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Resumo

O  seguimento  de  objectos  articulados  é  importante  em  áreas  como  a  Medicina, 
Robótica  ou  Computação  Gráfica.  Uma  aplicação  concreta  é  o  seguimento  de 
movimento humano.

Esta tese propõe um método baseado em visão para o seguimento de movimentos 
de dedos numa sequência de imagens. O objectivo é determinar o valor dos ângulos 
nas articulações dos dedos.

A abordagem compreende vários passos. Um modelo cinemático da mão é usado 
para descrever algumas das limitações físicas dos movimentos dos dedos. Primeiro, o 
modelo é usado para guiar a extracção de medidas locais de imagem correspondentes a 
partes do dedo. Esta análise de imagem pode ser feita de quatro maneiras diferentes, 
onde a melhor está concebida para lidar com oclusões nos dedos. Um algoritmo de 
estimação de pose ajusta o modelo cinemático às observações extraídas da imagem. 
Finalmente, usa-se integração temporal para reduzir a incerteza de estimação e prever 
o aspecto da mão na próxima imagem.

Testes efectuados aos diferentes passos mostram o desempenho e limitações destes. 
Os resultados mostram que o seguimento tem sucesso em imagens reais e sintéticas 
usando as duas técnicas de melhor desempenho. Estes testes abrangem desde modelos 
simplificados a completos da mão.

No fim discutem-se as conclusões e direcções de trabalho futuro.

Palavras-chave: Seguimento de mãos, oclusão, modelo cinemático, seguimento não 
invasivo, sequência de imagens, filtro de Kalman.
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Abstract

Tracking  articulated  objects  is  important  in  areas  such  has  Medicine,  Robotics  or 
Computer Graphics. A particular application is tracking human movement.

This  thesis  proposes  a  vision-based  method  to  track  finger  movements  on  a 
sequence  of  images.  The  goal  is  to  determine  the  value  of  the  angles  in  the 
articulations of the fingers.

The approach comprises several steps. A kinematic model of the hand is used to 
describe some of the physical limitations of finger movements. The model is first used 
to guide the extraction of local image measurements corresponding to the finger parts. 
This image analysis can be done in four different ways, where the best one is designed 
to handle finger occlusion. A pose estimation algorithm adjusts the kinematic model to 
the observations retrieved from the image. Finally,  temporal integration is used to 
reduce estimation uncertainty and predict the hand appearance in the next image 
frame.

Tests performed on different steps show their performance and limitations. Results 
show successful tracking on real and synthetic images using the two best performing 
techniques. These tests range from simplified to complete hand models.

Conclusions and further direction of work are described in the end.

Keywords: Hand tracking, occlusion, kinematic model, non-invasive tracking, image 
sequence, Kalman filter.

iv



Contents

1 Introduction 1
1.1 Previous Work........................................................................................................ 2
1.2 Approach................................................................................................................. 5
1.3 Choices and Assumptions...................................................................................... 6

1.3.1 Articulated Model....................................................................................... 6
1.3.2 Pose Estimation.......................................................................................... 7
1.3.3 Image Analysis........................................................................................... 7
1.3.4 Temporal Integration................................................................................. 7

1.4 Organization of the Thesis..................................................................................... 8

2 Articulated Model 9
2.1 Kinematic Definition.............................................................................................. 9
2.2 Human Hand Anatomy and Physiology.............................................................. 13
2.3 Examples.............................................................................................................. 15

2.3.1 Index Finger............................................................................................. 15
2.3.2 Index Finger and Thumb......................................................................... 17

2.4 Graphic Visualization / Geometric Configuration.............................................. 20
2.4.1 Camera Model........................................................................................... 21
2.4.2 Image Projection....................................................................................... 22

2.5 Chapter Outcome................................................................................................. 23

3 Model Parameters Estimation 25
3.1 Pose Estimation Algorithm.................................................................................. 25

3.1.1 Phase 1: Defining the Residuals.............................................................. 26
3.1.2 Phase 2: State Vector Estimation............................................................ 28

3.2 Examples.............................................................................................................. 31
3.2.1 Revolute Joint (R)..................................................................................... 31
3.2.2 Prismatic Joint (P)................................................................................... 34
3.2.3 Prismatic and Revolute Joints (PR)........................................................ 37
3.2.4 Two Revolute Joints (RR)......................................................................... 41

3.3 Chapter Outcome................................................................................................. 51

4 Image Analysis 53
4.1 Positioning the Image Trackers.......................................................................... 54
4.2 Image Profile Sampling....................................................................................... 56
4.3 Searching for Edges............................................................................................. 59

4.3.1 Template Matching.................................................................................. 60
4.3.2 Edge Estimation....................................................................................... 62

v



4.3.3 Visibility Ordering................................................................................... 64
4.4 Line Fitting........................................................................................................... 69
4.5 Chapter Outcome................................................................................................. 74

5 Temporal Integration 75
5.1 Kalman Filter....................................................................................................... 76

5.1.1 The Discrete Kalman Filter..................................................................... 76
5.1.2 The g-h-k Kalman Filter.......................................................................... 79

5.2 Pose Estimate Refinement and Prediction......................................................... 81
5.3 Chapter Outcome................................................................................................. 82

6 Results 83
6.1 Proposed Method.................................................................................................. 83
6.2 Alternative Method.............................................................................................. 86

6.2.1 Real Images.............................................................................................. 86
6.2.2 Synthetic Images...................................................................................... 88

7 Conclusions and Future Work 93

References 97

8 Appendix A: Human Hand Facts 101

9 Appendix B: Simulating Edge Points 105

10 Appendix C: Creation of Synthetic Images 109
10.1 Binary Images.................................................................................................... 110
10.2 Shaded Images................................................................................................... 114

11 Appendix D: Feature Search Alternatives 121
11.1 Differentiation of Image Profiles....................................................................... 121

11.1.1 Simple Discrete Differentiation............................................................. 122
11.1.2 Differentiation by Convolution with Gaussian Derivative.................. 123

11.2 Width Dependent Search Restriction and Template Matching....................... 125
11.2.1 Basic Search Space Restriction.............................................................. 127
11.2.2 Compensated Search Space Restriction................................................ 127

11.3 Rectilinearity Restriction in Correlation Surface............................................. 128
11.3.1 Partial Linear Least Squares (PLLS)................................................... 130
11.3.2 Modified Weighted PLLS (MWPLLS)................................................... 132
11.3.3 Iterative MWPLLS (iMWPLLS)............................................................ 134

12 Appendix E: Phalanx Width Estimation 137

vi



Figure List

Figure 2.1............................................ 10
Figure 2.2............................................ 13
Figure 2.3............................................ 14
Figure 2.4............................................ 16
Figure 2.5............................................ 16
Figure 2.6............................................ 16
Figure 2.7............................................ 18
Figure 2.8............................................ 18
Figure 2.9............................................ 19
Figure 2.10.......................................... 21

Figure 3.1............................................ 25
Figure 3.2............................................ 26
Figure 3.3............................................ 27
Figure 3.4............................................ 31
Figure 3.5............................................ 32
Figure 3.6............................................ 33
Figure 3.7............................................ 34
Figure 3.8............................................ 34
Figure 3.9............................................ 34
Figure 3.10.......................................... 36
Figure 3.11.......................................... 36
Figure 3.12.......................................... 37
Figure 3.13.......................................... 37
Figure 3.14.......................................... 39
Figure 3.15.......................................... 40
Figure 3.16.......................................... 40
Figure 3.17.......................................... 41
Figure 3.18.......................................... 41
Figure 3.19.......................................... 42
Figure 3.20.......................................... 44
Figure 3.21.......................................... 45
Figure 3.22.......................................... 45
Figure 3.23.......................................... 46
Figure 3.24.......................................... 46
Figure 3.25.......................................... 47
Figure 3.26.......................................... 47
Figure 3.27.......................................... 48

Figure 3.28.......................................... 49
Figure 3.29.......................................... 49
Figure 3.30.......................................... 50
Figure 3.31.......................................... 50

Figure 4.1............................................ 54
Figure 4.2............................................ 55
Figure 4.3............................................ 56
Figure 4.4............................................ 57
Figure 4.5............................................ 57
Figure 4.6............................................ 58
Figure 4.7............................................ 59
Figure 4.8............................................ 61
Figure 4.9............................................ 62
Figure 4.10.......................................... 63
Figure 4.11.......................................... 64
Figure 4.12.......................................... 65
Figure 4.13.......................................... 66
Figure 4.14.......................................... 66
Figure 4.15.......................................... 67
Figure 4.16.......................................... 67
Figure 4.17.......................................... 68
Figure 4.18.......................................... 68
Figure 4.19.......................................... 70
Figure 4.20.......................................... 70
Figure 4.21.......................................... 72
Figure 4.22.......................................... 72
Figure 4.23.......................................... 74

Figure 6.1............................................ 84
Figure 6.2............................................ 85
Figure 6.3............................................ 87
Figure 6.4............................................ 88
Figure 6.5............................................ 90
Figure 6.6............................................ 91

Figure 9.1.......................................... 106

vii



Figure 10.1........................................ 109
Figure 10.2........................................ 110
Figure 10.3........................................ 111
Figure 10.4........................................ 112
Figure 10.5........................................ 112
Figure 10.6........................................ 113
Figure 10.7........................................ 113
Figure 10.8........................................ 114

Figure 10.9........................................ 115
Figure 10.10...................................... 118
Figure 10.11...................................... 119

Figure 11.1........................................ 122
Figure 11.2........................................ 127
Figure 11.3........................................ 130

viii



Index of Tables

Table 2.1............................................................................................................................ 15
Table 2.2............................................................................................................................ 17
Table 2.3............................................................................................................................ 19

Table 3.1............................................................................................................................ 33
Table 3.2............................................................................................................................ 36
Table 3.3............................................................................................................................ 39
Table 3.4............................................................................................................................ 44
Table 3.5............................................................................................................................ 47
Table 3.6............................................................................................................................ 48

Table 4.1............................................................................................................................ 55

Table 6.1............................................................................................................................ 83
Table 6.2............................................................................................................................ 89

ix





1 Introduction

The goal of this thesis is to present a method which allows estimating the pose of an 
articulated  object  over  time,  by  analysis  of  a  sequence  of  images.  The  pose  is 
characterized by a set of degrees of freedom (DOF) which generally corresponds to 
joint angles and displacements.

The proposed method is designed to work in a very specific context of articulated 
objects: the human hands. Thus, the idea is to take a sequence of images with moving 
fingers and determine their position and orientation. The pose estimation problem is 
to determine the angles in the articulations of the fingers.

Tracking articulated objects has multiple applications, which can simply concern 
checking if the articulated object is working as desired or capture its movement as to 
mimic it somewhere else or learn from it.

In the context of tracking articulated objects there is a field which dedicates to 
studying the motion in animals. More specifically, this study can concern the ranges of 
movement of the human body. Even more specifically, that study may not focus on the 
whole body, but just a region, such as the human hand.

Tracking the movement of a human hand can have several degrees of complexity, 
depending  on  the  desired  application,  the  means  available,  the  context  in  which 
tracking will take place. Some of the more basic and reliable ways of determining the 
movement of a human hand rely on invasive techniques, such as the use of sensory 
gloves. However, the use of gloves may prove superfluous if one is only interested in 
tracking the position of  the hand in space, rather than knowing the angles in the 
articulations of the hand and fingers. The use of gloves is also not a good choice when 
dealing with agents who may not feel comfortable with them, such has human babies 
and simians, which may try to remove the glove.

When  dealing  with  such  agents  while  focusing  on  the  aspects  of  tracking  the 
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movement of the hand, including its position, orientation, and those of its fingers, one 
has to consider using non-invasive techniques. The answer often is using cameras to 
capture  the  movement  and  then  process  the  images  to  determine  the  desired 
information.

But even within this scope there are many ways of determining the configuration 
of the tracked hand, some of which are presented shortly ahead for reference.

1.1 Previous Work

In  [1], Rehg and Kanade proceed to the analysis of a sequence of monocular images 
with the purpose of estimating the DOF of the finger joints and wrist. The goal is to 
use the hand as a substitute for a computer mouse, and at the same time provide this 
new pointer with new abilities,  such as a third displacement direction. They use a 
kinematic model of the hand to help searching for features in the image. The features 
correspond to lines aligned with the phalanges and to points indicating the location of 
the  finger  tips.  The  image  is  sampled  perpendicularly  to  the  projection  of  the 
kinematic  model  on camera,  where the model  is  configured with a predicted pose. 
These samples are then used to search for edge points, which will then be used to find 
the line and point features.

This conception however, didn't enable tracking in the presence of occlusions, so in 
[2],  Rehg  and  Kanade  improved  this  procedure.  They  stop  using  perpendicular 
sampling and edge search to start using templates describing the appearance of the 
phalanges on image. To enable tracking with occlusions, they present a method based 
on the kinematic  model  which describes  which finger  phalanges  are occluding  the 
other  ones.  They  use  this  estimate  of  occlusion  to  mask  the  templates  to  form 
representations of the occluded phalanges.

Both  in  [1] and  [2],  the  pose  is  estimated  by  aligning  the  projection  of  the 
kinematic model with the image data. This is done using a gradient descent technique 
to minimize a cost function which accounts for the differences between the image data 
and the features in question.

In  [3], Cham and Rehg introduce 2D scaled prismatic models (SPM) to perform 
figure  registration.  They also  resort  to  a  bank of  filters  to  provide  multiple  state 
predictions, in order to enable multiple-hypothesis tracking (MHT). The goal is to be 
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able  to  track animated figures in  an image  sequence,  where these figures present 
some problematic self occlusions, which could not be solved using a single-hypothesis 
scheme.

The same principle of SPM and MHT is used in [4] by Rehg to perform the same 
type  of  figure  tracking.  The  novelty  is  the  possibility  of  using  that  knowledge  to 
perform background reconstruction and mosaicing,  or  even introduce the animated 
agent in a different background.

A volumetric model of the human body is used by Sminchisescu and Triggs in [5] 
as a way of generating intensity and edge features in the image frame, which are then 
compared  with  the  features  of  the  image  itself  to  determine  the  state.  Multiple 
hypothesis is used to add robustness to the tracking process.

In [6], Delamarre presents a way of using a volumetric representation of the hand 
and active contour techniques to locate a hand in an image and determine its pose. 
The author shows that the pose estimates can be found with no need of having an 
initial prediction of the model projected near the object in the image (as in the above 
documents).  He also  suggests  using  stereo  vision  and disparity  maps as  a  way of 
improving this method.

The concept of stereo vision and disparity maps is further explored by Delamarre 
and  Faugeras  in  [7] as  a  way  of  retrieving  the  hand  pose,  even  with  occlusions, 
resorting to physical attraction forces to attract a 3D volumetric model towards the 
disparity map.

In  [8] and  [9], Athitsos and Sclaroff present a way of estimating the hand pose 
based on finger detectors and a database with trained hand configurations.

In [10], Sidenbladh and Black develop a method to learn image statistics to use in 
Bayesian tracking. Image features used include optical flow, edges and ridges. The 
authors show how the combined use of the three statistics is much more robust than 
using  a  single  statistic.  They  also  show  successful  tracking  in  the  presence  of 
occlusion.

In [11] and [12], Li et al implement a 3D mouse using monocular images of a hand. 
However, they resort to a mirror so the monocular image does in fact present two 
points of view of the tracked hand. They show how their mouse can be used for 3D 
positioning and attribute actions given the states of the hand, which are based on the 
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contour of the hand rather than in the determination of the joint values. They try to 
model the background, which generally presents a lot of clutter, as a way of better 
determining the contour.

In [13], Houhaddi and Horain propose a method for hand tracking based on image 
features. The goal is to adjust a model of the hand to features regarding the sides of 
the fingers, which are found after a segmentation and image analysis process. The 
authors show the results when evaluating a hand facing the camera and spreading its 
fingers.  These concepts are also used in  [14],  which shows some additional  results 
from the same point of view but with the fingers being bent independently.

In [15], Shimada and Shirai propose a method to precisely estimate the shape and 
pose of articulated objects like a human hand. Their initial rough estimates are based 
on silhouette matching and are then fitted to an image using an extended Kalman 
filter.  The problem of ambiguities in shape and pose due to the fact of  monocular 
images possessing no depth information is overcome by modifying the filter solution. 
The estimates are achieved by incrementally reducing the possible solution space with 
informative observations.  The authors show rough estimation results based on the 
silhouette  method  and  show  advantages  in  using  their  modification  of  the  filter 
solution when tracking a finger in a side-view image sequence

The  method  proposed  by  Nirei  et  al in  [16] uses  binocular  images  of  a  hand. 
Tracking  is  performed  by  minimizing  estimation  error  of  an  optical  flow  and 
maximizing  the  overlap  between  a  projected  model  and  a  silhouette  image.  The 
problems  are  solved  using  stochastic  optimization.  They  present  results  using 
synthetic images as a base of comparison between the estimates and the ground truth 
and also present results using real images.

Regarding full body tracking, in [17] Fua et al develop a framework for 3D shape 
and  motion  recovery  of  articulated  deformable  objects.  They  incorporate  implicit 
surfaces into earlier  robotics approaches designed to handle articulated structures. 
They demonstrate its effectiveness for human body modelling from video sequences, 
with a method both robust and generic since it could easily be applied to other shape 
and motion recovery problems. This line of work is also developed by Plankers and 
Fua in [18], showing some additional results.
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1.2 Approach

Independently  of  the  particular  choices  in  the  approach,  the  previous  procedures 
present a common basis. They all resort to sequences of images as a source of data. 
These images are analyzed to retrieve information which can be used to determine the 
pose. Those which deal with aspects of pose determination generally employ a model 
of the object to track. This model can be used, for example, to implement the physical 
restrictions of the object or to use it as a way of generating data on image. Then, there 
generally is an algorithm responsible for configurating the model accordingly to the 
retrieved data, as to determine the pose of the object in the image. As an extra, some 
works employ filters to add robustness to the determination process over time.

The proposed method is a compromise between  [1] and  [2]. The approach to this 
problem consists of the following key blocks:

• articulated model;
• pose estimation;
• image analysis;
• temporal integration (optional).

The articulated model describes the articulations and connections of the tracked 
object: the hand and its fingers. It allows the geometric configuration of the object to 
be known in function of the angles in the articulations. It is used to restrict the image 
analysis search space.

The pose estimation block deals with the aspect of determining the values of the 
articulations angles which align the articulated model with the object in the image. 
Hence, it needs to know the articulated model and how to relate it to the image. The 
estimates  are  found with  a  recursive  method which tries  to  determine the angles 
which minimize the distances between model and image data.

Image analysis is the block which evaluates an image for features which can be 
used by the pose estimation block. These image features are extracted from the image 
in specific locations resorting to image samplers. These image samplers are positioned 
on the image accordingly to an estimate of the pose. This estimate is the geometric 
configuration of the model given an estimate of the articulations angles.
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Temporal integration is an optional block since it is used as a way of statistically 
providing estimates for the initial state of the articulated model at each new image. It 
is  also  used  to  statistically  improve  the  pose  estimates  determined  by  the  pose 
estimation process, which has some associated estimation noise. Finally, it is a way of 
statistically limiting wide variations in the angles over time, which could lead to loss 
of tracking or a high uncertainty in the estimated pose.

1.3 Choices and Assumptions

In order so simplify the estimation process some choices and assumptions are made for 
the several key blocks. In general,  they are only made as a way of simplifying the 
blocks and not as a way of limiting the tracking process. This means that the blocks 
can be easily upgraded to encompass more complex situations.

1.3.1 Articulated Model

In the articulated models used, a finger is usually modelled as a sequence of three 
bodies (the phalanges) and three joints (the articulations). The articulations only allow 
the model to mimic the bending movement (flexion/extension) of a finger but don't 
allow a side-to-side movement (adduction/abduction). Bear in mind though, that this is 
no limitation to any of the blocks, it is only a way of simplifying their design.

The  geometric  configuration  of  the  model  is  projected  on  the  image,  to  allow 
positioning  of  the  samplers  and  visualization  of  the  tracked  pose.  The  projection 
process is included in the articulated model, since all measurements will be made in 
the  image  frame.  To  avoid  camera  calibration,  the  axes  of  the  image  frame  are 
considered to be aligned and in the same units as the root frame of the articulated 
model.  Furthermore,  the  perspective  camera  model  is  used throughout  the  thesis. 
These two simplifications allow the projection matrix to be very simple, which enables 
focusing  on  the  real  issue  (tracking)  without  concerning  too  much  with  camera 
calibration aspects.

Still  regarding  camera  aspects,  the  whole  thesis  is  built  around  sequences  of 
monocular images. The concept though, is very easily extendable to binocular images 
or  even  more  complex  situations.  It's  basically  a  matter  of  repeating  the  same 
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procedures to all cameras and account for all errors at the same time.

1.3.2 Pose Estimation

The pose estimation process is based on a recursive method which tries to minimize a 
cost function by iteratively updating the articulations angles. Whenever possible the 
basic  implementation of the Gauss-Newton (GN) algorithm is used. When facing a 
more complex hand model, which generally leads to a cost function with many peaks 
and high amplitudes, a more robust implementation of the GN algorithm is used in 
order to restrict the updates in each recursive step.

Since a single camera is used (monocular images), the cost function only accounts 
for the differences between model data and image data in that single camera. Should 
more cameras be in use, the cost function should account for all  differences at the 
same time.

