolute value allows these results to be

invariant to the scale of the reconstruction. The error in the camera orientation is measured by the

mean angle, in degrees, between the columns of the true and the estimated orientation matrices
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Figure 6.3: Error in the reconstruction process as a function of the error in the observations : error
in the estimated 3D points (left), the orientation of the cameras (middle, measured in degrees)
and the position of the cameras (right).

Quantity (unit) X (%) Orient. (deg.) T (%) log (�) (%) Residue (%) N P

Mont Saint-Michel 5.49 0.49 13.4 3.6 0.86 114 180
Tour Ei�el 0.52 0.21 30.1 4.03 0.52 70 56

Folkemuseum 1.53 0.31 21.4 3.84 0.88 122 131
Conciergerie 2.05 0.26 2.90 1.68 0.62 72 119

Hall 3.01 0.12 0.30 1.23 61 78

Table 6.1: Theoretical error in the real-world reconstructions. The �rst column identi�es the
dataset, and the remaining ones contain the standard deviation of the error in the 3D points,
camera orientations, positions and focal length.

(Rf , in Eq. (2.1), p. 24).

Figure 6.2 shows that both estimators behave well when noise becomes very high and give exact

results in the absence of noise. Also, the precision of the maximum likelihood estimator, except

for camera location, is clearly superior to that of the algebraic method. The relatively high error

in the location of the camera is in accordance with our previous �ndings [32, 33] on the precision

of 3D reconstruction of general scenes.

6.4 Architectural examples

In this section, we present some results obtained from real-world images. The �gures display

maximum likelihood reconstructions , showing the aspect of reconstructions; the amplitude of the

residues is indicated in the text, giving an idea of the quality of the �t and justifying the assertion

that the error level in the observations lies in the range 40-50 dB (1.00-0.32%). In most cases, at

least one vanishing point is close to in�nity, so that we can at best estimate the focal length.

For each dataset in this section, the covariance of the estimator is estimated using Eq. (5.16),

p. 64. Table 6.1 shows the standard deviation of the error in the reconstructions, for the 3D points,

camera orientation, position and focal length.
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Z
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X

Figure 6.4: Outdoors scene (left) and reconstruction (right). 70 image features were identi�ed.
Geometric information consists in 56 planes and 43 distance equalities. Some distances are equal
due to the symmetry of the object around a vertical line passing through the topmost point. In
all, there the object has 49 degrees of freedom.

6.4.1 Tour Ei�el

This example illustrates how symmetry can be used to obtain a uniquely de�ned solution that would

not be achievable otherwise. Figure 6.4 (left) shows an image with superposed image features.

Horizontal coplanarity relations are easily identi�ed, together with vertical coplanarities amongst

points on the same horizontal plane.

Few vertical are present, so that points at di�erent heights cannot be connected. In order to

obtain the reconstruction, it is necessary to use the symmetry of the object.

Altogether, there are 77 points, 56 planes and 45 known length ratios; the object has 49 degrees

of freedom. Figure 6.4 (right) shows the reconstruction, with and without texture. The amplitude

of the residues is 39.5 dB (1.05%) in the algebraic reconstruction and 45.7 dB (0.52%) in the ML

reconstruction.
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Figure 6.5: Top: Indoor scene with 114 identi�ed points. Bottom: Reconstruction obtained from
these points and 39 known planes; shown with and without texture.

6.4.2 Mont Saint-Michel

Figure 6.5 (top) shows an indoor image with superposed image features. Horizontal coplanarity

relations hold for points on the �oor, for points on the wall that can be connected along a horizontal

row of bricks and for some points on the window. Vertical planes are identi�ed on the walls

and arcades. Around the window some coplanarity were tentatively identi�ed. Altogether, 114

points and 39 planes were identi�ed. No known ratios of distance between pairs of planes were

used. The scene has 173 degrees of freedom. Figure 6.5 (bottom) shows the maximum likelihood

reconstruction obtained from this data. In this model, the principal point of the camera was

estimated. The residues have an amplitude of 44 dB (0.63%) in the algebraic reconstruction and

47.5 dB (0.42%) in the maximum likelihood reconstruction.
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Figure 6.6: Left: Two indoor images. No 2D point is tracked between them Right : reconstruction.

6.4.3 Folkemuseum

Figure 1.1 (left), on page 2 shows an image in which 122 points were identi�ed. The geometric

information consists in 75 planes and 26 known length ratios. The model has 124 degrees of

freedom. The resulting maximum likelihood reconstruction is shown in Figure 1.1 (right); the

residues in the image of the reprojection of the algebraic and maximum likelihood reconstructions

have amplitudes of 40.8 dB (0.91%) and 41.1 dB (0.88%) respectively.

6.4.4 Multiple-view indoors

Figure 6.6 shows two indoor images taken from approximately the same point, but in nearly

perpendicular directions. The input consists in 61 points, 35 planes and one known ratio of lengths :

the distance from the point marked �A� in the �rst image to that marked �A-prime� in the second

image is equal to that from point �B� (�rst image) to point �B-prime� second image. Note that the

dataset de�nes a unique reconstruction even though no 3D point being visible in both images. No

intrinsic parameter can be reliably estimated because two vanishing points are almost at in�nity,
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Figure 6.7: Top: Two outdoor images. Bottom : Untextured reconstruction

so that the reconstruction is de�ned up to an a�ne transformation. The reconstruction shown in

Figure 6.6 was obtained by assuming that the focal length is one. The error level of reprojected

points with respect to observed points are 41.9 (0.81 %) for the algebraic estimator and 38.2 dB

(1.23 %) for the maximum likelihood estimators. The greater residues in that last case are due

to the treatment of the vanishing points, which are constrained to be mutually orthogonal in the

maximum likelihood estimator, whereas the vanishing points are used unchanged in the original

algebraic reconstruction.

6.4.5 Multiple-view outdoors

Figure 6.7 (top) shows two outdoors image with some overlap. Seventy-two (24 in the �rst image,

48 in the second) points and 21 planes are identi�ed; two known length ratios are given, to express

that the spikes on the walls stick out by the same amount on the left and front wall (without this

information, the reconstruction would not be unique). The reconstruction is shown in the bottom.
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The error levels of reprojected points with respect to observed points are 46.9 dB (0.45%) and 44.1

dB (0.62%) for the algebraic and the maximum likelihood reconstructions.
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Chapter 7

Conclusions

We have addressed the problem of reconstruction of structured scenes from image points when

geometric information is available a priori. Two complementary reconstruction methods were

developed, that use the same 2D points and geometric information as input. The algebraic method

identi�es the reconstruction problem with a problem of linear algebra and the maximum likelihood

method computes the �best possible� reconstruction from the available data

We have shown that linear constraints can express geometric constraints of a more general type

than was used previously. By summarizing all the available information in a single linear system,

a clear link is made between the original reconstruction problem and a problem of linear algebra.

