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Abstract

In order to carry out complex tasks robots need to extract information
from the environment they operate in. Vision is probably the richest sensor
employed in current robotic systems, due to the possibility of measuring a
great diversity of features in the environment, e.g., colors, distances, textures
and shapes. Omnidirectional vision cameras provide the additional benefit
of an enlarged field of view.

In the context of semi-structured scenarios, as is the example of the
RoboCup Middle Size League, the particular nature of the objects and their
motions can be exploited to allow computer vision methods to work reliably
and in real-time: objects are known to have specific colors and shapes, and
motion follows the laws of physics. Color, shape and motion will be used in
this thesis to develop a robust 3D object tracking system for autonomous
robots equipped with one dioptric or catadioptric omnidirectional camera.

This thesis addresses three main problems in the context of 3D object
tracking: (i) how to relate object’s 3D shape and position information with
the acquired 2D images; (ii) how to obtain measurements from the images
taking into account the colors of objects and background; and (iii) how to
integrate temporal information taking into account the laws of physics. We
show that Particle Filtering methods constitute an adequate framework for
addressing consistently all these problems.

The proposed architecture provides an efficient and reliable methodol-
ogy to perform 3D target tracking for robots equipped with one omnidirec-
tional camera. The accuracy and precision of the algorithm were tested in a
RoboCup Middle Size League scenario, with static and moving targets, us-
ing either a catadioptric or a dioptric omnidirectional camera. The real-time
capabilities of the system were also evaluated.

As a result of this work two papers were accepted in refereed international
conferences: [38] and [39].
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Riassunto

0.1 Introduzione

I robot sono sistemi controllati elettronicamente, in grado di interagire at-
traverso percezione e azione col mondo che li circonda; usano sensori per
acquisire informazioni sull’ambiente e attuatori per compiere azioni. I robot
sono definiti autonomi quando possono svolgere gli incarichi che sono loro
assegnati senza la necessità di un intervento umano.

Una classe di sensori comunemente impiegata nella robotica, tipicamente
con compiti di autolocalizzazione e navigazione, è quella delle telecamere
omnidirezionali, cioè telecamere che hanno una ampiezza di campo visivo
molto grande. Il vantaggio di questo tipo di telecamera, rispetto a quelle
convenzionali, con funzione di proiezione prospettica, è quello di acquisire
informazioni su una porzione maggiore dello spazio che circonda il robot. Le
telecamere proiettano i raggi di luce provenienti dall’ambiente su un sensore
di immagine, un piano di celle CCD o CMOS. Esso converte l’informazione
luminosa in cariche elettriche, formando l’immagine digitale. A seconda
della modalità con la quale la luce è proiettata sul sensore di immagine,
le telecamere sono classificate come diottriche (quelle per cui la proiezione
avviene solo tramite diffrazione) o catadiottriche (quelle per cui la proiezione
avviene tramite riflessione e diffrazione). Uno svantaggio delle telecamere
omnidirezionali rispetto alle convenzionali sta nel fatto che le immagini che
producono sono soggette a forte distorsione, questo può costringere all’uso
di algoritmi non standard per l’identificazione e l’inseguimento di oggetti.
Un altro problema particolarmente evidente nel tracking con telecamere om-
nidirezionali è che l’oggetto inseguito, immerso in una scena dinamica, può
presentare nell’immagine occlusioni, sovrapposizioni e, in generale, ambi-
guità.

Questa tesi presenta un sistema di inseguimento 3D basato su particle
filter, per robot autonomi equipaggiati con telecamere omnidirezionali. Il
sistema di inseguimento è progettato per funzionare in un ambiente parzial-
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mente strutturato, in cui ogni oggetto abbia un proprio colore distintivo, ma
nel quale l’illuminazione sia variabile, come quello della RoboCup Middle
Size League (MSL). Le ipotesi del filtro rappresentano posizione e velocità
tridimensionali dell’oggetto inseguito, la funzione di verosimiglianza si basa
su colore e forma dell’oggetto.

0.2 Descrizione del sistema

Abbiamo progettato e implementato un sistema di inseguimento robusto per
robot autonomi equipaggiati con una telecamera omnidirezionale, diottrica
oppure catadiottrica.

Usiamo un particle filter per stimare a ogni istante la posizione e la ve-
locità tridimensionali di un oggetto, date le osservazioni prese negli istanti di
tempo precedenti e una funzione di densità di probabilità iniziale. In questa
tesi consideriamo solo oggetti rotazionalmente simmetrici, ma il metodo può
essere facilmente esteso perchè funzioni con oggetti rigidi di forma arbitraria,
includendo la stima sull’orientazione e la velocità di rotazione.

I particle filters usano una rappresentazione basata su campioni della
funzione di densità di probabilità; ogni campione è chiamato particella op-
pure ipotesi. Per calcolare iterativamente la stima di posizione e velocità
dell’oggetto inseguito, è necessario modellare probabilisticamente sia la sua
dinamica di moto che la maniera in cui calcoliamo la verosimiglianza di una
particella.

Per calcolare l’approssimazione della funzione di densità di probabilità a
posteriori, gli algoritmi di inseguimento funzionano tipicamente in tre passi:

1. Previsione - calcola una approssimazione di p(xt | y1:t−1) , muovendo
ogni particella come indicato dal modello di movimento;

2. Aggiornamento - il peso di ogni particella i è aggiornato usando la
verosimiglianza p(yt | x(i)

t ):

w
(i)
t ∝ w

(i)
t−1p(yt | x(i)

t ) (1)

3. Resampling (ricampionamento) - le particelle con un peso alto sono
replicate, mentre quelle con un peso basso sono dimenticate.

Per caratterizzare la dinamica dell’oggetto usiamo un modello autore-
gressivo a velocità costante: a ogni istante di tempo la velocità delle parti-
celle è aggiornata sommando a essa un rumore di accelerazione. La posizione
delle particelle è aggiornata, in funzione della velocità che le caratterizzava
nell’istante precedente e dell’accelerazione.



Abbiamo progettato un modello di osservazione per associare un valore
di verosimiglianza a una posizione ipotetica, dato il modello dell’oggetto
inseguito, una immagine acquisita dalla telecamera omnidirezionale e il cor-
rispondente modello di proiezione della telecamera.

Nel corso del lavoro usiamo due telecamere omnidirezionali: una cata-
diottrica (si veda la Figura 1a) e una diottrica (si veda la Figura 2a). La
telecamera catadiottrica è costituita da una telecamera prospettica di fronte
alla quale è posto uno specchio, il cui profilo è stato progettato perchè il sis-
tema finale produca una vista a risoluzione costante del pavimento. Per
modellare esattamente questa telecamera sarebbe necessario usare un gene-
rico Catadioptric Projection Model (CPM) (Figura 1b), che tiene conto dello
specifico profilo dello specchio. Dato che questo modello esatto è non lineare
e non è esprimibile in forma chiusa, usiamo due modelli di proiezione ap-
prossimati: lo Unified Projection Model (UPM) (Figura 1c) e il Perspective
Projection Model (PPM), che è un caso particolare dell’UPM. La telecamera
omnidirezionale diottrica (fish-eye) è semplicemente una telecamera con una
lente fish-eye, che le conferisce un’apertura di campo di 185◦. Per modellarla
usiamo l’Equidistance Projection Model (EPM) (Figura 2b).

Ognuno dei modelli di proiezione impiegato deve essere calibrato (si veda
la Figura 3) prima di essere usato. I valori dei suoi parametri sono ottenuti
minimizzando l’errore di backprojection. Vengono effettuate due proiezioni
di un insieme di punti tridimensionali sull’immagine, una prioeizione è fatta
fisicamente, usando la telecamera, mentre l’altra è effettuata tramite il mo-
dello. L’errore di backprojection è semplicemente la media quadratica delle
distanze tra i punti proiettati con i due sistemi.

Gli oggetti inseguiti dal sistema sono caratterizzati dalla propria forma
tridimensionale, dalla dimesione e dal colore. Modelliamo la forma tridi-
mensionale degli oggetti con forme geometriche semplificate, mentre il loro
colore è modellato con un istogramma di colore, il quale è costruito in una
fase di impostazione del sistema, anteriore al tracking. L’istogramma di
colore è costruito basandosi su alcune proiezioni dell’oggetto sull’immagine,
acquisite in condizioni di illuminazione e posizioni diverse.

I passi per associare un valore di verosimiglianza a una ipotesi sono:

• Proiezione del modello di forma tridimensionale sul piano dell’imma-
gine. Il risultato sono due insiemi di pixel, uno su ciascun lato del
contorno che l’oggetto seguito proietterebbe se si trovasse esattamente
nella posizione ipotetica.

Per ottenere i due insiemi di pixel, il modello della forma è traslato e
ruotato affinchè si trovi nella posizione ipotetica. La rotazione è resa
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Figure 1: (a) Telecamera omnidirezionale catadiottrica. (b) Il generico modello di

proiezione catadiottrico: Catadioptric Projection Model. (c) Il modello di proiezione

per telecamere centrali: Unified Projection Model.



(a) (b)

Figure 2: (a) Telecamera omnidirezionale diottrica, si noti la lente fisheye. (b) Il modello

di proiezione Equidistance Projection Model.

