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Abstract

In order to emulate in robots the speech production and learning capabilities of human infants, exploratory

strategies in articulatory synthesizers have been proposed for the creation of acoustic to motor associations.

However, commonly used articulatory speech synthesis models are based on an unconstrained modeling of the

physiology of the human vocal tract which contain many redundant parameters. In this thesis we show that

vocalic speech requires, in fact, a very reduced number of parameters and, based on well-established linguistic

knowledge, propose a two-dimensional articulatory space for VTCalcs articulatory synthesizer.The proposed

space is generated through the convex combination of prototype vowels representing vocal tract extremal

configurations. We also propose a speech learning architecture that can integrate unsupervised classification

for vocalic speech sounds of a given language. This provides a low-dimensional and intuitive vowel production

space, suited for automatic production, recognition and learning of speech in articulatory models.
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Resumo

Para recriar em robots as capacidades de produção e aprendizagem de fala das crianças têem sido propostas

estratégias esploratórias, com base em sintetizadores articulatórios com o objectivo de mapear a representação

acústica na representação motora da fala. Contudo, os modelos de śıntese de fala commumente utilizados

não colocam restrições fisiológicas importantes às configurações motoras que efectuam, quando, na verdade,

os parâmetros do tracto vocal contêm redundância. Nesta tese mostra-se que, de facto, as vogais orais são

representáveis por um reduzido número de parâmetros no espaço articulatório, propondo-se ainda, com base

em conhecimento lingúıstico bem estabelecido, um espaço articulatório bi-dimensional para o sintetizador

articulatório VTCalcs. Este espaço articulatório é gerado pela combinação convexa de vogais protot́ıpicas

que representam configuraç ões extremas do tracto vocal humano. Propõe-se ainda uma arquitectura de

aprendizagem de fala que integra classificação não supervisionada para sons de fala vocálicos de uma ĺıngua.

Palavras-Chave

Percepção de fala, Redução de dimensionalidade, agrupamento hierárquico.
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Chapter 1

Introduction

This thesis is inscribed as an epigenetic humanoid robotics perspective. Developmental robotics aims at

studying how knowledge on human cognitive development can be exploited to allow robot to learn and adapt

continuously to its morphology and environment [1]. The development of speech production involves the

exploration of the vocal tract capabilities during the infant’s early developmental stages. Also for speech

perception development, the vocal tract’s articulatory information may be of fundamental importance. So,

one should understand the human cognitive functions associated with speech. In this thesis we exploit the

vocal tract’s articulatory structure and linguistic related knowledge to propose realistic constraints on speech

production ““degrees-of-freedom”” what can facilitate the early stages of learning in a robotic system.

In order to better understand the human basic processes that underlie the speech production and

perception functions, a short overview in speech related neuroscience and robotic implementations is presented.

The approach of this thesis concludes this Chapter, along with the description of this thesis’ structure and the

brief statement of it’s contributions.

1.1 Hypotheses from Neuroscience and Psychology

Speech is an intrinsically human characteristic. Indeed, it is not deliberately learned, in contrast to reading

and writing, and only human beings demonstrate to possess it. It is the process of communicating with

others using the voice, modulating and articulating the sound in order to convey meaning. Therefore, it

is an interdisciplinary field of study for several areas of knowledge. In order to investigate new and more

effective ways to recognize speech and construct a humanoid robot that is able to produce and identify speech

sounds, this thesis takes a biologically motivated approach, trying to grasp the fruits of human evolutionary

improvements and to better understand the human speech production and recognition systems. So, it calls for

different branches of knowledge and its approach is motivated by their relevant results. In the present chapter

some theories, experiments and results from the fields of neuroscience and psychology are briefly reviewed.

1.1.1 Neuroscience: Mirror Neurons and Broca’s Area

Brief perspective through the human brain: actions and speech

Medical studies conducted in man and animals in the last two centuries have consolidated the assumption

that the cerebral cortex can be divided in specialized functional areas. The delimitation of those areas is,
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nevertheless, not established beyond doubt. Moreover, neuroscience knows that the division between motor

and sensory cortical areas is erroneous, since motor responses can be obtained on stimulation of sensory areas.

Having this in mind, this text refers to the terminology that associates functions to brain locations, because

it is useful to illustrate functional proximities in the brain.

The observation of the cortical areas of interest to the present work, their functions and connections,

can shed some light in the relationships between action and speech, and between production and perception.

The areas are roughly illustrated in Figure 1.1, and a greater detail in description can be found in [2].

Figure 1.1: Functional localization of the cerebral cortex: lateral view of left hemisphere. (Brain image from
[3], which is in the public domain. Text labels added, according to [2]).

The primary motor area carries out individual movements of different parts of the body, but it does not

design the pattern of movement: it converts the afferent design into execution of movement.

The premotor area stores programs for motor execution that result from past experience and feeds them to

the primary motor area. This area is also responsible for the control of coarse postural movements.

The motor speech area of Broca is responsible for the generation of speech sounds, by its neural connex-

ions with the nearby primary motor area; as a result, the phonatory system is activated in order to

produce speech. Broca’s area is important only on the dominant brain hemisphere (the left one, for

right-handed people).

The primary somesthetic area receives stimuli from body sensors, and the amount of cortex assigned to a

part of the body is proportional to its functional importance and not to its size.

The auditory area has two parts; in the primary auditory area the sound frequencies are represented tono-

topically1. The secondary auditory area is needed for interpreting general sounds.

The sensory speech area of Wernicke is connected to Broca’s area by an aggregate of nerve fibers. It

receives inputs from the visual cortex and from the auditory cortex. Wernicke’s area allows us to

understand the written and spoken language.

1Tonotopic: spatially organized by tone or frequency.
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Mirror neurons: perceiving and performing

Experiments in macaque monkeys presented in [4] revealed a type of neurons, called mirror neurons, which

discharged when the monkey performed active goal directed movements and also when the animal observed

meaningful hand movements made by an experimenter.

All movements mimicking an action, but lacking the object of that action had a minimal effect, if

any, in the discharge pattern of the mirror neurons. In contrast, the most prominent neural activity was in

response to the experimenter’s hand or mouth interaction with objects. The majority of the identified mirror

neurons was selective to one single action. They discharge only when the monkey is presented (or performing)

a specific action like grasping, manipulating or holding.

The authors of these experiments discuss possible functional roles for these neurons. They can code

representations of actions and movements or even associate specific motor center codings with the meaning

of the action, its goal. This facilitates, or even enables, prediction of consequences for one’s own actions, as

well as recognition of another subjects’ movement, with the same representation for both cases.

These neural cells belong to the F5 brain area in monkeys, corresponding to Broca’s area in humans.

Evidence from medical imaging and clinical experiences in humans agree substantially with the existence of a

mirror system in humans. The findings also suggest that Broca’s area is not exclusively a speech area. It is

suggested to have a hand movement representation, performing also action recognition.

The human action recognition system and Broca’s Area

Several neuroscience studies were conducted on this subject since the mirror neuron system was first described,

in order to better understand the physiology of action recognition and the connection between speech and

manipulation. With the development of non invasive and non health-threatening functional brain imaging

techniques like functional Magnetic Resonance Imaging (fMRI), it became possible to study brain activity

during speech and language production and comprehension. In [5], using fMRI, the activation of both the

language production system and the action recognition system showed an overlap, in accord with the hypothesis

of a common functional architecture residing in Broca’s area.

1.1.2 Psychology: Motor Theory of Speech Perception

The motor theory of speech perception, reviewed in [6], claims that speech perception occurs in a biologically

specialized system or module that detects the intended articulatory gestures of the speaker. These intended

gestures would be the basis for the phonetic categories that, in each language, define a set of speech sounds

that can be classified as a phoneme. This perception module does a transparent conversion from acoustic

features to articulatory gestures, delivering to the upper module the articulatory gestures and not an acoustic

perception. Another claim of this theory is that speech perception and production are a single mode and its

link is formed by motor invariants, gestural commands, that are elementary events of both production and

perception. This module is believed to be in competition with other modules for the sound stimulus.

The theory argues that the objects of speech perception are the intended phonetic gestures, repre-

sented in the brain as invariant motor commands that call for movements of the articulators, targeting certain

linguistically significant configurations. The authors point out that the traditional phonetic notions such as

tongue backing, lip rounding and jaw raising have expression in the physical reality as gestural commands.

