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Resumo

Este trabalho adiciona o conceito de objecto ao sistema de atencéo baixo-
nivel do robot humanoide iCub. Os objectos sdo definidos como conjuntos
de pontos-chave SIFT. Quando o robot encontra um objecto desconhecido,
a uma distancia pequena dos seus olhos, este guarda o conjunto de pontos-
chave existentes a pouca distancia, usando para isso a percepcdo de
profundidade. Quando objectos previamente guardados séo vistos pelo
robot, sdo reconhecidos e mapeados em um sistema de coordenadas
egocéntrico. Este mapeamento é persistente no sentido que a posi¢cao dos
objectos e sua identidade permanecem em memdria mesmo quando estes
ndo se encontram no campo de visdo do robot. Os pontos-chaves sao
guardados e reconhecidos de forma totalmente automética. Este trabalho
estabelece as fundaces para ligar o sistema de atencdo baixo-nivel com a
informacéo alto-nivel, orientada a objectos, proveniente de utilizadores
humanos.

Palavras-Chave: Reconhecimento de Objectos, Céalculo de
Profundidade; Visdo Stereo; Mapa de Saliéncia.



Abstract

This work adds the concept of object to an existent low-level attention system
of the humanoid robot iCub. The objects are defined as clusters of SIFT vi-
sual features. When the robot first encounters an unknown object, found to be
within a certain (small) distance from its eyes, it stores a cluster of the features
present within an interval about that distance, using depth perception. When-
ever a previously stored object crosses the robot'’s field of view again, it is rec-
ognized and mapped into an egocentrical frame of reference. This mapping is
persistent, in the sense that its positions are kept even when the objects are not
in the robot’s field of view. Features are stored and recognized in a bottom-up
fashion. This work creates the foundation for a way of linking the bottom-up at-
tention system with top-down, object-oriented information provided by humans.

Keywords: Object Recognition, Depth Perception; Stereo Computer Vi-
sion; Salience Map
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Chapter 1

INTRODUCTION

“There is an uncertainty relationship between truth and clarity” -
Niels Bohr

For humanoid social robots to autonomously interact with our human structured
environments, they must be endowed with the capacity of perceiving objects as
such, as separate entities of the environment. However, robot sensory appa-
ratuses only provide raw sensory data. Taking vision as a sensor, how can it
bridge the gap between raw pixels and the concept of objects? Moreover, how
can it realize their relative positions within the surrounding environment, even
when they are temporarily out of the cameras field of view?

The system presented here addresses these problems, by taking a bottom-
up, developmental approach. The developed module builds upon an existing
low-level attention system [1]. That work provides a salience map with respect
to a robot-centric coordinate system (ego-sphere). This saliency map, together
with a inhibition of return mechanism (IOR), allows the robot to saccade from
salient point to salient point. However, these salience points correspond to
preattentive features, e.g., movement, color, and shape, not incorporating the
concept of object.

The goal of this work is to endow the robot with the capability of learning and
recognizing objects, mapping them in its surroundings, and thus enabling the
robot to change its attention focus between recognized objects. By integrating
this capability into the existing architecture, the attention module will be able
to acknowledge the salience of known objects, because they are recognized
as such. Moreover, the capability of recognizing objects per si paves the way
for higher level modules, to implement complex cognitive functions, such as
language, linking symbols to actual physical things in the environment.

So, although the practical objective of this work is to enable a robot to look
at what we consider being important objects, the ultimate goal is to study cogni-
tion. Cognition is the mental process of knowing, including processes such as
perception, awareness, reasoning and judgment. Although since before 1965's
TV series and movies, like “Lost in Space”, science-fiction has for many years
presented us with robots that can navigate their environments, recognizing and
manipulating objects, robots these days are still not truly cognizant. With this



work we aim to come one step closer to that reality. A reality that in practical
terms will mean a deeper involvement of robots in our lives, taking over repet-
itive or dangerous task, assisting our elderly and or simply providing friendly
company and barter as communications become smoother and smoother be-
tween humans and robots.

There are at least two major ways of approaching cognition: the top-down
approach, and the bottom-up one. With the top-down approach we start with
the deliberative levels [2] and go down from there until we reach the raw sen-
sors levels. In the Bottom-Up approach [3] we start with perception, extracting
ever more abstract information from the data until we reach the deliberative
levels. In this work we build upon the Bottom-Up approach, our goal being to
lay another brick on this approach, creating an abstraction level just above the
vision primitives’ level, introducing symbols in the architecture where before
there was only pixel values and per-pixel saliency metrics.