(a) (b)

Figure 3: (a) Immagine usata per la calibrazione. (b) Risultato della calibrazione: punti

proiettati dalla telecamera (croci blu), punti proiettati usando il modello di proiezione

non calibrato (cerchi verdi) e usando il modello con i valori dei parametri ottenuti con

la calibrazione (cerchi rossi) - le frecce indicano l’effetto della calibrazione su quattro

punti.



necessaria dal fatto che usiamo un modello semplificato della forma
3D, il quale ci permette di proiettare solo i punti 3D che andranno a
formare il contorno della proiezione dell’oggetto.

Per determinare i due insiemi di pixel usiamo uno di due metodi: il
primo metodo è basato sulle B-spline e su distanze misurate nell’im-
magine, mentre l’altro indivua in 3D i punti che verranno proiettati
all’interno e all’esterno del contorno ipotetico (si veda il Capitolo 4
per i dettagli sui due metodi).

La proiezione dei punti tridimensionali verso i punti bidimensionali
dell’immagine avviene attraverso l’applicazione del modello di proie-
zione scelto.

• Costruzione di due istogrammi di colore, che caratterizzano il colore
dell’immagine nell’intorno interno ed esterno del contorno proiettato.

Usiamo istogrammi nello spazio colore HSI (Hue, Saturation, Inten-
sity) con 12 × 12 × 4 bin nell’implementazione Matlab. Nell’imple-
mentazione C++, invece, usiamo lo spazio colore YUV e 4 × 8 × 8
bin. In entrambi i casi usiamo un numero di bin per il canale che
codifica l’informazione sull’intensità luminosa minore del numero dei
bin usati per codificare l’informazione degli altri canali. Questa scelta
serve a conferire robustezza al sistema rispetto ai cambiamenti di il-
luminazione. Trascurare completamente l’informazione sull’intensità
luminosa ci avrebbe impedito di inseguire oggetti bianchi o neri.

• Calcolo della verosimiglianza in funzione della similarità tra coppie di
istogrammi di colore.

Calcoliamo la similarità tra due istogrammi con la metrica di Bhat-
tacharyya. Maggiore la similarità tra l’istogramma che modella l’og-
getto da inseguire e quello che descrive il colore dell’immagine all’in-
terno del contorno proiettato, maggiore la verosimiglianza dell’ipotesi.
Minore la similarità tra i due istogrammi che descrivono il colore
dell’immagine ai due lati del contorno proiettato, maggiore la vero-
simiglianza. La prima di queste due regole in pratica significa che
associamo una verosimiglianza alta a contorni che hanno al loro in-
terno colori simili a quello dell’oggetto inseguito. La seconda significa
che associamo una alta verosimiglianza a contorni nel cui intorno si
trova una transizione cromatica (o di luminosità). Usiamo un coeffi-
ciente per pesare l’influenza delle due regole sulla funzione di verosi-
miglianza. Nella Figura 4 sono rappresentati i contorni proiettati da
una palla, in tre diverse posizioni ipotetiche, su un’immagine acquisita



Figure 4: Tre contorni ipotetici proiettati sull’immagine. In questa discussione in-

dichiamo per bervità con: “colore all’interno (o all’esterno) di un contorno” il co-

lore all’interno (o all’esterno) del contorno, in prossimità dello stesso. Il contorno A

ha una bassa verosimiglianza, a causa della grande differenza tra il modello di colore

dell’oggetto e il colore all’interno del contorno (il colore all’interno del contorno non è

arancione) e una grande similarità tra il colore ai due lati del del contorno. Il contorno

C è associato con una verosimiglianza media, perchè il modello di colore dell’oggetto e

il colore all’interno del contorno sono simili, ma i colori ai due lati del contorno sono

simili. Il contorno B ha una alta verosimiglianza, in quanto il colore all’interno del

contorno è simile al modello di colore della palla e i colori ai due lati del contorno sono

diversi.

col sistema catadiottrico. Viene mostrato come la funzione di verosi-
miglianza privilegi l’ipotesi col contorno più simile a quello della palla
presente nell’immagine. Questo metodo, comparato con altri che si
basano sulla estrazione dei contorni, è più robousto dato che riesce a
gestire anche contorni sfumati, che sono frequenti negli ambienti di-
namici.

Per inizializzare il particle filter usiamo due metodi: (i) impostiamo la
funzione di densità di probabilità iniziale secondo una Gaussiana con un’alta
varianza, centrata su una stima fatta a mano della posizione e velocità ini-
ziale dell’oggetto inseguito, oppure (ii) selezioniamo una posizione tridimen-
sionale in base a una identificazione bidimensionale dell’oggetto e usiamo
questa come come media della Gaussiana (si veda il Capitolo 5 per maggiori
informazioni).



0.3 Risultati sperimentali e direzioni di ricerca

Abbiamo sviluppato sia un’implementazione del sistema in Matlab, che una
in C++ basata sulla libreria Integrated Performance Primitives (IPP) della
Intel. Abbiamo eseguito diversi esperimenti, nell’ambiente della RoboCup
MSL, per verificare l’accuratezza e la precisione del sistema di inseguimento
proposto.

Abbiamo eseguito diversi inseguimenti su sequenze di immagini acquisite
con la telecamera omnidirezionale catadiottrica. Usando il modello di pro-
iezione UPM, abbiamo inseguito una palla in una sequenza di immagini
in cui essa scendeva lungo una rampa, una palla lungo una traiettoria con
cambiamenti repentini della direzione di moto (rimbalzi sul campo), si veda
la Figura 5 e un robot lungo una traiettoria sul pavimento. Gli insegui-
menti della palla mostrano la robustezza del metodo rispetto a motion blur
e rumore del sensore di immagine (Figura 6a e 6b).

Sempre nella configurazione con telecamera catadiottrica, abbiamo ese-
guito un esperimento per misurare l’accuratezza del sistema proposto: abbi-
amo posto una palla in diverse posizioni attorno al robot e misurato l’errore
nella localizzazione ottenuta col nostro metodo, rispetto alla posizione reale.

Abbiamo comparato i risultati di inseguimento e localizzazione ottenuti
usando due diversi modelli del sensore catadiottrico, UPM e PPM, verifi-
cando che PPM fornisce prestazioni simili a UPM per accuratezza e preci-
sione, ma offre il vantaggio di un costo computazionale meno elevato.

Abbiamo inoltre inseguito una palla in una sequenza di immagini ac-
quisita con la configurazione diottrica del sensore omnidirezionale, verifi-
cando la robustezza del sistema contro le occlusioni (si veda la Figura 6c) e
la sua capacità di funzionare in tempo reale (29fps su un processore Pentium
4 a 2.6GHz).

In futuro intendiamo estendere il sistema rendendolo in grado di inseguire
più oggetti contemporaneamente. Vogliamo sperimentare l’uso di modelli di
movimento multipli, per esempio uno che descriva il moto di una palla che
rotola liberamente sul pavimento e un altro che descriva il comportamento
della palla in presenza di un urto. Intendiamo inoltre sfruttare la carat-
teristica del sistema di avere un vettore di stato con le coordinate spaziali
dell’oggetto inseguito, usando modelli di movimento basati sulle leggi della
fisica (per esempio applicando l’accelerazione di gravità agli oggetti che non
sono in contatto con il suolo). Esprimeremo le coordinate dell’oggetto in
un sistema di riferimento inerziale. Per far questo useremo la ego-motion
compensation: applicheremo il movimento effettuato dal robot, al contrario,
sulle particelle del filtro.



(a)

(b)

Figure 5: (a) Palla che scende lungo una rampa: i dieci percorsi risultanti da dieci

esecuzioni dell’algoritmo sulla stessa sequenza di immagini. Le dieci linee blu con

punti rossi rappresentano le dieci traiettorie tridimensionali stimate, le linee blu sono

le proiezioni di queste traiettorie sul piano di terra e su quello laterale. (b) Palla

rimbalzante: stesso tipo di grafico per le traiettorie stimate nella sequenza di immagini

nella quale la palla rimbalza sul pavimento.



(a) (b) (c)

Figure 6: Ingrandimenti di alcune immagini in cui il sistema di seguimento ha successo

nonostante condizioni poco favorevoli. (a) Un’immagine che presenta del motion blur

sulla proiezione della palla. (b) Un’immagine in cui è evidente il rumore del sensore di

immagine. (c) Un’immagine in cui la palla è visibile solo in parte, a causa dell’occlusione

da parte di un robot.
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Chapter 1

Introduction

“Though the ether is filled with vibrations the world is in dark.

But one day man opens his seeing eye, and there is light.”

Ludwig Wittgenstein

1.1 Problem formulation

Robots are computer-controlled devices capable of perceiving and manipu-
lating the physical world [40]. They use sensors to acquire information on
the environment and actuators to perform actions. Autonomous robots are
machines which can accomplish tasks without direct human intervention [1].

One class of sensors which is commonly used in robotics, especially for
tasks such as self localization and navigation [30],[16], is that of omnidirec-
tional cameras i.e., cameras characterized by a very wide field of view [19].
Their main advantage over conventional, perspective cameras is that the first
gather information from a lager portion of the space surrounding a robot.
Cameras project light rays radiating from the environment onto the image
sensor, a plane of CCD or CMOS cells, which in turn converts this infor-
mation to electrical charges, forming the digital image. Depending on the
way light is projected onto the image sensor, omnidirectional cameras are
classified either as dioptric (those in which projection is performed solely by
means of refraction) or catadioptric (those in which projection is performed
by combined reflexion and refraction). One drawback which is common to
omnidirectional cameras is that the images they produce are affected by
strong distortion and perspective effects, which may lead to the use of non-
standard algorithm for object detection and tracking. Another difficulty
that affects tracking under these conditions is that the object of interest,
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embedded in a dynamic scenario, may suffer from occlusion, overlap and
ambiguities.