1.3.3 Image Analysis

This is a very complex block in the proposed tracking method. As a simplification to 
image sampling and further evaluation of the samples, it is assumed that the images 
present high contrast between foreground (the hand) and the background. This allows 
not worrying about segmentation issues. To avoid using background extraction and 
estimation, the background is black (or as dark as possible). This means that hands 
with light skin will still stand out in greyscale images, so the images used are thus in 
greyscale.

To allow the image samples to contain all necessary information, it helps that the 
frame rate of  the image sequence is  fast enough for the movement of  the tracked 
object. This means that it helps if the differences between consecutive images are as 
minimal as possible.

1.3.4 Temporal Integration

The temporal integration methods are based on the Kalman filter and account for first 
and second order aspects (velocity and acceleration). The temporal integration is used 
on the estimates of the articulations angles determined by the pose estimation. Since 
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the hand movement can change very rapidly in a short amount of  time,  the filter 
always  considers  new  measurements,  instead  of  relying  solely  on  history  from  a 
certain time instant and on.

1.4 Organization of the Thesis

Chapter  2  explains  how to  describe  an  articulated  model  and the anatomy of  the 
human hand. These concepts are then used in two examples which illustrate basic 
articulated models which can be applied to hand tracking. The chapter ends with a 
description of the camera model used and how model data is projected on the image.

Chapter 3 concerns the aspects of model parameters estimation. It describes how 
to measure the differences between model data and image data and then how to use 
them to estimate the pose. In the end, four examples show how to estimate the pose in 
basic situations and illustrate the performance of the estimation in each of them.

Chapter 4 describes the image analysis block, the most complex of the blocks in 
this thesis. It starts by showing how to position the image trackers and how to sample 
the image. Then it explains how feature search is performed and how the features 
locations  are  estimated.  It  then  ends  by  describing  how  to  use  those  features  to 
determine lines aligned with the phalanges of the fingers in the image. This block 
evolved from a series of techniques which are shown in Appendix D.

Chapter 5 deals with the aspects of temporal integration, which is based on the 
Kalman filter.  It starts by describing the basic Kalman filter,  as a reference, then 
evolving  to  the  g-h-k  Kalman filter.  It  then  shows how to  apply  the  filter  to  the 
refinement and prediction of pose estimates.

Chapter 6 shows the results of using the proposed method and an alternative one. 
Conclusions about the performance of the methods can be found in Chapter 7 as well 
as some guidelines for future work.

Appendices A to E cover some additional aspects and detailed explanations, such 
as relevant facts for modelling, simulation, image analysis or estimation.
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2 Articulated Model

The articulated model plays an important role in the presented tracking method and 
is used in different ways. Its basic function is to describe the geometrical aspect of the 
tracked  object  given  a  set  of  degrees  of  freedom  (DOF)  and  some  fundamental 
distances and angles. However, it is also used to help reduce the image features search 
space, and can be expanded to include information such as shape, visual aspect, and 
width of the links (in this case the model refers to a hand or part of it).

In the present case the articulated model is described by a kinematic chain, which 
can be simple or have ramifications depending on the complexity of the tracked object 
or  the  wished  complexity  for  the  model  which  describes  it. This  kinematic  chain 
describes how each link connects to the others. Separation between links and relative 
orientations only get defined in the modelling process.

A set of DOF encodes the variables of the articulated model, which are distances 
and angles allowed to change. In the end, the geometric interpretation is attained by 
spatial  transformations,  created using all  distances and angles,  so to  position and 
orient the frames attached to each link with their neighbours along the chain, down to 
a base frame.

In order to build and choose the complexity of the model it is helpful to know the 
intrinsic characteristics of the tracked object, so a brief study of the human hand is 
presented for reference.

The  last  section  of  this  chapter  shows  a  couple  of  examples  of  how  to  model 
kinematic chains of basic complexity.

2.1 Kinematic Definition

The kinematic definition is useful to deal with the complex geometry (position and 
orientation) of the manipulator linkages. A manipulator may be thought of as a set of 

9



bodies connected in a chain by joints.  These bodies are called links.  Joints form a 
connection between a neighbouring pair of links. For convenience, frames are attached 
to the various parts of the mechanism and the relationship between these frames is 
described (see Figure 2.1).

The kinematic chain is modelled by the Denavit-Hartenberg (DH) notation, which 
is widely used in robotics  [19]. Basic articulated objects, such as the finger, can be 
modelled by a single kinematic chain, while more complex objects, such as the hand, 
can be modelled by a tree-like kinematic chain, with several basic chains (the fingers) 
attached to a common node (the end of the wrist).

The links are numbered starting from the immobile base of the chain, which might 
be called link 0. The first moving body is link 1, and so on, out to the free end of the 
chain (the end-effector), which is link n .

In robotics, due to mechanical design considerations, manipulators are generally 
constructed  from  joints  which  exhibit  just  one  degree  of  freedom  (DOF).  Most 
manipulators have revolute joints or sliding joints (called prismatic joints). In the rare 
case that a mechanism is built with a joint having n  DOF, it can be modelled as n  
joints of one DOF connected with n−1  links of zero length. Therefore, without loss of 
generality, only manipulators which have joints with a single DOF will be considered. 
The reference frame is attached to the base of the chain, or link 0, and is called frame 
{0}. The position of all other link frames may be described in terms of this frame.

By definition of the adopted Denavit-Hartenberg notation [19], the z-axis is always 
aligned with the axis of rotation of a revolute joint and with the axis of dislocation of a 
prismatic joint. The convention for the x-axis and y-axis depends on the context.
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Figure 2.1 - Example of a kinematic chain with three bodies connected by revolute joints. A 
reference frame is attached to the base frame (black arrows) and to each of the joints (grey 

arrows).



The following is  a summary of the procedure to follow when faced with a new 
mechanism in order to properly attach the link frames:

1. Identify the joint axes and imagine (or draw) infinite lines along 
them. For steps 2 through 5 below, consider two of these neighbouring 
lines (at axes i  and i1 );
2. Identify  the  common  perpendicular  between  them,  or  point  of 

intersection.  At  the  point  of  intersection,  or  at  the  point  where  the 
common  perpendicular  meets  the  i -th axis,  assign  the  link  frame 
origin;

3. Assign the Z i  axis pointing along the i -th joint axis;

4. Assign the X i  axis pointing along the common perpendicular, or if 

the axes intersect, assign X i  to be normal to the plane containing the 

two axes;

5. Assign  the  Y i  axis  to  complete  a  right-hand  coordinate  system 

 X i×Y i= Z i ;

6. Assign {0} to match {1} when the first joint variable is zero. For {N} 

choose an origin location and X N  direction freely, but generally so as to 

cause as many linkage parameters as possible to become zero.

If the link frames have been attached to the links according to this DH convention, 
the following definitions of the link parameters are valid:

 i : the angle between Z i  and Z i1  measured about X i ;
a i : the distance from Z i  to Z i1  measured along X i ;
d i : the distance from X i−1  to X i  measured along Z i ;
 i : the angle between X i−1  and X i  measured about Z i .

Usually  a i0  since  it  corresponds to  a  distance;  however,   i ,  d i  and   i  are 
signed quantities.

If the assignment of link frames and parameters is performed according to this 
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procedure, the general form of the transformation of link  i  relative to link  i−1  is 
given by

Ti
i−1 =[ c i −s i 0 a i−1

si ci−1 c i ci−1 −si−1 −si−1 d i

s is i−1 ci s i−1 c i−1 ci−1 d i

0 0 0 1
] , (2.1)

where  ci ,  s i ,  c i−1  and  s i−1  denote respectively the functions  cos i ,  sini , 
cos  i−1  and sini−1 .

The link transformations can be multiplied to find the single transformation that 
relates frame {N} to frame {0},

TN
0 = T1

0 T2
1 T3

2 ⋯ TN
N −1 , (2.2)

which is useful for geometric interpretation.
In order to describe the model without attaching a frame to the terminal tip of a 

chain, the length of terminal link i  is represented by A i . This will only be useful for 
geometric  interpretation  of  the tip  and does not  interfere  with  the transformation 
matrices.

Once the articulated object is known and the complexity of the articulated model is 
specified it is possible to start dimensioning the model. For convenience, it is usual to 
start by drawing the reference frames and then store all link parameters in a table.

Sometimes, the way the link frames are laid down makes it harder to find the 
values of the link parameters. In such cases, and if an alternative configuration for the 
link frames is not easy to find, it is possible to resort to auxiliary frames, as if they 
were assigned to joints without moving capability. The auxiliary frames will help to 
derive the link parameters without increasing complexity.

As soon as the link parameters have been defined, it is important to understand 
which are constant and which are variable. The variable link parameters correspond 
to the DOF and are important because they contain information about the state of the 
model.  In practice,  the state is encoded by an array  q  of  DOF. The constant link 
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parameters are also important since they manifest the immutable idiosyncrasies of 
the model.

The term “pose” will be used loosely to describe the geometrical manifestation of 
the current state. So in the end, “pose” is related to the Cartesian space and “state” to 
the state space.

2.2 Human Hand Anatomy and Physiology

To build a coherent articulated model of a human hand it is important to understand 
how many bones compose it, their dimensions, which articulations connect them, and 
the  articulations  range  and  type  of  movement.  This  evaluation  later  allows 
simplifying the model and understanding how seriously it compromises the tracking 
problem or the range of movement of the tracked object.

From the kinematic modelling point of view some facts are important, others are 
just curiosities. If the goal was to build a robotic model of the hand, some other aspects 
would gain more relevance. The anatomy and physiology of the human hand however, 
provide the main guidelines for the modelling process.

Figure 2.2 - Relevant human hand bones and joints names.
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For the modelling problem at hand, only basic characteristics referring to links 
and joints will  be considered. These include the fact that a hand has 29 major and 
minor bones and 29 major joints. If the model was to be more accurate some of the 
aspects in  Appendix A should also be considered. Though fingers are never perfectly 
straight the models are built assuming they are, as a simplification.

Figure 2.3 - The human hand is able to perform a wide number of movements.
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To understand the anatomy and physiology of the hand, the relevant contents of 
[20] and  [21] were  summarized  into  Figure  2.2,  Figure  2.3 and  Table  2.1.  These 
sources provide the basic understanding of the human hand.

Typical Range of Motion
Thumb basal joint Palmar Adduction/Abduction Contact/45

Radial Adduction/Abduction Contact/60
Thumb Interphalangeal Hyperextension/Flexion 15H/80
Thumb Metacarpophalangeal Hyperextension/Flexion 10/55
Finger DIP joints Extension/Flexion 0/80
Finger PIP joints Extension/Flexion 0/100
Finger MCP joints Hyperextension/Flexion (0-45H)/90

Table 2.1 - Typical range of motion of thumb joints and finger joints in degrees.

2.3 Examples

The following examples were gathered in order to convey the difference between a 
single kinematic chain and a tree-like kinematic chain, as well as the difference of 
complexity behind the creation of articulated models based on those chains. These are 
only  basic  examples  since  the  articulated  models  are  simplifications,  in  terms  of 
degrees of  freedom (DOF),  of  the articulated objects they intend to portray.  These 
examples also intend to illustrate how to use the Denavit-Hartenberg (DH) notation.

2.3.1 Index Finger

The index finger may be described by a single kinematic chain. In this example, the 
finger  only  has  the  three  revolute  DOF  responsible  for  the  extension/flexion 
movement. The adduction/abduction movement is not portrayed in this model. This 
low level of complexity is enough to allow some typical  movements to be analysed, 
however,  it  renders  the  base  of  the  finger  immobile  and  restricts  the  range  of 
movements to a plain.

Once the complexity of this model is specified it is possible to draw the link frames 
according to the six step procedure introduced earlier. As a way of helping doing so, an 
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index  finger  is  visualized  from  a  side  view  as  shown  in  Figure  2.4.  This  aid 
immediately leads to the scheme of interconnecting joints of  Figure 2.5, from which 
the link frames are assigned. The link frames of the single kinematic chain and the 
link parameters are shown in Figure 2.6.

Figure 2.4 - Side view of a hand (grey curve) with highlight of an index finger (black curve).

Figure 2.5 - Index finger joints (blue circles) and links (blue lines) on a side view of an index 
finger (black curve).

Figure 2.6 - Example of link frames assignment in a single kinematic chain representing an 
index finger with three revolute joints.

This  is  a  situation  where  the  determination  of  the  link  parameters  is  easily 
achieved by direct application of the definitions. The link parameters are shown in 
Table 2.2.
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i  i−1 a i−1 d i  i

1 0 0 0 1

2 0 a1 0 2

3 0 a2 0  3

Table 2.2 - Link parameters of a single kinematic chain representing an index finger.

From the link parameters in  Table 2.2, only the   i  are variable,  all  other link 
parameters are constant. This is so because in this model only the joint angles are 
allowed to change. Hence, the link transformations are given by

T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

] , T2
1 =[c 2 −s2 0 a1

s2 c 2 0 0
0 0 1 0
0 0 0 1

]  and T3
2 =[c 3 −s3 0 a2

s3 c3 0 0
0 0 1 0
0 0 0 1

] .

Finally, the vector which encodes the state of the articulated model is

q=[q1 q2 q3]
T
=[1  2 3]

T .

2.3.2 Index Finger and Thumb

The index finger and thumb form a structure of  two opposing fingers and may be 
described by a tree-like kinematic chain with two branches of single kinematic chains. 
In this example, the index finger and thumb only have three revolute DOF each and 
are each a single kinematic chain. This simplified model allows both index finger and 
thumb to perform the extension/flexion movement,  which can then be combined to 
carry out a grip, release or dextrous manipulation, even if in a rather simple way. The 
adduction/abduction movement of the index finger as well  as both the palmar and 
radial adduction/abduction movements of the thumb are not portrayed in this model.

Once the complexity of this model is specified it is possible to draw the link frames 
according to the six step procedure introduced earlier. As in the previous example, a 
side view of the object is used to help doing this, except this time there are two fingers, 
as can be seen in Figure 2.7. Albeit the image does not portray this situation, the base 
joint of the index finger will be vertically aligned with the base joint of the thumb to 
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aid in link frames  assignment, making the whole chain  symmetrical to a horizontal 
axis. With this simplification in mind, the scheme of interconnecting joints of  Figure
2.8 is created, leading to the link frames of the tree-like kinematic chain and link 
parameters shown in Figure 2.9.

Figure 2.7 - Side view of a hand (grey curve) with highlight of an index finger (top black 
curve) and thumb (bottom black curve).

Figure 2.8 - Index finger joints (top blue circles) and links (top blue lines) on a side view of an 
index finger (top black curve) and thumb joints (bottom blue circles) and links (bottom blue 

lines) on a side view of a thumb (bottom black curve).
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Figure 2.9 - Example of link frames assignment in a tree-like kinematic chain 
representing an index finger and thumb with three revolute joints each. Frame {1} is the 
base frame for the index finger and frame {5} the base frame for the thumb. Frame {0} is 

the base frame of the whole chain.

This is a situation where the determination of the link parameters is not so easily 
achieved by direct application of the definitions. As depicted in  Figure 2.9, this is a 
case where including two auxiliary frames, {1} and {5}, helps to determine the link 
parameters without compromising the definitions. The link parameters are shown in 
Table 2.3.

i  i−1 a i−1 d i  i

1 0 0 d1 0

2 /2 a1 0 2

3 0 a2 0  3

4 0 a3 0  4

5 0 0 −∣d5∣ 0

6 −/2 a5 0  6

7 0 a6 0  7

8 0 a7 0  8

Table 2.3 - Link parameters of a tree-like kinematic chain with an index finger and thumb.

From the link parameters in Table 2.3, only the non-zero  i  are variable, all other 
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link parameters are constant. This is so because in this model only the joint angles are 
allowed to change.

Hence, the link transformations are given by

T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1 ] , T2
1 =[c 2 −s2 0 a1

0 0 −1 0
s2 c 2 0 0
0 0 0 1

] , T3
2 =[c 3 −s3 0 a2

s3 c 3 0 0
0 0 1 0
0 0 0 1

] ,

T4
3 =[c 4 −s4 0 a3

s4 c 4 0 0
0 0 1 0
0 0 0 1

] , T5
0 =[1 0 0 0

0 1 0 0
0 0 1 −∣d 5∣
0 0 0 1 ] , T6

5 =[ c 6 −s 6 0 a5

0 0 1 0
−s6 −c6 0 0

0 0 0 1
] ,

T7
6 =[c 7 −s7 0 a6

s7 c 7 0 0
0 0 1 0
0 0 0 1

]  and T8
7 =[c 8 −s8 0 a7

s8 c 8 0 0
0 0 1 0
0 0 0 1

] .

Finally, the vector which encodes the state of the articulated model is

q=[q1 q2 q3 q4 q5 q6 ]
T
=[2 3  4 6 7 8]

T .

2.4 Graphic Visualization / Geometric Configuration

Interpretation of data stored in the state vector generally proves to be a difficult task. 
It is much more intuitive to evaluate the geometric configuration of the model given a 
state vector. The geometric configuration will be extensively used in the following two 
chapters, which is why it is important to specify the common basis.

First of all, assume there is an entity Mq  which projects geometric model data 
in the image. This data can be visible or invisible depending on the application:

• Invisible:
• Position and orientation of the links (pose);
• Location of end points of the links.

• Visible:
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• Pose visualization;
• Creation of synthetic image.

This entity always needs a parameterization of the links of the model, which can 
go  from  simple  line  segments  to  elaborate  3D  shapes.  It  also  needs  the  spatial 
transformations derived with the DH notation, in order to position and orient each 
link in a 3D space described by the base frame: frame {0}. Finally, in order to describe 
this 3D data in 2D image units, it also needs the camera projection matrix. In short, 
this entity works as summarized in Figure 2.10.

Figure 2.10 - Entity M(q) projects model data on the image frame according to this block 
diagram.

2.4.1 Camera Model

The camera model explains how data in a 3D space is projected on a 2D space. For 
convenience  of  manipulation,  a  point  defined  by  a  set  of  Euclidian  coordinates 

[ X Y Z ]T  is  described  by  a  set  of  projective  coordinates  [ X Y Z 1]T .  This  enables 
performing rotations and translations with a single matrix multiplication.

This matrix is called the camera projection matrix and is given by

P=[ p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34
] ,

generally assuming that  p34=1 ,  since the matrix is defined up to a non-zero scale 
factor.

This matrix combines informations about the intrinsic and extrinsic parameters of 
the camera, as well as the perspective projection. The intrinsic parameters relate the 
coordinate system of the camera with the coordinate system of the projection plain, 
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describing aspects such as the dimension of the image pixels and the position of the 
image centre. The extrinsic parameters relate the coordinate system of the camera to 
a fixed world coordinate system, specifying its position and orientation in space.

In the two extremes of projective geometry are the perspective camera model and 
the orthographic camera model. The orthographic model is actually a particular case 
of  the  perspective  model.  The  major  difference  resides  in  the  fact  that  in  the 
orthographic model any point in space is projected orthogonally on the image plain, 
while  in  the  more  generic  perspective  model  the  projection  corresponds  to  the 
intersection of the image plain with a line defined by the camera centre and the point 
in space. Thus, the orthographic model can be thought of as a perspective model where 
the camera centre is at an infinite distance from the camera plain.

The projection is computed with

[ x p

 y p

 ]=[ p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34
][ X

Y
Z
1 ] ,

where the vector on the right hand side represents the coordinates of the 3D point and 
the coordinates on the left the point in the image, where   is a scaling factor.

The perspective  model  is  characterized by  a matrix  P=K [R∣t] ,  where  K  is  a 
3×3  matrix accounting for the intrinsic parameters, R  a matrix accounting for the 
rotation between camera and world and t  a vector accounting for the coordinates of 
the optical centre in the world reference frame.

In the particular case of the orthographic projection, [R∣t ]=[I∣0 ] .

2.4.2 Image Projection

For coherence, the projection matrix P  is now represented by T0C  in order to use the 

same  notation  used  in  the  kinematic  model.  Any  point  pi  described  in  its  own 
reference frame {i} is projected on the image frame with

pC = Ti
C pi , (2.3)
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where

Ti
C = T0

C Ti
0 (2.4)

is the matrix resulting from multiplying the 3×4  projection matrix T0C  by the single 

transformation which relates frame {i} to frame {0}.
For  details  on  link  parameterization  and  creation  of  synthetic  images  refer  to 

Appendix C.

2.5 Chapter Outcome

This  chapter  presented  how  the  articulated  model  is  designed  and  how  it  is 
represented on the image reference frame.

The  articulated  model  is  useful  for  description  of  the  tracked  object  and  for 
positioning the image local analysis tools on the image reference frame.

The problem of  pose  determination  is  to  estimate  the  model  parameters  (joint 
values) which make the projected articulated model overlap the collected image data. 
The next chapter shows how to estimate the pose once the image data is known.
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3 Model Parameters Estimation

The creation of an articulated model discussed in the previous chapter is based on 
constant and variable link parameters. The variable link parameters correspond to 
degrees of freedom (DOF) and are important because they contain information about 
the state of the model. These are the unknowns in the pose estimation problem and 
have to be determined by a suitable method in order to describe the configuration of 
the targeted articulated object.

In the present tracking problem, the model parameters are estimated adjusting 
the articulated model to features extracted from an image. First, a cost function is 
defined, accounting for the distance between the model projected on the image plain 
and  the  observed  features.  The  cost  function  is  then  minimized  by  iteratively 
modifying the model parameters.