Neuroscience and robotics have had closing bonds over the years, as the
second provides the first with models in which to test theories, and the first
provides the second with insights in how to help robots interact with their en-
vironments. With our work we are creating yet another model that will help
robots interact with their environment and at the same time give grounds for
neuroscience to delve further in the realms of robotics.

The robot considered here is the iCub humanoid robot'. However, just the
head and torso modules were employed in the experimental part of this work.
While the head has 6 degrees of freedom, the torso is fixed. Being the coordi-
nate system anchored to the torso, it is a robot-centered coordinate system of
the world.

This introduction gives the motivation for this work and presents an overview
of the problem at hand and how it was generally solved. This then sets the
stage for the actual presentation of the solution developed in this master thesis.

1.1 Modeling Space

To model space, and to fulfill the goal of helping an agent commute automati-
cally its attention focus from recognized object to recognized object, we chose
to model the environment as a salience map [4]. We project the surrounding
space and objects into a sphere centered in the neck of the robot, an egocentric
sphere or ego-sphere, as defined in [1] (Figure 1.1).

A spatial model for the robot is here understood as a model representing
the environment surrounding it, namely the known objects, together with their
physical positions relative to the robot.

In this work we add to the spatial saliency map implemented in [1] and
endow the system with an interpretation of its surroundings. The system now
maps known visual objects, so it can know where they are after looking away.
Instead of the short-time memory of the previous works [1] [4], the system
remembers where important objects are at longer time scales.

We implemented an algorithm to automatically store in a database new
objects that are close to the eyes of the robot (the cameras). To do so, we

Thttp://www.robotcub.org/



Figure 1.1: Ego-sphere : a spherical map of the surroundings; Horizontal axis:

azimuth; Vertical axis: elevation.

compute a depth map [5] [6] of the image to determine if something is in close
proximity and under the robot’s scrutiny. If so, its representation is stored to a
database to be later remembered and recognized.

We chose the Scale Invariant Feature Transform (SIFT) [7] algorithm to
enact our recognition. We also used this algorithm to match corresponding
points in pairs of stereo images, thus computing the disparity or depth of these
points. By using this algorithm to detect distance we defined a new object as a
cluster of SIFT features in close proximity to the cameras, while already stored
objects are detected continuously in the input images by the SIFT algorithm.
Finally, the recognized objects in the robots field of vision are inserted in the
egocentric map.

In the area of implemented robot architectures that recognize objects in the
surrounding very little is published. In [8] a robot in an office environment uses
eight colors and size (in pixels) to describe everyday objects on top of desks.
In this work we implement a richer way of describing objects.

1.2 Contributions

The novel contribution of this work is:
e The use of SIFT features to calculate disparity;
e Integration of the open source modules SIFT, and ego-sphere;

e Addition of an Object Map to the ego-sphere’s Visual Map and Auditory
Map.

1.3 Structure

In the next chapter we shall describe our spatial model in a general sense,
leaving out the implementation details that are discussed at length in the third



chapter. Then, in the forth chapter, we describe an experiment in which the
functioning of our work is illustrated and evaluated. Finally, we finish with our
conclusions and future work.



Chapter 2

ARCHITECTURE

In this chapter we describe the modular architecture employed.
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Visual Map
Audio Map
TOR Map

egoSphere || Salience Filters

w

attentionSeletion controlGaze

Figure 2.1: Previous system architecture: Salience filters pre-process the im-
age; the ego-sphere aggregates the visual and sound saliency information into
a multimodal ego-centric frame of reference; the attentionSelection picks the
maximum from the ego-sphere; and the controlGaze sets the robot in motion

to look at that maximum.

Previously, Jonas et. al. introduced the architecture, displayed in Figure 2.1.
It has several interconnected modules to form a sensing-deliberation-actuation
chain. It is motivated on the Itti and Koch model [9] where stimuli from various
sources is represented and combined in a single salience map. Likewise, the
salience filters process the visual information to produce salience maps that
emphasize several aspects of the image, i.e, color, movement, intensity, and
the presence of faces. These maps are combined, in the ego-sphere, with



sound stimuli captured by the robot’s microphones to form a single, multimodal,
egocentric saliency map. In addition, the ego-sphere keeps a short-memory of
the previously looked upon positions, in the form of an inhibition-of-return map
(IOR) [1]. This map has values from one to zero, where one means unvisited,
and zero implies previous exploration. The IOR map multiplies pixel-by-pixel
the final egocentric saliency map, reducing the interest levels of the already
observed locations. This map “decays” (returns to one) over time, therefore
a region of inhibition (a circular area of zero values) is added to the map only
after a pre-set number of frames of continuous scrutiny by the robot, preventing
a rapid come-back of the robot’s attention focus due to the decay. The resulting
egocentric map is processed and its maximum is selected as the point that
wins the robots attention next. Finally the robot’s visual focus is switched to the
new selected attention point.