This thesis presents a 3D particle-filter [40, 13] (PF) tracker for au-
tonomous robots equipped with omnidirectional cameras. The tracker is
designed to work in a structured, color-coded environment such as the
RoboCup Middle Size League (MSL). The particles of the filter represent
3D positions and velocities of the target, the likelihood function is based
on the color and shape of the target. From one image frame to the next,
the particles are moved according to an appropriate motion model. Then,
for each particle, a likelihood is computed, in order to estimate the object
state. To calculate the likelihood of a particle we first project the contour
of the object it represents on the image plane (as a function of the object
3D shape and position) using a model for the omnidirectional vision system.
The likelihood is then calculated as a function of three color histograms: one
represents the object color model and is computed in a training phase with
several examples taken from distinct locations and illumination conditions;
the other two histograms represent the inner and outer boundaries of the
projected contour, and are computed at every frame for all particles. The
idea is to assign a high likelihood to the contours for which the inner pixels
have a color similar to the object, and are sufficiently distinct from outside
ones.

A work closely related to this is described in [32], although in that case
the tracking is accomplished on the image plane. Tracking the position of an
object in 3D space instead of on the image plane has two main advantages:
(i) the motion model used by the tracker can be the actual motion model
of the object, while in image tracking the motion model should describe
movements of the projection of the object on the image plane and, because
of the aforementioned distortion, a good model can be difficult to formulate
and use; (ii) with 3D tracking the actual position of the tracked object is
directly available, while a further non-trivial step is needed for a system
based on an image tracker to provide it.

During the work for this thesis we developed both a Matlab and a C++
implementation of the tracker. The C++ implementation is based on vector
and matrix operations provided by the IPP library by Intel. It was developed
to assess the real-time capabilities of the method.

We ran several experiments, in a RoboCup MSL scenario, to assess the
accuracy and precision of the proposed tracking method with color-coded
objects. We tested the two implementations with either a dioptric or cata-
dioptric omnidirectional camera and different projection models for the lat-
ter. We tracked a ball along movements in the 3D space surrounding the
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robot, assessing the robustness of the method against occlusions and illumi-
nation changes. We tracked a robot maneuvering. We ran an experiment
placing a still ball at different positions around the robot and measuring
the error of the detected position with respect to the ground truth. We
furthermore compared the results obtained in the tracking and detection,
using two different models for the catadioptric sensor.

In future work we intend to extend the system with the ability to track
multiple objects. We will introduce the use of multiple motion models, for
example use a model describing the motion of a ball rolling freely and an-
other describing the motion of a ball bouncing against an obstacle. We also
intend to use physics-based motion models (e.g., applying gravitational ac-
celeration to particles which model flying balls). We will express the target’s
coordinates in an inertial reference frame, instead of the robot-centered one
we use now. This will be combined with ego-motion compensation: applying
the inverse motion of the robot to the filter’s particles. We also plan to test
the tracker in a non-color-coded environment.

1.2 Description of the system

We designed and implemented a robust 3D tracking system for autonomous
robots equipped with an omnidirectional, dioptric or catadioptric camera.

We use a particle filter to estimate at each time step the 3D position and
velocity of a target, given the observations taken in the previous time steps
and an initial probability density function (pdf). In this thesis we consider
only targets which are rotationally symmetric, but the method can be easily
extended to work with arbitrary rigid objects, including the estimate of the
object’s orientation.

PF’s use sample-based representations of pdf’s in which each sample
is called a particle or an hypothesis. To iteratively compute the estimate
on the target’s position, one has to model probabilistically both its motion
dynamics and the way we compute the likelihood of a particle.

For the motion dynamics we use a constant velocity autoregressive model:
at each time step the velocity of the particles is updated by adding an accel-
eration disturbance to it. The position of the particles is updated, according
to the velocity of the previous time step and the acceleration disturbance.

We designed an observation model to associate a likelihood to an hypo-
thetical position, given the model of the tracked object, one image acquired
with an omnidirectional camera and the corresponding, calibrated projec-
tion model for the camera.
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The tracked objects are characterized by their 3D shape, size and color.
We characterize the 3D shape of the objects with simplified geometric shapes
and describe their color with a color histogram, which is built in a training
phase with several examples taken from distinct locations and illumination
conditions.

The steps to compute the likelihood of an hypothesis are:

• Projection of the target model onto the image plane, resulting in two
pixel sets, one on each side of the contour projected by the hypothetical
target.

To obtain the two pixel sets, the object shape model is shifted and
rotated to the hypothetical 3D position and projected onto the image
(see Chapter 4 for details on the two alternative methods we use). The
rotation of the model is needed because we use a simplified model for
the shape, that allows us to projet only the 3D points which will result
in the contour of the projection of the object.

The projection of 3D points to 2D image points is done with a model
for the omnidirectional camera in use. In this work we acquire images
using a dioptric (fish-eye) or a catadioptric omnidirectional camera.
We model the dioptric camera with the Equidistance Projection Model
(EPM) and the catadioptric camera with either the Unified Projec-
tion Model (UPM) or the Perspective Projection Model (PPM). Each
model has to be calibrated before being used.

• Building of two color histograms, characterizing the color in the image
on the boundaries of the projected contour.

• Calculation of the likelihood as a function of the similarity between
color histograms.

We compute the similarity between couples of histograms, with the
Bhattacharyya similarity metrics, as in [33]. The higher the similarity
between the target model histogram and the histogram describing the
color on the inside of the projected contour, the higher the likelihood.
The lower the similarity between the two histogram describing the
color on the two sides of the contour, the higher the likelihood.

To initialize the particles for the PF we either use a Gaussian distribu-
tion with large variance, centered at rough estimates of the object’s initial
position and velocity or select a position in 3D space, based on a 2D detec-
tion of the object, and use that as center for the Gaussian (see Chapter 5
for details).
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1.3 Structure of the thesis

In Chapter 2 we describe the state of the art. In Chapter 3 we present our
omnidirectional sensors and introduce the models we use for their projec-
tions. In Chapter 4 we delineate how the model-based detection of objects
in omnidirectional images is performed. In Chapter 5 we detail our PF-
based tracking algorithm. In Chapter 6 we present the experimental results
obtained, while in Chapter 7 we draw conclusions and present future devel-
opments of this work.



6 Chapter 1. Introduction



Chapter 2

State of the art

“Our knowledge can be only finite,

while our ignorance must necessarily be infinite.”

Karl Popper

This thesis addresses the object tracking problem in a semi-structured en-
vironment using an omnidirectional camera. The environment considered is
the one of the RoboCup Middle Size League, where objects have particular
shapes and colors but the illumination conditions can be diverse, and occlu-
sions/ambiguities are frequent. In this chapter we will describe the current
state of the art in the several topics this thesis addresses for achieving the
proposed goals: (i) the image measurement methods; (ii) motion models and
techniques for tracking; and (iii) 3D models based methods.

2.1 Color based image measurements

Since all elements in the RoboCup soccer field have distinct colors, most
tracking algorithms in this domain use color based methods. Furthermore,
since omnidirectional sensors highly deform the target image as a function of
its position with respect to the robot, common approaches tend to privilege
methods that relax rigidity constraints on the shape of the 2D targets. Thus,
a large majority of methods consist in determining the similarity between
the color histograms of the target and regions in the current image under
analysis [17], [6] . The Camshift algorithm [4] was one of the first works
demonstrating the use of color histograms for a practical real-time tracking
system. The Camshift algorithm (Continuously Adaptive Mean Shift Algo-
rithm) has 2 main steps: (i) assign to each pixel, in a search window around
the current location, a likelihood of the pixel belonging to the target model

7
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(histogram back-projection); (ii) then compute centroid of the likelihood im-
age and update the search windows. The computation of the centroid and
size of search window are done with the Mean-Shift algorithm [14], which is
a non parametric approach to detect the mode of a probability distribution
using a recursive procedure that converges to the closest stationary point.

Cheng [7] developed a more general version of mean shift for clustering
and optimization. In [10], the mean-shift algorithm was used in conjunction
with the Bhattacharyya coefficient measure to propose a real-time tracking
system. The Bhattacharyya coefficient measure compares color histograms
on the object model and image regions. Then this measure is minimized
iteratively by using its spatial gradient, on a sequence of mean-shift itera-
tions. Several extensions to these methods have been proposed recently, and
try to either enrich the color models or introduce other features, e.g., edges
and spatial relationships between object parts.

Kernel based image tracking [11] uses spatial masking to adapt the scale
of the tracked region and include information from the background to im-
prove tracking performance. In [9], different features from the color spaces of
target and background are selected on-line in order to maximize the discrim-
ination between target and background. Mixed approaches, incorporating
color distribution and spatial information have been proposed in [3], [41].
Other approaches represent jointly color and edge information [8].

