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iii
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O diálogo com colegas de áreas aparentemente distantes ou vocacionadas para sistemas
muito diferentes, proporciona muitas vezes direcções de trabalho novas, interessantes e
prof́ıcuas. Neste caso, devo agradecer as numerosas e valiosas conversas com António P.
Aguiar, Pedro Encarnação, João Mota, Artur Arsénio e em geral aos meus colegas do ISR,
João Pedro, João Xavier, Sebastião, Alves, Paulo Oliveira, Rodrigo, Carlos Marques,...
E claro, não esqueço a ajuda da Filomena, do Nuno, do Rafael, do Löıc, da Maria, da
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volta de computadores/robots vs mais vida (e também a afinação do meu top-spin).
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Resumo

A investigação realizada no âmbito da tese, versa a navegação visual de robots móveis
em ambientes interiores, com ênfase especial nos aspectos de desenho do sensor, de repre-
sentação do ambiente, de auto-localização e da interacção com pessoas. O ponto principal
é que da exploração dos aspectos individuais, de uma forma combinada, resulta um sistema
de navegação eficiente.

O desenho do sensor permite criar representações do ambiente úteis para a auto-
localização. A partir de uma única câmara omnidireccional, estimamos de forma pre-
cisa / qualitativa a auto-localização e constrúımos um sistema de acordo com as tarefas
espećıficas de navegação.

Do estudo da geometria de câmaras omnidireccionais baseadas em espelhos esféricos,
resulta que em muitas aplicações é negligenciável o erro associado à inexistência de centro
de projecção único. Resultam também transformações da imagem que representam em
ortografia o plano do pavimento. Estas representações são úteis para a navegação.

A interface com pessoas é desenhada com o objectivo de permitir a selecção intuitiva
de localizações a atingir pelo robot. Os modelos gerados descrevem de forma rica a cena,
e podem ser observados em poses arbitrárias. A reconstrução a partir de uma única
imagem é posśıvel com a colaboração do utilizador que fornece algumas propriedades de
co-linearidade e co-planaridade presentes na cena.

Os algoritmos apresentados na tese são validados experimentalmente, mostrando-se
em várias situações que é obtida navegação precisa. A visão omnidireccional revela-se útil
por exemplo em tarefas de parqueamento e de passagem de portas. São também apre-
sentadas experiências de navegação em percursos longos realizadas pela combinação das
metodologias propostas. As metodologias desenvolvidas facilitam a operação autónoma
ou teleguiada e a interacção com robots móveis.

Palavras Chave

Visão omnidireccional, Navegação de robots, Interfaces homem máquina, Reconstrução
interactiva.
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Abstract

The research, described in the thesis, concerns the visual navigation of indoor robots,
emphasising the aspects of sensor design, environmental representations, accurate self-
localisation and interaction with humans. The main point is that by exploring these
different aspects, in a combined manner, an effective navigation system is obtained.

Sensor design is an enabling key for creating environmental representations adequate
for accurate localisation. We present a system capable of self-localising using only a single
omnidirectional camera, explicitly taking into account the nature of navigation task at
hand in the design process.

We detail the geometry associated with omnidirectional cameras using spherical mir-
rors. We show that minimal error is induced by not having a single centre of projection.
Methods used to obtain the bird’s eye (orthographic) view of the ground are presented.
This representation significantly simplifies the solution to navigation problems, by elimi-
nating any perspective effects.

In order to achieve effective interaction with humans, we provide an intuitive user in-
terface for target selection, built from an omnidirectional image. The models generated
provide a rich scene description, which the user is free to rotate and translate. Recon-
struction from a single image is possible with limited user input in the form of co-linearity
or co-planarity properties.

We provided real world experimental results showing that our algorithms achieve highly
precise navigation in several situations. Omnidirectional vision is shown to be beneficial for
such tasks as docking and door traversal. Combined experiments, involving long distance
navigation are also detailed.

The developed methodologies facilitate autonomous or guided exploration (tele-operation)
and human-robot interaction.

Keywords

Omnidirectional Vision, Navigation, Human-robot interfaces, Interactive Reconstruction.
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Chapter 1

Introduction

“... affixed to the wall on the left are printed posters : ‘The Cheapest
Labor: Rossum’s Robots.’ ‘Tropical Robots - A New Invention - $150
a Head.’ ‘Buy Your Very Own Robot.’ ‘Looking To Cut Production
Costs? Order Rossum’s Robots.’ ”
From the prolog of the play R.U.R. (Rossum’s Universal Robots) by
Karel Capek, 1920.

In the last few decades many robots have been developed, produced and installed
mainly for industrial applications. Despite original concerns that robots would replace
human labor, and in the process create large unemployment problems, the reverse was
that robots become human extensions. In the car industry, for example robots hold and
rotate the cars for humans to inspect or to operate upon some localised regions.

Industrial robots are essentially robot arms, teleoperated or programmed for repeti-
tive tasks. Mobile robots appeared more recently. The scientific and technical challenges
are larger, mainly requiring autonomy without posing a risk to people or to the robots
themselves. One very exciting application of mobile robots is in planetary exploration.
Planetary exploration is much too expensive and potentially hazardous for human inter-
vention. There are also environments in which it is possible for humans to intervene, but a
robotic intervention could be less costly. For example, service robots have been introduced
in hospitals for transporting medicines and therefore saving time to nursing staff [60].

The technical developments of the last decade make it possible to manufacture service
robots for everyday indoor applications. However, the sensing modalities are still too
limited, expensive or difficult to install, while requiring autonomy for operation in large
environments.

In order to introduce robots in the human society, it is necessary to consider the
(social) interactions of the robots to other robots and to humans. This implies building
autonomous robots that share the sensed data and models. Sharing sensed data and
models is important for establishing communication languages, where the robot behaviour
is simple to understand and to specify. Autonomy is relevant for keeping the level of
user intervention to a minimum. The operator should only be concerned with high-level

1



2 Chapter 1. Introduction

planning, such as “dock here” or specifying intermediate goals such as “go to this door”.
The robot must take care of all the lower-level control, such as staying in the center of a
corridor or crossing a door.

In this thesis we address the problem of mobile robots navigation using visual in-
formation. Overall, the challenges we tackle for building autonomous robots are mainly
threefold: (i) designing sensors adequate for the tasks at hand (ii) endowing the robot
with the environmental representations (world models) and navigation modules able to
solve navigation tasks; and (iii) designing adequate visual interfaces whereby the remote
user can interact with the system in a simple and flexible manner.

In the sensorial aspect, vision is of particular interest as it enables not only self-
localisation grounded to the world structure (or alternatives for navigation without ex-
plicit localisation) but, simultaneously, other applications such as vigilance or environment
understanding by an human operator. The versatility of vision motivated and continues
to motivate much research with many initial promising results [4, 66, 117, 5, 11, 58]. How-
ever, current vision-based navigation requires large computational resources, but still lacks
the robustness required for many real-world applications.

In contrast, examples of efficiency can be drawn from biology. Insects, for instance,
can solve very large and complex navigation problems in real-time [108], in spite of having
limited sensory and computational resources.

One striking observation is the diversity of “ocular” geometries (see figure 1.1). Many
animals eyes point laterally, which may be more suitable for navigation purposes. The
majority of insects and arthropods benefit from a wide field of view and their eyes have
a space-variant resolution. To some extent, the performance of these animals can be
explained by their specially adapted eye-geometries. Similarly, in this thesis we explore
the advantages of having large fields of view by using an omnidirectional camera with a
360◦ horizontal field of view.

Most of the research on vision-based navigation has been centered on the problem
of building full or partial 3D representations of the environment [120], which are then
used to drive an autonomous robot. We argue that shifting the emphasis from the actual
navigation problem to the process of building these 3D maps, also contributes to explain
the large computational resources and the lack of robustness in many applications.

By contrast, navigation in the animal world exhibits remarkable levels of robustness
and flexibility when compared to today’s robots. This is possibly due [13, 92] to the usage
of a very parsimonious combination of perceptual, action and representational strategies.
A related aspect, also intimately connected with the performance of a navigation system,
is the nature of the navigation requirements when covering long distances, as compared
to those for short paths. Many animals, for instance, make alternate use of landmark-
based navigation and (approximate) route integration methods [108]. For example, to
walk along a city avenue, it is sufficient to know our position to within an accuracy of one
block. However, entering our hall door would require much more precise movements.
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Figure 1.1: Photograph of a true fly. The azimuthal field of view of a true fly is about
360o. Photograph courtesy of Armando Frazão (http://photo.digitalg.net/).

This path distance/accuracy tradeoff between long-distance/low-precision and short-
distance/high-accuracy mission segments plays an important role in finding efficient so-
lutions to the robot navigation problem. We will refer to these navigation modes as
Topological Navigation versus Visual Path Following.

A Visual Interface should provide the user with a rich perception of the robot’s envi-
ronment and task status and, at the same time, offer an intuitive way to give commands or
mission specifications to the system. We present a simple “point-and-go” visual interface
based on omnidirectional images which, depending on the task at hand, provides one of
three different scene representations to the operator. Each representation is an environ-
mental model suited to a given task. For example, the robot heading and direction are
easily specified by clicking on a panoramic image representation rather than having to
type in degree headings.

In summary, in this thesis we propose a new methodology for vision-based robot-
navigation comprising three main aspects: design of the omnidirectional vision sensors,
world modelling for navigation and visual interfaces for human-robot interaction. In the
methodology, omnidirectional imaging allows building powerful environmental representa-
tions useful both for acting as world maps for navigation and for developing visual inter-
faces for the user. The combined design of the sensor, navigation tasks and human-robot
interface contributes for obtaining an effective navigation system.

In the following sections we introduce more precisely the main aspects of our work.
These aspects will be developed in detail in the following chapters of the dissertation.

1.1 Omnidirectional Vision Sensors

Many arthropods and insects with ingenious ocular geometries, despite having very limited
resources, are very efficient in navigation. The diversity of ocular geometries therefore
suggest that in biology the vision sensors evolve also as part of the process of solving the
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navigation tasks at hand.
We find therefore important and challenging the question of which would be the vi-

sion sensor mostly adequate for robot navigation. Similarly to many ocular geometries
found in biology, in this thesis we explore the advantages of wide fields of view by using
omnidirectional cameras.

Omnidirectional cameras provide a 360◦ view of the robot’s environment, in a single
image, and have been applied to autonomous navigation, video conferencing and surveil-
lance [117, 21, 68, 58, 85, 77], among others. Omnidirectional cameras have several ad-
vantages over conventional cameras. For example, visual landmarks are easier to find
with omnidirectional images, since they remain in the field of view much longer than with
a conventional camera. There is also improved robustness to occlusion due to a differ-
ent scaling in the view-field of an omnidirectional camera: a person at a distance of 2m
occludes about 50% of a traditional camera equipped with a 12mm focal length lens as
compared to 5% of an omnidirectional camera.

Advantages can be found also in egomotion estimation [79]. As Nelson and Aloimonos
pointed out in [79], egomotion estimation algorithms are simpler when using omnidi-
rectional images, since the rotation and orientation components of a movement can be
decoupled. Madsen and Andersen show that the accuracy of self-localisation is largely in-
fluenced by the locations of the landmarks relative to the robot [71]. Only omnidirectional
vision allows selection of landmarks all around the robot.

In order to use omnidirectional cameras first it is necessary to study their geometry and
design. Omnidirectional cameras can be built using fish-eye lenses or by rotating cameras,
but most frequently are obtained with catadioptric panoramic cameras [78], which combine
conventional cameras (lenses) and convex mirrors. Mirror shapes can be conic, spherical,
parabolic or hyperbolic [2, 99, 109]. The various mirror shapes imply diverse imaging
geometries. As Geyer and Daniilidis show in [38], hyperbolic and parabolic mirrors can
be dealt with through a unified model. The other cases, still require specific models to be
developed for each application.

Given the imaging geometry, computer vision methods can be transported to omni-
directional sensors most of the time without requiring transformations. In this vein we
can find works in stereo [81, 11], or approaches with optical flow for structure from mo-
tion [40, 116]. An example where the change is significant is the epipolar constraint. For
omnidirectional cameras based on hyperbolic mirrors, the epipoles (in this case two) are
both in the image, and Svoboda et al in [99] show that the epipolar constraint is a conic
function.

Svoboda also shows that the camera motion can be estimated using a method based on
the factorisation of the essential matrix, introduced by Longuet and Higgins [69], adapted
for omnidirectional cameras [100]. This process is however non-linear and, despite less
sensitive than with conventional cameras motion estimation methods, it lacks adequate
robustness.
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We follow an alternative approach, based on image dewarpings. We dewarp omni-
directional images to obtain (orthographic) Bird’s eye views of the ground plane, where
perspective effects have been removed. This is useful as tracking ground plane features is
transformed to the linear problem of estimating a 2D rigid transformation. Localisation
is simply the inverse of these 2D transformations.

We dewarp also omnidirectional images to obtain Panoramic views, where the imaging
of vertical lines of the scene is transformed from radial to vertical lines. Tracking the
vertical lines consists therefore in estimating translations. These lines in conjunction with
ground lines, define ground features which are used to further improve the localisation
accuracy.

In order to obtain the dewarpings, we detail the image formation model for omnidi-
rectional cameras with spherical and hyperbolic mirrors. Although our sensors do not
have a single projection center (for a complete list of camera-mirror pairs and respective
mounting distances see Baker and Nayar [2]) we found that this is not a severe limitation
to our approach. The accurate modelling of the imaging geometry allows to derive the
desired dewarpings.

The image dewarpings can also be obtained in a more efficient manner by directly
using specialised mirror shapes. Chahl and Srinivasan [12] propose a family of constant
gain mirrors that result in better mappings from vertical distances to the image plane.
Hicks and Bajcsy show how to obtain a mirror profile from the numerical solution of a
differential equation, which provides a bird’s eye view of the ground plane [48]. This is
an example of a constant resolution camera in the sense that there is a linear relation of
metric distances from the ground plane to the image pixels. Other linear relations are
useful, such as constant vertical or angular resolution. In our work we derive a general
methodology for the design of these cameras.

Our methodology considers in addition the use of variable resolution cameras, more
precisely log-polar cameras [64]. These cameras concentrate the finest detail in the centre
of the sensor as inspired by the fovea of the human eye. The polar arrangement of the sen-
sor when combined with a curved mirror, permits to obtain direct panoramic dewarpings,
once more saving computational resources.

Concluding, it is important to note that Panoramic and Bird’s Eye Views provide not
only simple sensor models for navigation, but also simple environmental representations.
For example they are means for humans to specify goals for the robot to reach and to
assess (display) the progression of navigation tasks.

In summary, omnidirectional cameras have interesting advantages over conventional
cameras for navigation applications. The projection model of an omnidirectional cam-
era depends on the mirror type, but many of them are represented by a unified model.
Cameras with a single projection centre have simplified models. In our applications we
use Panoramic and Bird’s Eye Views as environmental representations. Those images are
obtained from the original omnidirectional image through dewarpings or custom mirror
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shapes / camera types. In the following sections we detail the use of the sensor and
environmental representations for navigation.

1.2 Navigation

Traditionally, localisation has been identified as a principal component of the navigation
system of a mobile robot [65]. This drove continuous research and development of sensors
providing direct localisation measurements.

There is a large variety of self-localisation solutions available [6] in the literature. How-
ever they are in general characterised by a hard and limiting tradeoff between robustness
and cost. As paradigmatic and extreme examples we can refer solutions based on artificial
landmarks (beacons) and those based on odometry. Solutions based on beacons are robust
but expensive in terms of the materials, installation, maintenance or configuration to fit
a specific new purpose. The solutions based on odometry are inexpensive, but since they
rely on the integration of the robot’s internal measurements, i.e. not grounded to the
world, errors accumulate over time.

As referred, we use vision as it provides world structure information. In particular,
omnidirectional vision has been noted to be beneficial for the navigation of mobile robots,
making sense to explore it as part of the solution of the navigation problem. In addition,
the studies of animal navigation indicating a very parsimonious use of resources, suggest
considering navigation modalities for the tasks at hand.

Our robot combines two main navigation modalities: Visual Path Following and Topo-
logical Navigation. In Visual Path Following, the short-distance / high-accuracy naviga-
tion modality, the orthographic view of the ground plane is a convenient world model as
it makes simple representing / tracking ground plane features and computing the pose of
the robot. Panoramic views, i.e. images as obtained from cylindrical sensors, are a com-
plementary representation that is useful for vertical line features. These types of views
are easily obtained from omnidirectional cameras using image dewarpings.

In Topological Navigation, the large-distance low-precision navigation modality, om-
nidirectional images are used in its raw format to characterise the environment by its
appearance. Omnidirectional images are advantageous as they are more robust to occlu-
sions created e.g. by humans. Visual servoing is included in topological navigation as the
means providing the robot local control, thus saving environment representation detail
and computational (memory) resources.

In the following sections, the navigation modalities, Visual Path Following and Topo-
logical Navigation, are introduced in more detail.

1.2.1 Visual Path Following

Visual Path Following can be described in a simple manner as a trajectory following
problem, without having the trajectory explicitly represented in the scene. The trajectory
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is only a data structure learnt from example / experience or specified through a visual
interface. Progression is assessed based on the tracking of visual features (landmarks)
within the environment. Visual Path Following is typically used for precision tasks such
as docking or door traversal, for example.

As referred, this problem encompasses two main parts: determining self-localisation
and computing the control signals for moving the robot. Given that the control can be
computed using e.g. the controller proposed by de Wit et al [18], we concentrate on the
localisation problem.

Deriving a robot location from a set of image features is a general camera exterior
orientation / pose estimation problem [101]. Given the back-projection model [45] of an
omnidirectional sensor allows to use the factorisation method of Longuet and Higgins [69]
for determining the pose, as detailed by Svoboda in [100]. Geyer and Daniilidis [39] go
further by using an unified projection model for the omnidirectional camera, derive an
absolute conic based calibration method and then apply the factorisation method arriving
to an approach that encompasses calibration, structure and motion.

We follow an alternative approach by using scene representations, provided by the
omnidirectional camera, adequate to the navigation task. These representations make
possible to directly extract robot positions. As scene representations we use the Panoramic
and the Bird’s Eye Views, which are adequate for indoor environments where there are
many vertical and horizontal straight lines. The robot pose can be computed from the
bearings to vertical lines and the map of those features, using the Betke and Gurvits’
method [5]. Alternatively the robot pose can be retrieved from the intersection of ground
and vertical lines (corner points) or more generally as the result of a matching merit
maximisation process. These methods are used concurrently and the current location is
chosen by evaluating the image evidence, represented by a matching merit function.

The matching merit function is further useful for a fine pose adjustment. It ameliorates
the pose estimate and reduces also the probability of losing tracking. Finally, the analysis
of the merit function provides a detection mechanism for tracking losses.

The image features, straight lines, despite being tracked and identified using the
RANSAC [28] robust detection procedure, still carry some noise. The estimated robot
localisation is therefore also contaminated with noise that, depending on the particular
scene (landmarks structure) and desired trajectory, can be very significant constantly sat-
urating the control signals. These signals are filtered with an Extended Kalman Filter
(EKF). It is interesting to note that filtering the robot localisation along time is an ef-
ficient computation [114] as compared to work on image features [17], which involves a
larger and variable state size EKF.

The appropriate choice of the sensor and the environmental representations, together
with taking into account the task at hand, results in an efficient methodology that hard-
wires some tasks requiring precise navigation.
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1.2.2 Topological Navigation

When entering one’s hall door, humans need to navigate with more precision than when
walking along a city avenue. This observation of a path distance/accuracy trade-off allows
for a parsimonious use of the available resources for navigation [35, 111].

For local (precise) navigation we use Visual Path Following, as detailed in the preceding
section. For global navigation tasks we need another navigation modality. Precision may
be lesser since the main objective is a global representation of the environment that allows
global (qualitative) self-localisation measurements.

The problem of global representations have been considered in several works. Zheng
and Tsuji [121] represent the environment by its appearance, collecting side by side vertical
image strips taken along a trajectory. The current robot location is found by the maximum
correlation of a local image with the global mosaic. As the global data is large and the
computation time significant at the registration process, Li and Tsuji [66], propose an
alternative more compact (iconic) representation encompassing salient regions of interest
that are used later as landmarks for qualitative localisation.

Basri and Rivlin [4], represent the environment also by its appearance, but using only
lines, more precisely 2D views of 3D lines of the scene. Generic views are defined as linear
combinations of a small number of views. The weights of the linear combination define
the current camera location. The localisation can be very precise, but it is required a
registration of the current image points against the database one.

Murase and Nayar augment the detail at describing the appearance of objects for an
application of object recognition [74]. Appearance is defined as an image based repre-
sentation of an object, which is a function of the combined effects of the object’s shape,
surface reflectance properties, pose and illumination conditions.

Appearance based techniques can be applied straightforwardly to omnidirectional cam-
eras. Hong et al [49], using an omnidirectional camera based on a spherical mirror, assign
to each robot-location a 1D signature consisting of the average of the intensity values for
the various elevations at each azimuthal angle. The environment is therefore represented
by a set of those signatures and the current location found by the correlation of the current
view with the database. The robot is controlled to follow a path by homing to a sequence
of database views.

Yagi et al [117], use an omnidirectional camera based on a conic mirror, also obtain a
1D representation at each robot-location, but now describing the existence at each azimuth
of a vertical edge line. The tracking of bearings to the vertical edge lines combined with
the knowledge of the robot motion allows defining a 2D map of the location of the vertical
lines (landmarks). This map is used later for retrieving the robot location during normal
operation.

More recently, there has been used directly the appearance as defined by Murase and
Nayar. Ishiguro and Tsuji [54] represent the environment by omnidirectional images taken
at a regular 2D grid. The self localisation is computed by comparing the power spectrums
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of current and reference images so as to overcome mismatches due to different robot
headings. Aihara et al [1], take a similar approach by computing autocorrelation values,
but focusing their work on the problem of representing a large working space.

In these cases, the representation of the environment for localisation and control com-
putation requires densely sampling the environment, resulting in large databases that in
some cases need to be partitioned [1].

The approach closest to ours is that of Santos-Victor et al [91], that combines appear-
ance based localisation with visual servoing for navigation the robot. However the imaging
geometry, the data representation and matching procedure are different. Our solution for
determining the global (qualitative) position of the robot is therefore appearance-based
combined with visual servoing [35, 113]. Visual servoing allows to derive control signals
for the robot without having to densely sample the environment for obtaining reference
images.

Appearance, as defined by Murase and Nayar, implies extremely large amounts of data
(images). The data is however largely redundant either, and thus they propose to com-
press it constructing a low-dimensional eigenspace [74], obtained via Principal Component
Analysis (PCA). Appearance is therefore approximated by a manifold on the reduced or-
der eigenspace. Most of the works cited in this section apply this compression technique
[74, 54, 1, 91].

Illumination is of particular importance in appearance based localisation when consid-
ering navigation tasks involving trajectories close to windows at different times of the day.
There may occur large non-uniform illumination changes which often fail image compar-
isons based on conventional L2 norms or normalised correlation methods. We incorporate
this analysis in our work and propose modified environmental representations and image
comparison techniques, for locations known to be affected by the illumination changes.

To conclude, we use topological navigation for global tasks, such as going to a distant
location. The representation used is a topological map of the environment based on the
appearances of the various locations. Advantageously, Visual Path Following complements
Topological Navigation, providing the robot with the ability to undertake tasks requiring
different levels of knowledge of the world.

In the following section we introduce visual interfaces to help the user set high-level
tasks for the robot to accomplish. These are supported by the navigation modalities just
presented that do not require the user to accurately control the robot along a path.

1.3 Visual Interfaces

Introducing robots in the human society implies designing the (social) interactions with
humans. This encompasses robots communicating to humans their sense of the scene and
accepting tasks to accomplish.

Our objective is to design a user interface that is intuitive, easy to use and allows the
operator to achieve tasks with maximum efficiency. We place a large emphasis on simplicity
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with the result that our interface is completely vision-based. The interaction with the robot
is based on the navigation modalities introduced in the preceding sections, so as to give
to the user only high level decisions, such as target locations, with the advantage of being
feasible even over low bandwidth communication channels. At the simplest level, there
are three modes at which the operator can control the robot: heading, position and pose.

The modes for controlling the robot’s heading or (x, y) location are naturally based on
respectively panoramic or bird’s eye views. An immediate benefit of using these views is
that every heading direction or target location, in a region surrounding the robot, can be
specified with a single command. This gives the operator a great deal of flexibility when
deciding in what direction, or towards which location, the robot should travel while simul-
taneously allowing a speedy decision to be made. When the target locations are within the
region covered by the topological map, the robot uses the Topological Navigation tasks
already available to move to the target point. Otherwise, the operator adds a new Visual
Path Following task by specifying landmarks and trajectories in the bird’s eye views. The
target location is then reached following the path relying on the self-localisation relative
to the landmarks. Thus, there is a natural correspondence between the design of the user
interface and the action required from the robot.

The final mode the operator can use to control the robot consists of a 3D model of
the world. The operator has the option of viewing the remote scene by taking a virtual
walk through it and the robot will attempt to follow the specified trajectory. To increase
the usability of the robot, it must be simple to integrate new working areas (e.g. rooms),
and therefore to build new 3D models for interaction. To build the 3D models we propose
Interactive Scene Reconstruction, where the 3D models are built combining the data of
one or more scene images with some limited user provided input.

Interactive scene reconstruction has recently drawn lots of attention. Debevec et al
in [19], propose an interactive scene reconstruction approach for modelling and rendering
architectural scenes. It is an hybrid approach combining geometry-based and image-based
methods traditionally found in the computer-graphics and computer-vision communities.
They derive a geometric model combining edge lines observed on the images with geo-
metrical properties known a priori. This approach is advantageous relative to building a
CAD model from scratch, as some information comes directly from the images. In ad-
dition, it is simpler than a conventional structure from motion problem because, instead
of reconstructing points, it deals with reconstructing scene parameters, which is a much
lower dimension and better conditioned problem. The single image case is not considered,
as feature correspondences still play an important role.

Criminisi et al in [15] show how to take measurements from a single view obtained by
an uncalibrated camera. The measurements are obtained up to a scale factor that may
be found from a known length of an object present in the scene. The method is based
on choosing a reference-plane and a reference-direction not parallel to the plane, from
which projection equations can be written and the desired measurements extracted. The
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calibration of the camera is extracted also from scene geometrical properties (vanishing
points) [10]. The measurements are taken on the reference plane or on the reference
direction. Hence, the geometry constraints are again found to be useful for reconstruction.