By building a �twin� linear system that is not altered by noise in the observations, we showed

that it is possible to determine whether a dataset de�nes a unique reconstruction. Finally, it was

shown possible to implement a constraint-based method whose output, not only is the maximum

likelihood reconstruction, but also has a known precision.

The proposed reconstruction method was tested in real-world situations. The assumption

of Gaussian noise in the observations was experimentally con�rmed and the reconstruction was

benchmarked using synthetic data. Finally, the precision obtained in real-world situations was

shown.

Many extensions of the presented reconstruction method appear possible. Some have already

been explored [29, 31, 30] and were not included in this thesis because their interest is somewhat

peripheral :

� Line observations can be used in addition to 2D points. This is very simple in the algebraic

method [29, 31] because a line observation is easily transformed into a linear constraint.
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However, using image edges rather than points in the maximum likelihood method requires

a di�erent error model [21, 74], and a change in the cost function.

� It is possible to detect the presence of many unconnected objects [31, 30] whose relative scale

cannot be determined (Figure 1.5, left).

� It should be possible to give geometric information about the camera, e.g. by saying that

the camera is at a constant height, has constant velocity or that it is watching an object on

a turntable.

� The computational cost could be reduced. Indeed, the size of the optimization problem can

be reduced without changing the �nal result.

� Finally, the method could bene�t from a more general calibration procedure, such as that

proposed in [76], or one based on matched points along images [35].

Another possible application of this thesis concerns the parameterization of constrained 3D points

that was developed in Section 5.2.1. It should be noted that this parameterization is independent

of the reconstruction process, since it only depends on the geometric constraints. It could thus

be used to de�ne parameterized shapes on the �y from geometric constraints, to be integrated in

a model-based reconstruction system, with the aim of giving it the �exibility of constraint-based

systems.

In conclusion, we have developed a reconstruction method based on 2D observations and ge-

ometric information whose output is the maximum likelihood reconstruction and has a known

precision, and can thus be used as a statistically characterized measuring tool.
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Appendix A

Maximum likelihood vanishing point

estimation

In this section, we study the maximum likelihood estimator of a vanishing point when sets of

aligned points are given. It is assumed that independent identically distributed Gaussian noise is

added to these observations. We �rst de�ne the likelihood function over R2, then extend it to the

projective plane (including points at in�nity) and �nally show how to �nd the maximum likelihood

estimate.

A.1 Input data and assumptions

We assume the input consists inM lines; line number i is formed by points X =
�
xi1; : : : ;x

i
Ni

�
. One

assumes that observations are subject to noise : xij = x�ij + �ij where the �
i
j are i.i.d. Gaussian vari-

able with zero mean and covariance �2
h

1

1

i
for some �, and x�ij are the noiseless observations.

The noiseless lines all intersect in the true vanishing point g�.

A.2 Likelihood function

From the observation model, the maximum likelihood estimate of g�, given the observation, is

the point g such that there exist M lines l1; : : : ; lM that contain g, that minimize the negative

log-likelihood

q (g;X ) =

MX
i=1

min
lj

N1X
j=1

d
�
li;x

i
j

�2
:

Finding the minimum of this function is simpli�ed by the fact that, for all g and all sets

of points x1; : : : ;xN , the line passing through g that minimizes the sum of squared distances
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passing through g and �x and line l(�) forming an angle �� with l. The line l(�) that minimizes
the sum of squared distances d(l(�);xi) is either l(0) or l(�=2).

PN
j=1 d (l;xj)

2is either the line l = g � �x, where �x is the centroid of the xi, or the line l0 passing

through g and orthogonal to l.

This property can be proven by considering the function

f (�) =

NX
j=1

d (l (�) ;xj)
2

where l (�) is the line (see Figure A.1) passing through g and forming an angle � with the line g��x.

This function is periodic and it is su�cient to show that it is minimized at � 2 fk�=2jk 2 Ng. The

squared distance from the jth point xj to l(�) is :

d (l (�) ;xj)
2

= K2

0
BBBBBB@(g � xj)

>| {z }
wj

2
64 �1

1

3
75

| {z }
E

2
64 c �s

s c

3
75 (g� �x)| {z }

�w

1
CCCCCCA

2

= K2
�
cw>

j E �w� sw>
j �w
�2

where c = cos(�), s = sin(�) and K = jj�x� gjj�1. The derivative of f , scaled by K�2 is then :

K�2f 0(�) = 2
P

j

�
�sw>

j E �w� cw>
j �w
� �
cw>

j E �w � sw>
j �w
�

= sin(2�)
P

j

��
w>
j �w
�2
�
�
w>
j E �w

�2�
+

2 cos(2�)Tr

0
@X

j

�
wjw

>
j

�
�w �w>E

1
A

| {z }
0
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The coe�cient of cos(2�) is seen to be zero by noting that
P

j

�
wjw

>
j

�
�w �w> is symmetric and

that for any symmetric matrix
h

a b

b c

i
one has Tr

�h
a b

b c

i h
�1

1

i�
= b� b = 0.

The minimum of f is thus for � 2 fk�=2gk2 . The corresponding values of f are thus

f (0) = f (�) = K2
P

i

�
w>
j E �w

�2
= K2N �w>E> �VxE �w

(A.1)

and

f
�
�
2

�
= f

�
3�
2

�
= K2

P
i

�
w>
j �w
�2

= K2N
��

�w> �w
�2

+ �w> �Vx �w
�
:

(A.2)

where �Vx = N�1
P

j (�x� xj) (�x� xj)
>. In order to determine which value is smallest, one may

evaluate the two expression Eq. (A.1) and (A.2). Also, one may note that f(�2 ) > f(0) if k �wk2 >

E> �VxE


. The second norm is itself majored by vxx+ vyy + jvxyj, where vxx, vyy and vxy are the

elements of �Vx =

2
64 vxx vxy

vxy vyy

3
75.

Finally, it should be noted that if at the optimal vanishing point, obtained from two or more

segments, the minimum at � = �=2 for one or more segments, this corresponds to an abnormal

situation. Indeed, in that case, the centroid of the segment is near the optimal vanishing point,

which usually indicates a local minimum has been reached or that some of the input 2D points do

not correspond to a 3D segment.

Going back to the original problem of minimizing q, it is now clear that q can be written as a

function of the two coordinates of g only.

q (g;X ) =

MX
i=1

min
n
fi (0) ; fi

��
2

�o

where fi(:) is the function de�ned from g and the points xi1; : : : ;x
i
Ni
, like f above.