2.2 Tracking

The use of temporal information is of fundamental importance in the track-
ing problem. Objects move in space according to the laws of physics and
motions cannot be arbitrary. By defining appropriate models for target mo-
tion it is possible to address the estimation problem under the occurrence
of occlusions, manoeuvres and multiple-objects. Prior work concerning this
issue is strongly related with the application of the Kalman filter [25], which
is a linear method, assuming Gaussian noise in the motion and observation
models. This method is based on two steps: i) a prediction step in which the
state (target, position and velocity) is predicted based on the dynamics of
the system (motion model); and ii) filtering step where the state is updated
based on the observations collected from the image. However, the use of
this technique is not robust in the presence of outliers, i.e., features that
do not belong to the object of interest. An alternative solution is to use
the Probabilistic Data Association - PDA [37], originally proposed in the
context of target tracking from radar measurements. When several objects
are supposed to be tracked alternative solutions should be conceived. In this
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context, an extension of the Kalman filter is used to track distinct objects at
the same time, this is known as Multiple-Hypothesis Tracking (MHT) [36].
In this method every single combination is considered among the observa-
tions. Unfortunately, the MHT algorithm is computationally exponential
both in time and memory. An algorithm that alleviates this is presented
in [12]. In [28] is presented a methodology which allows the association of
one observation to a set of targets. The previous methods use linear dy-
namics to model the motion and Gaussian density functions for modelling
either the noise in the dynamics and in the observations. However, these
models cannot cope with situations where the Gaussian assumption is vio-
lated. To address this issue particle filtering has been widely use since the
works presented in [22], [23]. This subject is still an active research topic;
see for instance [24], [21], [31], [42], [27].

2.3 3D model based methods

Both histogram color models and motion tracking methods with omnidirec-
tional sensors have been used previously in the context of RoboCup Mid-
dle Size League robots. A very interesting and recent method is presented
in [32], which combines a metric based on the Bhattacharyya coefficient to
compare color histograms on the target and background regions, together
with a particle filtering method. However, not many works exploit properly
the strong shape constraints existing in this scenario because tracking is
usually performed in the image plane. For instance, balls and robots have
very simple 3D shape models (spheres and cylinders) but when projected in
the images these shapes are no longer constant.

We use 3D model-based tracking techniques (see [29] for a review) which
improves the reliability of the detection step because the actual target shapes
are enforced in the process. Additionally, the tracking motion models are
also formulated in 3D, being more realistic with respect the physics laws
and facilitating structure and parameter tuning. 3D model based tracking
methods, as opposed to model free tracking, exploit knowledge on the object
to be tracked, for example a 3D CAD model.

2D tracking follows the projection of a target in the image. Movements
of the real object result in 2D transformations of its projection and are not
easily modeled, especially in the case of omnidirectional images. The re-
sult of 2D tracking is an estimate of the object’s position on the image.
To estimate its 3D position a further, non-trivial step is needed. The ob-
jective of 3D tracking, instead, is to track the target along its 3D path.
Classically, non-linear minimization approaches are used to register the 3D
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object cues on the 2D images. In [34] a real-time system is shown, using
the edges and texture of objects as measurements and as M-estimator in
minimization process to improve the robustness of the method. In [35], im-
age measurements are based on the edges and a particle filtering method is
used instead of non-linear minimization. However, in some circumstances
tracking edges and texture can be difficult e.g., because of motion blur, illu-
mination changes, etc. In our case we will use the color of the target and its
outside neighbourhood for the image measurements, in a way similar to [32],
but using a 3D model based tracking paradigm.



Chapter 3

Omnidirectional vision

“All our knowledge has its origins in our perceptions.“

Leonardo da Vinci

The shape of the projection of a 3D object on the image plane depends on (i)
the projection function the vision sensor realizes and (ii) the relative position
and orientation of the object w.r.t. the sensor. In this chapter we present the
two vision sensors and the respective projection models which are used in this
work. In particular we introduce our catadioptric omnidirectional camera
and discuss three models for its projection function. Then we introduce our
dioptric omnidirectional camera and its Equidistance Projection Model.

3.1 Catadioptric omnidirectional camera

Our catadioptric vision system, see Figure 3.1a, combines a camera looking
upright to a convex mirror, having omnidirectional view in the azimuth
direction [2]. The system is designed to have a wide-angle and a constant-
resolution view of the ground plane [20, 15] and has only approximately
constant-resolution at planes parallel to the reference one.

For objects off the ground floor, the constant resolution property does
not hold anymore. If precise measurements are required, the generic Cata-
dioptric Projection Model (CPM) should be employed. Because this exact
model involves complex non-linear and non closed-form relationships be-
tween 3D points and their 2D projections, approximations are often used.
A widely used approximation for catadioptric systems is the Unified Pro-
jection Model (UPM) pioneered by Geyer and Daniilidis [18]. The UPM
models all omnidirectional cameras with a single center of projection and
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Figure 3.1: (a) Catadioptric omnidirectional camera. (b) The generic Catadioptric

Projection Model. (c) The OmniISocRob robotic platform in the catadioptric config-

uration. (d) Sample image taken with the catadioptric omnidirectional camera in a

RoboCup MSL scenario.
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provides a good approximation to wide-angle constant resolution sensors.
We show, however, that a simple Perspective Projection Model (PPM) is as
good as the UPM, with additional advantages of simplicity and computa-
tional efficiency.

3.1.1 Projection models

Let m = P0(M ;ϑ0) represent the projection of a 3D point in cylindrical
coordinates, M = [r ϕ z]T to 2D polar coordinates on the image plane, m =
[ρ ϕ0]T , with ϑ0 containing the system parameters. Considering cameras
with axial symmetry and aligning the coordinate systems such that ϕ ≡ ϕ0,
one obtains the radial model (see Figure 3.1b):

ρ = P (
[r z]T ;ϑ

)
. (3.1)

In the case of the constant resolution design, P is trivial for the ground-
plane, as it is just a scale factor between pixels and meters. Deriving P
for the complete 3D field of view involves using the actual mirror shape, F
which is a function of the radial coordinate t [15]. Based on first order optics,
and in particular on the reflection law at the specular surface of revolution,
(t, F ), the following equation is obtained:

atan(ρ) + 2 · atan(F ′) = − r − t

z − F
(3.2)

where φ = −(r− t)/(z − F ) is the system’s vertical view angle, θ = atan(ρ)
is the camera’s vertical view angle, and F ′ represents the slope of the mir-
ror shape. When F denotes an arbitrary function and we replace ρ = t/F ,
Equation 3.2 becomes a differential equation, expressing the constant hori-
zontal resolution property, ρ = a · r + b, for one plane z = z0. F is usually
found as a numerical solution of the differential equation (see details and
more designs in [20, 15]).

If F is a known shape then Equation 3.2 describes a generic CPM, as
it forms an equation on ρ for a given 3D point (r, z). In general ρ has a
non-closed-form solution.

Here we assume that the system approximates a single projection cen-
ter system, considering that the mirror size is small when compared to the
distances to the imaged-objects. Hence, we can use a standard model for
catadioptric omnidirectional cameras, namely the Unified Projection Model
(UPM) pioneered by Geyer and Daniilidis [18], that can represent all om-
nidirectional cameras with a single center of projection. It is simpler than
the model which takes into account the actual shape of the mirror and gives
good enough approximations for our purposes.
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Figure 3.2: The Unified Projection Model.

The UPM consists of a two-step mapping via a unit-radius sphere [18]:
(i) project a 3D world point, P = [r ϕ z]T to a point Ps on the sphere surface,
such that the projection is normal to the sphere surface; (ii) project to a
point on the image plane, Pi = [ρ ϕ]T from a point, O on the vertical axis
of the sphere, through the point Ps. This mapping is graphically illustrated
in Figure 3.2 and is mathematically defined by:

ρ =
l +m

l
√
r2 + z2 − z

· r (3.3)

where the (l,m) parameters describe the type of camera.
The PPM is a particular case of the UPM, obtained with l = 0 and by

defining k = −m :
ρ = k · r/z. (3.4)

Equation 3.4 shows that the PPM has constant resolution, i.e., linear rela-
tionship between ρ and r, at all z-planes.

Both the PPM and the UPM model are parametric. To calibrate each
one of them we use a set of known non-coplanar 3D points [Xi Yi Zi]T and
measure their images [ui vi]T . Then, we minimize the mean squared error
between the measurements and the projection obtained with the parametric
model, see Figure 3.3.

3.2 Dioptric omnidirectional camera

Our dioptric vision system, see Figure 3.4a, is a camera coupled with a
fish-eye lens. It has an omnidirectional view in the azimuth direction, with
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(a) (b)

Figure 3.3: (a) Image used for calibration. (b) Calibration result: observed image points

(blue crosses), 3D points projected using initial projection parameters (green circles)

and using calibrated parameters (red circles) - the arrows show the calibration effect at

four points.

a field-of-view of 185◦. Its Equidistance Projection Model (EPM) [26] is
mathematically described as:

ρ = fθ (3.5)

We calibrate the EPM minimizing the mean squared error between the
the projection of 3D points performed by the actual vision system and by
the model (see Figure 3.5), as we do for the other projection models.
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(a) (b)

(c) (d)

Figure 3.4: (a) Dioptric omnidirectional camera. (b) The Equidistance Projection

Model. (c) The OmniISocRob robotic platform in the dioptric configuration. (d)

Sample image acquired with the dioptric omnidirectional camera.
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Figure 3.5: One of the images used for calibrating the EPM model. The checkers placed

at known position identify known 3D points, which are projected by the camera onto

the image.
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Chapter 4

Model-based detection in

omnidirectional images

“The usual approach of science of constructing a mathematical model cannot

answer the questions of why there should be a universe for the model to

describe. Why does the universe go to all the bother of existing?”