The last section of this chapter presents some examples which illustrate how the 
estimation process works.

3.1 Pose Estimation Algorithm

The algorithm for  estimating  the pose  of  the  tracked  object  is  carried  out  in  two 
interleaved phases. One involves measuring the error between the articulated model 
and the extracted features while the other aims to minimize that error.

Figure 3.1 - Block diagram showing pose estimation algorithm inputs and outputs.
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3.1.1 Phase 1: Defining the Residuals

The residuals  are  each  of  the  distances  between  geometric  model  and  extracted 
features. Prior to explaining how they are measured it helps to mention the elements 
in use, as to simplify the overall understanding of the process. Assume there is an 
image analysis routine with one component returning lines aligned with the finger 
phalanges and other returning the finger tips location. Also assume the state vector q  
has a certain value (e.g. a prediction) and Mq  indicates the end coordinates of each 
link in the image frame.

Tip Residuals

The tip residual measures the distance in image units between predicted, ti q , and 

measured, tiobs , tip positions. Each tip feature is represented by a vector [x y ]T  which 

gives  the  tip  feature  position  in  image  coordinates.  The  residual  for  the  i -th  tip 
feature is a vector in the image plane defined by

 i
tip q=tiq−ti

obs , (3.1)

where ti q  is the projection of the tip centre into the image as a function of the hand 
state q . This projection is achieved with (2.3).

Figure 3.2 - Tip residual measured between predicted model tip (blue dot) and measured tip 
feature (blue circle). The coloured segments represent the finger model, the remaining dots 

and circles its joints and the black curve the boundary of the tracked finger.
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Link Residuals

The link residual i
link q  is a scalar which measures the distance from a point in the 

projected  link  axis  to  the  measured  feature  line.  This  distance  is  measured 
perpendicularly to the feature line. As a simplification, the lines are described in the 
image  plane  using  an  orthographic  projection.  The  orthographic  camera  model  is 
incorporated into the residual equation by setting m=[a b 0]T  and writing

i
link q=mT pi q− , (3.2)

where  pi q  is  the 3D position,  [x y z]T ,  of  a point  on the link axis  in camera 

coordinates, and [a b ]  are the line parameters. Each link feature is represented 

by  a  vector  [a b ]  which  gives  the  parameters  of  the  2D  line  equation 
axby−=0 . The total link residual consists of one or more point residuals along the 
link axis, each given by (3.2).

Figure 3.3 - Link residual measured between point in predicted model link (intersection of 
dashed segment with blue segment) and measured line feature (blue line). The coloured 

segments represent the finger model, the remaining dots and circles its joints and the black 
curve the boundary of the tracked finger.

Total Residual

The total deviation between model data and image data is achieved by gathering all 
residuals for the link and tip features into a single vector of residuals, for example

 q=[1, x
tip q 1, y

tip q 1
link q 2

link q ⋯]T ,
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where  1, x
tip q  and  1, y

tip q  are the components of  the tip residual  1
tip q  along the 

x-axis  and y-axis  respectively.  If  the magnitude of  the residual  vector is  zero,  the 
articulated model is perfectly aligned with the image data.

3.1.2 Phase 2: State Vector Estimation

The  goal  of  this  phase  is  to  estimate  the  state  vector  q  which  minimizes  the 
magnitude  of  the  vector  of  residuals.  This  is  done  iteratively  through  successive 
incremental corrections.

The state correction is obtained from the vector of residuals   q  by minimizing 
the cost function

Hq=1
2∥ q∥2

=
1
2

qT  q . (3.3)

The vector of residuals generally has nonlinearities. The nonlinearity in the state 
model for articulated mechanisms is caused by the trigonometric terms in the forward 
kinematic model. The other source of nonlinearity, inverse depth coefficients in the 
perspective camera model, does not exist since an orthographic formulation is being 
used. The Gauss-Newton (GN) algorithm is used to solve this nonlinear least squares 
problem.

Thus, the estimated state vector corresponds to
q=arg min

q
∥Hq∥2

.

Update Equation

Since a different vector of residuals  q  is minimized at each image j , the notation 

should  be  altered to   q j ,  but  for  the  sake of  readability,  this  notation  shall  be 

further shortened to  j . The GN state update equation, from iteration k  to k1 , is 
given by

qk1=qk−[Jk
T Jk]

−1Jk
T k , (3.4)
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where Jk  is the Jacobian matrix for the residual   k , both of which are evaluated at 
qk , and is formed from the link and tip residual Jacobians.

The update equation in (3.4) can be carried out in, at least, two ways, which can be 
used depending on the desirable performance of the state estimation:

• For a faster, yet less accurate, state estimation, the state is updated 

only once per image,  so that  q j1  is the result of running (3.4) only 
once.
• For better state estimation at the cost of some computational time, 

the state is updated a variable number of times per frame, so that q j1  
is the result of running (3.4) until a certain convergence criterion is met 
(e.g. the stabilization of the cost function).

The GN algorithm is  preferred over other  methods since  it  is  faster  and more 
accurate near an error minimum. An alternative to the GN algorithm would be the 
Levenberg-Marquardt algorithm, with the state update equation

qk1=qk−[Jk
T Jk I]−1Jk

T k

which uses a constant diagonal regularization matrix  I . When the scalar   is zero, 
this  is  just  Newton's  method,  using  the approximate  Hessian  matrix.  When    is 
large, this becomes gradient descent with a small step size.

Jacobian

The Jacobian matrix is related to the direction of fastest growth of a function. The GN 
state  update  equation  (3.4)  uses  this  information  to  reach a  minimum of  the cost 
function by changing the sign to a minus on the second term of the right hand side of 
(3.4), thus originating the correction

qk=−[Jk
T Jk]

−1Jk
T k . (3.5)

The term [Jk
T Jk]

−1Jk
T  corresponds to the pseudo-inverse of the Jacobian Jk , and is 
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used because the Jacobian generally is not a square matrix, and cannot be inverted. It 

is important to make sure that Jk
T Jk  is not singular.

By definition, if the vector of residuals  q  has length m , and the state vector q  
has length  n ,  the Jacobian will  be  a matrix  of  size  m×n  of  partial  derivatives 
represented by

J=
∂ q
∂q

=[
∂1

∂ q1

⋯
∂1

∂ qn

⋮ ⋱ ⋮
∂m

∂ q1

⋯
∂m

∂qn

] , (3.6)

where i  is the i -th element of  q  and q j  the j -th element of q .
It is important to remember the vector of residuals can have two types of elements: 

tip residuals, in the form of two scalar entries, and link residuals, in the form of a 
single scalar entry.

The link Jacobian is achieved by differentiation of (3.2) with respect to the state 
vector, obtaining

∂i
link q
∂q

=mT ∂p iq
∂q

, (3.7)

with the above gradient vector for link i  being one row of the total Jacobian matrix.
Similarly, the tip Jacobian is obtained from (3.1) as

∂i
tip q
∂q

=
∂ tiq

∂q
, (3.8)

with the above gradient matrix for link i  being two rows of the total Jacobian matrix, 
one regarding the tip residual along x  and the other along y .

In practice,  the total  Jacobian is computed off-line with symbolic  mathematics. 
The resulting expression is then embedded in the source code for faster processing (see 
the upcoming examples).
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3.2 Examples

The following examples show the application of  the model of residuals to different 
kinematic chains. Each example is composed of a theoretical introduction, where the 
kinematic model and model of residuals are formulated, and an experimental part to 
convey the performance of the estimation algorithm. The last example also includes an 
additional experimental part dedicated to the bypass of a situation where the process 
does not converge to the optimal solution.

As a simplification in the following examples,  the base frame of the kinematic 
chain is aligned with the image frame and the units are the same.

Remember that all examples have the same structure. This helps relating a new 
example with a previous one. Also pay attention to the schematic figures, since they 
portray the situation at hand.

3.2.1 Revolute Joint (R)

In this case, a single link is attached to a revolute joint which allows it to move in a 
plane parallel to the image plane.

Theoretical formulation

The articulated model is described in Figure 3.4.

Figure 3.4 - An articulated model with one revolute joint and its DH parameters. Featuring 
from left to right: image frame, object description, DH frames and DH parameters.

The transformations between reference frames are given by

T0
C =[1 0 0 p0

x

0 1 0 p0
y

0 0 0 1 ]  and T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

] ,

where p0
x  and p0

y  represent the location of the origin of {0} in the image frame, along 

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by
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p=[ P 0 0 1]T ,
where P  is the position along the x-axis. At the end of the link P=L1 .

The application of the measurement of residuals to this case yields the situation 
depicted in Figure 3.5.

Figure 3.5 - Application of the model of residuals to the case of an articulated object with one 
revolute joint. Featuring (left to right): predicted features and extracted features; tip data; 

link data.

Consequently the vector of residuals is given by

 q=[ t1, x
tip q−t1, x

obs

t 1, y
tip q−t1, y

obs

a p1
x qb p1

yq−

a p2
x qb p2

yq−
] ,

where the scripts x  and y  represent the components of each vector along the x-axis 
and y-axis respectively.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C =C

0
T 0

1
T pi q

1 =[1 0 0 p0
x

0 1 0 p0
y

0 0 0 1 ][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

where p iq
j  is the representation of point i  in frame j . This equation leads to

pi q
C =[Pi c1p0

x

P i s1 p0
y

1 ] .

Replacing these values in the vector of residuals returns

 q=[ L1 c1p0
x−t1, x

obs

L1 s1p0
y−t 1, y

obs

a P1 c1p0
x bP1 s1p0

y−

a P2 c1p0
x bP2 s1p0

y−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals 
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t1
obs=[ t1, x

obs t1, y
obs]T

1
tipq =t1q−t1

obs
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 q  regarding the state q  is given by

J=[
∂ 1

∂q1

⋮
∂4

∂q1

]=[ −L1 s1

L1c1

a −P1 s1b P1 c1
a−P2 s1b P2 c1

] ,

thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience 
shown in Figure 3.6 was performed.

Figure 3.6 - Practical application of the model of residuals and convergence algorithm to the 
case of an articulated object with one revolute joint.

The state update equation is ran until the convergence criterion
∣qk1−qk∣10−30  [rad]

 is reached. The reduced magnitude of the criterion is not really necessary but is that 
insignificant to  demonstrate  the fast  convergence of  the GN algorithm under such 
strict conditions.

The process  converges  to  the  ideal  configuration,  as  can  be  seen in  Table  3.1, 
Figure 3.7 and Figure 3.8.

k 0 1 2 3 4 ideal

q1=1 2.0944 1.5727 1.5708 1.5708 1.5708 1.5708

Hq 4.9744 0.0001 0.0000 0.0000 0.0000 0

Table 3.1 - Convergence of the joint parameter and cost function towards the ideal configuration in a 
single kinematic chain with one revolute joint.
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Figure 3.7 - Convergence of the joint parameter towards the ideal configuration in a single 
kinematic chain with one revolute joint.
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Figure 3.8 - Convergence of the cost function towards the ideal configuration in a single 
kinematic chain with one revolute joint.

3.2.2 Prismatic Joint (P)

In this case, a single link is attached to a prismatic joint which allows it to move in an 
axis parallel to the image frame x-axis.

Theoretical formulation

The articulated model is described in Figure 3.9.

Figure 3.9 - An articulated model with one prismatic joint and its DH parameters. Featuring 
from left to right: image frame, object description, DH frames and DH parameters.
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The transformations between reference frames are given by

T0
C =[0 0 1 p0

x

0 1 0 p0
y

0 0 0 1 ]  and T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1 ] ,

where p0
x  and p0

y  represent the location of the origin of {0} in the image frame, along 

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[0 P 0 1]T ,
where P  is the position along the y-axis. At the end of the link P=L1 .

The application of  the measurement of  residuals to this case yields a situation 
similar to the case of a revolute joint, hence the vector of residuals  q  has the same 
general aspect as in that situation.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C = T0

C T1
0 pi q

1 =[0 0 1 p0
x

0 1 0 p0
y

0 0 0 1 ][1 0 0 0
0 1 0 0
0 0 1 d 1

0 0 0 1 ][ 0
P i

0
1 ] ,

where p iq
j  is the representation of point i  in frame j . This equation leads to

pi q
C =[d1p0

x

Pip0
y

1 ] .

Replacing these values in the vector of residuals returns

 q=[ d1p0
x−t 1, x

obs

L1p0
y−t1, y

obs

ad1p0
x bP1p0

y−

a d1p0
xb P2p0

y−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals 
 q  regarding the state q  is given by

J=[
∂ 1

∂q1

⋮
∂4

∂q1

]=[1
0
a
a
] ,
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thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience 
shown in Figure 3.10 was performed. 

Figure 3.10 - Practical application of the model of residuals and convergence algorithm to the 
case of an articulated object with one prismatic joint.

The state update equation is ran until the same convergence criterion of the case 
with one revolute joint is reached.

The process  converges  to  the  ideal  configuration,  as  can  be  seen in  Table  3.2, 
Figure 3.11 and Figure 3.12.

k 0 1 2 ideal

q1=d1 1.0000 0 0 0

Hq 1.5000 0 0 0

Table 3.2 - Convergence of the joint parameter and cost function towards the ideal configuration in a 
single kinematic chain with one prismatic joint.
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Figure 3.11 - Convergence of the joint parameter towards the ideal configuration in a single 
kinematic chain with one prismatic joint.
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Figure 3.12 - Convergence of the cost function towards the ideal configuration in a single 
kinematic chain with one prismatic joint.

Note that in this case, the Jacobian does not depend of the state, so the problem 
could easily be solved by estimating the solution of the linear least squares problem. 
Since the goal is to determine the state vector which minimizes the cost function, then

q=arg min
q

H q=arg min
q

1
2
∥q∥2=argmin

q
∥ q∥2=arg min

q
qT  q

=arg min
d1

3 d1
2⇒d 1=0

.

3.2.3 Prismatic and Revolute Joints (PR)

In  this  case,  a  single  link  is  attached  to  a  revolute  joint  which  is  attached  to  a 
prismatic joint. This configuration allows the link to move in an axis parallel to the 
image frame x-axis and to revolve in a plane parallel to the image plane.

Theoretical formulation

The articulated model is described in Figure 3.13.

Figure 3.13 - An articulated model with one prismatic joint and a revolute joint and its DH 
parameters. Featuring from left to right: image frame, object description, DH frames and DH 

parameters.

The transformations between reference frames are given by
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T0
C =[0 0 1 p0

x

1 0 0 p0
y

0 0 0 1 ] , T1
0 =[1 0 0 0

0 1 0 0
0 0 1 d 1

0 0 0 1 ]  and T2
1 =[ c 2 −s2 0 0

0 0 1 0
−s 2 −c2 0 0

0 0 0 1
] ,

where p0
x  and p0

y  represent the location of the origin of {0} in the image frame, along 

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[ P 0 0 1]T ,
where P  is the position along the x-axis. At the end of the link P=L1 .

The application of  the measurement of  residuals to this case yields a situation 
similar  to the case of  a  revolute joint,  hence the vector of  residuals  has the same 
general aspect as in that situation.

A point on the link is projected on the image frame using (2.3), yielding

pi q
C = T0

C T1
0 T2

1 p iq
2 =[0 0 1 p0

x

1 0 0 p0
y

0 0 0 1 ][1 0 0 0
0 1 0 0
0 0 1 d1

0 0 0 1
][ c2 −s2 0 0

0 0 1 0
−s2 −c2 0 0

0 0 0 1
][P i

0
0
1
] ,

where p iq
j  is the representation of point i  in frame j . This equation leads to

pi q
C =[d 1p0

x−Pi s2

p0
yPi s2

1 ] .

Replacing these values in the vector of residuals returns

 q=[ d1p0
x−L1 s2−t1, x

obs

p0
yL1 c2−t1, y

obs

a d1p0
x−P1 s 2b p0

yP1 c2−

a d1p0
x−P2 s 2b p0

yP2 c2−
] .

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals 
 q  regarding the state q  is given by

J=[
∂ 1

∂q1

∂1

∂q2

⋮ ⋮
∂4

∂q1

∂4

∂q2

]=[1 −L1 c2

0 −L1s2

a a −P1 c2b−P1 s2
a a −P2 c2b−P2 s2

] ,
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thus concluding the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience 
shown in Figure 3.14 was performed.

Figure 3.14 - Practical application of the model of residuals and convergence algorithm to the 
case of an articulated object with one prismatic joint and one revolute joint.

The state update equation is ran until a convergence criterion is reached, which in 
this case, because q  has 2 elements, is given by

∑∣qk1−qk∣10−5  [rad] .

Notice  that  the  magnitude  of  the  criterion  is  much  smaller  than  in  the  previous 
examples. However, it is still a small quantity.

The process  converges  to  the  ideal  configuration,  as  can  be  seen in  Table  3.3, 
Figure 3.15 and Figure 3.16.

k 0 1 2 ⋯ 5 6 7 ideal

q1=d1 2.0000 6.8490 5.1707 ⋯ 2.9998 3.0000 3.0000 3

q2=2 1.0472 0.4321 0.0480 ⋯ −0.5237 −0.5236 −0.5236 −0.5236

Hq 43.9103 2.1344 0.7339 ⋯ 0.0005 0.0000 0.0000 0

Table 3.3 - Convergence of the joint parameters and cost function towards the ideal configuration in a 
single kinematic chain with one prismatic joint and one revolute joint.
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Figure 3.15 - Convergence of the joint parameters towards the ideal configuration in a single 
kinematic chain with one prismatic joint and one revolute joint.
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Figure 3.16 - Convergence of the cost function towards the ideal configuration in a single 
kinematic chain with one prismatic joint and one revolute joint.

Since it is difficult to understand from the table and figures above how the link 
configuration evolves with the iterations, an auxiliary animation was created to show 
this evolution from the geometric point of view. In order to condense this information, 
all frames of the animation were overlaid into a single figure, as shown in Figure 3.17.
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Figure 3.17 - Evolution of the link configuration with the iterations, from the geometric point 
of view: after some initial oscillation, the link (red line segment) converges to the link feature 

(blue line); the link and tip residuals minimization is visible and ends with the link points 
(red plus-signs) and link tip (red asterisk) overlaying the link feature and tip feature (blue 

square) respectively; the numbers in rectangles below the base of the link (red circle) are the 
iterations.

3.2.4 Two Revolute Joints (RR)

In  this  case,  the  configuration  with  one  revolute  joint  is  expanded  with  another 
configuration of the same type attached at tip level.  This configuration allows both 
links to revolve in a plane parallel to the image plane. Furthermore, this combination 
of revolute joints also allows the new tip to perform limited linear movement.

Theoretical formulation

The articulated model is described in Figure 3.18.

Figure 3.18 - An articulated model with two revolute joints and its DH parameters. Featuring 
from left to right: image frame, object description, DH frames and DH parameters.

The transformations between reference frames are given by
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T0
C =[0 −1 0 p0

x

1 0 0 p0
y

0 0 0 1 ] , T1
0 =[c1 −s1 0 0

s1 c1 0 0
0 0 1 0
0 0 0 1

]  and T2
1 =[c 2 −s2 0 L1

s2 c 2 0 0
0 0 1 0
0 0 0 1

] ,

where p0
x  and p0

y  represent the location of the origin of {0} in the image frame, along 

the x-axis and y-axis respectively.
A generic point on the link is represented on the link reference frame by

p=[ P 0 0 1]T ,
where P  is the position along the x-axis. At the end of the first link P=L1  and at the 

end of the second link P=L2 .
Since now there are two links, the application of the measurement of residuals to 

this case yields a situation a bit more complex than the previous, as depicted in Figure
3.19.

Figure 3.19 - Application of the model of residuals to the case of an articulated object with 
two revolute joints.

The existence of two line features leads to the need of changing the notation, so 

that line ri  is represented by vector [a i bi i ] .

Consequently, the vector of residuals has the same general aspect as in the case of 
a revolute joint, but has more elements, due to the existence of points over the two 
links.

A point on a link is projected on the image frame using (2.3), yielding for a point on 
the terminal link
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p iq
C = T0

C T1
0 T2

1 piq
2

=[0 −1 0 p0
x

1 0 0 p0
y

0 0 0 1 ][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][c2 −s 2 0 L1

s2 c2 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

and for a point on the base link

pi q
C = T0

C T1
0 pi q

1 =[0 −1 0 p0
x

1 0 0 p0
y

0 0 0 1 ][c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

][P i

0
0
1
] ,

where  p iq
j  is  the  representation  of  point  i  in  frame  j .  These  equations  lead 

respectively to

pi q
C =[−P i s12−L1 s1p0

x

Pi c12L1 c1 p0
y

1 ]  and pi q
C =[−P i s1p0

x

P ic1p0
y

1 ] .

Replacing these values in the vector of residuals returns

 q=[
−L2 s12−L1 s1 p0

x−t1, x
obs

L2 c1 2 L1 c1 p0
y−t1, y

obs

A1,1

A1,2

A2,1

A2,2

] ,

where A1, i  and A2, i  are given by

A1, i=[a1

b1

1
]⋅[−Pi s 12−L1 s1 p0

x

P i c12L1 c1 p0
y

−1 ]  and A2, i=[a2

b2

2
]⋅[−Pi s1p0

x

Pi c1p0
y

−1 ] .