These gestural commands are elementary events of speech production and groupings of them are phonetic

segments. So, to perceive an utterance is to perceive a specific pattern of intended gestures. Those gestures
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are not directly represented in the acoustic signal nor even in the observable articulatory movements due to

different types of phenomena, such as noise, channel distortion or coarticulation, for example. The listener has

to extract these segmented phonetic categories from a signal that is continuous and unsegmented by nature:

the percept is segmented in a way that the signal is not, showing considerable overlap of phonetic information

in the acoustic pattern.

Also, there is a great number of auditory cues for each speech percept, and each one of them is

more or less sufficient to determine the underlying phonetic category. Nevertheless, none of those cues is

truly necessary, because the absence of one can be compensated by others. To worsen the auditory theories’

problem, these cues are subject to extensive variation due to context. So, we cannot define a phonetic category

simply in acoustic terms; we should rather use the sound signal as a source of information about the gestures

that properly define the category.

But the sound signal is a source of information not only for the speech mode. If the listener is not

directed to perceive speech, he will apply other mode — or modes — in order to deliver a perception of some

kind to upper cognitive levels. For instance, this acoustic signal can be perceived as a chirp and permit the

spatial localization of the emitting subject.

Of course, the speech perception mode gathers information from other sensorial inputs, namely

vision. The McGurk effect is a perceptual phenomenon that demonstrates that vision has its role in speech

perception. It is experienced while watching a mouth articulation that does not correspond to the heard

syllable. It is not an illusion, because it still has effect when the listener is aware of the discrepancy between

the seen and the heard.

This theory proposes that the link between speech perception and production is not a learned asso-

ciation. Rather, it is innately specified, requiring epigenetic development. This claim arises from considering

speech perception as a module, that is, a portion of neural architecture specialized in the necessary compu-

tations on the input, outputting representations of objects or events that belong to an ecologically significant

class for the organism.

1.2 Computational and robotic implementations

In this Section we describe the main computational models related to speech and manipulatory gesture pro-

duction and recognition invoking the use of motor information in the execution of predominantly perceptual

tasks.

1.2.1 The DIVA Model

The Directions Into Velocities of Articulators (DIVA) model is a description of speech acquisition and pro-

duction based on artificial neural networks, feedback and feedforward control. Different neural nets represent

mappings which are related to regions of the cerebral cortex and cerebellum, as described in [7]. Its purpose

is to facilitate the understanding of

Speech production phenomena like motor equivalence, contextual variability, coarticulation or speaking

rate effects;

Child development processes. With the radical anatomical transformation of the vocal tract, articulators

and the overall phonatory system, the child must continue the process of speech acquisition;
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Auditory feedback role in speech production for normal hearing and hearing-impaired individuals.

This model focuses on the sensorimotor transformations that give rise to the control of motor

articulatory movements. For this, an adaptive neural network learns to control a simulated vocal tract. The

synthesizer used is the one described in [8]. The architecture of this network is related to brain functional

areas, having specific artificial neural subnetworks as maps between different cognitive representations in the

brain. The motor and premotor representations are coded in two maps:

The premotor cortex speech sound map corresponds to the premotor cortex and the posterior Broca’s

area. Its cells are functionally related to mirror neurons. Each of those cells should represent the motor

command associated with a frequently used speech sound (phones and syllables).

The motor cortex velocity and position maps which are mental representations of the actual position and

velocity of the articulators. These variables are determined from the feedforward and feedback control

signals.

The feedback control subsystem acts after the model’s production of the learned speech sound. It

constructs the auditory state map with representations of the acoustic sound derived from the articulatory

configuration learned. The somatosensory state map codes the proprioception, i.e, the internal state of the

body, for the spoken sound. The DIVA model authors hypothesize the existence of auditory and somatosensory

targets that would encode in an acoustic level a syllable or a phone. This proposed explanation leads to the

auditory and somatosensory maps that code the difference between the target region and the current state.

These errors are then fed back as motor velocities, correcting the position of the articulators.

The feedforward control subsystem is incrementally learned, tuning the projection functions of the

premotor cortex and the cerebellum. As the speech sound map is learned, the error in the produced sound will

diminish, and the feedback subsystem will be almost disconnected from the overall system. It will only come

to stage when a change in the articulatory anatomy occurs, like the development of the infants’ vocal tract,

for instance.

The DIVA model is both a neuroscience and a computational approach and is primarily concerned

in speech production at the phone and syllable level with good results for oral vowels.

1.2.2 Robotic Manipulation: Learning by Imitation

Motivated by the mirror neuron findings in neuroscience and the concept of affordances2 in psychology, Lopes

and Santos-Victor propose in [9] a general architecture for action and gesture recognition in a humanoid robotic

platform taking advantage of the similarities between robot and human motion. Joining the knowledge of its

own body’s movements, the objects’ affordances and the visual perception of the demonstrator’s gesture or

action, proved to outperform the traditional visual-only methods for action and gesture recognition.

1.3 An Articulatory Approach to Speech Recognition

The long-term goal pointed out by this work is to give rise to an architecture for speech acquisition, recognition,

and production that does not need to be trained or programmed by specialists, but instead is prone to self-

learning, with the stimuli available in the environment.

2Affordances are actions that an agent can potentially perform in the environment. More specifically, they are properties of
an object or system having available action possibilities. The affordances suggest how an object may be used.
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For now, this work’s concern is to define a simpler architecture, dealing with stationary voiced signals

— vowels, as produced in the chosen articulatory synthesizer. This architecture is meant to obtain acoustic

cues only to generate the motor commands that represent phones, as they are perceived in some language, in

this case, the portuguese language. The inclusion of visual cues, as suggested by the motor theory of speech

perception discussed above, would improve the system’s performance.

Unlike the DIVA approach, this work defines a two-dimensional subspace for oral voiced vowels in

the broader six-dimensional space of the articulator coefficients. This dimensionality reduction, inspired by

linguistic knowledge and human articulator constraints not present in the synthesizer’s definitions, permits a

complete mapping of the articulatory space. So, as DIVA computes its sensory motor map locally, by computing

the tangent spaces to the synthesis function at some prototypical points, this approach can compute the whole

map, in an exploratory fashion, as the system babbles and acquires some specific language. The synthesizer

used in both approaches is the same.

A recognition performed in the motor articulatory space is expected to be easier, and less prone to

noise and variation, than the traditional purely acoustic recognition, achieving more invariance and robustness,

even with no other cues whatsoever.

1.4 Thesis Structure

The present thesis is organized as follows: in Chapter 2 speech mechanisms in humans are investigated, in

its physiological and anatomical perspective as well as in the linguistic one. This Chapter’s goals are to

give an insight on the restrictions on human articulators, introduce the source-filter theory for vowels and, in

another hand, to briefly introduce human speech acquisition and the linguistic approach to oral vowels. The

Chapter concludes with a discussion on restrictions to the articulatory parameters that describe phonation in

oral vowels.

Chapter 3 proposes a two-dimensional model for generating oral vowels in an articulatory synthesizer.

Firstly, the principles underlying the synthesizer in use are introduced, The tube model for the vocal tract is

briefly stated. Then, the new low-dimensional articulatory space is formally defined. This chapter aims at

defining a formal basis for the following Chapters and future work.

In Chapter 4 the artificial system’s speech acquisition architecture is presented. It consists in a

three-stage process that starts with exploration of the system’s own articulatory capabilities — babbling;

follows the identification of a particular language’s speech sounds and, finally, the recognition of groupings in

speech sounds — the identification of specific phonological vowels. In the babbling phase the system learns

the mapping between its acoustic productions and the articulatory gestures that originated them, and the

model proposed in Chapter 3 is validated.

Classification of vocalic sounds as phonological vowels of a certain language is discussed in Chap-

ter 5. Here a collected dataset of native speaker validated portuguese vowels is classified with unsupervised

classification methods, and several issues regarding clustering techniques are discussed. Classification results

are also discussed.

Finally, in Chapter 6, some conclusions are drawn and future work is proposed.
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Chapter 2

Speech Mechanisms

In humans, speech sounds are produced thanks to the phonatory system. In order to understand the constraints

that emerge from the architecture of this system and to introduce them in a model for the robot’s vocal tract,

it is necessary to investigate how and why people produce speech and to determine how far can we go when

reducing degrees of freedom in this model.

2.1 Voice and Speech Physiology

Speech is one of the most important communication media for human beings. So, it should be an essential

medium of communication between man and machine. Here are presented some important physiological and

anatomic facts about speech and human voice production in order to understand the nature and complexity of

the processes involved in human oral communication and to prospect ways to better replicate some of them.