A.3 Extension of Q to the projective plane

We now extend the domain of the function q (:;X ) : R2 ! R
+ to R3 n fO3�1g, where R3 n fO3�1g

represents points in the projective plane. This o�ers the advantage that �nite and in�nite vanishing

points are represented alike.. One de�nes :

q0
�
[v1 v2 v3]

>
;X
�

= q
�
v�13 [v1 v2]

>
;X
�

if v3 6= 0;

=
PM

i=1

PNi
j=1

�
[v1 v2]E

�
xij � �xi

��2
k[v1 v2]k

�1 if v3 = 0;
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where [v1 v2 v3] 2 R3 n fO3�1g represents a point in the projective point plane. One easily veri�es

that this function is continuous on its domain.

A.4 Optimization issues

Finding the maximum likelihood vanishing points amounts to �nding g0 = [v1 v2 v3] 2 R3 nfO3�1g

that minimizes q0 (g0;X ). There are many possible ways of doing so. Although globally convergent

[38] or numerically e�cient methods could have been chosen, we preferred the Nelder-Mead [56]

algorithm, which is well-known and easily implemented.

In order to avoid falling in a minimum other than the global, algorithm, the starting point g0

is chosen amongst 626 points spread on half the unit sphere, in such a way that all points are

within 5.75 degrees from a proposed starting point. Assuming that the optimal vanishing point

is not altogether perpendicular to the starting point, we use a local parameterization centered on

the starting point. The minimized function is de�ned on the tangent plane to the unit sphere in

g0, de�ned by :

q00 ([�1 �2]) = q0 (g0 + �1g1 + �2g2;X ) ;

where g1, g2 are unit vectors such that g>0 g1 = g>0 g2 = g>1 g2 = 0. Minimizing this function with

the Nelder-Mead algorithm proved entirely satisfactory.

The precision of this method for estimating vanishing points is studied in Section 3.1.1, where

benchmarking is done using synthetic data.
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Appendix B

Algebraic method

In this chapter, we prove of Properties 1 and 2. We call �Xm the true 3D points, �vi the true

dominant directions, �Rf , �Tf and �K the true camera orientations, positions and calibration, and

�xm the noiseless observations. The matrices of observation and geometric constraints obtained from

these noiseless quantities will likewise be written �A, �L and �B, and �U will denote an orthonormal

matrix whose columns form a basis of the nullspace of �B. The letters A, B etc designate, as in

Chapter 4, matrices obtained from possibly (but not necessarily) noisy observations and dominant

directions.

B.1 Demonstration of Proposition 1

In this section, we prove Proposition 1, from Section 4. In short, we show that there is a rigid

reconstruction if and only if the matrix

2
64 �A �L

�B O

3
75 has same corank four, and then that this matrix

has same corank as
�
�A �U j �L

�
, so that there is a rigid reconstruction if and only if this last matrix

has corank four.

One easily sees that De�nition 1 is equivalent to the following :

De�nition 1' A dataset de�nes a rigid reconstruction if and only if there exist vectors X� =�
X�>
1 : : :X�>

N

�>
2 R3N and T� =

�
T�>1 ; : : : ;T�>F

�
2 R3F such that :

Null

"
�A �L
�B O

#
=8><

>:
"
X

T

# ������� 9� 2 R; 9�T 2 R3;

"
X

T

#
= �

"
X�

T�

#
+

2
64

�T
...

�T

3
75
9>=
>; :

(B.1)
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This second form clearly implies that, if there is a rigid reconstruction, then

2
64 �A �L

�B O

3
75 has

corank four. We now show that the converse is also true; that is, if the matrix has corank four,

then its nullspace has the particular form of the right hand side of Eq. (B.1).

We show that, if one takes X� = �X and T� and �T, where �X and �T are the true coordinates of

3D points and cameras, respectively, then the set

S =

8><
>:
2
64 X

T

3
75
������� 9� 2 R; 9�T 2 R3;

2
64 X

T

3
75 = �

2
64 X�

T�

3
75+ 1(N+F )�1 
�T

9>=
>;

has dimension four, and that it is always included in Null

2
64 �A �L

�B O

3
75.

First, since the true 3D points and camera positions verify the observation and geometric

constraints, it is clear that 2
64 �A �L

�B O

3
75
2
64 �X

�T

3
75 = O:

Then, one notes that the coplanarity and ratios of lengths are invariant by translation. That is,

the geometric constraints, Eq. (4.1) and (4.2), do not change if X is translated. For any �T 2 R3

and any X that veri�es �BX = O, one has

�B

0
BBBB@X+

2
66664

�T

...

�T

3
77775

1
CCCCA = O:

Note that this holds not only for the noiseless matrix �B, so that one has :

B

2
66664

�T

...

�T

3
77775 = B (1N�1 
 I3)�T = O: (B.2)

Likewise, the projection of 3D points is invariant by simultaneous translation of camera(s) and

points. Thus the observation constraints, Eq. (4.7) are invariant by simultaneous translation of X

and T, so that, for any �T 2 R3 and any X and T that verify �AX+ �LT = O, one has

�A (X+ (1N�1 
�T)) + �L (T+ (1F�1 
�T)) = O:
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Again, this holds not only for the noiseless matrices �A and �L and one has :

[A jL]

2
66664

�T

...

�T

3
77775 = [A jL]

�
1(N+F )�1 
�T

�
= O: (B.3)

From Eqs. (B.2) and (B.3), it is clear that the set

�S =

8><
>:
2
64 X

T

3
75
������� 9� 2 R; 9�T 2 R3;

2
64 X

T

3
75 = �

2
64 �X

�T

3
75+

�
1(N+F )�1 
�T

�9>=>;

is included inNull

2
64 �A �L

�B O

3
75. Moreover, this set has dimension four, because it contains Span

�
1(N+F )�1 
 I3

�
1,

which has dimension three, and because2
64 �X

�T

3
75 =2 Span

�
1(N+F )�1 
 I3

�
;

since this would imply that �X1 = ::: = �XN = �T1 = ::: = �TF , which we assumed (Section 2.3) not

to be the case.

This achieves the proof that �S � Null

2
64 �A �L

�B O

3
75 and that �S has dimension four. Thus, if

Null

2
64 �A �L

�B O

3
75 has dimension four, this set necessarily coincides with �S, which has the form

needed in Eq. (B.1). 2

B.2 Demonstration of Proposition 2

Finally, we show that Null

2
64 �A �L

�B O

3
75 and Null

�
�A �U j �L

�
have same dimension, by showing that

there exists a linear bijection from one to the other : consider the application2
64 V

T

3
75 2 Null

�
�A �U j �L

�
�!

2
64 �UV

T

3
75 2 Null

2
64 �A �L

�B O

3
75 :

1Since it contains 1(N+F )�1 
�T for all �T 2 R3.
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This function is well de�ned because, if

2
64 V

T

3
75 2 Null

�
�A �U j �L

�
, then

2
64 �UV

T

3
75 2 Null

2
64 �A �L

�B O

3
75.

