
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

VISUAL TRACKING OF ARTICULATED OBJECTS:
AN APPLICATION TO THE HUMAN HAND

RICARDO ANDRÉ DA SILVA MARRANITA
(Licenciado)

Dissertação para obtenção de Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Doutor José Alberto Rosado dos Santos Victor

Júri:
Presidente: Doutor José Alberto Rosado dos Santos Victor

Vogais: Doutor Arnaldo Joaquim de Castro Abrantes
Doutor Alexandre José Malheiro Bernardino

Julho de 2005

frame 30 frame 105 frame 180

Agradecimentos

Aos meus pais e irmão pelo apoio e constante motivação.

Ao professor João Paulo Costeira pela sugestão de como abordar o problema.
Ao professor Alexandre Bernardino pelas discussões proporcionadas e por me

ajudar a perceber um pouco melhor os filtros de Kalman.
Ao professor José Santos Victor pela sua orientação e em particular pelas

discussões proporcionadas, pelas ideias e por incutir algum método no meio do caos.
Aos que me emprestaram livros, alguns deles por mais tempo do que desejariam.
A todos os que directa ou indirectamente, pelas suas acções, me tornaram mais

forte, persistente e determinado em chegar ao fim.

i

Acknowledgements

To my parents and brother for their support and constant motivation.

To professor João Paulo Costeira for his suggestion on how to approach the
problem.

To professor Alexandre Bernardino for the discussions and for helping me
understand a bit more of Kalman filters.

To professor José Santos Victor for his supervision and in particular for the
discussions, the ideas and for shedding some method upon chaos.

To those who lent me books, some of them longer than they had wished.
To all those who directly or indirectly, for their actions, made me stronger,

persistent and determined to reach the end.

ii

Resumo

O seguimento de objectos articulados é importante em áreas como a Medicina,
Robótica ou Computação Gráfica. Uma aplicação concreta é o seguimento de
movimento humano.

Esta tese propõe um método baseado em visão para o seguimento de movimentos
de dedos numa sequência de imagens. O objectivo é determinar o valor dos ângulos
nas articulações dos dedos.

A abordagem compreende vários passos. Um modelo cinemático da mão é usado
para descrever algumas das limitações físicas dos movimentos dos dedos. Primeiro, o
modelo é usado para guiar a extracção de medidas locais de imagem correspondentes a
partes do dedo. Esta análise de imagem pode ser feita de quatro maneiras diferentes,
onde a melhor está concebida para lidar com oclusões nos dedos. Um algoritmo de
estimação de pose ajusta o modelo cinemático às observações extraídas da imagem.
Finalmente, usa-se integração temporal para reduzir a incerteza de estimação e prever
o aspecto da mão na próxima imagem.

Testes efectuados aos diferentes passos mostram o desempenho e limitações destes.
Os resultados mostram que o seguimento tem sucesso em imagens reais e sintéticas
usando as duas técnicas de melhor desempenho. Estes testes abrangem desde modelos
simplificados a completos da mão.

No fim discutem-se as conclusões e direcções de trabalho futuro.

Palavras-chave: Seguimento de mãos, oclusão, modelo cinemático, seguimento não
invasivo, sequência de imagens, filtro de Kalman.

iii

Abstract

Tracking articulated objects is important in areas such has Medicine, Robotics or
Computer Graphics. A particular application is tracking human movement.

This thesis proposes a vision-based method to track finger movements on a
sequence of images. The goal is to determine the value of the angles in the
articulations of the fingers.

The approach comprises several steps. A kinematic model of the hand is used to
describe some of the physical limitations of finger movements. The model is first used
to guide the extraction of local image measurements corresponding to the finger parts.
This image analysis can be done in four different ways, where the best one is designed
to handle finger occlusion. A pose estimation algorithm adjusts the kinematic model to
the observations retrieved from the image. Finally, temporal integration is used to
reduce estimation uncertainty and predict the hand appearance in the next image
frame.

Tests performed on different steps show their performance and limitations. Results
show successful tracking on real and synthetic images using the two best performing
techniques. These tests range from simplified to complete hand models.

Conclusions and further direction of work are described in the end.

Keywords: Hand tracking, occlusion, kinematic model, non-invasive tracking, image
sequence, Kalman filter.

iv

Contents

1 Introduction 1
1.1 Previous Work.. 2
1.2 Approach... 5
1.3 Choices and Assumptions.. 6

1.3.1 Articulated Model... 6
1.3.2 Pose Estimation.. 7
1.3.3 Image Analysis... 7
1.3.4 Temporal Integration... 7

1.4 Organization of the Thesis... 8

2 Articulated Model 9
2.1 Kinematic Definition.. 9
2.2 Human Hand Anatomy and Physiology.. 13
2.3 Examples.. 15

2.3.1 Index Finger... 15
2.3.2 Index Finger and Thumb... 17

2.4 Graphic Visualization / Geometric Configuration.. 20
2.4.1 Camera Model... 21
2.4.2 Image Projection... 22

2.5 Chapter Outcome... 23

3 Model Parameters Estimation 25
3.1 Pose Estimation Algorithm.. 25

3.1.1 Phase 1: Defining the Residuals.. 26
3.1.2 Phase 2: State Vector Estimation.. 28

3.2 Examples.. 31
3.2.1 Revolute Joint (R)... 31
3.2.2 Prismatic Joint (P)... 34
3.2.3 Prismatic and Revolute Joints (PR).. 37
3.2.4 Two Revolute Joints (RR)... 41

3.3 Chapter Outcome... 51

4 Image Analysis 53
4.1 Positioning the Image Trackers.. 54
4.2 Image Profile Sampling... 56
4.3 Searching for Edges... 59

4.3.1 Template Matching.. 60
4.3.2 Edge Estimation... 62

v

4.3.3 Visibility Ordering... 64
4.4 Line Fitting... 69
4.5 Chapter Outcome... 74

5 Temporal Integration 75
5.1 Kalman Filter... 76

5.1.1 The Discrete Kalman Filter... 76
5.1.2 The g-h-k Kalman Filter.. 79

5.2 Pose Estimate Refinement and Prediction... 81
5.3 Chapter Outcome... 82

6 Results 83
6.1 Proposed Method.. 83
6.2 Alternative Method.. 86

6.2.1 Real Images.. 86
6.2.2 Synthetic Images.. 88

7 Conclusions and Future Work 93

References 97

8 Appendix A: Human Hand Facts 101

9 Appendix B: Simulating Edge Points 105

10 Appendix C: Creation of Synthetic Images 109
10.1 Binary Images.. 110
10.2 Shaded Images... 114

11 Appendix D: Feature Search Alternatives 121
11.1 Differentiation of Image Profiles... 121

11.1.1 Simple Discrete Differentiation... 122
11.1.2 Differentiation by Convolution with Gaussian Derivative.................. 123

11.2 Width Dependent Search Restriction and Template Matching....................... 125
11.2.1 Basic Search Space Restriction.. 127
11.2.2 Compensated Search Space Restriction.. 127

11.3 Rectilinearity Restriction in Correlation Surface... 128
11.3.1 Partial Linear Least Squares (PLLS)... 130
11.3.2 Modified Weighted PLLS (MWPLLS)... 132
11.3.3 Iterative MWPLLS (iMWPLLS).. 134

12 Appendix E: Phalanx Width Estimation 137

vi

Figure List

Figure 2.1.. 10
Figure 2.2.. 13
Figure 2.3.. 14
Figure 2.4.. 16
Figure 2.5.. 16
Figure 2.6.. 16
Figure 2.7.. 18
Figure 2.8.. 18
Figure 2.9.. 19
Figure 2.10.. 21

Figure 3.1.. 25
Figure 3.2.. 26
Figure 3.3.. 27
Figure 3.4.. 31
Figure 3.5.. 32
Figure 3.6.. 33
Figure 3.7.. 34
Figure 3.8.. 34
Figure 3.9.. 34
Figure 3.10.. 36
Figure 3.11.. 36
Figure 3.12.. 37
Figure 3.13.. 37
Figure 3.14.. 39
Figure 3.15.. 40
Figure 3.16.. 40
Figure 3.17.. 41
Figure 3.18.. 41
Figure 3.19.. 42
Figure 3.20.. 44
Figure 3.21.. 45
Figure 3.22.. 45
Figure 3.23.. 46
Figure 3.24.. 46
Figure 3.25.. 47
Figure 3.26.. 47
Figure 3.27.. 48

Figure 3.28.. 49
Figure 3.29.. 49
Figure 3.30.. 50
Figure 3.31.. 50

Figure 4.1.. 54
Figure 4.2.. 55
Figure 4.3.. 56
Figure 4.4.. 57
Figure 4.5.. 57
Figure 4.6.. 58
Figure 4.7.. 59
Figure 4.8.. 61
Figure 4.9.. 62
Figure 4.10.. 63
Figure 4.11.. 64
Figure 4.12.. 65
Figure 4.13.. 66
Figure 4.14.. 66
Figure 4.15.. 67
Figure 4.16.. 67
Figure 4.17.. 68
Figure 4.18.. 68
Figure 4.19.. 70
Figure 4.20.. 70
Figure 4.21.. 72
Figure 4.22.. 72
Figure 4.23.. 74

Figure 6.1.. 84
Figure 6.2.. 85
Figure 6.3.. 87
Figure 6.4.. 88
Figure 6.5.. 90
Figure 6.6.. 91

Figure 9.1.. 106

vii

Figure 10.1.. 109
Figure 10.2.. 110
Figure 10.3.. 111
Figure 10.4.. 112
Figure 10.5.. 112
Figure 10.6.. 113
Figure 10.7.. 113
Figure 10.8.. 114

Figure 10.9.. 115
Figure 10.10...................................... 118
Figure 10.11...................................... 119

Figure 11.1.. 122
Figure 11.2.. 127
Figure 11.3.. 130

viii

Index of Tables

Table 2.1.. 15
Table 2.2.. 17
Table 2.3.. 19

Table 3.1.. 33
Table 3.2.. 36
Table 3.3.. 39
Table 3.4.. 44
Table 3.5.. 47
Table 3.6.. 48

Table 4.1.. 55

Table 6.1.. 83
Table 6.2.. 89

ix

1 Introduction

The goal of this thesis is to present a method which allows estimating the pose of an
articulated object over time, by analysis of a sequence of images. The pose is
characterized by a set of degrees of freedom (DOF) which generally corresponds to
joint angles and displacements.

The proposed method is designed to work in a very specific context of articulated
objects: the human hands. Thus, the idea is to take a sequence of images with moving
fingers and determine their position and orientation. The pose estimation problem is
to determine the angles in the articulations of the fingers.

Tracking articulated objects has multiple applications, which can simply concern
checking if the articulated object is working as desired or capture its movement as to
mimic it somewhere else or learn from it.

In the context of tracking articulated objects there is a field which dedicates to
studying the motion in animals. More specifically, this study can concern the ranges of
movement of the human body. Even more specifically, that study may not focus on the
whole body, but just a region, such as the human hand.

Tracking the movement of a human hand can have several degrees of complexity,
depending on the desired application, the means available, the context in which
tracking will take place. Some of the more basic and reliable ways of determining the
movement of a human hand rely on invasive techniques, such as the use of sensory
gloves. However, the use of gloves may prove superfluous if one is only interested in
tracking the position of the hand in space, rather than knowing the angles in the
articulations of the hand and fingers. The use of gloves is also not a good choice when
dealing with agents who may not feel comfortable with them, such has human babies
and simians, which may try to remove the glove.

When dealing with such agents while focusing on the aspects of tracking the

1

movement of the hand, including its position, orientation, and those of its fingers, one
has to consider using non-invasive techniques. The answer often is using cameras to
capture the movement and then process the images to determine the desired
information.

But even within this scope there are many ways of determining the configuration
of the tracked hand, some of which are presented shortly ahead for reference.

1.1 Previous Work

In [1], Rehg and Kanade proceed to the analysis of a sequence of monocular images
with the purpose of estimating the DOF of the finger joints and wrist. The goal is to
use the hand as a substitute for a computer mouse, and at the same time provide this
new pointer with new abilities, such as a third displacement direction. They use a
kinematic model of the hand to help searching for features in the image. The features
correspond to lines aligned with the phalanges and to points indicating the location of
the finger tips. The image is sampled perpendicularly to the projection of the
kinematic model on camera, where the model is configured with a predicted pose.
These samples are then used to search for edge points, which will then be used to find
the line and point features.

This conception however, didn't enable tracking in the presence of occlusions, so in
[2], Rehg and Kanade improved this procedure. They stop using perpendicular
sampling and edge search to start using templates describing the appearance of the
phalanges on image. To enable tracking with occlusions, they present a method based
on the kinematic model which describes which finger phalanges are occluding the
other ones. They use this estimate of occlusion to mask the templates to form
representations of the occluded phalanges.

Both in [1] and [2], the pose is estimated by aligning the projection of the
kinematic model with the image data. This is done using a gradient descent technique
to minimize a cost function which accounts for the differences between the image data
and the features in question.

In [3], Cham and Rehg introduce 2D scaled prismatic models (SPM) to perform
figure registration. They also resort to a bank of filters to provide multiple state
predictions, in order to enable multiple-hypothesis tracking (MHT). The goal is to be

2

able to track animated figures in an image sequence, where these figures present
some problematic self occlusions, which could not be solved using a single-hypothesis
scheme.

The same principle of SPM and MHT is used in [4] by Rehg to perform the same
type of figure tracking. The novelty is the possibility of using that knowledge to
perform background reconstruction and mosaicing, or even introduce the animated
agent in a different background.

A volumetric model of the human body is used by Sminchisescu and Triggs in [5]
as a way of generating intensity and edge features in the image frame, which are then
compared with the features of the image itself to determine the state. Multiple
hypothesis is used to add robustness to the tracking process.

In [6], Delamarre presents a way of using a volumetric representation of the hand
and active contour techniques to locate a hand in an image and determine its pose.
The author shows that the pose estimates can be found with no need of having an
initial prediction of the model projected near the object in the image (as in the above
documents). He also suggests using stereo vision and disparity maps as a way of
improving this method.

The concept of stereo vision and disparity maps is further explored by Delamarre
and Faugeras in [7] as a way of retrieving the hand pose, even with occlusions,
resorting to physical attraction forces to attract a 3D volumetric model towards the
disparity map.

In [8] and [9], Athitsos and Sclaroff present a way of estimating the hand pose
based on finger detectors and a database with trained hand configurations.

In [10], Sidenbladh and Black develop a method to learn image statistics to use in
Bayesian tracking. Image features used include optical flow, edges and ridges. The
authors show how the combined use of the three statistics is much more robust than
using a single statistic. They also show successful tracking in the presence of
occlusion.

In [11] and [12], Li et al implement a 3D mouse using monocular images of a hand.
However, they resort to a mirror so the monocular image does in fact present two
points of view of the tracked hand. They show how their mouse can be used for 3D
positioning and attribute actions given the states of the hand, which are based on the

3

contour of the hand rather than in the determination of the joint values. They try to
model the background, which generally presents a lot of clutter, as a way of better
determining the contour.

In [13], Houhaddi and Horain propose a method for hand tracking based on image
features. The goal is to adjust a model of the hand to features regarding the sides of
the fingers, which are found after a segmentation and image analysis process. The
authors show the results when evaluating a hand facing the camera and spreading its
fingers. These concepts are also used in [14], which shows some additional results
from the same point of view but with the fingers being bent independently.

In [15], Shimada and Shirai propose a method to precisely estimate the shape and
pose of articulated objects like a human hand. Their initial rough estimates are based
on silhouette matching and are then fitted to an image using an extended Kalman
filter. The problem of ambiguities in shape and pose due to the fact of monocular
images possessing no depth information is overcome by modifying the filter solution.
The estimates are achieved by incrementally reducing the possible solution space with
informative observations. The authors show rough estimation results based on the
silhouette method and show advantages in using their modification of the filter
solution when tracking a finger in a side-view image sequence

The method proposed by Nirei et al in [16] uses binocular images of a hand.
Tracking is performed by minimizing estimation error of an optical flow and
maximizing the overlap between a projected model and a silhouette image. The
problems are solved using stochastic optimization. They present results using
synthetic images as a base of comparison between the estimates and the ground truth
and also present results using real images.

Regarding full body tracking, in [17] Fua et al develop a framework for 3D shape
and motion recovery of articulated deformable objects. They incorporate implicit
surfaces into earlier robotics approaches designed to handle articulated structures.
They demonstrate its effectiveness for human body modelling from video sequences,
with a method both robust and generic since it could easily be applied to other shape
and motion recovery problems. This line of work is also developed by Plankers and
Fua in [18], showing some additional results.

4

1.2 Approach

Independently of the particular choices in the approach, the previous procedures
present a common basis. They all resort to sequences of images as a source of data.
These images are analyzed to retrieve information which can be used to determine the
pose. Those which deal with aspects of pose determination generally employ a model
of the object to track. This model can be used, for example, to implement the physical
restrictions of the object or to use it as a way of generating data on image. Then, there
generally is an algorithm responsible for configurating the model accordingly to the
retrieved data, as to determine the pose of the object in the image. As an extra, some
works employ filters to add robustness to the determination process over time.

The proposed method is a compromise between [1] and [2]. The approach to this
problem consists of the following key blocks:

• articulated model;
• pose estimation;
• image analysis;
• temporal integration (optional).

The articulated model describes the articulations and connections of the tracked
object: the hand and its fingers. It allows the geometric configuration of the object to
be known in function of the angles in the articulations. It is used to restrict the image
analysis search space.

The pose estimation block deals with the aspect of determining the values of the
articulations angles which align the articulated model with the object in the image.
Hence, it needs to know the articulated model and how to relate it to the image. The
estimates are found with a recursive method which tries to determine the angles
which minimize the distances between model and image data.

Image analysis is the block which evaluates an image for features which can be
used by the pose estimation block. These image features are extracted from the image
in specific locations resorting to image samplers. These image samplers are positioned
on the image accordingly to an estimate of the pose. This estimate is the geometric
configuration of the model given an estimate of the articulations angles.

5

Temporal integration is an optional block since it is used as a way of statistically
providing estimates for the initial state of the articulated model at each new image. It
is also used to statistically improve the pose estimates determined by the pose
estimation process, which has some associated estimation noise. Finally, it is a way of
statistically limiting wide variations in the angles over time, which could lead to loss
of tracking or a high uncertainty in the estimated pose.

1.3 Choices and Assumptions

In order so simplify the estimation process some choices and assumptions are made for
the several key blocks. In general, they are only made as a way of simplifying the
blocks and not as a way of limiting the tracking process. This means that the blocks
can be easily upgraded to encompass more complex situations.

1.3.1 Articulated Model

In the articulated models used, a finger is usually modelled as a sequence of three
bodies (the phalanges) and three joints (the articulations). The articulations only allow
the model to mimic the bending movement (flexion/extension) of a finger but don't
allow a side-to-side movement (adduction/abduction). Bear in mind though, that this is
no limitation to any of the blocks, it is only a way of simplifying their design.

The geometric configuration of the model is projected on the image, to allow
positioning of the samplers and visualization of the tracked pose. The projection
process is included in the articulated model, since all measurements will be made in
the image frame. To avoid camera calibration, the axes of the image frame are
considered to be aligned and in the same units as the root frame of the articulated
model. Furthermore, the perspective camera model is used throughout the thesis.
These two simplifications allow the projection matrix to be very simple, which enables
focusing on the real issue (tracking) without concerning too much with camera
calibration aspects.

Still regarding camera aspects, the whole thesis is built around sequences of
monocular images. The concept though, is very easily extendable to binocular images
or even more complex situations. It's basically a matter of repeating the same

6

procedures to all cameras and account for all errors at the same time.

1.3.2 Pose Estimation

The pose estimation process is based on a recursive method which tries to minimize a
cost function by iteratively updating the articulations angles. Whenever possible the
basic implementation of the Gauss-Newton (GN) algorithm is used. When facing a
more complex hand model, which generally leads to a cost function with many peaks
and high amplitudes, a more robust implementation of the GN algorithm is used in
order to restrict the updates in each recursive step.

Since a single camera is used (monocular images), the cost function only accounts
for the differences between model data and image data in that single camera. Should
more cameras be in use, the cost function should account for all differences at the
same time.

1.3.3 Image Analysis

This is a very complex block in the proposed tracking method. As a simplification to
image sampling and further evaluation of the samples, it is assumed that the images
present high contrast between foreground (the hand) and the background. This allows
not worrying about segmentation issues. To avoid using background extraction and
estimation, the background is black (or as dark as possible). This means that hands
with light skin will still stand out in greyscale images, so the images used are thus in
greyscale.

To allow the image samples to contain all necessary information, it helps that the
frame rate of the image sequence is fast enough for the movement of the tracked
object. This means that it helps if the differences between consecutive images are as
minimal as possible.

1.3.4 Temporal Integration

The temporal integration methods are based on the Kalman filter and account for first
and second order aspects (velocity and acceleration). The temporal integration is used
on the estimates of the articulations angles determined by the pose estimation. Since

7

the hand movement can change very rapidly in a short amount of time, the filter
always considers new measurements, instead of relying solely on history from a
certain time instant and on.

1.4 Organization of the Thesis

Chapter 2 explains how to describe an articulated model and the anatomy of the
human hand. These concepts are then used in two examples which illustrate basic
articulated models which can be applied to hand tracking. The chapter ends with a
description of the camera model used and how model data is projected on the image.

Chapter 3 concerns the aspects of model parameters estimation. It describes how
to measure the differences between model data and image data and then how to use
them to estimate the pose. In the end, four examples show how to estimate the pose in
basic situations and illustrate the performance of the estimation in each of them.

Chapter 4 describes the image analysis block, the most complex of the blocks in
this thesis. It starts by showing how to position the image trackers and how to sample
the image. Then it explains how feature search is performed and how the features
locations are estimated. It then ends by describing how to use those features to
determine lines aligned with the phalanges of the fingers in the image. This block
evolved from a series of techniques which are shown in Appendix D.

Chapter 5 deals with the aspects of temporal integration, which is based on the
Kalman filter. It starts by describing the basic Kalman filter, as a reference, then
evolving to the g-h-k Kalman filter. It then shows how to apply the filter to the
refinement and prediction of pose estimates.

Chapter 6 shows the results of using the proposed method and an alternative one.
Conclusions about the performance of the methods can be found in Chapter 7 as well
as some guidelines for future work.