There are three subsystems involved in speech production, namely,

1. Pulmonary airflow,

2. Larynx and the vocal vibration,

3. Oral and nasal cavities.

There is no human organ uniquely dedicated to speech production, in contrast to other functions like feeding

or supplying oxygen to the blood. The phonatory system is, in fact, a secondary use for life maintaining

systems, with a little remake by evolution.

These topics will be briefly presented in the subsequent sections, mainly focused in the production of

voiced speech sounds. For more information on this subject refer to [10]. The unvoiced and murmured sounds

are produced without the vibration of the vocal folds. The source for these sounds can easily be modeled as

noise.

2.1.1 Voice: The Sound Source

Voice is defined as the resulting sound wave from vocal fold vibration. It is the medium for spoken communi-

cation. Phonation is the set of physical and physiologic processes that lead to a sound vibration at the vocal

fold level. There is a less strict definition for voice, that describes it as the support for spoken communication,

for the expression of emotions and personality.
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Pulmonary airflow

The phonation starts by the building up of a pressure gradient between the subglottis and the supraglottis,

creating thus aerodynamic energy that will be transformed in acoustic energy by means of the approximating

vocal folds. This sound is then filtered by the superior aerial cavities (buccopharyngeal resonators) producing

speech sounds.

To produce phonation, the speaker needs to control and activate antagonic muscles in order to set

the subglottic pressure at a constant level, which is a difficult control problem. The air pressure must be

monitored constantly and it’s value must be rapidly increased in milliseconds to about 1.015 atm. When the

speaker needs to raise the sound’s fundamental frequency the vocal folds stiffen and the air pressure must,

again, be increased in order to maintain the vibration amplitude.

Larynx vibrating stucture

The larynx tops the tracheal tube and its rigidity keeps the airway open. It is also an effective resonance box

for voiced sounds. It supports the vocal folds and supplies the muscular, nervous and cartilaginous support for

their adduction and abduction movements. A view of the larynx and the vocal folds from above is depicted in

Figure 2.1. They have a common static union point in the larynx and two mobile articulations permitting the

Figure 2.1: Laryngoscopic view of the interior of the larynx, depicting vocal folds and glottis (image from [3],
which is in the public domain).

opening and closing of the airway.

Vocal Folds: A Dynamic System

Unlike the rest of the larynx, vocal folds specialized in voice production and their free vibrant edges are covered

with a Malpighian epithelium, which is one of the most resistant tissues in the human body, better adapted

to pressure and vibration forces. The vocal folds are equipped with shock absorbers to protect them when

in contact with the non vibrating rigid structures of the larynx. Although this specialization equips the vocal

folds in a way only found in humans, their main function is still the protection of the trachea and lungs from

foreign objects.
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The vocal fold vibration is different from the vibration of a tensioned string in a guitar. It’s movement

generates a periodic sequence of air puffs and not a sinusoidal sound vibration. It is also not plucked by fingers,

but activated by a transglottic pressure gradient. The vocal fold vibration is a flow-induced oscillation. This

oscillation is sustained and generates a sequence of glottal pulses, forming a source signal that will be passed

through a filter.

The vocal folds are responsible for the voice’s fundamental frequency and, in some languages in

Asia and Africa, for tonal distinctions between speech sounds.

2.1.2 Articulators and Resonators: The Sound Filter

The resonators are supra-glottic cavities that filter the voiced stationary sound produced by the vocal folds.

The main resonators are depicted in Figure 2.2. The nasal cavity is fixed. It is delimited by bone and cartilage.

Figure 2.2: Sagittal view of the vocal tract, with resonator cavities delimited. Marked in red, there is the
nasal cavity, in blue, the oral cavity and in yellow the pharynx (image from [3], which is in the public domain,
labeled and colored by this thesis author ).

The pharynx size and shape can be changed by the uvula, the back of the tongue and the pharingeal muscles.

The oral cavity is the most changeable of the resonance spaces. It is delimited by the hard palate and the

active articulators or, simply, articulators. The lower pharynx and oral cavity are commonly known as the vocal

tract. The articulators can be moved in order to create constrictions and change the vocal tract’s shape. The

main articulators are:

Jaw: moves in coordination with the lips and tongue; this articulator can determine the openness of the vocal

tract;

Lips: can protrude or round for certain positions of the jaw;

Tongue: it is the most mobile and flexible of the articulators. It is so flexible that it is considered as three different
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articulators, although they constrain each other: apex and lamina, the most anterior of the three, the

dorsum and, most posteriorly, the radix. The amplitude and nature of their movements depend also on

the degree of openness of the jaw;

Soft palate: it is mainly important for the distinction between nasal and oral vowels. It is a valve that opens so that

the flux of air can enter the nasal cavity.

All these articulators have a high degree of coupling and in an unequal way. For instance, it is

possible, to some extent, to compensate a blocked jaw by tongue gestures, but the inverse is not possible.

The articulators can cause an obstruction in the airway to produce consonants. If this occlusion is

complete, the resulting speech sounds are plosives. According to [11], in such an occlusion, there is a build up

of pressure behind the articulator that is blocking the airway. In the sudden release of pressure that follows, the

transitory turbulence creates an explosive sound. When the occlusion is not complete, the consonant is called

continuant. In this group we can find, among others, the fricatives and liquids. Fricatives are generated by a

sufficient velocity of the airflow through a constriction in the vocal tract as to create friction noise. Liquids

have no real obstruction in the airway generating noise. They are defined by a narrowing of the vocal tract,

permitting the free flux of air. In lateral consonants, a subset of liquids, an occlusion occurs along the tongue

axis, leaving the lateral spaces in the mouth open for air to escape.

Brief notes on the source-filter theory for vowels

The acoustic properties of vowels have been traditionally studied in the context of the source-filter theory.

According to [12], the theory considers the source as the quasi-periodic glottal airflow and the filter, the

upper-glottic cavities, as mentioned earlier. So, the vocal tract reshapes the frequency envelope of the source,

selecting some frequencies of the total spectrum of the source signal — the formants —, in order to radiate

them from the mouth. The vocal tract is approximated by a cylindrical tube concatenation and, in most

applications, assuming constant air density and sound velocity throughout the airway. This source-filter model

is valid for vowel production and the synthesizers’ implementations based exclusively on this theory have poor

results on consonants.

2.2 Linguistic Knowledge

To understand speech mechanisms we must go beyond the simple consideration of morphology and physiology

of structures that enable speech production or perception. We must also consider the linguistic aspects of

speech. Linguistics is the scientific study of language. The relevancy of its contribution to this present work is

considerable, since it permits access to speech acquisition, speech production and speech classification results

that point out dependencies and possible simplifications in the degrees of freedom of the speech recognition

problem.

2.2.1 Language vs. Speech

Language is a set of arbitrary symbols, associated with a meaning (the semantics), and a set of rules to

combine and manipulate them (the syntax). Under this broad definition it is possible to find programming

languages, formal languages or natural languages, among others. Natural languages evolved naturally from

the need of general human communication and have native speakers, through whom it is possible to study the

several aspects of that language.
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Speech is the physical aspect of the oral representation of language. For linguistics, as explained in

[13], it is the simultaneous representation of the production and perception systems.

The theories and proposals about language are constructed from natively produced speech and the

understanding that each native speaker has of his own language.

Phonetics vs Phonology

The mainstream in linguistics defines two levels in the study of speech units. Those two disciplines are

distinguished by the questions that each of them tries to answer:

Phonetics: What sounds are humans capable of producing?

What sounds are used in speech?

What operations are involved in the translation from the linguistic representations to the sound signal?

Phonology: What sounds are distinctive units in a particular language?

What is the specific organization of the sound system in a particular language?

So, phonetics is more concerned with the universal characteristics for all human spoken languages,

while phonology is focused in the arbitrary and particular relations between symbols of a language and sounds.

A phonological description is particular for each language. This difference is expressed also on the working unit

of each level: for phonetics, the phone is the smallest discrete unit that a listener can perceive in a continuous

sound sequence; the phone is the phonetic specification of the speech sound. For phonology, the phoneme is

the abstract unit that is phonologically distinctive, i.e., that establishes a contrast in meaning in a minimal

pair of sequences.