Also, this function is injective because the columns of �U are linearly independent. Finally, it is

surjective because any X 2 Null
�
�B
�
can be written as X = �UV for V = �U>X, and one has

O =

2
64 �A �L

�B O

3
75
2
64 X

T

3
75 () O =

2
64 �A �L

�B O

3
75
2
64 �U �U>X

T

3
75

() O =

2
64 �A �U �L

�B �U O

3
75
2
64 V

T

3
75

() O =

�
�A �U �L

�264 V

T

3
75 ; (By def: of �U)

so that any vector
�
X>T>

�>
in Null

2
64 �A �L

�B O

3
75 has an inverse image in Null

�
�A �U j �L

�
. 2

This achieves the proof of Proposition 2.
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Appendix C

Parameterization of the estimated

quantities

This appendix gives some details on the parameterization of the estimated quantities de�ned

in Sections 5.2.1 and 5.2.2. The parameterization of the dominant directions vi is treated in

Appendix C.1, and that of the rotation matrices Rf in Appendix. C.2.

C.1 Parameterization of dominant directions

In this section, we complete the description of the parameterization of a collection of constrained

directions. Section 5.2.1 presents in su�cient detail the computational procedure except for the

case of a direction vi constrained to have a �xed angle � with another direction vj , which will

be treated now. Then, in Appendix C.1.2, the di�erential of all directions with respect to the

parameters �i is derived.

As was said in Section 5.2.1, a vector vi verifying v>j vi = cos (�) and v>i vi = 1 is computed

from a vector �i 2 R3nf�vj j � 2 Rg by projecting �i onto the 3D circle C =
�
v j v>j v = cos (�) ; v>v = 1

	
in such a way that the distance kvi � �ik is minimized. The exact procedure is :

1. Set u1 :=
�
I3 � vjv

>
j

�
�i.

2. Set u2 :=
u1
ku1k

.

3. Set vi := cos (�)vj + sin (�)u2.

The resulting vector vi veri�es v>i vi = 1 and v>j vi = cos (�), and can be shown to minimize the

distance to �i amongst all the points on C.
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C.1.1 Parameter normalization

If the vector � that parameterizes the dominant directions has nonzero dimension, the parameter-

ization given above is everywhere many-to-one : the vi are unchanged if the �l are scaled; in the

case of directions forming a �xed angle with a direction vj , vi depends only on the plane formed

by vj and �l, not on the location of �l in this plane.

We will need in Section 5.3 to de�ne a function Sd (�) such that h (�) is one-to-one on the set

f� jSd (�) = Og. A natural choice for Sd (�) is

Sd (�) =

2
66664

�1 � vi1
...

�D0 � viD0

3
77775 ;

where, for any l 2 f1; :::; D0g, il is the smallest index of a direction vil in whose computation �l is

used. We will say that parameters � that verify Sd (�) = O are normalized.

C.1.2 Di�erential of the vi (�1; :::; �i)

We now indicate how the di�erentials @
@�j

vi (�1; :::;�i) are computed.

First, the di�erential @
@�i

vi is de�ned for the directions in which a parameter �i is needed, i.e.

the arbitrary directions and those that must form a �xed angle with a previously de�ned direction.

For an arbitrary direction vi = �i k�ik
�1 de�ned by a parameter �i 2 R3 n fOg ; one has :

@

@�i

�
�i

k�ik

�
=

1

k�ik

 
I �

1

k�ik
2�i�

>
i

!
: (C.1)

If the parameter �i is normalized (Sec. C.1.1), i.e. if �i = vi, and k�ik = 1, this expression

becomes :
@

@�i
vi = I � viv

>
i :

For a direction vi forming an angle � with vj , one has ,

@

@�i
vi =

sin (�)

ku1k

�
I � u2u

>
2 � vjv

>
j

�
: (C.2)

where the ui are those de�ned at the beginning of Section C.1. If �i is normalized, this expression

simpli�es to :
@

@�i
vi =

�
I � u2u

>
2 � vjv

>
j

�
:
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For a direction vi that forms a �xed angle with a direction vj , or is de�ned by the cross

product of two directions vj and vk, the derivatives of vi with respect to the other parameters

�j for 1 � j < i are not all zero. These are computed by considering vi as a function of vj (and

eventually vk), computing @
@vj

vi (and eventually @
@vk

vi) and using the chain rule to obtain the

@
@�j

vi from the @
@�l

vj (1 � l < j) and eventually the @
@�l

vk (1 � l < k).

For a direction vi forming an angle � with vj ,

@

@vj
vi = cos (�) I �

sin (�)

ku1k

��
v>j �i

� �
I � u2u

>
2

�
+ vj�

>
i

�
(C.3)

where the ui are de�ned as above. If the parameters are normalized, this expression simpli�es to :

@

@vj
vi = cos (�)u2u

>
2 :

In the case of a direction vi de�ned by the cross product of directions vj and vk , one has :

@
@vj

vi = � 1
sin (vj ;vk)

�
I � viv

>
i

�
Svk and

@
@vk

vi = 1
sin (vj ;vk)

�
I � viv

>
i

�
Svj :;

(C.4)

where Svj is the Rodrigues matrix and sin (vj ;vk) is the sine of the (positive) angle formed by vj

and vk. These expressions are obtained with the help of the equalities :

@

@�
k�k = �>

and that :
@

@�

�
��>v

�
= �>vI � �v>:

C.2 Parameterization of rotation matrices

We now de�ne the di�erential of the parameterization of the rotation matrices de�ned in Eq. (5.9),

on page 61, from which the di�erential of the function de�ned in Eq. (5.10) is easily obtained. We

thus consider the mapping :

R (') = ~'~'> + cos (�)
�
I3 � ~'~'>

�
� sin (�)S ~'; for ' 6= O; (C.5)

where � = k'k, ~'f = '= k'k and S ~' is the Rodrigues matrix of ~'. The domain of R (') is

extended to R3 by de�ning R (O) = I3. The continuity of R (') in 0 and elsewhere is easily shown.
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We saw in Section 5.2.3 that only the di�erential of R (') in O is needed. All that is needed

to show that R (') is di�erentiable in 0 [2] is the existence of a linear function DR (O) such that :

R (�) = R (O) +DR (O) (�) +O
�
k�k2

�
: (C.6)

We now show that taking DR (O) (�) = �S�, i.e. a linear function of �, satis�es this requirement.

First, R (�) can be written

R (�) = cos (k�k) I �
sin (k�k)

k�k
S� +

cos (k�k)� 1

k�k2
��>:

Then, using the Taylor expansion of sin (k�k) and cos (k�k), one obtains Eq. (C.6).