Stephen Hawking.

In this chapter we introduce our object model, describing the 3D shape
model and the color model. We will complete the object model in Chap-
ter 5 adding a motion model. Furthermore, we detail how we compute the
likelihood of an object state, given the object model, the projection model
for the omnidirectional camera and one omnidirectional image.

4.1 Detection algorithm

The detection algorithm is a fundamental part of the PF approach, it asso-
ciates a likelihood value to the hypothetical 3D position of an object, given
the model of such object, one image acquired with an omnidirectional cam-
era and the corresponding, calibrated projection model for the camera, as
described in Chapter 3.

The tracked objects are characterized by their 3D shape, size and color,
thus we use these elements to calculate the likelihood of a hypothesis. We
characterize the 3D shape of the objects with simplified geometric shapes
(e.g. the 3D shape of a ball is well modeled by a sphere, that of a robot is
approximated by a cylinder, etc.). We describe the color of an object with a
color histogram. We simplify the problem by assuming that the objects to
track are rotationally symmetric w.r.t. the axis around which they are able
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to rotate. The RoboCup MSL robots satisfy this requirement as they can
only rotate around their vertical axes and by means of this rotation their
projections onto the image plane remain constant enough for our needs.

The detection algorithm receives as input the model for the object to
track, one camera image, the appropriate model for the camera and one hy-
pothetical position, relative to the omnidirectional camera projection center.
It produces one likelihood value as output. The first step to calculate such a
likelihood is to determine what shape an object of the specified class would
project onto the image, when standing at the hypothesized position. The
second step is to measure the color on the inside and outside boundaries
of the projected, hypothetical contour. This is done by building two color
histograms from two selected pixel sets. We measure the color on the inside
and on the outside of the contour because we expect that, if the hypothetical
position is correct, the color on the inner boundary will be similar to that
of the model, while the color on the outer boundary will be different from
that. The third step consists in calculating the likelihood of the hypothesis,
based on similarities between color histograms. The higher the similarity
between the model histogram and the histogram describing the color on the
inside of the projected contour, the higher the likelihood. The lower the
similarity between the two histogram describing the color on the two sides
of the contour, the higher the likelihood.

The first of these two rules in practical terms means that we associate
a high likelihood to a contour which has the color of the tracked object
on its inside. The second one means that we associate a high likelihood
to contours in the whereabouts of which a color transition occurs. This
method, compared to other methods which rely on edge-detection, is more
robust as it can deal with blurred edges, which are frequent in dynamic
scenarios [32] (see Figure 4.1).

4.2 3D model

We use the 3D model of an object to calculate the 2D contour the object
would project on an image, when at a hypothetical position, relative to the
vision sensor. The computation of the 2D contour projected in an omnidi-
rectional image by a generic 3D shape is not an easy task. First one has to
determine the visibility boundary of the 3D shape. Then one has to project
this boundary onto the image plane, going through the non linear projection
model. For simple projection models and shapes it is sometimes possible to
represent 2D contours by simple parametric curves (e.g. the projection of a
straight line in a central camera is a conic), but in the general case there is
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Figure 4.1: An example of motion blur: the contours of the orange ball are blurred due

to its rapid motion.

no closed form solution. Another alternative is to approximate the 3D shape
as a set of vertices and edges, project such elements onto the image plane
using the appropriate projection model, and eventually use some method to
determine the outer contour of the projected figure.

In this work we deal with balls and robots as objects to track, so we
should use a polygonal model of a sphere (see Figure 4.2) and a polygonal
model of a cylinder as object 3D models. Given the simple nature of the
3D shapes and taking advantage of their rotational symmetry, we are able
to select a set of contour point directly in 3D, and then project them to
form a sampled representation of the 2D hypothetical contour. For a ball
at a certain relative position, the 3D contour points lie on the intersection
between its spherical surface and the plane orthogonal to the line connecting
the virtual projection center to the center of the sphere, see Figure 4.3. We
obtain the set of 3D contour points by rotating and shifting (in accord
to the position of the ball) a set of initial 3D points, equally distributed
along a circle with the same radius as that of the ball. The same method,
with a different initial distribution of the points, is used for the robot, see
Figure 4.4.

The objective for the use of the 3D model is to define two sets of pixels
for every hypothesis, one characterizing the color on the inner boundary of
the projected contour and the other characterizing the color on the outer
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Figure 4.2: Polygonal model of a sphere (some of the faces have been removed for

visualization).

Figure 4.3: Plot of the 3D points projected to obtain the 2D contour points for balls at

different positions. The black line connects the projection center to the ground plane.

Figure 4.4: Plot of the 3D points projected to obtain the 2D contour points for robots

at different positions. Again, the black line connects the projection center to the ground

plane.
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boundary. For this purpose, we use one of two methods: one based on simple
sampling and the other one based on B-splines.

4.2.1 Selection of boundary pixels using sampling

In this method we define the inner and outer boundary pixel sets by project-
ing two different 3D contours, one larger than the actual size of the tracked
object, for the outside pixels, and one smaller than that for the inside pix-
els, see Figure 4.5a. Varying the size difference between tracked object and
inner and outer 3D contours enables the user of the tracking system to set
the balance between precision and processing time: the smaller the size dif-
ference, the higher the precision of the estimate, but the higher the number
of particles needed and so the computation time. In our experiments of
tracking the ball, which has a radius of 110mm, the 3D points were placed
along circumferences of 99mm and 121mm respectively (a 10% difference
from the actual value). This method is fast and has the advantage of being
based on 3D distances, rather than on image distances. This means that
the distance between projected inner and outer contour adapts to the size
of the projected object, but stays the same in real world coordinates, see
Figure 4.5b and 4.5c.

This method has one important drawback: whenever the shape projected
by an object becomes too small, the inner and outer contours of an object
superimpose and the tracking method fails. One solution to this would be
to check the degree of superimposion after the projection of an hypothesis’
contours. A good measure for this would be the relative number of inner
boundary pixels which are also outer boundary pixels. When the super-
imposion would exceed a given threshold, new inner and outer pixels sets
should be built, for example selecting pixels standing along normals to the
hypothesized object contour, at a two pixels distance from it.

One interesting characteristic of this approach is that the number of
points used to build the color histograms can be varied: increasing such
number enhances the robustness of the tracker, while decreasing it makes the
tracker faster, diminishing the number of projections to be made, together
with the operations performed to build each color histogram.

4.2.2 Selection of boundary pixels using B-splines

In this method we project the sample-based hypothetical contour of an hy-
pothesis onto the image plane, model it with a B-spline and select inner and
outer boundary pixels along normals to the spline.
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(a)

(b) (c)

Figure 4.5: (a) 3D points modeling the hypothetical ball contour (red) and 3D points

used to select inner and outer boundary pixel sets (black). (b) and (c) Examples of the

pixel selection resulting from projecting the 3D model onto an image (after rotation

and translation). White pixels represent the projected contour, black pixels are the ones

selected to represent the color in the contour inner and outer boundaries.
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A B-spline has the following representation:

f(t) =
k−m−1∑

i=0

ciBm
i (t), t ∈ [tm, tk−m] (4.1)

where {Bm
k (t), k = 0, . . . , k−m−1} is the set of basis functions such that

Bm
i (t) ≥ 0, and

∑
i Bm

i (t) = 1; {c0, c1, . . . , ck−m−1} is the set of coefficients
and [ti−1, ti] is an interval in which the spline functions are polynomial and
exhibit a certain degree of continuity at the knots.

Planar curves are simply the R2 version of Equation 4.1:

v(t) ≡ [x(t) y(t)] =
k−m−1∑

i=0

ciBm
i (t) (4.2)

A discretized spline is a set of N equispaced samples of v(t) collected as the
N × 2 vector:

v = [vT
0 , . . . ,v

T
N−1] = [x y], N > k (4.3)

If we arrange the coordinates of control points into a parameter θ(k):

θ(k) = [cT0 , . . . , c
T
k−1]

T = [θx
(k) θy

(k)]
1, (4.4)

the discretized closed spline v can be obtained by the matrix product

v = B(k)θ(k) ⇔ {x = B(k)θ
x
(k); y = B(k)θ

y
(k)}, (4.5)

where the elements of B(k) are [B(k)]ij = Bj(t0 + (tk−t0)i
N ).

In computer graphics m = 3 or 4 is generally found to be sufficient.
Herein, we use quadratic B-splines, i.e., m = 3.

After obtaining the 2D points {dn
boundary}, n = 1, . . . , N , we convert

them into a B-spline which best fits to this set. Assuming that we known
the knots, the N × k matrix B(k) can be computed. Thus, given the vector
d with N data points and a choice of k, a N × k matrix B(k) can be built
and its pseudo-inverse B†

(k) computed. The estimated control points are

given by θ̂(k) = B†
(k)d, with B†

(k) = (BT
(k)B(k))−1BT

(k) and the curve is given

by v = [B†
(k)x B†

(k)y] = B(k)θ̂(k). The regions in which the histogram is
computed are defined at the points of the normal lines radiating from the
discrete B-spline curve v, i.e.