Linguistic Variability

There are multiple causes for linguistic variability, be it the large scale historical change that makes languages

evolve, die or even derive themselves into new languages, or be it simply normal processes of coarticulation,

used in order to fluently produce speech. The categories of linguistic variation whom this work is mostly

concerned is, naturally, the phonetic and phonological ones. In these categories one can define particular

groups:

Contextual variation: Since articulators are in constant motion during speech and the latencies for tongue

muscle response to brain command are of approximately 30 ms (from [7]), certain articulatory gestures

may not be completed in time or can co-occur with the segment that precedes or follows it. When the

specification of a phonological segment is redundant, it can even be replaced by the combination of

contiguous gestures. An example of this variation is allophony, the phenomenon that a phoneme has

different (context-dependent) variants that occur in complementary distribution; those variants are called

allophones. The phoneme identification is done by the minimal pair test1. In English, two allophones

of the phoneme /p/ can be found in the word paper [pheIpÄ]. [ph] and [p]. In Portuguese, a good

example of allophony is the realization of the plural phoneme, /s/, that has 3 possible allophones, for

three different contexts. It can be [z] as in casas amarelas [kaz5z5m5rEl5S], [S] as in casas pequenas

[kaz5Sp1ken5S], or [Z] casas bonitas [kaz5Zbunit5S].

1Tests if two phones are realizations of the same phoneme. Find two words that sound identical, except that one contains the
phone P and the other the phone Q in the same position. If this difference leads to a difference in the meaning between those
words, then phones P and Q represent different phonemes.
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Regional variation: Certain phonemes have a characteristic realization in a region. The Scottish English

rhotic accent contrasts with the traces of [r] in the precedent vowel in England’s English. The Portuguese

affricate phone [Ù] for the /S/ phoneme present in the surroundings of the city of Chaves, located in the

northern region of Portugal, is another example of regional variation.

Ideossincratic variation: based on sociolects or even individual variants. A rapid speech accentuates coar-

ticulation and creates variation within segments of speech belonging to the same speaker.

But the speech sound itself can vary in many different ways, such as with prosody, or with temporary

conditions like obstruction of the nasal cavities, or inflamation of the vocal folds, for instance. The emotional

state of the speaker is also a factor of variation.

2.2.2 Language Acquisition in Infants

In order to acquire speech, the infant must be in an environment where he is exposed to a spoken language,

where he can interact verbally with his world, in addition to having the neural structures that enable the

speech module in proper condition. The exterior stimuli are people speaking in the child’s perceptive area, not

necessarily with the child.

To the developing child, speech perception precedes speech production. This time delay is presum-

ably due to the need of the child to be immersed in a specific language, before he can be ready to produce

it.

In a first perceptive stage, the child associates systematically certain sound patterns with events,

objects or situations that are familiar to him. The first meaningful speech feature is prosody. Afterwards,

the child starts segmenting speech in words or blocks of words. For instance, the phrase “Let’s take a bath”

is frequently repeated, in the same way as “Let’s take a nap”. This can lead to an association between

real-life situations (and later, concepts) and the sound sequence; afterwards, the situation can be related to

the segmented sequences bath and nap.

In a later stage, production starts to take place. Although the child babbles since birth, exploring

his articulatory possibilities, only at the age of about six months, after accomplishing global comprehension of

phrases and words, does he start to articulate the sounds of his own environment: repeated or isolated sounds

or syllables and words-phrase. This is the inverse path of understanding: the infant recognizes the meaning of

the phrase because of the presence of one single word (“bath”) and produces the same single word to mean

the whole phrase.

Language acquisition is complete when phrases and continuous speech are mastered. This usually

happens when the child reaches the age of four or five years old.

2.2.3 IPA, A System for Speech Classification: The Oral Vowel Chart

Since the beginning of Linguistics and Phonetics speech sounds are classified mainly by articulatory parameters.

As the present thesis focuses only in the vowel space, we will restrict this overview to the vowel space.

One of the pioneer works in defining where are vowels located in the articulatory space was [14]

in which the mathematician and phonetician Daniel Jones first proposed the Cardinal Vowel Diagram. This

diagram was a subject of many discussions and contributions from the phonetics community and originated

the generally accepted representation for oral vowels in use.
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(a) International Phonetic Alphabet chart for oral vowels.

(b) Main degrees of freedom represented in the IPA
chart. Figure from [3], with our labels.

Figure 2.3: Articulatory degrees of freedom in the IPA chart representation.

The diagram of the International Phonetic Alphabet (IPA) for oral vowels in Figure 2.3(a) shows

the distribution of vocalic sounds in three dimensions relative to the human vocal tract: height (vertical axis),

backness (horizontal axis) and roundedness (lip rounding) [15] as illustrated in Figure 2.3(b).

This choice of reference frame has roots in the physiology of the phonatory system. The vocal tract

configuration for oral vowels depends on the tongue, jaw and lips. The jaw and the lips can have several

degrees of openness, the tongue can assume the its articulatory position in anterior, middle or posterior of the

oral cavity and the lips can also change the vocal tract by rounding. So, these three articulatory parameters

are considered the main degrees of freedom of vowel production, the ones that better explain the inter-vowel
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variation. Nevertheless, there are other static articulatory parameters that influence oral vowel quality, although

they are not determinant in most spoken languages.

2.2.4 Degrees of Freedom in vocalic articulation: Corner Vowels

In most languages, rounded and not rounded vowels are not minimal pairs, i.e., for the same articulatory

configuration, roundedness alone does not create two different phonological vowels. In addition to this, some

studies support that roundedness is perceived mainly by vision in normal hearing-seeing subjects [16]. For

these reasons, the main articulatory dimensions considered for oral vocalic sounds in the human vocal tract

should be the height and backness, motivating the approximation proposed in this work — whatever the

dimensionality of the articulatory space we consider, there is a two-dimensional subspace approximation that

maps the vowel system of most languages. The phones [i], [a] and [u] define a set of axes in the 2D plane of

the articulatory parameters of height and backness. These three vowels are called corner vowels because they

represent extreme placements of the tongue, forming the corners of a triangle in articulatory space and also,

importantly, in formant space (the second formant versus the first one).

In the following Chapter we will exploit this knowledge to propose constraints in the articulatory

space that will prove useful in the simplification of speech learning and production.
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Chapter 3

The Speech Production Model:

A 2D Articulatory Space

In order to model restrictions due to articulator coupling and to reduce redundant complexity, it has been

developed a two dimensional space of articulatory parameters for oral vowels. The parameter α models

frontness (as oposed to backness), and β models openness. Roundedness is proven not to be a relevant

degree of freedom in most languages, as suggested in Section 2.2.

To test and validate our proposal we use a well-known articulatory speech synthesizer. This will allow

us to do systematic tests and quantify the errors arising from the proposed approximation. From realizations

of the extremal phones [i], [a] and [u], we generate a dense representation of the feasible acoustic signals.

Then, to evaluate the model, we compute the acoustic errors outside the feasible set.

3.1 Articulatory Synthesizer Platform

The synthesizer in use1 is a MatlabTMversion of Shinji Maeda’s Vocal Tract Calculator (VTCalcs) [8]. The

seven articulatory parameters are jaw, tongue, shape, apex, lip ht (lip height), lip pr, (lip protrusion), and

larynx. This last one is not relevant to oral vowel production, so it is kept constant. Thus we consider

only six degrees of freedom and each one can assume any value in [−3; 3]. The articulator parameters are

presumed to be independent, which is not the case in the human vocal tract, leading sometimes to improbable

configurations of the articulators, producing a non human or even no sound. In fact, after a dense sampling

of the six-dimensional hypercube and feeding the samples to the synthesizer, as explained later in this section,

we realized that only 44.22% of the articulatory vectors generated sound, even if not a human-like one.

3.1.1 Source-Filter Model of Oral Vowel Production

We have already seen in Section 2.1 that vowel production can be understood as a cavity filter excited by a

sound source, being usually modeled as a linear filter applied to the glottal pulse. This filter is the mathematical

correspondent to the dynamics of sound propagation and resonance in concatenated tubes. When a sound

wave travels in a sequence of tubes some boundary conditions have to be accounted for.

There are two important concepts when we consider the propagation and reflection of sound waves

1Available at the CNS Speech Lab webpage http://speechlab.bu.edu/VTCalcs.php
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in a tube:

The acoustic impedance of a tube (Z) is defined in [12] as

Z =
ρ c

A
[kg−1m−4] (3.1)

where ρ is the air density inside the tube, c is the sound velocity and A is the cross-sectional area of the

tube.