The resulting behavior is the capability of the robot to fully explore its envi-
ronment, in a natural [10] non-preprogrammed fashion, without being stuck on
the absolute saliency maxima of the salience maps.

left right
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Figure 2.2: System architecture, after introducing the modules presented here

(red border): object recognition and depth perception.

Our work, highlighted in Figure 2.2, adds a level of abstraction to the ar-
chitecture: the concept of object, i.e., the agent can now learn what are and
recognize objects. But since this work is to be used by an autonomous agent,
the problem of automatizing the decision of when and what to save to the



database, arises. This problem is solved by using a special depth filter that
calculates the depth, and segments the object in the image. When an object is
detected in close proximity it triggers the creation of a new object in the mem-
ory, if it's not already in memory.

The previous architecture provides the robot with a rapid decaying pictoral
map of the surroundings, which prompts the robot to a natural exploratory be-
havior. Our addition adds general objects to the list of attention-capturing things
by the robot. We expect the robot to still look at, for instance, rapid movement,
or sound sources, and when the environment is relatively calm, we expect it to
return its attention to the known objects in the area.

Although at the present there is no input to describe the objects stored,
the objects are stored just with a “label” that is simply a number (the order of
appearance). When the robot has the possibility to ask humans around him
for names to the objects it is discovering and storing, new possibilities for the
creation of other modules that rely on the existence of these named objects
arise.

In sum, our work receives images from two stereo cameras, detects and
learns new objects in proximity, recognizes already learnt objects in the left im-
age (arbitrarily chosen, either left or right would do) and outputs the positions of
the objects recognized in the present frame. This is seamlessly integrated with
the present architecture by adding salience peaks in the ego-sphere where
objects are located. By doing so we take advantage of the implemented ar-
chitecture, allowing the robot to look at the objects it has learnt so far. Next
chapter provides the reader with the details on how this new capabilities were
implemented.



Chapter 3

IMPLEMENTATION

In this chapter we provide the details to perform object segmentation and
recognition.

Many different approaches have been used in computer vision to enable
recognition, for instance, receptive field histograms has been used successfully
by Schiele [11], although it does not work with cluttered or occluded images.
Many have benefited from David Lowe’s Scale Invariant Feature Transform
(SIFT) [7], while others have used Speeded Up Robust Features (SURF) [12],
a technique that is similar to the SIFT algorithm in many ways, faster to com-
pute and match, albeit with lower recognition rates. Our approach, the SIFT
algorithm, solves both problems of object segmentation and recognition. We
chose SIFT for reasons such as invariance to scale and excelling in cluttered
or occluded environments (as long as three SIFT features are detected, the
object is recognized). And while the SURF algorithm is faster and performs
generally well, SIFT’s recognition results are still superior [13]. The setback
about using this algorithm is that it takes a lot of processing time, the most
efficient implementations are not able to run it in real time (24 (FPS)) [14].

3.1 SIFT

SIFT [7] is an algorithm that extracts, features from an image. These features
are not only scale invariant features, but also affine transformations invariant
(e.g., rotations invariant). Furthermore, they are robust to changes in lighting,
robust to non-extreme projective transformations, robust up to 90% occlusion
and are minimally affected by noise.

To find points that are repeatably detected and scale-invariant David Lowe
looked for the extrema of a space invariant to scale (called scale-space). This
scale-space is approximated by the computation of the Laplacian of the image
convoluted with a gaussian function of variable scale and is divided into oc-
taves (doublings of the scale). The Laplacian is then also approximated by the
efficient calculation of the difference of such convoluted images, as illustrated
in Figure 3.1.
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Figure 3.1: For each octave of scale space, the initial image is repeatedly
convolved with Gaussians to produce the set of scale space images shown on
the left. Adjacent Gaussian images are subtracted to produce the difference-
of-Gaussian images on the right. After each octave, the Gaussian image is

down-sampled by a factor of 2, and the process repeated.