In [96] Sturm uses an omnidirectional camera based on a parabolic mirror and a tele-
centric lens for reconstructing the 3D scene. The user specifies relevant points and planes
grouping those points. The directions of the planes are computed e.g. from vanish-
ing points, and the image points are back-projected to obtain parametric representations
where the points move on the 3D projection rays. The points and the planes, i.e. their
distances to the viewer, are simultaneously reconstructed by minimizing a cost functional
based on the distances from the points to the planes. This work shows that, as in many
cases, algorithms designed for conventional cameras can be transported in a straightfor-
ward manner to the omnidirectional cameras.

We build 3D models using omnidirectional images and some limited user input, as in
Sturm’s work. However our approach is based on a different reconstruction method and the
omnidirectional camera is a generalised single projection centre camera modelled by the
Unified Projection Model [38]. The reconstruction method is that proposed by Grossmann
for conventional cameras [42], applied to single projection centre omnidirectional cameras
for which a back-projection model was obtained.

The back-projection transforms the omnidirectional camera to a (very wide field of
view) pin-hole camera. The user input is of geometrical nature, namely alignment and
coplanarity properties of points and lines. After back-projection, the data is arranged
according to the geometrical constraints, resulting in a linear problem whose solution can
be found in a single step.

3D models are perhaps the most intuitive representations of the world scenes as they
allow the operator to specify commands in a “walk-through” manner. The operator,
unlike when using the panoramic mode, has an intuitive idea of distances the robot may
be required to travel. Naturally, the operator is not only constrained to viewing the scene
from a “natural viewpoint” but can manipulate the model to view the scene from any 3D
world point. A unique feature of this interface is that the user can tell the robot to arrive
to a given destination at a certain orientation simply by rotating the 3D model.

1.4 Structure of the Dissertation

This thesis addresses the problem of Mobile Robot Navigation based on Omnidirectional
Vision. By exploring the combined design of (i) the sensor, (ii) the navigation modalities
and (iii) the human-robot interfaces, an effective navigation system is obtained.

For clarity of exposition the three main aspects are described in different chapters,
despite the fact that naturally each topic is closely related to the others. The navigation
modalities are further subdivided into two chapters, where the first one details a local and
precise navigation modality and then the following chapter proposes a global qualitative
modality that, at specific locations, instantiates the local navigation.
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In Chapter 2, we present the geometric (projection) models and the design criteria
for omnidirectional cameras. The Panoramic and Bird’s Eye Views, dewarpings of the
omnidirectional images, are introduced as environmental representations yielding priors
(hypotheses) that are useful for the navigation tasks. Also presented is a unified design
for constant resolution cameras. These cameras provide the dewarped images directly.

In Chapter 3 we propose Visual Path Following for local and precise navigation. It is
performed based on landmarks composed by ground and vertical lines, which are typical in
indoor scenarios, such as corridor guidelines and door or window frames. Self-localisation
is identified as a main component and therefore we present a number of methods for
computing the robot’s pose. Visual path following is tested in docking and door crossing
experiments.

Chapter 4, vision-based navigation with an omnidirectional camera, addresses navi-
gation tasks covering large areas. Topological Navigation is used for traversing long paths.
To represent the global environment we use appearance based methods. For the regions
where large non-uniform illumination changes may occur, there are proposed representa-
tions based on image-edges, instead of intensities. At locations requiring precise navigation
it is used Visual Path Following. The resulting navigation system is tested in an extended
experiment consisting of travelling in a room from the docking position to the door, cross-
ing the door to the corridor, travelling along the corridor and coming back to the starting
room and docking position.

Chapter 5 describes interactive scene modelling. The scene is represented by a 3D
model, which is reconstructed from single or multiple omnidirectional images and some
geometrical properties provided by the user. The model is applied in an human-robot
visual interface.

Finally, in Chapter 6 we draw some conclusions and establish further directions of
research.

1.5 Original Contributions

In this thesis we address the problem of mobile robot navigation in several aspects. We
have contributions in the design of the complete system and its individual components,
namely sensor design, navigation control, perception algorithm and user interaction:

• We propose a novel uniform formalism for designing constant resolution (omnidi-
rectional) cameras [32]. This is a result of designing a number of omnidirectional
vision setups in which we have identified the convenience of constant resolution for
navigation applications.

• We propose Visual Path Following for local and precise navigation. It is a simple
method due to the combined sensor-navigation design [34].
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• We describe methods based on image-edges for improving robustness of Topological
Navigation to large, non-linear illumination changes [111].

• We describe a method for interactive reconstruction based on omnidirectional im-
ages. It combines a method designed for conventional cameras with the unified
back-projection model that we propose for single projection centre omnidirectional
cameras [33].

Our approach to navigation resemble biological examples. For instance, the way hu-
mans perform their travellings, suggest a tradeoff between path distance / accuracy in
the navigation modalities. We use Topological Navigation for travelling long distances,
requiring qualitative positioning of the robot, while Visual Path Following is used for local
and precise navigation tasks. By clearly separating the nature of the navigation tasks a
simple and yet powerful navigation system is obtained [35].
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Chapter 2

Omnidirectional Vision Sensors

The design of omnidirectional vision sensors is a central and fun-
damental part of our work. Of particular importance are the design
criteria, namely the required field of view and the spatial arrangement
of the output images. We detail the geometric aspects concerning image
formation in order to implement methodologically the design criteria.
The Panoramic and the Bird’s Eye Views are fixed transformations
applied upon the omnidirectional image, as opposed to the geometric
models reconstructed from image and user provided data (which we
shall detail in a latter chapter). These fixed transformations yield some
priors very helpful for the task at hand. For example the assumption of
working in a ground plane is reasonably general while providing direct
cues for mobile robot navigation.

2.1 Introduction

Omnidirectional cameras have fields of view comprehending all directions around the view-
point. This is an enhancement relative to perspective cameras and bring great promises
for developing, simplifying or improving several applications in Computer Vision.

In the recent past some traditional problems like scene representation, surveillance
or mobile robot navigation, were found to be conveniently approached using different
sensors. There has been undertaken significant effort in research and development of
omnidirectional vision systems [38, 77, 2, 119, 99, 12, 47, 14, 35, 20]. However, significant
research and development continues to be done.

There are many types of omnidirectional cameras, being mostly common the ones
based on rotating cameras, fish-eye lenses or mirrors. The work described in this disser-
tation is mainly concerned with the omnidirectional vision systems combining cameras
with mirrors, normally referred as catadioptric systems in the optics domain, specifically
in what concerns the mirror profile design.

Omnidirectional cameras are sometimes termed panoramic as it is normally the case
that the view field is limited in the vertical direction being complete just horizontally. We
will however use the term omnidirectional as it is the most common in the literature.

15
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In the following we present a brief history of omnidirectional vision sensors and review
the state of the art.

The history

As pointed out by Christopher Geyer in [38], the history on catadioptric systems may be
traced back to the ancient Greece, with the work by Diocles on Burning Mirrors [105].
This work shows that a parabolic mirror converges parallel rays to a single point. It is
interesting to note that the geometrical analysis there performed is applicable to recent
catadioptric systems.

However, there were the inventions and breakthroughs on the automatic acquisition
of images such as in photography, films or video, together with the advent of computers
and generic image processing tools, that really motivated the most recent research and
development.

Omnidirectional images were firstly obtained from rotating cameras. After the research
by Bill McBride and Steven Morton [73], it turned out that those cameras appeared more
than 150 years ago. The first referenced patent dates back to 1843. It was issued by Joseph
Puchberger of Retz, Austria, and consisted on a rotating lens that formed an image over
a film placed on a cylindrical surface. The horizontal field of view was limited to about
150o but that was a start since a few years later, more precisely in 1857, M. Garella of
England introduced a new rotating photographic mechanism and was already obtaining
the 360o field of view.

Rotating one camera, implies a delay on the acquisition of the image. Therefore, appli-
cations requiring instantaneous acquisition of omnidirectional images cannot be realised
with moving cameras. The original idea of the (static camera) omnidirectional vision sen-
sor has been initially proposed by Rees in 1970, in the US patent [86]. Rees proposed to
use a hyperbolic mirror to capture the omnidirectional image which can be transformed
to normal perspective images.

In 1987, Oh and Hall published experiments on robot navigation based on an omni-
directional sensor based on a fisheye lens [82]. In 1990 Yagi and Kawato [115] made an
omnidirectional vision sensor using a conic mirror. In 1991 and 1993, Hong and others
[49] and Yamazawa and others [118] published their designs based respectively on spherical
and hyperbolic mirrors. In all these cases the application was robot’s navigation.

Some mirrors when appropriately combined with cameras yield simple projection mod-
els. In order to obtain the systems conforming to simple models it is necessary in general
to do a precise placement of the mirror relative to the camera. Nayar and Baker [76], in
1997, developed and patented a system combining a parabolic mirror and a telecentric lens,
that is well described by a simple model and simultaneously overcomes the requirement of
precise assembly. Further their system is superior in the acquisition of non-blurred images.
It is interesting to note that this successfully designed system has a geometry similar to
the ancient greek one, referenced in the beginning of this section, just following the light
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rays in the opposite direction.
Many other systems have been and continue to be designed, as new applications,

technological opportunities or research results appear. We overview the state of the art in
the following section.

State of the art

Nowadays, there are many commercial omnidirectional vision sensors, mainly for the real
estate markets. These systems offer well designed solutions, but still lack the flexibility
required in many applications. For example when considering omnidirectional vision for
robots, it is important to have fast data acquisition and to select the appropriate field of
view. Small robots require larger fields of view as the relevant information is at a different
scale relative to their sizes. Therefore, when concerning mobile robots, omnidirectional vi-
sion sensors are still manufactured according to custom designs, e.g. Chahl and Srinivasan
in [11], Yagi et al in [117], etc.

Some designs aim at proving linear projection properties between world and image
points. There are several recent reports on the construction of these cameras, for example:
Chahl and Srinivasan [12], Conroy and Moore [14], Hicks and Bajcsy [48], Ollis et al [83],
Gaechter and Padjla [30], Gaspar et al [32], etc.

Along with the sensor development, modelling evolves also for efficient representations,
trading between model detail and convenience for mathematical derivations. Projection
equations considering a single projection centre, as the ones of Baker and Nayar [2] and
Geyer and Daniilidis [38], are mostly convenient.

Besides custom designs generally driven by the applications, there are research topics
motivated by technical opportunities. Hardware optimisation evolves currently to achieve
faster data acquisition, system size minimization while looking for resolution maximiza-
tion. For example, the folded cameras as provided by Nayar et al [75], i.e. cameras where
the light rays are reflected by a number of mirrors before reaching the imaging sensor, are
currently targeting the market of small omnidirectional cameras.

Currently the knowledge on computer vision is still being migrated and incorporated
into the omnidirectional vision research area. Given the base geometry, computer vision
methods may be transported to omnidirectional sensors, most of the time without requiring
transformations. In this direction there has been work in stereo reconstruction [81, 11],
optical flow for structure from motion [40, 116]. An example where changes are significant
are the epipolar constraints. Svoboda et al in [99] show for an omnidirectional camera
with an hyperbolic mirror that the epipolar constraint is a conic function and that the
two epipoles are usually visible in the omnidirectional image. Geyer and Daniilidis, [38],
show that the epipolar constraint is a circle for cameras based on a parabolic mirror and
a telecentric lens.
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Chapter Organisation

In this chapter we detail the geometry of catadioptric omnidirectional cameras. In par-
ticular we describe a projection model for Single Projection Centre systems, the Unified
Projection Model proposed by Geyer and Daniilidis [38], and present a projection model
for non-single projection centre systems.

We describe the image formation model for a catadioptric omnidirectional camera
with a general mirror profile and detail two cases of importance: the spherical and the
hyperbolic mirrors.

We describe a method of image dewarping to obtain bird’s eye views of the ground
plane. This representation allows algorithmic simplifications because perspective effects
of the ground floor are eliminated. For example, position information for ground points
is available without reconstruction [25] or uncalibrated reconstruction [43], and ground
features move rigidly in these images, thus being easier to track.

Finally, we introduce the so called Constant Resolution Cameras which are cameras
combined with customised mirrors to yield linear properties in the projection model.

2.2 Catadioptric Omnidirectional Cameras

Catadioptric Omnidirectional Cameras combine conventional cameras and mirrors primar-
ily to obtain specific fields of view. Omnidirectional sensing is possible with convex mirrors
such as conic mirrors, spherical mirrors or hyperbolic mirrors [2, 99, 109]. An omnidirec-
tional sensor allows one to track a single feature from varying viewpoints, when it would
otherwise be out of the field of view of a fixed classical camera. Another advantage, over
a standard pan and tilt camera, lies in its simplicity: the system has no moving parts and
given that the robot-sensor relative position remains fixed, the orientation of the sensor is
related to that of the robot by a rigid transformation.

The most common way to model a single camera is to use the well known projective
camera model [25, 45]:

m̃ = P̃ M̃ (2.1)

where m̃ is the projection of the world point M̃ , P̃ is the projection matrix which com-
prises the intrinsic parameters and a transformation from world coordinates to camera
coordinates (see Fig.2.1).

With catadioptric cameras there is an additional transformation function due to the
mirror standing between the world scene and the camera:

m̃ = P̃ F
(
M̃

)
(2.2)

where P̃ has the same meaning as described for the projective camera model, and F is
the function introduced by the reflection of the light rays at the mirror. This function
depends on the mirror shape and is in general non-linear. Stated simply it determines the
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Figure 2.1: Pin-hole (left) and catadioptric (right) camera geometry.

point of the mirror where the ray coming from the 3D point M̃ is reflected and directed
towards the camera’s optical center.

In summary, catadioptric omnidirectional cameras are described by the projective cam-
era model complemented by a non linear part given by function F . Figure 2.1 illustrates
one catadioptric omnidirectional camera. Notice that since the system is rotationally
symmetric relatively to the z-axis, 3D geometry x, y, z is simplified to 2D geometry r, z

(r =
√

x2 + y2).
Depending on the particular camera and mirror setup, the light rays incident to the

mirror surface may all intersect at a virtual point. In this case the system is referred as
having a Single Projection Centre. This is a very convenient property that allows simple
projection models such as the Unified Projection Model that we describe in the following
section.

2.2.1 Unified Projection Model

The Unified Projection Model, defined by Geyer and Daniilidis in [38], represents in an
unified manner several single projection centre systems, such as pin-hole cameras and,
most importantly, the recent omnidirectional (catadioptric) cameras based on hyperbolic,
elliptical or parabolic mirrors.

The unified projection model combines a mapping to a sphere followed by a projection
to a plane. The centre of the sphere lies on the optical axis of the projection to the plane.
This allows a reduced representation with two parameters, l and m, representing the
distances from the sphere centre to the projection centre, O and to the plane (see Fig.2.2).
The projection of a point in space (x, y, z) to an image point (u, v) can be written as:[

u

v

]
=

l +m

l · r − z

[
x

y

]
= P(x, y, z; l,m) (2.3)

r =
√

x2 + y2 + z2



20 Chapter 2. Omnidirectional Vision Sensors

l

m

u

P = (x, y, z)

image plane

C = ( )0, 0, 0

O

Figure 2.2: Unified Projection Model.

Each catadioptric camera with a single projection centre can be represented by a set
of values l,m. For example, for pin-hole cameras, we have l = 0 and m = 1, while for
cameras with hyperbolic mirrors, l andm are defined by the mirror parameters eccentricity
and inter-focal length. The camera intrinsic parameters, image centre and focal length,
combine naturally with the model as a two dimensional affine transformation of [u v]T .

The unified projection model does not suit all omnidirectional vision sensors. In par-
ticular the non-single projection centre sensors cannot be exactly represented. However,
in some applications it is possible to find an approximation to the unified case and thus
take again the advantages of a simple and general model. We follow this approach in
reconstruction tasks where it is known that the relevant 3D data is much farther way than
the size of the mirror.

In order to find a good approximation to the unified model, it is convenient to have
a precise modelling because it makes evident not only the quality of the approximation
but also how the approximation quality varies with the parameters and the scene. This is
one reason to introduce and use more precise and robust models. Another reason is the
design of the sensor itself, where it is important to find the physical sizes of the individual
components. This is detailed in the next section.

2.2.2 Model for Non-Single Projection Centre Catadioptric Cameras

As referred in the previous section, non-single projection centre systems cannot be rep-
resented exactly by the unified projection model. One such case is an omnidirectional
camera based on an spherical mirror. The intersections of the projection rays incident to
the mirror surface, define a continuous set of points distributed in a volume[3], unlike the
unified projection model where they all converge to a single point. In the following, we
derive a projection model for non-single projection centre systems.

Reflection Point

The image formation process is determined by the trajectory of rays that start from a 3D
point, reflect on the mirror surface and finally intersect with the image plane. Considering
first order optics [46], the process is simplified to the trajectory of the principal ray.
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When there is a single projection centre it immediately defines the direction of the
principal ray starting at the 3D point. Alternatively, we need to resort to more general
laws still holding in our system. The local reflection law states that are the same the
angles of incidence and reflection of a light ray. This angles are easily obtained if the point
at which the ray is reflected is known. Therefore, the first goal to achieve is to find the
reflection point.

One way to find the reflection point is through a numerical minimization process based
on a intuitive geometric reasoning. The geometric reasoning looks for the error made by
choosing an incorrect mirror reflection point. To detail this method we start, without loss
of generality, reducing the problem to a 2D plane.

Due to the rotational symmetry of the system we only need to consider the design of
the mirror profile. In the following we will use function F (t) to represent this profile along
the radial coordinate t. F ′(t) denotes the local slope of the mirror profile.

Given an arbitrary mirror point (t, F (t)) an incident light ray is defined. The distance
from that ray to the 3D point to project will be zero only when the reflection point is the
correct one1. Then we may find the reflection point by minimizing the just introduced
error distance.
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Figure 2.3: Left: defining the error distance for an approximate reflection point. Right:
Main variables defining the projection equation.

Given the mirror point P1 = [t F (t)]T the reflected light ray has the direction of v = P1

since the camera centre (not to confuse to the world system’s projection centre) is at the
origin. A point on the incident ray may then be defined as P2 = 2vT vtvt where vt is the
vector tangent to the mirror, [1 F ′(t)]T normalised to have unit norm. The error distance
is then the distance from the 3D point [r z]T to the incident light ray defined by P1 and
P2 (see Fig.2.3):

e(t) = dist
(
[r z]T , l (P1(t), P2(t))

)
(2.4)

Finally the radial coordinate of point of reflection is obtained minimizing the error,
1We are assuming that the 3D point to project does not lye inside the cone defined by the mirror volume

and the camera centre.
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t̂ = argtmin e(t), and the vertical coordinate as F (t̂).
In case of being critical the computation time or desiring to do mathematical deriva-

tions on the computation of the reflection point, it is necessary to have a direct solution.
The goal now is to obtain a system of equations whose solution directly gives the reflection
point and consequently the trajectory of the light ray.

The geometry of the image formation of the omnidirectional catadioptric camera is
shown in Figure (2.3).

Based on first order optics [46], and in particular on the reflection law, the following
equation is obtained:

φ = θ + 2.atan(F ′) (2.5)

where θ is the camera’s vertical view angle, φ is the system’s vertical view angle, F denotes
the mirror shape (it is a function of the radial coordinate, t) and F ′ represents the slope
of the mirror shape, as before.

Equation (2.5) is valid both for single [38, 77, 2, 119, 99], and non-single projection
centre systems [12, 47, 14, 35, 20]. When the mirror shape is known, it provides the pro-
jection function. For example, consider the single projection centre system combining a
parabolic mirror, F (t) = t2/2h with an orthographic camera [77], one obtains the projec-
tion equation, φ = 2atan(t/h) relating the (angle to the) 3D point, φ and an image point,
t.

In order to make the relation between world and image points explicit it is only nec-
essary to replace the angular variables by cartesian coordinates. We do this assuming the
pin-hole camera model and calculating the slope of the light ray starting at a generic 3D
point (r, z) and hitting the mirror:

θ = atan

(
t

F

)
, φ = atan

(
− r − t

z − F

)
.

Then, expanding the trigonometric functions, one obtains an equation on the variables
t, r, z encompassing the mirror shape, F and slope, F ′:

t
F + 2

F ′
1−F ′2

1− 2 tF ′
F(1−F ′2)

= − r − t

z − F
(2.6)

This is Hicks and Bajcsy’s differential equation relating 3D points, (r, z) to the reflection
points, (t, F (t)) which directly imply the image points, (t/F, 1) [47]. We assume without
loss of generality that the focal length, f is 1, since it is easy to account for a different
(desired) value at a later stage.

Projection of a 3D Point

Given the method to calculate the reflection point at the mirror surface, it is now simple to
derive the projection equations of a 3D point. It is only necessary to extend the simplified
plane geometry to the 3D case and to include the camera’s intrinsic parameters.
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Let P = [x y z]T denote the coordinates of a general 3D point. We want to find
the image projection, p = [u v]T , of P using a catadioptric omnidirectional camera. The
coordinates of P can be expressed in cylindrical coordinates as

P = [ϕ r z]T =
[
arctan (y/x)

√
x2 + y2 z

]T
(2.7)

Knowing the mirror profile, F and slope, F ′ the reflection point Pm = [ϕ t F (t)]T on
the mirror surface is the solution of Eq.(2.6) for the given 3D point (r, z).

All that remains to be done is to project the 3D point Pm onto the image plane
p = (u, v). Using the perspective projection model and taking into account the camera
intrinsic parameters, we get:

[
u∗

v∗

]
= f

t

F



cosϕ

sinϕ


 and

[
u

v

]
=

[
αu 0 u0

0 αv v0

] 


u∗

v∗

1


 . (2.8)

where αu, αv, u0, v0 denote the vertical and horizontal image scale factors and position of
the principal point on the image coordinate system.

Maximum vertical view angle

Property 1 Consider a catadioptric camera with a pin-hole at (0, 0) and a mirror profile
F (t), which is a strictly positive C1 function, with domain [0, tM ] that has a monotonically
increasing derivative. If the slope of the light ray from the mirror to the camera, t/F is
monotonically increasing then the maximum vertical view angle is obtained at the mirror
rim, t = tM .

Proof: from Eq.(2.5) we see that the maximum of the vertical view angle, φ is obtained
when t/F and F ′ are maximums. Since both of these values are monotonically increasing,
then the maximum of φ is obtained at the maximal t, i.e. t = tM .

�
Notice that if the slope of the light ray from the mirror to the camera, t/F is not

monotonically increasing then there is a mirror region occluding at least one other mirror
region. When t/F changes from increasing to decreasing it is possible to define a line
tangent to the mirror passing through the camera pin-hole. Larger t values motivate inner
mirror points relative to the tangent line, and are therefore occluded by points on t values
happening before the tangent. Thus, the tangent line ultimately defines the maximum
vertical view angle.

In practice, the mirror profile is truncated much earlier than the bound indicated by the
tangent line. The reason is that the reflections close to the bound are almost tangencial and
the projection geometry becomes too sensitive to the uncertainties inevitably introduced
by the assembly of the system or the manufacturing of its components.

Since the mirror has a limited size, in some cases it does not fill the complete field of
view provided by the lens, leading to an image region showing 3D structure not reflected
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by the mirror. For omnidirectional cameras placed upwards with the mirror over the pin-
hole camera, this can cause direct ceiling light exposition. In this case, it is typical to
include a pale occluding the view area around the mirror.

Scaling Property

Let us define the scaling of the mirror profile (and distance to camera) F (t) by (t2, F2)
.=

α.(t, F ), where t denotes the mirror radial coordinate. More precisely we are defining a
new mirror shape F2 function of a new mirror radius coordinate t2 as:

t2
.= αt ∧ F2(t2)

.= αF (t). (2.9)

This scaling preserves the geometrical property that we state in the following.

Property 2 Given a catadioptric camera with a pin-hole at (0, 0) and a mirror profile
F (t), which is a C1 function, the vertical view angle is invariant to the system scaling
defined by eq.(2.9).

Proof: we want to show that are equal the vertical view angles at corresponding image
points,

φ2(t2/F2) = φ(t/F )

which, from Eq.(2.5), is the same as comparing the corresponding derivatives:

F ′
2(t2) = F ′(t)

and is demonstrated using the definition of the derivative:

F ′
2(t2) = lim

τ2→t2

F2 (τ2)− F2 (t2)
τ2 − t2

= lim
τ→t

F2 (ατ)− F2 (αt)
ατ − αt

= lim
τ→t

αF (τ)− αF (t)
ατ − αt

= F ′(t)

�
Stated simply, the scaling of the system geometry does not change the local slope at

mirror points defined by fixed image points. In particular, the mirror slope at the mirror
rim does not change and therefore the vertical view angle of the system does not change.

Notice that despite the vertical view angle remaining constant the observed 3D region
actually changes but usually in a negligible manner. As an example, if the system sees an
object 1 metre tall and the mirror rim is raised 5 cm due to a scaling, then only those 5
cm become visible on top of the object.

Now we have all the tools to introduce and detail the steps of catadioptric camera
design based on spherical or hyperbolic mirrors. These steps comprise defining the de-
sign specifications and respective methods for computing mirror parameters. The scaling
property simplifies significantly the design process.
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Figure 2.4: Catadioptric Omnidirectional Camera (spherical mirror) projection geometry.
Symmetry about the z-axis simplifies the geometry to 2D (r,z).

2.2.3 Omnidirectional camera based on a spherical mirror

In this section we describe the model for image formation with a spherical mirror, using
the general projection model for catadioptric cameras introduced in the previous section.
Catadioptric vision sensors based on a spherical mirror are modelled essentially by the
equation of reflection at the mirror surface, Eq.(2.5), stating that are equal the incidence
and reflected angles of the ray of light.

The mirror profile is simply represented by a semi-circle equation:

F (t) = L−
√

R2 − t2 (2.10)

where R is the radius of the spherical mirror and L is the camera to sphere centre distance
(see figure 2.4).

The geometry of image formation is obtained by relating the coordinates of a 3D point,
P to the coordinates of its projection on the mirror surface, Pm and finally to its image
projection p, as shown in Figure 2.4. This is done by the projection equations deduced in
the previous section for a general mirror profile.