Changes in the acoustic impedance across tubes will lead to changes in wave propagation. Examining

equation 3.1 and noting that the sound velocity and air density are quite constant along an open tube,

we see that a change in the cross-sectional area of the tube will determine a change in wave propagation.

Reflection coefficients between abutted tubes. The vocal tract is approximated by a series of cylindrical

concatenated tubes with different diameters, conforming to the different cross-sectional areas of the

vocal tract. Considering constant air density and sound velocity along the airway — which holds for

vowels — the reflection coefficient between tubes i and j is

r =
Ai −Aj
Ai +Aj

. (3.2)

Equation 3.2 presumes the convention that the wave travels from tube i to tube j. This is a very useful

result because, again, the parameter depends only on the cross-sectional area of the tubes.

Waves in a tube can have multiple reflections and all of them can interfere in a constructive way,

leading to resonance. A formant is a resonance in the vocal tract, and can be calculated using expression 3.3

Fn = (2n− 1)
c

4L
. (3.3)

Here L is the length of the tube and n the formant number.

3.1.2 A Tube Model for the Vocal Tract

Shinji Maeda studied more than 1000 digitized tracings of vocal tract shapes from 10 French sentences uttered

by two female speakers, along with the resulting utterances [8].

Measurements of specific points were made and, based on those landmarks, a vocal tract profile

was generated. From this profile, based on the tube concatenation model, an area function was extracted as

well as a transfer function from formants, as described before. Formants and area functions estimated from

measurements were quite compatible with those obtained from Maeda’s vocal tract model. This model is

implemented in the referred MatlabTMpackage VTCalcs.

3.2 An articulatory space for vowel production

The space of the articulators in VTCalcs is homographic to R7, but to produce vocalic voiced sounds only six

parameters are distinctive, since larynx controls the voicing.

The synthesizer’s output is a sound represented by its temporal amplitude. To analyze the sound

waveform we use the Mel Frequency Cepstral Coefficients (MFCC)[17], using 12 coefficients.
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(a) Vocal tract profile from measurements. (b) Regenerated vocal tract profile

Figure 3.1: The Shinji Maeda vocal tract model extracted from real speech measurements. Images from [8].

Let vector v ∈ V ⊂ R6 represent a configuration of the six-dimensional synthesizer’s articulatory

space and a ∈ A ⊂ R12 be a vector of MFCC coefficients in the acoustic space. We define the synthesis

function as:

f : V 7→ A,

a = f(v) (3.4)

The function is not invertible — distinct articulatory configurations may lead to very similar sounds

(in particular, many configurations generate no sound at all). Therefore, there is ambiguity in the identification

of motor configurations corresponding to the listened acoustic signals, which may pose problems to motor-

based learning and recognition algorithms. To deal with this we define a subspace of V where the restriction

of f to this subspace is assumed to be invertible.

3.3 Dimensionality Reduction

We define a two-dimensional subspace of the full articulatory space, generated by a linear combination of vowels

corresponding to extremal positions in the articulatory space. There are two major arguments that support this

approach: a linguistic argument and an experimental one. As mentioned in Section 2.2, according to Linguistics

and Phonetics knowledge, most of the vowel production capabilities of the human vocal tract can be explained

by two parameters related to the height and frontness of the articulators. The experimental argument is that

the Isomap, as discussed in Section ??, shows that there is a good two dimensional approximation to the

image of f .

Considering the extreme R6 prototypes for the phones [i],[a] and [u], it is possible to generate an

affine space. Let a0, u0 and i0 ∈ R6 be the chosen vowel prototypes for [i], [u] and [a] and a two-dimensional

vector p ∈ V : p = (α, β), with α and β real parameters. A linear combination of the given points forming a
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two-dimensional polygon, can be defined by the function:

v : P ⊂ R2 7→ M ⊂ V

v(α, β) = α i0 + β a0 + (1− α− β) u0

where the input space P is defined as:

P = {(α, β) : α+ β ≤ 1 ∧ α, β ≥ 0}

Let us denote M the image of v, and call it the Motor Space. We define the function f2 as the

restriction of the synthesizer’s function f to the motor space, and call its image A2

f2 :M 7→ A2 ⊂ A. (3.5)

We will denote f2 as the Motor-Acoustic Map. The image of this function will produce a 2D manifold A2

in the MFCC acoustic space. Given the choice of the Motor-Space, the properties of the used synthesizer

(assuming smoothness) and the dense sampling made on M, there are strong reasons to believe that f2 is

invertible. Therefore, the inverse function of f2, f−1
2 , is an acoustic to motor map. A schematic representation

of the proposed vowel production model is shown in Figure 3.2.

Figure 3.2: Vowel generation diagram.

The twelve-dimensional acoustic space was sampled twice; one using the motor map f2, from the

motor space M, and another from V.

In the following Chapter we will show that the model allows a good approximation to the full vocalic

space, with obvious advantage of a low complexity representation.
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Chapter 4

Speech Acquisition Architecture by

motor babbling

One of the most prominent goals in humanoid robotics is to provide for an intuitive and non-specialized way

for humans to teach and interact with robots. To achieve this, it should be possible for the robot to develop

flexible skills by learning from a demonstrator, a caregiver or another robot with no need for reprogramming or

external parameter tuning. The robot’s capabilities must allow it to learn by replicating an observed action and

must facilitate the interaction with humans, as in this work, by speech. The goal is, thus, to conceive artificial

humanoids that can take part of everyday’s life, meaning that a robot can be bought in a general store and

taken home, being able to learn one’s language, and serving one’s specific needs, without the intervention of

a specialized programmer.

Learning speech is of utmost importance for this goal, due to the relevance of spoken language in

human communication. It is, along with vision, a main means of human-machine interaction. In this perspec-

tive, this work endeavors to assemble biologically plausible models, as well as to achieve performance gains in

its field of study. The present Chapter explores the global learning architecture used, whose implementation

and details are considered in the following Chapters.

Based on the constrained articulatory space exposed in Chapter 3, the architecture for physical

production and sensory acquisition of speech sound data depicted in Figure 3.2 is the basis for a higher level

in perception. On top of this, we establish a learning process that will enable the recognition of the vowels for

a particular language.

The speech production and perception acquisition architecture adopted in this work has three main

functions:

• Babbling, to develop a sensorimotor map,

• Listening and producing the speech sounds of a given language,

• Recognizing structure and groupings in the acquired sound set.

These functions and their relationships are illustrated in Figure 4.1. Although the main babbling

phase is at the beginning of life, it will proceed, in a smaller scale, throughout the robot’s early childhood.

The acquisition of speech sounds should also continue, even after its mother tongue is completely known and

all the unnecessary sounds are forgotten.
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Figure 4.1: Developing robot.

4.1 Babbling: general sensorimotor map

The implemented sensorimotor map is estimated from a dataset generated by the robot.

To estimate the acoustic manifold A2 we have sampled the parameter space P applying steps of

0.01 to the α and β parameters, generating a discrete set of 5000 samples:

Pd = {pi, i = 1, . . . , 5000}
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These samples were then used to generate a motor-space sample set, using function v:

Md = {mi = v(mi), i = 1, . . . , 5000}

Thus, a discrete sampling of the acoustic manifold was created using the synthesizer’s function:

A2d = {ai = f2(mi), i = 1, . . . , 5000} (4.1)

The first three coordinates of the sampled acoustic manifold are plotted in Figure 4.2.

Figure 4.2: Representation of the first three Mel coefficients of the acoustic manifold.

The VTCalcs parameter’s six-dimensional V space was also sampled in steps of 0.6 obtaining a grid

with 10 samples per dimension. The point cloud has 106 samples:

Vd =
{
vi, i = 1, . . . , 106

}
Again, the synthesizer’s function was applied to the data:

Ad =
{
ai = f(vi), i = 1, . . . , 106

}
(4.2)

From this data we removed the samples with zero sound amplitude, retaining 44.22% of the initial

number.
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4.2 Experimental Results

To validate the proposed model we generate a set of test vowels at and compute the error in the acoustic

space (MFCC coefficients) between each one and its projection on the manifold A2d. We also consider the

residual variance incurred in a two-dimensional approximation of A.

Since we do not have an analytic expression for the A2 surface, we use its sampled version defined

by equation (4.1). To compute the projection of each point we use the nearest neighbor operator:

nn(at) =
{
ai ∈ A2d : i = argmin

i

{
‖ai − at‖2

}}
(4.3)

The acoustic approximation error is then computed by:

Ea(at) = ‖at − nn(at)‖2 (4.4)

and, relatively to the size of the manifold, it is defined as

δa(at) =
Ea(at)

max(length(A2d))
100% (4.5)

Figure 4.3: Isomap embedding for the two-dimensional manifold A2d.