Appendices A to E cover some additional aspects and detailed explanations, such
as relevant facts for modelling, simulation, image analysis or estimation.

8

2 Articulated Model

The articulated model plays an important role in the presented tracking method and
is used in different ways. Its basic function is to describe the geometrical aspect of the
tracked object given a set of degrees of freedom (DOF) and some fundamental
distances and angles. However, it is also used to help reduce the image features search
space, and can be expanded to include information such as shape, visual aspect, and
width of the links (in this case the model refers to a hand or part of it).

In the present case the articulated model is described by a kinematic chain, which
can be simple or have ramifications depending on the complexity of the tracked object
or the wished complexity for the model which describes it. This kinematic chain
describes how each link connects to the others. Separation between links and relative
orientations only get defined in the modelling process.

A set of DOF encodes the variables of the articulated model, which are distances
and angles allowed to change. In the end, the geometric interpretation is attained by
spatial transformations, created using all distances and angles, so to position and
orient the frames attached to each link with their neighbours along the chain, down to
a base frame.

In order to build and choose the complexity of the model it is helpful to know the
intrinsic characteristics of the tracked object, so a brief study of the human hand is
presented for reference.

The last section of this chapter shows a couple of examples of how to model
kinematic chains of basic complexity.

2.1 Kinematic Definition

The kinematic definition is useful to deal with the complex geometry (position and
orientation) of the manipulator linkages. A manipulator may be thought of as a set of

9

bodies connected in a chain by joints. These bodies are called links. Joints form a
connection between a neighbouring pair of links. For convenience, frames are attached
to the various parts of the mechanism and the relationship between these frames is
described (see Figure 2.1).

The kinematic chain is modelled by the Denavit-Hartenberg (DH) notation, which
is widely used in robotics [19]. Basic articulated objects, such as the finger, can be
modelled by a single kinematic chain, while more complex objects, such as the hand,
can be modelled by a tree-like kinematic chain, with several basic chains (the fingers)
attached to a common node (the end of the wrist).

The links are numbered starting from the immobile base of the chain, which might
be called link 0. The first moving body is link 1, and so on, out to the free end of the
chain (the end-effector), which is link n .

In robotics, due to mechanical design considerations, manipulators are generally
constructed from joints which exhibit just one degree of freedom (DOF). Most
manipulators have revolute joints or sliding joints (called prismatic joints). In the rare
case that a mechanism is built with a joint having n DOF, it can be modelled as n
joints of one DOF connected with n−1 links of zero length. Therefore, without loss of
generality, only manipulators which have joints with a single DOF will be considered.
The reference frame is attached to the base of the chain, or link 0, and is called frame
{0}. The position of all other link frames may be described in terms of this frame.

By definition of the adopted Denavit-Hartenberg notation [19], the z-axis is always
aligned with the axis of rotation of a revolute joint and with the axis of dislocation of a
prismatic joint. The convention for the x-axis and y-axis depends on the context.

10

Figure 2.1 - Example of a kinematic chain with three bodies connected by revolute joints. A
reference frame is attached to the base frame (black arrows) and to each of the joints (grey

arrows).

The following is a summary of the procedure to follow when faced with a new
mechanism in order to properly attach the link frames:

1. Identify the joint axes and imagine (or draw) infinite lines along
them. For steps 2 through 5 below, consider two of these neighbouring
lines (at axes i and i1);
2. Identify the common perpendicular between them, or point of

intersection. At the point of intersection, or at the point where the
common perpendicular meets the i -th axis, assign the link frame
origin;

3. Assign the Z i axis pointing along the i -th joint axis;

4. Assign the X i axis pointing along the common perpendicular, or if

the axes intersect, assign X i to be normal to the plane containing the

two axes;

5. Assign the Y i axis to complete a right-hand coordinate system

 X i×Y i= Z i ;

6. Assign {0} to match {1} when the first joint variable is zero. For {N}

choose an origin location and X N direction freely, but generally so as to

cause as many linkage parameters as possible to become zero.

If the link frames have been attached to the links according to this DH convention,
the following definitions of the link parameters are valid:

 i : the angle between Z i and Z i1 measured about X i ;
a i : the distance from Z i to Z i1 measured along X i ;
d i : the distance from X i−1 to X i measured along Z i ;
 i : the angle between X i−1 and X i measured about Z i .

Usually a i0 since it corresponds to a distance; however,  i , d i and  i are
signed quantities.

If the assignment of link frames and parameters is performed according to this

11

procedure, the general form of the transformation of link i relative to link i−1 is
given by

Ti
i−1 =[c i −s i 0 a i−1

si ci−1 c i ci−1 −si−1 −si−1 d i

s is i−1 ci s i−1 c i−1 ci−1 d i

0 0 0 1
] , (2.1)

where ci , s i , c i−1 and s i−1 denote respectively the functions cos i , sini ,
cos  i−1 and sini−1 .

The link transformations can be multiplied to find the single transformation that
relates frame {N} to frame {0},

TN
0 = T1

0 T2
1 T3

2 ⋯ TN
N −1 , (2.2)

which is useful for geometric interpretation.
In order to describe the model without attaching a frame to the terminal tip of a

chain, the length of terminal link i is represented by A i . This will only be useful for
geometric interpretation of the tip and does not interfere with the transformation
matrices.

Once the articulated object is known and the complexity of the articulated model is
specified it is possible to start dimensioning the model. For convenience, it is usual to
start by drawing the reference frames and then store all link parameters in a table.

Sometimes, the way the link frames are laid down makes it harder to find the
values of the link parameters. In such cases, and if an alternative configuration for the
link frames is not easy to find, it is possible to resort to auxiliary frames, as if they
were assigned to joints without moving capability. The auxiliary frames will help to
derive the link parameters without increasing complexity.

As soon as the link parameters have been defined, it is important to understand
which are constant and which are variable. The variable link parameters correspond
to the DOF and are important because they contain information about the state of the
model. In practice, the state is encoded by an array q of DOF. The constant link

12

parameters are also important since they manifest the immutable idiosyncrasies of
the model.

The term “pose” will be used loosely to describe the geometrical manifestation of
the current state. So in the end, “pose” is related to the Cartesian space and “state” to
the state space.

2.2 Human Hand Anatomy and Physiology

To build a coherent articulated model of a human hand it is important to understand
how many bones compose it, their dimensions, which articulations connect them, and
the articulations range and type of movement. This evaluation later allows
simplifying the model and understanding how seriously it compromises the tracking
problem or the range of movement of the tracked object.

From the kinematic modelling point of view some facts are important, others are
just curiosities. If the goal was to build a robotic model of the hand, some other aspects
would gain more relevance. The anatomy and physiology of the human hand however,
provide the main guidelines for the modelling process.

Figure 2.2 - Relevant human hand bones and joints names.

13

Distal Interphalangeal (DIP)
Joint

Proximal Interphalangeal (PIP)
Joint

Metacarpophalangeal (MCP)
Joint

Carpometacarpal (CMC)
Joint

Phalanges

Thumb Carpometacarpal
(CMC) Joint / Basal joint

Thumb
Metacarpophalangeal

(MCP) Joint

Thumb Interphalangeal
(IP) Joint

Metacarpal

Distal

Middle

Proximal

I

II III IV
V

For the modelling problem at hand, only basic characteristics referring to links
and joints will be considered. These include the fact that a hand has 29 major and
minor bones and 29 major joints. If the model was to be more accurate some of the
aspects in Appendix A should also be considered. Though fingers are never perfectly
straight the models are built assuming they are, as a simplification.

Figure 2.3 - The human hand is able to perform a wide number of movements.

14

Hyper-
extension

Extension

Flexion

Abduction

Adduction

Opposing thumb
to finger

Extension
Flexion

Palmar
abduction

Anteposition
(opposition,
circumduction)

Retroposition
Anteposition
(opposition,
circumduction)

Radial
abduction

Radial
abduction

Palmar
abduction

Retroposition

Adduction

To understand the anatomy and physiology of the hand, the relevant contents of
[20] and [21] were summarized into Figure 2.2, Figure 2.3 and Table 2.1. These
sources provide the basic understanding of the human hand.

Typical Range of Motion
Thumb basal joint Palmar Adduction/Abduction Contact/45

Radial Adduction/Abduction Contact/60
Thumb Interphalangeal Hyperextension/Flexion 15H/80
Thumb Metacarpophalangeal Hyperextension/Flexion 10/55
Finger DIP joints Extension/Flexion 0/80
Finger PIP joints Extension/Flexion 0/100
Finger MCP joints Hyperextension/Flexion (0-45H)/90

Table 2.1 - Typical range of motion of thumb joints and finger joints in degrees.

2.3 Examples

The following examples were gathered in order to convey the difference between a
single kinematic chain and a tree-like kinematic chain, as well as the difference of
complexity behind the creation of articulated models based on those chains. These are
only basic examples since the articulated models are simplifications, in terms of
degrees of freedom (DOF), of the articulated objects they intend to portray. These
examples also intend to illustrate how to use the Denavit-Hartenberg (DH) notation.

2.3.1 Index Finger

The index finger may be described by a single kinematic chain. In this example, the
finger only has the three revolute DOF responsible for the extension/flexion
movement. The adduction/abduction movement is not portrayed in this model. This
low level of complexity is enough to allow some typical movements to be analysed,
however, it renders the base of the finger immobile and restricts the range of
movements to a plain.

Once the complexity of this model is specified it is possible to draw the link frames
according to the six step procedure introduced earlier. As a way of helping doing so, an

15

index finger is visualized from a side view as shown in Figure 2.4. This aid
immediately leads to the scheme of interconnecting joints of Figure 2.5, from which
the link frames are assigned. The link frames of the single kinematic chain and the
link parameters are shown in Figure 2.6.

Figure 2.4 - Side view of a hand (grey curve) with highlight of an index finger (black curve).

Figure 2.5 - Index finger joints (blue circles) and links (blue lines) on a side view of an index
finger (black curve).

Figure 2.6 - Example of link frames assignment in a single kinematic chain representing an
index finger with three revolute joints.

This is a situation where the determination of the link parameters is easily
achieved by direct application of the definitions. The link parameters are shown in
Table 2.2.

16

z1

x1

y1

1

z2

x 2

y2

2

z3

x 3

y3

 3

a1 a2 A3

z0

x 0

y0

i  i−1 a i−1 d i  i

1 0 0 0 1

2 0 a1 0 2

3 0 a2 0  3

Table 2.2 - Link parameters of a single kinematic chain representing an index finger.

From the link parameters in Table 2.2, only the  i are variable, all other link
parameters are constant. This is so because in this model only the joint angles are
allowed to change. Hence, the link transformations are given by

T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

] , T2
1 =[c 2 −s2 0 a1

s2 c 2 0 0
0 0 1 0
0 0 0 1

] and T3
2 =[c 3 −s3 0 a2

s3 c3 0 0
0 0 1 0
0 0 0 1

] .

Finally, the vector which encodes the state of the articulated model is

q=[q1 q2 q3]
T
=[1  2 3]

T .

2.3.2 Index Finger and Thumb

The index finger and thumb form a structure of two opposing fingers and may be
described by a tree-like kinematic chain with two branches of single kinematic chains.
In this example, the index finger and thumb only have three revolute DOF each and
are each a single kinematic chain. This simplified model allows both index finger and
thumb to perform the extension/flexion movement, which can then be combined to
carry out a grip, release or dextrous manipulation, even if in a rather simple way. The
adduction/abduction movement of the index finger as well as both the palmar and
radial adduction/abduction movements of the thumb are not portrayed in this model.

Once the complexity of this model is specified it is possible to draw the link frames
according to the six step procedure introduced earlier. As in the previous example, a
side view of the object is used to help doing this, except this time there are two fingers,
as can be seen in Figure 2.7. Albeit the image does not portray this situation, the base
joint of the index finger will be vertically aligned with the base joint of the thumb to

17

aid in link frames assignment, making the whole chain symmetrical to a horizontal
axis. With this simplification in mind, the scheme of interconnecting joints of Figure
2.8 is created, leading to the link frames of the tree-like kinematic chain and link
parameters shown in Figure 2.9.

Figure 2.7 - Side view of a hand (grey curve) with highlight of an index finger (top black
curve) and thumb (bottom black curve).

Figure 2.8 - Index finger joints (top blue circles) and links (top blue lines) on a side view of an
index finger (top black curve) and thumb joints (bottom blue circles) and links (bottom blue

lines) on a side view of a thumb (bottom black curve).

18

Figure 2.9 - Example of link frames assignment in a tree-like kinematic chain
representing an index finger and thumb with three revolute joints each. Frame {1} is the
base frame for the index finger and frame {5} the base frame for the thumb. Frame {0} is

the base frame of the whole chain.

This is a situation where the determination of the link parameters is not so easily
achieved by direct application of the definitions. As depicted in Figure 2.9, this is a
case where including two auxiliary frames, {1} and {5}, helps to determine the link
parameters without compromising the definitions. The link parameters are shown in
Table 2.3.

i  i−1 a i−1 d i  i

1 0 0 d1 0

2 /2 a1 0 2

3 0 a2 0  3

4 0 a3 0  4

5 0 0 −∣d5∣ 0

6 −/2 a5 0  6

7 0 a6 0  7

8 0 a7 0  8

Table 2.3 - Link parameters of a tree-like kinematic chain with an index finger and thumb.

From the link parameters in Table 2.3, only the non-zero  i are variable, all other

19

z0

x 0

y0

z1

x1

y1
y2

x 2
z2

y3

x 3
z3

y4

x 4
z4

2 3  4

d1

d 4

a1 a2 a3 A4

z5

x 5

y5
z6

x 6

y6

6

z7

x 7

y7

 7

z8

x 8

y8

 8

a5 a6 a7 A8

Index

Thumb

link parameters are constant. This is so because in this model only the joint angles are
allowed to change.

Hence, the link transformations are given by

T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1] , T2
1 =[c 2 −s2 0 a1

0 0 −1 0
s2 c 2 0 0
0 0 0 1

] , T3
2 =[c 3 −s3 0 a2

s3 c 3 0 0
0 0 1 0
0 0 0 1

] ,

T4
3 =[c 4 −s4 0 a3

s4 c 4 0 0
0 0 1 0
0 0 0 1

] , T5
0 =[1 0 0 0

0 1 0 0
0 0 1 −∣d 5∣
0 0 0 1] , T6

5 =[c 6 −s 6 0 a5

0 0 1 0
−s6 −c6 0 0

0 0 0 1
] ,

T7
6 =[c 7 −s7 0 a6

s7 c 7 0 0
0 0 1 0
0 0 0 1

] and T8
7 =[c 8 −s8 0 a7

s8 c 8 0 0
0 0 1 0
0 0 0 1

] .

Finally, the vector which encodes the state of the articulated model is

q=[q1 q2 q3 q4 q5 q6]
T
=[2 3  4 6 7 8]

T .

2.4 Graphic Visualization / Geometric Configuration

Interpretation of data stored in the state vector generally proves to be a difficult task.
It is much more intuitive to evaluate the geometric configuration of the model given a
state vector. The geometric configuration will be extensively used in the following two
chapters, which is why it is important to specify the common basis.

First of all, assume there is an entity Mq which projects geometric model data
in the image. This data can be visible or invisible depending on the application:

• Invisible:
• Position and orientation of the links (pose);
• Location of end points of the links.

• Visible:

20

• Pose visualization;
• Creation of synthetic image.

This entity always needs a parameterization of the links of the model, which can
go from simple line segments to elaborate 3D shapes. It also needs the spatial
transformations derived with the DH notation, in order to position and orient each
link in a 3D space described by the base frame: frame {0}. Finally, in order to describe
this 3D data in 2D image units, it also needs the camera projection matrix. In short,
this entity works as summarized in Figure 2.10.

Figure 2.10 - Entity M(q) projects model data on the image frame according to this block
diagram.

2.4.1 Camera Model

The camera model explains how data in a 3D space is projected on a 2D space. For
convenience of manipulation, a point defined by a set of Euclidian coordinates

[X Y Z]T is described by a set of projective coordinates [X Y Z 1]T . This enables
performing rotations and translations with a single matrix multiplication.

This matrix is called the camera projection matrix and is given by

P=[p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34
] ,

generally assuming that p34=1 , since the matrix is defined up to a non-zero scale
factor.

This matrix combines informations about the intrinsic and extrinsic parameters of
the camera, as well as the perspective projection. The intrinsic parameters relate the
coordinate system of the camera with the coordinate system of the projection plain,

21

Link
parametrization DH spatial

transformations
Camera

projection
Result

describing aspects such as the dimension of the image pixels and the position of the
image centre. The extrinsic parameters relate the coordinate system of the camera to
a fixed world coordinate system, specifying its position and orientation in space.

In the two extremes of projective geometry are the perspective camera model and
the orthographic camera model. The orthographic model is actually a particular case
of the perspective model. The major difference resides in the fact that in the
orthographic model any point in space is projected orthogonally on the image plain,
while in the more generic perspective model the projection corresponds to the
intersection of the image plain with a line defined by the camera centre and the point
in space. Thus, the orthographic model can be thought of as a perspective model where
the camera centre is at an infinite distance from the camera plain.

The projection is computed with

[ x p

 y p

]=[p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34
][X

Y
Z
1] ,

where the vector on the right hand side represents the coordinates of the 3D point and
the coordinates on the left the point in the image, where  is a scaling factor.

The perspective model is characterized by a matrix P=K [R∣t] , where K is a
3×3 matrix accounting for the intrinsic parameters, R a matrix accounting for the
rotation between camera and world and t a vector accounting for the coordinates of
the optical centre in the world reference frame.

In the particular case of the orthographic projection, [R∣t]=[I∣0] .

2.4.2 Image Projection

For coherence, the projection matrix P is now represented by T0C in order to use the

same notation used in the kinematic model. Any point pi described in its own
reference frame {i} is projected on the image frame with

pC = Ti
C pi , (2.3)

22

where

Ti
C = T0

C Ti
0 (2.4)

is the matrix resulting from multiplying the 3×4 projection matrix T0C by the single

transformation which relates frame {i} to frame {0}.
For details on link parameterization and creation of synthetic images refer to

Appendix C.

2.5 Chapter Outcome

This chapter presented how the articulated model is designed and how it is
represented on the image reference frame.

The articulated model is useful for description of the tracked object and for
positioning the image local analysis tools on the image reference frame.

The problem of pose determination is to estimate the model parameters (joint
values) which make the projected articulated model overlap the collected image data.
The next chapter shows how to estimate the pose once the image data is known.

23

3 Model Parameters Estimation

The creation of an articulated model discussed in the previous chapter is based on
constant and variable link parameters. The variable link parameters correspond to
degrees of freedom (DOF) and are important because they contain information about
the state of the model. These are the unknowns in the pose estimation problem and
have to be determined by a suitable method in order to describe the configuration of
the targeted articulated object.

In the present tracking problem, the model parameters are estimated adjusting
the articulated model to features extracted from an image. First, a cost function is
defined, accounting for the distance between the model projected on the image plain
and the observed features. The cost function is then minimized by iteratively
modifying the model parameters.

The last section of this chapter presents some examples which illustrate how the
estimation process works.

3.1 Pose Estimation Algorithm

The algorithm for estimating the pose of the tracked object is carried out in two
interleaved phases. One involves measuring the error between the articulated model
and the extracted features while the other aims to minimize that error.

Figure 3.1 - Block diagram showing pose estimation algorithm inputs and outputs.

25

Articulated
model

Extracted
features

Object pose
estimatePose

estimation
algorithm

3.1.1 Phase 1: Defining the Residuals

The residuals are each of the distances between geometric model and extracted
features. Prior to explaining how they are measured it helps to mention the elements
in use, as to simplify the overall understanding of the process. Assume there is an
image analysis routine with one component returning lines aligned with the finger
phalanges and other returning the finger tips location. Also assume the state vector q
has a certain value (e.g. a prediction) and Mq indicates the end coordinates of each
link in the image frame.

Tip Residuals

The tip residual measures the distance in image units between predicted, ti q , and

measured, tiobs , tip positions. Each tip feature is represented by a vector [x y]T which

gives the tip feature position in image coordinates. The residual for the i -th tip
feature is a vector in the image plane defined by

 i
tip q=tiq−ti

obs , (3.1)

where ti q is the projection of the tip centre into the image as a function of the hand
state q . This projection is achieved with (2.3).

Figure 3.2 - Tip residual measured between predicted model tip (blue dot) and measured tip
feature (blue circle). The coloured segments represent the finger model, the remaining dots

and circles its joints and the black curve the boundary of the tracked finger.

26

tiq  ti
obs

i
tip q

Link Residuals

The link residual i
link q is a scalar which measures the distance from a point in the

projected link axis to the measured feature line. This distance is measured
perpendicularly to the feature line. As a simplification, the lines are described in the
image plane using an orthographic projection. The orthographic camera model is
incorporated into the residual equation by setting m=[a b 0]T and writing

i
link q=mT pi q− , (3.2)

where pi q is the 3D position, [x y z]T , of a point on the link axis in camera

coordinates, and [a b ] are the line parameters. Each link feature is represented

by a vector [a b ] which gives the parameters of the 2D line equation
axby−=0 . The total link residual consists of one or more point residuals along the
link axis, each given by (3.2).

Figure 3.3 - Link residual measured between point in predicted model link (intersection of
dashed segment with blue segment) and measured line feature (blue line). The coloured

segments represent the finger model, the remaining dots and circles its joints and the black
curve the boundary of the tracked finger.

Total Residual

The total deviation between model data and image data is achieved by gathering all
residuals for the link and tip features into a single vector of residuals, for example

 q=[1, x
tip q 1, y

tip q 1
link q 2

link q ⋯]T ,

27

piq i
linkq 

[a b ]

where 1, x
tip q and 1, y

tip q are the components of the tip residual 1
tip q along the

x-axis and y-axis respectively. If the magnitude of the residual vector is zero, the
articulated model is perfectly aligned with the image data.

3.1.2 Phase 2: State Vector Estimation

The goal of this phase is to estimate the state vector q which minimizes the
magnitude of the vector of residuals. This is done iteratively through successive
incremental corrections.