After having detected the extrema of the generated Difference-of-Gaussians,
these points are encoded into rotation invariant, robust to changes in illumina-
tion, robust to projective changes in perspective, and robust to noise descrip-
tors. These descriptors are created by first computing the gradient magnitude
and orientation at each image sample point in a region around the keypoint
location, as shown on the left of Figure 3.2. These are weighted by a Gaussian
window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as
shown on the right of Figure 3.2, with the length of each arrow corresponding
to the sum of the gradient magnitudes near that direction within the region. The
figure shows a 4x4 descriptor array computed from an 16x16 set of samples.

The descriptors are made rotation invariant by computing an orientation
to the detected extrema from local image pixel differences, and then making
all the gradient orientations relative to this point orientation. Furthermore, the
recognition is made robust up to 90% occlusion by storing the relative positions
between detected points and needing only the detection of three such points
for reliable recognition.

We use the SIFT algorithm to enable the recognition in our system because
of all these powerful characteristics. Due to the nature of the SIFT features, its
second drawback is the inability to extract features from a texture-less object,
as is shown in Figure 3.3, few or no features, in yellow dots, are found in areas
with homogeneous color, such as on the table, on the ground, or on the wall.
Moreover, since this algorithm was designed to work with planar surfaces, to
be able to correctly recognize 3D objects, several snapshots of the objects



Image Gradients Key Point Descriptor

Figure 3.2: A keypoint descriptor is computed from the histogram of the gradi-
ent directions in 16x16 windows, shown on the left, weighted with by a gaus-
sian, indicated by the overlaid circle, centered in the detected maximum or min-
imum, forming a 128 dimension vector from the orientation histograms shown

on the right.

in different perspectives need to be taken. An object is represented in the
database by several sets of SIFT features, together with the relative positions
of the features to each other. Each set represents a different snapshot of the
same object.

The SIFT Algorithm was created by Lowe [7] but the implementation was
not publicly disclosed. The actual implementation of the SIFT algorithm, in
C++, that we use in our work, was written by Hess'.

3.2 Depth Perception

The problem of automatizing the decision of when and what to save to the
database is solved by calculating the depth, in the image, of the extracted fea-
tures. For that, we assume two parallel and horizontally aligned cameras, de-
scribed by the pin-hole model[15]. To calculate depth we require the knowledge
of these necessary camera parameters:

¢ the focal length f;
¢ the distance between the two cameras g;
e and how much one pixel corresponds in distance in the camera sensor ~.

Also, we need to correctly match a point of the environment, seen in both stereo
images, with pixel coordinates (z1,y1) in the first image and (z2,ys2) in the
second. The point’s coordinates in the camera references are (X1, Y3, Z;) for

Thttp://web.engr.oregonstate.edu/~hess/
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Figure 3.3: Example of SIFT feature extraction; the yellow dots correspond to

the extracted features positions.

the first camera and (X5, Y5, Z,) for the second. Armed with all this information
we can calculate how far away the matched point is (depth Z) by the following
equation, illustrated in Figure 3.2:

Iy =To=12

men o oz —z- 1B
{'Yl"QZf)Z(j = f{?(xlX—gm)ﬂ—f(Xl X2) _Z_“Y(ﬂh—xz) (3.1)

Therefore the common way to determine depth, with two stereo cameras,
is by calculating disparity. Disparity is simply the subtraction of the 2D coordi-
nates of corresponding points (from one image to the other, in this work from
the left to right). A dense disparity map consists in a matrix, of the size of the
images, in which the value of each coordinate indicates how many pixels had to
be shifted until we find the match of our current pixel in the other image. Some
ways to match corresponding points can be: pixel by pixel probabilistic match-
ing with a Bayesian formulation [6]; or histogram matching of the neighborhood
of the pixel [16].

Our first attempt to use depth perception used the algorithm described in [6]
to compute a dense disparity map. This approach gives a detail of one pixel
resolution illustrated in Figure 3.5(a) and 3.5(b), that we do not require. To de-
termine if there is one very close region or blob, and then segment it, a sparse
disparity map is sufficient. So, after determining that our first approach required
very fine calibration of the cameras and rectification of the stereo images, we
decided to pursue the sparse disparity map approach.

The SIFT features, with their invariance and robustness, enact a way to
solve the problem of matching corresponding points in stereo images. We

11
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Figure 3.4: Simple camera model to calculate depth, f: focal distance, 5:
distance separating the parallel cameras, ~: pixel-to-meter ratio in the cam-
era sensors, (x1,y1): pixel coordinates of point we wish to calculate depth, Z:
depth.