Note  that  the  orthographic  projection  is  still  used  since  the  result  of  the  dot 
product of the vectors above leads to the same result as (3.2) would.

Hence, by application of (3.6), (3.7) and (3.8) the Jacobian of the vector of residuals 
 q  regarding the state q  is given by
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J=[
∂ 1

∂q1

∂1

∂q2

⋮ ⋮
∂6

∂q1

∂6

∂q2

]=[
−L2 c12−L1 c1 −L2 c12
−L2 s12−L1 s1 −L2 s12

B1,1 C1,1

B1,2 C1,2

B2,1 0
B2,2 0

] ,

with B1, i , B2, i  and C1, i  given by

B1, i=[a1

b1
]⋅[−P i c12−L1 c1

−P i s12−L1 s1
] , B2, i=[a2

b2
]⋅[−P i c1

−Pi s1
]  and C1, i=[a1

b1
]⋅[−Pi c 12

−P i s12] .

This concludes the theoretical formulation of the problem.

Practical application

To test the convergence to the ideal solution in a problem of this kind, the experience 
shown in Figure 3.20 was performed.

Figure 3.20 - Practical application of the model of residuals and convergence algorithm to the 
case of an articulated object with two prismatic joints.

The state update equation is ran until the same convergence criterion of the case 
with one prismatic joint and one revolute joint is reached.

The process  converges  to  the  ideal  configuration,  as  can  be  seen in  Table  3.4, 
Figure 3.21 and Figure 3.22.

k 0 1 2 ⋯ 4 5 6 ideal

q1=1 −0.7330 −0.8616 −1.0617 ⋯ −1.0472 −1.0472 −1.0472 −1.0472

q2=2 −1.7802 −2.2315 −2.0927 ⋯ −2.0943 −2.0944 −2.0944 −2.0944

Hq 5.2081 0.7270 0.0038 ⋯ 0.0000 0.0000 0.0000 0

Table 3.4 - Convergence of the joint parameters and cost function towards the ideal configuration in a 
single kinematic chain with two revolute joints.
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Figure 3.21 - Convergence of the joint parameters towards the ideal configuration in a single 
kinematic chain with two revolute joints.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

iteration

co
st

 f
un

ct
io

n

H(q) [px2]

Figure 3.22 - Convergence of the cost function towards the ideal configuration in a single 
kinematic chain with two revolute joints.

As in the previous case, it is difficult to understand from the table and figures 
above how the link configuration evolves with the iterations. Once again an auxiliary 
animation was created to show this evolution from the geometric point of view. In 
order to condense this information, all frames of the animation were overlaid into a 
single figure, as shown in Figure 3.23.
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Figure 3.23 - Evolution of the link configuration with the iterations, from the geometric point 
of view: after some initial oscillation, the links (red and magenta line segments) converge to 
their link features (blue and black lines); the link and tip residuals minimization is visible 
and ends with the link points (red and magenta plus-signs) and link tip (magenta asterisk) 
overlaying their link features and tip feature (black square) respectively; the numbers in 
rectangles to the left of the link tip are the iterations. The rotational joints of the tracked 

articulated object are represented by the blue and black circles.

Additional Situation: Convergence Instability Bypass

In some situations the process does not converge to the ideal solution. In fact, in a 
situation where the initial pose is sufficiently distinct from the true pose, the initial 
value  of  the  cost  function  also  is  very  high.  Because  the  iterative  algorithm only 
converges if the corrections made to the state vector are incremental, the process may 
diverge if those corrections cannot be considered incremental.

In this example, the update equation and convergence criterion remain the same, 
however, the situation now is defined by the parameters of Figure 3.24.

Figure 3.24 - Practical application of the model of residuals and convergence algorithm to the 
case of an articulated object with two prismatic joints (additional situation). Note: only the 

initial angles changed.

As a  consequence  of  an  initial  divergence,  the  process  converges  to  a  solution 
which is not the ideal, as can be seen in Table 3.5, Figure 3.25 and Figure 3.26.
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k 0 1 2 ⋯ 14 15 16 ideal

q1=1 0.5236 1.2304 1.1705 ⋯ 3.3975 3.3974 3.3974 −1.0472

q2= 2 −1.0472 −4.4211 −1.9139 ⋯ −4.5082 −4.5082 −4.5082 −2.0944

Hq 109.3510 131.2587 105.1625 ⋯ 7.9345 7.9345 7.9345 0

Table 3.5 - Convergence of the joint parameters and cost function towards a non-ideal solution, after an 
initial divergence, in a single kinematic chain with two revolute joints.
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Figure 3.25 - Convergence of the joint parameters towards a non-ideal solution, after an 
initial divergence, in a single kinematic chain with two revolute joints.
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Figure 3.26 - Convergence of the cost function towards a non-ideal solution, after an initial 
divergence, in a single kinematic chain with two revolute joints.

Once again an auxiliary animation was created to show this evolution from the 
geometric  point  of  view.  In  order  to  condense  this  information,  all  frames  of  the 
animation were overlaid  into a single figure,  as shown in  Figure 3.27.  The initial 
divergence is clear as well as the convergence to a non-ideal solution.
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Figure 3.27 - Evolution of the link configuration with the iterations, from the geometric point 
of view: after some initial oscillation, the links (red and magenta line segments) converge 

towards a non-ideal configuration, failing to overlay their link features (blue and black lines); 
the link points (red and magenta plus-signs) and link tip (magenta asterisk) should overlay 

their link features and tip feature (black square) respectively; the numbers in rectangles 
below the link tip are the iterations. The rotational joints of the tracked articulated object are 

represented by the blue and black circles.

It  was  verified  experimentally  that  with  this  configuration  of  parameters  the 
divergence can be avoided if the state update equation is changed to

qk1=qk−[Jk
T Jk ]

−1 Jk
T k ,

where an adaptive step   is used to ensure that all corrections to the state vector can 
still  be considered incremental. Note that the state update equation from (3.4) is a 
particular  case  of  this  one,  where  =1 .  Using  a  smaller  adaptive  step,  like  for 
example =0.1 , the process converges at the cost of a greatest number of iterations, 
as can be seen in Table 3.6, Figure 3.28 and Figure 3.29.

k 0 1 2 ⋯ 96 97 ideal

q1=1 0.5236 0.5943 0.6476 ⋯ −1.0471 −1.0471 −1.0472

q2=2 −1.0472 −1.3846 −1.6683 ⋯ −2.0944 −2.0944 −2.0944

Hq 109.3510 93.2694 79.9565 ⋯ 0.0000 0.0000 0

Table 3.6 - Convergence of the joint parameters and cost function towards the ideal solution, after 
including an adaptive step in the state update equation to bypass the problems of convergence, in a 

single kinematic chain with two revolute joints.

Note that the value determined for  q1  still is  10−4  radians away from the ideal 
solution, however, that only corresponds to 0.0573  degrees.
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Figure 3.28 - Convergence of the joint parameters towards the ideal solution, after including 
an adaptive step in the state update equation to bypass the problems of convergence, in a 

single kinematic chain with two revolute joints.
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Figure 3.29 - Convergence of the cost function towards the ideal solution, after including an 
adaptive step in the state update equation to bypass the problems of convergence, in a single 

kinematic chain with two revolute joints.

The animation that shows the convergence from the geometric point of view, with 
all frames overlaid, can be seen in Figure 3.30.

The difference of evolution of these two convergences from the point of view of 
descending the surface of the cost function can be observed in Figure 3.31.
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Figure 3.30 - Evolution of the link configuration with the iterations, from the geometric point 
of view: the links (red and magenta line segments) converge to their link features (blue and 
black lines); the link and tip residuals minimization is visible and ends with the link points 
(red and magenta plus-signs) and link tip (magenta asterisk) overlaying their link features 

and tip feature (black square) respectively; the numbers in rectangles to the right of the link 
tip are the iterations. The blue and black circles represent the rotational joints of the tracked 

articulated object.
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Figure 3.31 - The cost function H(q) as a function of the DOF (top: isometric view; left: top 
view; right: level lines); the red and blue plots represent the evolution of the DOF from a 

common starting point towards the non-ideal solution (red) and the ideal solution (blue). The 
cost function has a period of 2π radians along each DOF since both are revolute joints.
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3.3 Chapter Outcome

So  far,  both  the  articulated  model  and  the  pose  estimation  algorithm  have  been 
presented. The pose estimation algorithm uses a projection of the articulated model 
and data collected from the image to estimate the model parameters which make the 
projected articulated model overlap the data collected from the image. However, there 
is still no understanding of how data is collected from the image, which is shown in 
the next chapter.

In this chapter it has also been shown that it is critical that the Gauss-Newton 
method converges to a solution as close as possible to the real one. As the complexity 
of the model increases, good convergence may become more difficult to attain. In such 
situations the update step may have to be limited using additional methods.
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4 Image Analysis

The estimation of model parameters described in the previous chapter relies on data 
extracted from a sequence of images. The image analysis routine returns this data as 
axial lines aligned with the phalanges (link features) and as points related with the 
finger tips location (tip features). This data is estimated from image samples retrieved 
by specialized image analysis entities working on a local context, the image trackers.

The location of the image trackers is set by the model  Mq  using a predicted 
state vector q . There are two types of image trackers: link trackers, which collect data 
from the finger phalanges in the image, and tip trackers, which collect data from the 
finger tips in the image.  Data is retrieved from the images with the help of these 
trackers, where link and tip trackers originate link and tip features, respectively.

In order to analyze an image and return data in a certain format it is necessary to 
go over a series of steps, all of them always present in the image analysis routine. The 
process can be separated into four distinct tasks:

1. Positioning image trackers;
2. Image sampling;
3. Feature search;
4. Line fitting.

The third task is the most critical and this is where most of the effort was put. Not 
surprisingly,  it lead to a larger amount of related work, including a wide range of 
variations, which are presented in Appendix D for reference. The remaining tasks are 
more trivial.

53



4.1 Positioning the Image Trackers

This is the step in charge of positioning the image trackers over the image so the local 
analysis can then be performed. In the following explanation a single-finger situation 
is considered.

The model  Mq  provides estimates of  the end coordinates of  each link in the 
image frame using (2.3), where q  is the same prediction used in the pose estimation 
algorithm. This prediction can be the state estimated in the previous image frame or a 
prediction considering the recent range of movement, understood from the estimations 
produced along a set of recent frames. For convenience of both feature extraction and 
pose estimation algorithm, the initial state of the articulated model should be as close 
as possible to the state of the tracked object.

As a simplification to the initialization process, the initial state is set by hand on 
the  first  frame  of  the  image  sequence,  so  the  projection  of  the  articulated  model 
overlays the tracked object in the image. This avoids using more complex techniques 
to estimate the initial state.

Projecting  the  articulated  model  helps  placing  the  image  trackers,  which  are 
responsible for extracting contour points from the image. Each link tracker is located 
on the projection of its corresponding finger link, while each tip tracker is located on 
the projection of its corresponding finger tip.

Figure 4.1 - Projection of the articulated model on the image frame showing links (coloured 
segments), joints (coloured circles), tip (blue dot) and silhouette of corresponding finger 

(dashed curve).

A link tracker is positioned and oriented the same way an articulated model link is 
projected on the image,  therefore it  is  not surprising that  the algebra and storing 
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methods involved in this process resemble those involved in simulating edge points 
(check Appendix B for details), as shown in Table 4.1.

Local Image Trackers Simulated Edge Points
Positioning of link tracker Projection of model link

Positioning of link tip Projection of model tip
Positioning of samplers 

perpendicularly over link tracker axis
Spreading of marks over the projected 

link
Computation of sampling extremes 

for link samplers
Generation of edge points to both 

sides of projected link
Table 4.1 - The methods involved in positioning the image trackers resemble those involved in 

simulating edge points.

The derivation as how to place, orient and store the link trackers is immediate 
once this algebraic parallelism is noticed. Link trackers are placed directly over the 
projected links, and link samplers with limited scope are positioned perpendicularly 
along these trackers.

Figure 4.2 - Link samplers (dotted segments) positioned perpendicularly over the projected 
links. The samplers have limited scope. This example shows four samplers being used on the 

proximal phalanx and three samplers on each of the other two phalanges.

The positioning of the tip tracker is slightly more complex and can be described as 
a two-step proceeding: first a rude estimate and then a refinement. The previously 
discussed initial  position of the tip tracker is refined using a line aligned with the 
distal  phalanx of the finger.  Such a line,  also referred as a terminal  axial  line,  is 
determined by the line fitting algorithm which is described later. The position of a tip 
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tracker  is  refined  by  projecting  the  position  of  the  initial  tip  tracker  on  the 
corresponding terminal axial line. The tip sampler is then oriented with the direction 
of the axial line and sampling extremes are determined as with a tip sampler (see 
Figure 4.3).

Figure 4.3 - The refined tip position (blue circle) results from projecting the predicted finger 
tip (blue dot) on the extracted link feature (dotted blue line), perpendicularly (dotted red 

segment) to the line. The tip sampler (green segment) is placed on the line and centred on the 
refined tip.

Given a terminal axial line defined by point  pax  and vector vax  (headed towards 

the tip), the projection of model tip ptip  on the axial line corresponds to ptip , the point 
on that line closest to the model tip, which is computed with

ptip=paxptip−pax
T
v0v0 . (4.1)

A  directional  unitary  vector  v0  is  computed  dividing  vax  by  its  norm.  The 
sampling  extremes  for  the  tip  sampler  are  computed  relatively  to  the  refined  tip 
position.  This  is  similar  to  defining  the  sampling  extremes  for  a  link  sampler 
relatively to the point where it intersects the link tracker.

4.2 Image Profile Sampling

Once  the  image  trackers  have  been  placed  and  the  extremes  for  each  sampler 
specified,  the  image  is  sampled  along  each  of  the  specified  line  segments.  The 
sampling procedure computes the intensity values along a line or a multiline path in 
an  image.  This  sampling  routine  selects  equally  spaced points  along  the specified 
path, and then uses interpolation to find the intensity value for each point. The path is 

56



specified by a parameterization of endpoints along the x-axis and y-axis, which in this 
case is given by the coordinates of  the sampling extremes since the path is a line 
segment. The resulting image intensity profile along each line segment can be thought 
of as a slice of the image intensity surface.

Figure 4.4 - Finger tip image and link sampler (green segment).

In the case of image profile sampling, each profile results from sampling the image 
in specific points along a line segment.  As said before,  this segment has a certain 
length.  However,  when  an  image  is  sampled  along  line  segments  with  different 
directions a variable number of pixels is crossed, mainly because the image surface is 
discrete. To avoid this, the sampling routine is set to always sample a fixed amount of 
points.  Generally,  the  number  of  pixels  the  path  traverses  does  not  match  the 
requested number of points, so the sampling routine must use interpolation to find the 
intensity value for each of the requested points.

Figure 4.5 - Image profile returned by a link sampler: number of pixels in the sample not 
specified (top) and fixed on 20 points (bottom). Notice how the sample with less points is 

smoother.

In essence, all the interpolation methods work in a similar way. In each case, the 
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desired interpolated pixel is a point in the image. Since the coordinates of this point 
generally are not integers, its intensity value is determined by computing a weighted 
average of some set of pixels in the vicinity of the point. The weightings are based on 
the distance each pixel is from the point.

The methods differ in the considered set of pixels used for the weighting:

• For nearest neighbour interpolation the desired point is assigned 
the value of the pixel it falls within. No other pixels are considered.
• For bilinear interpolation, the point value is a weighted average of 

pixels in the nearest 2-by-2 neighbourhood.
• For bicubic interpolation, the point value is a weighted average of 

pixels in the nearest 4-by-4 neighbourhood.

Do bear  in  mind  that  this  description  is  merely  for  elucidation  purposes.  The 
sampling  routines  only  require  the  path  parameterization  and  the  interpolation 
method to use.

Figure 4.6 - Comparative plot of an image profile with 20 points using nearest neighbour 
(red), bilinear (green) and bicubic (blue) interpolations.

The number of pixels considered in the interpolation affects the complexity of the 
computation.  Therefore  the  bilinear  method  takes  longer  than  nearest  neighbour 
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interpolation, and the bicubic method takes longer than bilinear. However, the greater 
the number of pixels considered, the more accurate the effect is, so there is a trade-off 
between processing time and quality.

Notice there was no distinction whether the sampling referred to link trackers or 
tip trackers. This was intentional because the sampling process itself does not depend 
on knowing if it is going to be used for link or tip tracking purposes.

4.3 Searching for Edges

This step must  analyze the intensity profiles to determine edge points as  accurately 
and robustly as possible. There are two types of edge points, one regarding the sides of 
the phalanges and the other the finger tips. Points of the first kind are divided into 
groups which will later be used to determine the axial lines. Points of the second kind 
indicate the position of the finger tip.

Figure 4.7 - Feature search is the block responsible for analysing the image profiles and 
finding the location of the edge points.

The way of retrieving edge points for the links or tips are not necessarily the same. 
In fact,  apart from the initial  motivation,  the investigation methods head different 
ways. In this case however, finding tip edges is always  dependent of the axial  line 
determination.

The importance of extracting features from an image is only equalled by the pose 
estimation algorithm. Good pose estimation is achieved in part by good and robust 
feature  extraction  and  in  part  by  an  appropriately  convergent  pose  estimation 
algorithm.

Feature search is the process responsible for getting information from an image 
and  returning  data  ready  to  use  in  pose  estimation.  Appendix  B shows  how  to 
simulate this data when feature search routines are not implemented. 

This is the most critical step of the image analysis process. Initially it was a simple 
method  but  was  progressively  enhanced for  performance and robustness  until  the 
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method described in this section was reached. Prior developments of the method and 
their alternatives can be found in Appendix D. The first of those methods is the most 
basic  and  is  based  on  [1].  It  suffices  for  a  very  basic  implementation  of  feature 
extraction.

The present method evolved from that same method, so it still preserves the same 
goal: using each image profile sample to determine the location of the edges used in 
line fitting.

However, this method is very different from the preceding ones in one aspect: it is 
the only one designed to handle finger occlusion. When considering fingers there can 
be mutual or self occlusion, respectively if a finger occludes another or itself.

The proposed method is a compromise between the perpendicular sampling idea in 
[1] and the templates and windowing functions concepts in [2]. A consequence of this 
compromise is no longer using the derivatives  of  the image profiles and using the 
profiles instead. The profiles are downsamples of the finger phalanges, so they still 
contain information about the aspect of the fingers on image. Derivatives aren't used 
because if an image profile samples a region where a finger is occluded, the derivative 
of that image profile will present peaks in undesired regions.

4.3.1 Template Matching

Another concept borrowed from [2] is template matching using the standard sum of 
squared differences (SSD).  Template  matching  using  correlation  tends  to  privilege 
regions with high intensity, as those resulting from a more intense illumination. To 
avoid such discrimination, and since it is reasonable to assume there are no changes 
in illumination along the image sequence, the sum of square differences (SSD) is used 
and is defined as

SSDs1 s2
k=∑

j
[s1  j −s2 j1−k ]2

with a best match given by

k=arg min
k

SSDs1 s2
k  .
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For performance reasons the SSD is computed as a function of correlations, since 
the correlation of two signals is already implemented as an optimized function. When 
written as a function of correlations, SSD becomes

SSDs1 s2
k=Rs1 i

k −2 Rs1 s2
k s 2

T s2 ,

where i  is a vector the same size as s 2  filled with ones and Rx y k   is the correlation 
of signals x  and y .

In order for the SSD to be robust to occlusions it is necessary to restrict its scope of 
calculation  to the image  regions where  the  phalanx in  question  is  visible.  This  is 
where another concept  is  borrowed from  [2]:  windowing functions.  These functions 
present ones where the phalanx is visible and zeros outside. In the present adaptation 
of that concept each window function masks an image profile template originating 
windowed image profile templates (see Figure 4.8).

Figure 4.8 - The entities involved in windowed template matching (starting from top): a 
template of an unoccluded finger is taken and stored for future reference; a measure of the 
link profile is taken in the current frame; entity M(q) informs where the link is still visible 

and helps define a window function; a windowed template results from multiplying the stored 
template by the window function. Plots on the left represent the image profile along the green 
paths on the right; the x-axis is the pixel number and the y-axis the intensity value, defined 
as an integer between 0 and 255 with the exception of the window function which is binary.
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Imagine an image profile sample  I  has an associated visibility function  v  the 
same size as  it  but  with ones where the sample is  visible  and zeros outside.  The 
visibility function is used to mask a profile template t , which represents the aspect of 
an  image  profile  sample  when there  is  no  occlusion.  The  masked  template  m  is 
computed with m k=v k  t k . This masked template is used on a windowed version 
of the SSD, only computed where m0  and given by

WSSDI , t∣v k =WSSDI , m k = ∑
j :v j 0

[I  j −m j1−k ]2 .

The WSSD curves of  a  link  can be grouped side by  side to  originate  a  WSSD 
surface.
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Figure 4.9 - The WSSD curves of the link profiles (left) can be combined into a single WSSD 
surface (right). The sample x-axis coordinate is represented by k, the units of the WSSD are 

squared intensity values.