The state correction is obtained from the vector of residuals  q by minimizing
the cost function

Hq=1
2∥ q∥2

=
1
2

qT  q . (3.3)

The vector of residuals generally has nonlinearities. The nonlinearity in the state
model for articulated mechanisms is caused by the trigonometric terms in the forward
kinematic model. The other source of nonlinearity, inverse depth coefficients in the
perspective camera model, does not exist since an orthographic formulation is being
used. The Gauss-Newton (GN) algorithm is used to solve this nonlinear least squares
problem.

Thus, the estimated state vector corresponds to
q=arg min

q
∥Hq∥2

.

Update Equation

Since a different vector of residuals  q is minimized at each image j , the notation

should be altered to  q j , but for the sake of readability, this notation shall be

further shortened to  j . The GN state update equation, from iteration k to k1 , is
given by

qk1=qk−[Jk
T Jk]

−1Jk
T k , (3.4)

28

where Jk is the Jacobian matrix for the residual  k , both of which are evaluated at
qk , and is formed from the link and tip residual Jacobians.

The update equation in (3.4) can be carried out in, at least, two ways, which can be
used depending on the desirable performance of the state estimation:

• For a faster, yet less accurate, state estimation, the state is updated

only once per image, so that q j1 is the result of running (3.4) only
once.
• For better state estimation at the cost of some computational time,

the state is updated a variable number of times per frame, so that q j1
is the result of running (3.4) until a certain convergence criterion is met
(e.g. the stabilization of the cost function).

The GN algorithm is preferred over other methods since it is faster and more
accurate near an error minimum. An alternative to the GN algorithm would be the
Levenberg-Marquardt algorithm, with the state update equation

qk1=qk−[Jk
T Jk I]−1Jk

T k

which uses a constant diagonal regularization matrix  I . When the scalar  is zero,
this is just Newton's method, using the approximate Hessian matrix. When  is
large, this becomes gradient descent with a small step size.

Jacobian

The Jacobian matrix is related to the direction of fastest growth of a function. The GN
state update equation (3.4) uses this information to reach a minimum of the cost
function by changing the sign to a minus on the second term of the right hand side of
(3.4), thus originating the correction

qk=−[Jk
T Jk]

−1Jk
T k . (3.5)

The term [Jk
T Jk]

−1Jk
T corresponds to the pseudo-inverse of the Jacobian Jk , and is

29

used because the Jacobian generally is not a square matrix, and cannot be inverted. It

is important to make sure that Jk
T Jk is not singular.

By definition, if the vector of residuals  q has length m , and the state vector q
has length n , the Jacobian will be a matrix of size m×n of partial derivatives
represented by

J=
∂ q
∂q

=[
∂1

∂ q1

⋯
∂1

∂ qn

⋮ ⋱ ⋮
∂m

∂ q1

⋯
∂m

∂qn

] , (3.6)

where i is the i -th element of  q and q j the j -th element of q .
It is important to remember the vector of residuals can have two types of elements:

tip residuals, in the form of two scalar entries, and link residuals, in the form of a
single scalar entry.

The link Jacobian is achieved by differentiation of (3.2) with respect to the state
vector, obtaining

∂i
link q
∂q

=mT ∂p iq
∂q

, (3.7)

with the above gradient vector for link i being one row of the total Jacobian matrix.
Similarly, the tip Jacobian is obtained from (3.1) as

∂i
tip q
∂q

=
∂ tiq

∂q
, (3.8)

with the above gradient matrix for link i being two rows of the total Jacobian matrix,
one regarding the tip residual along x and the other along y .

In practice, the total Jacobian is computed off-line with symbolic mathematics.
The resulting expression is then embedded in the source code for faster processing (see
the upcoming examples).

30

3.2 Examples

The following examples show the application of the model of residuals to different
kinematic chains. Each example is composed of a theoretical introduction, where the
kinematic model and model of residuals are formulated, and an experimental part to
convey the performance of the estimation algorithm. The last example also includes an
additional experimental part dedicated to the bypass of a situation where the process
does not converge to the optimal solution.

As a simplification in the following examples, the base frame of the kinematic
chain is aligned with the image frame and the units are the same.

Remember that all examples have the same structure. This helps relating a new
example with a previous one. Also pay attention to the schematic figures, since they
portray the situation at hand.

3.2.1 Revolute Joint (R)

In this case, a single link is attached to a revolute joint which allows it to move in a
plane parallel to the image plane.

Theoretical formulation

The articulated model is described in Figure 3.4.

Figure 3.4 - An articulated model with one revolute joint and its DH parameters. Featuring
from left to right: image frame, object description, DH frames and DH parameters.

The transformations between reference frames are given by

T0
C =[1 0 0 p0

x

0 1 0 p0
y

0 0 0 1] and T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

] ,

where p0
x and p0

y represent the location of the origin of {0} in the image frame, along

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

31

yc

xc

L1
1

y0

x0z 0 x1

y1

z1

i i−1 a i−1 d i i

1 0 0 0 1

p=[P 0 0 1]T ,
where P is the position along the x-axis. At the end of the link P=L1 .

The application of the measurement of residuals to this case yields the situation
depicted in Figure 3.5.

Figure 3.5 - Application of the model of residuals to the case of an articulated object with one
revolute joint. Featuring (left to right): predicted features and extracted features; tip data;

link data.

Consequently the vector of residuals is given by

 q=[t1, x
tip q−t1, x

obs

t 1, y
tip q−t1, y

obs

a p1
x qb p1

yq−

a p2
x qb p2

yq−
] ,

where the scripts x and y represent the components of each vector along the x-axis
and y-axis respectively.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C =C

0
T 0

1
T pi q

1 =[1 0 0 p0
x

0 1 0 p0
y

0 0 0 1][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

where p iq
j is the representation of point i in frame j . This equation leads to

pi q
C =[Pi c1p0

x

P i s1 p0
y

1] .

Replacing these values in the vector of residuals returns

 q=[L1 c1p0
x−t1, x

obs

L1 s1p0
y−t 1, y

obs

a P1 c1p0
x bP1 s1p0

y−

a P2 c1p0
x bP2 s1p0

y−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals

32

t1
obst1q 

p1q
p2q

[a b ]

t1q =[t 1, xq  t 1, y q]T

t1
obs=[t1, x

obs t1, y
obs]T

1
tipq =t1q−t1

obs

pi q=[pi , x q pi , y q]T

i
linkq=[a b]pi q−

[a b ]

 q regarding the state q is given by

J=[
∂ 1

∂q1

⋮
∂4

∂q1

]=[−L1 s1

L1c1

a −P1 s1b P1 c1
a−P2 s1b P2 c1

] ,

thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience
shown in Figure 3.6 was performed.

Figure 3.6 - Practical application of the model of residuals and convergence algorithm to the
case of an articulated object with one revolute joint.

The state update equation is ran until the convergence criterion
∣qk1−qk∣10−30 [rad]

 is reached. The reduced magnitude of the criterion is not really necessary but is that
insignificant to demonstrate the fast convergence of the GN algorithm under such
strict conditions.

The process converges to the ideal configuration, as can be seen in Table 3.1,
Figure 3.7 and Figure 3.8.

k 0 1 2 3 4 ideal

q1=1 2.0944 1.5727 1.5708 1.5708 1.5708 1.5708

Hq 4.9744 0.0001 0.0000 0.0000 0.0000 0

Table 3.1 - Convergence of the joint parameter and cost function towards the ideal configuration in a
single kinematic chain with one revolute joint.

33

t1
obst1q 

p1q
p2q p0 1,init

1,ideal

1,ideal=/2

1,init=/2/6

p0=[3 0]T

L1=5

P1=3

P2=2

[a b ]=[1 0 3]

0 0.5 1 1.5 2 2.5 3 3.5 4
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

iteration

de
gr

ee
 o

f
fr

ee
do

m

θ1
 [rad]

θ1,ideal
 [rad]

Figure 3.7 - Convergence of the joint parameter towards the ideal configuration in a single
kinematic chain with one revolute joint.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.8 - Convergence of the cost function towards the ideal configuration in a single
kinematic chain with one revolute joint.

3.2.2 Prismatic Joint (P)

In this case, a single link is attached to a prismatic joint which allows it to move in an
axis parallel to the image frame x-axis.

Theoretical formulation

The articulated model is described in Figure 3.9.

Figure 3.9 - An articulated model with one prismatic joint and its DH parameters. Featuring
from left to right: image frame, object description, DH frames and DH parameters.

34

yc

xc

L1 d 1

y0

z0x0 z1

y1

x1

i i−1 a i−1 d i i

1 0 0 d 1 0

The transformations between reference frames are given by

T0
C =[0 0 1 p0

x

0 1 0 p0
y

0 0 0 1] and T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1] ,

where p0
x and p0

y represent the location of the origin of {0} in the image frame, along

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[0 P 0 1]T ,
where P is the position along the y-axis. At the end of the link P=L1 .

The application of the measurement of residuals to this case yields a situation
similar to the case of a revolute joint, hence the vector of residuals  q has the same
general aspect as in that situation.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C = T0

C T1
0 pi q

1 =[0 0 1 p0
x

0 1 0 p0
y

0 0 0 1][1 0 0 0
0 1 0 0
0 0 1 d 1

0 0 0 1][0
P i

0
1] ,

where p iq
j is the representation of point i in frame j . This equation leads to

pi q
C =[d1p0

x

Pip0
y

1] .

Replacing these values in the vector of residuals returns

 q=[d1p0
x−t 1, x

obs

L1p0
y−t1, y

obs

ad1p0
x bP1p0

y−

a d1p0
xb P2p0

y−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals
 q regarding the state q is given by

J=[
∂ 1

∂q1

⋮
∂4

∂q1

]=[1
0
a
a
] ,

35

thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience
shown in Figure 3.10 was performed.

Figure 3.10 - Practical application of the model of residuals and convergence algorithm to the
case of an articulated object with one prismatic joint.

The state update equation is ran until the same convergence criterion of the case
with one revolute joint is reached.

The process converges to the ideal configuration, as can be seen in Table 3.2,
Figure 3.11 and Figure 3.12.

k 0 1 2 ideal

q1=d1 1.0000 0 0 0

Hq 1.5000 0 0 0

Table 3.2 - Convergence of the joint parameter and cost function towards the ideal configuration in a
single kinematic chain with one prismatic joint.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

de
gr

ee
 o

f
fr

ee
do

m

d
1
 [px]

d
1,ideal

 [px]

Figure 3.11 - Convergence of the joint parameter towards the ideal configuration in a single
kinematic chain with one prismatic joint.

36

t1
obst1q 

p1q 

p2q

[a b ]

p0

z0

y0
d 1, init

d 1, ideal

d 1,init=1

d 1,ideal=0

p0=[3 0]T

L1=5

P1=3

P2=2

[a b ]=[1 0 3]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.12 - Convergence of the cost function towards the ideal configuration in a single
kinematic chain with one prismatic joint.

Note that in this case, the Jacobian does not depend of the state, so the problem
could easily be solved by estimating the solution of the linear least squares problem.
Since the goal is to determine the state vector which minimizes the cost function, then

q=arg min
q

H q=arg min
q

1
2
∥q∥2=argmin

q
∥ q∥2=arg min

q
qT  q

=arg min
d1

3 d1
2⇒d 1=0

.

3.2.3 Prismatic and Revolute Joints (PR)

In this case, a single link is attached to a revolute joint which is attached to a
prismatic joint. This configuration allows the link to move in an axis parallel to the
image frame x-axis and to revolve in a plane parallel to the image plane.

Theoretical formulation

The articulated model is described in Figure 3.13.

Figure 3.13 - An articulated model with one prismatic joint and a revolute joint and its DH
parameters. Featuring from left to right: image frame, object description, DH frames and DH

parameters.

The transformations between reference frames are given by

37

yc

xc

L1 d 1

x0

z0y0 z1

x1

y1 z2

x2

y2

i i−1 ai−1 d i i

1 0 0 d 1 0

2 −/2 0 0 2

2

T0
C =[0 0 1 p0

x

1 0 0 p0
y

0 0 0 1] , T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1] and T2
1 =[c 2 −s2 0 0

0 0 1 0
−s 2 −c2 0 0

0 0 0 1
] ,

where p0
x and p0

y represent the location of the origin of {0} in the image frame, along

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[P 0 0 1]T ,
where P is the position along the x-axis. At the end of the link P=L1 .

The application of the measurement of residuals to this case yields a situation
similar to the case of a revolute joint, hence the vector of residuals has the same
general aspect as in that situation.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C = T0

C T1
0 T2

1 p iq
2 =[0 0 1 p0

x

1 0 0 p0
y

0 0 0 1][1 0 0 0
0 1 0 0
0 0 1 d1

0 0 0 1
][c2 −s2 0 0

0 0 1 0
−s2 −c2 0 0

0 0 0 1
][P i

0
0
1
] ,

where p iq
j is the representation of point i in frame j . This equation leads to

pi q
C =[d 1p0

x−Pi s2

p0
yPi s2

1] .

Replacing these values in the vector of residuals returns

 q=[d1p0
x−L1 s2−t1, x

obs

p0
yL1 c2−t1, y

obs

a d1p0
x−P1 s 2b p0

yP1 c2−

a d1p0
x−P2 s 2b p0

yP2 c2−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals
 q regarding the state q is given by

J=[
∂ 1

∂q1

∂1

∂q2

⋮ ⋮
∂4

∂q1

∂4

∂q2

]=[1 −L1 c2

0 −L1s2

a a −P1 c2b−P1 s2
a a −P2 c2b−P2 s2

] ,

38

thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience
shown in Figure 3.14 was performed.

Figure 3.14 - Practical application of the model of residuals and convergence algorithm to the
case of an articulated object with one prismatic joint and one revolute joint.

The state update equation is ran until a convergence criterion is reached, which in
this case, because q has 2 elements, is given by

∑∣qk1−qk∣10−5 [rad] .

Notice that the magnitude of the criterion is much smaller than in the previous
examples. However, it is still a small quantity.

The process converges to the ideal configuration, as can be seen in Table 3.3,
Figure 3.15 and Figure 3.16.

k 0 1 2 ⋯ 5 6 7 ideal

q1=d1 2.0000 6.8490 5.1707 ⋯ 2.9998 3.0000 3.0000 3

q2=2 1.0472 0.4321 0.0480 ⋯ −0.5237 −0.5236 −0.5236 −0.5236

Hq 43.9103 2.1344 0.7339 ⋯ 0.0005 0.0000 0.0000 0

Table 3.3 - Convergence of the joint parameters and cost function towards the ideal configuration in a
single kinematic chain with one prismatic joint and one revolute joint.

39

t1
obst1q 

p1q

p2q
p0

d 1,init

d 1,ideal

2, init

2, ideal

[a b ]

d 1, init=2

d 1, ideal=3

p0=[3 0]T

L1=5

P1=3

P2=2

[a
b
]=[0.866

−0.5
2.5981]

2, ideal=−/6

2, init=/3

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

iteration

de
gr

ee
 o

f
fr

ee
do

m

d
1
 [px]

θ2
 [rad]

d
1,ideal

 [px]

θ2,ideal
 [rad]

Figure 3.15 - Convergence of the joint parameters towards the ideal configuration in a single
kinematic chain with one prismatic joint and one revolute joint.

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.16 - Convergence of the cost function towards the ideal configuration in a single
kinematic chain with one prismatic joint and one revolute joint.

Since it is difficult to understand from the table and figures above how the link
configuration evolves with the iterations, an auxiliary animation was created to show
this evolution from the geometric point of view. In order to condense this information,
all frames of the animation were overlaid into a single figure, as shown in Figure 3.17.

40

-2 0 2 4 6 8
-2

-1

0

1

2

3

4

5

6

7

0

x

y
123456

Figure 3.17 - Evolution of the link configuration with the iterations, from the geometric point
of view: after some initial oscillation, the link (red line segment) converges to the link feature

(blue line); the link and tip residuals minimization is visible and ends with the link points
(red plus-signs) and link tip (red asterisk) overlaying the link feature and tip feature (blue

square) respectively; the numbers in rectangles below the base of the link (red circle) are the
iterations.

3.2.4 Two Revolute Joints (RR)

In this case, the configuration with one revolute joint is expanded with another
configuration of the same type attached at tip level. This configuration allows both
links to revolve in a plane parallel to the image plane. Furthermore, this combination
of revolute joints also allows the new tip to perform limited linear movement.

Theoretical formulation

The articulated model is described in Figure 3.18.

Figure 3.18 - An articulated model with two revolute joints and its DH parameters. Featuring
from left to right: image frame, object description, DH frames and DH parameters.

The transformations between reference frames are given by

41

yc

xc

L1

1

x0

z 0y0 z1

x1

y1

L2

2

z2

x2

y2

i i−1 a i−1 d i i

1 0 0 0 1

2 0 L1 0 2

T0
C =[0 −1 0 p0

x

1 0 0 p0
y

0 0 0 1] , T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

] and T2
1 =[c 2 −s2 0 L1

s2 c 2 0 0
0 0 1 0
0 0 0 1

] ,

where p0
x and p0

y represent the location of the origin of {0} in the image frame, along

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[P 0 0 1]T ,
where P is the position along the x-axis. At the end of the first link P=L1 and at the

end of the second link P=L2 .
Since now there are two links, the application of the measurement of residuals to

this case yields a situation a bit more complex than the previous, as depicted in Figure
3.19.

Figure 3.19 - Application of the model of residuals to the case of an articulated object with
two revolute joints.

The existence of two line features leads to the need of changing the notation, so

that line ri is represented by vector [a i bi i] .

Consequently, the vector of residuals has the same general aspect as in the case of
a revolute joint, but has more elements, due to the existence of points over the two
links.

A point on a link is projected on the image frame using (2.3), yielding for a point on
the terminal link

42

t1
obs

t1q 
p1q p2q 

2, init

2,ideal

[a1 b1 1]

p3q
p4q

1,ideal

1, init

[a2 b2 2]

p iq
C = T0

C T1
0 T2

1 piq
2

=[0 −1 0 p0
x

1 0 0 p0
y

0 0 0 1][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][c2 −s 2 0 L1

s2 c2 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

and for a point on the base link

pi q
C = T0

C T1
0 pi q

1 =[0 −1 0 p0
x

1 0 0 p0
y

0 0 0 1][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

where p iq
j is the representation of point i in frame j . These equations lead

respectively to

pi q
C =[−P i s12−L1 s1p0

x

Pi c12L1 c1 p0
y

1] and pi q
C =[−P i s1p0

x

P ic1p0
y

1] .

Replacing these values in the vector of residuals returns

 q=[
−L2 s12−L1 s1 p0

x−t1, x
obs

L2 c1 2 L1 c1 p0
y−t1, y

obs

A1,1

A1,2

A2,1

A2,2

] ,

where A1, i and A2, i are given by

A1, i=[a1

b1

1
]⋅[−Pi s 12−L1 s1 p0

x

P i c12L1 c1 p0
y

−1] and A2, i=[a2

b2

2
]⋅[−Pi s1p0

x

Pi c1p0
y

−1] .

Note that the orthographic projection is still used since the result of the dot
product of the vectors above leads to the same result as (3.2) would.

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals
 q regarding the state q is given by

43

J=[
∂ 1

∂q1

∂1

∂q2

⋮ ⋮
∂6

∂q1

∂6

∂q2

]=[
−L2 c12−L1 c1 −L2 c12
−L2 s12−L1 s1 −L2 s12

B1,1 C1,1

B1,2 C1,2

B2,1 0
B2,2 0

] ,

with B1, i , B2, i and C1, i given by

B1, i=[a1

b1
]⋅[−P i c12−L1 c1

−P i s12−L1 s1
] , B2, i=[a2

b2
]⋅[−P i c1

−Pi s1
] and C1, i=[a1

b1
]⋅[−Pi c 12

−P i s12] .

This concludes the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience
shown in Figure 3.20 was performed.

Figure 3.20 - Practical application of the model of residuals and convergence algorithm to the
case of an articulated object with two prismatic joints.

The state update equation is ran until the same convergence criterion of the case
with one prismatic joint and one revolute joint is reached.

The process converges to the ideal configuration, as can be seen in Table 3.4,
Figure 3.21 and Figure 3.22.

k 0 1 2 ⋯ 4 5 6 ideal

q1=1 −0.7330 −0.8616 −1.0617 ⋯ −1.0472 −1.0472 −1.0472 −1.0472

q2=2 −1.7802 −2.2315 −2.0927 ⋯ −2.0943 −2.0944 −2.0944 −2.0944

Hq 5.2081 0.7270 0.0038 ⋯ 0.0000 0.0000 0.0000 0

Table 3.4 - Convergence of the joint parameters and cost function towards the ideal configuration in a
single kinematic chain with two revolute joints.

44

1,init=−/3/10

1,ideal=−/3

2,ideal=−/ 2−/6

2,init=−/2−/6/10

p0=[3 0]T

L1=5

P1=3

P 2=2

L2=5

P3=3

P 4=2

[a1

b1

1
]=[0.5

−0.866
1.5]

[a2

b2

2
]=[1

0
7.3301]

0 1 2 3 4 5 6
-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

iteration

de
gr

ee
 o

f
fr

ee
do

m θ1
 [rad]

θ2
 [rad]

θ1,ideal
 [rad]

θ2,ideal
 [rad]

Figure 3.21 - Convergence of the joint parameters towards the ideal configuration in a single
kinematic chain with two revolute joints.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.22 - Convergence of the cost function towards the ideal configuration in a single
kinematic chain with two revolute joints.

As in the previous case, it is difficult to understand from the table and figures
above how the link configuration evolves with the iterations. Once again an auxiliary
animation was created to show this evolution from the geometric point of view. In
order to condense this information, all frames of the animation were overlaid into a
single figure, as shown in Figure 3.23.

45

1 2 3 4 5 6 7 8 9 10 11 12

-4

-3

-2

-1

0

1

2

3

4

0

x

y

1

2345

Figure 3.23 - Evolution of the link configuration with the iterations, from the geometric point
of view: after some initial oscillation, the links (red and magenta line segments) converge to
their link features (blue and black lines); the link and tip residuals minimization is visible
and ends with the link points (red and magenta plus-signs) and link tip (magenta asterisk)
overlaying their link features and tip feature (black square) respectively; the numbers in
rectangles to the left of the link tip are the iterations. The rotational joints of the tracked

articulated object are represented by the blue and black circles.