Replacing F in Eq.(2.6) by the semi-circle expression, we obtain an equation on the
mirror radial coordinate, t. The parameters of the equation are the 3D point (r, z) and
the system constants R,L, respectively the mirror radius and the camera to mirror centre
distance. The solution of the equation gives the radial coordinate of the reflection point
on the mirror surface. We represent this solution by the operator P0:

t = P0(r, z;R,L)

The vertical coordinate of the mirror point comes then as F (t). Equations 2.7 and 2.8
complete the projection model, preforming the transformation into cylindrical coordinates



26 Chapter 2. Omnidirectional Vision Sensors

and accounting for the intrinsic parameters. Therefore we obtain a projection operator,
P that given the 3D coordinates of a point P = [X Y Z]T allows us to obtain its image
projection p = [u v]T :

p = P(P, ϑ) (2.11)

where ϑ contains all the intrinsic and extrinsic parameters of the catadioptric omnidirec-
tional vision sensor:

ϑ = [L R αu αv uo vo]T .

Designing the system

The design of an omnidirectional camera system is achieved by exploiting the degrees of
freedom of the model parameters. In the particular case of the camera based on a spherical
mirror there are three main degrees of freedom, namely the mirror radius R, the camera
to mirror distance L and the focal length of the camera lens f (αu and αv in the model).

Depending on the application at hand, there are different design goals. Controlling
camera resolution towards a certain target is an example. In our case we are mainly
interested in specifying the vertical view field of the camera. In particular we want to
specify vertical view field going above the horizon line a number of degrees.

We start by fixing the focal length of the camera, which directly determines the view
field θ. Then the maximum vertical view field of the system, φ, is imposed with the
reflection law Eq.(2.5). This gives the slope of the mirror profile at the mirror rim, F ′ or
the necessary sector of the spherical surface, γ:

γ = atanF ′ = φ− θ.

Assuming that the mirror radius is unitary, the distance from the camera to the mirror
centre is then:

L = cosγ + sinγ/tanθ

which shows the distance between the camera and the mirror surface, D = L − 1. Since
there are minimal focusing distances, Dmin which depend on the particular lens, we have
to guarantee that D ≥ Dmin. We do this applying the scaling property

(R,L)← k.(1, L)

with k = Dmin/D. If the mirror is still too small to be manufactured then an additional
scaling up may be applied. The camera self-occlusion becomes progressively less important
when scaling up.

Figure 2.5 shows an omnidirectional camera based on a spherical mirror, built in house
for the purpose of conducting navigation experiments. The mirror was designed to have
a view field of 10o above the horizon line. The lens has f = 8mm (vertical view field of
about ±15o on a 6.4mm×4.8mm CCD). The minimal distance from the lens to the mirror
surface was set to 25cm. The calculations indicate a spherical mirror radius of 8.9cm.
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Figure 2.5: (Top-left) Omnidirectional camera based on a spherical mirror, (top-right)
Camera mounted on a Labmate mobile robot and (bottom) Omnidirectional image.

Model parameters estimation (Calibration)

Due to uncertainties in the manufacturing and assembling of an omnidirectional camera,
the resulting parameters certainly deviate from the desired values. It is therefore important
to estimate the real parameters either for a precise modelling or simply to control the
quality of the manufacturing process.

In the previous section we introduced the projection operator P that, given the 3D
coordinates of a point, allows us to obtain its image projections. Now our goal is to
estimate its parameters, ϑ, for a real system.

The mirror radius can be measured easily and we assume that it is known, R = 8.35 cm.
We further assume that the pixel aspect ratio is known. However, the camera-mirror
distance, L, the overall image scale factor α and the principal point, (u0, v0), can only be
measured up to some measurement error:



L = 27 + δL [cm]
α = α̂+ δα [pix/cm]
u0 = û0 + δu0 [pix]
v0 = v̂0 + δv0 [pix]

(2.12)
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Figure 2.6: Iterations of the calibration procedure, from the initial values (top-left) to the
final result superimposed on the image (bottom).

Hence, we define the adjustment δϑ required to correct the nominal parameter vector
ϑ:

δϑ = [δL δα δu0 δv0]T

To estimate δϑ we use a set of known 3D points, P i, and the corresponding image
projections pi, and minimize the following cost function:

δϑ = argmin
δϑ

∑
i

‖ pi − P(P i, δϑ) ‖2 (2.13)

Figure 2.6 illustrates the calibration procedure. The figure shows the observed and
computed images of known 3D points, for parameter vectors obtained at different iterations
of the minimization process. The final parameter vector gives a good approximation of
the projection model to the real world camera.

At this point we have defined the projection operator for catadioptric omnidirectional
images with spherical mirrors, and described a procedure to estimate the model parame-
ters, starting from initial nominal settings.

2.2.4 Omnidirectional camera based on an hyperbolic mirror

In this section we detail the model for image formation of an omnidirectional camera based
on a hyperbolic mirror. As in the case of the spherical mirror the modelling is based on
the equation of reflection at the mirror surface, Eq.(2.5).

The profile of an hyperbolic mirror has the general form:

F (t) = L+
a

b

√
b2 + t2 (2.14)
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where a, b are the major and minor axis of the hyperboloid and L controls the camera to
the mirror distance. As an example, L = 0 in the omnidirectional camera proposed by
Chahl and Srinivasan’s [12]. Their design yields a constant gain mirror that linearly maps
3D vertical angles into image radial distances.

Chahl and Srinivasan’s design does not have the single projection centre property,
which is obtained placing the camera at one hyperboloid focus, i.e. L =

√
a2 + b2, as

Baker and Nayar show in [2] (see Fig.2.7). This solution was actually proposed in the
70s by Rees and there are commercial systems based on it (e.g. the one provided by the
company Accowle). The contribution of the work by Baker and Nayar is the constructive
search for all single projection centre systems, and the finding that there are only three
setups satisfying that goal.
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Figure 2.7: Catadioptric Omnidirectional Camera (hyperbolic mirror) projection geometry
for the single projection centre case. Symmetry around z-axis simplifies the geometry to
2D (r,z).

We are interested in creating an image formation model able to cope with the general
case of single or non-single projection center as given by Eq.(2.14). As in the case of
the spherical mirror, this is done applying once more the projection equations previously
deduced for a general mirror profile. The reflection point on the mirror surface is found
solving Eq.(2.6) using the hyperbolic mirror profile of function F we just presented. Similar
to the case of the spherical mirror, we represent the solution of the equation with an
operator P0 but now in the parameters of the hyperboloid:

t = P0(r, z; a, b)

As before, to relate 3D and image points in cartesian coordinates, equations 2.7 and 2.8 do
the transformation into cylindrical coordinates and account for the intrinsic parameters.
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This steps are finally combined into a single projection operator P:

p = P(P, ϑ)

where P is a 3D point and ϑ contains the intrinsic and extrinsic parameters of the omni-
directional vision sensor:

ϑ = [a b αu αv uo vo]T .

Notice that the projection equations for the hyperbolic and spherical mirrors are sim-
ilar, except when the hyperbolic mirror configures the single projection centre case. Then
the reflection point on the mirror surface is linearly related to the 3D point and is found
with a simple closed formula.

Design Steps

Let the most marginal point seen by a pin-hole camera with the field of view θ be, without
loss of generality, at (1, F (1)):

F (1) = 1/tanθ

and set at that point the vertical view field using Eq.(2.5):

F ′(1) = tan(φ− θ)/2.

Then replacing F and F ′ by their expressions we obtain the system of equations:

a

b

1√
b2 + 1

=
tan (φ− θ)

2
and

√
a2 + b2 +

a

b

√
b2 + 1 =

1
tan θ

whose solution gives the hyperboloid parameters a, b. Notice that we took the single
projection centre case, L =

√
a2 + b2, but it similarly could have taken other cases such

as the constant gain mirror, L = 0.
Now say that the minimal focusing distance, as given by the lens, is Dmin. Then scale

the system by k = Dmin/F (0) using the scaling property t2 = kt, F2(t2) = kF (t), which
is the same as scaling both the hyperboloid parameters, a, b by k:

(a, b)← (ka, kb).

As in the case of the spherical mirror, additional scaling up may be useful to obtain
other mirror sizes and to decrease the pin-hole camera self-occlusion. The calibration of
the parameters is expressed using also an optimisation method.

We designed an omnidirectional camera based on an hyperbolic mirror, once more for
the navigation application. There are constraints on the system size which must be kept
as small as possible to be carried by a small robot. Due to the small size of the robot it
is convenient to place sensor resolution further away. The hyperbolic mirror is known to
have this advantage as compared to the spherical one.

To chose the system vertical view angle, φ we took into consideration that for a small
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Figure 2.8: Omnidirectional system using a hyperbolic mirror (left), close up of the hy-
perbolic mirror (middle) and omnidirectional image (right).

robot it is desirable to look higher, i.e. to have a large field of view . Since the sensor res-
olution is finite, the larger field of view implies a coarser resolution for the world structure
seen by the system. Also as the view angle raises, and looks higher than the horizon, the
probability of blinding the sensor by direct illumination also increases. So a compromise
was taken and the vertical view angle was chosen to be around +20o above the horizon
line.

The pin-hole camera view angle, θ depends essentially on the chosen lens. In this case
common off-the-shelf lenses were used, f = 8mm and f = 16mm.

The hyperbolic mirror rim radius, r is controlled to minimize the size of the setup. As
stated previously, the metric values of the setup can be scaled to the desired size. Smaller
mirror sizes are interesting because weight is expensive in mobile platforms. On the other
hand smaller mirrors require better manufacturing quality in order to preserve the pro-
jection quality for the various mirror sizes. Also smaller mirrors imply more care when
assembling the camera and mirror since the tolerance to position the camera projection
center over the hyperbolic mirror focus is smaller. Special care must be taken too with
camera (lens) self occlusion: scaling down the mirror size makes self-occlusion more signif-
icant and so there is a compromise between system size and closest viewable ground point.
The chosen value for the mirror rim radius was 25mm. Figure 2.8 shows the designed
camera.

2.2.5 Comments on no single projection centre

Designing a system to have the single projection centre property is convenient as the sensor
will have a simplified model. However, there are only a few cases of mirrors and cameras
conforming to this property.

As previously stated, catadioptric cameras based on a spherical mirror do not have
a single projection centre. The same happens in other cases such as when using conic
mirrors, where the locus of projection centres is a 3D circle, or with hyperbolic mirrors
whenever the pin-hole is not exactly placed at the mirror focus. Therefore, the situation
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of non-single projection centre is quite common in practice.
When a catadioptric system has no single projection centre it is true that in general

radial disparities vary non-linearly with the distance to the image centre and the correction
cannot be automatically done as it depends on the observed scene. However there are other
measurements that may still be taken. For example, when the mirror axis is aligned with
the camera axis, azimuthal angular measurements may be taken.

It happens also that in many applications there is no significant difference between
the single projection centre and the non-single projection centre cases. Usually when the
observed 3D data is much far away than the size of the mirror, good approximations can be
found [33]. Therefore, we may say that designing and building catadioptric omnidirectional
cameras with no single projection centre, e.g. using spherical mirrors, is worthwhile since
they allow for the same measurements to be taken.

Cost could be an important factor. For example, a spherical mirror is certainly less
expensive than an hyperboloid. At the same time, due to the convenience of the single pro-
jection centre property on geometric modelling, it makes sense also to investigate and test
whether the property (approximately) holds for the non-single projection centre systems.

This allows for design flexibility together with simplified modelling. In this way models
based on the single projection centre property may become the most common, in the
same way as the pin-hole model is used for standard cameras even when it is just an
approximation valid for the tasks at hand.

Up to this point we presented geometric models and methods for designing / calibrat-
ing omnidirectional cameras. Now we can use the models for processing omnidirectional
images in order to build representations of the world convenient for navigation tasks or
human-robot interfaces. This is described in the following sections.

2.3 Image Dewarpings for Scene Modelling

Images acquired with an omni-directional camera, e.g. based on a spherical or hyperbolic
mirror, are naturally distorted. For instance, a corridor appears as an image band of
variable width and vertical lines are imaged radially. Knowing the image formation model,
we can correct some distortions to obtain Panoramic images or Bird’s Eye Views.

In a panoramic image, each scan line contains the projections of all visible points at a
constant angle of elevation. Hence, the dewarping consists of mapping concentric circles
to lines [12]. For example, the horizon line is actually transformed to a scan line.

Bird’s eye views are obtained by radial correction around the image center. The bird’s
eye view is a scaled orthographic projection of the ground plane, and significantly simplifies
the navigation system. In these images, straight lines of the ground plane are imaged with
no deformation, and are therefore simpler to track.

Since the image centre is required for both the panoramic and Bird’s Eye View de-
warpings, we start with its estimation process.
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Figure 2.9: Image centre, marked with the sign
⊕
, estimated from the intersection of

radial lines corresponding to 3D vertical lines.

2.3.1 Image centre

To estimate the image centre we select image lines known to be projections of 3D vertical
lines. Those lines are defined by pairs of image points and are known to be radial relative
to the image centre, thus allowing image centre estimation (fig.2.9).

Defining a line by a point, (ul, vl) and a vector (∆ul,∆vl), the image centre, (u0, v0)
is found scaling the vector by the appropriate factor kl:[

u0

v0

]
=

[
ul

vl

]
+ kl

[
∆ul

∆vl

]
. (2.15)

Given two or more lines, allows us to find the image centre. With more than two lines
a least squares solution is found on the vector scaling factors and on the desired image
centre. Figure 2.9 shows an example of finding the image centre.

2.3.2 Panoramic View

In the case where the camera axis is vertical and aligned with the mirror axis2 passing
through the mirror centre, 3D points at same height and at same distance from the cata-
dioptric omnidirectional vision sensor, project to a 2D circle in the image. 3D points at
different heights at same distance, produce different concentric circles. Higher 3D points
project to outer 2D circles and lower 3D points project to inner circles. Outer and inner
circles map respectively to top and bottom lines of the dewarped image.

The image dewarping is defined simply as:

I(u, v) = I0 (R cos(α) + u0, R sin(α) + v0)

where (u0, v0) is the image centre, α is a linear function of u taking values in [0, 2π]
and R is a linear function of v sweeping the radial coordinate to cover all the effective
omnidirectional image area. The number of columns of the resulting panoramic image

2In the case of the spherical mirror there are infinite mirror axis so there is no alignment requirement.
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dependes on the minimum step of α. This step is chosen according to the number of
pixels of the middle circle. Therefore, inner circles are over-sampled and outer circles are
sub-sampled.

Figure 2.10 shows two examples of the remapping described in this section, to obtain
panoramic views.

Figure 2.10: Illustration of the remapping for dewarping catadioptric image to panoramic
view. (Top) original omnidirectional image, (bottom) dewarping result.

In summary:

• Panoramic images obtained with the described dewarping procedure only approxi-
mate perspective images. Usually the vertical sampling varies non-linearly relative
to the 3D structure. Horizontal disparities observed in panoramic images, contrarily
to perspective cameras, are measured on an non-planar surface. This must be taken
in consideration for reconstruction tasks. One advantage of these images, is that
horizontal angles may be measured on panoramic images without knowing the focal
length of the lens.

• It is possible in the single projection centre case to make, for a chosen region of
interest, a second dewarp which exactly recovers a perspective image. If there is no
single projection centre then only approximate perspective images can be obtained.
In practice this is not to restrictive since regions of interest of panoramic images are
already good enough approximations to perspective images for many applications.

• As long as mirror, camera and mobile platform remain fixed to each other, the
panoramic view dewarping is time invariant and can be programmed with a 2D
lookup table.



2.3 Image Dewarpings for Scene Modelling 35

0 50 100 150 200 250

0

50

100

150

�
ground

[pix]

� im
g

[p
ix

]

aa
bb

C

B

A

�img

�ground

Figure 2.11: Image dewarping for bird’s eye view. (Left) corridor guidelines, a as they are
imaged in the omnidirectional image and, b the desired imaging in the bird’s eye view.
(Right) radial look up table. ρimg and ρground are distances measured from the image
centre respectively in the original and dewarped images.

2.3.3 Bird’s Eye View

The images acquired by our omnidirectional sensors are naturally distorted due to the
geometry of the mirror and the perspective camera projection. Different world areas are
mapped with different image resolutions. In general, 3D straight lines are projected as
curves in the image. For instance, the horizon line is projected as an image circle. Only 3D
lines that belong to vertical planes containing camera and mirror axis project as straight
(radial) lines. In this section we present a method to dewarp a catadioptric omnidirectional
image to a (orthographic) bird’s eye view of the ground plane.

The azimuthal coordinate of a 3D point is not changed by the imaging geometry of
an omnidirectional camera. Therefore, the dewarping of an omnidirectional image to a
bird’s eye view is a radial transformation. Figure 2.11-left shows that in order to dewarp
the imaged corridor guidelines, a to the desired straight lines, b each point A needs to be
transformed to B. Hence, we can build a 1D look up table relating a number of points at
different radial distances on the omnidirectional image and the respective real distances.
The 1D look up table is the radial transformation to be performed for all directions on an
omnidirectional image in order to obtain the bird’s eye view.

However, the data for building the look up table is usually too sparse. In order to
obtain a dense look up table we use the projection model of the omnidirectional camera.
Firstly, we rewrite the projection operator, Pρ in order to map radial distances, ρground

measured on the ground plane, to radial distances, ρimg, measured in the image:

ρimg = Pρ(ρground, ϑ) (2.16)

Using this information, we build a look up table that maps densely sampled radial
distances from the ground plane to the image coordinates. Since the inverse function
cannot be expressed analytically, once we have an image point, we search the look up
table to determine the corresponding radial distance on the ground plane (see an example
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Figure 2.12: Image dewarping for bird’s eye view. Left to right: original and dewarped
images.

of a look up table in figure 2.11). The image dewarping to a bird’s eye view is done
efficiently in this way.

Figure 2.12 shows an example of the bird’s eye view dewarping. The corridor guidelines
are curved lines in the original omnidirectional image and become straight lines on the
ground dewarped image, as desired.

As a final remark, notice that our process to obtain the look up table encoding the
Bird’s Eye View, is equivalent to perform calibration. However, for our purposes a good
dewarping is simply the one that makes ground plane straight lines appear straight in the
Bird’s Eye View. This is much less than traditional calibration and therefore is easier to
reach and check for.

2.3.4 Concluding Notes

In this section we presented image dewarpings for obtaining Panoramic and Bird’s Eye
Views from omnidirectional images.

Doing fixed image dewarpings is actually a way to do (or help) Scene Modelling. The
image dewarpings make evident geometrical properties of the scene, such as vertical and
ground plane straight lines, and thus simplify scene modelling to collecting a number of
features.

In the following, we generalise the image dewarpings and detail how to obtain them
directly by designing custom shaped mirrors.

2.4 Constant Resolution Cameras

The image formation model of a catadioptric omnidirectional camera is determined by the
shape of the mirror. In some cases, one can design the shape of the mirror in such a way
that certain world-to-image geometric properties are preserved - which we will refer to as
linear projection properties.

The choice of the properties that should be preserved by the catadioptric imaging



2.4 Constant Resolution Cameras 37

system is naturally related to the specific application at hand: e.g. tracking and visual
navigation. Specific details on the applications using these omnidirectional cameras can
be found in [110, 20, 35]. The desired linear projection properties, can be categorised into
three main types:

• Constant vertical resolution - This design constraint aims to produce images,
where objects at a (pre-specified) fixed distance from the camera’s optical axis will
always be the same size in the image, independent of its vertical coordinates. As
a practical example this viewing geometry would allow for reading signs or text
on the surfaces of objects with minimal distortion. As another example, tracking
is facilitated by reducing the amount of distortion that an image target undergoes
when an object is moving in 3D. Finally, in visual navigation it helps by providing
a larger degree of invariance of image landmarks w.r.t the viewing geometry.

• Constant horizontal resolution - The constant horizontal resolution ensures that
the ground plane is imaged under a scaled Euclidean transformation. As such, it
greatly facilitates the measurement of distances and angles directly from the image
as well as easier tracking of points lying on the pavement thus having a large impact
on robot navigation algorithms.

• Constant angular resolution - Here we wish to ensure uniform angular resolution
simulating a camera with a spherical geometry. This sensor has interesting properties
e.g. for ego-motion estimation [79].

Some of these designs have been presented in the literature, [12, 47, 14, 38] with a
different derivation for each case. In this section, we present a unified approach that
encompasses all the previous designs and allows for new ones. The key idea is that of
separating the equations for the reflection of light rays at the mirror surface and the
mirror Shaping Function, that explicits the linear projection properties to meet.

In some applications, one may be interested in having one type of projection property
in a certain area of the visual field and other projection property in other areas of the visual
field. We present a so-called Combined Mirror where the outer part of the image sensor
is used to obtain a constant vertical resolution image, while the inner part is devoted to
yield a constant horizontal resolution image. In this case, both constraints on the mirror
shape resulting from the two design goals are combined together in a single profile.

Our general mirror design methodology is firstly developed for standard (cartesian)
image sensors. However, a different choice of the sensor pixel layout may bring additional
geometric and computational benefits for the resulting image/processing. Due to the rota-
tional symmetry of the omnidirectional images, a natural choice is to use an image sensor
with a polar structure. In this work we use the SVAVISCA [64] log-polar sensor developed
at DIST, University of Genova. As a result of this mirror sensor combination, panoramic
images can be directly read out from the sensor with uniform angular resolution, without
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requiring any additional processing or image warping. Our general design methodology is
applicable in exactly the same terms to this sensor layout.

This section is organised as follows: first we introduce the mirror shaping function
and detail shaping functions which allows us to set specific constant resolution properties
of the sensor. Then we detail the design of a combined mirror for a log-polar camera,
instantiating some of the presented constant resolution properties. Finally we analyse the
resulting mirror. Images obtained with the designed sensor are shown.

2.4.1 The Mirror Shaping Function

As detailed in section 2.2.2, the imaging by a normalised pin-hole camera of a 3D point
reflected on an arbitrary mirror shape, is represented by a differential equation [47].

The differential equation, Eq.(2.6) here rewritten for the convenience of the reader,
relates the mirror shape, F and its slope, F ′ which are functions of the mirror radius
variable t:

t
F + 2

F ′
1−F ′2

1− 2 tF ′
F(1−F ′2)

= − r − t

z − F
(2.17)

where (r, z) is a generic 3D point. In order to numerically compute the solution of the
differential equation, it is convenient to have the equation in the form of an explicit
expression for F ′ 3.

Re-arranging Eq.(2.17) results in the following second order polynomial equation:

F ′2 + 2αF ′ − 1 = 0 (2.18)

where α is a function of the mirror shape, (t, F ) and of an arbitrary 3D point, (r, z):

α =
− (z − F )F + (r − t) t
(z − F ) t+ (r − t)F

(2.19)

We call α the mirror Shaping Function, since it ultimately determines the mirror shape
by expressing the relationship that should be observed between 3D coordinates, (r, z) and
those on the image plane, determined by t/F . In the next section we will show that the
mirror shaping functions allow us to bring the desired linear projection properties into the
design procedure.

Concluding, to obtain the mirror profile first we specify the shaping function, Eq.(2.19)
and then solve Eq.(2.18), or simply integrate:

F ′ = −α±
√

α2 + 1 (2.20)

where we choose the + in order to have positive slopes for the mirror shape, F .
3Having an explicit formula for F ′ allows to directly use matlab’s ode45 function
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2.4.2 Setting Constant Resolution Properties

Our goal is to design a mirror profile to match the sensor’s resolution in order to meet, in
terms of desired image properties, the application constraints. As shown in the previous
section, the shaping function defines the mirror profile, and here we show how to set it
accordingly to the design goal.

For constant resolution mirrors, we want some world distances, D, to be linearly
mapped to (pixel) distances, p, measured in the image sensor:

D = a0.p+ b0. (2.21)

for some values of a0 and b0 which mainly determine the visual field.
When considering conventional cameras, pixel distances are obtained by scaling metric

distances in the image plane, ρ. In addition, knowing that those distances relate to the
slope t/F of the ray of light intersecting the image plane as:

ρ = f.
t

F
, (2.22)

the linear constraint may be conveniently rewritten in terms of the mirror shape as:

D = a.t/F + b (2.23)

Notice that the parameters a and b can easily be scaled to account for a desired focal
length, thus justifying the choice f = 1.

In the following sections, we will specify which 3D distances,D(t/F ), should be mapped
linearly to pixel coordinates, in order to preserve different image invariants (e.g. ratios of
distances or angles in certain directions).

Constant Vertical Resolution

The first design procedure aims to preserve relative vertical distances of points placed at a
fixed distance, C, from the camera’s optical axis. In other words, if we consider a cylinder
of radius, C, around the camera optical axis, we want to ensure that ratios of distances,
measured in the vertical direction along the surface of the cylinder, remain unchanged
when measured in the image. Such invariance should be obtained by adequately designing
the mirror profile - yielding a constant vertical resolution mirror.

The derivation described here follows closely that presented by Gaechter and Pajdla
in [31]. The main differences consist of (i) a simpler setting for the equations describing
the mirror profile and (ii) the analysis of numerical effects when computing the derivatives
of the mirror-profile to build a quality index (section 2.4.4). We start by specialising the
linear constraint in Eq.(2.23) to relate 3D points of a vertical line l with pixel coordinates
(see Fig.2.13):

z = a.t/F + b, r = C.
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Inserting this constraint into Eq.(2.19) we obtain the specialised shaping function:

F(t)

C

P

z

r

l

�

Figure 2.13: Constant vertical resolution: points on the vertical line l are linearly related
to their projections in pixel coordinates, p.

α =
− (

a t
F + b− F

)
F + (C − t) t(

a t
F + b− F

)
t+ (C − t)F

. (2.24)

Hence, the procedure to determine the mirror profile consists of integrating Eq.(2.20)
using the shaping function of Eq.(2.24), while t varies from 0 to the mirror radius.

The initialization of the integration process is done by computing the value of F (0)
that would allow the mirror rim to occupy the entire field of view of the sensor.

Constant Horizontal Resolution (Bird’s Eye View)

Another interesting design possibility for some applications is that of preserving ratios
of distances measured on the ground plane. In such a case, one can directly use image
measurements to obtain ratios of distances or angles on the pavement (which can greatly
facilitate navigation problems or visual tracking). Such images are also termed Bird’s eye
views.