4.3.2 Edge Estimation

The proposed edge estimation method resorts to a priori knowledge of phalanx width 
and to the WSSD surface. After combining the WSSD curves to form a surface (see 
Figure 4.9), a line is fit to the valley crossing all curves. The valley corresponds to 
minima of the surface which are searched individually for each curve using a gradient 
descent strategy. These minima are then used to estimate the line. The line indicates 
the offset between each template and its match, which is a measure of the deviation 
between  model  Mq  and  the  object  in  the  image.  These  offsets  are  marked 
perpendicularly to the model to produce estimates of the whereabouts of the object, 
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and will be referred to as central points. The location of each pair of edge points is 
estimated using a central point and the width of the phalanx, so to position the edges 
at the same distance of the central point, along the same perpendicular used before.

Let  S  be  the  WSSD  surface  composed  by  a  set  of  curves  s i .  Let  y  be  the 
estimated  coordinates  of  the  regression  line  on  the  y-axis  (see  Figure  4.10).  The 
purpose is to find the direction of the minimum at each curve on a specified point yi . 

This is done by differentiating each of the s i , or similarly, by computing the gradient 

of  S  along each column (the  s i  are column vectors). The result is a surface  G  the 

same size as S , composed of several g i  the same size as the s i . At each point these 

gradient curves  g i  specify the direction of growth of the respective  s i .  To reach a 

minimum along any s i , each yi  is updated so the corresponding value on S  has less 
magnitude than before. This is achieved with the update equation

yk1=yk−sign  g ,

where g  is a vector with the gradients of each s i  on a specified yi . This is the same 
principle as gradient descent but with the update step restricted to the unit.

Figure 4.10 - The WSSD surface (left) and its gradient surface (right). Also featuring: the 
fourth WSSD and gradient curves (red curves), the first point used for regression (left red 

dot) and its respective gradient (right red dot).

The several yi  updates do not necessarily evolve in the same direction (see Figure
4.11), so a line is adjusted to the updates in order to estimate a collinear set of points. 
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This is done using a partial linear least squares (PLLS) regression, explained in detail 
in Appendix D, where model y=c0c1 x  is adjusted to the x i , y i . The x i  in the model 

are given by the column number of  S  and the yi  in the model are the updated yi . 
The PLLS method determines the line which fits the data. However, the coordinates of 
the line at each point must be integers, so it is necessary to round the yi  towards the 
nearest integer.

Figure 4.11 - The steps of the algorithm used to fit a line to the valley of the WSSD surface. 
Each grid is a top view of the WSSD surface. The initial data is updated by an unit 

considering the gradient of the WSSD curves; a line is adjusted to the updated data; the 
estimated data is placed over the line; the estimated data is rounded toward the nearest 

integer. Red dots indicate the result of using the current operation on red circles (data carried 
from last step).

The process is then repeated until the rounded yi  converge or a certain number of 
iterations is reached.

The orientation and position of the valley are defined by the x i , y i . These points 
are then used to estimate the offset of each template. The offset corresponds to the 

deviation of  yi  relatively to the centre of  s i . This offset is marked relatively to the 
centre of the profile template and the width of the phalanx is used to extrapolate the 
locations of the edges. Those locations are then converted back to image coordinates so 
they can be used by the line fitting algorithm.

4.3.3 Visibility Ordering

The  third  component  of  the  edge  estimation  process  is  the  computation  of  the 
windowing functions used in the WSSD. In order to determine these functions it is 
necessary  to  know  how  each  phalanx  template  is  layered  towards  the  camera. 
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Visibility ordering is the process responsible for determining that layering. There is 
more than one way of doing this. Some methods are more parametric and accurate 
than others. In  [2], for instance, this problem is extensively studied and solved in a 
parametric way. However, the visibility ordering method now introduced is based on a 
very simple concept: it needs information about the 3D shape of the phalanges and a 
state vector to produce an estimate of the region each phalanx occupies in the image.

Each of these estimates is ordered based on the distance their 3D counterparts are 
from the camera. After ordering, the polygonal regions regarding occluded phalanges 
are  submitted  to  Boolean  operations  where  the  occluding  polygonal  regions  are 
subtracted  to  it.  This  originates  truncated  polygons  which  manifest  the  occlusion 
taking  place  and  can  be  used  to  define  windowing  functions,  so  the  SSD is  only 
computed with the visible portion of a template. The windowing function for an image 
profile sample I  is easily computed determining which sample points of I  fall inside 
the truncated polygon.

Picture  a  situation  where  one  finger  occludes  another.  Each  finger  has  three 
phalanges  which  are  modelled  by  a  convex  3D  shape,  like  a  cylinder  toped  with 
hemispheres.

Figure 4.12 - Side view of a finger (left)  and corresponding model formed by 3D pill 
primitives (right).

The image coordinates of each vertex of these 3D shapes is found with a process 
described in Appendix C. This process also preserves information about the distance of 
each 3D vertex to the camera, which will be used in depth sorting.
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Figure 4.13 - Cloud of points formed by vertices of a 3D pill primitive projected on the image 
frame (only the vertices of the hemispheres are needed).

After each shape is projected on the image its convex hull is computed as described 
in  Appendix  C.  This  indicates  the  outer  points  of  each  projected  3D  shape,  thus 
enabling it being described by a convex polygon.  Redundant points in each convex 
polygon are eliminated by a method also described in Appendix C, leading to identical 
polygons defined with less vertices.

Figure 4.14 - Convex hull of projected 3D pill primitive (left) and its reduced version (right).

Since depth information is preserved it is possible to know the distance of each 
peripheral point to the camera. This enables determining which polygons are in front 
of the others.

Depth sorting is the process responsible for ordering polygons in layers according 
to  their  sequence towards the  camera.  If  a  polygon is  in  front  of  another,  from a 
camera point of view, then it will be placed in a layer closer to the viewer.
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The attribution   of  layers  to  each  polygon  is  based  on  a  coarse  depth  sorting 
strategy, which is nonetheless more than enough for most situations. Each polygon 
has an associated depth computed as the average depth of its vertices.

Figure 4.15 - A depth sorting strategy is used to attribute a layer to each polygon, ordering 
them from the farthest away to the closest one.

Figure 4.16 - The viewer sees shape B occluded by shape A. Depth sorting works fine (white 
arrow situation) if the average depth of the occluded shape B is greater than that of the 
occluding shape A. However, if the average depth of B is less than that of A, B will be 
incorrectly considered the occluding shape (red arrow situation) when it should be the 

occluded one (green arrow situation).

The polygons can then be ordered based on their average depth. This will work just 
fine as long as the depth of the occluded polygon does not indicate it should be in front 
of the occluding polygon. Of course this method works better if the main direction of 
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the 3D shapes is on a plain parallel to the image plain.

Figure 4.17 - The polygons on the left are depth sorted and subject to Boolean subtractions 
originating the truncated polygons on the right, which will be used to define the visibility 
functions. The top finger occludes the bottom one, hence the bottom finger polygons are 

truncated. Phalanges of the same finger not considered for occlusion purposes.
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Figure 4.18 - Defining window functions with the help of truncated polygons. Left: truncated 
polygons and link samplers (blue segments). Right: detail of region on left, presenting the 

sampling points. Bottom: window function surface has ones where sampling points fall inside 
the truncated red polygon and zeros outside.
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Once each polygon is depth sorted it is necessary to eliminate the occluded regions 
of the occluded polygons. This produces other polygons which could be flattened into 
the same layer and still convey where occlusions take place. Starting with the farthest 
away polygon, each polygon is cut where the ones in front occlude it. This is done with 
a Boolean subtraction of polygons.

The visibility functions result from finding which sampling points of the image 
profile  samples  fall  within  the  truncated  polygons.  Remember  each  link  has  an 
associated  truncated  polygon  and  associated  image  profile  samples.  The  visibility 
functions present ones inside the truncated polygon and zeros outside.

Usually the determination of visibility functions is performed at the end of each 
frame, after the pose is estimated and the pose prediction for the next frame is made. 
These visibility functions are then used in the beginning of the next frame, where the 
image profiles are sampled.

4.4 Line Fitting

The fourth and last step in the image analysis process is to fit lines to each set of 
extracted boundary  points  in  order  to  estimate  the  axial  lines  which  describe  the 
orientation  of  the  phalanges  in  the  image.  This  line  fitting  process  is  something 
completely different from the line fitting process used in edge estimation. While in 
edge estimation the goal was to parameterize the valley in the WSSD surface, here the 
goal is to parameterize the sides of the phalanges to later parameterize the orientation 
of the phalanges.

After extracting contour points from the image it is necessary to fit lines to the sets 
of points regarding the sides of the phalanges. The line fitting process assumes these 
contour  points  are  correctly  divided  into  groups  of  points  sharing  the  same 
characteristics, such as being on the same side of a phalanx.
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Figure 4.19 - The contour points used in the line fitting algorithm are divided into groups, 
sharing same link (same colour) and same side of a phalanx. The dotted segments represent 

the link samplers and the blue circle the finger tip.

The  line  fitting  routine  fits  a  line  to  each  of  these  groups  of  points  using  a 
deterministic variation of the RANSAC (Random Sampling Consensus [22]) algorithm. 
Whereas RANSAC (Figure 4.20) randomly selects pairs of points,  fits a line to the 
pair,  and  refines  the  best  configuration  considering  the  points  which  lie  within  a 
certain distance from the line (the inliers), this variation deterministically goes over 
every possible pair of  points to determine which one leads to more inliers.  This is 
considered an acceptable procedure since the number of points to fit is very small, 
usually not more than six per group. In the present case, the Euclidean distance is 
used to measure the distance between a line and a point.

2 inliers 3 inliers 5 inliers

Random selection of hypothesis

Refinement

Figure 4.20 - The RANSAC (Random Sampling Consensus) algorithm: random selection of 
pairs of points searching for the configuration with more inliers (top); refinement of the best 

configuration (bottom).

The line  fitting  algorithm  takes  as  argument  a  group  S  of  n  similar  points, 
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arranged in a matrix as

S=[S1
x ⋯ Sn

x

S1
y ⋯ Sn

y] ,

where each column indicates the image coordinates of a point. This structure makes it 
easier to determine the line.

Then,  it  does  an  exhaustive  search  fitting  a  line  to  each  pair  of  points  and 
determining the inliers. A point is considered an inlier if it is closer than a distance   
from the line.

After determining which set of points leads to more inliers, it is necessary to refine 
that choice. This is achieved with a minimization of a total least squares problem, or 
similarly,  performing  a  principal  component  analysis  (PCA)  [23] of  the  inliers 
scattering. First, the m  inliers are stored in a 2×m   matrix arranged as

Y=[Y1
x ⋯ Y m

x

Y1
y ⋯ Y m

y ] ,

so that its 2×2  covariance matrix RYY  can be computed. By definition

RYY=E[Y− YY−Y T ]∝Y− YY−YT ,

where the proportionality factor can be 1/m−1  or 1/m  depending on the definition 
used. Either way, the refinement will stand no matter the factor used. Afterwards, the 

eigenvalues  and  eigenvectors  of  RYY  are  computed,  since  the  main  direction 
corresponds to the eigenvector whose eigenvalue has the largest magnitude.

Once the eigenvalues and eigenvectors are determined, the refined fitting line is 

defined  as  passing  by  point  p=E [Y i ] ,  the  centre  of  mass  of  the  inliers,  with  an 

orientation parallel to v , the eigenvector with the largest eigenvalue.
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Figure 4.21 - After the PCA fits a line to a set of points of the same group (left), that line can 
be described by a point and a line (middle) or by three line parameters (right).

Remember these lines are adjusted to boundary points of the finger phalanges. 
However the pose estimation algorithm requires axial lines describing the orientation 
of the finger phalanges. Thus, it is necessary to convert each pair of boundary lines to 
a link feature representing the link axial line.

In practice, the axial line can be described by parameters  [aax bax ax]  or by a 

point  pax  and  a  vector  vax  parallel  to  the  line.  It  was  concluded  to  be  easier  to 

determine pax  and vax  first and then convert the result to [aax bax ax] .

Figure 4.22 - The direction of the axial line is chosen as the one making the least of two 
angles with the peripheral lines. In the depicted case, the horizontal axial line would be 

chosen since it makes a smaller angle than the vertical axial line.

Given any two boundary lines with unitary direction vectors v1  and v2 , generally 

not  parallel,  there  are  two  possible  solutions  for  the  direction  of  vax ,  always 
perpendicular to each other. The goal is having the axial line making the least of two 
possible  angles  with  the  boundary  lines.  The  conclusion  is  made  based  upon  the 

following criterion: if ∥v1v2∥≥∥v1−v2∥  then vax=v1v2/2 , else vax=v1−v2/2 . The 

resulting vax  is generally not unitary, but computing it this way (with unitary vectors) 
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is easier and faster than resorting to trigonometric functions to determine each of the 
angles of the boundary vectors, more algebra to determine the correct angle for the 

axial line and yet more trigonometry to compute the components of vax .

As for point pax , a point in the axial line, its computation is slightly more complex 
and the computational  precision must be taken in account to avoid wrong results, 
especially when the boundary lines are close to being parallel (see Figure 4.23). Given 

two boundary lines defined by points p1  and p2  and with direction vectors v1  and v2

, generally not parallel, the goal is to determine the point of intersection  pax  which 
satisfies

p1k1v1=p2k 2v2=pax , (4.2)

where k1  and k2  are multiplicative factors to be determined. The solution is easier to 
compute if the first equality of (4.2) is rewritten as

k1v1−k2 v2=p2−p1⇔[v1
x −v2

x

v1
y −v2

y][ k1

k2
]=p2−p1

in order to form a matricial system like

k=V−1p2−p1 , (4.3)

where k  is the vector of multiplicative factors and V  is the square matrix formed by 
v1  and −v2 . After this, point pax  can be found substituting either k1  or k2  in (4.2).

However, when the boundary lines are almost parallel (4.3) cannot be used. From 
the geometric point of view, it means an intersection on an infinite point. From the 
computational point of view, the inversion of V  may result inaccurate if the matrix is 
nearly singular. To avoid such results, (4.3) is only carried out if the magnitude of the 
determinant is over 10−9 . Also, the determinant of V  has the same expression as the 

dot product of  v1  by a vector perpendicular to  v2 , so when the boundary lines are 
close to parallel this dot product is very close to zero. When the boundary lines are 
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almost parallel, pax  is alternatively computed with

pax=p1p2/2 , (4.4)

which is fairly reasonable since when two lines are parallel any p1  and p2  have an 

equally distant point pax  over the axial line.

Figure 4.23 - Determination of a point belonging to the axial line depends on the parallelism 
of the peripheral lines. When peripheral lines are not parallel (left) the point of the axial line 
is the point of intersection of the two lines. When the lines are parallel (right) the point of the 

axial line is the geometric mean of the points of the peripheral lines.

To convert the axial line parameterization from point-vector notation pax ,vax  to 

the three element notation [aax bax ax] , it's only necessary to understand that in the 

general line equation a xb y−=0 , a , b  is a vector normal to the line and   is the 
distance from the line to the origin of the reference frame.

4.5 Chapter Outcome

By now, the three fundamental parts of the proposed pose estimation method have 
been explained. This chapter has explained how to extract data from an image to use 
with the pose estimation algorithm. This data corresponds to lines aligned with the 
finger phalanges and points indicating the position of the finger tips.
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5 Temporal Integration

The  measurement  and  estimation  of  a  quantity  generally  has  an  associated 
uncertainty. The source of uncertainty lies in many aspects [24][25]:

• No mathematical model is perfect. Any such model depicts only those 
characteristics  of  direct  interest  to  the  problem  in  question.  Even 
effects  which  are  modelled  are  necessarily  approximated  by  a 
mathematical model;

• Dynamic  systems are  driven not  only  by  control  inputs  but  also  by 
disturbances  which  can  neither  be  controlled  nor  modelled 
deterministically;

• Sensors do not provide perfect and complete data about a system. First, 
they  generally  do  not  provide  all  the  information  one would like  to 
know.  In  other  situations,  a  number  of  different  devices  yield 
functionally related signals, and one must then ask how to generate a 
best estimate of the variables of interest based on partially redundant 
data. Sensors do not provide exact readings of desired quantities, but 
introduce  their  own  system  dynamics  and  distortions  as  well. 
Furthermore, these devices are always noise corrupted.

In the present situation image noise cannot be ignored neither the fact both the 
image domain and intensity are discrete, thus introducing some quantization errors, 
even if neglectable. On top of this, there is the process of retrieving information from 
an image, which is achieved by subsampling an image region. Then there are sources 
of uncertainty, mainly due to estimation routines such as hand pose estimation and 
the existence of roundings towards integers such as in edge detection and line fitting. 
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All  these  factors  contribute  to  an  overall  uncertainty  and error  on  the hand pose 
estimation problem.

This uncertainty is  often visible  when the temporal  evolution of  any estimated 
parameter is plotted, usually showing in the form of a curve with high frequency jitter 
of low amplitude.

If the way this parameter is allowed to evolve with time is parameterizable, and 
the typical  measurement noise is quantifiable,  then it may be possible to design a 
filter which takes these assumptions and the measurements to produce estimates with 
less associated error.

One such filter is the Kalman filter, which will  be used to refine the estimated 
state vector of the present frame and to predict the state vector of the next frame. 
Appendix  E shows  an  additional  situation  where  the  Kalman  filter  is  used  to 
determine the phalanx width.

5.1 Kalman Filter

The Kalman filter provides a computationally efficient recursive solution of the least 
squares state estimation. The filter is very powerful in several aspects: it supports 
estimations of past, present and even future states, and it can do so even when the 
precise nature of the modelled system is unknown.

The filter  has  many  different  variations  depending  on  the  desired application, 
however,  they  all  have  a  common  background.  First,  the  basic  Kalman  filter  is 
presented as an introduction to the estimation of a stationary process. After that, a 
more  elaborate  Kalman  filter  capable  of  dealing  with  position,  velocity  and 
acceleration is described.

5.1.1 The Discrete Kalman Filter

This  section  describes  the  filter  in  its  original  formulation  [26],  where  the 
measurements occur and the state is estimated at discrete points in time. For a more 
direct introduction to the basic concepts of the Kalman filter check [24] or  [25] for a 
hands-on approach with some examples and practical applications.
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The Process to be Estimated

The  Kalman  filter  addresses  the  problem  of  estimating  the  state  x∈ℝn  of  a 
discrete-time controlled process that is governed by the linear stochastic difference 
equation

xk=Axk−1Bukwk−1 ,

where the  n×n  matrix  A  relates the state at the previous time step  k−1  to the 
state at the current step k  in the absence of either a driving function or process noise; 

the  n×l  matrix  B  relates the optional  control  input  uk∈ℝ l  to the state  x ;  the 

random variable wk  represents the process noise.

This process is observed with a measurement y∈ℝm  described by

yk=Hxkvk ,

where the m×n  matrix H  relates the state to measurement yk  and vk  is a random 
variable representing measurement noise.

In general, matrices A  and H  may change over time, but here are assumed to be 
constant.

The process and measurement noises are assumed to be independent of each other, 
white and with normal probability distributions

pw~N 0,Q
pv~N0,R

where the noise covariance matrices Q  and R  might change with each time step but 
are also assumed to be constant, for convenience.

The Discrete Kalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback control: the filter 
estimates the process state at some time and then obtains feedback in the form of 
noisy measurements. As such, the equations for the Kalman filter fall into two groups: 
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time  update  equations  and  measurement  update  equations.  The  time  update 
equations are responsible for projecting forward in time the current state and error 
covariance  estimates  to  obtain  the  a priori estimates  for  the  next  time  step.  The 
measurement update equations are responsible for the feedback: incorporating a new 
measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the 
measurement update equations can be thought of as corrector equations. Indeed the 
final estimation algorithm resembles that of a predictor-corrector algorithm for solving 
numerical problems.

After algebraic manipulation [25], the discrete Kalman filter prediction equations 
are given by

xk∣k−1=A xk−1Buk

Pk∣k−1=APk−1A
TQ

where xk∣k−1  is the prediction for the next state; Pk∣k−1  is the a priori and Pk−1  the a 

posteriori estimate error covariances, with

Pk=E[ek ek
T ]T ,

where

e k=xk−xk .

The filter starts off from this point using initial conditions for xk−1  and Pk−1 .
On the other hand, the discrete Kalman filter measurement update equations are 

given by

K k=Pk∣k−1H
T HPk∣k−1H

TR−1

xk=xk∣k−1Kk yk−H xk∣k−1
Pk=I−KkHPk∣k−1

78



where the first task is to compute the Kalman gain K k . The next step is to actually 

measure the process to obtain yk , and then to generate an a posteriori state estimate 
xk  by incorporating the measurement. The final step is to obtain an a posteriori error 

covariance Pk .
After each time (prediction) and measurement (correction) update pair, the process 

is repeated with the previous a posteriori estimates used to project or predict the new 
a priori estimates. This recursive nature is one of the very appealing features of the 
Kalman filter.

5.1.2 The g-h-k Kalman Filter

In the previous Kalman filter, the Kalman gain decreases with time. This induces the 
filter to ignore the measurements at a later time step and to rely mostly on its history. 
Besides this, it also requires a large number of parameters to be tuned.

The g-h-k Kalman filter  [27] is  a  way of  accounting  for first  and second order 
aspects while estimating the process, which makes it suitable for tracking a target 
having a constant acceleration. In such a case, the target equations of motion become

xk=xk−1ẋk−1 Tẍk−1
T2

2

ẋk=ẋk−1ẍk−1T

ẍk=ẍk−1 .

But  the  novelty  in  this  new  filter  formulation,  is  the  fact  that  the  gains  are 
constant over time,  so the filter always makes the same compromise between new 
measurements and history.