Additional Situation: Convergence Instability Bypass

In some situations the process does not converge to the ideal solution. In fact, in a
situation where the initial pose is sufficiently distinct from the true pose, the initial
value of the cost function also is very high. Because the iterative algorithm only
converges if the corrections made to the state vector are incremental, the process may
diverge if those corrections cannot be considered incremental.

In this example, the update equation and convergence criterion remain the same,
however, the situation now is defined by the parameters of Figure 3.24.

Figure 3.24 - Practical application of the model of residuals and convergence algorithm to the
case of an articulated object with two prismatic joints (additional situation). Note: only the

initial angles changed.

As a consequence of an initial divergence, the process converges to a solution
which is not the ideal, as can be seen in Table 3.5, Figure 3.25 and Figure 3.26.

46

1,init=/6

1,ideal=−/3

2,ideal=−/ 2−/6

2,init=−/3

p0=[3 0]T

L1=5

P1=3

P 2=2

L2=5

P3=3

P 4=2

[a1

b1

1
]=[0.5

−0.866
1.5]

[a2

b2

2
]=[1

0
7.3301]

k 0 1 2 ⋯ 14 15 16 ideal

q1=1 0.5236 1.2304 1.1705 ⋯ 3.3975 3.3974 3.3974 −1.0472

q2= 2 −1.0472 −4.4211 −1.9139 ⋯ −4.5082 −4.5082 −4.5082 −2.0944

Hq 109.3510 131.2587 105.1625 ⋯ 7.9345 7.9345 7.9345 0

Table 3.5 - Convergence of the joint parameters and cost function towards a non-ideal solution, after an
initial divergence, in a single kinematic chain with two revolute joints.

0 2 4 6 8 10 12 14 16
-5

-4

-3

-2

-1

0

1

2

3

4

iteration

de
gr

ee
 o

f
fr

ee
do

m

θ1
 [rad]

θ2
 [rad]

θ1,ideal
 [rad]

θ2,ideal
 [rad]

Figure 3.25 - Convergence of the joint parameters towards a non-ideal solution, after an
initial divergence, in a single kinematic chain with two revolute joints.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.26 - Convergence of the cost function towards a non-ideal solution, after an initial
divergence, in a single kinematic chain with two revolute joints.

Once again an auxiliary animation was created to show this evolution from the
geometric point of view. In order to condense this information, all frames of the
animation were overlaid into a single figure, as shown in Figure 3.27. The initial
divergence is clear as well as the convergence to a non-ideal solution.

47

-5 0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

10

0

x

y

1

2

3

4

5

6 789101112131415

Figure 3.27 - Evolution of the link configuration with the iterations, from the geometric point
of view: after some initial oscillation, the links (red and magenta line segments) converge

towards a non-ideal configuration, failing to overlay their link features (blue and black lines);
the link points (red and magenta plus-signs) and link tip (magenta asterisk) should overlay

their link features and tip feature (black square) respectively; the numbers in rectangles
below the link tip are the iterations. The rotational joints of the tracked articulated object are

represented by the blue and black circles.

It was verified experimentally that with this configuration of parameters the
divergence can be avoided if the state update equation is changed to

qk1=qk−[Jk
T Jk]

−1 Jk
T k ,

where an adaptive step  is used to ensure that all corrections to the state vector can
still be considered incremental. Note that the state update equation from (3.4) is a
particular case of this one, where =1 . Using a smaller adaptive step, like for
example =0.1 , the process converges at the cost of a greatest number of iterations,
as can be seen in Table 3.6, Figure 3.28 and Figure 3.29.

k 0 1 2 ⋯ 96 97 ideal

q1=1 0.5236 0.5943 0.6476 ⋯ −1.0471 −1.0471 −1.0472

q2=2 −1.0472 −1.3846 −1.6683 ⋯ −2.0944 −2.0944 −2.0944

Hq 109.3510 93.2694 79.9565 ⋯ 0.0000 0.0000 0

Table 3.6 - Convergence of the joint parameters and cost function towards the ideal solution, after
including an adaptive step in the state update equation to bypass the problems of convergence, in a

single kinematic chain with two revolute joints.

Note that the value determined for q1 still is 10−4 radians away from the ideal
solution, however, that only corresponds to 0.0573 degrees.

48

0 10 20 30 40 50 60 70 80 90 100
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

iteration

de
gr

ee
 o

f
fr

ee
do

m

θ1
 [rad]

θ2
 [rad]

θ1,ideal
 [rad]

θ2,ideal
 [rad]

Figure 3.28 - Convergence of the joint parameters towards the ideal solution, after including
an adaptive step in the state update equation to bypass the problems of convergence, in a

single kinematic chain with two revolute joints.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.29 - Convergence of the cost function towards the ideal solution, after including an
adaptive step in the state update equation to bypass the problems of convergence, in a single

kinematic chain with two revolute joints.

The animation that shows the convergence from the geometric point of view, with
all frames overlaid, can be seen in Figure 3.30.

The difference of evolution of these two convergences from the point of view of
descending the surface of the cost function can be observed in Figure 3.31.

49

-5 0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

10

0

x

y

1

2

3

4
5
6
7
8
9
10
1112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596

Figure 3.30 - Evolution of the link configuration with the iterations, from the geometric point
of view: the links (red and magenta line segments) converge to their link features (blue and
black lines); the link and tip residuals minimization is visible and ends with the link points
(red and magenta plus-signs) and link tip (magenta asterisk) overlaying their link features

and tip feature (black square) respectively; the numbers in rectangles to the right of the link
tip are the iterations. The blue and black circles represent the rotational joints of the tracked

articulated object.

-4
-2

0
2

4

-6

-4

-2

0

2
0

50

100

150

200

250

θ1
 [rad]θ2

 [rad]

H
(q

)
[p

x2]

-3 -2 -1 0 1 2 3 4

-5

-4

-3

-2

-1

0

1

θ1
 [rad]

θ 2
 [

ra
d]

-3 -2 -1 0 1 2 3 4

-5

-4

-3

-2

-1

0

1

θ1
 [rad]

θ 2
 [

ra
d]

Figure 3.31 - The cost function H(q) as a function of the DOF (top: isometric view; left: top
view; right: level lines); the red and blue plots represent the evolution of the DOF from a

common starting point towards the non-ideal solution (red) and the ideal solution (blue). The
cost function has a period of 2π radians along each DOF since both are revolute joints.

50

3.3 Chapter Outcome

So far, both the articulated model and the pose estimation algorithm have been
presented. The pose estimation algorithm uses a projection of the articulated model
and data collected from the image to estimate the model parameters which make the
projected articulated model overlap the data collected from the image. However, there
is still no understanding of how data is collected from the image, which is shown in
the next chapter.

In this chapter it has also been shown that it is critical that the Gauss-Newton
method converges to a solution as close as possible to the real one. As the complexity
of the model increases, good convergence may become more difficult to attain. In such
situations the update step may have to be limited using additional methods.

51

4 Image Analysis

The estimation of model parameters described in the previous chapter relies on data
extracted from a sequence of images. The image analysis routine returns this data as
axial lines aligned with the phalanges (link features) and as points related with the
finger tips location (tip features). This data is estimated from image samples retrieved
by specialized image analysis entities working on a local context, the image trackers.

The location of the image trackers is set by the model Mq using a predicted
state vector q . There are two types of image trackers: link trackers, which collect data
from the finger phalanges in the image, and tip trackers, which collect data from the
finger tips in the image. Data is retrieved from the images with the help of these
trackers, where link and tip trackers originate link and tip features, respectively.

In order to analyze an image and return data in a certain format it is necessary to
go over a series of steps, all of them always present in the image analysis routine. The
process can be separated into four distinct tasks:

1. Positioning image trackers;
2. Image sampling;
3. Feature search;
4. Line fitting.

The third task is the most critical and this is where most of the effort was put. Not
surprisingly, it lead to a larger amount of related work, including a wide range of
variations, which are presented in Appendix D for reference. The remaining tasks are
more trivial.

53

4.1 Positioning the Image Trackers

This is the step in charge of positioning the image trackers over the image so the local
analysis can then be performed. In the following explanation a single-finger situation
is considered.

The model Mq provides estimates of the end coordinates of each link in the
image frame using (2.3), where q is the same prediction used in the pose estimation
algorithm. This prediction can be the state estimated in the previous image frame or a
prediction considering the recent range of movement, understood from the estimations
produced along a set of recent frames. For convenience of both feature extraction and
pose estimation algorithm, the initial state of the articulated model should be as close
as possible to the state of the tracked object.

As a simplification to the initialization process, the initial state is set by hand on
the first frame of the image sequence, so the projection of the articulated model
overlays the tracked object in the image. This avoids using more complex techniques
to estimate the initial state.

Projecting the articulated model helps placing the image trackers, which are
responsible for extracting contour points from the image. Each link tracker is located
on the projection of its corresponding finger link, while each tip tracker is located on
the projection of its corresponding finger tip.

Figure 4.1 - Projection of the articulated model on the image frame showing links (coloured
segments), joints (coloured circles), tip (blue dot) and silhouette of corresponding finger

(dashed curve).

A link tracker is positioned and oriented the same way an articulated model link is
projected on the image, therefore it is not surprising that the algebra and storing

54

methods involved in this process resemble those involved in simulating edge points
(check Appendix B for details), as shown in Table 4.1.

Local Image Trackers Simulated Edge Points
Positioning of link tracker Projection of model link

Positioning of link tip Projection of model tip
Positioning of samplers

perpendicularly over link tracker axis
Spreading of marks over the projected

link
Computation of sampling extremes

for link samplers
Generation of edge points to both

sides of projected link
Table 4.1 - The methods involved in positioning the image trackers resemble those involved in

simulating edge points.

The derivation as how to place, orient and store the link trackers is immediate
once this algebraic parallelism is noticed. Link trackers are placed directly over the
projected links, and link samplers with limited scope are positioned perpendicularly
along these trackers.

Figure 4.2 - Link samplers (dotted segments) positioned perpendicularly over the projected
links. The samplers have limited scope. This example shows four samplers being used on the

proximal phalanx and three samplers on each of the other two phalanges.

The positioning of the tip tracker is slightly more complex and can be described as
a two-step proceeding: first a rude estimate and then a refinement. The previously
discussed initial position of the tip tracker is refined using a line aligned with the
distal phalanx of the finger. Such a line, also referred as a terminal axial line, is
determined by the line fitting algorithm which is described later. The position of a tip

55

tracker is refined by projecting the position of the initial tip tracker on the
corresponding terminal axial line. The tip sampler is then oriented with the direction
of the axial line and sampling extremes are determined as with a tip sampler (see
Figure 4.3).

Figure 4.3 - The refined tip position (blue circle) results from projecting the predicted finger
tip (blue dot) on the extracted link feature (dotted blue line), perpendicularly (dotted red

segment) to the line. The tip sampler (green segment) is placed on the line and centred on the
refined tip.

Given a terminal axial line defined by point pax and vector vax (headed towards

the tip), the projection of model tip ptip on the axial line corresponds to ptip , the point
on that line closest to the model tip, which is computed with

ptip=paxptip−pax
T
v0v0 . (4.1)

A directional unitary vector v0 is computed dividing vax by its norm. The
sampling extremes for the tip sampler are computed relatively to the refined tip
position. This is similar to defining the sampling extremes for a link sampler
relatively to the point where it intersects the link tracker.

4.2 Image Profile Sampling

Once the image trackers have been placed and the extremes for each sampler
specified, the image is sampled along each of the specified line segments. The
sampling procedure computes the intensity values along a line or a multiline path in
an image. This sampling routine selects equally spaced points along the specified
path, and then uses interpolation to find the intensity value for each point. The path is

56

specified by a parameterization of endpoints along the x-axis and y-axis, which in this
case is given by the coordinates of the sampling extremes since the path is a line
segment. The resulting image intensity profile along each line segment can be thought
of as a slice of the image intensity surface.

Figure 4.4 - Finger tip image and link sampler (green segment).

In the case of image profile sampling, each profile results from sampling the image
in specific points along a line segment. As said before, this segment has a certain
length. However, when an image is sampled along line segments with different
directions a variable number of pixels is crossed, mainly because the image surface is
discrete. To avoid this, the sampling routine is set to always sample a fixed amount of
points. Generally, the number of pixels the path traverses does not match the
requested number of points, so the sampling routine must use interpolation to find the
intensity value for each of the requested points.

Figure 4.5 - Image profile returned by a link sampler: number of pixels in the sample not
specified (top) and fixed on 20 points (bottom). Notice how the sample with less points is

smoother.

In essence, all the interpolation methods work in a similar way. In each case, the

57

5 10 15 20 25 30
50

100

150

200

2 4 6 8 10 12 14 16 18 20
50

100

150

200

desired interpolated pixel is a point in the image. Since the coordinates of this point
generally are not integers, its intensity value is determined by computing a weighted
average of some set of pixels in the vicinity of the point. The weightings are based on
the distance each pixel is from the point.

The methods differ in the considered set of pixels used for the weighting:

• For nearest neighbour interpolation the desired point is assigned
the value of the pixel it falls within. No other pixels are considered.
• For bilinear interpolation, the point value is a weighted average of

pixels in the nearest 2-by-2 neighbourhood.
• For bicubic interpolation, the point value is a weighted average of

pixels in the nearest 4-by-4 neighbourhood.

Do bear in mind that this description is merely for elucidation purposes. The
sampling routines only require the path parameterization and the interpolation
method to use.

Figure 4.6 - Comparative plot of an image profile with 20 points using nearest neighbour
(red), bilinear (green) and bicubic (blue) interpolations.

The number of pixels considered in the interpolation affects the complexity of the
computation. Therefore the bilinear method takes longer than nearest neighbour

58

2 4 6 8 10 12 14 16 18 20
50

100

150

200
nearest
bilinear
bicubic

interpolation, and the bicubic method takes longer than bilinear. However, the greater
the number of pixels considered, the more accurate the effect is, so there is a trade-off
between processing time and quality.

Notice there was no distinction whether the sampling referred to link trackers or
tip trackers. This was intentional because the sampling process itself does not depend
on knowing if it is going to be used for link or tip tracking purposes.

4.3 Searching for Edges

This step must analyze the intensity profiles to determine edge points as accurately
and robustly as possible. There are two types of edge points, one regarding the sides of
the phalanges and the other the finger tips. Points of the first kind are divided into
groups which will later be used to determine the axial lines. Points of the second kind
indicate the position of the finger tip.

Figure 4.7 - Feature search is the block responsible for analysing the image profiles and
finding the location of the edge points.

The way of retrieving edge points for the links or tips are not necessarily the same.
In fact, apart from the initial motivation, the investigation methods head different
ways. In this case however, finding tip edges is always dependent of the axial line
determination.

The importance of extracting features from an image is only equalled by the pose
estimation algorithm. Good pose estimation is achieved in part by good and robust
feature extraction and in part by an appropriately convergent pose estimation
algorithm.

Feature search is the process responsible for getting information from an image
and returning data ready to use in pose estimation. Appendix B shows how to
simulate this data when feature search routines are not implemented.

This is the most critical step of the image analysis process. Initially it was a simple
method but was progressively enhanced for performance and robustness until the

59

Sampled Image
Profiles ? Edge Points

method described in this section was reached. Prior developments of the method and
their alternatives can be found in Appendix D. The first of those methods is the most
basic and is based on [1]. It suffices for a very basic implementation of feature
extraction.

The present method evolved from that same method, so it still preserves the same
goal: using each image profile sample to determine the location of the edges used in
line fitting.

However, this method is very different from the preceding ones in one aspect: it is
the only one designed to handle finger occlusion. When considering fingers there can
be mutual or self occlusion, respectively if a finger occludes another or itself.

The proposed method is a compromise between the perpendicular sampling idea in
[1] and the templates and windowing functions concepts in [2]. A consequence of this
compromise is no longer using the derivatives of the image profiles and using the
profiles instead. The profiles are downsamples of the finger phalanges, so they still
contain information about the aspect of the fingers on image. Derivatives aren't used
because if an image profile samples a region where a finger is occluded, the derivative
of that image profile will present peaks in undesired regions.

4.3.1 Template Matching

Another concept borrowed from [2] is template matching using the standard sum of
squared differences (SSD). Template matching using correlation tends to privilege
regions with high intensity, as those resulting from a more intense illumination. To
avoid such discrimination, and since it is reasonable to assume there are no changes
in illumination along the image sequence, the sum of square differences (SSD) is used
and is defined as

SSDs1 s2
k=∑

j
[s1  j −s2 j1−k ]2

with a best match given by

k=arg min
k

SSDs1 s2
k  .

60

For performance reasons the SSD is computed as a function of correlations, since
the correlation of two signals is already implemented as an optimized function. When
written as a function of correlations, SSD becomes

SSDs1 s2
k=Rs1 i

k −2 Rs1 s2
k s 2

T s2 ,

where i is a vector the same size as s 2 filled with ones and Rx y k  is the correlation
of signals x and y .

In order for the SSD to be robust to occlusions it is necessary to restrict its scope of
calculation to the image regions where the phalanx in question is visible. This is
where another concept is borrowed from [2]: windowing functions. These functions
present ones where the phalanx is visible and zeros outside. In the present adaptation
of that concept each window function masks an image profile template originating
windowed image profile templates (see Figure 4.8).

Figure 4.8 - The entities involved in windowed template matching (starting from top): a
template of an unoccluded finger is taken and stored for future reference; a measure of the
link profile is taken in the current frame; entity M(q) informs where the link is still visible

and helps define a window function; a windowed template results from multiplying the stored
template by the window function. Plots on the left represent the image profile along the green
paths on the right; the x-axis is the pixel number and the y-axis the intensity value, defined
as an integer between 0 and 255 with the exception of the window function which is binary.

61

2 4 6 8 10 12 14 16 18 20
0

100

200

300

2 4 6 8 10 12 14 16 18 20
0

100

200

300

2 4 6 8 10 12 14 16 18 20
0

1

2

2 4 6 8 10 12 14 16 18 20
0

100

200

300

Template

Measure

Window
function

Windowed
template

Imagine an image profile sample I has an associated visibility function v the
same size as it but with ones where the sample is visible and zeros outside. The
visibility function is used to mask a profile template t , which represents the aspect of
an image profile sample when there is no occlusion. The masked template m is
computed with m k=v k  t k . This masked template is used on a windowed version
of the SSD, only computed where m0 and given by

WSSDI , t∣v k =WSSDI , m k = ∑
j :v j 0

[I  j −m j1−k ]2 .

The WSSD curves of a link can be grouped side by side to originate a WSSD
surface.

0

5
x 10

5

W
S

S
D

profile 1

profile 2

profile 3

profile 4

profile 5

5 10 15 20 25 30 35
k

profile 6

1

2

3

4

5

6

0

10

20

30

40

0

5

x 10
5

profilek

W
S

S
D

Figure 4.9 - The WSSD curves of the link profiles (left) can be combined into a single WSSD
surface (right). The sample x-axis coordinate is represented by k, the units of the WSSD are

squared intensity values.

4.3.2 Edge Estimation

The proposed edge estimation method resorts to a priori knowledge of phalanx width
and to the WSSD surface. After combining the WSSD curves to form a surface (see
Figure 4.9), a line is fit to the valley crossing all curves. The valley corresponds to
minima of the surface which are searched individually for each curve using a gradient
descent strategy. These minima are then used to estimate the line. The line indicates
the offset between each template and its match, which is a measure of the deviation
between model Mq and the object in the image. These offsets are marked
perpendicularly to the model to produce estimates of the whereabouts of the object,

62

and will be referred to as central points. The location of each pair of edge points is
estimated using a central point and the width of the phalanx, so to position the edges
at the same distance of the central point, along the same perpendicular used before.

Let S be the WSSD surface composed by a set of curves s i . Let y be the
estimated coordinates of the regression line on the y-axis (see Figure 4.10). The
purpose is to find the direction of the minimum at each curve on a specified point yi .

This is done by differentiating each of the s i , or similarly, by computing the gradient

of S along each column (the s i are column vectors). The result is a surface G the

same size as S , composed of several g i the same size as the s i . At each point these

gradient curves g i specify the direction of growth of the respective s i . To reach a

minimum along any s i , each yi is updated so the corresponding value on S has less
magnitude than before. This is achieved with the update equation

yk1=yk−sign  g ,

where g is a vector with the gradients of each s i on a specified yi . This is the same
principle as gradient descent but with the update step restricted to the unit.

Figure 4.10 - The WSSD surface (left) and its gradient surface (right). Also featuring: the
fourth WSSD and gradient curves (red curves), the first point used for regression (left red

dot) and its respective gradient (right red dot).

The several yi updates do not necessarily evolve in the same direction (see Figure
4.11), so a line is adjusted to the updates in order to estimate a collinear set of points.

63

1

2

3

4

5

6

0

10

20

30

40

-5

0

5

x 10
4

profilek

W
S

S
D

 g
ra

di
en

t

1

2

3

4

5

6

0

10

20

30

40

0

5

x 10
5

profilek

W
S

S
D

xy xy

S G

s4 g4

x1, y1

x1, y1, g1

This is done using a partial linear least squares (PLLS) regression, explained in detail
in Appendix D, where model y=c0c1 x is adjusted to the x i , y i . The x i in the model

are given by the column number of S and the yi in the model are the updated yi .
The PLLS method determines the line which fits the data. However, the coordinates of
the line at each point must be integers, so it is necessary to round the yi towards the
nearest integer.

Figure 4.11 - The steps of the algorithm used to fit a line to the valley of the WSSD surface.
Each grid is a top view of the WSSD surface. The initial data is updated by an unit

considering the gradient of the WSSD curves; a line is adjusted to the updated data; the
estimated data is placed over the line; the estimated data is rounded toward the nearest

integer. Red dots indicate the result of using the current operation on red circles (data carried
from last step).

The process is then repeated until the rounded yi converge or a certain number of
iterations is reached.

The orientation and position of the valley are defined by the x i , y i . These points
are then used to estimate the offset of each template. The offset corresponds to the

deviation of yi relatively to the centre of s i . This offset is marked relatively to the
centre of the profile template and the width of the phalanx is used to extrapolate the
locations of the edges. Those locations are then converted back to image coordinates so
they can be used by the line fitting algorithm.

4.3.3 Visibility Ordering

The third component of the edge estimation process is the computation of the
windowing functions used in the WSSD. In order to determine these functions it is
necessary to know how each phalanx template is layered towards the camera.