Figure (2.14) shows how the ground plane, l, is projected onto the image plane. The
camera-to-ground distance is represented by −C (C is negative because the ground plane
is lower than the camera centre) and r represents radial distances on the ground plane.
The linear relation to image pixels is therefore expressed as:

r = a.t/F + b, z = C;

The linear constraint inserted into Eq.(2.19) yields a new shaping function:

α =
− (C − F )F +

(
a t

F + b− t
)
t

(C − F ) t+
(
a t

F + b− t
)
F

(2.25)
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Figure 2.14: Constant horizontal resolution: points on the horizontal (radial) line l are
linearly related to their projections in pixel coordinates, p.

that after integrating Eq.(2.20) would result in the mirror profile proposed by Hicks and
Bajcsy [47].

Constant Angular Resolution

One last case of practical interest is that of obtaining a linear mapping from 3D points
spaced by equal angles to equally distant image pixels, i.e. designing a constant angular
resolution mirror.

Figure 2.15 shows how the spherical surface with radius C surrounding the sensor is
projected onto the image plane. In this case the desired linear property relates angles with

F(t)

C

P

z

r

l

�

�

Figure 2.15: Constant angular resolution: points of the line l on the surface of a sphere of
radius C, are linearly related to their projections in pixel coordinates, p.
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image points:
ϕ = a.t/F + b

and the spherical surface may be described in terms of r, z, the variables of interest in
Eq.(2.19), simply as:

r = C.cos(ϕ), z = C.sin(ϕ).

Then, replacing into Eq.(2.19) we finally obtain:

α =
− (

C sin(a t
F + b)− F

)
F +

(
C cos(a t

F + b)− t
)
t(

C sin(a t
F + b)− F

)
t+

(
C cos(a t

F + b)− t
)
F

(2.26)

Integrating Eq.(2.20), using the shaping function just obtained (Eq.(2.26)), would
result in a mirror shape such as the one of Chahl and Srinivasan [12]. The difference is
that in our case we are imposing the linear relationship from 3D vertical angles, ϕ directly
to image points, (t/F, 1) instead of angles relative to the camera axis, atan(t/F ).

Shaping functions for Log-polar Sensors

Log-polar cameras are imaging devices that have a spatial resolution inspired in the human-
retina. Contrarily to standard cameras, the resolution is not constant on the sensing area.
More precisely, the density of the pixels is higher in the centre and decays logarithmically
towards the image periphery. The organisation of the pixels also differs from the standard
cameras, as a log-polar camera consists of a set of concentric circular rings, each one with
a constant number of pixels (see Appendix A).

Advantageously, combining a log-polar camera with a convex mirror results in an
omnidirectional imaging device where the panoramic views are extracted directly due to
the polar arrangement of the sensor. Moreover, the improved central resolution of log-
polar cameras allows to obtain panoramic images with better quality in the lines extracted
close to the centre of the sensor. These reasons motivated our study on constant resolution
cameras based on log-polar cameras.

In the following, we approach the design of constant resolution omnidirectional cameras
based on log-polar cameras, starting from the derivations for standard cameras. Firstly we
derive the desired linear relationships, and as expected the main difference is introduced
by the log-polar cameras’ pixel distribution. The rule observed for the linear relationships
can be transported directly to the shaping functions and thus we obtain straightforward
all the constant resolution designs considered for standard cameras.

In a log-polar camera, the relation of the linear distance, ρ, measured on the sensor’s
surface and the corresponding pixel coordinate, p, is specified by:

p = logk(ρ/ρ0) (2.27)

where ρ0 and k stand for the fovea radius and the rate of increase of pixel size towards
the periphery.
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As previously stated, our goal consists of setting a linear relationship between world
distances (or angles), D and corresponding (pixel) distances, p (see Eq.(2.21)). Combining
into the linear relationship the pin-hole model, Eq.(2.22) and the logarithmic law defining
pixel coordinates, Eq.(2.27) results in the following constraint:

D = a. log(t/F ) + b (2.28)

It is interesting to note that the only difference in the form of the linear constraint when
using conventional or log-polar cameras, equations (2.23) and (2.28), is that the slope
t/F is replaced by its logarithm. Replacing the slope by its log directly in the shaping
functions, results in the desired expressions for the log-polar camera.

Hence, when using a log-polar camera the shaping function becomes, for the case of
constant vertical resolution:

α =
− (

a.log t
F + b− F

)
F + (C − t) t(

a.log t
F + b− F

)
t+ (C − t)F

, (2.29)

for the case of constant horizontal resolution:

α =
− (C − F )F +

(
a.log t

F + b− t
)
t

(C − F ) t+
(
a.log t

F + b− t
)
F

, (2.30)

and finally, for the case of constant angular resolution:

α =
− (

Csin(a.log t
F + b)− F

)
F +

(
Ccos(a.log t

F + b)− t
)
t(

Csin(a.log t
F + b)− F

)
t+

(
Ccos(a.log t

F + b)− t
)
F

. (2.31)

As for the case of standard cameras, the mirror shape results from the integration of
Eq.(2.20), only now using the above shaping functions.

Concluding, we obtained a design methodology of constant resolution omnidirectional
cameras, that is based on a shaping function whose specification allows to choose the
particular linear property. This methodology generalises a number of published design
methods for specific linear properties. For example the constant vertical resolution design
results in a sensor equivalent to the one of Gaechter et al [31]. It is of particular interest
the constant angular resolution sensor, as it would be an implementation of a spherical
sensor giving a constant number of pixels per solid angle. This is similar to the case of
Conroy and Moore [14] with the difference that due to the nature of the log-polar camera
we do not need to compensate for lesser pixels when going closer to the camera axis.

2.4.3 Combining Constant Resolution Properties

In some applications, one may be interested in having different types of mappings for
distinct areas of the visual field. This is typically the case for navigation where the
constant vertical resolution mirror would facilitate the tracking of vertical landmarks,
while the Bird’s eye view would make localization with respect to ground plane features
easier.
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For this reason, we have designed and manufactured a combined mirror design for the
SVAVISCA log-polar camera (see Appendix A for details), where the central and inner
parts of the sensor (fovea and inner part of the retina) are used for mapping the ground
plane while the external part of the retina is used for representing the vertical structure.
These three regions are represented respectively by R1, R2 and R3 in Figure 2.16 and the
corresponding mirror sections asM1,M2 andM3. As detailed in the Appendix, the central
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Figure 2.16: Combined mirror specifications. The horizontal line L1 is reflected by the
mirror sections M1 and M2, and observed by the sensor areas R1 and R2. The vertical
line L2 is reflected by M3 and observed in R3.

part of the SVAVISCA camera, the fovea, has equally sized pixels while the external part,
R2 and R3 in the figure, has an exponential growth of the pixel size in the radial direction.

In the process of computing the mirror profile each of the parts is obtained individually
using the shaping function encompassing the desired constant resolution property and the
local pixels distribution. Therefore, for (R3,M3) we used the shaping function as given in
Eq.(2.29) to impose constant vertical resolution in the case of a log-polar camera, while
for (R1,M1) and (R2,M2) the expressions were respectively Eq.(2.25) and Eq.(2.30) to
impose constant horizontal resolution for equally sized and exponentially growing pixels.

The field of view for each part of the sensor is determined by the corresponding pa-
rameters, a and b, which determine the vertical/horizontal segments that must be mapped
onto the image. Conversely minimum and maximum distances on the ground, heights on
the vertical direction or angles to points on a sphere, determine the a, b parameters.

Figure 2.17 shows the obtained mirror profile comprising the three sections, the first
two designed to observe the ground plane within distances 48cm to 117cm from the sensor
axis, and the third one to observe −100 to +250 around the horizon line. The camera
height above the floor was defined as 70cm, the radius of the cylinder as 200cm and the
focal length used was 25mm. The mirror radius was set to 3cm.

2.4.4 Analysis of the Mirrors and Results

The combined mirror described in the preceding section is composed as three parts. Here
we analyze the quality of the outer part, designed to have constant vertical resolution.
The other two parts would have similar analysis.

There are two main factors of main influence:
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Figure 2.17: Combined mirror for the Svavisca log-polar image sensor. Computed profile
(left) and manufactured mirror (right).

• Numerical Errors - As we do not have an analytic description of the mirror shape
and as the actual profile is obtained through numerical integration it is important
to verify the influence of numerical integration errors in the overall process.

• Sensitivity - As the designed sensor does not have a single center of projection, the
linear mappings obtained between pixel distances and world distances are only valid
for specific world surfaces (e.g. specific vertical cylinders or horizontal planes in our
case). How do the linear projection properties degrade for objects laying at distinct
distances other than those considered for the design ?
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Figure 2.18: Analysis of the design criterion for different distances with a log-polar im-
age sensor using different numeric approximations to the derivative: backward (left) and
centered (right) differences.

As proposed in [31], the analysis of the mirror profile is done by calculating a quality
index, q(ρ). This quality index is defined as the ratio between the numerical estimate of
the rate of variation of the 3D distances, D, with respect to distances in the image plane,
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[∂D/∂ρ]n, and the corresponding theoretical value, [∂D/∂ρ]t:

q(ρ) =
[∂D(ρ)/∂ρ]n
[∂D(ρ)/∂ρ]t

(2.32)

In the case under analysis, the theoretical value is obtained from Eq.(2.28) (noting that
t/F = ρ/f) and the numerical value from the back-projection [45], which results directly
from Eq.(2.17) given that the mirror shape is known.

For the perfect design process we should have q(ρ) = 1. Computing q(ρ) involves
numerically differentiating the profile F (t). Figure (2.18) shows some results obtained
with different discrete approximations to derivatives.

These results show two main points. Firstly, the influence of varying distance with
respect to the desired mapping properties does not seem to be too important, which
suggests that we are close to the situation of a single projection centre. Secondly, the way
derivatives are computed is very important in terms of quality analysis. The simplest form
of numerical differentiation leads to an error of about 10%, while a better approximation
shows that the computed profile meets the design specifications up to an error of about
1%. Variations when the distance changes from the nominal d = 200cm to 1m or 4m are
not noticeable.

Figure 2.19 shows the combined mirror assembled with the camera and mounted on
top of a mobile robot. The world scene contains vertical and ground patterns to test for
the linear properties. Figure 2.20 shows an image as returned by the camera.

Figure 2.19: Svavisca camera equipped with the combined mirror (left) and world scene
with regular patterns distributed vertically and over the floor (right).

Figure (2.21) shows resulting images. The panoramic image results as a direct read
out from the sensor (see Fig.2.21, top) and the bird’s eye views are obtained after a change
from cartesian to polar coordinates (Fig.2.21, bottom left and right). In the panoramic
image the vertical sizes of black squares are equal to those of the white squares, thus
showing linearity from 3D measures to image pixel coordinates. In the bird’s eye views
the rectilinear pattern of the ground was successfully recovered (the longer side is about
twice the size of the shorter one).
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Figure 2.20: Image acquired with the Svavisca camera equipped with the Combined Mir-
ror.

Figure 2.21: Images obtained from the original image in Fig.2.20: (top) panoramic and
(bottom) bird’s eye views. The bird’s eye views have a transformation from cartesian to
polar coordinates. The bird’s eye view at right originated from the fovea area.

Figure (2.22) shows another panoramic image, where some of the vertical chess patterns
of the world scene were placed closer to the sensor. Placing the patterns closer did not
make significant changes to the constant resolution property, as predicted in the numerical
analysis.

Figure 2.22: Chess patterns placed closer to the robot.

2.4.5 Concluding Notes

In this section we have described a general methodology for the design and evaluation of
mirrors profiles encompassing desired constant resolution properties. A function defining
the mirror shape, the Shaping Function, was introduced and it was shown how to derive
formulas to achieve the following specifications:

• Constant vertical resolution mirror - distances measured in a vertical line at a fixed
distance from the camera axis, are mapped linearly to the image, hence eliminating
any geometric distortion.
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• Constant horizontal resolution mirror - where radial lines on the floor are mapped
linearly in the image.

• Constant angular resolution mirror - equally spaced points on a meridian of a sphere
are mapped linearly in the image plane.

The methodology also considers the case of log-polar cameras. The difference from
the standard camera case is an additional logarithmic relation that appears in the shaping
function.

A prototype of a combined mirror was built. Here the outer part of the sensor’s retina
was used for constant vertical resolution design; the inner part of the sensor’s retina was
used to generate the constant horizontal resolution criterion and the log-polar sensor’s
fovea has also been used, in spite of the reduced number of pixels, to generate a bird’s
eye view of the ground floor. Resulting images show that the design was successful as the
desired linear properties were obtained.

2.5 Approximating the Unified Projection Model

It is well known that the geometry of 3D projection light-rays can be derived independently
of the scene-structure depth, provided that all the projection rays intersect at a single
projection centre. This is convenient for instance for obtaining perspective images from
omnidirectional images, or applying standard reconstruction methods. However, as noted
in section 2.2.5, only a few cameras conform to the single projection centre property [2].

In this section we use an omnidirectional camera based on a spherical mirror and show
that it can be approximated by a pin-hole camera. We described already the unified
projection model [38], which is known to be equivalent to a pin-hole camera, and now we
shall show that it can approximate the projection when using a spherical mirror [34].

Given the modelling of the camera with the unified projection model, we derive the
geometry of projection light-rays, termed back-projection after Sturm in [97, 96], and
then show how to obtain perspective images. These will be useful in a later chapter for
reconstructing and texture mapping 3D scene models.

2.5.1 Unified projection model parameters

A camera with a spherical mirror cannot be exactly represented by the unified projection
model. In order to find an approximate representation we focus upon the image projection
error, instead of analysing the projection centre itself.

In section 2.2.3 we estimated the parameters of the projection model of the omni-
directional camera based on a spherical mirror. Therefore, now we can find the unified
projection model parameters simply by minimizing the differences in the imaging of 3D
test points by both models.

Let P(xi, yi, zi;ϑ) denote the unified projection model defined in Eq.(2.3) and Pc be
the projection with a spherical mirror defined in Eqs.(2.6, 2.7, 2.10). Grouping into ϑ and
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Figure 2.23: (Left) 3D test points. The large dot in the centre represents the omnidirec-
tional camera. (Right) Mean absolute error between the unified projection model and the
projection with the spherical mirror. Vertical bars indicate the standard deviation. Our
omnidirectional images have 500x500 pixels.

ϑc the geometric and intrinsic parameters for the former and latter projections, we want
to minimize a cost functional associated to the image projection error:

ϑ̂ = argϑmin
∑

i

‖P(xi, yi, zi;ϑ)− Pc(xi, yi, zi;ϑc)‖2 (2.33)

The minimization of the functional gives the desired parameters, ϑ, for the unified projec-
tion model, P, that will approximate the real sensor characterised by Pc and ϑc.

Figure 2.23 shows that the approximation errors measured in the image plane are small
by considering 3D points distributed around the sensor at several heights, in a range of 2
to 7m from the camera’s optical axis.

2.5.2 Using back-projection to form perspective images

The acquisition of correct perspective images, independent of the scenario, requires that
the vision sensor be characterised by a single projection centre. The unified projection
model has, by definition, this property but, due to the intermediate mapping over the
sphere, the obtained images are in general not perspective.

In order to obtain correct perspective images, the spherical projection must be first
reversed from the image plane to the sphere surface and then, re-projected to the desired
plane from the sphere centre. We term this reverse projection back-projection.

The back-projection of an image pixel (u, v), obtained through spherical projection,
yields a 3D direction k · (x, y, z) given by the next equations derived from Eq.(2.3):

a = (l +m), b = (u2 + v2)[
x

y

]
=

la− sign(a)
√

a2 + (1− l2)b
a2 + b

[
u

v

]
(2.34)

z = ±
√
1− x2 − y2
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where z is negative if |a| /l >
√
b, and positive otherwise. It is assumed, without loss of

generality, that (x, y, z) is lying on the surface of the unit sphere.
Figure 2.24 illustrates the back-projection. Given an omnidirectional image we use

back-projection to map image points to the surface of a sphere centred at the camera
viewpoint.

Figure 2.24: Top: original omnidirectional image and an alternative display where the axes
are placed so that the first row appears close to the bottom. Bottom: back-projection to
a spherical surface centred at the camera viewpoint.

At this point, it is worth noting that the set {(x, y, z)} interpreted as points of the
projective plane, already define a perspective image. However for the purpose of displaying
or to obtain specific viewing directions further development is needed.

Let R denote the orientation of the desired (pin-hole) camera relative to the frame
associated to the results of back-projection, the new perspective image {(λu, λv, λ)} be-
comes: 


λu

λv

λ


 = K ·R−1




x

y

z


 (2.35)

where K contains intrinsic parameters and λ is a scaling factor. This is the pin-hole
camera projection model [25], when the origin of the coordinates is the camera centre.

Figure 2.25 shows perspective images obtained from the omnidirectional image shown
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in figure 2.24. The perspective images illustrate the selection of the viewing direction and
the focal length.

Figure 2.25: Examples of perspective images obtained from the omnidirectional image
shown in Fig.2.24. On the top row the perspectives have differing directions while on
the bottom row we simulated three typical focal lengths, 4.5mm, 8mm and 16mm for a
6.4x4.8mm ccd.

2.6 Concluding Notes

In this chapter we presented geometric models for catadioptric omnidirectional cameras,
together with design methodologies for the most frequent cameras based on spherical and
hyperbolical mirrors.

We built one omnidirectional camera based on a spherical mirror with a view field to
see above the horizon line. A camera based on an hyperbolic mirror was built with the
additional goal of size minimization.

Images acquired using non-planar mirrors are naturally distorted. Some of the dis-
tortions may be predicted and corrected. Dewarping to obtain panoramic and bird’s eye
views are two useful examples. They allow e.g. simple tracking of vertical and ground
plane lines. We presented our estimation methods for the two dewarpings and for the
image centre which is required in both cases.

We also presented the constant resolution cameras. Here we proposed a unifying
design methodology for the most typical cases of constant vertical, horizontal and angular
resolution. The unifying approach is based on a shaping function whose specialization
allows for the selection of the various constant resolution properties.

A prototype of a combined mirror has been built where the outer part of the sensor’s
retina is used for constant vertical resolution design; the inner part of the sensor’s retina
is used to generate the constant horizontal resolution criterion and the log-polar sensor’s
fovea has also been used, in spite of the reduced number of pixels, to generate a bird’s
eye view of the ground floor. Resulting images show that the design was successful as the
desired linear properties were obtained.

Finally, we presented an approximation of the unified projection model to the omni-
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directional camera based on a spherical mirror. Despite not having the single projection
centre property, the geometry of the omnidirectional camera is well described by the uni-
fied model in a large 3D region of interest. We used this modelling for obtaining the
back-projection equations of image points, independent of the 3D world structure.

The omnidirectional cameras detailed in this chapter are the sole sensors we use for
developing our mobile robot navigation methodologies. The geometrical modelling of the
cameras and the dewarpings of the omnidirectional images, are useful when extracting
world-structure information for navigation. More specifically, the panoramic and bird’s
eye views will be used latter in the design of the navigation modalities (chapters 3 and 4)
because of the convenient and simple ways they represent the world structure. The back-
projection equations, which are required for instance for obtaining perspective images from
omnidirectional images or applying standard reconstruction methods, will be used in the
interactive reconstruction methods detailed in chapter 5.



Chapter 3

Visual Path Following

Visual Path Following is described in simple terms as a trajectory
following behaviour, without having the trajectory explicitly identified in
the scene. The trajectory exists only as a computer data structure.
In this chapter we show that Self-Localisation is a major component
of visual path following and that the ground dewarp representation
significantly simplifies the solution to self-localisation problems, since
the image coordinates differ from ground coordinates by a simple
scale factor, thus eliminating any perspective effects. Of particular
importance is the use of carefully designed low-level image processing
processes.
Experiments with a mobile robot equipped with an omnidirectional vision
sensor are detailed showing the validity of the proposed path following
method.

3.1 Introduction

Many real world mobile robot applications, such as home assistance or office mail delivery
require high levels of autonomy, but unlike industrial applications, the environment should
not be altered to suit the given task. Typically, robot autonomy should cover large areas,
for example several offices or an entire house. Building a complete metric description of
such large areas, is expensive in computing power and in sensor allocation.

Alternative solutions [59, 91] use qualitative and topological properties of the environ-
ment for navigation, mainly when the robot has to travel rather large distances. A different
approach is necessary when in regions with precise guidance or localisation requirements,
e.g. a door crossing. The work described in this chapter addresses such precise naviga-
tional problems, based on a method that we call Visual Path Following, to complement
those systems based on topological maps.

Visual Path Following is a method whereby once a robot has arrived at the start of a
previously specified path, it can perform path following to a given location relying on the
visual tracking of features (landmarks).

In the visual servoing literature [51], when a robot is controlled through set-points (pose

53
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values) it is said to be performingDynamic look and move, while when directly using torque
signals it is performing Direct visual servoing [24, 98]. At the image processing level, there
is a clear distinction between Position-based and Image-based control, i.e. whether or not
computing the pose.

As pointed out by Wunsch and Hirzinger [114], there are pros and cons for each of the
visual servoing approaches: Image based visual servoing requires little computation and
guarantees robustness against errors in sensor modelling and camera calibration; Position
based visual servoing has the distinct advantage that both geometric and dynamic models
can be included in a straightforward fashion to increase the robustness of the vision task.

Commanding robot torques directly from image measurement errors, i.e. integrating
in a single step image processing and control signals computation, results in more robust
systems. However, it is necessary to adhere to strict processing rates. It is important to
note that usually the sampling frequency at the robot-motors level is one or two orders
of magnitude larger than the image processing one. While image processing is typically
limited to about 25Hz, robot control may range the 100Hz to 10KHz.

We design Visual Path Following based on a feedback control system encompassing a
self-localisation module and a control module (see Fig.3.1). The control module computes
the commanding signals for the robot, namely linear and angular velocities, based on
the error distance obtained by comparing the robot’s current pose, estimated by the self-
localisation module, with the desired pose.

(x,y,�	

(v, 
	
Control

Wheeled

mobile

robot

Self-Localisation

Ref

path World

Figure 3.1: Visual Path Following flowchart.

Most of the current research in localisation relies upon the integration of complimen-
tary sensors or concentrates on solving general problems like Structure From Motion,
Simultaneous Localisation And Map building, calibration, etc. Our localisation approach
is fully supported by use of monocular vision, and is aimed at increasing the contribution
of vision to the sensor fusion paradigm.

There is ample and extensive work on vision-based self-localisation i.e. camera-pose
computation (for example Gennery [37], Lowe [70], Koller et al [61], Taylor [103]). The
main difference of our approach is that we combine sensor-design and localisation-algorithm
development in order to solve the localisation problem.

In our work visual tracking is achieved using omnidirectional images acquired by the
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Figure 3.2: Omnidirectional vision helps in preserving features in the field of view. Even
after crossing the door, some of the features of the corridor continue to be visible.

omnidirectional cameras described in chapter 2. Omnidirectional Vision presents well
known advantages for Self-localisation not only in algorithmic terms but also in scale
terms. For example, algorithmic advantages are found in better landmark stability, as
the landmarks stay for longer periods in the field of view (see Fig.3.2). Scale advantages
appear e.g. in cases of people occluding the images: one person at a distance of one metre
to the camera occludes about 20o of the field of view, which represents 60% of the image
of a standard camera equipped with a 12mm lens, as compared to a much smaller value
of 6% of an omnidirectional camera.

Gluckman and Nayar in [40] note that traditional cameras, unlike the omnidirectional
ones, often suffer from the problem that the direction of translation falls out of the field of
view, which makes egomotion extremely sensitive to noise. In other words, we can say that
omnidirectional cameras are beneficial for uncertainty reduction in egomotion estimation.

This idea has been computationally explained by Fermüller and Aloimonous [26]. Pre-
vious simulated experiments by Tian, Tomasi and Heeger [104] were already showing
experimentally the advantage of very wide field of views for egomotion computation.

Given the close relationship of egomotion and self-localisation, it is also expected that
the same property, i.e. uncertainty reduction when using omnidirectional cameras, holds
for self-localisation. Madsen and Andersen show in [71] that there are sets of landmarks
allowing for better accuracy at self-localisations. Our own simulations show that it is
beneficial to select widely separated landmarks thus demonstrating an advantage of om-
nidirectional cameras on self-localisation (see appendix B).

In summary, we implement Visual Path Following as a feedback control system com-
bining two major components, namely mobile robot Control and Self-localisation. Self-
localisation is based on the tracking of straight line segments identified on omnidirectional
images. The controller computes the robot’s linear and angular velocities based on the
estimated location and the desired trajectory. The trajectory is conveniently defined in im-
ages coordinates relative to a model of the scene defined upon edge line segments extracted
from the images.
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Chapter Organisation

Firstly we describe localisation. We introduce geometric scene models based on ground
plane and vertical line segments, and detail our method for tracking the model line seg-
ments. Then we describe three pose computation methods that are used concurrently,
and present a photometric criterium that allows tracking failure detection and defining
the best / optimising the pose estimate.

After describing the localisation, we detail the robot control law which closes the loop
that forms the Visual Path Following navigation modality.

Finally, we present localisation and control experiments. We test these modules both
individually and combined to form the navigation modality.

3.2 Vision-based Self-localisation

Vision-based self-localisation derives robot poses from images. It encompasses two mostly
relevant parts: image processing and pose-computation. Image processing provides the
tracking of the features of the scene. Pose-computation is the geometrical computation
that derives the robot pose from the observations of the scene features given the scene
model.

Designing the image processing level involves modelling the environment. One way to
inform a robot of an environment is to give it a CAD model, as in the work of Kosaka and
Kak [62], recently reviewed in [22]. The CAD model usually comprises metric values that
need to be scaled to match the images acquired by the robot. In our case, we overcome
this need by defining geometric models composed of features of the environment directly
extracted from images.

Pose-computation, as the robot moves in a plane, consists in estimating a 2D pose and
an orientation. Assuming that the robot knows fixed points of the environment (land-
marks) then there are two main methods of self-localisation relative to the environment:
trilateration and triangulation [6]. Trilateration is the determination of a vehicle’s position
based on distance measurements to the landmarks. Triangulation has a similar purpose
but is based on bearing measurements.