This measure is dimensionless and gives an indication of how good is the approximation relative to the

size of the approximating surface. We consider acceptable to use the maximum length of A2d to normalize the

error because the manifold’s shape is not too discrepant, as it is possible to confirm in the Isomap embedding
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shown in Figure 4.3. This embedding was determined with the Isomap algorithm as described in [18]. The

isometric feature mapping procedure or Isomap recovers low-dimensional nonlinear structure in perceptual

datasets. It finds a space embedding for the data, preserving its intrinsic metrics, by conserving distances

measured through geodesic paths along the observation manifold. For A2d, Isomap output a reproduction in

the two-dimensional space of the pairwise distances measured in the data twelve-dimensional space.

4.2.1 Dimensionality reduction: validation

To verify the approximation validity of a two-dimensional surface given the full space A, the dimensionality of

the sampled space Ad defined in equation 4.2 was investigated.

It was estimated through Isomap that the dimensionality of the image of f is 2, with a residual

variance of 0.197, as illustrated in Figure 4.4.

Figure 4.4: The Isomap algorithm provides the residual variance of the fit to the model’s dimensionality. The
greatest decrease in variance happens from one to two dimensions of the manifold representing the global
acoustic space A.

The global articulatory space M is six-dimensional; thus, due to the continuity of f , the maximum

possible dimensionality for A is six. The residual variance of the data for six or more dimensions can be

interpreted with regard to phenomena such as noise and numerical problems in the MFCCs calculation.

This experimental result confirms that there is a good two-dimensional approximation to the overall

acoustic space A. The residual variance present in the 2D approximation is partially due to the model

simplification, but its slow decrease with increasing dimensionality of the model leads to the conclusion that

it is caused mainly by non-informative phenomena.
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4.2.2 Vowel prototypes: appropriateness

To investigate the performance of the approximating space with speech sounds of real languages, some exper-

iments have been conducted with synthesized prototypes of several languages. Those prototypes naturally lie

outside the motor space M. Those that are integrated in the VTCalcs matlab package are preexistent to the

experiment; the other sets were constructed by us and validated by naive native speakers. The speech sounds’

intensity, fundamental frequency and duration were kept constant so as to strictly validate the model for vocal

tract configuration.

In the VTCalcs package there are eleven prototypes for oral vowels which are found outside the two-

dimensional polygon M. They were used to evaluate the amount of error introduced in the two-dimensional

approximation. The error was measured as described above, and the results are shown in Table 4.1. The

oral vowels from two very distinct european languages were also used for the same purpose: vowels from

Portuguese, an Indo-European, Romance language, and vowels from Finnish, a Finno-Ugric language. Nine

Portuguese prototype vowels were used. The errors are shown in Table 4.2. From Finnish, the eight short

vowels were investigated, with results that can be seen in Table 4.3.

Table 4.1: Approximation error for the VTCalcs prototypes.

vowel symbol Ea(at) δa(at)%
1 iy 0.40149 1.6295
2 ey 0.17829 0.72361
3 eh 0.1522 0.61771
4 ah 0.48633 1.9738
5 aa 0.24348 0.98818
6 ao 0.51035 2.0713
7 oh 0.58974 2.3935
8 uw 1.6111 6.5389
9 iw 1.4057 5.7053

10 ew 0.29547 1.1992
11 oe 0.18119 0.73536

Table 4.2: Approximation error for the Portuguese prototypes.

vowel IPA symbol Ea(at) δa(at)%
1 1 0.13425 0.54487
2 5 1.2335 5.0061
3 E 0.37961 1.5406
4 O 0.50396 2.0453
5 e 0.61689 2.5037
6 o 1.4141 5.739
7 a 0.24161 0.98057
8 u 1.6211 6.5792
9 i 0.39633 1.6085

The sample mean over the percent error δa(at) is 2.95% in the Portuguese vowels set, 3.87% in

the Finnish vowels, and 2.23% in the VTCalcs set. The standard deviation is 2.22%, 2.81% and 2.02% in the

Portuguese, Finnish and VTCalcs sets, respectively. The maximum value for the percent error is 9.17% in the

Finnish dataset.

So, in terms of the error, the two-dimensional convex space performs well with linguistically relevant

synthesized speech sounds. Acoustically, the prototypes and the projections are hardly distinguishable. By

inverting the projected points through f−1
2 back to the two dimensional motor space M and plotting the
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Table 4.3: Approximation error for the Finnish prototypes.

vowel IPA symbol Ea(at) δa(at)%
1 i 0.28764 1.1674
2 øfl 0.7918 3.2135

3 æ 0.99949 4.0564
4 ofl 0.87593 3.555
5 A 1.6373 6.645
6 u 0.5645 2.291
7 efl 0.21044 0.85406
8 y 2.2605 9.1741

Figure 4.5: The inverse mapping of the vowel prototypes. The Portuguese vowels are numbered as in Table
4.2, and the Finnish as in Table 4.3. Some landmark IPA phonetic symbols are also represented.

result (Figure 4.5), we can recognize some similarities between the IPA openness and frontness and the motor

space α and β parameters. The hypothesis that the restrictions in the construction ofM are in fact modeling

physiological constraints is corroborated by these experimental results.

4.3 Acquiring the speech sounds of a particular language: refining

the sensorimotor map

After the pure babbling phase, the robot starts to hear and reproduce speech sounds from its environment. It

hears a speech sound and uses its map to guess parameters in the articulatory space. It still babbles around the
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guessed articulatory vowel in order to produce a smaller error in the acoustic space. When the error is small

enough it stops introducing points in the map. This kind of directed learning aims at improving the robot’s

efforts to attain its goal, specializing to the symbols existing in the language it is embedded. The results for

mimicking speech sounds of two different languages are presented in the previous Section.

4.4 Recognizing groupings in speech data from a particular language

When the robot imitates its caregiver, it collects data that brings it in a further step towards language. In

fact, it is the speech sounds of a particular language that the robot has in its database. This is a big leap in

terms of language layers, since we are in the border between phonetics and phonology. Now the robot starts

to specialize in a certain set of vowels, say, the portuguese oral vowels, and tends to forget all the other tested

but now useless vocalic possibilities.

To understand the collected data from caregivers, the robot must grasp the structure of its mother

tongue’s phonology. So, it must figure out how many groupings of sounds really exist and it must learn to

distinguish between relevant differences and unimportant ones. This is something a human baby does by its

own, with no explicit teaching about the rules to group speech sounds. In a similar fashion, unsupervised

learning was used for the robot.

Starting from the babbling and speech sounds acquisition phases, the robot stores in memory the

1000 most recently heard speech sounds and tries to organize this data in a meaningful way. But it doesn’t do

this in the acoustic high-dimensional space; it rather uses the two-dimensional articulatory mappings of those

sounds, even when the map is not good enough. While the developing robot perfects its skills, the mapping

and the classification will grow better together.

So one of the first questions arising when we face a somewhat big amount of data is how many

meaningful groupings we have in this dataset? In fact, this number is the input for many clustering algorithms

and knowing or estimating it is also useful for validating the number of clusters suggested by other clustering

algorithms. In any case, this number must conform with domain knowledge.

There is no rigorous definition for a data cluster: it is highly subjective and depends on scale and

resolution. It is application dependent. This work’s approach to this subject is presented in Chapter 5.
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Chapter 5

Speech sounds classification

When one is presented with a large and heterogeneous set of objects it is common that one tries to find the

natural groupings between them. The current approach is to map the objects to points in Rn and group them

based on some similarity measure. This mapping in the present work is to process sound into MFCC, obtaining

points in R12 and representing them in the two-dimensional articulatory space. The similarity measure is the

euclidean distance in R2.

5.1 The ideal clustering algorithm

As already mentioned in Section 4.4, the goal of clustering is to organize data in groups such that similar

objects are grouped together and dissimilar objects lie in different groups. The bottleneck in this problem is to

define what is similar enough to group in the same cluster and what is dissimilar enough to belong to different

clusters.

The ideal clustering algorithm must have three properties [19]:

Scale-invariance: it must be insensitive to changes in the units of distance measurements;

Richness: it must be able to generate any partition of the space;

Consistency: when we shrink distances between points inside a cluster and expand distances between points

in different clusters, we get the same result.