64

y k y k1 PLLS y round  y

Visibility ordering is the process responsible for determining that layering. There is
more than one way of doing this. Some methods are more parametric and accurate
than others. In [2], for instance, this problem is extensively studied and solved in a
parametric way. However, the visibility ordering method now introduced is based on a
very simple concept: it needs information about the 3D shape of the phalanges and a
state vector to produce an estimate of the region each phalanx occupies in the image.

Each of these estimates is ordered based on the distance their 3D counterparts are
from the camera. After ordering, the polygonal regions regarding occluded phalanges
are submitted to Boolean operations where the occluding polygonal regions are
subtracted to it. This originates truncated polygons which manifest the occlusion
taking place and can be used to define windowing functions, so the SSD is only
computed with the visible portion of a template. The windowing function for an image
profile sample I is easily computed determining which sample points of I fall inside
the truncated polygon.

Picture a situation where one finger occludes another. Each finger has three
phalanges which are modelled by a convex 3D shape, like a cylinder toped with
hemispheres.

Figure 4.12 - Side view of a finger (left) and corresponding model formed by 3D pill
primitives (right).

The image coordinates of each vertex of these 3D shapes is found with a process
described in Appendix C. This process also preserves information about the distance of
each 3D vertex to the camera, which will be used in depth sorting.

65

Figure 4.13 - Cloud of points formed by vertices of a 3D pill primitive projected on the image
frame (only the vertices of the hemispheres are needed).

After each shape is projected on the image its convex hull is computed as described
in Appendix C. This indicates the outer points of each projected 3D shape, thus
enabling it being described by a convex polygon. Redundant points in each convex
polygon are eliminated by a method also described in Appendix C, leading to identical
polygons defined with less vertices.

Figure 4.14 - Convex hull of projected 3D pill primitive (left) and its reduced version (right).

Since depth information is preserved it is possible to know the distance of each
peripheral point to the camera. This enables determining which polygons are in front
of the others.

Depth sorting is the process responsible for ordering polygons in layers according
to their sequence towards the camera. If a polygon is in front of another, from a
camera point of view, then it will be placed in a layer closer to the viewer.

66

The attribution of layers to each polygon is based on a coarse depth sorting
strategy, which is nonetheless more than enough for most situations. Each polygon
has an associated depth computed as the average depth of its vertices.

Figure 4.15 - A depth sorting strategy is used to attribute a layer to each polygon, ordering
them from the farthest away to the closest one.

Figure 4.16 - The viewer sees shape B occluded by shape A. Depth sorting works fine (white
arrow situation) if the average depth of the occluded shape B is greater than that of the
occluding shape A. However, if the average depth of B is less than that of A, B will be
incorrectly considered the occluding shape (red arrow situation) when it should be the

occluded one (green arrow situation).

The polygons can then be ordered based on their average depth. This will work just
fine as long as the depth of the occluded polygon does not indicate it should be in front
of the occluding polygon. Of course this method works better if the main direction of

67

BAA
B

BA

A B

A B

the 3D shapes is on a plain parallel to the image plain.

Figure 4.17 - The polygons on the left are depth sorted and subject to Boolean subtractions
originating the truncated polygons on the right, which will be used to define the visibility
functions. The top finger occludes the bottom one, hence the bottom finger polygons are

truncated. Phalanges of the same finger not considered for occlusion purposes.

1

2

3

4

5

6

0

5

10

15

20

0

1

profilek

vi
si

bi
lit

y

Figure 4.18 - Defining window functions with the help of truncated polygons. Left: truncated
polygons and link samplers (blue segments). Right: detail of region on left, presenting the

sampling points. Bottom: window function surface has ones where sampling points fall inside
the truncated red polygon and zeros outside.

68

Once each polygon is depth sorted it is necessary to eliminate the occluded regions
of the occluded polygons. This produces other polygons which could be flattened into
the same layer and still convey where occlusions take place. Starting with the farthest
away polygon, each polygon is cut where the ones in front occlude it. This is done with
a Boolean subtraction of polygons.

The visibility functions result from finding which sampling points of the image
profile samples fall within the truncated polygons. Remember each link has an
associated truncated polygon and associated image profile samples. The visibility
functions present ones inside the truncated polygon and zeros outside.

Usually the determination of visibility functions is performed at the end of each
frame, after the pose is estimated and the pose prediction for the next frame is made.
These visibility functions are then used in the beginning of the next frame, where the
image profiles are sampled.

4.4 Line Fitting

The fourth and last step in the image analysis process is to fit lines to each set of
extracted boundary points in order to estimate the axial lines which describe the
orientation of the phalanges in the image. This line fitting process is something
completely different from the line fitting process used in edge estimation. While in
edge estimation the goal was to parameterize the valley in the WSSD surface, here the
goal is to parameterize the sides of the phalanges to later parameterize the orientation
of the phalanges.

After extracting contour points from the image it is necessary to fit lines to the sets
of points regarding the sides of the phalanges. The line fitting process assumes these
contour points are correctly divided into groups of points sharing the same
characteristics, such as being on the same side of a phalanx.

69

Figure 4.19 - The contour points used in the line fitting algorithm are divided into groups,
sharing same link (same colour) and same side of a phalanx. The dotted segments represent

the link samplers and the blue circle the finger tip.

The line fitting routine fits a line to each of these groups of points using a
deterministic variation of the RANSAC (Random Sampling Consensus [22]) algorithm.
Whereas RANSAC (Figure 4.20) randomly selects pairs of points, fits a line to the
pair, and refines the best configuration considering the points which lie within a
certain distance from the line (the inliers), this variation deterministically goes over
every possible pair of points to determine which one leads to more inliers. This is
considered an acceptable procedure since the number of points to fit is very small,
usually not more than six per group. In the present case, the Euclidean distance is
used to measure the distance between a line and a point.

2 inliers 3 inliers 5 inliers

Random selection of hypothesis

Refinement

Figure 4.20 - The RANSAC (Random Sampling Consensus) algorithm: random selection of
pairs of points searching for the configuration with more inliers (top); refinement of the best

configuration (bottom).

The line fitting algorithm takes as argument a group S of n similar points,

70

arranged in a matrix as

S=[S1
x ⋯ Sn

x

S1
y ⋯ Sn

y] ,

where each column indicates the image coordinates of a point. This structure makes it
easier to determine the line.

Then, it does an exhaustive search fitting a line to each pair of points and
determining the inliers. A point is considered an inlier if it is closer than a distance 
from the line.

After determining which set of points leads to more inliers, it is necessary to refine
that choice. This is achieved with a minimization of a total least squares problem, or
similarly, performing a principal component analysis (PCA) [23] of the inliers
scattering. First, the m inliers are stored in a 2×m  matrix arranged as

Y=[Y1
x ⋯ Y m

x

Y1
y ⋯ Y m

y] ,

so that its 2×2 covariance matrix RYY can be computed. By definition

RYY=E[Y− YY−Y T]∝Y− YY−YT ,

where the proportionality factor can be 1/m−1 or 1/m depending on the definition
used. Either way, the refinement will stand no matter the factor used. Afterwards, the

eigenvalues and eigenvectors of RYY are computed, since the main direction
corresponds to the eigenvector whose eigenvalue has the largest magnitude.

Once the eigenvalues and eigenvectors are determined, the refined fitting line is

defined as passing by point p=E [Y i] , the centre of mass of the inliers, with an

orientation parallel to v , the eigenvector with the largest eigenvalue.

71

Figure 4.21 - After the PCA fits a line to a set of points of the same group (left), that line can
be described by a point and a line (middle) or by three line parameters (right).

Remember these lines are adjusted to boundary points of the finger phalanges.
However the pose estimation algorithm requires axial lines describing the orientation
of the finger phalanges. Thus, it is necessary to convert each pair of boundary lines to
a link feature representing the link axial line.

In practice, the axial line can be described by parameters [aax bax ax] or by a

point pax and a vector vax parallel to the line. It was concluded to be easier to

determine pax and vax first and then convert the result to [aax bax ax] .

Figure 4.22 - The direction of the axial line is chosen as the one making the least of two
angles with the peripheral lines. In the depicted case, the horizontal axial line would be

chosen since it makes a smaller angle than the vertical axial line.

Given any two boundary lines with unitary direction vectors v1 and v2 , generally

not parallel, there are two possible solutions for the direction of vax , always
perpendicular to each other. The goal is having the axial line making the least of two
possible angles with the boundary lines. The conclusion is made based upon the

following criterion: if ∥v1v2∥≥∥v1−v2∥ then vax=v1v2/2 , else vax=v1−v2/2 . The

resulting vax is generally not unitary, but computing it this way (with unitary vectors)

72

PCA

q
p

x

y 

a , b

v1

v2

vax

vax

is easier and faster than resorting to trigonometric functions to determine each of the
angles of the boundary vectors, more algebra to determine the correct angle for the

axial line and yet more trigonometry to compute the components of vax .

As for point pax , a point in the axial line, its computation is slightly more complex
and the computational precision must be taken in account to avoid wrong results,
especially when the boundary lines are close to being parallel (see Figure 4.23). Given

two boundary lines defined by points p1 and p2 and with direction vectors v1 and v2

, generally not parallel, the goal is to determine the point of intersection pax which
satisfies

p1k1v1=p2k 2v2=pax , (4.2)

where k1 and k2 are multiplicative factors to be determined. The solution is easier to
compute if the first equality of (4.2) is rewritten as

k1v1−k2 v2=p2−p1⇔[v1
x −v2

x

v1
y −v2

y][k1

k2
]=p2−p1

in order to form a matricial system like

k=V−1p2−p1 , (4.3)

where k is the vector of multiplicative factors and V is the square matrix formed by
v1 and −v2 . After this, point pax can be found substituting either k1 or k2 in (4.2).

However, when the boundary lines are almost parallel (4.3) cannot be used. From
the geometric point of view, it means an intersection on an infinite point. From the
computational point of view, the inversion of V may result inaccurate if the matrix is
nearly singular. To avoid such results, (4.3) is only carried out if the magnitude of the
determinant is over 10−9 . Also, the determinant of V has the same expression as the

dot product of v1 by a vector perpendicular to v2 , so when the boundary lines are
close to parallel this dot product is very close to zero. When the boundary lines are

73

almost parallel, pax is alternatively computed with

pax=p1p2/2 , (4.4)

which is fairly reasonable since when two lines are parallel any p1 and p2 have an

equally distant point pax over the axial line.

Figure 4.23 - Determination of a point belonging to the axial line depends on the parallelism
of the peripheral lines. When peripheral lines are not parallel (left) the point of the axial line
is the point of intersection of the two lines. When the lines are parallel (right) the point of the

axial line is the geometric mean of the points of the peripheral lines.

To convert the axial line parameterization from point-vector notation pax ,vax to

the three element notation [aax bax ax] , it's only necessary to understand that in the

general line equation a xb y−=0 , a , b is a vector normal to the line and  is the
distance from the line to the origin of the reference frame.

4.5 Chapter Outcome

By now, the three fundamental parts of the proposed pose estimation method have
been explained. This chapter has explained how to extract data from an image to use
with the pose estimation algorithm. This data corresponds to lines aligned with the
finger phalanges and points indicating the position of the finger tips.

74

v1

v2

p1

p2

pax

v1

v2
p2

p1

pax

5 Temporal Integration

The measurement and estimation of a quantity generally has an associated
uncertainty. The source of uncertainty lies in many aspects [24][25]:

• No mathematical model is perfect. Any such model depicts only those
characteristics of direct interest to the problem in question. Even
effects which are modelled are necessarily approximated by a
mathematical model;

• Dynamic systems are driven not only by control inputs but also by
disturbances which can neither be controlled nor modelled
deterministically;

• Sensors do not provide perfect and complete data about a system. First,
they generally do not provide all the information one would like to
know. In other situations, a number of different devices yield
functionally related signals, and one must then ask how to generate a
best estimate of the variables of interest based on partially redundant
data. Sensors do not provide exact readings of desired quantities, but
introduce their own system dynamics and distortions as well.
Furthermore, these devices are always noise corrupted.

In the present situation image noise cannot be ignored neither the fact both the
image domain and intensity are discrete, thus introducing some quantization errors,
even if neglectable. On top of this, there is the process of retrieving information from
an image, which is achieved by subsampling an image region. Then there are sources
of uncertainty, mainly due to estimation routines such as hand pose estimation and
the existence of roundings towards integers such as in edge detection and line fitting.

75

All these factors contribute to an overall uncertainty and error on the hand pose
estimation problem.

This uncertainty is often visible when the temporal evolution of any estimated
parameter is plotted, usually showing in the form of a curve with high frequency jitter
of low amplitude.

If the way this parameter is allowed to evolve with time is parameterizable, and
the typical measurement noise is quantifiable, then it may be possible to design a
filter which takes these assumptions and the measurements to produce estimates with
less associated error.

One such filter is the Kalman filter, which will be used to refine the estimated
state vector of the present frame and to predict the state vector of the next frame.
Appendix E shows an additional situation where the Kalman filter is used to
determine the phalanx width.

5.1 Kalman Filter

The Kalman filter provides a computationally efficient recursive solution of the least
squares state estimation. The filter is very powerful in several aspects: it supports
estimations of past, present and even future states, and it can do so even when the
precise nature of the modelled system is unknown.

The filter has many different variations depending on the desired application,
however, they all have a common background. First, the basic Kalman filter is
presented as an introduction to the estimation of a stationary process. After that, a
more elaborate Kalman filter capable of dealing with position, velocity and
acceleration is described.

5.1.1 The Discrete Kalman Filter

This section describes the filter in its original formulation [26], where the
measurements occur and the state is estimated at discrete points in time. For a more
direct introduction to the basic concepts of the Kalman filter check [24] or [25] for a
hands-on approach with some examples and practical applications.

76

The Process to be Estimated

The Kalman filter addresses the problem of estimating the state x∈ℝn of a
discrete-time controlled process that is governed by the linear stochastic difference
equation

xk=Axk−1Bukwk−1 ,

where the n×n matrix A relates the state at the previous time step k−1 to the
state at the current step k in the absence of either a driving function or process noise;

the n×l matrix B relates the optional control input uk∈ℝ l to the state x ; the

random variable wk represents the process noise.

This process is observed with a measurement y∈ℝm described by

yk=Hxkvk ,

where the m×n matrix H relates the state to measurement yk and vk is a random
variable representing measurement noise.

In general, matrices A and H may change over time, but here are assumed to be
constant.

The process and measurement noises are assumed to be independent of each other,
white and with normal probability distributions

pw~N 0,Q
pv~N0,R

where the noise covariance matrices Q and R might change with each time step but
are also assumed to be constant, for convenience.

The Discrete Kalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of
noisy measurements. As such, the equations for the Kalman filter fall into two groups:

77

time update equations and measurement update equations. The time update
equations are responsible for projecting forward in time the current state and error
covariance estimates to obtain the a priori estimates for the next time step. The
measurement update equations are responsible for the feedback: incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the
final estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems.

After algebraic manipulation [25], the discrete Kalman filter prediction equations
are given by

xk∣k−1=A xk−1Buk

Pk∣k−1=APk−1A
TQ

where xk∣k−1 is the prediction for the next state; Pk∣k−1 is the a priori and Pk−1 the a

posteriori estimate error covariances, with

Pk=E[ek ek
T]T ,

where

e k=xk−xk .

The filter starts off from this point using initial conditions for xk−1 and Pk−1 .
On the other hand, the discrete Kalman filter measurement update equations are

given by

K k=Pk∣k−1H
T HPk∣k−1H

TR−1

xk=xk∣k−1Kk yk−H xk∣k−1
Pk=I−KkHPk∣k−1

78

where the first task is to compute the Kalman gain K k . The next step is to actually

measure the process to obtain yk , and then to generate an a posteriori state estimate
xk by incorporating the measurement. The final step is to obtain an a posteriori error

covariance Pk .
After each time (prediction) and measurement (correction) update pair, the process

is repeated with the previous a posteriori estimates used to project or predict the new
a priori estimates. This recursive nature is one of the very appealing features of the
Kalman filter.

5.1.2 The g-h-k Kalman Filter

In the previous Kalman filter, the Kalman gain decreases with time. This induces the
filter to ignore the measurements at a later time step and to rely mostly on its history.
Besides this, it also requires a large number of parameters to be tuned.

The g-h-k Kalman filter [27] is a way of accounting for first and second order
aspects while estimating the process, which makes it suitable for tracking a target
having a constant acceleration. In such a case, the target equations of motion become

xk=xk−1ẋk−1 Tẍk−1
T2

2

ẋk=ẋk−1ẍk−1T

ẍk=ẍk−1 .

But the novelty in this new filter formulation, is the fact that the gains are
constant over time, so the filter always makes the same compromise between new
measurements and history.

To avoid a 3-fold increase in the complexity of the filter, due to inclusion of
velocity and acceleration, the formulation of the equations follows a more heuristical
rather than probabilistical approach. The tracking equations needed for updating the
prediction estimates of position, velocity and acceleration for the constant-accelerating
target model become

79

̈xk=̈xk∣k−1
2 k
T2 yk−xk∣k−1 (5.1)

̇xk=̇xk∣k−1
h
T yk−xk∣k−1 (5.2)

xk=xk∣k−1gyk−xk∣k−1 (5.3)

where the form of the position update clearly resembles that of the previous filter.
The g-h-k prediction equations then become

̈xk∣k−1=̈xk−1 (5.4)
̇xk∣k−1=̇xk−1 ̈xk−1 T (5.5)

xk∣k−1=xk−1̇xk−1 T̈xk−1
T2

2
(5.6)

This filter relates with the −− filter when g, h and k are respectively
replaced by  ,  and /2 . This filter has the advantage that it can track a
constant-accelerating target with zero lag error in steady-state. It will have a constant
lag error for a target having a constant jerk (derivative of the acceleration). It is a
three state filter, tracking position, velocity and acceleration.

In the previous filter it was necessary to tune up two noise covariances and set two
initial conditions per parameter in the state vector. In the present filter, due to the
heuristical formulation, it is necessary to tune up three gains and three initial
conditions per parameter, instead of two noise covariances and four initial conditions.

Critically Damped Filter

However, it is possible to define g, h and k as functions of a single parameter  . The
critically damped g-h-k filter represents the filter minimizing the discounted
least-squares error for a constantly-accelerating target, with gains defined by

g=1− 3

h=1.51−21−

k=0.5 1−3

80

where  is the discounting factor given by

0≤≤1 .

The discounted least-squares fit is a line fit which minimizes the sum of the
weighted errors with the weighting decreasing as the data get older; that is, the older
the error, the more it is discounted.

This way it is only necessary to tune up one discounting parameter and set three
initial conditions per parameter in the state vector.

5.2 Pose Estimate Refinement and Prediction

The state vector estimates determined with the pose estimation algorithm have an
associated uncertainty. When the temporal evolution of the pose estimates is overlaid
on the analysed image sequence this uncertainty is visible as a sort of trembling,
which relates directly to the jitter in the estimates. If this uncertainty was not
susceptible to corrupting future estimates, the jitter could be attenuated applying a
post processing low-pass filter on the estimates. However, each estimate starts from
an initial condition related with the previous estimate, so if an estimate is corrupted
(which is to say it has an intolerable uncertainty), future estimates are bound to be
corrupted too.

The Kalman filter offers the possibility of refining the estimates, and thus
reducing the uncertainty, in real-time with the determination of estimates rather than
on a post-processing level. Furthermore, it offers the possibility of including the
dynamics of the process in the filtering process, which will in part account for
disregarding estimates which disrespect those dynamics. By reducing the uncertainty
at each frame there is a stronger probability of obtaining a more accurate and
jitter-free estimate.

To avoid confusing entities, when dealing with the Kalman filter the estimates of
the pose estimation algorithm will be the measurements of the filter, while the refined
estimates are the outputs of the filter. The filter merely takes the present
measurements and the recent predictions and refines the measurements producing

refined estimates. This is done by simply replacing yn in the correction equations

81

(5.1), (5.2) and (5.3) with the estimated state vector q , yielding

̈xk=̈xk∣k−1
2 k
T2 qk−xk∣k−1 

̇xk=̇xk∣k−1
h
T qk−xk∣k−1

xk=xk∣k−1gqk−xk∣k−1 .

Besides the possibility of refining the estimates, a Kalman filter can also be used
to predict the next state vector, since it uses a model of the dynamics. A prediction
based on dynamics is likely to be closer to the pose in the next frame than the state
vector estimated with the pose estimation algorithm. This is important because the
closer an initial estimate of the algorithm is to the real pose in the image the better,
since the extracted data is more likely to refer exclusively to the regions of interest
and not to neighbour regions.

5.3 Chapter Outcome

This chapter shows a way of reducing uncertainty in the estimates provided by the
pose estimation algorithm. It also shows how to predict the pose in the next frame
using history. Both these aspects are achieved using the g-h-k Kalman filter, which is
a constant gain variation of the standard Kalman filter.

There are no graphics comparing the performance using and not using the Kalman
filter, basically because the estimates in one frame are related with the history of
estimates. It was considered not to be coherent to compare estimates of the same time
instant when the previous estimates are not the same, which inevitably affects the
initial conditions in the current frame. Besides, the Kalman filter is used more as a
safety measure against sudden errors or changes in the estimates, which can be
caused by a bad convergence in the pose estimation algorithm or a bad extraction of
features.

82

6 Results

To understand the capabilities of the tracking method, tests were performed in several
stages of development until the proposed method was finished. Three of those tests
were selected to integrate the results chapter. They portray tracking with synthetic
and real images, using the proposed method and an alternative one, with articulated
models of different complexities.

6.1 Proposed Method

i  i−1 a i−1 d i  i tip link point next prev. Notes
frame link finger

0 - - - - - - - 1, 6 - Base
1  a0 0 −/2 - 0 - 2 0 Aux.

2 0 a1 0 0 - 0 - 3 1 1st 1st middle

3 −/2 0 0  3 - 1 x 4 2 2nd

4 0 a3 0 4 - 1 x 5 3 3rd 2nd

5 0 a4 0 5 A5 1 x - 4 4th 3rd

6  a5 0 −/2 - 0 - 7 0 Aux.