In order to present DR (�) in matrix notation, we consider the di�erential of vec (R (�)) in O,

which is :

@

@�
vec (R (O)) =

2
66664

0 0 0 0 0 1 0 �1 0

0 0 �1 0 0 0 1 0 0

0 1 0 �1 0 0 0 0 0

3
77775
>

: (C.7)

The di�erential of R (�) can also be found for nonzero values of �, by di�erentiation of Eq. (C.5),

but the resulting expression is less simple than Eq. (C.7).
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Appendix D

Covariance of maximum likelihood

estimators

We show how the covariance matrix of a maximum-likelihood estimator can be derived analytically,

simply from its de�nition. This result, which can be found in [34], applies for any error model that

results in a twice di�erentiable likelihood function. We then specialize the expressions to the case

of independent identically distributed Gaussian error terms, when the (negative log-) likelihood

function is a sum of squares. This is precisely the situation in Section 5.

It is often the case that the maximum of the likelihood function is not isolated, in which case

the estimator is not uniquely de�ned. This di�culty is overcome by constraining the estimates to

lie in a subset in which the maximum of the likelihood function is isolated. More precisely, the

estimate is restricted to a set of the form

f� jS (�) = OP�1g

where S (:) is a di�erentiable function chosen in such a way that the maximum likelihood estimator

is well de�ned.

While this function can be used to express any type of constraints, including all the geometric

constraints speci�ed by the user (Chapter 2.3), in the present work it is used to remove the

usual scale-and-translation ambiguity and to enforce that the parameters that de�ne the dominant

directions are normalized as in Appendix C.1.

The exact de�nition of the estimator is :
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De�nition : The maximum likelihood estimator is the function that associates to a set of obser-

vations x, the maximum likelihood estimate �̂, de�ned by :

�̂ = argmin
�

Q(x;�) subject to S(�) = 0P�1: (D.1)

D.1 Notations

We shall write �� the �true� parameters, �̂ the ML estimate; their di�erence, the error, is �� =

�̂ � ��. We will write Q� = Q(x�;��) , Q̂ = Q(x; �̂) and likewise Ŝ = S(�̂). In general, an

asterisk will denote a function evaluated in �� or (x�;��), and a hat will denote evaluation at �̂

or (x; �̂). We will write D� and D2
�� the operators of �rst and second di�erentiation with respect

to �. Finally, the following abbreviations are used:

D�Q
� =

@Q
@�(x�;��)

D��Q
� =

@2Q
@�2 (x

�;��)

D�Q̂ =
@Q
@�

(x̂; �̂) = F

D2
��Q̂ =

@2Q
@�2 (x̂; �̂) = H

D�Ŝ = @2S
@�2 (�̂) = G

D.2 Derivation of the covariance of the estimator

A well-known property is that, at the minimum �̂, the derivative of Q is a linear combination of

the derivatives of constraints. That is, there exist a (row) vector � such that :

D�Q̂+�D�Ŝ = 01�size(�) (D.2)

These are the so-called �normal equations�. The �rst-order Taylor series of D�Q at (x̂; �̂), yields

the following approximation :

D�Q
� ' D�Q̂�D2

��Q̂���D2
�xQ̂": (D.3)

It is easy to see that D�Q
� = 0 : since Q� = 0, and, for all (x;�), Q(x;�) � 0, then (x�;��) is a

global minimum of Q (regardless of constraints). This implies that D�Q
� = 0. Thus one has :

D2
��Q̂��+D2

�xQ̂"+�D�Ŝ ' 0:
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Likewise, since S� = 0 = Ŝ, and Ŝ ' Ŝ �D�Ŝ��, one has : D�Ŝ�� ' 0. Replacing approxima-

tions by equalities, and writing in matrix form, one has:2
64 D2

��Q̂ D�Ŝ
>

D�Ŝ 0

3
75
2
64 ��

�>

3
75 =

2
64 �D2

�xQ̂"

0

3
75 ;

which can be abbreviated as : 2
64 H G>

G 0

3
75
2
64 ��

�>

3
75 =

2
64 �F"

0

3
75 : (D.4)

The vector [��>;�] is thus a linear combination of ". Its covariance is :

cov

2
64 ��

�>

3
75 =

2
64 H G>

G 0

3
75
�1 264 �2FF> 0

0 0

3
75
2
64 H G>

G 0

3
75
�1

(D.5)

D.3 Specialization to the problem of reconstruction :

The above formulas hold for any ML estimator. We now specialize them to the case of Gaussian

noise, when the log-likelihood is a sum of squared di�erences between observations and predictions,

of the form of Eq. 5.5 :

Q = 1
2�2

(f (�)� x)
>
(f (�)� x)

D�Q = 1
�2

(f (�)� x)
>
D�f (�)

D2
��Q = 1

�2D�f (�)
>
D�f (�)+

1
�2
PN

m=1

P2
i=1 (fmi (�)� xmi)D

2
��fmi (�)

D2
�xQ = 1

�2
D�f (�)

(D.6)

Practical consideration : One can eliminate the need of knowing the second derivativesD2
��fmi (�)

when computing covariance matrices, because, at (��;x�), one has fmo = xmi, and thus the sec-

ond order terms are eliminated in Eq. (D.6). In what follows, we assume that, at �̂, the residuals

(fmi (�)� xmi) are small, so that the second order terms in Eq. (D.6) are small compared to the

�rst order terms. With that assumption, the approximation :

D2
��Q '

1

�2
D�f (�)

>
D�f (�)

is legitimate, and from here on, we will use it.
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Covariance of the ML estimator : Because we consider that noise terms "npi are independent

and have same variance �2, one has : F�F> = �2D�Q
>D�Q = H . Replacing in Eqs. (D.5) yields.

Cov

2
64 ��

�

3
75 =

2
64 H G>

G 0

3
75
�1 264 H 0

0 0

3
75
2
64 H G>

G 0

3
75
�1

(D.7)

Expressions without � It is also possible to �nd expressions for �� and its covariance in

which � does not appear : one easily sees that :

Proposition D-3 If there is a solution to :"
H G>

G O

#"
X

Y

#
=

"
U

V

#
;

then

X = (�G?H +�G)
+
�
�G?U +G

�
G>G

��1
V
�
;

where �G is the orthogonal projector onto Span
�
G>
�
, �G = G>

�
GG>

��1
G and �G? is the

orthogonal projector onto Null (G), �G? = I �G>
�
GG>

��1
G.

From this proposition and Eq. (D.5), one has

�� = (�G?H +�G)
�1

�G?F": (D.8)

By de�nition of �G? and �G, one may write these matrices �G? = U1U
>
1 and �G = U2U

>
2 , where

U1 and U2 are M � (M � P ) and M � P unitary matrices such that U>
1 U1 = IM�P , U>

2 U2 = IP

and U>
2 U1 = OP�(M�P ).