(a) Original image (b) Depth-Perception image

Figure 3.5: Depth-Perception results after exceptional camera calibration

generate a sparse disparity map by extracting the SIFT features from stereo
images, and look for matches between both sets. Usually the SIFT features
are matched to the database of stored features belonging to objects. Here we
are using the same mechanism but using one stereo image as the database
where the other stereo image tries to find SIFT matches. Assuming that the
robot’s eyes are roughly aligned in the horizontal (i.e., mis-alignment of under
30 pixels) we compute the disparity between matching features from the pair
of stereo images. Matches that have a high horizontal disparity are assumed
to be part of an object in close proximity to the robot’s face and matches with
low horizontal disparity belong to the background. Matches with high vertical
disparity or negative horizontal disparity are outliers, i.e., bad matches.

12



Using a batch of real images, sampled in Figure 3.6, we get the following
results summarized in Table 3.1 and fully displayed in Tables A.1 and A.2 of
the Appendix. In the first column we have the number of features detected in
the left image, in the second column we display the number of matches found
between the left image features and the right image features, while on the third
column we show how many of those matches were bad matches, outliers. In
the last row we display the percentage of matches and outliers, averaged for
all images.

Table 3.1: Summary of Disparity Matching results.

images features | matches | outliers

total 27564 9545 165

average % - 341 0,6

Figure 3.6: Sample of images used to generate the Disparity Match results.

13



We operate on the assumption that the agent will have arms and hands,
and will use them to manipulate objects when exploring its environment. With
that in mind, the threshold distance to save new objects is related to the arms
length, or the expected object position relative to the agents eyes when a new
object is being inspected by the robot.

Comparing the extracted features of different images in different resolutions,
a threshold for the horizontal disparity 7}, was found empirically to be the width
of the image divided by 6,4. Moreover, the vertical threshold T, to determine
outliers was also empirically found to be the height of the image divided by 16.

If the matches between detected features are “close enough” (each match
having its horizontal disparity greater than the threshold), the group is stored
to the database as a new object. Only the features that are correctly matched
between the two stereo images with high horizontal disparities are stored, be-
cause only these features are believed to belong to the close object. For in-
stance, the features from the background being seen by a hole in the object
are discarded.

Figure 3.7(a) and Figure 3.7(b) show in blue crosses the features that are
correctly matched between the two stereo images as being the same, and
therefore store in the database as a new object (only if not recognized as part
of an already known object).

3.3 Recognition

To decide upon the presence of an object in the image, SIFT relies on a voting
mechanism that is implemented by a Hough transform. Defining pose as the
position, rotation and scale of an object, each match votes on an object-pose
pair in the image. The Hough transform is computed to identify clusters of
matches belonging to the same object. Finally, a verification through least-
mean-squares is conducted for consistent pose parameters along all matches
(verifying if the matches found have correct relative positions). This part of the
algorithm presented in [7] was implemented by Damas [17].

After experimenting with several objects, having the robot store them to
the database and then holding them farther and farther away, the algorithm
is able to recognize them until roughly two meters away, when the number of
extracted features is too few for object recognition. As an example, in the learn-
ing process many features are stored in the database, shown in blue crosses
in Figure 3.8(a). But when the object is far away only a few are extracted, as
shown in yellow in Figure 3.8(b). Fewer still, depicted in purple filled squares,
are matched to the database. But still, those few are enough to recognize the
object (encased in a red frame) in Figure 3.8(b). Also after experimentation
with several resolutions, we confirmed that lower resolutions lead to less fea-
tures being extracted and consequently poorer recognition, but, on the other
hand, the higher the resolution the longer the extraction process takes. We,
then, used images of 640x480 resolution as a trade-off between this two is-
sues. Table 3.2 illustrates this trade-off, in the first column we have the image
resolution, in the second column we display an average of the number of fea-
tures extracted from such image sizes, and in the third column we show the
average of the time these experiments took taken on a same computer.

14
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(a) Leftimage

(b) Right image

Figure 3.7: Matching SIFT features in a stereo images: features in yellow;

matched features in blue.

3.4 Database and Mapping

New objects are stored into a database, which links object identifiers (labels)
to sets of SIFT features. Each set contains a label, if the labels are the same
then the different sets are considered to be of the same object. When known

15



Table 3.2: Image size versus SIFT processing time and number of features.