7 0 a6 0 0 - 0 - 8 6 1st 1st index

8 −/2 0 0 8 - 1 x 9 7 2nd

9 0 a8 0  9 - 1 x 10 8 3rd 2nd

10 0 a9 0 10 A10 1 x - 9 4th 3rd

Table 6.1 - DH parameters and extra notes for an articulated model of a hand with two fingers (middle
and index), three DOF each. “tip” indicates the distance to the tip, “link” if there is a rigid body (1) or

not (0) attached to the frame, “point” the joint frame axis with which to align the body, “next” and
“prev.” the surrounding frames.

These results represent the performance of tracking a human hand using the proposed
method on a sequence of synthetic images. The choice of using synthetic images

83

instead of real images is simple: in synthetic images the real value of the joints is
known, so the performance of the method can be better evaluated. Also, it was
concluded that synthetic images portray reasonably enough what would happen with
real images, provided that the choices and assumptions made in the introduction
chapter are still considered.

Figure 6.1 - Result of using the proposed method on a sequence of synthetic images (grey
model on black background). The pose as estimated by the pose estimation algorithm is

represented by the blue lines (left column of images), which generally are covered by the
filtered estimates determined by the Kalman filter (red lines). The right column of images

features the outlines of the windowing functions, drawn as green polygons. The five lines of
images correspond to frames 1, 10, 20, 30 and 40 of an image sequence.

This example shows a hand with index and middle fingers, each with the three

84

DOF which allow the fingers to bend (flexion/extension) but without the additional
DOF which allows the fingers to perform the adduction/abduction movement. This
choice of removing that DOF is related with observability issues: from the point of
view of the camera, if that DOF exists, a certain image of the fingers can have more
than one solution. These multiple solutions are originated by the observability
problem itself, but also by uncertainty in the estimation process, which always makes
some minor mistakes over time. The hand model in this case is given by Table 6.1.

The movement of the fingers is performed on a plain parallel to the image plain,
but that has been tilted 45 degrees towards the camera (around a horizontal axis) to
show that tracking is still possible in such a case. The g-h-k filter has =0.85 .

Figure 6.2 - Plots of the filtered pose estimates (continuous lines) versus the true values
(dotted lines). The middle finger is represented by the top plot and the index finger by the

bottom plot. The higher the subscript number of the angle variable, the closer to the tip of the
finger it is.

85

5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

θ1

θ2

θ3

5 10 15 20 25 30 35 40
-40

-30

-20

-10

0

10

20

30

40

50

60

70

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

θ4

θ5

θ6

In the analysed image sequence, the index finger occludes the middle finger.
Particular instants of this image sequence can be seen in Figure 6.1, which also shows
the pose estimates and filter refinements, as well as the windowing functions. The
plots of the filtered estimates versus the ground-truth can be seen in Figure 6.2.

6.2 Alternative Method

These results represent the performance of tracking a human hand using the most
complex of the alternative methods (see Appendix D). This alternative method uses:

• Differentiation by convolution with Gaussian derivative;
• Compensated search space restriction;
• Rectilinearity restriction using iterative MWPLLS.

6.2.1 Real Images

This example shows a hand with index finger and thumb, each with three DOF. The
index finger has the three DOF which allow it to bend (flexion/extension) but doesn't
have the additional DOF which allows it to perform the adduction/abduction
movement. The thumb has three DOF instead of five, chosen in a way to only allow it
to perform the palmar adduction/abduction movement. The choice of removing some
DOF is related with observability issues, as discussed in the first set of results.
Another factor that contributed for using this kinematic model was the intent to focus
only on the study of grasping movements. The hand model in this case is the same as
in the second kinematic model example.

The movement of the fingers is performed on a plain parallel to the image plain.
The hand is static during the whole sequence and only the mentioned fingers move.
The hand is covered to allow a better tracking of the index and thumb. The g-h-k filter
has =0.85 .

In the analysed image sequence, the index finger and thumb start by performing
spreading and grasping movements and then perform independently of each other.
Particular instants of this image sequence can be seen in Figure 6.3, which also shows

86

the pose estimates and filter refinements. The plots of the filtered estimates can be
seen in Figure 6.4.

Figure 6.3 - Result of using the most complex of the alternative methods on a sequence of real
images. The hand is covered to allow a better tracking of the index and thumb. The pose as

estimated by the pose estimation algorithm is represented by the blue lines, which generally
are covered by the filtered estimates determined by the Kalman filter (red lines).

87

frame 1 frame 15 frame 30 frame 45 frame 60

frame 75 frame 90 frame 105 frame 120 frame 135

frame 150 frame 165 frame 180 frame 195 frame 210

frame 225 frame 240 frame 255 frame 270 frame 285

frame 300 frame 315 frame 330 frame 345 frame 360

frame 375 frame 390 frame 405 frame 420 frame 435

frame 450 frame 465 frame 480 frame 483

6.2.2 Synthetic Images

This example shows a complete model of a hand. The kinematic model admits a static
wrist but considers four DOF per finger and five DOF for the thumb. This choice of
DOF allows the fingers and thumb in the model to describe all of the movements
described in Figure 2.2. The hand model in this case is given by Table 6.2. The table
has been shortened because the parameters for the ring finger are similar to those of
the small finger and because the parameters for the index finger are similar to those
of the middle finger. The parameters are chosen so that all movements which convey
the idea of opening the hand or spreading the fingers are related with angles evolving
on a positive direction.

88

Figure 6.4 - Plots of the filtered pose estimates. The index finger is represented by the top
plot and the thumb by the bottom plot. The higher the subscript number of the angle

variable, the closer to the tip of the finger it is.

50 100 150 200 250 300 350 400 450

-80

-60

-40

-20

0

20

40

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

θ1

θ2

θ3

50 100 150 200 250 300 350 400 450
-40

-30

-20

-10

0

10

20

30

40

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

θ4

θ5

θ6

The movement of the fingers is performed on a plain parallel to the image plain,
but that has been tilted 45 degrees towards the camera (around a horizontal axis) to
show that tracking is still possible in such a case. The g-h-k filter has =0.85 .

i  i−1 a i−1 d i  i tip link point next prev. Notes
frame link finger

0 - - - - - - - 1, 6,
11, 16,

21

- Base

1 0 −∣a0∣ 0 /2 - 0 - 2 0 Aux.

2 0 a1 0 2 - 0 - 3 1 1st 1st little

3 /2 0 0  3 - 1 x 4 2 2nd

4 0 a3 0  4 - 1 x 5 3 3rd 2nd

5 0 a4 0  5 A5 1 x - 4 4th 3rd

... ring
11  ∣a10∣ 0 −/2 - 0 - 12 0 Aux.

12 0 a11 0 12 - 0 - 13 11 1st 1st middle

13 −/2 0 0 13 - 1 x 14 12 2nd

14 0 a13 0 14 - 1 x 15 13 3rd 2nd

15 0 a14 0 15 A15 1 x - 14 4th 3rd

... index
21 0 a20 0 0 - 0 - 22 0 Aux.

22 /2 0 0 22 - 0 - 23 21 1st 1st thumb

23 /2 0 0 23 - 1 x 24 22 2nd

24 −/2 a23 0 24 - 0 - 25 23 3rd 2nd

25 /2 0 0 25 - 1 x 26 24 4th

26 0 a25 0 26 A26 1 x - 25 5th 3rd

Table 6.2 - DH parameters and extra notes for an articulated model of a hand with four fingers and a
thumb, with all DOF in a total of 21. “tip” indicates the distance to the tip, “link” if there is a rigid body
(1) or not (0) attached to the frame, “point” the joint frame axis with which to align the body, “next” and

“prev.” the surrounding frames.

In the analysed image sequence, the thumb remains static. The remaining fingers
start by spreading away of each other. Then, while the little finger evolves to a
hyper-extended position, the index finger evolves to a flexed position, with the

89

remaining two fingers evolving to positions gradually between. Particular instants of
this image sequence can be seen in Figure 6.5, which also shows the pose estimates
and filter refinements. The plots of the filtered estimates versus the ground-truth can
be seen in Figure 6.6.

Figure 6.5 - Result of using the most complex of the alternative methods on a sequence of
synthetic images (grey model on black background). The pose as estimated by the pose

estimation algorithm is represented by the blue lines, which generally are covered by the
filtered estimates determined by the Kalman filter (red lines). The model used in tracking has

21 DOF: five for the thumb and four for each finger.

The Gauss-Newton algorithm introduced earlier cannot be used in this case due to
the complexity of the cost function and due to the extra DOF which have been
neglected in the previous examples. Instead, a more robust Gauss-Newton method is
used. This algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described in [28] and [29]. The major advantage for
the user is a faster and more accurate convergence towards the minimum; other
advantage is the user only needs to provide this algorithm with the cost function and
the Jacobian. For more details on this algorithm check [30].

90

frame 1 frame 10 frame 20

frame 30 frame 40 frame 50

frame 60

Figure 6.6 - Plots of the filtered pose estimates (continuous lines) versus the true values
(dotted lines). On the first four plots, the true value of the fourth DOF overlaps the true value
of the third DOF. On the bottom plot, the true value of the fifth DOF overlaps the true value
of the first DOF. The higher the subscript number of the angle variable, the closer to the tip

of the finger it is.

91

10 20 30 40 50 60
-15

-10

-5

0

5

10

15

20

25

30

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

Little finger

θ1

θ2

θ3

θ4

10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

Ring finger

θ5

θ6

θ7

θ8

10 20 30 40 50 60
-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

Middle finger

θ9

θ10

θ11

θ12

10 20 30 40 50 60

-50

-40

-30

-20

-10

0

10

20

30

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

Index finger

θ13

θ14

θ15

θ16

10 20 30 40 50 60
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

frame

jo
in

t
an

gl
e

[d
eg

re
es

]

Thumb

θ17

θ18

θ19

θ20

θ21

7 Conclusions and Future Work

The results show that the fingers are successfully tracked, although the estimates
present some noise over time. The discrepancies between the estimated angles and the
true angles are neglectable when the estimated model is displayed on the image. This
happens because the differences between real and estimated angles are compensated
along the finger, with the angle in the last articulation compensating the deviations in
the previous ones. However, there is still room for improvement.

The results obtained with the proposed method show it deals successfully with
occlusion, since both fingers are still tracked when one finger occludes the other.
However, care must be taken not to have the occluded and occluding fingers in similar
configurations, especially not near total occlusion. This interferes with the ability of
correctly matching the profile templates with the correct finger, since in these
situations it is harder to solve the matching ambiguity. The result bound to happen
when a finger totally or almost totally occludes another, is loss of tracking of the
occluded finger.

It is also known, due to the structure of the Jacobian, that there is some
redundancy when determining the angles. Generally, the articulations near the base
have more redundancy than those near the tips, due to the direct kinematics in the
model. This means that generally, the estimates of the joints near the base have a
higher confidence than those near the tips. This is perceptible in the plots since the
estimates of the joints near the base have less jitter and generally tend to deviate less
from the ground-truth.

Since the Jacobian introduces some redundancy in the determination of some joint
angles, this could be used to improve the estimation process. Specifically speaking,
each element in the vector of residuals could have an associated weight (or
contribution) to the total magnitude of the residual. This weight could be determined

93

by the level of occlusion of a link profile, where a more occluded profile would weight
less than a visible profile. Doing so would attribute more confidence to the data for
which more information is available. If there is not much data to retrieve from a
certain region, then it should not have so much importance in the state estimation.

Besides this weighting factors, it could also prove useful to compromise between
the angle estimates provided by the pose estimation algorithm and the angle
predictions provided by the Kalman filter. This compromise could be balanced by the
confidence a certain angle has in a certain time instant: if to determine the angle a
large portion of the finger is visible, then more confidence should be placed in the
estimate; on the other hand, if the angle was determined mainly due to redundancy,
then more importance should be given to the prediction.

The edge estimation process is very critical, since it provides information which is
used by the pose estimation algorithm. As such, it still needs to be improved and have
more robustness. Usually, edge estimation may start to loose accuracy when a
phalange is more than 50% occluded. The problem is in the lack of robustness of the
regression method, used to estimate the valley in the WSSD surface, when there are
occlusions.

The results obtained with the alternative method on a complete model of the hand
show that observation ambiguity is a problem. This problem tends to aggravate when
the joints and links configuration enables several poses to look the same on the image.
See for example the thumb estimates: the fact that the first two links have two DOF
each is enough to make the thumb estimates converge towards a situation which
doesn't correspond at all to the ground-truth. However, from the camera point of view
no problem is visible with the thumb estimates. Nevertheless, this may prove fatal in
other situations, since the estimation error is carried over time.

To deal with the observability problems it could prove useful to analyse additional
points of view of the object. For example, if there were two image sequences of the
object, where the additional sequence was filmed from a side view (aligned with the
horizontal axis of first camera, for example), that information could be enough to solve
the ambiguities caused by a single view. The image analysis would be carried out
independently in each image belonging to a different point of view. However, the
information provided by each analysis would be combined into a single vector of

94

residuals. The pose estimation algorithm would then focus on this vector.
The presented tracking methods are not fail proof. There can always be situations

where the estimated pose does not correspond to the one in the image, either because
tracking was already lost, because an estimate was misdetermined or because there
were observability errors carried over time which lead to an incompatible situation.
For this reason, it could prove useful to establish a measure of confidence for the
estimates, as a way of detecting or predicting situations where tracking is lost. The
loss of tracking is a problem because a local evaluation of the image is being made. A
possible way of detecting loss of tracking would be widening the scope of evaluation
and look at the image in a more general way.

In a general way, tracking works well on synthetic images. However, tracking
could be more robust. One possibility is to improve the image analysis algorithms,
such as the edge estimation ones, to be more robust in presence of occlusions. Also, it
still is necessary to test the proposed method with real images. The proposed method
is easier to use with synthetic images because the phalanges are easily modeled by pill
primitives. In real images however, this is not the case, and the polygons of the
windowing functions are much harder to model.

Temporal integration of the estimates is also an aspect to improve. In the presence
of occlusions, a bank of filters could be used to provide a series of predictions,
originating a multiple hypothesis tracking problem. Although this is more complex
than the single hypothesis method used, it could be useful to add robustness to the
overall method and help surpass the occlusion problem.

Some other aspects which could be explored include:

• Automatic initialization of the state vector. This could be done by
asking the user to place his/her hand in a certain region of the image
with a certain pose. If necessary, as sequence of images could be used to
add more robustness to this initialization;

• Estimation and update of the image profile templates over time. This
could be used to add robustness to the method when the phalanges are
seen from different points of view over time;

• Image segmentation and background extraction. To allow tracking in

95

the presence of complex backgrounds;
• Optimization of the code and real-time performance. To allow online

tracking instead of resorting to pre-recorded image sequences.

96

References

[1] J. M. Rehg, T. Kanade, "DigitEyes: Vision-Based Human Hand Tracking",
Technical Report CMU-CS-93-220, CMU, 1993.
http://citeseer.ist.psu.edu/rehg93digiteyes.html

[2] J. M. Rehg, T. Kanade, "Visual Tracking of Self-Occluding Articulated Objects",
In Proc. ICCV, Boston, MA., 1995. http://citeseer.ist.psu.edu/rehg95visual.html

[3] T. Cham, J. M. Rehg, "A Multiple Hypothesis Approach to Figure Tracking", In
Proc. Perceptual User Interfaces, pages 19-24, November 1998.
http://citeseer.ist.psu.edu/cham98multiple.html

[4] J. M. Rehg, "Motion Capture from Movies", In Proc. of Asian Conf. on Computer
Vision (ACCV ’00), vol. II, pages 1125-1131, Taipei, Taiwan, January 2000.
citeseer.ist.psu.edu/478848.html

[5] C. Sminchisescu, B. Triggs, "A Robust Multiple Hypothesis Approach to
Monocular Human Motion Tracking", Technical Report RR-4208, INRIA, 2001.
http://citeseer.ist.psu.edu/sminchisescu01robust.html

[6] Q. Delamarre, "Modelisation de la Main pour sa Localisation dans une Sequence
d’Images", Technical Report 0198, I.N.R.I.A., December 1996.
http://citeseer.ist.psu.edu/delamarre96modelisation.html

[7] Q. Delamarre, O. Faugeras, "3D Articulated Models and Multi-view Tracking
with Physical Forces", In Computer Vision and Image Understanding, Vol. 81,
No. 3, pp. 328-357, March 2001.

[8] V. Athitsos, S. Sclaroff, "3D Hand Pose Estimation by Finding Appearance-Based
Matches in a Large Database of Training Views", Technical Report BU-CS-TR-
2001-021, Boston University, 2001.
http://citeseer.ist.psu.edu/athitsos01hand.html

[9] V. Athitsos, S. Sclaroff, "An Appearance-Based Framework for 3D Hand Shape
Classification and Camera Viewpoint Estimation", In Proceedings of the lnt.
Conf. on Automatic Face & Gesture Recognition, pages 45-50, Washington, DC,
2002. http://citeseer.ist.psu.edu/athitsos01appearancebased.html

[10] H. Sidenbladh, M. J. Black, "Learning Image Statistics for Bayesian Tracking",
In Intl. Conf. on Computer Vision, 2001.
http://citeseer.ist.psu.edu/sidenbladh01learning.html

[11] S. Li, W. Hsu, Pung H.K., "Twins: A Practical Vision-Based 3D Mouse", In

97

Journal of Real-time Imaging, 1998. http://citeseer.ist.psu.edu/450424.html

[12] S. Li, W. Hsu, Pung H. K., "A Real-time Monocular Vision-based 3D Mouse
System", In 7th International Conference of Computer Analysis of Images and
Patterns (CAIP) , Sept 10-12, 1997, Kiel, Germany, pp. 448-455.
http://citeseer.ist.psu.edu/455518.html

[13] H. Ouhaddi, P. Horain, "Conception, ajustement et recalage d'un modele 3D
articule pour le suivi de la main dans des sequences d'images", Research Report
#980101-SIM, INT, Evry, France, 1998. http://www-eph.int-
evry.fr/~horain/Publications/RR98001-ouhaddi.pdf

[14] H. Ouhaddi, P. Horain, "Hand tracking by 3D model registration", In Proceedings
of the International Scientific Workshop on Virtual Reality and Prototyping,
June 3-4, 1999, Laval, France, pp. 51-59.
http://citeseer.ist.psu.edu/ouhaddi99hand.html

[15] N. Shimada, Y. Shirai, "3-D Hand Pose Estimation and Shape Model Refinement
from a Monocular Image Sequence", In Proc. of VSMM'96 in GIFU, pp.423-428,
1996. http://citeseer.ist.psu.edu/82627.html

[16] K. Nirei, H. Saito, M. Mochimaru, S. Ozawa, "Human Hand Tracking from
Binocular Image Sequences", In 22th Int'l Conf. on Industrial Electronics,
Control, and Instrumentation, pages 297-302, Taipei, August 1996.
http://citeseer.ist.psu.edu/nirei96human.html

[17] P. Fua, A. Gruen, N. D’Apuzzo, R. Plankers, "Markerless Full Body Shape and
Motion Capture from Video Sequences", In International Archives of
Photogrammetry and Remote Sensing, Vol. XXXIV, part 5, pp. 256-261.
September 2002, Corfu, Greece.
http://www.photogrammetry.ethz.ch/general/persons/AG_pub/corfu_isprs5_body.p
df

[18] R. Plankers, P. Fua, "Articulated Soft Objects for Multiview Shape and Motion
Capture", In IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, pp. 1182-1187, September 2003.
http://ieeexplore.ieee.org/iel5/34/27551/01227995.pdf

[19] John J. Craig, Introduction to Robotics, 2nd Edition, Addison Wesley, USA, 1989.

[20] C. Eaton, Joint range of motion, in E-Hand.com The Electronic Textbook of Hand
Surgery. http://www.e-hand.com/nor/nor002.htm

[21] M. W. Kadous, "GRASP: Recognising Australian Sign Language Using
Instrumented Gloves", Thesis, Univ. New South Wales, October 1995.
http://waleed.web.cse.unsw.edu.au/thesis.pdf ,
http://www.cse.unsw.edu.au/~waleed/thesis/node17.html

[22] M.A. Fischler, R.C. Bolles, "RANSAC random sampling concensus: A paradigm
for model fitting with applications to image analysis and automated
cartography", Communications of ACM, 26, pp. 381-395, 1981.

[23] J. E. Jackson, A User's Guide to Principal Components, John Wiley and Sons,

98

Inc. 1991, pp. 1-25.

[24] P. S. Maybeck, Stochastic models, estimation, and control - Volume 1, Chapter 1,
Academic Press, USA, 1979. Reproduced in "An Introduction to the Kalman
Filter", SIGGRAPH 2001, Course 8.
http://www.menem.com/~ilya/digital_library/control/welch-bishop-01.pdf

[25] G. Welch, G. Bishop, "An Introduction to the Kalman Filter", SIGGRAPH 2001,
Course 8. http://www.menem.com/~ilya/digital_library/control/welch-bishop-
01.pdf

[26] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems", In
Transactions of the ASME - Journal of Basic Engineering, pp. 35-45, March 1960.
Reproduced in "An Introduction to the Kalman Filter", SIGGRAPH 2001, Course
8. http://www.menem.com/~ilya/digital_library/control/welch-bishop-01.pdf

[27] E. Brookner, Tracking and Kalman Filtering Made Easy, Wiley-Interscience,
1998.

[28] T.F. Coleman, Y. Li, "An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds", in SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.

[29] T.F. Coleman, Y. Li, "On the Convergence of Reflective Newton Methods for
Large-Scale Nonlinear Minimization Subject to Bounds", in Mathematical
Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[30] MATLAB help, lsqnonlin, The MathWorks, Inc.
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/lsqnonlin.html

[31] C. Eaton, Hand Facts and Trivia, in E-Hand.com The Electronic Textbook of
Hand Surgery. http://www.e-hand.com/hw/facts.htm

[32] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), Qhull, University
of Minnesota. 1993. . http://www.geom.umn.edu/software/qhull/ ,
http://www.qhull.org/

[33] MATLAB help, reducem, The MathWorks, Inc.
http://www.mathworks.com/access/helpdesk/help/toolbox/map/reducem.html

[34] MATLAB help, Selecting a Renderer, The MathWorks, Inc.
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/chprin22.
html

[35] MATLAB help, Selecting a Renderer, The MathWorks, Inc.
http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/figure10.
html

99

8 Appendix A: Human Hand Facts

To understand how complete a human hand is from the conceptional point of view it is
worthy to point some relevant facts [31]. A human hand is a highly complex
mechanism containing:

• 29 major and minor bones (many people have a few more);
• 29 major joints;
• at least 123 named ligaments;
• 34 muscles which move the fingers and thumb:

• 17 in the palm of the hand;
• 18 in the forearm.