One easily shows the following :

Proposition D-4 If "
U>
1

U>
2

# h
U1 U2

i
= I

and Span (U2) � Null (H), then one has :

�
U1U

>
1 H + U2U

>
2

��1
=
�
U1
�
U>
1 HU1

��1
U>
1 � U1

�
U>
1 HU1

��1
1

�
U>
1 HU2

�
U2 + U2U

>
2

�
:

Using this proposition, one gets from Eq. (D.8) :

�� = U1
�
U>
1 HU1

��1
U1F": (D.9)
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The, one gets the expression for the covariance :

cov (��) = �2U1
�
U>
1 HU1

��1
U1FF

>U>
1

�
U>
1 HU1

��1
U>
1 : (D.10)

Finally, the counterpart of Eq. (D.7) is :

cov (��) = U1
�
U>
1 HU1

��1
U>
1 : (D.11)
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Appendix E

Di�erentiation of the nullspace of a

matrix-valued function

In this appendix is proved the correctness of Eq. (5.8) for de�ning a matrix-valued function whose

columns form an orthonormal basis of the nullspace of a matrix-valued function of constant corank.

We also show that the resulting function is di�erentiable and give means to compute its di�erential.

In order to simplify the notation in this appendix, we will write B(�) (instead of B (�1; :::;�D))

the original function, assume it has size P �N (instead of P � 3N).

We consider a di�erentiable matrix-valued function B(�) de�ned on an open set D of RQ

such that the dimension of its nullspace Null(B(�))1 is constant for all �, and de�ne a di�eren-

tiable matrix-valued function U (�) such that the columns of U (�) form an orthonormal basis of

Null(B(�)). This requirement alone, as was noted in Sec. 5.2.1 (page 60), does not de�ne uniquely

a function U (�), so that other constraints should be imposed. The ambiguity if partially removed

by choosing a point �0 and �xing the value of U in �0. However, this is in general still insu�cient

to uniquely de�ne U (�) in points other than �0, as shown by a counter-example in Section E.6.

For this reason, we impose the extra constraint that U (�) minimizes, amongst all unitary

matrices whose columns form a basis of Null (B (�)), the distance kU (�0)� U (�)kF , where k:kF

is the Frobenius norm, which is the condition given in Eq. (5.8).

In this appendix, we show that the de�nition given in Eq. (5.8) uniquely de�nes a function

U (�). The following proposition states formally the conditions under which it can be used.

Proposition E-2 If one is given a di�erentiable function B (�) de�ned on an open set D � RQ

whose images are P �N real matrices, with rank L and corank equal to some M > 0 for all �, and

1The nullspace of a matrix B, de�ned as the vectorial subspace of RN consisting of all vectors b such that
Bb = OP�1, is written Null (B) .
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one is given a point �0 2 D and a unitary matrix U0 whose columns form an orthonormal basis of

Null (B (�0)),

then there exists a neighborhood F of �0 and a N �M matrix-valued di�erentiable function

U (�) de�ned on F , with image in RN�M , such that, for all � 2 F , one has :

B (�)U (�) = OP�M ; (E.1)

U (�)> U (�) = IM and (E.2)

U (�) = arg min
U

fkU0 � UkF jU veri�es (2; 3)g : (E.3)

The function U (�) is called the nullspace function of (the function) B (�). Moreover, U (�) can be

computed using Equation (E.9), its di�erential can be computed by Equations (E.10) and (E.14),

and the di�erential in �0 takes the simpler form in Equation (E.13)..

We show, using the implicit function theorem2, that the above constraints are su�cient to de�ne

a di�erentiable function U on a neighborhood of �0. Also, we show how to e�ciently implement

such a function in a programming language such as �Octave� [22] or �Matlab� [51]3.

The demonstration leading to this proposition is given in the following sections, together with

methods for computing U (�) (Eq. (E.9)) and @
@�

U (�0) (Eq. (E.13) or Eqs. (E.10) and (E.14)).

Results related to that of this appendix have been known for some time. The di�erentiation of

the eigenvalues and eigenvectors of square matrices are studied in [45, 44, 25], and previous work

which could not be consulted is sometimes cited [40, 58]. Computational procedures are known for

simple [52] and multiple [53, 18] eigenvalues. The main di�erence between previously published

work and this appendix lies in the choice of the normalization used to ensure the unicity of a basis

of the nullspace, in the method used to prove the existence and unicity of the �nullspace function�

and the possibility of computing the value and derivatives of this mapping in points other than �0.

This appendix has the following plan : Theorem E-2 is proven for a special case in Section E.1.

Computation methods are given in Sections E.2 and E.3 and the general case is treated in Sec-

tion E.4.

E.1 Existence and di�erentiability

We will rephrase (E.1-E.3) in the form h (�; U) = O in such a way that the implicit function

theorem may be applied. We start by �nding an equivalent set of non-redundant equations that is

equivalent to (E.1-E.3).

2Credit must be given to João Xavier for suggesting the usage of the implicit function theorem for showing the
di�erentiability of U .

3Octave is a numerical language comparable to �Matlab�. In this appendix, only features common to the two
languages are considered.
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Characterization The system of equations (in U) B (�0)U = OP�M has rank LM and, unless

L = P , it is redundant. We assume in this section that P = L and consider again the general case

in Sections E.2, E.3 and E.4.

Since U>U is symmetric, Equation (E.2) is redundant. A non-redundant formulation of this

equation is D>
Mvec

�
U>U � IM

�
= O(M(M+1)=2)�1, where DM is the M2�M (M + 1) =2 duplica-

tion matrix [28, 50].

Moreover, one shows in Section E.6 that a matrix U , verifying (E.1) and (E.2), minimizes

kU0 � UkF if and only if U>
0 U is symmetric, that is, if U>

0 U � U>U0 = OM�M . This can be

expressed as the vectorial equation

vec
�
U>
0 U � U>U0

�
= OM2 : (E.4)

However, since U>
0 U�U

>U0 is skew-symmetric, some of these equations are identical; theM (M � 1) =2

distinct equations can be written in the form W+
Mvec

�
U>
0 U � U>U0

�
= O where W+

M is the

M2 � (M (M � 1) =2) selects the sub-diagonal elements : for all M �M skew-symmetric matrix

A, one has :

vec (A) =WMvecl (A) ;

where vecl (A) = [A2;1; :::; AM;1; A3;2; :::; AMM�1]
> is the vector of sub-diagonal elements of A.

This matrix is the counterpart, for skew-symmetric matrices, of the �duplication matrix� .