Image size || features | time (ms)

320x240 1201 800

640x480 4474 1470

800x600 6828 1920

1024x780 10769 2630

objects are encountered in the environment, their positions are mapped into
the ego-sphere [1]. Thus, an object representation is stored in the database,
while their positions, whenever recognized by the robot, are represented solely
in the ego-sphere.

The egocentric saliency map used for attention selection is obtained from
the composition of several specialized maps: a visual map (M,;s), containing
saliency information extracted from visual features (e.g., motion, color), and
an auditory map (M,.4), obtained from sound stimuli captured by the robot’s
microphones [1]. These maps cover the entire space surrounding the robot with
a spherical coordinate system (azimuth ¥ € [—180°;180°] and elevation ¢ €
[-90°;90°]). The saliency information stored in these maps is continuously
decayed (M,;s(k + 1) = dyis.M,i5(k)), according to a forgetting factor (d,;s =
dawq = 0,95). This factor coupled with a maximum frame-rate of 20 FPS, yields
a half-life of less than a second, 14 frames.

In order to integrate the system described in this paper with the attention
selection mechanism, the recognized objects are projected onto a third map
(an object map M,;;). This map, combined with the other two, contributes for
the ego-centric saliency map (Mg, = max(My;s, Maud, Moy;)- As the others,
this map is also subject to a continuous decay of its information, albeit with
a much longer forgetting factor (d.»; = 0,9995). How long should the robot
remember where objects of interest were? How long before such information
is unreliable? Those are not trivial questions to answer. Therefore, to fulfill
the practical goal of this thesis, of helping a robot switch its attention focus
from recognized object to recognized object, even when such objects are not
continuously in the robots field of view, this simple decaying memory with such
a forgetting factor, that gives an half-life of little over one minute, is sufficient.

To verify the repeatability of the mapping coordinates (x, y) of an object in
the image to coordinates in the ego-sphere (9, ) several experiments were
conducted. An object was left on the table in front of the robot, while the robot’s
head slowly turned. From these experiments we conclude that when the ob-
ject is away from the limits of the image, it is repeatedly mapped to the same
location with an error under one degree elevation and two degrees azimuth.
When on the verge of leaving the image, the error in mapping jumps up to two
degrees elevation and four degrees azimuth.

The objects are mapped into the ego-sphere as gaussian peaks in salience.
To cope with the mapping error, the gaussian parameters used were oy = 30
and o, = 15.
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(a) Object stored to database; Yellow: SIFT features,

blue: SIFT features stored to the database

(b) Red: recognized object, yellow: SIFT features, purple: SIFT fea-
tures matched with the database

Figure 3.8: Recognition of stored object in the environment
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Chapter 4

RESULTS

In this chapter we describe the resultant robot behavior due to the contribution
of our work.

One of the experiments set up to show the correct recognition and mapping
consisted of:

e Showing two objects, in turn, for it to learn and store to the database, a
book and a magazine cover shown in Figure 4.1;

e Then setting them up in front of him separated wide enough so that when
the robot’s attention would be on one of this objects its field of vision will
not cover the second object as well;

e Observing the resulting behavior.

Figure 4.1: Stored objects in database.
The robot, upon recognizing the both previously known objects in Figure 4.2(a),

adds interest peaks in the ego-sphere [1] (Figure 4.2(b)). The Attention Selec-
tion [1] module tells the robot where to look, and it fixes its attention in the first
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object (Figure 4.2(c)). After some time of intense scrutiny a inhibition region
is added to the Inhibition-of-Return map [1] (Figure 4.2(e)) which nudges the
attention selector to continue exploring the environment of interesting points,
the other recognized objects. The Attention Selection module then indicates
the robot to look at the now most salient region in the memory, the second blob
in the ego-sphere, the second object in Figure 4.2(f).

(a) Recognizing objects in the environment.  (b) Mapping recognized objects into ego-
Red: recognized first object, green: recog-  sphere salience peaks. White: recognized
nized second object objects

(c) Looking at maximum salience point of  (d) Becoming “bored” of staring at the same
the ego-sphere. Red: recognized object point after some time. Black: Inhibition-of-
return blob

(e) Inhibiting salience of visited location.  (f) Looking at current maximum salience
White: salience peaks point of the ego-sphere. Red: recognized

object

Figure 4.2: Example of the exploratory behavior.
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Chapter 5

CONCLUSION

The goal of the presented work was to endow the robot with the capability of
learning and recognizing objects, mapping them in its surroundings, and thus
enabling the robot to change its attention focus between recognized objects.