In general one single image taken by a calibrated camera provides only bearing mea-
sures. Thus, triangulation is the natural way to calculate self-localisation. However, there
are some camera poses / geometries that provide more information. For example, a bird’s
eye view (detailed in section 2.3.3) provides an orthographic view of the ground plane,
and allows to observe not only bearings but simultaneously distances to the landmarks
laying over the floor. Given distances and bearings, the pose-computation is simplified to
the calculation of a 2D rigid transformation. We estimate pose both using bearings only
or bearings and distances.

Another point worth discussing, is the uncertainty in localisation introduced by the
various processing steps from the images to the estimated pose. The fact that the pose-
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computation is based on the feature locations, implies that it contains errors propagated
from the feature tracking process. We propose then a complimentary pose-computation
optimisation step, based on a photometric criterium. We term this optimisation fine
pose adjustment, as opposed to the pose-computation based on the features which is
termed coarse pose computation. It is important to note that the pose-estimation based
on features is important for providing an initial guess for the optimisation step.

In the following sections firstly we detail the geometric models of the environment and
the tracking of their features. Then we present the pose-computation methods. Pose-
computation is further divided into coarse estimation and fine adjustment steps.

3.2.1 Scene Geometric Modelling and Tracking

Despite the fact that localisation can be based on tracked image corners [93], more robust
and stable results are obtained with line segments as noted for example by Spetsakis and
Aloimonos in [94]. Besides that, two concurrent lines define a corner, and so from the lines
we can use corners based algorithms (i.e. using edge segments is not a hard-decision).

Geometric Scene-Model

Geometric models of the scene are collections of segments identified on Bird’s Eye and
Panoramic views. Ground segments are rigidly interconnected in the Bird’s Eye views
while vertical segments will vary their locations according to the viewer location. Consid-
ering both types of segments, the models are ”wire-frames” whose links change according
to the viewpoint.

Each scene model must have a minimal number of features (line segments) in order to
allow self-localisation. One line of the ground plane permits finding only the orientation
of the robot and gives a single constraint on its localisation. Two concurrent ground lines,
or one ground and one vertical, already allow finding the robot position and orientation.
Given three lines either all vertical, one on the ground, two on the ground (not parallel)
or three on the ground (not all parallel), always permit computing the pose and therefore
form valid models 1.

Our first experiments are based on a simple pattern, composed of two black rectangles
on the ground plane. This pattern defines eight ground segments (see fig. 3.3) thus
including redundancy to improve robustness. The landmark in the original omnidirectional
image (left) is deformed according to the position on the image plane while in the bird’s eye
view (middle) it has a constant size and thus it is simpler to track. (right) The geometric
model is extracted directly from the bird’s eye view.

Based on the same idea of modelling the scene with line segments, it is possible to
create scene-models for self-localisation but using natural features, i.e. features already
present in the scene. Figure 3.4 shows one such example. The model is composed of three
ground lines, two of which are corridor guidelines, and eight vertical segments essentially

1Assuming known the xy coordinates of the intersection of the vertical line(s) with the ground plane.
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Figure 3.3: Geometric model of a ground plane landmark, composed by two black rectan-
gles. The landmark in (left) the original omnidirectional image and in (middle) the bird’s
eye view. (right) The geometric model is extracted directly from the bird’s eye view.

Figure 3.4: Geometric models for a door crossing experiment. In the panoramic and bird’s
eye view images, respectively top and bottom-left, are illustrated the segments composing
the model shown in the bottom-right.
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defined by the door frames. A single door frame (i.e. two vertical lines) and one corridor
guideline would suffice but it is beneficial to take more lines than the minimum once more
to improve robustness of the self-localisation.

In order to represent a certain scene area, a minimal number of segments will be
necessary according to visibility and quality issues (see Talluri and Aggarwal in [102] for
a geometrical definition of visibility regions).

Models characterising different world regions are related by rigid 2D transformations.
These transformations are firstly defined between every two neighbour models at locations
where both models are (partially but with enough relevance) visible. Navigation is there-
fore possible in the area composed as the union of the individual areas provided by the
individual models.

Feature Tracking

Assuming that the robot pose evolves smoothly along time, the model segments need to
be detected only once at the initialisation stage and from then on, it is only necessary to
track them which is much more efficient in computational terms.

We track both edges lying on the ground plane and vertical edge segments. Notice
that vertical lines project as radial (or vertical) lines, in the bird’s eye view (or panoramic)
images. Since the robot position and orientation are estimated relative to a pre-defined co-
ordinate system, the process of tracking is simplified by utilizing bird’s eye (orthographic)
views of the ground plane, thus preserving angular measurements and uniformly scaling
distances.

Edge segments are represented by 15 to 30 sampled points, that are tracked by search-
ing the image perpendicularly to the edge segments (see fig.3.5(left)). Defining a coordi-
nate system attached to a segment, where l and x are respectively the directions along
and orthogonal to the segment, then the search is simplified to find the xl representing
the new x-locations for the segment points l:

{ (l, 0) } → { (l, xl) } .

The search criterion is based upon the evaluation of the image gradient and the distance
to the original edge position. The image gradient absolute value, |Ix(l, x)| should be
maximum at the edge point and the sign, sign(Ix(l, x)) must be preserved along the
tracking. Assuming small displacements for the segments, then it is expected that the new
edge positions are still the closest ones to the originals. The preference for small distances
of segment displacements is introduced by a triangle function, Λ(x) with the maximum
at zero and evaluating to zero at the extremes of the search region (see fig.3.5(right)).
Combining all these constraints and priors the search problem is then:

xl = argxmax [h (|Ix(l, x)|) . (sign (Ix(l, x)) == s0) . Λ(x)]

where h is a non-maximum suppression filter as the one of Canny’s edge detector [9, 106]
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Figure 3.5: (Left) The segment is tracked at control points. (Right) The criterium to find
the new location of an edge point is based on the local gradient and on the distance to
the original point.

and s0 is the sign of the gradient along the orthogonal direction that should be preserved
during the tracking.

The just determined distances, xl are corrupted with noise due e.g. to the image
formation process or to eventual local occlusions. For this reason, we finally estimate the
new segment location through the robust fitting procedure RANSAC [28].

As a concluding remark, notice that our procedure ignores segment lengths. They are
controlled at a higher level through the consistency of the model, as it is too much error
prune trusting on the image brightness for this purpose.

At the current stage of implementation, the relevant features to track and the feature
co-ordinate system are initialised by the user.

Up to now, we have tracked individual segments. In the next section we show how to
compute robot’s motion, i.e. translation and rotation, from these data.

3.2.2 Pose computation

We utilise bird’s-eye view and panoramic images to track environmental features so as
to estimate the robot’s pose or to drive the robot along a given trajectory. The self-
localisation procedure is based on the tracking of the geometric models. The tracking
of the models requires rigidity of the world structure (but naturally not rigidity of the
observed model segments itself).

Self-localisation computations depend on the nature of the input data. An important
distinction arrives for the availability (or not) of distance measurements. In the absence of
distance measures, i.e. using bearings only, the calculations and map requirements are dif-
ferent. Therefore, a description of the pose computation methods given the combinations
of distance and / or bearing observations is given. Associated to the pose computations
there are also constraints on the number and location of features that need to be observed
to avoid singularities in run-time.

When the models consist only of vertical lines and their projections onto the ground
plane are known, then self-localisation may be based on bearing readings to those land-
marks using the computations described by Betke and Gurvits [5].

Another simple method of calculating pose from the models arises when the segments
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of the model intersect at ground points. In this case, the model, despite encompassing
ground and vertical segments, is simplified to the case of a set of ground points. This set
of points moves rigidly in the Bird’s Eye View, and therefore self-localisation is in essence
the computation of the 2D transformation tracking the movement of the points.

This method requires intersecting segments, which is similar to tracking corners but
in a much more stable manner. This is specially true when dealing with long segments,
as the noise in the orientation of small segments may become significant, affecting the
computation of the intersections and the quality of corner estimates.

Alternatively, localisation is achieved through an optimisation procedure, namely min-
imizing the distance between model and observed line segments, directly at the pose
parameters. This is computationally more expensive, but more robust to direction errors
on the observed line segments.

In summary, we estimate self-localisation using three different methods, namely bear-
ings based localisation, estimation of the rigid transformation of the ground points, or an
optimisation procedure comparing the distance between the model and the observations.
In the following sections we detail each of these methods.

Bearings based pose computation

The objective is to estimate the robot pose, i.e. its position and heading, w.r.t. the world
system of coordinates, based on a map of known landmarks. The observations consist of
bearings, that is angles to the landmarks w.r.t. the robot heading (see fig. 3.6).
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Figure 3.6: Triangulation: given the map Z0...Zn calculate the robot pose, (Z, θ) from the
observed bearings θ0...θn.

The algorithm of Betke and Gurvits [5], addresses precisely this objective. We sum-
marise here their algorithm for the sake of completeness.

Landmarks are represented efficiently using complex numbers, Z0...Zn. From that
representation is possible to derive a system of linear equations on the n unknown distance
ratios defined w.r.t. the robot, rk = |(Zk)r| / |(Z0)r|:

bkrk − biri = ck − ci
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where k, i range from 1 to n, ck = 1/(Zk − Z0), bk = ck.exp(jθk) (expressions ci, bi are
equal to those on the index k) and θk is the bearing observation to landmark k. Notice
that by combining each index k with an index i results in n2 equations, of which only
n− 1 equations are independent. However those are complex equations expressed on real
valued variables. Therefore, there are actually 2 ∗ (n − 1) equations, the system is over-
determined and so there is a least squares solution for the unknowns [r1...rn]. Manipulating
the expressions, the least squares solution can be computed with linear complexity in the
number of the landmarks.

Finally the robot position, Z and orientation, θ become:

Z = Z0 − 1
n

∑
k

Zk − Z0

rk.ej(θk−θ0)
, θ = arctan (Z0 − Z)− θ0

This procedure does not work, when all the landmarks and the robot are aligned or
lay on a circle. This is confirmed by some simple geometric reasoning, but it rarely occurs
in practice.

In our application, the landmarks are vertical lines pertaining to the model of the
scene. The model contains the locations of those landmarks, i.e. their projections onto
the ground plane. Those locations are defined essentially by the intersection of ground
and vertical segments at the time of building the model.

Corners based pose computation

The features selected for tracking are image corners defined by the intersection of edge
segments [44], which can usually be found in indoor environments. The detection process
benefits from a larger spatial support, as opposed to local corner detection filters, thus
leading to increased accuracy and stability. Figure 3.7(a) shows a corner point E defined
as the intersection of lines AB and CD. In this way, corners do not necessarily have to
correspond to image points of extreme changes in brightness. This approach can deal with
information loss due to occlusion or filtering (e.g. the “roundness” of corners due to image
smoothing).
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Figure 3.7: (Left) Corner point E is defined as the intersection of lines AB and CD;
(Right) The segments AB and CD are adjusted to A′B′ and C ′D′, and thus the corner
point is tracked from E to E′.

We track corner points by tracking the corresponding support edge lines. Each edge
segment is tracked by searching along its perpendicular direction as described in the pre-
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vious section. Figure 3.7(b) demonstrates how the segments AB and CD at time t, are
tracked to the segments A′B′ and C ′D′, respectively, in the image at time t+ 1.

After determining the new corner positions, we estimate a 2D rigid transformation
between two successive bird’s eye views, yielding the robot position and orientation relative
to some pre-defined co-ordinate system.

Pose computation as a distance minimization problem

The corners based method is interesting as it results in a very simple computation algo-
rithm. It is noted however that the basic features are the segments, and therefore the pose
computation problem can be casted directly on those features.

Intuitively, the best pose estimate should align the scene model and the observed lines
as well as possible. Therefore we can formulate an optimisation problem to determine the
pose that minimizes the distances between model and observed lines.

Figure 3.8 shows and example of a model and the evolution of its segments in the
next image. For each segment two distance errors are measured. The best pose should
minimize the sum of the distance errors.
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Figure 3.8: A model (dotted lines) and the evolution of its segments in the next image
(thick lines). For each segment there are defined two distance errors (e1...e10).

Defining pose as x = [x y θ] and the distance between the segments ab and cd as:

d (cd, ab) = f (c− a, b− a) + f (d− a, b− a)

where a, b, c, d are the segment extremal points and f is the normalised internal product:

f(v,v0) =

∣∣vT .v⊥
0

∣∣∥∥v⊥
0

∥∥
then the problem of pose estimation based on the distance between model and observed
segments can be expressed by the minimization of a cost functional:

x∗ = argxmin
∑

i

d (si, s0i(x))
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where si stands for observed vertical and ground line segments, and s0i indicates the model
segments (known a priori).

There are two main issues in this approach: obtaining an initial guess of the pose; and
optimising the geometric distance between model and observed segments. The optimisa-
tion is performed with a generic gradient descent algorithm provided that the initialisation
is close enough. For the initial guess of the pose there are also simple solutions such as
using the pose at the previous time instant or, when available, an estimate provided by
ground points 2D rigid transformation as in the previous method.

In summary, we have presented three different methods for computing the robot’s
pose. Each of the methods has its pros and cons considering the nature of the data (scene
model), the noise and the computational complexity. Often the best method can be found
only at run-time. Hence we run the three methods concurrently and at each time instant
choose the best pose estimate according to a matching merit functional, which we detail
in the following section.

3.2.3 Choosing the best pose-computation

Despite the optimizations that were performed for pose-computation, there are residual
errors that result from the low-level image processing, segment tracking, and from the
methods itself.

Our pose-computation algorithms are based on local gradients. In particular we con-
sider image points corresponding to local maximums of the absolute value of the gradient.
These points correspond to 3D scene points that are known by the robot. Due to noisy
observations, in general the robot will not find its exact localisation, and therefore the
matching of its knowledge of the scene with the observed image will not be perfect too.

Hence, it is interesting to define a matching merit function. This function allows us
to assert about the quality of matching and through it we can describe precisely the
self-localisation problem.

The merit function evaluates local image gradients at model edges, ∇I. In order to
find the model edges in the image plane, the merit function, µ needs to take into account
the model, {Pi}, its current pose, x, and the projection function P:

µ(x) =
∑

i

|∇I (P(Pi;x))|. (3.1)

Whenever the pose is precisely known, the merit function is expected to be maximum.
Small deviations about the correct location imply merit losses.

In order to decide which is the best pose estimate derived from the three methods, we
use therefore the matching merit function. The method yielding the best matching merit,
i.e. the one returning the model pose that collects most of the local gradients, is the one
that is chosen as being returning the most accurate pose calculation.

Choosing the best pose-computation is a simple evaluation of the matching merit. As



3.2 Vision-based Self-localisation 65

there is no optimisation of the pose estimate it is not guaranteed to be optimal. For
this reason we have an additional step of fine pose adjustment that we shall detail in the
following section.

3.2.4 Fine pose adjustment and detecting tracking losses

The coarse self-localisation process relies exclusively on the observed segments, and looks
for the best robot pose justifying those observations on the image plane. The image
brightness was considered only to track the segments individually due to the computational
cost required to use it directly for pose estimation.

Having a good initial estimation of the self-localisation, allows us to use directly the
image brightness to tune the estimated robot pose. Some errors at the segment’s tracking
stage may be recovered through the global interpretation of the current image with the
a priori geometric model. Since the model is composed of segments associated to image
edges, we want to maximize the summation of gradients at every point of the model
wire-frame.

Denoting pose by x then we want to maximize the gradients at the image points
corresponding to the projections of the model, i.e. we want to maximize the matching
merit function defined in section 3.2.3 Eq.(3.1):

x∗ = argxmaxµ(x). (3.2)

Usually, there are model points that are non-visible during some time intervals while
the robot moves. This is due e.g. to camera (platform) self-occlusion or to the finite
dimensions of the image. In these cases the introduced matching merit function does not
evolve smoothly with pose changes and is maximised by considering the maximum number
of points possible, instead of the true segments pose. It is therefore interesting to include
a smoothness prior at the function.

The solution we found is based on preserving the gradient values at control points of
the segments of the model. This makes possible to indicate realistic values of gradient for
the non-visible points and the optimisation of the merit function in this way resists to some
occlusion. The gradient values are updated along time with a first order auto-regressive
filter.

Let V denote the set o fall visible points. We re-define the matching merit function
as:

µ(x, t) =
∑
i∈V

|∇I (P(Pi;x))|+
∑
i/∈V

mi(t− 1) (3.3)

where mi is the state of the gradient at the model point index i and is updated whenever
the point is visible:

mi(t) =

{
λ. |∇I (P(Pi;x))|+ (λ− 1) .mi (t− 1) , i ∈ V

mi(t− 1), i /∈ V



66 Chapter 3. Visual Path Following

The smoothing factor, λ, takes the value 0.3 corresponding to limiting to 30% the partic-
ipation of each observation to the gradient state. Finally, the pose is computed as before,
Eq.(3.2), but now maximizing the new merit matching function µ(x, t) at the current
time instant t. We perform this optimisation by exhaustive search for some narrow bands
around the current pose estimate.

In order to detect the loss of tracking during operation, the tracking process is continu-
ously self-evaluated by the robot. This evaluation is based on the matching merit function,
i.e. gradient intensities obtained within specified areas around the landmark edges. If the
merit decreases significantly compared to the expected values, a recovery mechanism is
immediately launched.

Figure 3.9 shows that the fine pose adjustment improves the merit score evaluating
the quality of the tracking. Comparing both plots, we can see that is successfully avoided
one sudden negative peak of the merit value, bellow less than 50% of the local values,
corresponding to a tracking loss and its recovery.

0 50 100 150 200 250
0

40

80

120

Merit vs t

0 50 100 150 200 250
0

40

80

120

Merit vs t (using fine pose adjustment)

Figure 3.9: Merit score vs time, before (top) and after (bottom) fine pose adjustment. Each
Y value is an average of absolute gradient at edge points of the model. After adjustment
the scores are higher and evolve smoother along time.

In summary we may say that the matching merit solves the two issues raised in this
section: the definition of the optimal pose estimate and the performance monitoring /
failure detection.
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3.2.5 Summary of the Self-localisation Module

Summarising the self-localisation module, we present the complete algorithm as a sequence
of operations that the robot is continuously performing.

1. Feature tracking: acquire a new image and find the new segment locations given the
previous ones.

2. Coarse pose computation: compute the pose of the robot knowing the location of
the segments in the current image and the geometric model of the scene; choose
from the presented methods (bearings based, corners based or segments distance
minimization) the one yielding the best matching merit.

3. Fine pose adjustment: ameliorate the pose estimate by directly optimizing the
matching merit function.

4. Model re-projection: compute current segment locations given the current pose.

5. goto 1.

Given the robot pose and a reference trajectory, we designed a control scheme that
drives the distance and orientation errors to zero, while maintaining a forward velocity.
This is detailed in the next section.

3.3 Control of the Mobile Robot

Providing good localisation estimation is an important part of the path following problem.
The remaining part consists of using this information for controlling the robot.

The robot state consists of a pose vector, x = (x, y, θ), describing its position (in
pixels) and orientation. The navigation system can modify the robot’s linear and angular
velocities denoted by (v, ω). The robot dynamic model is that of a wheeled unicycle mobile
robot, with two degrees of freedom (linear and angular velocities):




ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω

(3.4)

The path to follow, Ψ, is defined as a set of points xΨ = (xΨ, yΨ, θΨ), expressed in the
same coordinate system and units as the robot state vector, x.

At each time instant, the motion planning module must determine a reference point
on the trajectory, (xref

Ψ , yref
Ψ ) which is then used to determine the position and orientation

errors so as to correct the robot’s motion:

(xref
Ψ , yref

Ψ ) = argmin
(xref

Ψ ,yref
Ψ )

{
‖ (xref

Ψ , yref
Ψ )− (x, y) ‖2

}
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To avoid multiple solutions, we use a regularization term that selects the path point,
xref

Ψ (k) closest to that at the previous time instant, xref
Ψ (k−1). A signed distance-to-path

error, d and an orientation error, θ̃ are defined as:

d = [x− xref
Ψ y − yref

Ψ ][nx ny]T , θ̃ = θ − θref
Ψ

where [nx ny] is the normal to the path at the chosen reference point. The geometry of
this kinematic motion planner is shown in Figure 3.10.
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Figure 3.10: Kinematic motion planner used to reference points and to define the control
error for the visual path following system.

The dynamic controller used to generate the robot’s angular velocity was proposed de
Wit et al in [18] for path following, and shown to be stable:

ω = −k3|v|θ̃ − k2v d
sin θ̃
θ̃

+
v cos θ̃c(s)
1− c(s) d

(3.5)

where k2, k3 are constants to be tuned, s designates the path length, and c(s) is the local
path curvature.

In order to tune the controller, it is important to note that the choice of Frenet co-
ordinates and the control law, results in a linear second order system representing the
robot-path error distance, d. Second order systems are intuitively characterised by the
natural frequency, α and damping coefficient, ξ which are directly related with the con-
troller parameters as:

k2 = α2 , k3 = 2ξα.

Usually ξ is set to 1/
√
2 meaning a small overshoot, and α is left free to specify faster or

slower systems, i.e. shorter or longer settling times.
To describe more intuitively the control law of Eq.(3.5) it is interesting to analyse two

particular cases of importance, namely the cases where the reference path is a straight line
or a circle:

• When the reference path is a straight line, c(s) = 0, control reduces to the simple
case of encompassing only two terms. One is proportional to the heading error and
the other to the distance to the trajectory.

• When the path is a circle, the curvature is a constant. If the robot is close to the



3.4 Experiments and results 69

steady state, i.e. the heading and distance errors are close to zero, then the third
term of the control law is constant which is according to the intuition that to describe
a circle the robot must have a constant angular velocity (the linear velocity is set to
constant from the beginning).

Mostly, the forward velocity, v, is equal to the maximum, Vmax but for safety reasons,
we impose a maximum value on the angular velocity, |ω| < Wmax. When this value is
achieved, we saturate ω and reduce v to Vmax.Wmax/ |ω|, in order to avoid large lags in
narrow turns.

The curvature, c(s) is defined as the derivative of the heading relative to the path
length s, i.e. c(s) = dθ/ds. It is therefore important to have smooth trajectories as
otherwise there will appear saturations on the control signal and very little ability of the
controller to react to heading and distance errors.

There are very interesting works on selecting the best trajectories to follow, guarantee-
ing continuous curvature properties based essentially on polynomials [80] or more recently
on clothoids / spirals [29, 56]. In our case, as many of the paths are taught by example, it
is not possible to plan the trajectories. We take therefore the simple approach of filtering
the path. The filter we use is a Hamming window, a technique borrowed from speech
processing domain.

Our trajectories are defined as arrays of discrete points and therefore the curvature is
estimated using finite differences. The finite differences are centered for unbiased curvature
estimates. In order to have accurate curvature values we interpolate our trajectories to
have a reference path about an order of magnitude more dense than the typical jumps on
pose estimates.

For the current control law, noise in self-localisation measurements (x, y, θ) directly
implies noise in control outputs (v, ω). To prevent this direct noise transmission we include
temporal integration of the measurements with an Extended Kalman Filter (EKF).

The inputs and outputs for the EKF are then poses (x, y, θ), and the dynamics are
that of a wheeled mobile robot - unicycle type, Eq.(3.4) with state vector augmented with
velocities x = (x, y, θ, v, ω). Velocities are assumed constant and driven by white noise.
Forward velocity noise covariance is assumed low due to the control characteristics.

3.4 Experiments and results

In this section we present experiments and results following the organisation of the chapter.
First we show results of simulated experiments carried on the modules of self-localisation
and control separately. Then, we describe experiments and show results of Visual Path
Following, combining the modules tested but now conducted on a mobile robot in a real
world scenario.
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3.4.1 Relative usage of coarse pose computation methods

The coarse self-localisation is performed in parallel by the three methods presented pre-
viously. The computed pose is selected from the three available ones according to the
photometric criterium detailed in section 3.2.3 Eq.(3.1).

The experiment documented here is composed by three path segments differing essen-
tially by their shapes. The first path segment is a straight line, while the other two are
arcs of circumference of about 90o.

Figure 3.11 shows the percentage of utilisation of each method at each time interval.
The three path-segments are concatenated in the figure.
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Figure 3.11: Self-localisation method usage (percentage) vs time (image number). The
lines marked with ◦ (red), � (green) and � (blue) represent respectively: bearings based
localisation (Betke & Gurvits), corners based localisation and localisation by optimising
line-segment distances.

This experiment shows that the method based on the minimization of the distance
between the model and the observed segments are chosen most of the time and clearly
dominates in the first path segment (see the next table).

Method Path Path Path
segment 1 segment 2 segment 3

Betke & Gurvits 12.8% 31.1% 44.4%
Corners transf. 5.5% 10.9% 8.9%
Optimis. segms. dist. 81.7% 58.0% 46.7%

At curvilinear path-segments the method proposed by Betke and Gurvits, compares
favorably relative to the minimization of the distance between segments due to the min-
imization process itself. We impose a maximum number of iterations to guarantee that
the total computation time is limited and approximately constant for each processed im-
age. In the case of the curvilinear path-segments, the movement of the image segments
is larger and therefore the optimization would require more iterations. Since they are not
performed the method is superseded in quality by others.

An additional justification is found on the used model. This model is based mainly in
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vertical segments whose essential information is in fact angular (bearings) being therefore
captured almost integrally by the Betke and Gurvits’ method.

3.4.2 Robot Control

The next experiments are simulations of a wheeled mobile robot performing visual path fol-
lowing. The self-positioning is simulated with mobile robot model integration. The vision
procedure is noiseless for the purpose of testing only the control. In all the experiments
the sampling period is 0.7 sec.

Tuning the gain

In a first experiment, we set the robot to follow a trajectory with two controllers charac-
terised by different gains (see Figure 3.12). The range of gains to achieve successful path
following is large, however to obtain specific error bounds there are minimum gain values.
Note that the second controller, middle plot of the figure and line b of the rightmost plot,
exhibits a smaller error-distance to the trajectory. This is expected as the gain is larger.
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Figure 3.12: Control tests: different gains result in apparently equal path following results
(Left and Middle), but actually the error is smaller in the case of the larger gain (Right
curve b).

In a new experiment, the initial location of the platform is not exactly coincident with
the reference trajectory. Due to filtering, the curvature is under-estimated at the start of
the reference trajectory. Therefore the controller has to compensate both errors, i.e. the
errors in position and initial angular velocity (almost zero due to the filtering). In these
examples, unlike the previous ones, the platform should start turning to its left side from
the beginning of the experiment.