To  avoid  a  3-fold   increase  in  the  complexity  of  the  filter,  due to  inclusion  of 
velocity and acceleration, the formulation of the equations follows a more heuristical 
rather than probabilistical approach. The tracking equations needed for updating the 
prediction estimates of position, velocity and acceleration for the constant-accelerating 
target model become
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̈xk=̈xk∣k−1
2 k
T2 yk−xk∣k−1 (5.1)

̇xk=̇xk∣k−1
h
T yk−xk∣k−1 (5.2)

xk=xk∣k−1gyk−xk∣k−1 (5.3)

where the form of the position update clearly resembles that of the previous filter.
The g-h-k prediction equations then become

̈xk∣k−1=̈xk−1 (5.4)
̇xk∣k−1=̇xk−1 ̈xk−1 T (5.5)

xk∣k−1=xk−1̇xk−1 T̈xk−1
T2

2
(5.6)

This  filter  relates  with  the  −−  filter  when  g,  h  and  k  are  respectively 
replaced  by   ,    and  /2 .  This  filter  has  the  advantage  that  it  can  track  a 
constant-accelerating target with zero lag error in steady-state. It will have a constant 
lag error for a target having a constant jerk (derivative of the acceleration). It is a 
three state filter, tracking position, velocity and acceleration.

In the previous filter it was necessary to tune up two noise covariances and set two 
initial conditions per parameter in the state vector. In the present filter, due to the 
heuristical  formulation,  it  is  necessary  to  tune  up  three  gains  and  three  initial 
conditions per parameter, instead of two noise covariances and four initial conditions.

Critically Damped Filter

However, it is possible to define g, h and k as functions of a single parameter  . The 
critically  damped  g-h-k  filter  represents  the  filter  minimizing  the  discounted 
least-squares error for a constantly-accelerating target, with gains defined by

g=1− 3

h=1.51−21−

k=0.5 1−3
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where   is the discounting factor given by

0≤≤1 .

The  discounted  least-squares  fit  is  a  line  fit  which  minimizes  the  sum of  the 
weighted errors with the weighting decreasing as the data get older; that is, the older 
the error, the more it is discounted.

This way it is only necessary to tune up one discounting parameter and set three 
initial conditions per parameter in the state vector.

5.2 Pose Estimate Refinement and Prediction

The state vector estimates determined with the pose estimation algorithm have an 
associated uncertainty. When the temporal evolution of the pose estimates is overlaid 
on the analysed image sequence this uncertainty  is  visible  as a sort of  trembling, 
which  relates  directly  to  the  jitter  in  the  estimates.  If  this  uncertainty  was  not 
susceptible to corrupting future estimates, the jitter could be attenuated applying a 
post processing low-pass filter on the estimates. However, each estimate starts from 
an initial condition related with the previous estimate, so if an estimate is corrupted 
(which is to say it has an intolerable uncertainty), future estimates are bound to be 
corrupted too.

The  Kalman  filter  offers  the  possibility  of  refining  the  estimates,  and  thus 
reducing the uncertainty, in real-time with the determination of estimates rather than 
on  a  post-processing  level.  Furthermore,  it  offers  the  possibility  of  including  the 
dynamics  of  the  process  in  the  filtering  process,  which  will  in  part  account  for 
disregarding estimates which disrespect those dynamics. By reducing the uncertainty 
at  each  frame  there  is  a  stronger  probability  of  obtaining  a  more  accurate  and 
jitter-free estimate.

To avoid confusing entities, when dealing with the Kalman filter the estimates of 
the pose estimation algorithm will be the measurements of the filter, while the refined 
estimates  are  the  outputs  of  the  filter.  The  filter  merely  takes  the  present 
measurements and the recent predictions and refines the measurements producing 

refined estimates.  This is done by simply replacing  yn  in the correction equations 
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(5.1), (5.2) and (5.3) with the estimated state vector q , yielding

̈xk=̈xk∣k−1
2 k
T2 qk−xk∣k−1 

̇xk=̇xk∣k−1
h
T qk−xk∣k−1

xk=xk∣k−1gqk−xk∣k−1 .

Besides the possibility of refining the estimates, a Kalman filter can also be used 
to predict the next state vector, since it uses a model of the dynamics. A prediction 
based on dynamics is likely to be closer to the pose in the next frame than the state 
vector estimated with the pose estimation algorithm. This is important because the 
closer an initial estimate of the algorithm is to the real pose in the image the better, 
since the extracted data is more likely to refer exclusively to the regions of interest 
and not to neighbour regions.

5.3 Chapter Outcome

This chapter shows a way of reducing uncertainty in the estimates provided by the 
pose estimation algorithm. It also shows how to predict the pose in the next frame 
using history. Both these aspects are achieved using the g-h-k Kalman filter, which is 
a constant gain variation of the standard Kalman filter.

There are no graphics comparing the performance using and not using the Kalman 
filter,  basically  because the estimates in one frame are related with the history of 
estimates. It was considered not to be coherent to compare estimates of the same time 
instant when the previous estimates are not the same, which inevitably affects the 
initial conditions in the current frame. Besides, the Kalman filter is used more as a 
safety  measure  against  sudden  errors  or  changes  in  the  estimates,  which  can  be 
caused by a bad convergence in the pose estimation algorithm or a bad extraction of 
features.
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6 Results

To understand the capabilities of the tracking method, tests were performed in several 
stages of development until the proposed method was finished. Three of those tests 
were selected to integrate the results chapter. They portray tracking with synthetic 
and real images, using the proposed method and an alternative one, with articulated 
models of different complexities.

6.1 Proposed Method

i  i−1 a i−1 d i  i tip link point next prev. Notes
frame link finger

0 - - - - - - - 1, 6 - Base
1  a0 0 −/2 - 0 - 2 0 Aux.

2 0 a1 0 0 - 0 - 3 1 1st 1st middle

3 −/2 0 0  3 - 1 x 4 2 2nd

4 0 a3 0 4 - 1 x 5 3 3rd 2nd

5 0 a4 0 5 A5 1 x - 4 4th 3rd

6  a5 0 −/2 - 0 - 7 0 Aux.

7 0 a6 0 0 - 0 - 8 6 1st 1st index

8 −/2 0 0 8 - 1 x 9 7 2nd

9 0 a8 0  9 - 1 x 10 8 3rd 2nd

10 0 a9 0 10 A10 1 x - 9 4th 3rd

Table 6.1 - DH parameters and extra notes for an articulated model of a hand with two fingers (middle 
and index), three DOF each. “tip” indicates the distance to the tip, “link” if there is a rigid body (1) or 

not (0) attached to the frame, “point” the joint frame axis with which to align the body, “next” and 
“prev.” the surrounding frames.

These results represent the performance of tracking a human hand using the proposed 
method  on  a  sequence  of  synthetic  images.  The  choice  of  using  synthetic  images 
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instead of real images is simple: in synthetic images the real value of the joints is 
known,  so  the  performance  of  the  method  can  be  better  evaluated.  Also,  it  was 
concluded that synthetic images portray reasonably enough what would happen with 
real  images,  provided  that  the  choices  and  assumptions  made  in  the  introduction 
chapter are still considered.

Figure 6.1 - Result of using the proposed method on a sequence of synthetic images (grey 
model on black background). The pose as estimated by the pose estimation algorithm is 

represented by the blue lines (left column of images), which generally are covered by the 
filtered estimates determined by the Kalman filter (red lines). The right column of images 

features the outlines of the windowing functions, drawn as green polygons. The five lines of 
images correspond to frames 1, 10, 20, 30 and 40 of an image sequence.

This example shows a hand with index and middle fingers, each with the three 
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DOF which allow the fingers to bend (flexion/extension) but without the additional 
DOF which allows the fingers to perform the adduction/abduction movement.  This 
choice of removing that DOF is related with observability issues: from the point of 
view of the camera, if that DOF exists, a certain image of the fingers can have more 
than  one  solution.  These  multiple  solutions  are  originated  by  the  observability 
problem itself, but also by uncertainty in the estimation process, which always makes 
some minor mistakes over time. The hand model in this case is given by Table 6.1.

The movement of the fingers is performed on a plain parallel to the image plain, 
but that has been tilted 45 degrees towards the camera (around a horizontal axis) to 
show that tracking is still possible in such a case. The g-h-k filter has =0.85 .

Figure 6.2 - Plots of the filtered pose estimates (continuous lines) versus the true values 
(dotted lines). The middle finger is represented by the top plot and the index finger by the 

bottom plot. The higher the subscript number of the angle variable, the closer to the tip of the 
finger it is.
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In  the  analysed  image  sequence,  the  index  finger  occludes  the  middle  finger. 
Particular instants of this image sequence can be seen in Figure 6.1, which also shows 
the pose estimates and filter refinements, as well  as the windowing functions. The 
plots of the filtered estimates versus the ground-truth can be seen in Figure 6.2.

6.2 Alternative Method

These results represent the performance of tracking a human hand using the most 
complex of the alternative methods (see Appendix D). This alternative method uses:

• Differentiation by convolution with Gaussian derivative;
• Compensated search space restriction;
• Rectilinearity restriction using iterative MWPLLS.

6.2.1 Real Images

This example shows a hand with index finger and thumb, each with three DOF. The 
index finger has the three DOF which allow it to bend (flexion/extension) but doesn't 
have  the  additional  DOF  which  allows  it  to  perform  the  adduction/abduction 
movement. The thumb has three DOF instead of five, chosen in a way to only allow it 
to perform the palmar adduction/abduction movement. The choice of removing some 
DOF  is  related  with  observability  issues,  as  discussed  in  the  first  set  of  results. 
Another factor that contributed for using this kinematic model was the intent to focus 
only on the study of grasping movements. The hand model in this case is the same as 
in the second kinematic model example.

The movement of the fingers is performed on a plain parallel to the image plain. 
The hand is static during the whole sequence and only the mentioned fingers move. 
The hand is covered to allow a better tracking of the index and thumb. The g-h-k filter 
has =0.85 .

In the analysed image sequence, the index finger and thumb start by performing 
spreading and grasping movements and then perform independently of each other. 
Particular instants of this image sequence can be seen in Figure 6.3, which also shows 
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the pose estimates and filter refinements. The plots of the filtered estimates can be 
seen in Figure 6.4.

Figure 6.3 - Result of using the most complex of the alternative methods on a sequence of real 
images. The hand is covered to allow a better tracking of the index and thumb. The pose as 

estimated by the pose estimation algorithm is represented by the blue lines, which generally 
are covered by the filtered estimates determined by the Kalman filter (red lines).
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6.2.2 Synthetic Images

This example shows a complete model of a hand. The kinematic model admits a static 
wrist but considers four DOF per finger and five DOF for the thumb. This choice of 
DOF allows the fingers and thumb in the model  to  describe all  of  the movements 
described in Figure 2.2. The hand model in this case is given by Table 6.2. The table 
has been shortened because the parameters for the ring finger are similar to those of 
the small finger and because the parameters for the index finger are similar to those 
of the middle finger. The parameters are chosen so that all movements which convey 
the idea of opening the hand or spreading the fingers are related with angles evolving 
on a positive direction.
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Figure 6.4 - Plots of the filtered pose estimates. The index finger is represented by the top 
plot and the thumb by the bottom plot. The higher the subscript number of the angle 

variable, the closer to the tip of the finger it is.
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The movement of the fingers is performed on a plain parallel to the image plain, 
but that has been tilted 45 degrees towards the camera (around a horizontal axis) to 
show that tracking is still possible in such a case. The g-h-k filter has =0.85 .

i  i−1 a i−1 d i  i tip link point next prev. Notes
frame link finger

0 - - - - - - - 1, 6,
11, 16,

21

- Base

1 0 −∣a0∣ 0 /2 - 0 - 2 0 Aux.

2 0 a1 0 2 - 0 - 3 1 1st 1st little

3 /2 0 0  3 - 1 x 4 2 2nd

4 0 a3 0  4 - 1 x 5 3 3rd 2nd

5 0 a4 0  5 A5 1 x - 4 4th 3rd

... ring
11  ∣a10∣ 0 −/2 - 0 - 12 0 Aux.

12 0 a11 0 12 - 0 - 13 11 1st 1st middle

13 −/2 0 0 13 - 1 x 14 12 2nd

14 0 a13 0 14 - 1 x 15 13 3rd 2nd

15 0 a14 0 15 A15 1 x - 14 4th 3rd

... index
21 0 a20 0 0 - 0 - 22 0 Aux.

22 /2 0 0 22 - 0 - 23 21 1st 1st thumb

23 /2 0 0 23 - 1 x 24 22 2nd

24 −/2 a23 0 24 - 0 - 25 23 3rd 2nd

25 /2 0 0 25 - 1 x 26 24 4th

26 0 a25 0 26 A26 1 x - 25 5th 3rd

Table 6.2 - DH parameters and extra notes for an articulated model of a hand with four fingers and a 
thumb, with all DOF in a total of 21. “tip” indicates the distance to the tip, “link” if there is a rigid body 
(1) or not (0) attached to the frame, “point” the joint frame axis with which to align the body, “next” and 

“prev.” the surrounding frames.

In the analysed image sequence, the thumb remains static. The remaining fingers 
start  by  spreading  away  of  each  other.  Then,  while  the  little  finger  evolves  to  a 
hyper-extended  position,  the  index  finger  evolves  to  a  flexed  position,  with  the 
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remaining two fingers evolving to positions gradually between. Particular instants of 
this image sequence can be seen in  Figure 6.5, which also shows the pose estimates 
and filter refinements. The plots of the filtered estimates versus the ground-truth can 
be seen in Figure 6.6.

Figure 6.5 - Result of using the most complex of the alternative methods on a sequence of 
synthetic images (grey model on black background). The pose as estimated by the pose 

estimation algorithm is represented by the blue lines, which generally are covered by the 
filtered estimates determined by the Kalman filter (red lines). The model used in tracking has 

21 DOF: five for the thumb and four for each finger.

The Gauss-Newton algorithm introduced earlier cannot be used in this case due to 
the  complexity  of  the  cost  function  and  due  to  the  extra  DOF  which  have  been 
neglected in the previous examples. Instead, a more robust Gauss-Newton method is 
used.  This  algorithm  is  a  subspace  trust  region  method  and  is  based  on  the 
interior-reflective Newton method described in [28] and [29]. The major advantage for 
the  user  is  a  faster  and  more  accurate  convergence  towards  the  minimum;  other 
advantage is the user only needs to provide this algorithm with the cost function and 
the Jacobian. For more details on this algorithm check [30].
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Figure 6.6 - Plots of the filtered pose estimates (continuous lines) versus the true values 
(dotted lines). On the first four plots, the true value of the fourth DOF overlaps the true value 
of the third DOF. On the bottom plot, the true value of the fifth DOF overlaps the true value 
of the first DOF. The higher the subscript number of the angle variable, the closer to the tip 

of the finger it is. 
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7 Conclusions and Future Work

The results show that  the fingers are successfully  tracked, although the estimates 
present some noise over time. The discrepancies between the estimated angles and the 
true angles are neglectable when the estimated model is displayed on the image. This 
happens because the differences between real and estimated angles are compensated 
along the finger, with the angle in the last articulation compensating the deviations in 
the previous ones. However, there is still room for improvement.

The results obtained with the proposed method show it  deals successfully  with 
occlusion,  since  both  fingers  are  still  tracked when  one  finger  occludes  the  other. 
However, care must be taken not to have the occluded and occluding fingers in similar 
configurations, especially not near total occlusion. This interferes with the ability of 
correctly  matching  the  profile  templates  with  the  correct  finger,  since  in  these 
situations it is harder to solve the matching ambiguity. The result bound to happen 
when a finger totally  or almost  totally  occludes another,  is  loss  of  tracking  of  the 
occluded finger.

It  is  also  known,  due  to  the  structure  of  the  Jacobian,  that  there  is  some 
redundancy when determining the angles. Generally, the articulations near the base 
have more redundancy than those near the tips, due to the direct kinematics in the 
model. This means that generally, the estimates of the joints near the base have a 
higher confidence than those near the tips. This is perceptible in the plots since the 
estimates of the joints near the base have less jitter and generally tend to deviate less 
from the ground-truth.

Since the Jacobian introduces some redundancy in the determination of some joint 
angles,  this could be used to improve the estimation process. Specifically speaking, 
each  element  in  the  vector  of  residuals  could  have  an  associated  weight  (or 
contribution) to the total magnitude of the residual. This weight could be determined 
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by the level of occlusion of a link profile, where a more occluded profile would weight 
less than a visible profile. Doing so would attribute more confidence to the data for 
which more information  is  available.  If  there is  not much data to retrieve  from a 
certain region, then it should not have so much importance in the state estimation.

Besides this weighting factors, it could also prove useful to compromise between 
the  angle  estimates  provided  by  the  pose  estimation  algorithm  and  the  angle 
predictions provided by the Kalman filter. This compromise could be balanced by the 
confidence a certain angle has in a certain time instant: if to determine the angle a 
large portion of the finger is visible,  then more confidence should be placed in the 
estimate; on the other hand, if the angle was determined mainly due to redundancy, 
then more importance should be given to the prediction.

The edge estimation process is very critical, since it provides information which is 
used by the pose estimation algorithm. As such, it still needs to be improved and have 
more  robustness.  Usually,  edge  estimation  may  start  to  loose  accuracy  when  a 
phalange is more than 50% occluded. The problem is in the lack of robustness of the 
regression method, used to estimate the valley in the WSSD surface, when there are 
occlusions.

The results obtained with the alternative method on a complete model of the hand 
show that observation ambiguity is a problem. This problem tends to aggravate when 
the joints and links configuration enables several poses to look the same on the image. 
See for example the thumb estimates: the fact that the first two links have two DOF 
each is  enough to  make the thumb estimates  converge towards a  situation  which 
doesn't correspond at all to the ground-truth. However, from the camera point of view 
no problem is visible with the thumb estimates. Nevertheless, this may prove fatal in 
other situations, since the estimation error is carried over time.

To deal with the observability problems it could prove useful to analyse additional 
points of view of the object. For example, if there were two image sequences of the 
object, where the additional sequence was filmed from a side view (aligned with the 
horizontal axis of first camera, for example), that information could be enough to solve 
the ambiguities caused by a single view. The image analysis would be carried out 
independently  in  each image  belonging  to  a  different  point  of  view.  However,  the 
information  provided  by  each  analysis  would  be  combined  into  a  single  vector  of 
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residuals. The pose estimation algorithm would then focus on this vector.
The presented tracking methods are not fail proof. There can always be situations 

where the estimated pose does not correspond to the one in the image, either because 
tracking was already lost, because an estimate was misdetermined or because there 
were observability errors carried over time which lead to an incompatible situation. 
For this reason,  it  could prove useful  to  establish a measure of  confidence for the 
estimates, as a way of detecting or predicting situations where tracking is lost. The 
loss of tracking is a problem because a local evaluation of the image is being made. A 
possible way of detecting loss of tracking would be widening the scope of evaluation 
and look at the image in a more general way.

In a general  way,  tracking works well  on synthetic  images.  However,  tracking 
could be more robust. One possibility is to improve the image analysis algorithms, 
such as the edge estimation ones, to be more robust in presence of occlusions. Also, it 
still is necessary to test the proposed method with real images. The proposed method 
is easier to use with synthetic images because the phalanges are easily modeled by pill 
primitives.  In  real  images  however,  this  is  not  the  case,  and  the  polygons  of  the 
windowing functions are much harder to model.

Temporal integration of the estimates is also an aspect to improve. In the presence 
of  occlusions,  a  bank  of  filters  could  be  used  to  provide  a  series  of  predictions, 
originating a multiple hypothesis tracking problem. Although this is more complex 
than the single hypothesis method used, it could be useful to add robustness to the 
overall method and help surpass the occlusion problem.

Some other aspects which could be explored include:

• Automatic  initialization  of  the  state  vector.  This  could  be  done  by 
asking the user to place his/her hand in a certain region of the image 
with a certain pose. If necessary, as sequence of images could be used to 
add more robustness to this initialization;

• Estimation and update of the image profile templates over time. This 
could be used to add robustness to the method when the phalanges are 
seen from different points of view over time;

• Image segmentation and background extraction. To allow tracking in 
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the presence of complex backgrounds;
• Optimization of  the code and real-time performance. To allow online 

tracking instead of resorting to pre-recorded image sequences.
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8 Appendix A: Human Hand Facts

To understand how complete a human hand is from the conceptional point of view it is 
worthy  to  point  some  relevant  facts  [31].  A  human  hand  is  a  highly  complex 
mechanism containing:

• 29 major and minor bones (many people have a few more);
• 29 major joints;
• at least 123 named ligaments;
• 34 muscles which move the fingers and thumb:

• 17 in the palm of the hand;
• 18 in the forearm.

• 48 named nerves:
• 3 major nerves;
• 24 named sensory branches;
• 21 named sensory branches.

• 30 named arteries and nearly as many smaller named branches.

Fingers are never perfectly straight. Usually, the index, ring and small finger each 
curve sideways slightly toward the middle finger, and the middle finger may curve 
toward either side. 

The thumb is controlled by 9 individual  muscles,  which are controlled by all  3 
major hand nerves, and moves in such a complex fashion that there are 6 separate 
descriptive terms just for particular directions of movement of one thumb joint, the 
basal joint, at the base of the thumb.