We implemented a spatial model of the environment, we mapped the rec-
ognized objects of the surroundings and introduced salience peaks on the ego-
sphere [1] in their positions. The robot iCub now also explores its environment
focusing its attention in the recognizable objects around him.

With the long-term memory implemented, the objective of making this spa-
tial model non-dependent on the robot’s field of vision is achieved. As depicted
in the results, the robot returns its focus to previously observed objects that
were at the moment not in its line of sight.

By using the SIFT algorithm we were able to make this work as robust as
currently possible to adverse visibility conditions.

Many recognition algorithms, i.e., [18] [19] [8], to detect certain shapes and
certain colors, are already in use. We conclude that the SIFT algorithm chosen
to enact recognition complements this many other algorithms in the way that it
is unable to detect simple colored objets like a bland blue ball, while success-
fully recognizing what was before out of recognition-reach: complex shapes
and drawings.

This work made a novel contribution by using the SIFT features to calculate
disparity and by integrating the SIFT algorithm with the egosphere to recognize
objects. We also improved the ego-sphere by creating a new map only for
objects.

The software implementation has been made publicly available in the iCub
software repository.

5.1 Future Work

Although the objectives were achieved, we were not able to make this algorithm
work in real-time due to the heavy computation required for the extraction of
SIFT features and matching.
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Since it's publication in 2004, the SITF algorithm has enjoyed vast popu-
larity. Many implementations have been developed, and many of these have
focused on speed. Still, the algorithm itself is as efficient as it can be and does
not suffer further improvement. Therefore, in the future, to decrease the high
computation time of extracting the SIFT features, the obvious approach is to
use a Graphics Processing Unit, as was done by Wu [14].

The current method of choosing which features to save, finding the matches
between the two stereo images and then calculating their disparity, only cap-
tures, as shown in Table 3.1, roughly one third of the features extracted. Before
trying this method we experimented with dense depth perception maps, trying
to extract “big”, “close” blobs. The state-of-the-art in dense depth perception
was found to be very noisy and needing exceptional calibration of the cameras.
We gave up on the dense disparity maps because of these reasons but in the
future, if depth-perception can be reliably and easily calculated for two stereo
cameras, it could wield better results for us, because it would enable us to save
all the extracted features on the “close blob”, the close object.

At the present time we only use the positions of the recognized objects in
our work. The also provided names of the objects, and average disparity of the
recognized matched features, offer the foundation for plenty ideas for future
work. One avenue is tracking specific objects in the environment. Another, is
the search for specific objects in the surroundings to ascertain its existence or
not. Additionally, the estimation of how far an object actually is, in absolute
terms, is another avenue of possible work to be done.

Finally, during the course of this work it was verified the need to save several
snapshots of an 3D object of its different sides to be able to correctly recognize
it in any given position or orientation. As this was verified, a difficulty arose:
“how does the agent know that this new snapshot of an object is a new side of
an already known thing?” Three avenues for future work open:

e One, if the robot has arms, while exploring its environment it is expected
to pick up objects and closely examine them. Then when saving the first
view of a new object in its grasp, it will know it is grasping the new object
and will rotate it itself, always knowing it has not relinquished hold of its
source of interest and saving the following snapshots under the same
name tag as the first snapshot.

e The second possibility is using the algorithm developed by Stosic[20], that
while tracking a set of features in a 3D object that is rotating, recognizes
the rotation movement. So, when the agent saves the firstimage of a new
object it would expect it to rotate, would track the already known features
for that movement, and would save new snapshots at every X angles of
rotation.

e A third and complementary way to both previous solutions is the agent
simply asking the users. Take the example of the RobotCub project, the
objective is to create the robotic equivalent of a 2 year-old child. A child
doesn’t learn by herself alone, she needs teachers, or at least someone
to answer when she asks “what is this?”. Under this light, more work
could be done integrating a speech synthesizer to allow the agent to ac-
tually ask this questions out loud. And additionally a speech recognizer to
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enable the users to simple answer the agents questions out loud as well,
allowing a smoother integration of the robot in its social environment.
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Appendix A

Application Manual

A.1 Software Architecture

Our work has two image input ports, the two stereo images, port “left” for the
left input image, port “right” for the right input image.

Two image output ports, port “left” for the left input image overlaid with col-
ored borders where objects were recognized, port “right” for an image of the
last stored object to the database.