Figure 3.13, left column, shows an example where the controller does not have enough
gain to compensate both errors, and thus shows that a wrong initial curvature may be
enough for inaccurate trajectory following. In the right column of the figure, the curvature
error creates a lag in trajectory following, but the controller reacts and compensates the
error due to its larger gain.
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Figure 3.13: Control tests: initial curvature. The dotted and solid lines show the reference
and the followed trajectories respectively.

Distant initial condition

Figure 3.14 shows that the controller is capable of dealing with a very distant initial
position relative to the start point of the trajectory. The robot starts at [0 0 0] with
an angular velocity as specified by the controller given the closest (desired) trajectory
point. Since the robot is too far from the reference trajectory the term proportional to
the distance is clearly dominant, thus justifying the constant sign of the angular velocity
till closer to the reference path.
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Figure 3.14: Control tests: far initial location. The dotted and solid lines show the
reference and the followed trajectories respectively.

Forward velocity reduction at sharp turns

Figure 3.15 shows saturation of the angular speed at the various turns. Due to the look-
ahead characteristics of the trajectory planning module, forward velocity reduction is not
so significant at the turns after the first one. The behavior in the first turn is different
because there are no prior path reference points that can be used in the kinematic planning.

Figure 3.16 shows the error signals and control actions for the same input and using
the kinematic planner and dynamic controller described before. This example illustrates
forward velocity reduction to complement angular velocity saturation.
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Figure 3.15: Visual path tracking shown in a simulated trajectory, with the robot mov-
ing anti-clockwise. Dotted and solid lines correspond to reference and robot trajectories
respectively.
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Figure 3.16: Visual path tracking in a simulated trajectory. Left to right: distance to
path and orientation error (controller inputs), forward and angular velocities (controller
outputs).
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3.4.3 Vision and Control

Experiments were conducted using catadioptric panoramic vision system built in our in-
stitute, mounted on a TRC labmate mobile robot. Processing was carried on with an
on-board PC PII-350MHz equipped with a TekRam image acquisition board.

Docking experiment

For Visual Path Following, we specified a reference trajectory in image coordinates, relative
to a single landmark composed of two rectangles. The mobile robot uses the input of the
omni-directional camera to move under closed loop control, as described in this chapter.
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Figure 3.17: Visual Path Following, with the trajectory specified in image coordinates. (a)
x, y positions before (dotted line) and after filtering (solid line). (b) Orientation before
(dotted line) and after filtering (solid line). (c) Tracking of the landmark in the robot
frame (d) Dash-dotted line shows the landmark that defines the origin. The dotted line is
the specified trajectory and the solid line shows the filtered position estimates. (e) Image
of mobile robot at the end of path following.

Figures 3.17(a,b) show estimates of self-localization. Noise is primarily due to the
small size of the chosen landmark and poor image resolution. The Kalman filter can
effectively reduce noise mainly along smooth paths. Figure 3.17(c) shows tracking results
to illustrate the convenient use of omni-directional vision for landmark tracking, in spite
of its large azimuthal movement relative to the robot. Figure 3.17(d) shows that the errors
between the reference trajectory (dotted) and that resulting from visual self-localization
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(solid line) are very small. Figure 3.17(e) shows the mobile robot at the final position
after completion of the desired navigation task.

The processing time was approximately 0.8sec/image, where 50% was used on image
processing and the remaining 50% for displaying debugging information, image acquisition
and serial communication with the mobile robot.

Door traversal

Figure 3.18 illustrates tracking and self-localization while traversing a door from the cor-
ridor into a room. The tracked features (shown as black circles) are defined by vertical
and ground-plane segments, tracked in bird’s eye view images.

Figure 3.18: Top: Feature tracking at three instants (black circles); Bottom: estimated
scene model and self-localization results.

Currently, the user initializes the relevant features to track. To detect the loss of
tracking during operation, the process is continuously self-evaluated by the robot, based
on gradient intensities obtained within specified areas around the landmark edges. If
these gradients decrease significantly compared to those expected, a recovery mechanism
is launched.

3.5 Concluding Notes

We described the use of an omnidirectional vision system for navigation tasks, namely
visually path following. One of the main advantages lies in acquiring panoramic images
of the environment without any moving parts on the physical setup.

In chapter 2 we have described the image formation model and the method adopted
for estimating the model parameters. Using this projection model, we presented a method
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for obtaining ground dewarped images or a bird’s eye view of the ground floor. In this
chapter we showed that this representation significantly simplifies navigation problems,
since the image coordinates differ from the ground plane coordinates by a simple scale
factor, thus eliminating any perspective effects.

Using this ground dewarped images we have presented a method to track image corner
points defined by their support edge segments. Tracking this features is done in a robust
manner and allows the estimation of the robot position and orientation relative to a known
navigation landmark.

We further showed how this framework can be used to perform what we call Visual
path following. A trajectory to follow is simply specified in the image plane and a suitable
controller is used to drive the robot along that desired path. We described both the
kinematic motion planner and the dynamic controller. Experiments were shown both in
a simulated environment and with a real robot.



Chapter 4

Vision-based Navigation with an
Omnidirectional Camera

This chapter proposes a method for the visual-based navigation of a
mobile robot in indoor environments, using a single omnidirectional
camera. It is of particular importance to fulfill global tasks, namely
travelling long distances and therefore representing large environmental
areas.
We approach the global tasks with Topological Navigation. It does
not require knowledge of the exact position of the robot but rather, a
qualitative position on the topological map. The navigation process
combines appearance based methods and visual servoing upon some
environmental features.
By combining Topological Navigation with Visual Path Following
(detailed in chapter 3), a simple and yet powerful navigation system is
obtained.

4.1 Introduction

Both robustness and an efficient usage of computational and sensory resources can be
achieved by using visual information in closed loop to accomplish specific navigation tasks
or behaviors [90, 89]. However, this approach cannot deal with global tasks or coordinate
systems (e.g. going to a distant goal), because it lacks adequate representations of the
environment. Hence, a challenging problem is that of extending these local behaviors,
without having to build complex 3D representations of the environment.

We use the Topological Navigation approach for travelling long distances in the en-
vironment, without demanding accurate control of the robot position along a path. The
environment is represented by a Topological Map [63, 59, 112], described by a graph. Nodes
correspond to recognizable landmarks, where specific actions may be elicited, such as en-
tering a door or turning left. Links are associated with regions where some environmental
structure can be used to control the robot.

In our approach, landmarks are directly represented by omni-directional images. Links
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are represented by sequences of images that correspond to trajectories which the robot
can follow by servoing upon some environmental features.

We use omni-directional images as an implicit topological representation of the envi-
ronment, and rely on appearance based methods [49, 55, 1, 107] to provide a qualitative
measurement of the robot’s global position. Progression is assessed by comparing the cur-
rent view with images acquired a priori [72]. Images of the topological map are encoded as
a manifold in a low dimensional eigenspace obtained from Principal Components Analysis.

Ishiguro and Tsuji, in [54], propose to find the robot’s localisation by matching images
in the frequency domain, whereas Horswill [50] used the actual views as landmarks. The
work most closely related to ours is that described in [91], which combined appearance
based methods and visual servoing, although the image geometry, matching scheme and
method of servoing were different from those detailed in this chapter.

Visual servoing is applied to control locally the pose of the robot relative to image
features, and to navigate between nodes. In this work, we control the robot heading and
position by servoing upon the corridor guidelines, extracted from bird’s eye views of the
ground plane. Thus, the combination of appearance based methods and visual servoing, at
the global level, means that we can maintain a causality constraint while traversing longer
distances and sampling the environment less frequently than with previous approaches
[1, 72, 54].

When the robot moves in environments containing wide windows, large non-uniform
illumination changes may occur close to the windows at different times of the day. These
changes are often sufficient for failing the comparison of images taken at the same place
when using the L2 norm, and due to the non-linearity cannot be made robust even by
using zero mean normalised cross correlations.

Image edges are known to be robust against illumination changes and thus constitute
more effective data for self-localisation. However the direct comparison of edges is still
not the solution as they are sensitive to noise and small changes of the camera pose.

To overcome this problem, in object recognition problems there are compared distances
between shapes, i.e. sets of edge points, instead of directly comparing the edge points.
In [36] Gavrila et al propose chamfer distances to detect pedestrian and traffic signs.
Detecting pedestrians is interesting as they are characterised by variable shapes therefore
requiring graceful degrading detection methods. The chamfer distance is in essence an
approximation to the average of distances between corresponding points of two shapes,
which is computed efficiently by mask based image operations.

Huttenlocher et al [52] take an alternative approach, of using Hausdorff distances to
compare the shapes. Qualitatively an Hausdorff distance measures the maximal distance
between corresponding points using a robust technique.

Unlike object recognition applications where one needs to detect shapes in unknown
locations of an image, in robot self-localisation, the important variable is an image index
identifying images in a database. Despite this difference, the problems are similar and
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thus the techniques of object recognition can be applied to the self-localisation.
During normal operation, the robot does not change instantaneously to an arbitrarily

different position. There is therefore in self-localisation a causality property, that is useful
for designing more efficient search algorithms.

Concluding, global tasks in our system, such as going to a distant location, are per-
formed using topological navigation. The representation used is a topological map of the
environment based on the appearances of the various locations. The map is described by a
graph structure: nodes correspond to recognizable landmarks where different actions can
be elicited, and links are associated with regions where some environmental structure can
be used by the robot to control its pose (visual servoing).

Recognizable landmarks are reference images (i.e. specific appearances) associated
with a qualitative position. In regions where large non-uniform illumination changes may
occur, image edges are used instead of the intensity images, and the matching techniques
are shape based. Appearances imply large storage capacities, and therefore are represented
using approximations by manifolds on reduced order eigenspaces. As we do not require
complex systems to capture precise (metric) information, problems of drift and slippage
are easily overcome. Furthermore, topological maps deal only with proximity and order
and so global errors do not accumulate.

Advantageously, Visual Path Following (detailed in chapter 3) complements Topologi-
cal Navigation, providing the robot with the ability to undertake tasks requiring different
levels of knowledge of the world.

Relying upon the two environmental representations / navigation methodologies, our
robot is able to perform enlarged navigation tasks encompassing e.g. navigation in corri-
dors, doors crossing and docking.

Chapter Organisation

We start by describing the Topological Navigation modality. Of particular importance
are the appearance-based environmental representations for mobile robot self-localisation.
Firstly, we describe representations based on image eigenspaces. Then we present two
methods based on image-edges to represent the environment at regions of large non-
uniform illumination changes.

Topological navigation is combined with Visual Path Following (detailed in chapter
3), for building a simultaneously global/qualitative and local/precise navigation system.

Finally, we present topological localisation and combined navigation experiments.

4.2 Navigating using Topological Maps

We use a topological map to describe the robot’s global environment. This map is used to
reference the qualitative position of the robot when traveling long distances. A mission
could be specified as: “go to the third office on the left-hand side of the second corridor”.
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The robot must be able to travel along a corridor, recognize the ends of a corridor,
make turns, identify and count door frames. These behaviors are implemented through
an appearance based system and a visual servoing strategy.

The appearance of an object, defined by Murase and Nayar in [74], is a set of images
resulting of the combined effects of the object’s shape, reflectance properties, pose in the
scene and illumination conditions. Hence, the matching of a run-time image with one
of the images of the appearance set therefore indicates a particular combination of the
properties.

As the shape and reflectance are constant properties of the object, one image matching
identifies one pose, assuming as a first step that the matching procedure is illumination
independent and that differing poses imply distinct images. For example preserving an
ordering of the poses on the appearance set, the retrieval of a particular image indicates
therefore a location within a path. If in addition some of the appearance poses are marked
as landmarks, then there is also a recognition of distinct places. For example in a corridor
scene, the appearance based system provides qualitative estimates of the robot position
along a corridor, and recognizes distinctive places such as corners or door entrances.

A map is thus a collection of inter-connected images, as in the example of Figure 4.1,
representing the floor map of our institute. To go from one particular locale to another,
we do not have to think in precise metric terms. For example, to move the robot from
one corner to the opposite one we may indicate the robot to follow one corridor till the
first corner and then to follow the next corridor again till the corner, therefore reaching
the destination. The navigation problem is decomposed into a succession of sub-goals,

Figure 4.1: A topological map of the floor map of our institute.
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identified by recognizable landmarks. The required navigation skills are the ability to
follow roads, make turns and recognize that we have reached a landmark.

To control the robot’s trajectory along a corridor, we detect the corridor guidelines
and generate adequate control signals to keep the robot on the desired trajectory. This
processing is performed on bird’s eye views of the ground plane, computed in real-time.

Topological maps scale easily by connecting graphs at multiple resolutions to map dif-
ferent regions of the environment. All the robot needs is a specialized behavior to navigate
along the links by using a vision-based control process and a procedure to recognize the
locations/nodes where further actions may be undertaken.

In the following we present three different methods to build the topological map and de-
scribe the respective localisation techniques. The first method uses directly the grey-level
images. As finding the closest image from a large database is computationally expensive,
a compression technique based on principal component analysis is applied to the database.

The next two methods work upon edge-images, in order to be more robust to non-
uniform illumination changes that occur for example close to windows. One of the meth-
ods compares views measuring the average distance of the corresponding features. The
algorithm for computing the average distance is designed to be time efficient by using
mask-based image processing. The third (last) method is based on a computationally
costly distance measure but includes intrinsically the advantage of increasing the robust-
ness to partial occlusions. Again it is used an eigenspace approach to achieve compact
storage and fast indexing.

4.2.1 Image Eigenspaces as Topological Maps

The topological map consists of a large set of reference images, acquired at pre-determined
positions (landmarks), connected by links on a graph. Since the robot perceives the world
through omnidirectional images, these images are a natural way of represent landmarks.

During operation, the reference image that best matches the current view indicates
the robot’s qualitative position in the topological map. Hence, the reference images can be
seen as a large-dimensional space where each point indicates a possible reference position
of the robot.

In general, the number of images required to represent the environment is very large,
and one needs to find a method to compress this information. We build a reduced-
order manifold to approximate the reference images, using Principal Component Analysis
(PCA), as described by Murase and Nayar in [74], and detailed by Winters in [113] or
Gaspar, Winters and Santos-Victor in [35].

Each reference image is associated with a qualitative robot position (e.g. half way along
the corridor). To find the robot position in the topological map, we have to determine the
reference image that best matches the current view. The distance between the current
view and the reference images can be computed directly using their projections (vectors)
on the lower dimensional eigenspace. The distance is computed between M-dimensional
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coefficient vectors (typically 10 to 12), as opposed to image size vectors (128 × 128). The
position of the robot is that associated with the reference image having the lowest distance.

When using intensity images to build a topological representation of the environment
the robot is prone to miscalculating its location where large non-uniform deviations in
illumination occur (see Fig.4.2). This is due to the comparison of images being still a sum
of squared differences of brightness (radiance) values, therefore directly influenced by the
illumination changes. However, it can be overcome by using edge images to represent the
environment.
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Figure 4.2: Top: images acquired at 5pm and 11am. Bottom: image intensity shows large
non-uniform deviation in brightness (the thin line relates to the first image).

The direct comparison (correlation) of database and run-time edge images is still not
the desired solution, as it is not robust to the edge-point position errors created by the
natural small differences of the robot locations. The corresponding edge-points of matching
images are found usually at near but different positions. We can only say that the shapes
observed in the images are similar. The solution is therefore to compare shapes instead of
edge-points. In particular when evaluating the matching of two images we are interested
in computing distances between shapes present in both images.

There are several possible definitions of the distance between shapes. Two very well
known are the Hausdorff distance and the chamfer distance. The Hausdorff distance is
the maximum of the distances between all the points of one shape to the corresponding
points of the other shape [52]. The chamfer distance is, in essence, the average distance
between the points of the two shapes [36, 7]. In the following sections we shall detail these
two distances and present their application to the localisation problem.

4.2.2 Localisation Based on the Chamfer Distance

Topological localisation consists of identifying the current run-time image in a set of
database (template) images. As referred, one way to compare images, in a manner robust
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against non-uniform illumination changes, is to use edge-images and a distance measure
that compares shapes defined by edges. The chamfer distance is one such measure that
can be computed efficiently. In this section we review the chamfer distance and then its
application to robot self-localisation.

The chamfer distance is based on the correlation of a template edge-image with a
distance transformed image. The distance transform of an edge-image is an image of the
same size of the original, that indicates at each point the distance to the closest edge point
[7, 36, 16]. In other words, the distance transform is an augmented representation of the
edge-image as it contains the edge points, represented by the zero values, and at non-edge
points the distances to the closest edge points.

There are several metrics for computing a distance transform which have been exten-
sively reviewed by Cuisenaire in [16]. Of particular interest are the distance transforms
where the value at each pixel can be computed from its neighbours, since they result in
fast algorithms. Unfortunately the Euclidean metric does conform to this rule, but there
are good approximations such as the chamfer distance transform1.

The chamfer distance transform is computed from an edge-image using the forward
and backward masks shown in figure 4.3 [7, 36]. There are various possible values for
the constants in the masks. We use the values according to Montanari’s metric [16].
Alternatively, Borgefors in [7] proposes optimal values to minimize the difference to the
Euclidean metric and proposes sub-optimal integer approximations to save computations,
but this is beyond the scope of the present review.
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Figure 4.3: Forward and backward masks for computing the distance transform. The
element in bold face indicates the centre of the mask.

The constants shown in the masks are added to each of the local values and the resulting
value of the mask computation is the minimum of the set. Both masks are applied along
the rows of the initialised image. More precisely, the forward and backward masks are
applied starting respectively at the top-left and bottom-right corners of the image. The
computation power is therefore similar to a linear filtering by a FIR filter with a 3 × 3
support mask.

Figure 4.4 shows the distance transform of the edges of an omnidirectional image. We
remove the inner and outer parts of the omnidirectional image as they contain artifact
edges, i.e. edges not related to the scene itself, created by the mirror rim and the robot
plus camera self-occlusion.

1Not to confuse with the chamfer distance between two shapes. The chamfer distance transform is an
image processing operation useful for computing the chamfer distance of two shapes.
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Figure 4.4: Distance transform: (top) original omnidirectional image and mask showing in
grey the region of interest, (bottom) edges found in the region of interest and the distance
transform of the edge-image.

Finally, given the distance transform, the chamfer distance of two shapes is then com-
puted as the correlation:

d (D,T ) =

∑
i,j

DijTij∑
i,j

Tij
(4.1)

where T is a template edge-image and D is the distance transform of the edges of the
current run-time image. As weaker edges (small gradient magnitudes) are more susceptible
to noise, we set Tij to the gradient magnitudes of the template images, instead of binary
edges. Hence, we give more weight to the strongest edges.

Equation 4.1 says that the chamfer distance is an average of the distances between
corresponding points of the shapes. In a strict sense, it is an approximation as the un-
derlying chamfer distance transform is itself an approximation to the Euclidean distance.
In practice this difference is not relevant as typically the shapes to compare are at sim-
ilar poses and the distances between the points are small enough to make negligible the
difference of the chamfer and the Euclidean distances.

In the topological localisation application, we want to find the database image cor-
responding to the current run-time image. In order to find the best matching we search
the database using the chamfer distance as the comparison measure. The comparison of
images is done from an edge-image to a distance transformed edge-image. The distance
transformation may be applied either to the run time or to the database images [36]. We
apply the distance transform to the run time edge-images and leave to the template edge-
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images the role of selecting the relevant edge locations. The reason is that run time images
may have occlusions caused by humans, which create non-scene edges possibly far away of
the template edges. These large (erroneous) distances would be accounted if exchanging
the roles of the template and run-time images, thus considering all run-time edges.

The distance as defined by Eq.(4.1) is zero for perfectly matching images. Therefore
we search for the image matching the current image Im in a set T1 . . . Tn by minimizing
Eq.(4.1),

n̂ = argn min d (D(Im), Tn) . (4.2)

Notice that, unlike recognition applications such as pedestrian and sign detection in an
image [36], in the localisation application the template and run-time images have equal
sizes. The search parameter is an image index instead of translation, rotation and scaling.
The range of the index is the size of the database.

Usually there is a large number of database images, and thus finding the localisation
as in Eq.(4.2) is computationally expensive. However it only needs to be performed at
the first moment, when the robot is dropped-in-scene. During normal operation there is
a causality constraint along the consecutive locations. We reduce the search range to a
window around the last location, typically sized of ±5 images.

Concluding, the chamfer distance of two shapes is an approximation to the average
distance between the points of the shapes computed in an efficient manner using the
chamfer distance transform. Efficiency in computation is important as the localisation
procedure is continuously searching the database and therefore constantly preforming dis-
tance evaluations. In the next section we will use the Hausdorff distance that, although
computationally more expensive than the chamfer distance, improves the robustness prop-
erties against occlusions.

4.2.3 Eigenspace approximation to the Hausdorff fraction

In this section we present the method of topological localisation based on the Hausdorff
fraction. It is appearance based as the preceding methods and, as the chamfer distance
based method, it uses edge-images in order to be more robust to non-uniform illumination
changes. The Hausdorff distance [88] (of which the Hausdorff fraction is a subset) is a
technique whereby one can measure the distance between two sets of points, in our case
edge images. In the following, first we review the Hausdorff fraction, then we discuss its
application to localisation and finally show an example.

The Hausdorff distance of two shapes is defined as the minimum of the distances
from the points of one shape to the corresponding points of the other shape. As this
value normally depends on the shape chosen as the template, the Hausdorff distance is
the maximum of the two distances obtained taking each of the shapes as the template.
The distance from a shape chosen as template to the other shape is termed therefore a
Directed Hausdorff distance. Using the directed distance is a normal choice for critical
time dependent systems, and hereafter when referring to distances we shall be considering
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directed distances.
The Hausdorff distance is very sensitive to even a single outlying point of one of the

shapes. The Generalised Hausdorff distance, defined by Huttenlocher et al in [52], is thus
proposed as a similar measure but robust to partial occlusions. The generalised Hausdorff
distance is an f th quantile of the distances between all the points of one shape to the
corresponding points of the other shape. For example the 1

2 th quantile is the median and
the 1st quantile is the maximum reverting therefore the generalised distance to the original
definition. The quantile is chosen according to the expected noise and occlusion levels.

In recognition applications, the generalised Hausdorff distance is further specialised
for saving computational power. The Hausdorff fraction, the measure we are interested,
instead of measuring a distance between shapes evaluates the percentage of superposition
considering one of the shapes dilated. Still for computational efficiency, the principal
components analysis is included resulting in an eigenspace approximation to the Hausdorff
fraction [53].

The eigenspace approximation is built as follows: Let Im be an observed edge image
and Id

n be an edge image from the topological map, arranged as column vectors. The
Hausdorff fraction, �(Im, Id

n), which measures the similarity between these images, can be
written as:

�(Im, Id
n) =

IT
mId

n

‖Im‖2
(4.3)

An image, Ik can be represented in a low dimensional eigenspace [74, 112] by a coefficient
vector, Ck = [ck1, · · · , ckM ]T , as follows:

ckj = eT
j .(Ik − Ī).

Here, Ī represents the average of all the intensity images and can be also used with edge
images. Thus, the eigenspace approximation to the Hausdorff fraction can be efficiently
computed as:

�̂(Im, Id
n) =

CT
mCd

n + IT
mĪ + IdT

n Ī − ‖Ī‖2

‖Im‖2
. (4.4)

To find the matching location m for a current run-time image Id
n, it is necessary to

search the maximum 2 of the Hausdorff fraction comparing the run-time image with all
the database images. Using Eq.(4.4) for retrieving a database image is more efficient than
using Eq.(4.3) as the term that is computed for every m, respectively CT

mCd
n and IT

mId
n,

is a comparison performed on a low-dimension space against a full-image size correlation.
The computation time for the remaining terms of Eq.(4.4) becomes negligible for large
databases, as some of the terms are computed only once per run time image and the
others are pre-computed. This results in an image retrieval process significantly faster
than the direct comparison of the images, as in traditional eigenspace matching.

One important issue with approximating the Hausdorff fraction is to include some
2Contrasting to the methods presented in the preceding sections, the Hausdorff fraction is maximised

because it is, in essence, a correlation.
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tolerance at the matching step. Huttenlocher et al. [53] build the eigenspace using both
dilated and undilated model views and pre-process the run time edge images to dilate the
edges. In our pre-processing we use low pass filtering instead of edge dilation. The purpose
is to maintain the local maxima of gradient magnitude at edge points while enlarging the
matching area. We found this to be a good tradeoff between matching robustness and
accuracy.

To test this view-based approximation we collected a sequence of images, acquired at
different times, 11am and 5pm, near a large window. Figure 4.5 shows the significant
changes in illumination, especially near the large window at the bottom left hand side
of each omni-directional image. Even so, the view based approximation can correctly
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Figure 4.5: (a) An omni-directional image obtained at 11:00, (b) one obtained at 17:00;
(c) An edge-detected image and (d) its retrieved image.

determine that the unknown image shown in Figure 4.5(a) was closest to the database
image shown in Figure 4.5(b), while PCA based on brightness distributions would fail. For
completeness, Figure 4.5 (c) and (d) shows a run-time edge image and its corresponding
retrieved image using the eigenspace approximation to the Hausdorff fraction.

4.2.4 Integration of Topological Navigation and Visual Path Following

The mobile robot in continuous operation is most of the time performing topological
navigation. At some points of the mission the navigation is required to change to the visual
path following modality. Then the robot needs to retrieve the scene features (straight lines
in our case) chosen at the time of learning that specific visual path following task.

The search for the features can be approached as a general pattern matching problem
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using e.g. a generalised Hough transform as in [114, 27]. We approach the problem
by coordinating the two navigation modalities. To find the features, the uncertainty
of the location of the robot is controlled by using more detailed topological maps and
by increasing the searching regions of the features otherwise bounded according to the
maximum speed of the robot.

At the initialisation of the system, the robot will start normally at a known docking
place, but if a failure occurs during the operation the robot may have to restart at an
unknown (within the topological map) position. When starting at the docking place
the undocking visual path following task may be immediately elicited. If starting at an
unknown place, i.e. a drop-in-scene case, then the self-localisation is found using the
topological localisation module.