• 48 named nerves:
• 3 major nerves;
• 24 named sensory branches;
• 21 named sensory branches.

• 30 named arteries and nearly as many smaller named branches.

Fingers are never perfectly straight. Usually, the index, ring and small finger each
curve sideways slightly toward the middle finger, and the middle finger may curve
toward either side.

The thumb is controlled by 9 individual muscles, which are controlled by all 3
major hand nerves, and moves in such a complex fashion that there are 6 separate
descriptive terms just for particular directions of movement of one thumb joint, the
basal joint, at the base of the thumb.

Contrary to popular opinion, humans (homo sapiens) are not the only primates
possessing opposable thumbs. Chimpanzees and monkeys can oppose the thumb to the

101

index digit. What makes the human hand unique in the animal kingdom is the ability
of the small and ring fingers to rotate across the palm to meet the thumb, owing to a
unique flexibility of the carpometacarpal joints of these fingers, down in the middle of
the palm. This is referred to as "ulnar opposition" and adds unparalleled grip, grasp,
and torque capability to the human hand. This feature developed after the time of
Lucy, a direct human ancestor, who lived about 3.2 million years ago.

When one curls the fingers into a fist, the fingertips naturally group together side
by side. If the fingertips all bend together, they continue into the palm side by side.
However, the natural tendency is for each fingertip to aim for the same point at the
base of the thumb, which is obvious when touching each finger down to the base of the
palm. For this reason, if a hand problem (stiffness, swelling, etc.) prevents a finger
from meeting the side of the adjacent fingertip midway into making a fist, that finger
will tend to cross over and overlap the adjacent finger when making a fist.

The finger bones are straight on the back side, but curved on the palm side. When
one bends the fingers into a fist, the finger bones produce a shape similar to a circle in
a square, round on the inside, square on the outside.

When one makes a fist, the fingertips curve through a spiral, not a circle. This is
because the lengths of the finger bones are related in a way seen often in naturally
occurring spirals. These spirals in turn relate to a mathematical series of numbers
discovered by Fibonacci in 1202. In this series, each number is the sum of the previous
two numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21 and so on. The lengths of the finger bones
approximate the ratio of the Fibonacci numbers 2, 3, 5, and 8.

The muscles which power the fingers are strong enough for some people to climb
vertical surfaces supporting their entire weight at times by a few fingertips. The
muscles which accomplish this feat are stronger than one might imagine, for the
biomechanics of the hand require that the force generated by the muscles which bend
the fingertips must be at least four times the pressure which is produced at the
fingertips.

The fingers work by remote control. Of course, in one sense, all moving body parts
work by remote control, the control centre being the brain. However, the fingers are
special, because there are no muscles inside them. The muscles which bend the finger
joints are located in the palm and up in the mid forearm, and are connected to the

102

finger bones by tendons, which pull on and move the fingers like the strings of a
marionette.

103

9 Appendix B: Simulating Edge Points

The edge points had to be simulated in an early stage because the image processing
routines were not yet implemented. There are two types of edge points, one related to
the sides of the finger links and the other to the finger tips. The edge points for the
links are divided into groups of similar individuals, sharing properties like same link
and the same side of that link. These points are generated from a geometric model
with the wished configuration. When a silhouette point regarding the tip is needed,
the tip of the geometric model with the wished configuration is projected on camera
and used as the extracted tip feature.

This simulation follows a very simple procedure in order to generate the silhouette
points for the links. For ease of understanding and implementation the procedure is
described in Figure 9.1 (steps 1-4). This simulation also serves a second purpose, since
it is possible to test different scattering configurations for the points, which can then
be used to evaluate the performance of the line fitting algorithm.

The algebra behind this simulation is carried out as follows. A link ranging from

point p1
0 to point p2

0 is projected on the image frame using (2.3) to transform each of

these points. Hence, a point p i
0 on the base frame of the kinematic chain is projected

on point pi
C of the image frame with

pi
C = T0

C p i
0 , (9.1)

completing step 2 of the procedure.
The edge points are generated perpendicularly to the link in specific locations. The

intersections of the link with the perpendiculars are marks given by
M=p⋅sTP1 , (9.2)

where M is a 2×n matrix with n vectors of size 2×1 representing the location of
the marks in camera units, and is arranged as

105

M=[M 1
x ⋯ M n

x

M 1
y ⋯ M n

y] ; (9.3)

vector p is a 2×1 vector describing the orientation of the projected link and is
computed with

p= [p2
x− p1

x

p2
y− p1

y]
C

,

where the left superscript informs the points are in the image frame {C};
vector sT is a 1×n vector of normalized scaling factors describing the spread of the
marks within the line segment. In the case of an uniform spread of marks

sT=
1

n1
[1 2 ⋯ n] ;

finally, P1 is an offset matrix of size 2×n with n repetitions of the coordinates of

p1
C , hence being arranged as

P1=[p1
x ⋯ p1

x

p1
y ⋯ p1

y] .

x

y

x

y

x

y

x

y

x

y

1 2 3

456

project desired
link on camera

determine normal
vector and where
to generate points

generate points
and distinguish

the group

fit a line to
each group

determine
the axial line

Figure 9.1 - A six-step procedure describing how to generate silhouette points for the links in
the simulation of extracted data (1-4), how to determine the boundary lines (5) and the axial

line (6).

The normal vector describing the direction of the perpendiculars has unitary

106

magnitude and is computed with

v=[0 −1
1 0] p

∥p∥ , (9.4)

thus concluding step 3 of the procedure.
Points are generated to each side of the line segment with

S±=M±B , (9.5)
where the sum generates points on one side and the subtraction points on the other,
thus distinguishing the groups of points; the 2×n matrix B contains the offsets
from the marks to the simulated boundary points and is composed of n vectors of size
2×1 , each computed with  v , where  is a scalar representing the distance to the
segment. This parameter is constant because all boundary points of a group are
generated at the same distance of the segment. If each point had its deviation there

would be a  for each of them. Both S± and B are arranged similarly to M in (9.3).
In the end there will be as many pairs of S matrices as the number of finger links.

The generation of tip points was already described in the opening paragraph and is
easily derived from (9.1) leading to as many tip points as the amount of fingers.

107

10 Appendix C: Creation of Synthetic
Images

Synthetic images are used to study the performance of the feature extraction and state
estimation routines under a controlled scenario. In their simplest formulation the
synthetic images are binary images presenting a black background and a white
silhouette of the 3D model of the articulated object (the foreground). In a more
elaborate conception the 3D model is drawn with a range of shades of grey, conferring
it a more realistic look. The 3D model in the synthetic image should have some
morphologic resemblance with the articulated object obtained from a real case.

The forthcoming description grows around the idea of creating synthetic images of
one finger. The concept is easily expanded to more. A finger can be modelled by a
chain of cylinders toped with hemispheres, forming a shape resembling a pill.

Figure 10.1 - Wireframe representation of a 3D primitive resembling a pill.

The model which results from chaining these pills has a smoother appearance than
a model resulting from chaining cylinders.

109

Figure 10.2 - A model built with pill (right) has much smoother transitions than one built
with cylinders (left).

Building a pill is rather simple since it is only necessary to parameterize the
cylinder and hemispheres and connect them correctly. Each of these geometric
primitives is achieved with a patch graphic object, which is composed of one or more
polygons that may or may not be connected, originating the desired 3D configuration.
These primitives can then be rotated and displaced with the same spatial
transformations derived in the kinematic definition applied to the vertices of the
polygons.

The synthetic images are created projecting each of the polygons on the image
frame, which is easy since both polygons and camera projection matrix are known. In
practice patch objects are composed by an index of vertices and an index of faces. The
index of vertices has information about the 3D coordinates of all points in the patch,
while the index of faces defines which vertices compose each polygon. Again, when
projecting the polygons on the image only the index of vertices is affected by the
transformations, the index of faces remains unchanged.

Situations as addition of image noise and presence of an elaborate background are
not exclusive of neither type of image and can be used in any of them to further
determine the potential of the mentioned routines.

10.1 Binary Images

Binary images are the most basic way of representing a 3D object on camera. Apart
from each pixel assuming only one of two discrete values, zero for black and one for
white, binary images allow some simplifications and considerations to be made when

110

projecting an object on the image frame. They also provide strong contrast between
background and foreground.

Each of the three phalanges of the model is represented by a pill, which is a convex
object in 3D space. A convex object in 3D space when projected in a 2D space
originates a convex surface. If all vertices are projected on camera there will be a cloud
of points, some outlining the boundary of the projection and some filling it. To avoid
the time consuming task of painting each projected polygon on the image, and the
redundancy of painting over and over again the pixels which happen to match more
than one polygon, a simplification must be made.

Figure 10.3 - Cloud of points of a finger with three phalanges modelled by pill primitives.

Even though it has an excess of points the projected surface is convex, hence the
smallest polygon which can contain the region is still convex, and is called a convex
hull. So if the convex hull of the cloud of points is computed, the resulting polygon is
formed by all peripheral points of that shape, and still preserves the same silhouette.
However, the number of vertices to use is significantly reduced and there is no more
need to use the index of faces since there is only one polygon. The convex hull routine
used is based on [32].

111

Figure 10.4 - Convex hulls of each of the projected cloud of points.

By now there is a huge benefit in using the convex hull points to paint the polygon
on the image. However, it is likely there are still some redundant points in the
polygon, so it could prove a good thing getting rid of them too. This is achieved by a
method used in land mapping known as Douglas-Peucker line simplification
algorithm. This method recursively subdivides a polygon until a run of points can be
replaced by a straight line segment, with no point in that run deviating from the
straight line by more than the tolerance. The tolerance is computed automatically by
the algorithm with a value corresponding to A/250×N  , where A is the sum of
arclengths of the polygon and N the number of points used to describe the polygon.
For more details check [33].

Figure 10.5 - Reduced versions of the convex hulls.

This tolerance is usually small enough to make the resulting reduced polygon
produce the same image counterpart as the longer polygon would. However, the image
will not be painted just yet since the reduced polygon also allows faster polygon
Boolean operations, because there are less points involved. If all three polygons of a

112

finger model are projected and have their convex hull computed and reduced, the three
reduced polygons can be combined in a single polygon, generally not convex, leading to
painting the wished pixels only once, instead of painting them twice where the pills
projections overlap. This may not seem a great improvement, but when there is more
than a finger and an image sequence to create, all time reductions count.

Figure 10.6 - Polygon resulting from merging three reduced convex hulls representing the
finger phalanges.

The function used for registering the polygon to the image is designed to select a
polygonal region of interest within an image and return a binary image that can be
used as a mask for masked filtering. Since the goal is to create a binary image
presenting zeros outside the region of interest and ones inside, it suffices to supply
this function with a dummy image (the same size as the intended image) and the
coordinates of the polygon points. The resulting mask is the painted binary image.

Figure 10.7 - Image resulting from painting a white merged polygon on a black background.
The y-axis of the image frame is oriented downwards instead of upwards as with the plots,

leading to a vertically flipped version of those plots.

113

10.2 Shaded Images

Binary images are useful for the high contrast they provide between foreground (the
object) and background, and can be used to represent one or more fingers as to test the
aforementioned performances. In spite of this, their binary nature represents a
limitation and a problem whenever the different fingers overlap each other or
themselves. This phenomenon is called occlusion, and is divided into mutual and self
occlusion, respectively. When occlusion occurs in binary images the boundaries of the
fingers in the occluded regions are hard to identify.

Figure 10.8 - In binary images (left) it is hard to locate the edges of the overlapping fingers
whereas in shaded images (right) this is much easier and the occluding finger is easily

identified.

Other limitation which arises with binary images is the fact sometimes they do not
embody what would happen in a real case, where contrast is generally much lower and
there is a range of intensity values for the foreground rather than just one.

These two situations, along with the fact it is hard to determine what is going
wrong when the analysis of real images has problems, trigger the need of having more
complex images than binary ones, as a means of emulating a real case in a controlled
environment. Thus, the concept of image and 3D model simulator is brought forth
with the creation of shaded images.

Creation of images where the model is represented with more fidelity, namely
shape relief and illumination, are not so easy to obtain. The representation of 3D
objects on a 2D image with preservation of relief and illumination are delegated on an
entity called renderer. A renderer [19][34][35] is software and/or hardware that
processes graphics data (such as vertex coordinates) to display, print, or export a

114

figure. Several modes of displaying (or rendering) faceted surface models exist,
differing in complexity, accuracy, represented features, and overall look. To
understand the choice made it is important to know the most commonly available
techniques and their pros and cons.

Figure 10.9 - Different rendering and shading techniques (from left to right): wireframe, back

face elimination, Z-buffer with flat shading, Z-buffer with Gouraud shading.

The simplest rendering technique is wireframe, in which each edge of the object is
drawn using a perspective transformation, such as the camera projection matrix. This
representation can be improved using a technique called back face elimination, which
removes the hidden lines of individual convex shapes, and yields an image which is
somewhat more easily understood by the viewer. Back face elimination is much
simpler than the complete hidden line elimination problem. One method of achieving
hidden line elimination is to fill the facets to create a shaded image. By drawing facets
farthest from the viewer first, near facets tend to cover far facets, producing a hidden
line eliminated image. Perfect rendering of shaded images requires a Z-buffer
technique implemented either in software or hardware to do depth sorting on a pixel
by pixel basis. This method can be further refined using a technique such as Gouraud

115

shading to smooth over the edges that exist between facets to make the rendered
surface appear smooth.

To control the shading intensity of the facets it is necessary to resort to a
technique called lighting (or shading) to add realism to the graphical scene. It does
this by simulating the highlights and dark areas that occur on objects under natural
lighting (e.g. the directional light that comes from the sun). It basically computes how
the rays of light from a light source are reflected by the object surface towards the
camera.

In short, to represent the object in a realistic manner it is necessary to use
rendering techniques to display it and include lighting techniques to control the
shading intensity of the facets. This narrows down the choice to back face elimination
renderers such as Z-buffer or OpenGL and shading methods such as flat, Gouraud or
Phong.

Regarding the rendering methods, Z-buffering is the process of determining how to
render each pixel by drawing only the front-most object, as opposed to drawing all
objects back to front, redrawing objects that obscure those behind. The pixel data is
buffered and then blitted to the screen all at once. OpenGL is available on many
computer systems. It is generally faster than Z-buffer and in some cases enables the
use of the system's graphics hardware (which results in significant speed increase).

As for the shading methods, flat lighting produces uniform colour across each of
the faces of the object and should be used to view faceted objects. Gouraud lighting
calculates the colours at the vertices and then interpolates colours across the faces and
should be used to view curved surfaces. Phong lighting interpolates the vertex
normals across each face and calculates the reflectance at each pixel. It should also be
used to view curved surfaces since Phong lighting generally produces better results
than Gouraud lighting, although it takes longer to render.

The ideal thing would be to have access to the rendering and shading routines and
directly create the desired image. Unfortunately, in this case, these routines are not
directly accessible by the user and do not provide that output, so it is necessary to find
a way around the problem. Prior to presenting the solution it is important to
understand how graphic objects are displayed in this case.

Figure objects are the individual windows on the screen where graphical output is

116

supplied. These figure objects have a hierarchy of other objects which can be docked to
them, namely the axes object, which is used to dock and display graphic objects such
as images, lights, lines, patches, rectangles, surfaces and text. Displaying patches on
top of an image does not affect the image data, but the fact it is possible to do this
display is the first step to solve the problem.

The solution takes shape as follows: the background image is displayed on the
image object attached to the axes object, then vertices of the model are transformed
with the camera projection matrix and the transformed patch objects are displayed
and docked to the same axes object. This information is visible on screen as the
desired image, but it still is a group of layered objects: background image behind and
patch graphics on top. The only step left is to create a new image with this
information merged together. This is done with a supplied screen capture application,
which allows the screen region of interest to be converted to a discrete image. This is
actually suggested as the only way of converting data on a figure object to a discrete
image. Although not as refined a solution as working directly with the rendering and
shading routines, it still is considered a valid alternative since these images are
created offline (before being used) and not online (at the same time they're needed).

Patch objects are automatically displayed, the user only has to supply the index of
vertices, the index of faces and optionally choose the rendering and shading methods.
To confer more realism to the scene it is possible to set the reflectance properties of
the surface material and place the light sources, the renderer and shader take care of
displaying it properly.

As for the projection matrix, it cannot be a 3×4 matrix, it has to be 4×4 to
preserve the depth coordinate so the renderer can perform the depth sort. Remember
this is only a problem because in the present case it is not possible to render a 3D
object in a 3D space directly to an image. This matrix is achieved expanding the first
one with an extra row. If the 3×4 matrix is given by

P=[r11 r12 r13 p1

r21 r22 r23 p2

0 0 0 1] ,

then the 4×4 matrix is given by

117

P=[r11 r12 r13 p1

r21 r 22 r 23 p2

r 31 r 32 r 33 p3

0 0 0 1
] .

For example, if the y-axis of the image frame and frame {0} are symmetric, with
coincident x and z axes, since frame {0} respects X ×Y= Z , the image frame would
have the anti-symmetric definition X ×Y=−Z , and thus

P=[1 0 0 0
0 −1 0 0
0 0 0 1] and P=[1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1] .

Even in a simple example like this, it is important to mind the scaling factors.
Those along the x and y axes can be set by camera calibration, while the one along the
z-axis can be extrapolated with the help of the other two avoiding as much as possible
to skew the resulting projected model along the image z-axis.

Figure 10.10 - Image views and respective side views of a 3D object transformed to the
camera frame. When the depth scaling coefficient is correctly chosen (top) the fingers section

is circular. On the other hand, if the depth coefficient is greater (left) or smaller (right) than it
should, the object appears skewed along the camera z-axis. Notice how the brightness of the

object in the image view is affected when the scaling factor is not appropriate.

The scaling factors are important for computing light reflection on the faces of the
projected model. The shading process confers different intensities to the faces if the
object is too thin or too large along the z-axis.

118

In short, a shaded image is currently produced by capturing a region of interest on
screen which displays the background image and a rendered patch graphic with
transformed coordinates.

Figure 10.11 - Image resulting from rendering a model of a finger over a black background.

This kind of images is also useful for animation purposes, for example, to overlay a
rendered 3D model to an analysed sequence of real images, in order to stress the
coincidence of estimated pose and real pose.

119

11 Appendix D: Feature Search
Alternatives

The following sections are a set of image processing alternatives to the one presented
in section 4.3. One thing in common to all methods is they all use image profiles
sampled perpendicularly to a predicted model pose. However, the following methods
explore image profile derivatives rather than profiles themselves.

The first method is the most basic and follows the principles of [1], while the
second one improves it resorting to knowledge of width in the form of search
restriction and template matching masks. The third method improves the second one
exploring properties in the template matching measures of several profiles of the same
link. Hence, each method includes the previous one.

11.1 Differentiation of Image Profiles

The extraction of features presented at this stage assumes it is possible to correctly
retrieve the necessary data. Hence, it is assumed this is a situation where there is no
self or mutual occlusion of fingers, the illumination is done in a way not to cast
shadows on the fingers and the background is homogeneous and provides strong
contrast with the object.

This method is motivated by the idea that differentiation of an image profile
potentially leads to peaks near the edges of the finger phalanges. This means if the
derivative of an image profile is computed, then it is expected to present a positive and
a negative peak where the edges are located. Identification of these peaks leads to
finding the link edges location for that profile.

The are two variants to the process of differentiation which are presented below.

121

Figure 11.1 - The first alternative method for feature search finds edge points by locating
intensity peaks in the derivatives of the image profiles.

11.1.1Simple Discrete Differentiation

This way of computing the derivative is based on a particularly simple concept: after

retrieving a discrete image slice Ik  of size m , the derivative D Ik  of the profile is
computed using

D Ik =I k1−I k , (11.1)
where k∈{1, 2,, m−1} is an element in the array. A derivative computed this way
has size m−1 and is not robust to image noise. It suffices, however, for the purpose of
demonstration.

In the case of a link slice the peaks of the derivative are given by maxDI and
minD I , which correspond respectively to positions

k max=argmax
k
D Ik  and k min =argmin

k
DI k 

in the image derivative. Due to (11.1) the corresponding positions in the image slice
are dubious because position k must be an integer. The best would be to relate k max

and k min in the derivative with
k max=[k maxk max1]/2 and k min =[k mink min 1]/2

in the slice, however this would lead to a position in image coordinates which had not

been sampled. Hence, the positions in the image slice are respectively set to k max=k max

and k min =k min and this shall be assumed as the default procedure.

The coordinates of the corresponding points in the image frame are stored in a slot
of the respective group, materialized by a column of matrix S which has size 2×n
as in (9.5).

In the case of a tip slice, the peak of the derivative is found with max∣D I∣ , where

k max=argmax
k

∣DI k ∣ , and the coordinates of the corresponding point in the image

frame are stored to form the tip feature, which is stored in a vector containing the x
and y image coordinates.

122

Differentiation max(.)
min(.)

Sampled Image
Profiles Edge Points

11.1.2Differentiation by Convolution with Gaussian Derivative

This way of computing the derivative resorts to a concept which is widely known in
image processing and has the purpose of yielding derivatives without amplifying
image noise.

The derivative of the image profile obtained with the differentiation method
described in equation (11.1) amplifies image noise which is present in images obtained
with a camera. In a situation where an image profile I is affected by noise n , the
measured value is a noisy version of I , given by

In k =Ik nk  , (11.2)
where k represents an element in the array.

If nk  is a random variable with normal distribution, then it is described by a
mean and a variance, which are respectively

E [nk ]=n

VAR [nk ]=E[nk 2]−n
2=n

2 .

As for the derivative D n of the noisy image profile, its expression is obtained from
(11.1), resulting in

Dn k =In k1−In k = Ik1nk1−I k nk 
=D Ik nk1−n k  .

The noise level nD k  of D n k  is characterized by two adjacent image noise
terms, yielding

nD k =nk1−nk  .
This new random variable is characterized by a normal distribution with

parameters
E[nDk ]=nD

VAR[nDk ]= nD

2 .