H =
N⋃

i=1

(±∆)v(si) n̄(si) (4.6)

1(k) is the total of number of control points
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(a) (b)

Figure 4.6: Generic B-spline shape with the orthogonal lines. Control points are repre-

sented by circles (a). Bold lines show the image locations where the histogram values

are collected (b).

where the sign +, and − distinguishes whether the inspection is performed
inside (Hinner) or outside (Houter) the reference contour respectively; n̄(si)
is the normal vector at the point si; ∆ ∈ [0, 1], Figure 4.6 depicts the
technique proposed herein. A quadratic B-spline of a generic shape and the
orthogonal lines are shown in Figure 4.6a. Figure 4.6b displays the lines at
which the histogram values are collected. The pixels selected to evaluate one
hypothesis (one hypothesis shown for each image) are depicted in Figure 4.7.
In some cases, i.e., when using cameras displaying color mosaicking errors
at image edges, it may be convenient to avoid sampling at the middle of the
line segment. In our case, however, color information at the contour pixels
is quite acceptable and one can perform the inspection along the entire line
segment.

4.3 Color model

We use color histograms to model the color of the object to track and to
characterize the color of the two image regions surrounding an hypothetical
contour.

We use the HSI (Hue, Saturation, Intensity) color space in the Matlab
implementation of the tracker. We choose the HSI color space because the
Hue component separates well colors of pixels belonging to the ball from
colors of pixels belonging to the rest of the RoboCup environment, see Fig-
ure 4.8. We calculate the H and S values of each pixel as for the HSV color
space, but prefer Intensity, I=(R+G+B)/3 to Value, V=max(R,G,B), as
Intensity exploits all the available RGB information, while V discards the
values of the two non-maximum RGB channels. We set the number of bins
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Figure 4.7: Close-up showing the pixels used to evaluate one hypothesis (one for each

image), selected using B-splines. Yellow and blue pixels are used to build the inner and

outer color histogram, respectively.
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for the HSI histogram to Bh = 12, Bs = 12, Bi = 4. We set the number of
bins for the Intensity channel to a smaller value than the other two in order
to achieve some robustness w.r.t. illumination intensity changes. Ignoring
the Intensity channel altogether would have prevented us from distinguishing
white and black object from the others.

We use the YUV color space in the C++ real-time implementation of
the tracker because that is the color space in which the camera provides the
images. This choice allows us to save processing time, as we do not perform
a color-space transformation, and maintains the desirable characteristic of
a color representation in which the brightness channel (Y) is orthogonal to
the others. We set the number of bins for the YUV histogram to By = 4,
Bu = 8, Bv = 8. We set the number of bins for the V channel to a smaller
value than the other two, in order to achieve robustness w.r.t. illumination
changes, as in the previous case.

A color histogram is a non parametric statistical description of a color
distribution, in terms of occurrences of different color classes. Let us denote

bt(d) ∈ {1, . . . , B}, (4.7)

the bin index associated with the color vector at pixel location d and frame
t. Then the histogram of the color distribution of a generic set of points can
be computed by a kernel density estimate

H .= {h(b)}b=1,...,B (4.8)

of the color distribution at frame t, where each histogram bin is given as
in [10]

h(b) = β
∑

n

δ[bt(dn)− b] (4.9)

where δ is the Kronecker delta function, β is a normalization constant which
ensures h to be a probability distribution

∑B
b=1 h(b) = 1. We encode each

color histogram as a 12× 12× 4 or a 4× 8× 8 matrix in the HSI and YUV
case respectively.

The color model for each object was built collecting a set of images in
which the object is present, and calculating the color histogram on the (hand
labeled) pixels belonging to the specific object. All object pixels were used
to train the color histograms, whereas in run-time, only a subset of points
is used.
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(a)

(b)

(c)

Figure 4.8: (a) Projection in the HSB(=HSV) space of pixels belonging to the ball,

taken from different images. (b) Projection in the HSB space of pixels belonging to

an image depicting a typical RoboCup environment. (c) Setting two thresholds on the

Hue would provide a reasonable separation between the two classes.
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4.4 Likelihood

We measure the similarity between color histograms using the Bhattacharyya
similarity metrics, as in [33]:

S (
H1,H2

)
=

B∑

b=1

√
h1(b) · h2(b) (4.10)

We adopt a distance metric inspired in [32] to assess how far an obser-
vation is from the perfect one. Two quantities are taken into account: (i)
distance between the object color model and the color measures inside the
contour and; (ii) similarity between regions inside and outside the contour.

Defining Hmodel, Hinner and Houter as a reference (object) color model,
the inner boundary points and the outer boundary points histogram, respec-
tively, we will measure their pairwise similarities using (4.10). The distance
metric should be high when candidate color histograms are different to the
reference histogram and similar to the background. This can be expressed
by the following quantity:

D =

(
1− S(Hmodel,Hinner)

)
+ κS(Houter,Hinner)

κ+ 1
(4.11)

This allows us to take into account the object-to-model mismatch (first
term) and the object-to-background similarity (second term), see Figure 4.9
for a graphical example. The parameter κ allows to balance the two terms
and was tuned manually for good performance: κ = 1.5.

The data likelihood function L is modeled as a Laplacian distribution
over the distance metric: p(yt | x(i)

t ) ∝ e−
|D|
b In our experiments we set

b = 1/30.
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Figure 4.9: Three hypothetical contours projected on one image. Contour A has a

low likelihood, because of high object-to-model mismatch (the inner boundary of the

contour is not orange) and high object-to-background similarity (the colors of inner

and outer boundary of the contour are pretty similar). Contour C is associated with

a medium likelihood, because of low object-to-model mismatch (the inner boundary

of the contour is orange), but high object-to-background similarity (also the outer

boundary of the contour is quite orange). Contour B has a high likelihood because of

low object-to-model mismatch and low object-to-background similarity.
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Chapter 5

Tracking with particle filters

“If I could remember the names of all these particles, I’d be a botanist.1.”

Enrico Fermi

In this chapter we describe the methods employed for 3D target tracking
with particle filters.

5.1 Particle filter tracking.

We are interested in computing, at each time t ∈ N, an estimate of the 3D
pose of a target. We represent this information as a “state-vector” defined by
a random variable xt ∈ Rnx whose distribution in unknown (non-Gaussian);
nx is the dimension of the state vector. In the present work we are mostly
interested in tracking balls and cylindrical robots, whose orientation is not
important for tracking. However, the formulation is general and can easily
incorporate other dimensions in the state-vector, e.g., target orientation and
spin.

Let xt = [x, y, z, ẋ, ẏ, ż]T , with (x,y,z), (ẋ,ẏ,ż) the 3D cartesian position
and linear velocities in a robot centered coordinate system. The state se-
quence {xt; t ∈ N} represents the state evolution along time and is assumed
to be a Markov process with some initial distribution p(x0) and a transition
distribution p(xt | xt−1).

The observations taken from the images are represented by the random
variable {yt; t ∈ N}, yt ∈ Rny , and are assumed to be conditionally inde-
pendent given the process {xt; t ∈ N} with marginal distribution p(yt | xt),
where ny is the dimension of the observation vector.

1In this occasion Fermi was referring to subatomic particles, but he is often credited

with the development of the Monte Carlo method.
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In a statistical setting, the problem is posed as the estimation of the
posteriori distribution of the state given all observations p(xt | y1:t). Under
the Markov assumption, we have:

p(xt | y1:t) ∝ p(yt | xt)
∫
p(xt | xt−1) p(xt−1 | y1:t−1)dxt−1 (5.1)

The previous expression tells us that the posteriori distribution can be com-
puted recursively, using the previous estimate, p(xt−1 | y1:t−1), the motion-
model, p(xt | xt−1) and the observation model, p(yt | xt).

To address this problem we use particle filtering methods. Particle filter-
ing is a Bayesian method in which the probability distribution of an unknown
state is represented by a set of M weighted particles {x(i)

t , w
(i)
t }M

i=1 [13]:

p(xt | y1:t) ≈
M∑

i=1

w
(i)
t δ(xt − x(i)

t ) (5.2)

where δ(·) is the dirac delta function. Based on the discrete approximation
of p(xt | y1:t), different estimates of the best state at time t are possible to
be devised. For instance we may use the Monte Carlo approximation of the
expectation:

x̂ .=
1
M

M∑

i=1

w
(i)
t x(i)

t ≈ E(xt | y1:t), (5.3)

or the maximum likelihood estimate:

x̂ML
.= argmaxxt

M∑

i=1

w
(i)
t δ(xt − x(i)

t ) (5.4)

To compute the approximation to the posteriori distribution, a typical
tracking algorithm works cyclically in three stages:

1. Prediction - computes an approximation of p(xt | y1:t−1) , by moving
each particle according to the motion model;

2. Update - each particle’s weight i is updated using its likelihood p(yt |
x(i)

t ):
w

(i)
t ∝ w

(i)
t−1p(yt | x(i)

t ) (5.5)

3. Resampling - the particles with a high weight are replicated and the
ones with a low weight are forgotten.

For this purpose, we need to model probabilistically both the motion
dynamics, p(xt | xt−1) , and the computation of each particle’s likelihood
p(yt | x(i)

t ).



5.2. Initialization of the particle filter 35

5.1.1 Motion model

In the system proposed herein we assume motion dynamics follow a standard
autoregressive dynamic model:

xt = Axt−1 + wt, (5.6)

where wt ∼ N (0, Q). The matrices A, Q, could be learned from a set of
representative correct tracks, obtained previously (e.g., see [5]), however, we
choose pre-defined values for these two matrices. Since the coordinates in
the model are real-world coordinates, the motion model for a tracked object
can be chosen in a principled way, both by using realistic models (constant
velocity, constant acceleration, etc.) and by defining the covariance of the
noise terms in intuitive metric units.