But Kleinberg demonstrated Theorem 1 in [19], proving that it is impossible to have all three

properties of the ideal clustering algorithm in a implementable form.

Theorem 1 (impossibility theorem for clustering) For each n ≥ 2, there is no clustering function f that

satisfies scale-invariance, richness, and consistency.

It is also proven that choosing between three different stopping conditions leads to a clustering

function that satisfies two of the three properties of the ideal clustering algorithm.

Considering the above properties we choose to have scale invariance and consistency, because being

able to generate all the possible partitions in this space is not necessary for this application. In the other

hand, scale invariance is important and consistency is fundamental, since we can have different boundaries for

vowels, depending on the language and the speaker.
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5.2 Hierarchical clustering

Clustering is to group or segment a collection of objects into subsets — clusters — such that objects that

share the same cluster are more closely related to those that do not [20].

Given a certain measure of dissimilarity, hierarchical clustering gives us an hierarchical representation

where each cluster is formed by joining the two most similar clusters below it. We use an agglomerative

approach, starting by having one cluster per data point and ending at the top having only one cluster for all

the existing data.

For hierarchical clustering the stopping conditions referred in the previous section are

To specify k-clusters: to stop at k number of clusters leads to scale invariance and consistency ;

To specify a distance-r: to stop at distances over r leads to richness and consistency ;

To specify α-scale: Let ρ∗ = maxi,j {distance(i, j)}. Stop at distances larger than αρ∗. This leads to

richness and scale invariance.

Since we have chosen to have scale invariance and consistency, our stopping condition will be the

achieved number of clusters.

5.3 Investigating the natural groupings in data

For each level of the clustering process, we have different relationships between data groupings. So, the

question is: what is the “natural” grouping for this dataset? We want an index that measures consistency and

separability in the dataset. To meet such demands, Tibshirani et al. [21] proposed the Gap statistic in 2001.

The Gap statistic is a robust index for cluster compactness and cluster separation. Compactness is

assessed by:

• measuring within cluster distances,

• measuring between cluster separation,

• comparing within cluster distances in the dataset with those obtained by performing the same clustering

in a non-informative distribution of points.

To define the Gap statistic it is necessary to formalize the used distance metrics and the within

cluster distance. Let {vij}, i = 1, . . . , n, j = 1, 2 be the dataset with n independent observations and

dii′ =
∑

j(vij − vi′j)2 be the squared euclidean distance. If the data was clustered into k groups, then

Cr, r = 1, . . . , k is the set of observation indexes that were classified in cluster r and nr is the total number

of elements in that cluster. The sum of pairwise distances in cluster r is

Dr =
∑

i,i′∈Cr

dii′ (5.1)

The within cluster dispersion (Wk) is an error measure that can be defined, for the squared euclidean

distance, as

Wk =
k∑

r=1

1
2nr

Dr (5.2)
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By using only Wk, we can try to estimate the number of clusters by identifying the “elbow” on

the graph of Wk. This heuristic needs formalization. So, the authors standardize the graph of log (Wk),

by comparing it with a non-informative, null-reference distribution. The Gap statistic is, thus, defined as in

expression 5.3

Gapn(k) = E∗n [log (Wk)]− log (Wk) (5.3)

where E∗n [ ] is the expected value of a sample set of size n from the null-reference distribution. The estimated

number of clusters k̂ is

k̂ = argmax
k

Gapn(k) (5.4)

The Gap statistic explained above with the algorithm described by Tibshirani et al. was implemented

as a MatlabTMfunction, using hierarchical agglomerative clustering.

Figure 5.1: Gap statistic versus number of clusters. The growth of the curve stops at nine clusters.

This function compares the within-cluster dispersion of our data with that obtained by clustering a

reference uniform distribution. This is to compare the gainings of raising the cluster number in a structured

data with those that arise from adding another cluster to a non-informative and not structured set of points.

In ten performed trials, the Gap statistic consistently pointed to nine as the most natural number

of clusters. One example of this result is presented in figure 5.1.

5.3.1 Dataset of portuguese synthesized vowels

To create a sufficient number of valid training vowels for the robot, we created a dataset with 900 vowels,

and then submitted them to the evaluation of 16 native speakers, so that they rejected or approved each

vowel as a valid portuguese vowel and — for those that were approved — agreed or not in their phonological

classification. From these 900 vowels, 448 were considered appropriated.
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The original dataset was generated from nine prototype vowels in the two-dimensional articulatory

space, added with 10% of white noise.

Applying agglomerative hierarchical clustering to the present vowel dataset originated good results,

as we can see in figure 5.2. The nine vowel groupings depicted in different colors are clearly visible.

Figure 5.2: Dendrogram depicting the hierarchical clustering performed by the robot.

The dendrogram shown in Figure 5.2 summarizes the data structure that was detected by our simple

dissimilarity measure: euclidean distance between vectors and average dissimilarity between groups.

5.3.2 Discussion

The coupling of dimensionality reduction with the clustering algorithm that joins Gap statistic and hierarchical

clustering proves to give interesting results. Dimensionality reduction cleans out irrelevant variation in data,

leaving an open field for a consistent and scale invariant cluster algorithm.

Although, there are some limitations, namely when clusters are not completely separated. But even

with overlapping classes, the probability that the algorithm miscounts them grows linearly with the proportion

of overlapping points.

Some comparisons should be made in the future with the Gap statistic and other well-known clus-

tering algorithms, like k-means, for instance. The behavior of the Gap statistics should also be assessed in raw

high dimensional data, in order to test the benefits of the present coupling.
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Chapter 6

Conclusions

6.1 Consequences

In this thesis we have proposed a two-dimensional parameterization for the motor space of an available

speech syntesizer, VTCalcs. The approach is able to generate acoustic signals that represent well all the

vowels produced by the syntesizer. Namely, the euclidean error relative to the size of the two-dimensional

approximating surface has its maximum of 9.17% in the used test sets, and the Isomap analysis of the residual

variance versus the dimensionality of the approximating manifold confirms the validity of a two-dimensional

model for the overall acoustic space.

The proposed model is important for two main reasons:

• The motor space is two-dimensional; thus, it can be densely sampled with low computational require-

ments. This simplifies creation and representation of the motor-acoustic map.

• The restriction of the synthesizer’s function to the proposed motor space is invertible, allowing to map

signals back from the acoustic to motor coordinates. This will facilitate the utilization of learning and

classification algorithms.

The fact that this space is two dimensional facilitates its bootstrapping role in autonomously produc-

ing and recognizing speech. Once the system learns a good initial model of the motor-acoustic map using the

low-dimensional manifold, it can expand the available degrees of freedom and refine its production capabilities.

As in the ontogenesis of human infants, such a developmental strategy is more likely to succeed than learning

from scratch with the whole system’s complexity.

Based on this notion, the present work presents also a learning architecture and an unsupervised

clustering technique coupled to it, revealing interesting and stable results, leading to an optimistic perspective

about the future of man and machine interaction through speech.

6.2 Open Issues

Future work should quantify the approximation error to human spoken vowels and evaluate the model’s

performance in online learning and recognition. The problem of fundamental frequency and vocal tract length

normalization must be addressed, as well as interconnection of the present structure with higher linguistic

layers, like morphology, semantics or syntax that can be very helpful when ambiguities take place.
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Visual cues should also be considered in the sensorimotor mapping. A replica of the McGurk effect

should be implemented.

Based on radial basis functions, receptive fields that support linear local models, preliminary un-

supervised incremental results were obtained, bur further exploration on the advantages of the differentiable

approach should be considered, namely the benefits of having a good exploratory direction against the payload

of the jacobian matrix computations.

The clustering should also be incremental, for the present work keeps a buffer for the last 1000

vocalic sounds, and does not implement an authentic online algorithm for class separation and classification.
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Appendix A

Learning speech

This Chapter has some preliminary results concerning the implementation of an incremental online learning

strategy for the sensorimotor map presented in Chapter 4. As stated in previous Chapters, this work has

an articulatory approach to speech perception, and, in order to develop a motor-based recognition system,

one must have a sensorimotor map that captures the coupling of the listener’s articulatory parameters with

the speech perception in its various cues. As mentioned earlier in Section 1.1, the motor theory of speech

perception supports that there is no absolutely fundamental sensory cue to identify a speech sound. They

all contribute to communication through sound. It is reasonable to believe that the more cues we have more

we improve the quality of this identification. So, the acoustic cues could be complemented by visual cues, as

suggested by the McGurk effect referred in Section 1.1.