The combination of omni-directional images and the Topological and Visual Path Fol-
lowing navigation strategies are illustrated by the complete experiments described in this
chapter. We believe that the complementary nature of these approaches and the use of
omni-directional imaging geometries result in a very powerful solution to build efficient
and robust navigation systems.

4.3 Experimental Results

The experiments described in this chapter were undertaken at the Instituto de Sistemas
e Robótica (ISR), in Lisbon, Portugal. It consists of a typical indoor environment, with
corridors, offices and laboratories.

We used a TRC Labmate from HelpMate Robotics Inc., equipped with an omni-
directional vision system built in-house (see figure 2.5 in chapter 2). This system contains
a Cohu CCD camera pointed upwards, looking at a spherical mirror. Grayscale images
were captured with a full resolution of 768x576 pixels, and sub-sampled to 128x128 images
for PCA and 600x600 for visual servoing and Visual Path Following. All the processing
was carried out on-board the mobile platform by a Pentium II 350MHz PC.

The results obtained illustrate the potential of our approach in a variety of different
tests. First, we show Topological Localisation results obtained on pre-acquired sequences
of images. Finally, we present integrated results of real-world experiments combining the
Topological and Visual Path Following navigation modalities.

4.3.1 Topological Localisation Results

We perform two experiments to test the three presented topological localisation methods.
In the first experiment we test that the images after compression by the various meth-
ods are still sufficiently different to yield correct localisation results, and in the second
experiment we test the robustness of the methods against illumination changes.

The experiments are based on three sequences of images: one database sequence de-
scribing the environment and two run-time sequences acquired along a fraction of the
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represented environment. One of the run time sequences was acquired at a time of the
day different to the database set, resulting therefore in very different lighting conditions.

Experiment 1: the run time sequence, as compared to the database, is acquired under
similar illumination conditions, the length of the traversed path is about 50% of the
original and the images are acquired at a different sampling frequency (distance between
consecutive images). Figure 4.6 shows that the three methods give similar localisation
results, as desired. The small differences among the methods are due to the distinct image
database (appearance set) construction techniques. The figure shows that in the current
experiment the three methods despite compressing the information, preserve enough detail
to distinguish each image relatively to all the others.
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Figure 4.6: Three methods of topological localisation, (top, from left to right): localisation
based on PCA, Chamfer distance and Hausdorff distance. The clear valleys show that there
is enough information to distinguish the robot locations. (Bottom) localisation as found
by each of the methods i.e. ordinates corresponding to minimum values found at each
time instant on the 3D plots.

Experiment 2: figure 4.7 shows topological localisation as found by each of the methods
for two sequences taken in the same path but at different times of the day, resulting in
very different lighting conditions. We can see that the method based on PCA, i.e. the
one using directly brightness values, fails to obtain correct locations particularly at the
last part of the test, while the other two methods, which are based on edges, obtain good
results.

As expected the edges based methods are more suited to dealing with very different
illuminations. In our navigation experiments we use mainly the PCA over brightness
values, as most of our scenario is not subject to large illumination changes, and using
brightness values is more informative than using only edges. For the parts of the scene
where illumination can change significantly we use the Hausdorff based method. The
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Figure 4.7: Topological localisation experiments using the three methods over two se-
quences acquired under different lighting conditions. From left to right: localisation based
on PCA, Distance transform and Hausdorff distance.

reason of its choice when compared to the Distance transform, is that it is faster for the
first localisation at dropped-in-scene situations.

4.3.2 Combined Navigation Experiments

The concluding experiment integrates global and local navigational tasks, by combining
the Topological Navigation and Visual Path Following paradigms.

To navigate along the topological graph, we still have to define a suitable vision-based
behavior for corridor following (links in the map). In different environments, one can
always use simple knowledge about the scene geometry to define other behaviors. We
exploit the fact that most corridors have parallel guidelines to control the robot heading
direction, aiming to keep the robot centered in the corridor.

The visual feedback is provided by the omni-directional camera. We use bird’s eye views
of the floor, which simplifies the servoing task, as these images are a scaled orthographic
projection of the ground plane (i.e. no perspective effects). Figure 4.8 shows a top view of
the corridor guidelines, the robot and the trajectory to follow in the center of the corridor.

�

d

Figure 4.8: (Left) Bird’s eye view of the corridor. (Right) Measurements used in the control
law: the robot heading θ and distance d relative to the corridor centre. The controller is
designed to regulate to zero the (error) measurements actuating on the angular and linear
speeds of the robot.

From the images we can measure the robot heading with respect to the corridor guide-
lines and the distance to the central reference trajectory. We use a simple kinematic



4.3 Experimental Results 91

planner to control the robot’s position and orientation in the corridor, using the angular
velocity as the single degree of freedom.

Notice that the use of bird’s eye views of the ground plane simplifies both the extraction
of the corridor guidelines (e.g. the corridor has a constant width) and the computation of
the robot position and orientation errors, with respect to the corridor’s central path.

Hence, the robot is equipped to perform Topological Navigation relying on appear-
ance based methods and on the behavior for corridor following. This is a methodology
for traversing long paths. For local and precise navigation the robot uses Visual Path
Following as detailed in chapter 3. Combining these behaviours the robot can perform
missions covering extensive areas while achieving local accurate goals. In the following we
describe one such mission.

The mission starts in the Computer Vision Lab. Visual Path Following is used to
navigate inside the Lab, traverse the Lab’s door and drive the robot out into the corridor.
Once in the corridor, control is transferred to the Topological Navigation module, which
drives the robot all the way to the end of the corridor. At this position a new behaviour is
launched, consisting of the robot executing a 180 degree turn, after which the topological
navigation mode drives the robot back to the Lab entry point.

Figure 4.9: Experiment combining visual path following for door traversal and topological
navigation for corridor following.

During this backward trajectory we use the same image eigenspaces as were utilised
during the forward motion by simply rotating, in real-time, the acquired omni-directional
images by 180 degrees. Alternatively, we could use the image’s power spectrum or the
Zero Phase Representation [84]. Finally, once the robot is approximately located at the lab
entrance, control is passed to the Visual Path Following module. Immediately it locates
the visual landmarks and drives the robot through the door. It follows a pre-specified path
until the final goal position, well inside the lab, is reached. Figure 4.9 shows an image
sequence to relate the robot’s motion during this experiment.

In Figure 4.10(a) we used odometric readings from the best experiment to plot the
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robot trajectory. When returning to the laboratory, the uncertainty in odometry was ap-
proximately 0.5m. Thus, door traversal would not be possible without the use of visual
control. Figure 4.10(b), shows the actual robot trajectory, after using ground truth mea-
surements to correct the odometric estimates. The mission was successfully accomplished.
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Figure 4.10: A real world experiment combining Visual Path Following for door traversal
and Topological Navigation for long-distance goals. Odometry results before (a) and after
(b) the addition of ground truth measurements.

This integrated experiment shows that omni-directional images are advantageous for
navigation and support different representations suitable both for Topological Maps, when
navigating between distant environmental points, and Visual Path Following for accurate
path traversal. Additionally, we have described how they can help in coping with occlu-
sions, and with methods of achieving robustness against illumination changes.

4.4 Concluding Notes

We presented a method for the visual-based navigation of a mobile robot in indoor envi-
ronments, using an omni-directional camera as the sole sensor.

Our key observation is that different navigation methods and environmental repre-
sentations should be used for different problems, with distinct requirements in terms of
processing, accuracy, goals, etc.
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We distinguish between missions that involve traveling long distances, where the exact
trajectory is unimportant (e.g corridor following), as opposed to other cases where the
robot must accurately follow a pre-specified trajectory (e.g. door traversal). For these two
types of missions we presented two distinct paradigms: Topological Navigation and Visual
Path Following.

Topological Navigation relies on graphs that describe the topology of the environment.
The qualitative position of the robot on the graph is determined efficiently by comparing
the robot’s current view with previously learned images, using a low-dimensional subspace
representation of the input image set. At each node (landmark), a different navigation
behavior can be launched, such as entering a door or turning left.

Whenever the robot needs to move in cluttered environments or follow an exact path,
it resorts to Visual Path Following. In this case, tracked features are used in a closed loop
visual controller to ensure that the robot moves according to the desired trajectory.

Omni-directional images are used in these two navigation modes to build the necessary
environmental representations. For example, the Bird’s Eye Views of the ground floor
substantially simplify navigation problems by removing perspective effects.

Combining Topological Navigation and Visual Path Following is a powerful approach
that leads to an overall system which exhibits improved robustness, scalability and sim-
plicity.
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Chapter 5

Interactive Scene Modelling

We start by proposing a first method for 3D reconstruction of struc-
tured environments from an omnidirectional image, which is based on a
ground plane map identified by the user.
Then we use a generalised method, that reconstructs the scene from
single or multiple images, and permits a generic world relative recon-
struction frame. It is based on a reduced amount of user information, in
the form of 2D pixel coordinates, alignment and coplanarity properties
amongst subsets of the corresponding 3D points.
Just a few panoramic images are sufficient for building the 3D model, as
opposed to a larger number of “normal” images that would be required
to reconstruct the same scene [57, 96].

5.1 Introduction

The construction of scene models is a well known problem in the computer graphics and
in the computer vision communities. While in the former there is traditionally a strong
emphasis in using precise user-defined geometric and texture data, in the latter the em-
phasis is more on the direct use of images to automatically correspond and generate depth
or shape maps. Recently, many works started to combine with success both approaches
in a way well tuned for each purpose [19, 57, 15, 67, 23, 87, 97, 96].

Our motivation comes from the tele-operation of mobile robots. Given an image of a
structured environment and some user input regarding the geometry of the environment,
one can reconstruct the 3D scene for visualisation or for specifying actions of the robot.
The robot is equipped with an omnidirectional camera that provides a 360◦ view of the
environment in a single image. The wide field of view of omnidirectional vision sensors
makes them particularly well suited for fast environmental modelling.

The modelling we are interested in is concerned with obtaining 3D textured structures
representing the world around the robot. Hence, we divide the modelling in two steps: (i)
obtaining the structure and (ii) texture mapping.

The 3D Structure is represented as a set of 3D points forming the basis of a wireframe

95
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model of the scene. It is determined based on image observations and some limited user
input. As there is direct user intervention the process of obtaining the structure is termed
Interactive Reconstruction [96, 95, 97, 33].

The user input consists of 2D points localised in the image and of part of his knowledge
of parallelism or perpendicularity of lines and planes of the scene. Typically, the user will
identify some points in the omnidirectional images and indicate that some subsets of points
are collinear or coplanar.

The texture mapping step of the modelling process is performed after reconstruction.
Texture mapping takes as input the reconstructed structure and uses the projection model
for assigning, to each point of the 3D model, brightness (radiance) values retrieved from
the image.

Chapter organisation

Firstly we introduce a modelling method based on the ground-plane map. Then, we
present the general reconstruction method based on co-linearity and co-planarity prop-
erties, designed for the case of omnidirectional cameras. Finally we present our results
on interactive scene modelling based on single and multiple images. We present also an
application of interactive models on building human-robot interfaces.

5.2 A Map Based Modelling Method

In the case of structures described by floor-plans, 3D models can be extracted from om-
nidirectional images using the Bird’s Eye View. For example at a corridor-corner, see
Fig.5.1, the Bird’s Eye View shows directly the floor-plan and the user just needs to select
the relevant ground lines. In order to complete the model it is only necessary to find the
heights of the walls and the appropriate texture mapping.

However we are interested in using directly the omnidirectional images as their field
of view is larger and therefore the reconstructed models are enlarged too. A floor map
consisting of a set of points can be obtained from an omnidirectional image. After back-
projecting (detailed in chapter 2) and scaling the points to have constant height, the
resulting map is the same as extracted from a Bird’s Eye View. Once the floor-plan is
obtained, the reconstruction consists just in lifting the model to 3D. This requires knowing
the height of the walls in the same scale as that of the floor-plan.

The height of a wall can be computed from the direction of light-rays corresponding to
the imaged points of that wall, i.e. using again back-projection. Given the back-projection
vectors of two points on a vertical line of the wall, one point on the floor and the other on
the top, the wall top is found by scaling the respective vector to make equal the ground-
projections of both rays (note that the vector pointing to the ground point is already
correctly scaled as indicated by the floor plan).

To conclude, we obtain a reconstruction method where all image input comes directly
from the omnidirectional images. The user specifies points on the ground plane and on
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Figure 5.1: Map based reconstruction method. (Top left) Original omnidirectional image,
shown upside-down for simpler comparison with the next images. (Top right) The Bird’s
Eye View gives the floor-plan of the a corridors corner which is already a geometric model
of the scene. (Bottom) The 3D model is completed by specifying the wall heights.

the walls. Each wall encompasses points on the ground and points defining the wall
boundaries.

Summary of the proposed reconstruction algorithm:

1. User input: the user indicates planar surfaces representing walls and floor. Typi-
cally the user chooses a set of points and then defines polygons upon those points,
specifying which ones are on the ground plane.

2. Back-project all image points to be reconstructed. The result is a set of unit length
3D vectors.

3. Scale all vectors resulting from ground points to have a constant height. The camera
axis, z is assumed vertical and therefore ground points must have a constant z value.

4. For each wall determine, from its ground points, the distance to the camera and a
normal vector. Scale all wall points to be in a plane characterised by the distance
and the normal vector just determined.

Figure 5.2 shows a result of reconstruction. The input are ground points indicating
the corridor and corridor-end walls. A number of extra points indicate the wall-tops.

Even though we have not explicitly imposed the geometric properties of the scene,
namely orthogonality and parallelism among the walls, they are approximately retrieved
in the final reconstruction.
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Figure 5.2: Interactive 3D Model from an Omnidirectional Image.

One important observation about the modelling method just introduced is that back-
projection provides the same type of information as the Bird’s Eye View dewarping. After
back-projecting and scaling the ground points the resulting map is the same as extracted
from the Bird’s Eye View. It is interesting to note that the map based modelling method
was firstly envisaged for perspective images and then was transported to omnidirectional
images through the use of back-projection.

This approach shall be followed again in the next section, where we describe a modelling
method generalising the one just presented.

In the generalised method the user is free to set co-linearity and co-planarity properties
along any of the directions of the world coordinate system. The generalised method will
be the main subject of the remaining of the chapter.

5.3 Modelling Based on Alignment and Coplanarity Prop-
erties

The enlarged field of view of omnidirectional cameras makes them particularly well suited
for scene modelling. Just a few panoramic images are sufficient for obtaining a good
perception of the entire scene, as opposed to a larger number of “normal” images that
would be required to display the same scene [57, 96].

We present now a generalised reconstruction method based on co-linearity and co-
planarity properties. The user is free to those properties along any of the directions of the
world coordinate system. The 3D relationships are then combined at the same time for a
global solution weighting all data equally and therefore gaining extra robustness against
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user input noise. These are advantages relative to the map based method.
A world coordinate system is the most natural choice for observing geometric properties

such as parallelism or perpendicularity present in the scene structure. To integrate in a
straightforward manner those geometrical properties it is therefore convenient to formulate
the reconstruction problem in the desired world coordinate system, instead of using the
camera coordinate system.

We start defining the reconstruction reference frame and preparing the data for recon-
struction. The image points become as acquired by a pin-hole camera. Then we can use
the reconstruction algorithm of Grossmann et al. [41] designed for perspective images. To
complete the modelling we perform the texture mapping.

5.3.1 Back-projection and the Reference Frame

Prior to the reconstruction process, omnidirectional images are back-projected to a spher-
ical surface, from which perspective images are simple to extract. This is an automatic
process for most of the omnidirectional camera types [38], as it depends only on the omni-
directional camera parameters [33]. The goal of this section is to derive an image formation
model that is a pin-hole camera whose orientation is conveniently related with the world
structure.

Vanishing points, i.e. image points representing scene points at an infinite distance
to the camera [10], represent scene directions through which the reconstruction can be
conveniently done. A vanishing point is the intersection in the image of the projection of
parallel 3D lines. If one has two image lines parallel in 3D, defined by two points, AB and
CD, then the corresponding vanishing point r is:

r = (A×B) × (C ×D) (5.1)

where the points A,B,C and D are in homogeneous coordinates obtained according to the
back-projection Eq.(2.34). If more points are available in each line or more lines in each
set, least squares estimates replace the external products in Eq.(5.1) and more accurate
estimates are obtained for the vanishing point coordinates [96].

Given three (unit-norm) vanishing points, r1, r2 and r3, representing three world
orthogonal directions, it is possible to obtain perspective images in a reference frame built
on those directions using Eq.(2.35) with R = [r1 r2 r3].

The optical axis of our sensor, z, is in the vertical direction and is therefore aligned
with one of the most frequent (and representative) directions of lines in the scene. The
corresponding vanishing point in the reference frame defined by back-projection Eq.(2.34)
is simply [0 0 1]T , and the new reference frame, associated to the rotation matrix of
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Eq.(2.35), takes the form of a rotation about the z axis:

R =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 .

In what follows, we rotate the image so that the x and y axes of the camera frame
coincide with that of the world reference frame. One thus has, in Eq.(2.35),

R =

 1 0 0
0 1 0
0 0 1

 = [e1 e2 e3] (5.2)

where the ei form the canonical basis of 
3.

5.3.2 Reconstruction Algorithm

The reconstruction process aims at obtaining 3D data from image points and limited user
input. The user provides co-linearity and co-planarity properties of the scene. The user
should be able to specify the geometric properties in any of the most relevant directions
of the scene.

The algorithm of E. Grossmann et al [41, 42], targets and solves precisely this objective.
Their formulation works upon single or multiple images (viewpoints) and brings in addition
an algebraic procedure to test whether there is a single solution (up to a scale factor) to
the reconstruction problem. 3D relationships are combined at the same time for a global
solution weighting all data equally. We summarise here this algorithm in order to maintain
this chapter self-contained.

We have just shown that, for all practical effects, we can consider that the input
image is obtained by a pinhole camera aligned with the world reference frame. Chosen
the coordinate system, then the 3D points to estimate are precisely defined and their
relation with the image points may be written. Next it will be integrated the auxiliary
geometric information, which serves to determine what distinct coordinates are that will
be estimated.

Let p = [u v 1]T be the projection, in homogeneous coordinates, of a 3D point, P =
[Px Py Pz]T that we want to reconstruct. Then, if we consider a normalized camera [25],
whose orientation is represented by a 3 × 3 rotation matrix R, we have the following:

p = λRP (5.3)

where λ is a scaling factor. As is usual, we choose 0 as the origin of the coordinates for
reconstruction.

We can rewrite Eq.(5.3) as p×RP = 0. Representing the external product as a matrix
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product, denoting Sp as the Rodriguez matrix of p, we obtain:

SpRP = 03 (5.4)

which is a linear system in the coordinates of the 3D point. Generalising this system to
N points we again obtain a linear system:

A.P = 03N (5.5)

where A is block diagonal and P contains the 3N tridimensional coordinates that we wish
to locate:

A =


Sp1R

Sp2R
. . .

SpNR

 , P =


P1

P2

...
PN

 (5.6)

Thus, A is of size 3N × 3N . Since only two equations from the set defined by equation
(5.4) are independent, the co-rank of A is equal to the number of points N . As expected,
this shows that there is an unknown scale factor for each point.

Now, adding some limited user input, in the form of co-planarity or co-linearity point
constraints, a number of 3D coordinates become equal and thus the number of columns
of A may be reduced. As a simple example, if we have 5 points we have 5 × 3 distinct
coordinates, i.e. the number of columns of A. Now, if we impose the constraint that points
P1, P2, P3 are co-planar, with constant z value and points P4, P5 are co-linear, with a
constant (x, y) value, then coordinates P2z, P3z, P5x, P5y are dropped from the linear
system defined by equation (5.5). Thus, the total number of free coordinates is reduced
from the initial 15 to 11.

Given sufficient user input, the co-rank of A becomes 1 and thus it has a single (up to
scale) null vector P∗. The general form of the solution for Eq.(5.5) is thus :

P = λP∗ (5.7)

where λ is an arbitrary scale factor.
Equation (5.7) says that, even with a single view, there is no ambiguity in the re-

construction, other than that –well-known– of scale. Hence, an algebraic criterium for
detecting non single-block structures, i.e. structures with separated parts scaled differ-
ently, can be drawn directly on the co-rank of A: the user defined a single-block structure
if the co-rank of A is one. In practice A is full-rank due to the noise in the image points
indicated by the user. However, it is possible to construct a twin matrix of A, based
only on the (noiseless) geometrical properties input, also provided by the user, where the
co-rank criterium can still be applied [41].

The reconstruction algorithm is easily extended to the case of multiple cameras. As-
suming that there are additional cameras whose orientations are known relative to the
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first one (this is not a limitation since as usual the world frame is selected from vanishing
points), then the only novel data is the translation, t of each new camera relatively to the
first one:

p = λ(RP −Rt) (5.8)

where t is chosen to be zero for the first camera, as in the case of single images, and t is
represented by t1 . . . tj for j additional cameras.

Considering as an example two additional cameras and doing the same derivation done
for a single image then similar A and P are defined for each camera using Eq.(5.6) and the
problem has six new degrees of freedom corresponding to the two unknown translations
t1 and t2:

 A1

A2 −A2.12

A3 −A3.13




P1

P2

P3

t1

t2

 = 0 (5.9)

where 12 and 13 are matrices to stack the blocks of A2 and A3.
As before co-linearity and co-planarity properties reduce the co-rank of the matrix.

In addition, there will be frequent to observe the same point in different images. Each
one decreases three unknown point coordinates. When the co-rank is one, then there is a
single block structure and reconstruction is performed again up to a scale factor.

A concluding important point is that the reconstruction of the whole scene is obtained
in a single step.

Using the reconstruction method just presented, we build 3D geometric descriptions of
the scene. In order to complete the scene modelling we complement the geometric model
with texture mapping. This is described in the next section.

5.3.3 Texture Mapping

Texture mapping is the process of finding the brightness (radiance) value for each 3D point
of the world model. The radiance values are found in the omnidirectional image, given
the projection function applied to the 3D points. The projection function depends on the
type and specific parameters of each omnidirectional camera, as seen in the first chapter.

Since the world coordinate system, taken from the vanishing points, is not necessarily
coincident with the one of the camera, then the 3D points of the world need to be trans-
formed to the camera frame. This is done using the inverse of the rotation matrix built
from the vanishing directions (introduced in the beginning of the section).

In the case of multiple cameras, the reconstruction is carried out in the coordinate
system of the first camera. In order to find the projections of the reconstructed points in
every image it is necessary to transform the points to the local coordinate system. This
is achieved using the rotation matrices found a priori for each of the cameras and the
translation vectors vectors estimated in the reconstruction process.
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The resolution of the 3D model texture is chosen according to the image resolution.
Each 3D face projects approximately as a sector on the omnidirectional image and therefore
its arc-length is an estimate of the available data. Note that the arc-length varies in
accordance to the radius, being largest at the rim of the omnidirectional image. Usually
we take the middle radius which is a good compromise between resulting quality and
over-sampling.

In the case of reconstruction based on multiple images, where each wall comprises a
number of overlapping faces indicated by the user at different images, then the resolution
can be chosen from the closest image or as a weighted value among the values provided
by the various images.

5.4 Results

The scenario we are modelling is our own Institute. It consists of a typical indoor en-
vironment, with corridors, offices and laboratories. We used the omnidirectional camera
based on the spherical mirror (which is described in detail in section 2.2.3) mounted on
top of a mobile robot. We show results of the modelling method based on co-linearity and
co-planarity properties, based on single and multiple images.

Figure 5.3 shows an omnidirectional image and superposed user input. This input
consists of the 16 points shown, knowledge that sets of points belong to constant x, y

or z planes and that other sets belong to lines parallel to the x, y or z axes. The table
bellow the images details all the user-defined data. Planes orthogonal to the x and y

axes are in light gray and white respectively, and one horizontal plane is shown in dark
gray (the topmost horizontal plane is not shown as it would occlude the other planes).
The coordinates in the original image were transformed to the equivalent pin-hole model
coordinates and used for reconstruction.

Figure 5.4 shows the resulting texture-mapped reconstruction. This result is interest-
ing given that it required only a single image and limited user input to reconstruct the
surroundings of the sensor.

Figure 5.5 shows a reconstruction based on multiple images. A set of eight omnidi-
rectional images was used for user input and texture mapping. The images were taken
at the corridors corners and at the middle of the corridors-length. The images are shown
in appendix C. This is an example as the combination of multiple images permits the
modelling of large scenes.

In this section we presented results of interactive reconstruction based on omnidirec-
tional images. The omnidirectional images allowed to obtain global scene representations
using a reduced number of images, as compared to the number of standard limited field of
view images that would be necessary to cover the same areas. Interactive reconstruction
proved effective on obtaining 3D models of low textured scenes, which would be difficult
to obtain with conventional methods based on stereo or motion data. In the following
section, we present an application of the reconstructed scene models, namely building
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Figure 5.3: User-defined planes and lines. (Top-left) Original image with superposed
points and lines localised by the user. (Top-right) Planes orthogonal to the x, y and z
axis are shown in light gray, white, and dark gray respectively. Table: the numbers are
the indexes shown on the image. The first column indicates the axis to which the planes
are orthogonal and the lines are parallel.
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Figure 5.4: Interactive modelling based on co-planarity and co-linearity properties using
a single omnidirectional image. (Left) Reconstruction result, (right) view of textured
mapped 3D model.
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Figure 5.5: Interactive Reconstruction based on multiple Omnidirectional Images. (Top)
Reconstruction result, (middle) two views of the textured map model, (bottom) enlarged
view of one of the walls. A simple heuristic has been applied to remove the overlapping
among co-planar surfaces.

intuitive visual human-robot interfaces.

5.5 Application: Human Robot Interface

Once we had developed effective methods for precise navigation on pre-defined paths
and autonomous qualitative robot navigation along a topological map, we turned our
attention to developing an intuitive user interface from which to select subtasks. While
final experiments have yet to be undertaken, in this section we show how to construct this
interface.

Our setup is based on a mobile platform equipped with an omnidirectional camera,
as described for the navigation experiments, and in addition a radio modem for wireless
communications with a base station (see Figure 5.6). The radio link has low bandwidth,
close to one order of magnitude less than the necessary for live video. Considering in
addition exceptional peak loads of the network causing unpredicted delays, it is not possible
to guarantee a live-interaction with the robot. This is a reason for considering having scene
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models close to the user to help bridging communication delays.