For convenience of manipulation, the random variables nd k  , nk1 and
−nk  are respectively replaced by Z , X and Y , leading to Z= XY . This more
general representation of variables is useful for algebraic manipulation. Since X and
Y are not necessarily independent:

123

E [Z]=E [XY]= x y= z

VAR [Z]=E [Z2]−E [Z]2=E[X 22XY Y 2]−x
22x y y

2
=E[X 2− x

2]E[Y 2− y
2]2E [XY−x y]

=x
2 y

22E [XY−x y]

.

If X and Y are independent then E [XY]=E [X]E [Y]=x y , so the last term of the
variance disappears. Returning to the old set of random variables, this means noise in
the derivative is characterized by

E [nDk ]=n −n=0

VAR [nDk ]=n
2 n

2 =2n
2 ,

assuming noise in a pixel is independent from noise in other.
So it is clear the variance of the derivative of the noisy image profile is greater

than the variance of the noisy image profile, hence it is demonstrated that the
derivative amplifies noise (the bigger the variance, the bigger the noise amplitude).

Computing the derivative with (11.1) is equivalent to perform the convolution of
the image profile by a step mask, as results from

D Ik =I k ∗U k  ,

where U=[1 −1]T is the step mask and the convolution of two discrete 1D signals s1

and s 2 is defined by

s1 k∗s 2k =wk =∑
j
s1 js 2k1− j  .

Algebraically, convolution is the same operation as multiplying the polynomials

whose coefficients are the elements of s1 and s 2 . Conceptually it can be thought of as

if the flipped version of s 2 slided across s1 and their windowed product was computed

each time. The sum is over all values of j which lead to legal subscripts for s1  j  and
s 2k1− j  . If m is the length of s1 and n the length of s 2 , then the sum is carried

out for j∈{max1,k1−n ,⋯, mink ,m } .
It is now clear how the simple process of differentiation increases the noise level

and how it can be represented by a convolution. This parallelism with convolution
helps understanding the upcoming solution to the noise increase problem.

Thinking of the mask as a sliding signal it is quite immediate to think it would
help to have a mask which accounted for a set of adjacent pixels instead of just two of
them. This way each derivative point is computed as a smooth differentiation, or in

124

other words, a weighted differentiation of a set of adjacent pixels. Usually the
derivative using this variant can be expressed by

D n k =c1I n k1−I n k−1c2In k2−In k−2⋯ ,

which means the noise component is given by
nDk =c1nk1−nk−1c2 nk2−nk−2⋯ ,

hence its variance is

VAR[nDk ]=c1
2 2n

2c2
2 2 n

2⋯=c1
2c2

2⋯2n
2 .

The c i are multiplicative factors ruled by

∑
i

ci=1

0ci1, ci⊂ℝ ,∀ i
.

The convolution needs to be computed strictly within the scope of s1 , so when a

part of the sliding mask s 2 falls outside these boundaries, the missing values of s1 are

replaced with the value s1 has at the end closest to that boundary.
In image processing it is known such a mask can be the derivative of a Gaussian

function, where the c i are small near and far from the centre of the convolution mask
and assume greater values in between. These coefficients are obtained with

c i=
d
dk

N k=i∣0, ,

where Nk∣0, is the normal function given by

Nk∣0,=
1

2
e

− k2

22 .

The result of convolving a signal with the derivative of a Gaussian is a smooth
derivative of the signal: the slower evolving character of the derivative is preserved
while the faster is attenuated.

11.2 Width Dependent Search Restriction and Template Matching

The process of extracting boundary points from the image is adequate but rather weak
in terms of robustness to image noise, misplacement of trackers, low amplitude of the
peaks in the derivative of the image profiles and low curvature in the vicinity of those
peaks. This lack of robustness leads to errors determining the edge points, which then

125

leads to loss of tracking, generally revealed in the form of an estimated pose which
does not correspond either partially or globally to the analysed image.

From the previously introduced differentiation methods the one which is more
robust to image noise is differentiation by convolution with a Gaussian derivative,
thus from this point on this will be the method used when referring to differentiation
and derivatives of image profiles.

One way to improve the previously presented edge extraction method is to realize
the knowledge of length, position and orientation of the links of the articulated model
is being used as a restriction for local search in the image. However, the retrieval of
contour points does not use any knowledge of the geometric model, which is why
adjacent slices of the same link are still allowed to present contour points which seem
to be independent or unaligned with each other, whereas they should present some
kind of continuity along the edges and should be all similarly distant from their
counterparts.

Considering the width of the finger links to be known, which makes sense since
their length is already assumed to be known, it can be integrated in the algorithm in
two ways, both of which assume the width of a finger along a slice is likely to remain
the same between image frames:

1. Each finger slice has its own associated width;
2. Finger slices belonging to the same link have the same associated

width.

The first option is quite basic and deals with each slice independently, while the
second one intends to add more consistency between results of the same frame. The
difference between these two options is more evident when the width of the links is
being estimated rather than being provided beforehand.

This knowledge of width can be used in two ways: one which merely restricts the
search space, regardless of trackers misplacement, and other which also restricts the
search space but tries to compensate for misplacements first.

126

Figure 11.2 - The second alternative method for feature search improves the first one by
resorting to the phalanx width to help restrict the peak search space. The usage of template

matching is optional.

11.2.1Basic Search Space Restriction

In this case the search space for peak search in an image sample is restricted to the
vicinity of where the edge of the link is thought to be, thus avoiding to choose points
which lay too far from their corresponding edge.

Given an image sample of size n with an associated finger width of d units, the
predicted edges location is given by c±d /2 , where c=n1/2 is the centre of the
sample. If each search space window has width  , the peak search is performed
within the windows defined by c±d /2±/2 , with the window limits rounded
towards the integer nearest to the window centre. The window limits are only rounded
in the end to avoid propagation of rounding errors in the intermediate computations.

11.2.2Compensated Search Space Restriction

Basic search space restriction tries to improve unrestricted peak determination by
limiting the search space. However, it may prove insufficient if the link trackers have
been misplaced or if the finger in the image described a larger movement, because
once the search space is restricted the allowable amount of movement between movie
frames is also seriously affected. This is why it is of the uttermost importance to find a
solution which tagged with this one will not compromise the range of movement so
seriously.

The proposed complementary solution also uses the knowledge of width of the
finger links, but this time the purpose is to compensate the misdetermination of the
restricted search space so it no longer lies where the edges are thought to be but
instead where they are more likely to be located.

127

Sampled Image
Profiles Edge Points

Widths

Template
Maker

Template
Matching

Search
Restriction

Differentiation max(.)
min(.)

This is achieved by a two part process where the first part compensates the
misplacement of the trackers by adjusting the centre of the image sample via
correlation, and the second part restricts the search space as in basic search space
restriction.

The operation called correlation is closely related to convolution. In correlation, the
value of an output pixel is also computed as a weighted sum of neighbouring pixels.
The difference is that the matrix of weights, in this case called the correlation kernel,
is not flipped during the computation, hence the correlation of two discrete 1D signals
s1 and s 2 is defined by

Rs1 s 2
k =∑

j
s1  j s2  j1−k  .

Correlation can be used to locate features within an image by a concept generally
known as template matching, where the occurrences of a small signal (the template)
are located in a larger signal (the image). This concept also applies to 1D signals: in
this case the measured signal is the derivative of the image sample and the template
is a synthetic signal, the same size as the derivative, with a positive and a negative
peak equally distant of the centre and separated by the associated finger width. The
result of this operation is a correlation curve which is stored in a vector, as happened
with convolution.

This method is also useful when one of the peaks in the derivative is well defined
and narrow but the other is not. By correlating the derivative with an ideal template,
there is a stronger probability for the strong peak in the derivative to be aligned with
one of the peaks of the template. When the search space is restricted the strong peak
is clearly defined, while the determination of the weaker and wider peak is bound to
be more correct due to the use of correlation and search restriction.

The fact that one peak in the derivative stands out more than the other is usually
related with an illumination which casts shadows under the fingers and lights the
upper parts.

11.3 Rectilinearity Restriction in Correlation Surface

Using width in the preceding reinforcement is a way of avoiding misdetermining the
locations of the edge points. The use of template matching in the derivative also

128

compensates for minor misplacement of link trackers and adds some robustness when
one of the peaks in the derivative is not well defined as a consequence of a non frontal
illumination of the object in the image.

As a consequence of the advantages of using knowledge of width, from this point
on when referring to use of knowledge of width or search space restriction the method
used is compensated search space restriction using one associated width per link.

This new improvement builds from the need of having aligned edge points of the
same link, rather than scattered ones as resulting from determination of peaks in the
image profile derivatives. It is also motivated by realizing that the surface formed by
joining correlation curves of the same link side-by-side generally presents a rectilineal
crest crossing them, which may be explored to yield aligned edge points.

The process called rectilinearity restriction has this name for more than a reason:
a finger link can generally be considered a rectilineal segment, but the correlation
surface also presents a rectilineal crest, not to mention the fact the edge points should
be aligned. However, this method could be modified and still be used if the tracked
segment was curved rather than rectilineal. For that matter it would suffice to attend
to the correlation surface, for it would still present the rectilineal crest, because it is
related with the offset of the template centre perpendicularly to the projected model
and not to the curvature of the object.

Hence, the purpose of this method is to evaluate the correlation surface and
determine the rectilineal crest. Then, through a parameterization of the curvature of
the object, which in this case is a simple line segment, the estimated edge points are
estimated compliantly with the collinearity constraint.

There were devised three ways of fitting a line to the crest of the correlation
surface, each evolving chronologically as the limitations of the previous one were
perceived, with names based on the underlying algorithm:

• Partial linear least squares (PLLS) of correlation maxima;
• Modified weighted PLLS (MWPLLS);
• Iterative MWPLLS (iMWPLLS);

The common part of these methods, the correlation surface, is achieved by flanking

129

adjacent correlation curves of a link. This means in a link with m associated
correlation curves, each described by a vector of size n , the resulting correlation
surface is described by a matrix of size n×m , where the vectors appear in the same
order as their link samples. All these methods were devised before the iterative
method in 4.3.2.

After a line is adjusted to the surface, the phalanx width is used to estimate the
location of the contour points as happens in 4.3.2.

Figure 11.3 - The third alternative method for feature search improves the second one by
estimating the edge points instead of directly measuring them. Peak search is no longer done,

template matching is mandatory and rectilinearity restriction in the correlation surface is
used together with the phalanx width to generate the positions of the estimated edge points.

11.3.1Partial Linear Least Squares (PLLS)

A simple way of determining the correlation surface crest is to find the maximum of
each correlation curve and then use them in a regression model.

Given a set of m correlation curves Cik  of size n each, their maxima are

computed with maxCi  , which corresponds to positions given by
m i=argmax

k
Cik  ,

where i∈{1,⋯,m} and k∈{1,⋯, n } .
The fact each maxima is computed in a 1D space and the correlation surface is a

3D space should not cause confusion. The regression is computed in a 2D space, which
can be thought as if the position of each maxima was transformed in a set of two
coordinates, one given by position itself and other by the position of the correlation
curve in the correlation surface. This means curve i with maximum on m i originates

coordinates x i , y i=i , m i which will be used in regression.
The regression is given by the solution to a partial linear least squares problem,

130

Sampled Image
Profiles

Estimated
Edge PointsWidths

Template
Maker

Template
Matching

Rectilinearity
Restriction

Differentiation

Edge Points
Generator

which is linear because the regression model is a line and partial because the error to
minimize is only computed along the y-axis. In the regression model, object x i will

have a measured and a fitted occurrence, respectively represented by yi and yi . The

partial errors are measured with e i= yi−y i , which represents the vertical distance
between measured data and the estimated regression model. The purpose of
regression is to minimize the squared sum of all these distances, given by

E=∑
i=1

m

e i
2=∑

i=1

m

 y i−y i
2 .

On the other hand, the linear model is a parameterization of the line, and is
written assuming the measured data can be modelled by

y=c0c1 x .
Substituting the model equation in the sum equation yields

E=∑
i=1

m

y i−c0c1 x i
2

,

 where c1 and c0 are the coefficients to be found, respectively representing the slope
and the offset along the y-axis of the adjusted line.

To minimize the fitting error, E must be differentiated with respect to each
coefficient and the result set to equal zero, leading to

∂ E
∂c1

=−2∑
i=1

m

x i yi−c0c1 x i =0 and ∂ E
∂c0

=−2∑
i=1

m

y i−c0c1 x i =0 ,

which can then be rewritten as
c0∑ x ic1∑ x i

2=∑ x i yi and m c0c1∑ x i=∑ y i .

Further rewriting these two equations, now in matrix-vector notation, results in

[m ∑ x i

∑ x i ∑ x i
2]

R

[c0

c1]
c

=[∑ y i

∑ x i y i
]

r

.

The coefficients can then be determined solving c=R−1r . The estimated data is

thus given by yi=c1 x ic0 , with an associated error of e i= yi−y i .
This method depends of a good determination of the maxima in order to properly

adjust a line to the crest. If there are spurious maxima points along the correlation
curves they are chosen over others if they have greater magnitude. It is known that
PLLS is highly influenced by all data, including points which clearly do not belong to

131

the set, the outliers. The farther away an outlier is located the more it affects
regression, inducing changes in offset and skew of the fitted line.

This regression was not used by itself due to these limitations, but is presented as
a basis for better understanding the forecoming methods and the rectilinearity
restriction used in the SSD surface of the proposed method.

11.3.2Modified Weighted PLLS (MWPLLS)

In order to avoid dependency on correct maxima determination and ponder the fit with
more than a candidate per correlation curve, it is necessary to devise a variation of the
PLLS method. This variation considers more important for regression those peaks
which are well defined in the vicinity of their maximum, and at the same time
neglects the influence of sporadic peaks (with high magnitude and narrow base).

The motivation is that when facing two peaks with the same amplitude but where
one is narrower than the other, the narrow peak should be considered a spurious
influence while the wider peak should provide the bulk of contributions for the
regression. Furthermore, if the narrow peak is in fact spurious, it is unlikely to be
present in the adjacent correlation curves, hence the regression is more influenced by
the wider peaks.

To do this, all points of all correlation curves give their contribution. However, this
contribution must have some criterion responsible for giving more importance to some
points than to others. The formalization occurs by establishing a cost function where
the error (in each curve) is a sum of errors between each point and the estimate, with
a cost associated to each error as a way of materializing the criterion.

The value of the costs is a critical aspect to consider and was chosen based on a
regional evaluation of the correlation curve rather than a local one: a region with more
interest should be associated with a greater cost, so a mistake in the regression is
more penalized.

The definition of the MWPLLS follows a deduction analogous to the PLLS case,
still considering a cost function defined by

E=∑
i=1

m

e i
2

but with the novelty of each partial error being given by

132

e i=∑
j =1

m

w j i y j i−y i=∑w j i y j i−c0c1 x i=∑w j i y j i−∑w j i c0c1 x i ,

where w j i is the cost of an error associated with element j of curve i , and y j i is the
corresponding measured value.

Differentiating E with respect to the coefficients and setting the result equal to
zero yields

∂ E
∂ c

=2∑ ei

∂ei

∂ c
=0 ,

where the partial derivatives of the partial error are given by
∂ei

∂c0

=−∑ w j i and
∂ei

∂c1

=−∑ w j i x i .

For ease of representation and further deduction these results are condensed as
∂ei

∂c
=−∑ w j i[1

x i] ,

which means the partial derivatives of the total error are given by

∂ E
∂c

=−2∑
i e i∑

j
w j i[1

x i]
=−2∑

i {∑j

w j i y j i−∑
j

w j ic0c1 x i∑j

w j i[1
x i]}=0

.

Manipulation of the bottom expression then leads to

∑
i ∑j

w j i y j i∑
j

w j i[1
x i]=∑

i ∑j
w j i c0c1 x i∑

j
w j i[1

x i] ,

which can be rewritten as

∑
i W i[1

x i]=∑
i ∑j

w j i
2[1 x i

x i x i
2][c0

c1] ,

considering
W i=∑

j
w j i y j i∑

j
w j i

and noticing

c0c1 x i=[1 x i][c0

c1
] .

It could prove relevant to mention there are scalar terms involved, namely

∑
j

w j i y j i and ∑
j

w j i ,

133

which then originate other scalar terms, which are

∑
j

w j i y j i∑
j

w j i and ∑j
w j i

2

.

The coefficients are then determined with

[c0

c1]
c

={∑i ∑j

w j i
2[1 x i

x i x i
2]}

−1


R−1

∑
i

W i[1
x i]

r

.

Baring in mind the mentioned choices, it was verified the curve itself already
provides information about cost quantification, each cost being related with the
amplitude of the curve in the affected point. The weighting is considered a modified
version because it relates to the amplitude of a surface in a 3D space rather than a
distance measured in a 2D plain, so it is included in the name of the method to
remember that particularity.

The presence of a ponderation is visible in the first sum of W i . As a consequence of
this term the regression will be strongly conditioned to the centre of mass of each
correlation curve, since there are no other terms to cancel this effect. This may
represent an advantage in some cases but can also be a problem if the correlation
surface presents concurrent crests, even if with different amplitudes. In this case the
regression is likely to be on the valley between crests and biased towards the crest
with a larger volume underneath (the “heaviest” one). The result will also be biased if
there is only a crest but that crest is biased to one of the sides.

11.3.3Iterative MWPLLS (iMWPLLS)

This method is basically an improvement of the previous one. Since MWPLLS may get
too conditioned to the centres of mass, this option tries to iteratively compensate that
by only using points in the vicinity of a regression. Hence, starting with the regression
yielded by MWPLLS, the new regression is still computed with MWPLLS but only
points close to the regression are considered. Each new regression is used in the next
regression iteration. The process is repeated until the regression has converged or
until a certain number of iterations is reached.

This method is still conditioned to the centres of mass, although in a much more

134

compact way because only close points are used. This effect will be more evident if the
concurrent peaks fall within the scope of considered points, or if a single crest is biased
within the scope.

135

12 Appendix E: Phalanx Width
Estimation

Estimating phalanx width is a way of producing more accurate templates of the image
profile derivatives. Normally, the width would be a constant value set by the user, but
in this case the goal is to determine that constant with the help of the Kalman filter.

Since the unknown in question is a constant along time, the only part of the
Kalman filter needed to be used is the one referring to position. Hence, first and
second order aspects such as velocity and acceleration will not be considered. It is
important to notice however, that this constant can be determined in different ways,
depending if the width is associated with one profile or all profiles of a link.

In the first case the associated width of each profile is estimated with direct
application of the position equations of the filter. Replacing position with width should
make no confusion.

On the other hand, if all profiles of a link are being used to estimate the width of
the phalanx, the filter will have to consider the information supplied by each of them
in order to determine the single width.

Hence, if each i -th width is considered independently, the prediction equation is
pk∣k−1 

i =pk−1 
i

and the update is
pk 

i =pk∣k−1 
i ge i ,

with e i=pk
i −pk∣k−1 

i . But if the N widths are considered as redundant measures of

the same single width, then the prediction is set by
pk∣k−1 =pk−1 

and the update by

pk 
=p

k∣k−1 
g E [ei] ,

137

where e i=pk
i −pk∣k−1  and E [ei]= 1

N ∑
i=1

N

 pk
i −pk∣k−1  . Hence, the update equation can

be rewritten as

pk =1−g pk∣k−1 
g
N ∑

i=1

N

pk
i .

138

	1Introduction
	1.1Previous Work
	1.2Approach
	1.3Choices and Assumptions
	1.3.1Articulated Model
	1.3.2Pose Estimation
	1.3.3Image Analysis
	1.3.4Temporal Integration

	1.4Organization of the Thesis

	2Articulated Model
	2.1Kinematic Definition
	2.2Human Hand Anatomy and Physiology
	2.3Examples
	2.3.1Index Finger
	2.3.2Index Finger and Thumb

	2.4Graphic Visualization / Geometric Configuration
	2.4.1Camera Model
	2.4.2Image Projection

	2.5Chapter Outcome

	3Model Parameters Estimation
	3.1Pose Estimation Algorithm
	3.1.1Phase 1: Defining the Residuals
	Tip Residuals
	Link Residuals
	Total Residual

	3.1.2Phase 2: State Vector Estimation
	Update Equation
	Jacobian

	3.2Examples
	3.2.1Revolute Joint (R)
	Theoretical formulation
	Practical application

	3.2.2Prismatic Joint (P)
	Theoretical formulation
	Practical application

	3.2.3Prismatic and Revolute Joints (PR)
	Theoretical formulation
	Practical application

	3.2.4Two Revolute Joints (RR)
	Theoretical formulation
	Practical application
	Additional Situation: Convergence Instability Bypass

	3.3Chapter Outcome

	4Image Analysis
	4.1Positioning the Image Trackers
	4.2Image Profile Sampling
	4.3Searching for Edges
	4.3.1Template Matching
	4.3.2Edge Estimation
	4.3.3Visibility Ordering

	4.4Line Fitting
	4.5Chapter Outcome

	5Temporal Integration
	5.1Kalman Filter
	5.1.1The Discrete Kalman Filter
	The Process to be Estimated
	The Discrete Kalman Filter Algorithm

	5.1.2The g‑h‑k Kalman Filter
	Critically Damped Filter

	5.2Pose Estimate Refinement and Prediction
	5.3Chapter Outcome

	6Results
	6.1Proposed Method
	6.2Alternative Method
	6.2.1Real Images
	6.2.2Synthetic Images

	7Conclusions and Future Work
	8Appendix A: Human Hand Facts
	9Appendix B: Simulating Edge Points
	10Appendix C: Creation of Synthetic Images
	10.1Binary Images
	10.2Shaded Images

	11Appendix D: Feature Search Alternatives
	11.1Differentiation of Image Profiles
	11.1.1Simple Discrete Differentiation
	11.1.2Differentiation by Convolution with Gaussian Derivative

	11.2Width Dependent Search Restriction and Template Matching
	11.2.1Basic Search Space Restriction
	11.2.2Compensated Search Space Restriction

	11.3Rectilinearity Restriction in Correlation Surface
	11.3.1Partial Linear Least Squares (PLLS)
	11.3.2Modified Weighted PLLS (MWPLLS)
	11.3.3Iterative MWPLLS (iMWPLLS)

	12Appendix E: Phalanx Width Estimation