Contrary to popular opinion,  humans (homo sapiens)  are not the only primates 
possessing opposable thumbs. Chimpanzees and monkeys can oppose the thumb to the 
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index digit. What makes the human hand unique in the animal kingdom is the ability 
of the small and ring fingers to rotate across the palm to meet the thumb, owing to a 
unique flexibility of the carpometacarpal joints of these fingers, down in the middle of 
the palm. This is referred to as "ulnar opposition" and adds unparalleled grip, grasp, 
and torque capability to the human hand. This feature developed after the time of 
Lucy, a direct human ancestor, who lived about 3.2 million years ago.

When one curls the fingers into a fist, the fingertips naturally group together side 
by side. If the fingertips all bend together, they continue into the palm side by side. 
However, the natural tendency is for each fingertip to aim for the same point at the 
base of the thumb, which is obvious when touching each finger down to the base of the 
palm. For this reason, if a hand problem (stiffness, swelling, etc.) prevents a finger 
from meeting the side of the adjacent fingertip midway into making a fist, that finger 
will tend to cross over and overlap the adjacent finger when making a fist.

The finger bones are straight on the back side, but curved on the palm side. When 
one bends the fingers into a fist, the finger bones produce a shape similar to a circle in 
a square, round on the inside, square on the outside. 

When one makes a fist, the fingertips curve through a spiral, not a circle. This is 
because the lengths of the finger bones are related in a way seen often in naturally 
occurring spirals.  These spirals in turn relate to a mathematical series of numbers 
discovered by Fibonacci in 1202. In this series, each number is the sum of the previous 
two numbers: 0,  1,  1,  2, 3,  5,  8,  13, 21 and so on. The lengths of the finger bones 
approximate the ratio of the Fibonacci numbers 2, 3, 5, and 8.

The muscles which power the fingers are strong enough for some people to climb 
vertical  surfaces  supporting  their  entire  weight  at  times  by  a  few fingertips.  The 
muscles  which  accomplish  this  feat  are  stronger  than  one  might  imagine,  for  the 
biomechanics of the hand require that the force generated by the muscles which bend 
the  fingertips  must  be  at  least  four  times  the  pressure  which  is  produced  at  the 
fingertips.

The fingers work by remote control. Of course, in one sense, all moving body parts 
work by remote control, the control centre being the brain. However, the fingers are 
special, because there are no muscles inside them. The muscles which bend the finger 
joints are located in the palm and up in the mid forearm, and are connected to the 
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finger bones by tendons,  which pull  on and move the fingers like  the strings of  a 
marionette.
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9 Appendix B: Simulating Edge Points

The edge points had to be simulated in an early stage because the image processing 
routines were not yet implemented. There are two types of edge points, one related to 
the sides of the finger links and the other to the finger tips. The edge points for the 
links are divided into groups of similar individuals, sharing properties like same link 
and the same side of that link. These points are generated from a geometric model 
with the wished configuration.  When a silhouette point regarding the tip is needed, 
the tip of the geometric model with the wished configuration is projected on camera 
and used as the extracted tip feature.

This simulation follows a very simple procedure in order to generate the silhouette 
points for the links. For ease of understanding and implementation the procedure is 
described in Figure 9.1 (steps 1-4). This simulation also serves a second purpose, since 
it is possible to test different scattering configurations for the points, which can then 
be used to evaluate the performance of the line fitting algorithm.

The algebra behind this simulation is carried out as follows. A link ranging from 

point p1
0  to point p2

0  is projected on the image frame using (2.3) to transform each of 

these points. Hence, a point p i
0  on the base frame of the kinematic chain is projected 

on point pi
C  of the image frame with

pi
C = T0

C p i
0 , (9.1)

completing step 2 of the procedure.
The edge points are generated perpendicularly to the link in specific locations. The 

intersections of the link with the perpendiculars are marks given by
M=p⋅sTP1 , (9.2)

where M  is a 2×n  matrix with n  vectors of size 2×1  representing the location of 
the marks in camera units, and is arranged as
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M=[ M 1
x ⋯ M n

x

M 1
y ⋯ M n

y] ; (9.3)

vector  p  is a  2×1  vector describing the orientation of the projected link and is 
computed with

p= [ p2
x− p1

x

p2
y− p1

y]
C

,

where the left superscript informs the points are in the image frame {C};
vector sT  is a 1×n  vector of normalized scaling factors describing the spread of the 
marks within the line segment. In the case of an uniform spread of marks

sT=
1

n1
[1 2 ⋯ n] ;

finally,  P1  is an offset matrix of size 2×n  with n  repetitions of the coordinates of 

p1
C , hence being arranged as

P1=[ p1
x ⋯ p1

x

p1
y ⋯ p1

y] .

x

y

x

y

x

y

x

y

x

y

1 2 3

456

project desired 
link on camera

determine normal 
vector and where 
to generate points 

generate points 
and distinguish 

the group

fit a line to 
each group

determine 
the axial line

Figure 9.1 - A six-step procedure describing how to generate silhouette points for the links in 
the simulation of extracted data (1-4), how to determine the boundary lines (5) and the axial 

line (6).

The  normal  vector  describing  the  direction  of  the  perpendiculars  has  unitary 
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magnitude and is computed with

v=[0 −1
1 0 ] p

∥p∥ , (9.4)

thus concluding step 3 of the procedure.
Points are generated to each side of the line segment with

S±=M±B , (9.5)
where the sum generates points on one side and the subtraction points on the other, 
thus distinguishing the groups of points;  the  2×n  matrix  B  contains the offsets 
from the marks to the simulated boundary points and is composed of n  vectors of size 
2×1 , each computed with  v , where   is a scalar representing the distance to the 
segment.  This  parameter  is  constant  because  all  boundary  points  of  a  group  are 
generated at the same distance of the segment. If each point had its deviation there 

would be a   for each of them. Both S±  and B  are arranged similarly to M  in (9.3). 
In the end there will be as many pairs of S  matrices as the number of finger links.

The generation of tip points was already described in the opening paragraph and is 
easily derived from (9.1) leading to as many tip points as the amount of fingers.

107





10 Appendix C: Creation of Synthetic 
Images

Synthetic images are used to study the performance of the feature extraction and state 
estimation  routines  under  a  controlled  scenario.  In  their  simplest  formulation  the 
synthetic  images  are  binary  images  presenting  a  black  background  and  a  white 
silhouette  of  the  3D  model  of  the  articulated  object  (the  foreground).  In  a  more 
elaborate conception the 3D model is drawn with a range of shades of grey, conferring 
it  a  more  realistic  look.  The  3D  model  in  the  synthetic  image  should  have  some 
morphologic resemblance with the articulated object obtained from a real case.

The forthcoming description grows around the idea of creating synthetic images of 
one finger. The concept is easily expanded to more. A finger can be modelled by a 
chain of cylinders toped with hemispheres, forming a shape resembling a pill.

Figure 10.1 - Wireframe representation of a 3D primitive resembling a pill.

The model which results from chaining these pills has a smoother appearance than 
a model resulting from chaining cylinders.
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Figure 10.2 - A model built with pill (right) has much smoother transitions than one built 
with cylinders (left).

Building  a  pill  is  rather  simple  since  it  is  only  necessary  to  parameterize  the 
cylinder  and  hemispheres  and  connect  them  correctly.  Each  of  these  geometric 
primitives is achieved with a patch graphic object, which is composed of one or more 
polygons that may or may not be connected, originating the desired 3D configuration. 
These  primitives  can  then  be  rotated  and  displaced  with  the  same  spatial 
transformations  derived  in  the  kinematic  definition  applied  to  the  vertices  of  the 
polygons.

The synthetic images are created projecting each of the polygons on the image 
frame, which is easy since both polygons and camera projection matrix are known. In 
practice patch objects are composed by an index of vertices and an index of faces. The 
index of vertices has information about the 3D coordinates of all points in the patch, 
while the index of faces defines which vertices compose each polygon. Again, when 
projecting  the polygons  on the image  only  the index of  vertices  is  affected by the 
transformations, the index of faces remains unchanged.

Situations as addition of image noise and presence of an elaborate background are 
not  exclusive  of  neither  type of  image and can be used in  any of  them to  further 
determine the potential of the mentioned routines.

10.1 Binary Images

Binary images are the most basic way of representing a 3D object on camera. Apart 
from each pixel assuming only one of two discrete values, zero for black and one for 
white, binary images allow some simplifications and considerations to be made when 
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projecting an object on the image frame. They also provide strong contrast between 
background and foreground.

Each of the three phalanges of the model is represented by a pill, which is a convex 
object  in  3D  space.  A  convex  object  in  3D  space  when  projected  in  a  2D  space 
originates a convex surface. If all vertices are projected on camera there will be a cloud 
of points, some outlining the boundary of the projection and some filling it. To avoid 
the time consuming task of painting each projected polygon on the image, and the 
redundancy of painting over and over again the pixels which happen to match more 
than one polygon, a simplification must be made.

Figure 10.3 - Cloud of points of a finger with three phalanges modelled by pill primitives.

Even though it has an excess of points the projected surface is convex, hence the 
smallest polygon which can contain the region is still convex, and is called a convex 
hull. So if the convex hull of the cloud of points is computed, the resulting polygon is 
formed by all peripheral points of that shape, and still preserves the same silhouette. 
However, the number of vertices to use is significantly reduced and there is no more 
need to use the index of faces since there is only one polygon. The convex hull routine 
used is based on [32].
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Figure 10.4 - Convex hulls of each of the projected cloud of points.

By now there is a huge benefit in using the convex hull points to paint the polygon 
on  the  image.  However,  it  is  likely  there  are  still  some  redundant  points  in  the 
polygon, so it could prove a good thing getting rid of them too. This is achieved by a 
method  used  in  land  mapping  known  as  Douglas-Peucker  line  simplification 
algorithm. This method recursively subdivides a polygon until a run of points can be 
replaced by a straight line segment,  with no point in that run deviating from the 
straight line by more than the tolerance. The tolerance is computed automatically by 
the  algorithm with a  value corresponding to  A/250×N  ,  where  A  is  the  sum of 
arclengths of the polygon and N  the number of points used to describe the polygon. 
For more details check [33].

Figure 10.5 - Reduced versions of the convex hulls.

This  tolerance  is  usually  small  enough to  make the resulting  reduced polygon 
produce the same image counterpart as the longer polygon would. However, the image 
will  not  be  painted  just  yet  since  the  reduced  polygon  also  allows  faster  polygon 
Boolean operations, because there are less points involved. If all three polygons of a 
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finger model are projected and have their convex hull computed and reduced, the three 
reduced polygons can be combined in a single polygon, generally not convex, leading to 
painting the wished pixels only once, instead of painting them twice where the pills 
projections overlap. This may not seem a great improvement, but when there is more 
than a finger and an image sequence to create, all time reductions count.

Figure 10.6 - Polygon resulting from merging three reduced convex hulls representing the 
finger phalanges.

The function used for registering the polygon to the image is designed to select a 
polygonal region of interest within an image and return a binary image that can be 
used  as  a  mask  for  masked  filtering.  Since  the  goal  is  to  create  a  binary  image 
presenting zeros outside the region of interest and ones inside, it suffices to supply 
this function with a dummy image (the same size as the intended image)  and the 
coordinates of the polygon points. The resulting mask is the painted binary image.

Figure 10.7 - Image resulting from painting a white merged polygon on a black background. 
The y-axis of the image frame is oriented downwards instead of upwards as with the plots, 

leading to a vertically flipped version of those plots.
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10.2 Shaded Images

Binary images are useful for the high contrast they provide between foreground (the 
object) and background, and can be used to represent one or more fingers as to test the 
aforementioned  performances.  In  spite  of  this,  their  binary  nature  represents  a 
limitation  and  a  problem  whenever  the  different  fingers  overlap  each  other  or 
themselves. This phenomenon is called occlusion, and is divided into mutual and self 
occlusion, respectively. When occlusion occurs in binary images the boundaries of the 
fingers in the occluded regions are hard to identify.

Figure 10.8 - In binary images (left) it is hard to locate the edges of the overlapping fingers 
whereas in shaded images (right) this is much easier and the occluding finger is easily 

identified.

Other limitation which arises with binary images is the fact sometimes they do not 
embody what would happen in a real case, where contrast is generally much lower and 
there is a range of intensity values for the foreground rather than just one.

These two situations, along with the fact it is hard to determine what is going 
wrong when the analysis of real images has problems, trigger the need of having more 
complex images than binary ones, as a means of emulating a real case in a controlled 
environment.  Thus, the concept of image and 3D model simulator is  brought forth 
with the creation of shaded images.

Creation  of  images  where the model  is  represented with more fidelity,  namely 
shape relief  and illumination,  are not  so easy to obtain.  The representation of  3D 
objects on a 2D image with preservation of relief and illumination are delegated on an 
entity  called  renderer.  A  renderer  [19][34][35] is  software  and/or  hardware  that 
processes  graphics  data  (such as  vertex  coordinates)  to  display,  print,  or  export  a 
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figure.  Several  modes  of  displaying  (or  rendering)  faceted  surface  models  exist, 
differing  in  complexity,  accuracy,  represented  features,  and  overall  look.  To 
understand the choice made it  is  important to know the most commonly available 
techniques and their pros and cons.

   
Figure 10.9 - Different rendering and shading techniques (from left to right): wireframe, back 

face elimination, Z-buffer with flat shading, Z-buffer with Gouraud shading.

The simplest rendering technique is wireframe, in which each edge of the object is 
drawn using a perspective transformation, such as the camera projection matrix. This 
representation can be improved using a technique called back face elimination, which 
removes the hidden lines of individual convex shapes, and yields an image which is 
somewhat  more  easily  understood  by  the  viewer.  Back  face  elimination  is  much 
simpler than the complete hidden line elimination problem. One method of achieving 
hidden line elimination is to fill the facets to create a shaded image. By drawing facets 
farthest from the viewer first, near facets tend to cover far facets, producing a hidden 
line  eliminated  image.  Perfect  rendering  of  shaded  images  requires  a  Z-buffer 
technique implemented either in software or hardware to do depth sorting on a pixel 
by pixel basis. This method can be further refined using a technique such as Gouraud 
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shading to smooth over  the edges that  exist  between facets to  make the rendered 
surface appear smooth.

To  control  the  shading  intensity  of  the  facets  it  is  necessary  to  resort  to  a 
technique called lighting (or shading) to add realism to the graphical scene. It does 
this by simulating the highlights and dark areas that occur on objects under natural 
lighting (e.g. the directional light that comes from the sun). It basically computes how 
the rays of light from a light source are reflected by the object surface towards the 
camera.

In  short,  to  represent  the  object  in  a  realistic  manner  it  is  necessary  to  use 
rendering  techniques  to  display  it  and  include  lighting  techniques  to  control  the 
shading intensity of the facets. This narrows down the choice to back face elimination 
renderers such as Z-buffer or OpenGL and shading methods such as flat, Gouraud or 
Phong.

Regarding the rendering methods, Z-buffering is the process of determining how to 
render each pixel by drawing only the front-most object,  as opposed to drawing all 
objects back to front, redrawing objects that obscure those behind. The pixel data is 
buffered and then blitted  to the screen all  at  once.  OpenGL is  available  on many 
computer systems. It is generally faster than Z-buffer and in some cases enables the 
use of the system's graphics hardware (which results in significant speed increase).

As for the shading methods, flat lighting produces uniform colour across each of 
the faces of the object and should be used to view faceted objects. Gouraud lighting 
calculates the colours at the vertices and then interpolates colours across the faces and 
should  be  used  to  view  curved  surfaces.  Phong  lighting  interpolates  the  vertex 
normals across each face and calculates the reflectance at each pixel. It should also be 
used to view curved surfaces since Phong lighting generally produces better results 
than Gouraud lighting, although it takes longer to render.

The ideal thing would be to have access to the rendering and shading routines and 
directly create the desired image. Unfortunately, in this case, these routines are not 
directly accessible by the user and do not provide that output, so it is necessary to find 
a  way  around  the  problem.  Prior  to  presenting  the  solution  it  is  important  to 
understand how graphic objects are displayed in this case.

Figure objects are the individual windows on the screen where graphical output is 
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supplied. These figure objects have a hierarchy of other objects which can be docked to 
them, namely the axes object, which is used to dock and display graphic objects such 
as images, lights, lines, patches, rectangles, surfaces and text. Displaying patches on 
top of an image does not affect the image data, but the fact it is possible to do this 
display is the first step to solve the problem.

The solution takes shape as follows:  the background image is  displayed on the 
image object attached to the axes object, then vertices of the model are transformed 
with the camera projection matrix and the transformed patch objects are displayed 
and  docked  to  the  same axes  object.  This  information  is  visible  on  screen as  the 
desired image, but it still is a group of layered objects: background image behind and 
patch  graphics  on  top.  The  only  step  left  is  to  create  a  new  image  with  this 
information merged together. This is done with a supplied screen capture application, 
which allows the screen region of interest to be converted to a discrete image. This is 
actually suggested as the only way of converting data on a figure object to a discrete 
image. Although not as refined a solution as working directly with the rendering and 
shading  routines,  it  still  is  considered  a  valid  alternative  since  these  images  are 
created offline (before being used) and not online (at the same time they're needed).

Patch objects are automatically displayed, the user only has to supply the index of 
vertices, the index of faces and optionally choose the rendering and shading methods. 
To confer more realism to the scene it is possible to set the reflectance properties of 
the surface material and place the light sources, the renderer and shader take care of 
displaying it properly.

As for the projection matrix, it cannot be a  3×4  matrix, it has to be  4×4  to 
preserve the depth coordinate so the renderer can perform the depth sort. Remember 
this is only a problem because in the present case it is not possible to render a 3D 
object in a 3D space directly to an image. This matrix is achieved expanding the first 
one with an extra row. If the 3×4  matrix is given by

P=[r11 r12 r13 p1

r21 r22 r23 p2

0 0 0 1 ] ,

then the 4×4  matrix is given by
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P=[r11 r12 r13 p1

r21 r 22 r 23 p2

r 31 r 32 r 33 p3

0 0 0 1
] .

For example, if the y-axis of the image frame and frame {0} are symmetric, with 
coincident x and z axes, since frame {0} respects  X ×Y= Z ,  the image frame would 
have the anti-symmetric definition X ×Y=−Z , and thus

P=[1 0 0 0
0 −1 0 0
0 0 0 1]  and P=[1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1] .

Even in a simple example like this, it is important to mind the scaling factors. 
Those along the x and y axes can be set by camera calibration, while the one along the 
z-axis can be extrapolated with the help of the other two avoiding as much as possible 
to skew the resulting projected model along the image z-axis.

Figure 10.10 - Image views and respective side views of a 3D object transformed to the 
camera frame. When the depth scaling coefficient is correctly chosen (top) the fingers section 

is circular. On the other hand, if the depth coefficient is greater (left) or smaller (right) than it 
should, the object appears skewed along the camera z-axis. Notice how the brightness of the 

object in the image view is affected when the scaling factor is not appropriate.

The scaling factors are important for computing light reflection on the faces of the 
projected model. The shading process confers different intensities to the faces if the 
object is too thin or too large along the z-axis.
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In short, a shaded image is currently produced by capturing a region of interest on 
screen  which  displays  the  background  image  and  a  rendered  patch  graphic  with 
transformed coordinates.

Figure 10.11 - Image resulting from rendering a model of a finger over a black background.

This kind of images is also useful for animation purposes, for example, to overlay a 
rendered 3D model  to an analysed sequence of  real  images,  in  order to  stress the 
coincidence of estimated pose and real pose.
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11 Appendix D: Feature Search 
Alternatives

The following sections are a set of image processing alternatives to the one presented 
in section 4.3.  One thing in common to all  methods is  they all  use image profiles 
sampled perpendicularly to a predicted model pose. However, the following methods 
explore image profile derivatives rather than profiles themselves.

The first  method is  the  most  basic  and follows  the principles  of  [1],  while  the 
second  one  improves  it  resorting  to  knowledge  of  width  in  the  form  of  search 
restriction and template matching masks. The third method improves the second one 
exploring properties in the template matching measures of several profiles of the same 
link. Hence, each method includes the previous one.

11.1 Differentiation of Image Profiles

The extraction of features presented at this stage assumes it is possible to correctly 
retrieve the necessary data. Hence, it is assumed this is a situation where there is no 
self  or  mutual  occlusion  of  fingers,  the  illumination  is  done  in  a  way  not  to  cast 
shadows  on  the  fingers  and  the  background  is  homogeneous  and  provides  strong 
contrast with the object.

This  method  is  motivated  by  the  idea  that  differentiation  of  an  image  profile 
potentially leads to peaks near the edges of the finger phalanges. This means if the 
derivative of an image profile is computed, then it is expected to present a positive and 
a negative peak where the edges are located. Identification of these peaks leads to 
finding the link edges location for that profile.

The are two variants to the process of differentiation which are presented below.
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Figure 11.1 - The first alternative method for feature search finds edge points by locating 
intensity peaks in the derivatives of the image profiles.

11.1.1Simple Discrete Differentiation

This way of computing the derivative is based on a particularly simple concept: after 

retrieving a discrete image slice Ik   of size m , the derivative D Ik  of the profile is 
computed using

D Ik =I k1−I k , (11.1)
where k∈{1, 2,, m−1}  is an element in the array. A derivative computed this way 
has size m−1  and is not robust to image noise. It suffices, however, for the purpose of 
demonstration.