Altogether, (E.1-E.3) can be expressed as h (�; U) = OMN�1, where h is de�ned by :

h(�; U) =

2
66664

vec (B (�)U)

D>
Mvec

�
U>U � IM

�
W>
Mvec

�
U>
0 U � U>U0

�

3
77775

9>>>>=
>>>>;
MN (E.5)

The three components in (E.5) have length MP , M(M � 1)=2 and M(M + 1)=2 respectively,

which sum up to MN . It is clear that h (�; U) is di�erentiable in both � and U .

Existence and di�erentiability In order to apply the implicit function theorem, one must

show that @
@U h is bijective. Representing this di�erential as a MN �MN matrix, one has :

@

@U
h (�; U) =

2
66664

IM 
B (�)

D>
M (KM + IM2 )

�
IM 
 U>

�
W>
M (KM � IM2)

�
IM 
 U>

0

�

3
77775
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where KM is the commutation matrix [28, 50] of size M2. Noting that D>
M (KM + IM2) = 2D>

M

and W>
M (KM � IM2 ) = 2W>

M , this expression can be simpli�ed to :

@

@U
h (�; U) =

2
66664

IM 
B (�)

2D>
M

�
IM 
 U>

�
2W>

M

�
IM 
 U>

0

�

3
77775 (E.6)

This matrix is shown to be invertible in Section E.6. According to the implicit function theorem,

there exist a neighborhood F and a di�erentiable function U (�) de�ned on F such that for all

� 2 F , one has h (�; U (�)) = O. Moreover, the di�erential of U (�) is given by :

@

@�
U(�) = �

@

@U
h (�; U)

�1 @

@�
h (�; U) : (E.7)

and the di�erential of h with respect to � is equal to :

@

@�
h (�; U) =

2
64 KM;P

�
IP 
 U>

�
OM2�NP

3
75 @

@�
vec (B (�)) : (E.8)

In conclusion, we have just proven Theorem E-2 in the special case of rank (B (�)) = P .

E.2 Computing U (�)

As indicated in Section E.6, the unitary matrix U whose columns form a basis of Null (B (�)) and

minimizes kU � U0kF is given by :

U = U1UV
> (E.9)

where U1 can be any unitary matrix whose columns form a basis of Null (B (�)), and U , V are

given by the SVD decomposition of U>
1 U0 : U

>
1 U0

SVD

= UDV>. In practice, when using the Octave

[22] language, U1 is obtained with the null() function, and U and V by the svd() function.

Note that U (�) can be computed using (E.9), even if rank (B (�)) = L < P .

E.3 Computing @
@�
U (�)

Equation (E.7) provides a straightforward way of computing the di�erential of U , but we shall see

that this computation can be done in a way that is less costly and that does not require that B (�)

have rank P . The computation is made possible by identifying necessary conditions on the partial

derivatives of U (�) that completely characterize these partial derivatives. This method is inspired
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by that found in e.g. [50, 54] for computing the partial derivatives of the eigen- and singular values

and vectors of matrices.

For convenience, we will write the partial derivatives of B (�) and U (�) with respect to the ith

component of �

B0
i =

@

@�i
B (�) and U 0

i =
@

@�i
U (�) :

Computing the derivative of (E.1) with respect to �i, one gets :

B0
iU +AB0

i = ON�Q;

which in turn implies that :

U 0
i = �B+B0

iU + UC (E.10)

for some M �M matrix C. Here, B+ is the pseudo-inverse of B.

The derivative of (E.2) with respect to �i, yields :

U 0
i
>
U + U>U 0

i = OM�M : (E.11)

Replacing (E.10) into (E.11), one gets : C = �C>, that is, C is skew symmetric.

Finally, the derivative of (E.4) with respect to �i is :

U>
0 U

0
i � U 0>

i U0 = OM�M :

Using (E.10) in this expression, one obtains the following constraint on C :

X + Y >C � C>Y = OM�M ; (E.12)

where X = �U>
0 B

+B0
iU + U>B0>

i B
+>U0 and Y = U>

0 U: Note that, when U = U0, this equation

reduces to C = O, so that, at U = U0, one has :

U 0
i = �B+B0

iU: (E.13)

This case is of importance in practice, because this expression is simpler than the general case and

because the optimization algorithm used in Chapter 5 only requires derivatives of this form.

It is shown in Section E.6 that the only skew-symmetric C that solves (E.12) is

vecl (C) =
�
W>
M

�
IM 
 Y >

�
WM

��1
vecl (X) : (E.14)
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The partial derivative U 0
i is then given by (E.10).

E.4 Generalization to rank-de�cient B (�)

It can be seen that (E.10) and (E.13) do not require that B (�) have rank P , contrarily to (E.7).

We now show that it is valid to use expressions (E.10) and (E.13) when rank (B (�)) = L < P .

If we are given a function B (�) such that (E.10) and (E.13), and if there exists a di�erentiable

function ~B (�) de�ned on D whose images are L � N matrices and such that Span
�
~B (�)>

�
=

Span
�
B (�)>

�
for all � (and thus ~B (�) has rank L), then B (�) and ~B (�) have same null space

for all �. As a consequence, their nullspace functions U (�) and ~U (�), if they exist, are equal.

The existence of ~U (�) is given by Theorem E-2 and thus U (�) also exists. Since the compu-

tations of @
@�

U (�) given in (E.13), (E.10) and (E.14) are based only on necessary conditions that

@
@�

U (�) must verify, and can be done even if B (�) is not full rank, their results are correct in

that case too.

It is thus possible to compute U (�) and @
@�

U (�) even if rank (B (�)) < N , without having to

compute ~B (�) or even knowing rank (B (�)) exactly.

All that is needed now is to prove the existence of a function ~B (�) 2 RL�N . We �rst de�ne

~B (�) locally, e.g. in a neighborhood of any �1 2 D . First, there exists a subset of L independent

rows of B (�1) and there thus exists a L � N matrix of zeros and ones, S1, that selects these

rows, so that ~B1 (�1) = S1B (�1) has rank L. Because ~B1 (�) is a continuous function of �, and

the smallest singular value of ~B1 (�) is a continuous function of � [77, Part 2]4, there exists an

open neighborhood of �1 on which the rank of ~B1 (�) does not vary. Then, D can be covered by

such overlapping neighborhoods, so that a L � P function ~B (�) is de�ned. Note also that only

�nitely many neighborhoods are needed, since there are �nitely many selection matrices. Although

~B (�) is not continuous (because the subset of selected rows changes), it is di�erentiable almost

everywhere (everywhere except on the borders of the neighborhoods) and its nullspace varies in a

�continuous� fashion. As a consequence, the nullspace function U (�) can be de�ned everywhere

and is di�erentiable.

This completes the proof of Theorem E-2, and of the correctness of (E.9), (E.10), (E.14) and

(E.13) for computing U (�) and its di�erentials.