We use a constant velocity model, in which the motion equations corre-
spond to a uniform acceleration during one sample time:

xt = Axt−1 +Bat−1, A =

[
I (∆t)I
0 I

]
, B =

[
(∆t2

2 )I
(∆t)I

]
(5.7)

where I is the 3 × 3 identity matrix and at is a 3 × 1 white zero mean
random vector corresponding to an acceleration disturbance. We have set
∆t = 1 for all the experiments, whereas the covariance matrix of the random
acceleration vector was fixed at:

cov(at) = σ2I, σ = 90mm/frame2 (5.8)

5.1.2 Observation model

The observation model allows us to compute the likelihood that a partic-
ular hypothesis (state vector) generated the observation (image) we have.
We compute the likelihood of an object state, given the object model, the
projection model for the omnidirectional camera and one omnidirectional
image, as described in Chapter 4.

5.2 Initialization of the particle filter

The PF needs an initial distribution of particles to start from. In the case
of the dioptric camera and the ball, we use a method designed to work
coupled with a detection module (possibly based on color segmentation): it
receives as input an image and a pair of image coordinates, identifying the
center of the projected ball. These coordinates are now provided by a user,
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Figure 5.1: Initialization of the filter: particles are spread along a 3D ray based on a

couple of image coordinates selected by a detection algorithm. The distribution used

to initialize the filter will be Gaussian, centered on the particle, among the ones spread

along the ray, with the highest likelihood.

which has to choose a pixel near the center of the projected ball, but should
in the future be provided by a detection module. We apply the inverse
equidistance projection to the coordinates and thus select the direction of
the corresponding 3D ray joining the projection center to the ground plane
(see Figure 5.1). We spread some particles along this ray and calculate
the likelihood for every particle, based on the information contained in the
image.

The distribution of particles for the PF is then initialized by a Gaussian
distribution, centered at the position of the maximum likelihood particle.
The velocities are also initialized by a Gaussian distribution, with mean 0.

In the other cases we initialize the particles by a Gaussian distribution
with large variance, centered at rough estimates of the object’s initial po-
sition and velocity. This method is not automatic, so it can not be used
in an autonomous robot, unless in very specific cases. One such case is for
example when robots communicate among them, so one robot can detect
the ball and pass its estimates on position and speed to the others. When
we track robots, both position and velocity are only bidimensional, as MSL
robots do not jump yet.
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Experimental results

“No amount of experimentation can ever prove me right;

a single experiment can prove me wrong.”

Albert Einstein

We ran several experiments to assess the accuracy and precision of the
proposed tracking method: in the catadioptric setup, using UPM to model
the camera projection, we tracked a ball rolling down a ramp, a ball bouncing
on the floor and a robot maneuvering. We furthermore ran an experiment
placing a still ball at different positions around the robot and measuring the
error of the detected position with respect to the ground truth.

We compared the results obtained in the tracking and detection, using
UPM and PPM to model the catadioptric sensor.

Eventually, we tracked a ball in the dioptric setup, testing the system
for robustness against occlusions. We also assessed the time needed by the
C++ implementation of our tracker to elaborate one image, verifying it can
run in real-time.

6.1 Catadioptric setup, UPM

In the first experiment we tested the proposed method on sequences of im-
ages acquired with our catadioptric omnidirectional camera, which we model
with the UPM. We used the Matlab implementation of the code, setting the
number of particles to 10000. This value was intentionally very high, as we
intended to test the precision of the tracker in an off-line setting. To sample
the pixels in order to build the inner and outer color histograms for each
hypothesis we projected a sphere with respectively 0.9 and 1.1 the radius of
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the actual ball. For each projection we used 50 points, uniformly distributed
on each 3D contour.

The initial position for the particles was obtained sampling a 3D Normal
distribution, the mean and standard deviation of which were manually set.
The initial velocity was also manually set, equal for every particle. The
parameter k was set to 1.5, meaning that we wanted the difference between
inner color and outer color to be more discriminative than the similarity
between inner color and model color. We repeated the tracking 10 times on
every image sequence, to evaluate the precision of the tracker.

6.1.1 Ball tracking

In the first part of this experiment, we tracked a ball rolling down a two-rail
ramp. The projection of the ball on the image plane changes dramatically in
size after some frames (see Figure 6.1), due to the nature of the catadioptric
system used. The images are affected by both motion blur and heavy sensor
noise (see Figure 6.2). This image sequence was acquired with a frame rate
of 20fps. The results of the tracking are visible in Figure 6.3a.

In the second part of this experiment we tracked a ball bouncing on
the floor. The frame rate in this case was of 25fps. The image sequence
begins with the ball about to hit an obstacle on the ground, while moving
horizontally. The collision triggers a series of parabolic movements for the
ball, which is tracked until it hits the ground for the fourth time. The results
are visible in Figure 6.3b.

6.1.2 Robot tracking

In this experiment we tracked a robot moving along a straight line, turning
by 90 degrees and continuing its motion along the new direction (Figure 6.4).
The vertical position and speed of the tracked object were constrained to
be null. The injected velocity noise was, thereafter, distributed as a 2D
Normal. To sample the pixels in order to build the inner and outer color
histogram for each hypothesis we projected the contour of an 8-sided-prism
with respectively 0.75 and 1.25 the size of the actual robot. The size dif-
ference between the projected models and the actual one is greater than in
the case of the ball due to the fact that the model for the robot does not
exactly fit its actual shape. For each projection, 120 points were used. We
repeated the tracking 10 times and results are shown in Figure 6.5.
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(a) (b)

Figure 6.1: Ball rolling down a ramp. Frames 1, 11 and 21 of the sequence (a) and

three corresponding close-ups of the tracked ball with the contour of the best hypothesis

drawn in white (b). The pixels marked in black are the ones used to build the color

histograms.
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Figure 6.2: Close-ups of the ball showing motion blur and sensor noise.

6.1.3 Error evaluation

In this experiment we placed a ball at various positions around a robot
and confronted the positions measured with our system against the ground
truth. The positions were either in front of the robot, on its right, on its
left or behind it, and either on the floor or at a height of 340mm.

As we were interested in studying the localization error “at convergence”,
we run the particle filter three times on each image. In the first step, the
particle filter was initialized with the ground truth position of the ball and
the particles were generated with a 3D Normal p.d.f. with that position as
mean and a standard deviation of 100mm. In the second step the particles
were generated around the position estimated in step one, with a standard
deviation of 70mm. In the third step the particles were generated around
the position estimated in step two, with a standard deviation of 40mm.

Both the ground truth and the estimated ball positions are shown in
Figure 6.6. It is noticeable some bias mainly in the vertical direction, due to
miscalibration of the experimental setup. However, we are mostly interested
in evaluating errors arising in the measurement process. Distance to the
camera is an important parameter in this case, because target size varies
significantly. Therefore, we have performed a more thorough error analysis
evaluating its characteristics as a function of distance to the camera.

In Figure 6.7, we plot the measured error in spherical coordinates (γ–
distance, φ–elevation, ψ–azimuth), as a function of distance to camera’s
virtual projection center. The first plot shows that radial error character-
istics are mostly constant along distance, with a systematic error (bias) of
about 46mm, and standard deviation of about 52mm. This last value is the
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(a)

(b)

Figure 6.3: (a) Ball rolling down the ramp: plot of the tracked paths resulting from 10

runs of the algorithm performed on the same image sequence. The 10 blue lines with

red points represents the 10 3D estimated trajectories of the ball, the blue lines are the

projection of these trajectories on the ground and lateral plane. (b) Ball jumping: same

kind of plot for the estimated trajectories of the ball in the jump image sequence.
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(a) (b)

Figure 6.4: Robot tracking. Three different frames of the sequence (a) and three close-

ups of the tracked robot with the contour of the best hypothesis (white) and regions

used to build the color histograms (black) drawn (b).
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Figure 6.5: Reconstructed robot trajectory - a view from the top of 10 estimated

trajectories.

one we should retain for characterizing the precision of the measurement
process. The second plot shows the elevation error, where it is evident a
distance dependent systematic error. This has its source on a bad approx-
imation of the projection model for distances close to the camera. Finally,
the third plot shows the azimuthal error. It can be observed that there is
a larger random error component at distances close to the camera, but this
just a consequence of the fact that equal position errors at closer distances
produce larger angular errors.

6.2 Catadioptric setup, UPM and PPM experi-

mental comparison

In this experiment we compared the results obtained modeling the catadiop-
tric omnidirectional camera with either UPM and PPM.

6.2.1 Error evaluation

We repeated the experiment described in Section 6.1.3, using either PPM
and UPM to model the camera. Both models were calibrated with the
same 3D- and imaged-points data. The color histograms in this experiment
were computed based on the pixels sampled with the B-spline method, as
described in Section 4.2.2.

We have computed the errors between ground truth and measurements,
in spherical coordinates γ, φ and ψ, respectively distance, elevation and
azimuth. Results for the errors’ mean and standard deviation are presented
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Figure 6.6: Two views of ground truth (blue) and measurements (red).
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Figure 6.7: γ, φ, ψ error for balls laying on the ground (red dots) and flying at 340mm

(blue crosses).
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UPM PPM
mean γ error (mm) -19.8712 -18.2616
std.dev γ error (mm) 48.1137 47.9484
mean φ error (rad) 0.0005 0.0006
std.dev φ error (rad) 0.0310 0.0276
mean ψ error (rad) 0.0072 0.0072
std.dev ψ error (rad) 0.0314 0.0312
Computation Time (ms) 11.2 6.3

Table 6.1: Comparison of errors measured with the UPM vs PPM. Last line shows the

computation times for projecting 50000 points, on a P4 2.6GHz computer.