Figure 5.6: The human robot interface is implemented over a wireless network. The robot
has the navigation skills described on previous chapters. The base station is dedicated to
the implementation of the interface.

Each omnidirectional image provides a rich scene description, which the user is free
to rotate. This provides a good understanding of the scene and a way to specify simple
targets. At the simplest level, there are three modes at which the operator can control
the robot:

1. Heading: Move the robot in a certain direction, e.g “go forward”, “turn left”.

2. Position: Go to a specified position, e.g. docking/parking.

3. Pose: Control position and orientation using a 3D model, e.g. “go to the third office
in the second corridor”.

The robot heading is easily specified by the user by simply clicking on the desired
direction of travel in a panoramic image. An immediate benefit of using omnidirectional
images is that every heading direction can be specified with a single command (see Figure
5.7 - left). This gives the operator a great deal of flexibility when deciding in what direction
the robot should travel while simultaneously allowing a speedy decision to be made. The
robot then follows the desired direction until it receives a new command from the user.
We note here that the operator does not specify (x, y) coordinates for the robot to follow.
The only goal of the interface is to provide enough information to allow the operator to
make a decision on the robot’s heading. When the operator is using this interface, the
Topological Navigation modality is used. Thus, there is a natural correspondence between
the design of the user interface and the action required of the robot.

In order to specify more complex missions, encompassing (x, y) locations, we chose a
new representation based on bird’s-eye views of the robot’s surroundings. In this repre-
sentation the user clicks a point which is a target location for the robot (see Figure 5.7 -
right). If the target location is within the region covered by the topological map, then the
robot uses the navigation tasks already available to move to the target point. Otherwise,
the user can add a new Visual Path Following task by choosing landmarks and via points
in the bird’s-eye view image. The way points are linearly interpolated by the path planner
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Figure 5.7: Tele-operation interfaces based on dewarped omnidirectional images. (Left-
top) To specify the target heading the robot is to follow, the operator simply clicks on the
desired direction in a panoramic image. (Left-bottom) The current and desired headings
from an outside point of view. (Right) A bird’s eye view of the robot’s surroundings allows
specifying xy locations.

module running on the robot. After definition, the path is then followed, by relying upon
self-localisation measurements relative to the landmarks.

Interactive models bring another degree of freedom. They give the observer in addition
the freedom in the pose. The user gains extra feeling and experience of local immersion
as interaction with the world-scene is generated on the base station and therefore is not
delayed by the communications, happens as a live event. See figure 5.8.

Given that the targets are specified on interactive models, i.e. models built and used
on the user side, they need to be translated as tasks that the robot understands. The
translation depends on the local world models and navigation sequences the robot has in
its database.

Most of the world that the robot knows is in the form of a topological map. In this case
the targets are images that the robot has in its database (topological map). The images
used to build the interactive model are nodes of the topological map. Thus, a fraction
of a distance on an interactive model is translated as the same fraction on a link of the
topological map.

At some points there are precise navigation requirements. Many of these points are
identified in the topological map and will be invoked automatically when travelling be-
tween nodes of the topological map. Therefore, many of the Visual Path Following tasks
performed are not asked explicitly by the user. However, if the user desires he may add
new Visual Path Following tasks. In that case the user chooses landmarks, navigates in
the interactive model and then asks the robot to follow the same trajectory.
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Figure 5.8: Tele-operation interface based on 3D models: (top) tele-operator view, (mid-
dle) robot view and (bottom) outside view.

5.6 Concluding Notes

Using a single-view reconstruction technique requiring limited user input, one obtains
a model of the environment (surroundings) of the robot that carries the sensor. The
main point in transporting the method for omnidirectional cameras, was the development
of a novel back-projection model for cameras modeled by the Unified Projection Model
(detailed in chapter 2). We have shown that our sensor equipped with a spherical mirror
can be approximately modelled by this projection model and consequently back-projection
can be performed with the developed generalised model.

The reconstruction method handles also multiple viewpoints to create large scene mod-
els. The reconstruction of a model encompassing four corridors has been shown. An appli-
cation of the interactive models has been devised. It is the specification of planar surfaces
where mosaicking can be performed to improve the quality of the data (e.g. texture
resolution). Preliminary results were shown.

Interactive modelling offers a simple procedure for building a 3D model of the scene
where a vehicle may operate. Even though the models do not contain very fine details,
they can provide the remote user of the robot with a sufficiently rich description of the
environment. The user can instruct the robot to move to desired position, simply by
manipulating the model to reach the desired view point. Such simple scene models can be
transmitted even with low bandwidth connections.

There are a number of ways to further apply and extend this work. We plan on
carrying out extended closed-loop control experiments verifying the applicability of our
navigation framework. Another research direction is that of automatically estimating
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geometric constraints that can be used for 3D reconstruction, hence keeping the user
intervention to a minimum.
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Chapter 6

Conclusions and Future Work

This chapter concludes the dissertation. We review the principal
components of our work, namely sensor, navigation modalities and
human-robot interface design. Then we discuss the individual and the
combined design of those components. Finally we establish a number of
directions for future work.

6.1 Summary

In this thesis we addressed the problem of mobile robot navigation based on omnidirec-
tional vision. Chapter 1 introduced the problem and presented motivations for exploring
a number of directions. In particular, motivations from the biological and robotics research
fields, shaped our approach to encompass three principal aspects: sensor, navigation and
human-robot interface design.

Chapter 2 detailed the design of omnidirectional vision sensors. Namely, we presented
projection models and design criteria for catadioptric omnidirectional cameras. We also
described how to obtain Panoramic and Bird’s Eye Views, which are dewarpings of omni-
directional images, that are useful for navigation tasks. The dewarpings can be obtained
directly by constant resolution cameras, for which we proposed an unified design method-
ology. We applied our design methodologies to build omnidirectional cameras based on
spherical and hyperbolic mirrors, and a system combining multiple constant resolution
properties that is based on a log-polar camera.

Then, in chapters 3 and 4, we introduced the navigation tasks. For local and pre-
cise navigation we proposed Visual Path Following. Self-localisation was identified as a
principal component and a number of methods were presented for computing the robot
pose. Visual Path Following was tested in real world settings with both docking and
door-crossing experiments being undertaken.

Topological Navigation was used for global and qualitative navigation. It relied on
appearance based methods to represent the environment. Scenes encompassing regions of
large non-uniform illumination change, may not be correctly represented by appearances
comprising only brightness values obtained at specific illuminations, and therefore the

111



112 Chapter 6. Conclusions and Future Work

robot may fail to self-localise. We propose the use of edge-based appearance representa-
tions on those regions. In order to have graceful localisation degradation, we have used
tolerant edge-shape comparison methods based on chamfer or Hausdorff distances.

An extended real world experiment was carried out, combining Topological Navigation
and Visual Path Following. The experiment started in a laboratory by undocking the robot
and crossing the door using Visual Path Following, then navigating along corridors using
Topological Navigation and finally coming-back to the docking position again using Visual
Path Following.

Finally, in chapter 5, we described interactive scene reconstruction based on omnidi-
rectional images. 3D models were obtained from omnidirectional images and limited user
input of geometrical nature. We proposed the use of a method designed for conventional
cameras with omnidirectional cameras for which a back-projection model was derived.
Back-projection allows us to transform an omnidirectional camera onto a very wide field-
of-view pin-hole camera. The reconstruction was tested in corridor environments using
single or multiple images. We also presented an application of the 3D models, namely a
visual human-robot interface.

The topics of sensor, navigation and human-robot interface design, summarised in the
last paragraphs, are naturally interrelated. In the following section we discuss how those
interrelations affected on the design options.

6.2 Discussion

Vision is becoming the sensor of choice for the navigation of mobile robots, mainly because
it can provide information on the world structure. This is convenient as compared to the
integration of internal information (odometry) which accumulates errors over time. Vision
also compares favorably with other sensors providing measurements of the world structure,
due to the rich amount of information provided.

Omnidirectional vision brings some additional advantages, such as longer feature track-
ings and simultaneous tracking at multiple disparate viewing directions. For example, in
the docking experiment, the mobile robot (chapter 3), tracking the landmark over the en-
tire trajectory, requires omnidirectional vision as the landmark moves relative to the robot
in a wide range of azimuthal angles. As another example, successful completion of the
door crossing experiment, relies on the tracking of features surrounding the sensor. These
types of experiments are not possible with limited field of view (conventional) cameras.
Even cameras equipped with pan-and-tilt mounting would be unable to perform the many
separate landmark trackings of our experiments.

Omnidirectional vision sensors have non-linear effects on the geometry that hinder
the application of conventional robust self-localisation methods. Therefore we chose to
augment, or design, our omnidirectional vision sensors to be capable of providing output
views (images) with simple geometries. Our sensors output Panoramic and Bird’s Eye
views that are images as obtained by cylindrical retinas or pin-hole cameras imaging the
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ground plane. Panoramic and Bird’s Eye views are useful for navigation, namely for
servoing tasks, as they make localisation a simple 2D rigid transformation estimation
problem.

Designing navigation modalities for the distinct tasks at hand is easier and more ef-
fective as compared to designing a single complex navigation mode [8]. Sensor design, as
referred, contributes additionally to simpler design of the navigation modalities. Our com-
bined navigation modalities, Visual Path Following and Topological Navigation, constitute
an effective approach to tasks containing both short paths to follow with high precision
and long paths to follow qualitatively. The experiment encompassing undocking / dock-
ing, door crossing and corridors navigation (chapter 4), is an illustration of a complex task
handled by our approach.

The navigation modalities we implemented are helpful for building human-robot in-
terfaces by providing navigation autonomy and therefore allowing high level commands.
The human operator does not need to continuously drive the robot with the joystick,
and is therefore free to concentrate his work on selecting target locations for the robot to
reach. Using 3D scene models in human-robot interfaces for commanding the robot is ad-
vantageous, comparing e.g. to teleoperation based on live-video, because of the obtained
independence to the turn-around communication delays.

Interactive reconstruction is an effective method to obtain the 3D scene models as
compared to conventional reconstruction methods, based on stereo or motion data. For
example the model of the corridor corner, in chapter 5, was built from a single image.
This constitutes a very difficult task for automatic reconstruction due to the low texture.
Omnidirectional images are interesting for reconstruction as they provide very wide views
of the scene which would otherwise involve many (conventional) images. Thus, the band-
width of the communication channel to the robot may be reduced. Hence, interactive
reconstruction based on omnidirectional images is a good solution for a human-robot in-
terface, as the communication channel to the robot is typically characterised to have a
very narrow bandwidth.

Concluding, when considering the whole system, (i) our vision sensing approach was
found useful and convenient because it provided world-structure information for naviga-
tion, (ii) the navigation modalities fulfill the purpose of semi-autonomous navigation by
providing autonomy while combining naturally with the human-robot interfaces, (iii) the
human-robot interfaces provide intuitive ways to set high level tasks, by combining limited
user input with the simple output of the sensor (images).

In summary, the synergetic design of the sensor, navigation and human-robot inter-
faces, contributes to an effective system making parsimonious use of both the sensor and
the computational resources.
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6.3 Directions for Future Work

The technical developments of the last few years allow the foreseeing of interesting re-
search and development directions for Omnidirectional Vision cameras. For example
micro-mirrors are a new form of obtaining variable shape mirrors and consequently to
obtain variable optics adequate for distinct tasks. In addition the introduction of digital
cameras is contributing not only to the enlargement of sensor resolution but also to the
freedom of selecting the resolution used. This makes possible variable sized regions of
interest with no compromise of resolution and advantageously directly provided by the
hardware. Therefore research on how to link sensing with the tasks at hand will be even
more relevant in the future.

In the Visual Path Following framework, we plan to research on automatic feature
selection to complement the manual initialisation methods and increase redundancy in the
feature space. This improves robustness to tracking failures or occlusions, and provides
scalable alternative trajectories.

Appearance based scene representations provide a good solution for qualitative nav-
igation. As the amount of data involved is large, an important issue is to find solutions
for representing growing scenarios while maintaining the representation continuity. We
plan to research on establishing new criteria for automatic control of the resolution of the
appearance representations along the world scene, i.e. robot working space.

On Interactive Scene Modelling, another research direction is that of automatically
estimating geometric constraints that can be used for 3D reconstruction, hence keeping
the user intervention to a minimum. In terms of our future work, we plan on using
large scene models obtained from the fusion of different models in order to extend the
information available to the user when using the human-robot interface.

Learning methodologies are promising tools for improving robot’s navigation capabil-
ities. In the navigation experiments described in the dissertation, the robot have been
instructed for new tasks using trajectories in the Bird’s Eye View images or images of the
topological maps, that is using the reference signals of the proposed navigation modalities.
Hence, the reference signals are currently the most natural way for learning new tasks.
Alternatively, we can involve once more the sensor and control design and thus augment
the learning space by using new navigation modalities. As a long term research, we plan
to study learning by instruction and by experience, for example by incorporating in the
robot imitation and exploring behaviours.

There are many challenges for building mobile robots. Of particular importance are
the navigation modules able to solve simple navigation tasks, the respective environmental
representations and the visual interfaces for simple and flexible human-robot interaction.

In order to approach the challenges, in this thesis we explored several aspects and
potential advantages of omnidirectional cameras over conventional cameras. We also de-
signed navigation modalities and visual interfaces based on the sensors and on the tasks
at hand, therefore considering parsimonious use of the available resources. The results
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obtained provide solid reasons as to our choice of using omnidirectional vision to sense the
environment, and on the approach to navigation and human-robot interface modalities.

We believe that in the future robots will be equipped with very general visual percep-
tion systems. Every new mobile robot will then cope easily with novel environments and,
as it happened with computers, every person will have their very own robot or what we
may term the personal service robot.
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Appendix A

SVAVISCA log-polar camera

In this section we briefly revise the characteristics of the SVAVISCA log-polar sensor
developed by DIST, University of Genova [64]. The log polar sensor is shown in Figure
A.1.

Figure A.1: General view of the SVAVISCA Log Polar Sensor (top). Detailed views of the
foveal (bottom-left) and retinal (bottom-right) regions.

Inspired by the resolution of the human retina, the log-polar sensor is divided into
two parts: the fovea and the retina. The fovea is the inner part of the sensor, with
uniform pixel density and a radius of ρ0 = 0.273mm. The retina is the outer part of the
sensor, consisting of a set of concentric circular rings, with a constant number of pixels,
whose resolution decays logarithmically towards the image periphery. The sensor main
specifications are summarized below:

• The fovea has 42 rings. The fovea has a constant pixel-size; the distribution of pixels
is such that we have 1 pixel in the first ring, 6 in the second, an then 12, 18, 24,
etc, until reaching the number of 252 pixels in the 42nd ring; The fovea radius is
ρ0 = 272.73µm;

• The retina has 110 rings, with 252 pixels each; The increase rate of pixel in the
retina is k = 1.02337;
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• The total number of pixels is 33.193 with 5.166 in the fovea; The minimum size
of pixel is 6.8 × 6.45µm2; In the fovea the minimum pixel height is 6.52 µm; The
diameter of sensor is ρmax = 7, 135.44µm.



Appendix B

Uncertainty at pose computation

In order to analyse the sensitivity of pose computations to the noise of the measurements,
we built a simulated setup where the robot and the landmark locations are fixed, but
the map of the landmarks, known a priori by the robot, is perturbed with additive noise.
Therefore, in our setup the observed bearings are indirectly corrupted by the additive
noise present in the map.

A set of disturbances to the map motivates a set of pose estimates, whose variance
finally indicates the pose computation sensitivity for each base landmark configuration.

We considered three landmark configurations:

mapk =

{[
0
−5

]
, 5

[
cos (−90◦ + αk)
sin (−90◦ + αk)

]
, 5

[
cos (−90◦ − αk)
sin (−90◦ − αk)

]}

where αk is 30◦, 174◦ or 120◦ respectively for k = 1...3.
All maps are disturbed using the same noise samples. The noise generated for the maps,

η depends on the distances to the landmarks1 and on a constant factor, α to introduce
intrinsic parameters of the visual system (α=0.01):

ηix , ηiy ∼ unif (−1/2, 1/2) .
∥∥∥[xi yi]

T
∥∥∥2

.α , i = 1...3.

The pose is computed using the method of Betke and Gurvits [5].
Figure B.1 shows the results of pose-computation for the three examples of maps

disturbed with noise. The last map, map3, characterised to be observer centred and to
have uniform angular distribution of the landmarks, motivates the smallest uncertainty
region in the pose-computation. Therefore it is experimentally verified that (i) pose-
computation depends on the structure of the landmarks and (ii) a uniform arrangement
of the landmarks is a good choice. The distribution of the landmarks around the observer
also indicates the need of an horizontal omnidirectional field of view, contrary to the one
provided with conventional cameras by itself.

Given that the configuration of the landmarks affects pose-computation uncertainty, a
1This is not relevant for the next example, since all landmarks are at the same distance to the observer,

but will for the later ones.
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Figure B.1: Localisation uncertainty for three configurations of landmarks. The smallest
uncertainty results from the equally-spaced azimuthal-angle configuration.

natural question arises whether it is possible to find an optimal configuration.
Since the observations comprise only bearings, the pose-computation problem remains

the same as long as the configuration of the landmarks is rotated rigidly around the
observer. Hence the uncertainty analysis of the pose computation is invariant to rotations
of the configuration of the landmarks. Therefore the bearing to the first landmark can be
defined arbitrary and thus one of the landmarks may be fixed.

Fixing one landmark, i.e. overcoming the invariance to rotation of the configuration,
several criteria of uncertainty minimization can still be drawn. The first criterium we
considered is formulated just in two degrees of freedom, namely the angles of two landmarks
(LM2 and LM3) relative to a fixed one (LM1). It works on the uncertainty ellipse which
we desired to be as small and close to a circle as possible. This is achieved looking for the
eigenvalues of the ellipse.

The minimization criterium just described is built over two degrees of freedom, namely
one for each of the two landmarks. Alternatively the two degrees of freedom may be used
in a single landmark, i.e. two of the landmarks become fixed while the third one is allowed
to move freely in the XY plane.

Fixed landmarks:[
x1

y1

]
=

[
0
−5

]
,

[
x2

y2

]
= 5

[
cos (−π/6 − π/2)
sin (−π/6 − π/2)

]
.
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Figure B.2: Optimal landmark configuration. (a) Through the optimisation procedure
the top-left landmark starts at the ∗ and ends at the + very close to the expected o
location. (b) Several starting positions of the top-left landmark yield the same resulting
final location.

Performed minimization:

(x∗3, y
∗
3) = arg min

(x3, y3)
s.t. |λ1 − λ2| = 0

√
λ2

1 − λ2
2 , λ1, λ2 = eigenvalues (R) .

With the possibility of varying the distance between the landmark and the observer the

factor
∥∥∥[xi yi]

T
∥∥∥2

becomes relevant. This factor directly affects the disturbances / noise
in the map (see previously shown expression for the ηij .).

Figure B.2 shows several map optimisation results for the case of two fixed landmarks
and one free in the plane. It shows the convergence of the optimisation to the situation
where the landmarks become angularly equi-spaced around the observer and at a constant
distance: the third landmark goes to the circle centred in the observer with the radius
given by the common distance of the other landmarks to the observer. This observation
further motivates the use of omnidirectional images for navigation and localisation.
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Appendix C

Set of Images for the All-corridors
Reconstruction

Figure C.1 shows the base set of images used for the four corridors modelling. The images
were taken at half-lengths and corners of the corridors.

Figure C.1: Set of images used for the reconstruction of the four corridors model.
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[59] J. Kos̆ecká, Visually guided navigation, Proc. Int. Symp. Intelligent Robotic Systems
(Lisbon Portugal), July 1996, pp. 301–308.

[60] A. Kochan, Helpmate to ease hospital delivery and collection tasks, and assist with
security, Industrial Robot: An International Journal 24 (1997), no. 3, 226–228.

[61] D. Koller, K. Daniilidis, and H.-H. Nagel, Model-based object tracking in monocular
image sequences of road traffic scenes, International Journal of Computer Vision 10

(1993), no. 3, 257–281.

[62] A. Kosaka and A. Kak, Fast vision-guided mobile robot navigation using modelbased
reasoning and prediction of uncertainties, CVGIP: Image Understanding 56 (1992),
no. 3, 271– 329.

[63] B. Kuipers, Modeling spatial knowledge, Cognitive Science 2 (1978), 129–153.

[64] LIRA Lab, Document on specification, Tech. report, Esprit Project n. 31951 -
SVAVISCA - available at http://www.lira.dist.unige.it - SVAVISCA - GIOTTO
Home Page, May 1999.

[65] J. J. Leonard and H. F. Durrant-Whyte, Mobile robot localization by tracking geo-
metric beacons, IEEE Trans. on Robotics and Automation 7 (1991), no. 3, 376–382.

[66] S. Li, S. Tsuji, and A. Hayashi, Qualitative representation of outdoor environment
along route, Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recog-
nition, 1996, pp. 177–180.

[67] D. Liebowitz, A. Criminisi, and A. Zisserman, Creating architectural models from
images, Proceedings EuroGraphics (vol.18), 1999, pp. 39–50.

[68] L. J. Lin, T. R. Hancock, and J. S. Judd, A robust landmark-based system for vehicle
location using low-bandwidth vision, Robotics and Autonomous Systems 25 (1998),
19–32.



130 BIBLIOGRAPHY

[69] H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two
projections, Nature 293 (1981), 133–135.

[70] David G. Lowe, Robust model-based motion tracking through the integration of search
and estimation, International Journal of Computer Vision 8 (1992), no. 2, 113–122.

[71] C. Madsen and C. Andersen, Optimal landmark selection for triangulation of robot
position, J. Robotics and Autonomous Systems 13 (1998), no. 4, 277–292.

[72] Y. Matsumoto, M. Inaba, and H. Inoue, Visual navigation using view-sequenced route
representation, Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 83–88.

[73] B. McBride, Panoramic cameras time line, www page,
http://panphoto.com/TimeLine.html.

[74] H. Murase and S. K. Nayar, Visual learning and recognition of 3d objects from
appearance, International Journal of Computer Vision 14 (1995), no. 1, 5–24.

[75] S. Nayar and V. Peri, Folded catadioptric camera, IEEE Int. Conf. Computer Vision
and Pattern Recognition (Fort Collins, CO), June 1999, pp. 23–25.

[76] S. K. Nayar, Catadioptric image formation, Proc. of the DARPA Image Understand-
ing Workshop (New Orleans, LA, USA), May 1997, pp. 1431–1437.

[77] , Catadioptric omnidirectional camera, Proc. IEEE Conf. Computer Vision
and Pattern Recognition (Puerto Rico), June 1997, pp. 482–488.

[78] , Omnidirectional video camera, Proc. of the DARPA Image Understanding
Workshop (New Orleans, LA, USA), May 1997.

[79] R. Nelson and J. Aloimonos, Finding motion parameters from spherical motion fields
(or the advantage of having eyes in the back of your head), Biological Cybernetics
58 (1988), 261–273.

[80] W. Nelson, Continuous-curvature paths for autonomous vehicles, Proc. Int. Conf. on
Robotics and Automation, vol.3, 1989, pp. 1260–1264.

[81] S. A. Nene and S. K. Nayar, Stereo with mirrors, ICCV’97, 1997.

[82] S. Oh and E. Hall, Guidance of a mobile robot using an omnidirectional vision
navigation system, Proc. of the Society of Photo-Optical Instrumentation Engineers,
SPIE (1987), no. 852, 288–300.

[83] M. Ollis, H. Herman, and S. Singh, Analysis and design of panoramic stereo us-
ing equi-angular pixel cameras, Tech. report, Carnegie Mellon University Robotics
Institute, TR CMU-RI-TR-99-04, 1999, comes from web.



BIBLIOGRAPHY 131

[84] T. Pajdla and V. Hlavac, Zero phase representation of panoramic images for image
based localization, 8th Inter. Conf. on Computer Analysis of Images and Patterns
CAIP’99, 1999.

[85] V. Peri and S. K. Nayar, Generation of perspective and panoramic video from omni-
directional video, Proc. DARPA Image Understanding Workshop, 1997, pp. 243–246.

[86] D. Rees, Panoramic television viewing system, us patent 3 505 465, postscript file,
April 1970.

[87] D. Robertson and R. Cipolla, An interactive system for constraint-based modelling,
BMVC (vol2), 2000, pp. 536–545.

[88] W. Rucklidge, Efficient visual recognition using the hausdorff distance, Lecture Notes
in Computer Science, vol. 1173, Springer-Verlag, 1996.

[89] J. Santos-Victor and G. Sandini, Visual behaviors for docking, Computer Vision and
Image Understanding 67 (1997), no. 3, 223–238.

[90] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in au-
tonomous navigation : From bees to robots, Int. J. Computer Vision 14 (1995), no. 2,
159–177.

[91] J. Santos-Victor, R. Vassallo, and H. J. Schneebeli, Topological maps for visual
navigation, Proc. Int. Conf. Computer Vision Systems, 1999, pp. 21–36.

[92] B. Schatz, S. Chameron, G. Beugnon, and T. S. Collett, The use of path integration
to guide route learning ants, Nature 399 (1999), 769–772.

[93] J. Shi and C. Tomasi, Good features to track, Proc. of the IEEE Int. Conference on
Computer Vision and Pattern Recognition, June 1994, pp. 593–600.

[94] M. Spetsakis and J. Aloimonos, Structure from motion using line correspondences,
International Journal of Computer Vision 4 (1990), no. 3, 171–183.

[95] P. Sturm, Critical motion sequences for monocular self-calibration and uncalibrated
euclidean reconstruction, IEEE Conference on Computer Vision and Patttern Recog-
nition (Puerto Rico), June 1997.

[96] , A method for 3d reconstruction of piecewise planar objects from single
panoramic images, 1st International IEEE Workshop on Omnidirectional Vision at
CVPR, 2000, pp. 119–126.

[97] P. Sturm and S. Maybank, A method for interactive 3d reconstruction of piecewise
planar objects from single images, British Machine Vision Conference, 1999, pp. 265–
274.



132 BIBLIOGRAPHY

[98] V. Sundareswaran, P. Bouthemy, and F. Chaumette, Active camera self-orientation
using dynamic image parameters., Proc. of the 3rd. European Conference on Com-
puter Vision (Stockholm, Sweden), 1994.
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