So, the sensorimotor map that the system is trying to learn is the function f−1
2 defined in Section

3.3. This map is learned using Receptive Field Weighted Regression (RFWR) presented in [22] and discussed

in Section A.1.

A.1 RFWR: Incremental online learning

Receptive Field Weighted Regression (RFWR) is an algorithm for function approximation, designed to work

well in incremental online learning which is desirable for a system inspired in human speech acquisition.

The algorithm is based on nonparametric regression with locally linear models. It tries to determine

the number of linear models K, the parameters βk for each linear model k that represents the data and a

region of validity, curiously named receptive field. In neuroscience, a receptive field of a sensory neuron is

a region of space whose variations in the sensory specialization of the neuron alter its firing pattern. In the

human auditory system, receptive fields relate or to areas of the physical space surrounding the listener or

bins of sound frequencies. This locality of the mapping in humans motivates for the use of this algorithm in

sensorimotor maps.

In RFWR the receptive field for the kth linear model is a Gaussian kernel, centered in ck with a

positive definite distance metric Dk, defined as in equation (A.1)

wk = exp
(
−1

2
(x− ck)T Dk (x− ck)

)
(A.1)

with a fixed threshold of 0.001. The weight wk is a measure of how much a data point falls into the region

of validity of each linear model.
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In the prediction mode, when a query point x is presented to RFWR, each one of the local models

will determine their own prediction for that point, ŷk. The overall prediction is

ŷ =
∑K

k=1 wkŷk∑K
k=1 wk

(A.2)

Each ŷk is calculated as shown in the expression (A.3)

ŷk = (x− ck)T bk + b0k (A.3)

or, assuming that

x̃ =
(
(x− ck)T 1

)T

then

ŷk = x̃Tβk (A.4)

where βk in equation A.4 are the linear model parameters, corresponding to the kth receptive field and x̃ is

an augmented and centered form for the input vector, for simplicity sake.

The learning algorithm implemented in RFWR estimates ck, Dk, and βk for each receptive field

independently. The number of receptive fields increases or decreases with the complexity of available data.

So, for a given point, if there is no significant activation of any receptive field, a new one will be created. In

a similar way, if one of the kernels explains a small quantity of data variance and there are others that overlap

with it, then it will be removed.

In the present work two maps were created, one for the α and another for the β parameter. Here,

each one of those parameters have their ŷ function, as shown in equation A.5:

v̂ =
∑K

k=1 wkv̂k∑K
k=1 wk

(A.5)

then, each linear prediction associated with a given receptive field k, can be written as in equation A.6

v̂k = (a− ck)T bk + b0k (A.6)

or, similarly,

v̂k = ãTβk (A.7)

where ã =
(
(a− ck)T 1

)T

from equation A.7 is the compact centered form for the local projection of the

input point.

As it is suggested by the receptive field metaphor, this algorithm implements incremental learning,

which means that knowledge acquired from old data is forgotten when integrating new data in the regression

model. This is particularly interesting in this specific application, due to its evolving nature. In fact, the

infant’s first discoveries about his vocal tract and vocalization abilities will be rather unproductive latter on,

when his anatomy is radically changed and most of the sound – articulation mappings are not useful for his

mother-tongue.

In order to assemble a vocalic sound learning architecture for the present system, a two-step proce-

dure was setup; the first step is babbling while the second step is incremental vowel learning. In the babbling

stage, as presented in Section A.2, the system talks to itself. This means that it maps its articulations with

the auditory stimuli of his own voice. The first map is produced, independently of the language that will be
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learned later on. The incremental vowel learning stage will lead to the knowledge of the speech sounds of a

particular language. All the unnecessary sounds will become dim when the robot is systematically exposed to

organized language sound sets.

A.2 Babbling: general sensorimotor map

At this stage, the baby has not yet reached a linguistic competence that differentiates between languages. He

is just exploring his physical possibilities. So, the system proposed in this thesis will just focus on learning the

map between the produced sound and the intended one, possibly heard in the system’s surroundings from a

caregiver, for instance.

A MatlabTMimplementation of this behavior was elaborated. The structure of the babble function

is depicted in Figure A.1.

Figure A.1: Babbling stage function main components. refinemap is a function that introduces pairs of
acoustic feature vectors and 2D articulatory parameters in the RFWR learning structure.

The function f_p_a, represented in Figure A.1 as the Generate acoustic vector block, receives as

argument the two-dimensional vector v and outputs the twelveth-dimensional acoustic vowel representation

a. It is the synthesis function as defined in the following Section.

A.2.1 Random babbling

The implemented sensorimotor map described in Chapter A is trained with a dataset generated by the robot. It

performs an uniform random sampling of the two-dimensional articulatory space, obtaining the MFCC output

of the synthesis function. The map is defined as

g : R12 ⊃ A2 7→ P ⊂ R2

g(a) = v. (A.8)

In the babble phase we used 780 vowels for training and 30 for testing. In Figure A.2 we show how

the training works for a subset of only 80 vowels, so that the convergence can be made visible.

To assess the performance of the map we need to establish a measure of the distance between

the desired output and the result the model provides. Due to the linear nature of the articulatory space, an
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Figure A.2: Babbling stage results: the inverse map is learned by generating sound samples from articulatory
positions.

euclidean distance measure is chosen. The error is normalized to the size of the dataset and the variance in

the desired outputs.

The normalized mean square error is estimated as defined in equation A.9

E2
v =

‖vt − v‖22
n (var(vt

1) + var(vt
2))

(A.9)

where vt = [vt
1 vt

2] is the desired articulatory vowel, n is the number of vowels used in the trial and v is the

predicted articulatory vowel.

Sampling randomly the articulatory space and training the inverse map leads to a low training error,

and the test normalized square error is quite small, as can be seen in Figure A.3.

This result was found after an extensive search in the algorithm’s parameters, in order to optimize

the learning of the goal maps.

A.3 The implemented online learning architecture

To be able to learn with a teacher without knowing the articulatory parameters that generated a particular

sound, the system invokes the learnVowel function that can be briefly described in the system’s perspective

as follows:

Predict: I have heard a sound. How should I configure my vocal tract in order to reproduce that sound? I

will estimate a configuration based in my present coarse map.

Generate acoustic vector: Using the estimated configuration from the previous item, I will generate the

acoustic representation.
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Figure A.3: Babbling stage results on the test set.

Get a closer prediction: I can see the difference between what my teacher told me and what I have produced.

Let’s try to get closer. I will change my vocal tract configuration in a good possible direction. This way

I will refine my map in more interesting areas.

A good possible direction is, for instance, the negative of the gradient of the sensorimotor map, in

order to shorten the distance between the teacher’s acoustic vector and the system’s attempt to reach it.

The differentiable structure of RFWR is very useful at this point. Unlike other methods, like neural

networks, with RFWR one can use higher order information from the learning map and converge more easily

to an acceptable result.

A diagram for this development stage is shown in Figure A.4.

Figure A.4: Diagram representing the main steps involved in learning vowels of a specific language.
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To calculate the derivative shown in the diagram of Figure A.4, one must recall the map defining

equations A.5 A.1 and A.7, reproduced bellow, in equations A.10, A.11 and A.11:

v̂ =
∑K

k=1 wkv̂k∑K
k=1 wk

(A.10)

wk = exp
(
−1

2
(a− ck)T Dk (a− ck)

)
(A.11)

v̂k = ãTβk (A.12)

Let f(a) stand for the numerator and g(a) for the denominator in equation A.10. Then

dv

da
=

df

da
· 1
g(a)

+ f(a) · d
da

(
1

g(a)

)
df

da
=

K∑
k=1

dwk

da
· v̂k + wk ·

dv̂k

da

d

da

(
1

g(a)

)
=

∑K
k=1 wk · (a− ck)T ·Dk(∑K

k=1 wk

)2

and the resulting derivative is shown in equation A.13.

dv

da
=

∑K
k=1 wk ·

∑K
k=1

(
wk · (a− ck)T ·Dk · v̂k + wk · βT

k

)
+
∑K

k=1

(
wkv̂k ·

∑K
k=1 wk · (a− ck)T ·Dk

)
(∑K

k=1 wk

)2

(A.13)

The use of this differential structure is quite new. The author has no knowledge that such approach

has ever been used in the literature.

Nevertheless, some deeper study must be made in order to compare the performance of this differ-

ential approach with a more straightforward one.
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