Figure 6.8: Ball jumping: plot of the tracked paths resulting from 10 runs of the

algorithm performed on the same image sequence. The estimated trajectories using the

PPM and the UPM models are shown, respectively, with blue and red lines. Both the

3D trajectory and its projections on the ground and lateral planes are shown.

in Table 6.1. As can be observed from the table, there are no significant
differences between the two projection models. However, the computation
time for PPM is about half the time taken by the UPM (last line of Table
6.1). Therefore, the usage of the PPM is advantageous for the overall 3D
tracking system, since it reduces computation time for the same level of
precision.

6.2.2 Ball tracking

In this experiment we repeated the tracking on the sequence of the jumping
ball (see Section 6.1.1), using PPM instead of UPM. A comparison of the
results obtained using the two models is shown in Figure 6.8. No noticeable
differences are observed between the two models, but computational savings
justify the choice of the PPM model.
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6.3 Dioptric setup

In this set of experiments we tested the proposed method on sequences of
images acquired with our dioptric omnidirectional camera, which we model
with the EPM. We used the C++ implementation of the tracker, the one
exploiting the vector and matrix operations provided by the IPP library, by
Intel. To sample the pixels in order to build the inner and outer color his-
tograms for each hypothesis we projected a sphere with respectively 0.7 and
1.3 the radius of the actual ball. This provided us with a “wider” and “flat-
ter” likelihood function than in experiment described in Section 6.1.3.This
choice allowed us to use few particles, namely 300, trading some precision for
speed. For each projected contour we used 50 points, uniformly distributed
on each 3D contour. With these settings, the tracker run at more than 29fps
on a 2.6GHz Pentium 4 processor. The color model, a YUV histogram, was
obtained from manually selected regions, belonging to an image sequence
which was not used for tracking (see Figure 6.9). The image sequences for
the various experiments were acquired at different frame rates, with differ-
ent camera settings and different illumination conditions. The tracker was
successful in all its runs, in spite of these difficulties, which made the color
of the ball look different in every sequence (see Figure 6.10). The tracker
also successfully handled reflexions and shadows, which made the ball look
nonhomogeneous in color.

The initial distribution of the particles was set up in two steps: a de-
tection step and a real initialization step. In the first step, particles were
spread along the 3D ray corresponding to a couple of user-selected image
coordinates. A 3D point was chosen in correspondence of the particle with
the highest likelihood. In the second step, the set of particles was initialized
by a Gaussian distribution with large variance, centered at the selected 3D
point. The parameter k was, as in the other experiments, set to 1.5. We
repeated the tracking 10 times on each image sequence, in order to test the
precision of the tracking method.

6.3.1 Jumping ball

We tracked a ball jumping on the floor and bouncing off a wall (see Fig-
ure 6.11). This experiment shows the ability of our tracker to work with off-
the-floor targets. The trajectories resulting from the 10 runs of the tracker
show that, in spite of using few particles, the estimation of the position of
the ball is precise (Figure 6.12). This image sequence was acquired at 25fps.
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Figure 6.9: The color histogram for the experiments with the dioptric camera was built

based on the non-white pixels of this image.

6.3.2 Occlusions

We tracked a ball passing behind an obstacle (see Figure 6.13 and 6.14)
and a ball which gets to be halfway hidden by a robot ( see Figure 6.15
and 6.16). These experiments show the robustness of our tracking method
against occlusions. The method succeeds in tracking the ball in both cases,
showing some inaccuracy when the ball is hidden by the robot.

6.3.3 Multiple objects

In this experiment we tracked a ball along a sequence in which its projection
onto the image overlaps with that of another ball. Our tracker is not a
multiple object tracker, but we show that its behavior in such a case is still
sensible: it either keeps tracking the ball it was initialized on or switches to
the other. The results of the tracking are visible in Figure 6.17 and 6.18.
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Figure 6.10: Close-ups on the ball in images from the various experiments. Note the

difference in the color of the ball and the reflexions which make pixels belonging to the

projection of the ball look yellow, rather than orange.
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(a) (d)

(b) (e)

(c) (f)

Figure 6.11: Ball jumping. Six frames from the tracked sequence.
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Figure 6.12: Ball jumping: plot of the tracked paths resulting from 10 runs of the

algorithm performed on the same image sequence. The pyramid represents the robot

acquiring the image sequence. The tracked paths start in 1. At first, the ball is held

by a person who lowers it (tracks from area 1 to 2), then the ball is thrown in the air,

bounces on the floor and then bounces on the floor and off the wall at the same time

(3). The tracked paths end in 4.
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(a)

(b)

(c)

Figure 6.13: Three frames of the tracked sequence when the ball is occluded by the

bar which sustains the camera.
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(a)

(b)

Figure 6.14: Top view (a) and 3D plot (b) of the 10 tracked trajectories. The pyramid

represents the robot acquiring the image sequence. 1 denotes the beginning of the

trajectories, 2 denotes the area when the ball is occluded by the bar and moving slowly,

a small error in the trajectories can be noticed (in the trajectories there are two abrupt

changes of direction, in correspondence with the beginning and end of the occlusion).

3 denotes another passing of the ball behind the obstacle, while 4 denotes the end of

the trajectories.
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(a) (c)

(b) (d)

Figure 6.15: Two frames of the tracked sequence in which the ball is occluded by

another robot. In the first row the ball is still fully visible, while in the second it is

halfway hidden by the robot. In the first column the original images are shown, in

the second one the inner and outer contours of the maximum likelihood hypothesis are

drawn in white, while those of the hypothetical position corresponding to mean of all

the particles, weighted by their likelihood, are drawn in black.
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Figure 6.16: Plots of the 10 tracked trajectories of the ball. The tracked paths begin

in 1. When the ball is fully visible (from area 1 to 2 and from 4 to 5) the precision of

the tracker is lower than in the previous experiment. This depends on the fact that in

this experience the ball is farther from the robot acquiring the image sequence. Farther

objects can be localized with less precision because of the projection performed by the

dioptric omnidirectional camera. When the ball is hidden (from area 2 to 4), the esti-

mate of the position becomes less accurate, as the tracker associates higher likelihoods

to smaller contours, corresponding to balls which are farther from the observing robot.
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(a) (d)

(b) (e)

(c) (f)

Figure 6.17: Image frames from the sequence with two overlapping balls.
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Figure 6.18: Tracked trajectories for the sequence with overlapping balls. The tracked

paths start in area 1. Some inaccuracy in the localization of the tracked object can

be seen in correspondence of the overlapping (2). In nine cases out of ten, the tracker

followed the ball it was initialized on (ending in area 3), while in one case it switched

to tracking the other ball (ending in area 3’).
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Chapter 7

Conclusions and future work

“The end is the beginning

of the end.”

Billy Corgan, The Smashing Pumpkins.

In this thesis we presented a model-based 3D tracker for autonomous
robots equipped with omnidirectional cameras. The tracker was designed
to work in the structured, color-coded environment of the RoboCup MSL.
The system was based on a particle filter, for robustness against occlusions
and ambiguity. The chosen object model comprises a 3D shape model, a
color model and a motion model. The observation model was designed to
be robust against motion blur, image sensor noise and illumination changes.
The system works with either a catadioptric or a dioptric omnidirectional
camera.

We developed both a Matlab and a C++ implementation of the tracker.
We ran several experiments, in a RoboCup MSL scenario, to assess the

accuracy and precision of the proposed tracking method with color-coded
objects.

In the catadioptric setup, using UPM to model the camera projection,
we tracked a ball rolling down a ramp, a ball bouncing on the floor and a
robot maneuvering. These experiments on ball tracking show the robustness
of the method with respect to motion blur and image sensor noise.

Still in the catadioptric setup, we ran an experiment to assess the ac-
curacy of the system, placing a still ball at different positions around the
robot and measuring the error of the detected position with respect to the
ground truth.

We compared the results obtained in tracking and detection, using UPM
and PPM to model the catadioptric sensor, verifying that PPM provides the
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same level of precision and accuracy of UPM, but at a smaller computational
cost.

Eventually, we tracked a ball in the dioptric setup, testing the system for
robustness against occlusions and real-time capabilities, verifying that the
C++ implementation, exploiting the vector and matrix operations provided
by the IPP library, can run at 29fps on a P4 2.6GHz processor.

In future work we intend to extend the system with the ability to track
multiple objects. We will introduce the use of multiple motion models, for
example use a model describing the motion of a ball rolling freely and an-
other describing the motion of a ball bouncing against an obstacle. We also
intend to use physics-based motion models (e.g. applying gravitational ac-
celeration to particles which model flying balls). We will express the target’s
coordinates in an inertial reference frame, instread of the robot-centered one
we use now. This will be combined with ego-motion compensation: applying
the inverse motion of the robot to the filter’s particles. We also plan to test
the tracker in a non-color-coded environment.
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[38] Matteo Taiana, José Gaspar, Jacinto Nascimento, Alexandre
Bernardino, and Pedro Lima. 3d tracking by catadioptric vision based
on particle filters. RoboCup International Symposium, 2007.
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