One bottle output port, with the information regarding the positions in the
image of the recognized objects. An example of a bottle follows:

e (size 2) (encoders 23.0 -19.5 12.4 -12.4 0.0 0.3) (time 3129831)
(0 (label objectl) (x 145) (y 234) (azimuth 13.4) (elevation -10.7))
(1 (label blue-ball)(x 45) (y 24) (azimuth 3.4) (elevation -19.7))
This bottle has the following configuration:

(size “int”) number of recognized objects in present image;

(encoders “double” “double” “double” “double” “double” “double” ) the
encoder values of the robot’s neck and eyes at the moment of the

image frame;
(time “double”) the result of cvGetTime();

(’n” “bottle”) numbered bottle containing the coordinates and name of

an object found;

(label “string”) label of the object;

(x “int”) X coordinate of the object in the image;
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(y “int”) Y coordinate of the object in the image;

(azimuth “double”) Azimuth angle in the ego-sphere, correspondent

to the point (X,Y) in the camera frame.

(elevation “double”) Elevation angle in the ego-sphere, correspondent

to the point (X,Y) in the camera frame.

and so on for all the objects recognized in the image.

A.1.1  Application

To integrate this work with the motor control and “attention selector” of iCub, a
new input port was added to the ego-sphere [1]. This port receives the bottle
generated by our work, which then leads to adding to the ego-sphere ’blobs’
where the recognized objects are located.

All the start up scripts for the modules and the GUI are disclosed in the iCub
repository.

To set up this application, first start, in the iCub computer at $/ICUB_ROOT
/ app / attention_objects the camera drivers and the motor controls:

e startCamLeft.bat;
e startCamRight.bat;
e startControlGaze.bat.

After compiling iCub, at $/CUB_ROQOT/app/atention_objects, start these mod-
ules preferably in different machines:

e the camCalib” for the right camera, startCamCalibRight.sh;
e the camCalib” for the left camera, startCamCalibLeft.sh;

e the ego-shere” and attentionSelection” module, startEgoSphere.sh and
startAttentionSelection.sh in the same machine.

Then, in the $ICUB_ROOT/src/SiftObjectRepresentation folder, after com-
piling, run the “SiftObjectRepresentation” module, with this command line:

YARP Disparity_SiftCV --name chica/sift --file $ICUB_ROOT / app /
attention_ objects / conf / icubEyes.ini | rdin --name chica/sift

The ports can be either connected manually or using a GUI. In the manual
case:

e Connect the output ports of the camCalib modules to the input ports of
the SiftObjectRepresentation module;

e Connect the output bottle port of the SiftObjectRepresentation module to
the input bottle port of the ego-sphere.

In the GUI case, in $/CUB_ROQT/app/attention_objects start it with start-
Gui.bat and connect the ports with mouse clicks.
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A1.2 SIFT

All the parameters that can be adjusted in the SIFT algorithm described in [7]
are defined in siftRH.h.
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Table A.1: Disparity Matching results.

image sifts matches outliers
bola_azul_a 412 43 1
bola_azul_b 404 102 3
bola_azul_c 482 152 2
bola_azul d 577 224 3
bola_azul_e 600 265 2
bola_azul f 606 274 2
bola_azul g 634 300 3
bola_a 332 61 3
bola_b 494 99 2
bola_c 545 120 3
bola_d 615 161 2
bola_e 575 178 3
bola_f 626 191 8
bola_g 623 243 3
bola_h 640 244 6
dario_a 362 92 3
dario_b 409 138 3
dario_c 463 161 5
dario_d 513 208 1
dario_e 548 208 2
dario_f 558 251 2
icubTIME_a 362 155 7
icubTIME_b 367 158 2
icubTIME_c 430 187 4
icubTIME_d 461 216 8
total 27564 9545 165
average % - 34,1 0,6
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Table A.2: Disparity Matching results.

image sifts matches outliers

icubTIME e 477 200 3
icubTIME f 477 206 5
icubTIME_g 471 184 4
luso_a 444 23 1
luso_b 546 71 4
luso_c 565 119 3
luso_d 581 198 1
luso_e 681 219 2
luso_f 716 265 6
luso_g 659 269 4
luso_h 636 232 8
luso.i 621 262 3

retinas_a 695 179 10
retinas_b 806 250 2
retinas_c 752 267 4
retinas_d 747 272 1
retinas_e 749 253 3
retinas_f 778 264 4
retinas_g 746 312 2
retinas_h 724 272 3
retinas._i 712 268 2
retinas_j 657 250 3
retinas_k 686 279 4

total 27564 9545 165

average % - 34,1 0,6
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