4Wilkinson considers the eigenvalues. We can apply his results to ~B1 (�) ~B1 (�)
>, whose eigenvalues are the

squares of the singular values of ~B1 (�).
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E.5 Summary

We have shown that it is possible to build a di�erentiable function U (�) whose columns form a

basis of the nullspace of a di�erentiable function B (�). Many such functions exist; a particular

function is chosen by �xing a particular �0 and a particular matrix U0 whose columns form an

orthonormal basis of Null (B (�)). The function U (�) can be computed using Eqs. (E.9), while

the di�erential can be computed using Eq. (E.10) and (E.14) or (E.13). These expressions can be

computed for all � 2 D, but the existence and di�erentiability of U (�) is only guaranteed on a

neighborhood of �0.

E.6 Detailed demonstrations

Demonstrations of properties used in the previous sections are found in this section.

Non-unicity of U (�) when U (�0) is �xed We show, by an example, that �xing the value of

U (�) in a point �0 is not su�cient to uniquely de�ne the function U (�).

Consider the function B (�) = [cos (�) sin (�) 0] 2 R1�3, de�ned on R and take �0 = 0 and

U0 =

�
0 1 0

0 0 1

�>
, a basis of Null (B (�0)). De�ne U1 (�) =

�
� sin (�) cos (�) 0

0 0 1

�>
and

U2 (�) = U1 (�)

�
cos (�) � sin (�)

sin (�) cos (�)

�
. Both functions verify Ui (�0) = U0, but one does not have

in general U1 (�) = U2 (�).

Condition on the minimizing U It is well known [26, p. 601] that, given N �M matrices U0

and U1, the orthogonal matrix R that minimizes kU0 � U1RkF is R� = UV>, where U and V are

given by the singular value decomposition of U>
0 U1

SVD

= UDV>. Moreover, one sees that U>
0 U1R

�

is symmetric by computing U>
0 U1R

� �R�>U>
1 U0.

Di�erentials of f (u;v) = vec
�
F>G

�
Let u 2 RPM , v 2 RPN be vectors, F = [u1 : : :uM ] =

matP;M (u) and G = [v1 : : :vN ] = matP;N (v) be P �M and P �N matrices, and de�ne f (u;v) =
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vec
�
F>G

�
2 RMN . The di�erentials of f (u;v) with respect to u and v are :

@
@v

f (u;v) =
�
IN � F>

�
because f (u;v) =

2
666666666664

u>1 v1

...

u>Mv1

...

u>MvN

3
777777777775
=
�
IN 
 F>

�
v; and

@
@u

f (u;v) = KM;N

�
IM 
G>

�
because f (u;v) =

2
666666666664

v>1 u1

...

v>1 uM

...

v>MuN

3
777777777775
= KM;N

�
IM 
G>

�
u:

Finally, if one de�nes g (u) = f (u;u), one has @
@u

g (u) = (IM2 +KM )
�
IM 
 F>

�
.

Invertibility of @
@U

h We now show, that @
@U

h is invertible, by showing that any vector w> =

vec (W ) 2 RMN such that : 2
66664

IM 
B (�)

D>
M

�
IM 
 U>

�
W>
M

�
IM 
 U>

0

�

3
77775w = OMN�1:

is necessarily zero (we have suppressed the needless factor 2 in the lower blocks).

The equation (IM 
B (�))w = OMP�1 is equivalent to B (�)W = ON�Q, which implies that

W = UV; (E.15)

(by de�nition of U) for some nonzeroM�M matrix V . Then, the equation D>
M

�
IM 
 U>

�
w = O

simply says that U>W is skew-symmetric, i.e., by Eq. (E.15), that V is skew-symmetric. Finally,

the equation W>
M

�
IM 
 U>

�
w = O is equivalent to saying that U>

0 W = U>
0 UV is symmetric, i.e.

U>
0 UV � V >U>U0 = OM�M Since V is necessarily skew-symmetric, one has

U>
0 UV + V U>U0 = OM�M :

In order to show that @
@U

h is invertible, all one needs to show is that this equation has no
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nonzero solutions. This is the case, e.g. if U>
0 U has no negative eigenvalues [28], which we now

show to be the case : let's assume that there exists a nonzero v 2 RM such that U>
0 Uv = OM�1,

so that Null
�
U>
0

�
\ Span (U) 6= fON�1g, or, equivalently, Span

�
B>
0

�
\ Null (B) 6= fON�1g,

which is also equivalent to saying that there exists a nonzero w 2 RP such that BB>
0 w = OP�1

(remember that B>
0 , having full row rank, has rank P ).

Now, B (�)B>
0 is a continuous function of �, and, in � = �0, B (�0)B

>
0 has only positive

eigenvalues, because B0 is full-rank. Since the smallest eigenvalue of a matrix can be shown to

be a continuous function of the elements of the matrix [77, 44, Part 2], the smallest eigenvalue of

B (�)B>
0 is a continuous function of �, and, on a neighborhood of �0, the smallest eigenvalue of

this matrix is necessarily positive. 2

Solving X + Y >C � C>Y = O with skew-symmetric C and X In this section, we give a

computationally e�cient way of solving

X + Y >C � C>Y = OM�M (E.16)

when X and C are skew-symmetric and Y is a symmetric M � M matrix. Note that, since

C = �C>, any solution to (E.16) is also a solution to :

X + Y >C + CY = OM�M : (E.17)

A solution to (E.17) is ([28, p. 38]) c = �
�
IM 
 Y > + Y > 
 IM

��1
x, where c = vec (C) and

x = vec (X). The computation cost is (approximately) that of a M2 �M2 matrix inversion, that

is, in the order
�
M2
�3
.

We now show that C can be computed approximately at the cost of the inversion of aM (M � 1) =2�

M (M � 1) =2 matrix, that is, in the order of M6=8. We �rst note, as in Section E.6, that (E.16)

is equivalent to :

WM ~x+ (IM2 �KM )
�
IM 
 Y >

�
WM~c = O;

where ~x = vecl (X) and ~c = vecl (X) are vectors holding the M (M � 1) =2 distinct o�-diagonal

elements of the skew-symmetric matricesX and C : ~x = [X2;1; : : : ; XM;1; X3;2; : : : ; XM;M�1]
>, and

WM is the M2 �M (M � 1) =2 matrix such that vec (X) =WM ~x. Then, noting that W+
MWM

~� =
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I~�, that W+
MKM = �W+

M and that W+
M = 1

2W
>
M , one has :

~� +W>
M

�
IM 
 Y >

�
WM~c = O:

It is thus possible to compute ~c =
�
W>
M

�
IM 
 Y >

�
WM

��1 ~�, by inverting a M (M � 1) =2�

M (M � 1) =2 matrix.
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