In the case of a link slice the peaks of the derivative are given by  maxDI  and 
minD I , which correspond  respectively to positions

k max=argmax
k
D Ik   and k min =argmin

k
DI k 

in the image derivative. Due to (11.1) the corresponding positions in the image slice 
are dubious because position k  must be an integer. The best would be to relate k max  

and k min  in the derivative with 
k max=[k maxk max1]/2  and k min =[k mink min 1]/2

in the slice, however this would lead to a position in image coordinates which had not 

been sampled. Hence, the positions in the image slice are respectively set to k max=k max  

and k min =k min  and this shall be assumed as the default procedure.

The coordinates of the corresponding points in the image frame are stored in a slot 
of the respective group, materialized by a column of matrix S  which has size 2×n  
as in (9.5).

In the case of a tip slice, the peak of the derivative is found with max∣D I∣ , where 

k max=argmax
k

∣DI k ∣ ,  and  the  coordinates  of  the  corresponding  point  in  the  image 

frame are stored to form the tip feature, which is stored in a vector containing the x 
and y image coordinates.
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11.1.2Differentiation by Convolution with Gaussian Derivative

This way of computing the derivative resorts to a concept which is widely known in 
image  processing  and  has  the  purpose  of  yielding  derivatives  without  amplifying 
image noise.

The  derivative  of  the  image  profile  obtained  with  the  differentiation  method 
described in equation (11.1) amplifies image noise which is present in images obtained 
with a camera. In a situation where an image profile  I  is affected by noise  n , the 
measured value is a noisy version of I , given by

In k =Ik nk  , (11.2)
where k  represents an element in the array.

If  nk   is a random variable with normal distribution, then it is described by a 
mean and a variance, which are respectively

E [nk ]=n

VAR [nk ]=E[nk 2]−n
2=n

2 .

As for the derivative D n  of the noisy image profile, its expression is obtained from 
(11.1), resulting in

Dn k =In k1−In k = Ik1nk1−I k nk 
=D Ik nk1−n k  .

The  noise  level  nD k   of  D n k   is  characterized by  two  adjacent  image  noise 
terms, yielding

nD k =nk1−nk  .
This  new  random  variable  is  characterized by  a  normal  distribution  with 

parameters
E[nDk ]=nD

VAR[nDk ]= nD

2 .

For  convenience  of  manipulation,  the  random  variables  nd k  ,  nk1  and 
−nk   are respectively replaced by  Z ,  X  and  Y ,  leading to  Z= XY .  This more 
general representation of variables is useful for algebraic manipulation. Since X  and 
Y  are not necessarily independent:
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E [Z ]=E [ XY ]= x y= z

VAR [Z ]=E [Z2 ]−E [Z ]2=E[ X 22XY Y 2 ]−x
22x y y

2
=E[ X 2− x

2]E[Y 2− y
2]2E [ XY−x y]

=x
2 y

22E [ XY−x y]

.

If X  and Y  are independent then E [ XY ]=E [ X ]E [Y ]=x y , so the last term of the 
variance disappears. Returning to the old set of random variables, this means noise in 
the derivative is characterized by

E [nDk ]=n −n=0

VAR [nDk ]=n
2 n

2 =2n
2 ,

assuming noise in a pixel is independent from noise in other.
So it is clear the variance of the derivative of the noisy image profile is greater 

than  the  variance  of  the  noisy  image  profile,  hence  it  is  demonstrated  that  the 
derivative amplifies noise (the bigger the variance, the bigger the noise amplitude).

Computing the derivative with (11.1) is equivalent to perform the convolution of 
the image profile by a step mask, as results from

D Ik =I k ∗U k  ,

where U=[1 −1 ]T  is the step mask and the convolution of two discrete 1D signals s1  

and s 2  is defined by

s1 k∗s 2k =wk =∑
j
s1 js 2k1− j  .

Algebraically,  convolution is the same operation as multiplying the polynomials 

whose coefficients are the elements of s1  and s 2 . Conceptually it can be thought of as 

if the flipped version of  s 2  slided across s1  and their windowed product was computed 

each time. The sum is over all values of j  which lead to legal subscripts for s1  j   and 
s 2k1− j  . If m  is the length of s1  and n  the length of s 2 , then the sum is carried 

out for j∈{max1,k1−n ,⋯, mink ,m } .
It is now clear how the simple process of differentiation increases the noise level 

and how it can be represented by a convolution. This parallelism with convolution 
helps understanding the upcoming solution to the noise increase problem.

Thinking of the mask as a sliding signal it is quite immediate to think it would 
help to have a mask which accounted for a set of adjacent pixels instead of just two of 
them. This way each derivative point is computed as a smooth differentiation, or in 
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other  words,  a  weighted  differentiation  of  a  set  of  adjacent  pixels.  Usually  the 
derivative using this variant can be expressed by

D n k =c1I n k1−I n k−1c2In k2−In k−2⋯ ,

which means the noise component is given by
nDk =c1nk1−nk−1c2 nk2−nk−2⋯ ,

hence its variance is

VAR[ nDk ]=c1
2 2n

2c2
2 2 n

2⋯=c1
2c2

2⋯2n
2 .

The c i  are multiplicative factors ruled by

∑
i

ci=1

0ci1, ci⊂ℝ ,∀ i
.

The convolution needs to be computed strictly within the scope of  s1 , so when a 

part of the sliding mask s 2  falls outside these boundaries, the missing values of s1  are 

replaced with the value s1  has at the end closest to that boundary.
In image processing it is known such a mask can be the derivative of a Gaussian 

function, where the c i  are small near and far from the centre of the convolution mask 
and assume greater values in between. These coefficients are obtained with

c i=
d
dk

N k=i∣0, ,

where Nk∣0,  is the normal function given by

Nk∣0,=
1

2
e

− k2

22 .

The result of convolving a signal with the derivative of a Gaussian is a smooth 
derivative of the signal: the slower evolving character of the derivative is preserved 
while the faster is attenuated.

11.2 Width Dependent Search Restriction and Template Matching

The process of extracting boundary points from the image is adequate but rather weak 
in terms of robustness to image noise, misplacement of trackers, low amplitude of the 
peaks in the derivative of the image profiles and low curvature in the vicinity of those 
peaks. This lack of robustness leads to errors determining the edge points, which then 
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leads to loss of tracking, generally revealed in the form of an estimated pose which 
does not correspond either partially or globally to the analysed image.

From the previously  introduced differentiation  methods  the  one which is  more 
robust to image noise is differentiation by convolution with a Gaussian derivative, 
thus from this point on this will be the method used when referring to differentiation 
and derivatives of image profiles.

One way to improve the previously presented edge extraction method is to realize 
the knowledge of length, position and orientation of the links of the articulated model 
is being used as a restriction for local search in the image. However, the retrieval of 
contour points  does  not  use  any knowledge  of  the  geometric  model,  which is  why 
adjacent slices of the same link are still allowed to present contour points which seem 
to be independent or unaligned with each other, whereas they should present some 
kind  of  continuity  along  the  edges  and  should  be  all  similarly  distant  from their 
counterparts.

Considering the width of the finger links to be known, which makes sense since 
their length is already assumed to be known, it can be integrated in the algorithm in 
two ways, both of which assume the width of a finger along a slice is likely to remain 
the same between image frames:

1. Each finger slice has its own associated width;
2. Finger  slices  belonging  to  the  same  link  have  the  same  associated 

width.

The first option is quite basic and deals with each slice independently, while the 
second one intends to add more consistency between results of the same frame. The 
difference between these two options is more evident when the width of the links is 
being estimated rather than being provided beforehand.

This knowledge of width can be used in two ways: one which merely restricts the 
search space, regardless of trackers misplacement, and other which also restricts the 
search space but tries to compensate for misplacements first.

126



Figure 11.2 - The second alternative method for feature search improves the first one by 
resorting to the phalanx width to help restrict the peak search space. The usage of template 

matching is optional.

11.2.1Basic Search Space Restriction

In this case the search space for peak search in an image sample is restricted to the 
vicinity of where the edge of the link is thought to be, thus avoiding to choose points 
which lay too far from their corresponding edge.

Given an image sample of size n  with an associated finger width of d  units, the 
predicted edges location is given by  c±d /2 ,  where  c=n1/2  is the centre of the 
sample.  If  each search space  window has width   ,  the  peak search is  performed 
within  the  windows  defined  by  c±d /2±/2 ,  with  the  window  limits  rounded 
towards the integer nearest to the window centre. The window limits are only rounded 
in the end to avoid propagation of rounding errors in the intermediate computations.

11.2.2Compensated Search Space Restriction

Basic search space restriction tries to  improve unrestricted peak determination by 
limiting the search space. However, it may prove insufficient if the link trackers have 
been misplaced or if the finger in the image described a larger movement, because 
once the search space is restricted the allowable amount of movement between movie 
frames is also seriously affected. This is why it is of the uttermost importance to find a 
solution which tagged with this one will not compromise the range of movement so 
seriously.

The proposed complementary  solution  also  uses  the  knowledge  of  width  of  the 
finger links, but this time the purpose is to compensate the misdetermination of the 
restricted search space so it  no longer lies where the edges are thought to be but 
instead where they are more likely to be located.
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This  is  achieved  by  a  two  part  process  where  the  first  part  compensates  the 
misplacement  of  the  trackers  by  adjusting  the  centre  of  the  image  sample  via 
correlation, and the second part restricts the search space as in basic search space 
restriction.

The operation called correlation is closely related to convolution. In correlation, the 
value of an output pixel is also computed as a weighted sum of neighbouring pixels. 
The difference is that the matrix of weights, in this case called the correlation kernel, 
is not flipped during the computation, hence the correlation of two discrete 1D signals 
s1  and s 2  is defined by

Rs1 s 2
k =∑

j
s1  j s2  j1−k  .

Correlation can be used to locate features within an image by a concept generally 
known as template matching, where the occurrences of a small signal (the template) 
are located in a larger signal (the image). This concept also applies to 1D signals: in 
this case the measured signal is the derivative of the image sample and the template 
is a synthetic signal, the same size as the derivative, with a positive and a negative 
peak equally distant of the centre and separated by the associated finger width. The 
result of this operation is a correlation curve which is stored in a vector, as happened 
with convolution.

This method is also useful when one of the peaks in the derivative is well defined 
and narrow but the other is not. By correlating the derivative with an ideal template, 
there is a stronger probability for the strong peak in the derivative to be aligned with 
one of the peaks of the template. When the search space is restricted the strong peak 
is clearly defined, while the determination of the weaker and wider peak is bound to 
be more correct due to the use of correlation and search restriction.

The fact that one peak in the derivative stands out more than the other is usually 
related with an illumination which casts shadows under the fingers and lights the 
upper parts.

11.3 Rectilinearity Restriction in Correlation Surface

Using width in the preceding reinforcement is a way of avoiding misdetermining the 
locations  of  the  edge  points.  The use  of  template  matching  in  the  derivative  also 
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compensates for minor misplacement of link trackers and adds some robustness when 
one of the peaks in the derivative is not well defined as a consequence of a non frontal 
illumination of the object in the image.

As a consequence of the advantages of using knowledge of width, from this point 
on when referring to use of knowledge of width or search space restriction the method 
used is compensated search space restriction using one associated width per link.

This new improvement builds from the need of having aligned edge points of the 
same link, rather than scattered ones as resulting from determination of peaks in the 
image profile derivatives. It is also motivated by realizing that the surface formed by 
joining correlation curves of the same link side-by-side generally presents a rectilineal 
crest crossing them, which may be explored to yield aligned edge points.

The process called rectilinearity restriction has this name for more than a reason: 
a finger link can generally be considered a rectilineal  segment, but the correlation 
surface also presents a rectilineal crest, not to mention the fact the edge points should 
be aligned. However, this method could be modified and still be used if the tracked 
segment was curved rather than rectilineal. For that matter it would suffice to attend 
to the correlation surface, for it would still present the rectilineal crest, because it is 
related with the offset of the template centre perpendicularly to the projected model 
and not to the curvature of the object.

Hence,  the  purpose  of  this  method  is  to  evaluate  the  correlation  surface  and 
determine the rectilineal crest. Then, through a parameterization of the curvature of 
the object, which in this case is a simple line segment, the estimated edge points are 
estimated compliantly with the collinearity constraint.

There  were  devised three  ways  of  fitting  a  line  to  the  crest  of  the  correlation 
surface,  each  evolving  chronologically  as  the  limitations  of  the  previous  one  were 
perceived, with names based on the underlying algorithm:

• Partial linear least squares (PLLS) of correlation maxima;
• Modified weighted PLLS (MWPLLS);
• Iterative MWPLLS (iMWPLLS);

The common part of these methods, the correlation surface, is achieved by flanking 
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adjacent  correlation  curves  of  a  link.  This  means  in  a  link  with  m  associated 
correlation  curves,  each  described by  a  vector  of  size  n ,  the  resulting  correlation 
surface is described by a matrix of size n×m , where the vectors appear in the same 
order  as  their  link  samples.  All  these  methods  were  devised  before  the  iterative 
method in 4.3.2.

After a line is adjusted to the surface, the phalanx width is used to estimate the 
location of the contour points as happens in 4.3.2.

Figure 11.3 - The third alternative method for feature search improves the second one by 
estimating the edge points instead of directly measuring them. Peak search is no longer done, 

template matching is mandatory and rectilinearity restriction in the correlation surface is 
used together with the phalanx width to generate the positions of the estimated edge points.

11.3.1Partial Linear Least Squares (PLLS)

A simple way of determining the correlation surface crest is to find the maximum of 
each correlation curve and then use them in a regression model.

Given  a  set  of  m  correlation  curves  Cik   of  size  n  each,  their  maxima  are 

computed with maxCi  , which corresponds to positions given by
m i=argmax

k
Cik  ,

where i∈{1,⋯,m}  and k∈{1,⋯, n } .
The fact each maxima is computed in a 1D space and the correlation surface is a 

3D space should not cause confusion. The regression is computed in a 2D space, which 
can be thought as if the position of each maxima was transformed in a set of two 
coordinates, one given by position itself and other by the position of the correlation 
curve in the correlation surface. This means curve i  with maximum on m i  originates 

coordinates x i , y i=i , m i  which will be used in regression.
The regression is given by the solution to a partial linear least squares problem, 
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which is linear because the regression model is a line and partial because the error to 
minimize is only computed along the y-axis. In the regression model, object  x i  will 

have a measured and a fitted occurrence, respectively represented by yi  and yi . The 

partial  errors are measured with  e i= yi−y i ,  which represents the vertical  distance 
between  measured  data  and  the  estimated  regression  model.  The  purpose  of 
regression is to minimize the squared sum of all these distances, given by

E=∑
i=1

m

e i
2=∑

i=1

m

 y i−y i
2 .

On the other  hand,  the  linear  model  is  a  parameterization  of  the  line,  and is 
written assuming the measured data can be modelled by

y=c0c1 x .
Substituting the model equation in the sum equation yields

E=∑
i=1

m

y i−c0c1 x i
2

,

 where c1  and c0  are the coefficients to be found, respectively representing the slope 
and the offset along the y-axis of the adjusted line.

To  minimize  the  fitting  error,  E  must  be  differentiated  with  respect  to  each 
coefficient and the result set to equal zero, leading to

∂ E
∂c1

=−2∑
i=1

m

x i yi−c0c1 x i =0  and ∂ E
∂c0

=−2∑
i=1

m

y i−c0c1 x i =0 ,

which can then be rewritten as
c0∑ x ic1∑ x i

2=∑ x i yi  and m c0c1∑ x i=∑ y i .

Further rewriting these two equations, now in matrix-vector notation, results in

[ m ∑ x i

∑ x i ∑ x i
2]

R

[c0

c1]
c

=[ ∑ y i

∑ x i y i
]

r

.

The coefficients can then be determined solving  c=R−1r . The estimated data is 

thus given by yi=c1 x ic0 , with an associated error of e i= yi−y i .
This method depends of a good determination of the maxima in order to properly 

adjust a line to the crest. If there are spurious maxima points along the correlation 
curves they are chosen over others if they have greater magnitude. It is known that 
PLLS is highly influenced by all data, including points which clearly do not belong to 
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the  set,  the  outliers.  The  farther  away  an  outlier  is  located  the  more  it  affects 
regression, inducing changes in offset and skew of the fitted line.

This regression was not used by itself due to these limitations, but is presented as 
a  basis  for  better  understanding  the  forecoming  methods  and  the  rectilinearity 
restriction used in the SSD surface of the proposed method.

11.3.2Modified Weighted PLLS (MWPLLS)

In order to avoid dependency on correct maxima determination and ponder the fit with 
more than a candidate per correlation curve, it is necessary to devise a variation of the 
PLLS method.  This variation  considers more important for  regression those peaks 
which  are  well  defined  in  the  vicinity  of  their  maximum,  and  at  the  same  time 
neglects the influence of sporadic peaks (with high magnitude and narrow base).

The motivation is that when facing two peaks with the same amplitude but where 
one is  narrower than the other,  the narrow peak should be considered a spurious 
influence  while  the  wider  peak  should  provide  the  bulk  of  contributions  for  the 
regression. Furthermore, if the narrow peak is in fact spurious, it is unlikely to be 
present in the adjacent correlation curves, hence the regression is more influenced by 
the wider peaks.

To do this, all points of all correlation curves give their contribution. However, this 
contribution must have some criterion responsible for giving more importance to some 
points than to others. The formalization occurs by establishing a cost function where 
the error (in each curve) is a sum of errors between each point and the estimate, with 
a cost associated to each error as a way of materializing the criterion.

The value of the costs is a critical aspect to consider and was chosen based on a 
regional evaluation of the correlation curve rather than a local one: a region with more 
interest should be associated with a greater cost, so a mistake in the regression is 
more penalized.

The definition of the MWPLLS follows a deduction analogous to the PLLS case, 
still considering a cost function defined by

E=∑
i=1

m

e i
2

but with the novelty of each partial error being given by
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e i=∑
j =1

m

w j i y j i−y i=∑w j i y j i−c0c1 x i=∑w j i y j i−∑w j i c0c1 x i ,

where w j i  is the cost of an error associated with element j  of curve i , and y j i  is the 
corresponding measured value.

Differentiating  E  with respect to the coefficients and setting the result equal to 
zero yields

∂ E
∂ c

=2∑ ei

∂ei

∂ c
=0 ,

where the partial derivatives of the partial error are given by
∂ei

∂c0

=−∑ w j i  and 
∂ei

∂c1

=−∑ w j i x i .

For ease of representation and further deduction these results are condensed as
∂ei

∂c
=−∑ w j i[ 1

x i] ,

which means the partial derivatives of the total error are given by

∂ E
∂c

=−2∑
i e i∑

j
w j i[ 1

x i]
=−2∑

i {∑j

w j i y j i−∑
j

w j ic0c1 x i∑j

w j i[ 1
x i]}=0

.

Manipulation of the bottom expression then leads to

∑
i ∑j

w j i y j i∑
j

w j i[ 1
x i]=∑

i ∑j
w j i c0c1 x i∑

j
w j i[1

x i] ,

which can be rewritten as

∑
i W i[ 1

x i]=∑
i ∑j

w j i
2[ 1 x i

x i x i
2][c0

c1] ,

considering
W i=∑

j
w j i y j i∑

j
w j i

and noticing

c0c1 x i=[1 x i ][c0

c1
] .

It could prove relevant to mention there are scalar terms involved, namely

∑
j

w j i y j i  and ∑
j

w j i ,
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which then originate other scalar terms, which are

∑
j

w j i y j i∑
j

w j i  and ∑j
w j i

2

.

The coefficients are then determined with

[c0

c1]
c

={∑i ∑j

w j i
2[ 1 x i

x i x i
2]}

−1


R−1

∑
i

W i[1
x i]

r

.

Baring  in  mind the mentioned choices,  it  was  verified  the  curve itself  already 
provides  information  about  cost  quantification,  each  cost  being  related  with  the 
amplitude of the curve in the affected point. The weighting is considered a modified 
version because it relates to the amplitude of a surface in a 3D space rather than a 
distance  measured in  a  2D plain,  so  it  is  included in  the  name of  the  method to 
remember that particularity.

The presence of a ponderation is visible in the first sum of W i . As a consequence of 
this term the regression will  be strongly conditioned to the centre of mass of each 
correlation  curve,  since  there  are  no  other  terms  to  cancel  this  effect.  This  may 
represent an advantage in some cases but can also be a problem if the correlation 
surface presents concurrent crests, even if with different amplitudes. In this case the 
regression is likely to be on the valley between crests and biased towards the crest 
with a larger volume underneath (the “heaviest” one). The result will also be biased if 
there is only a crest but that crest is biased to one of the sides.

11.3.3Iterative MWPLLS (iMWPLLS)

This method is basically an improvement of the previous one. Since MWPLLS may get 
too conditioned to the centres of mass, this option tries to iteratively compensate that 
by only using points in the vicinity of a regression. Hence, starting with the regression 
yielded by MWPLLS, the new regression is still  computed with MWPLLS but only 
points close to the regression are considered. Each new regression is used in the next 
regression iteration.  The process is  repeated until  the regression has converged or 
until a certain number of iterations is reached.

This method is still conditioned to the centres of mass, although in a much more 
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compact way because only close points are used. This effect will be more evident if the 
concurrent peaks fall within the scope of considered points, or if a single crest is biased 
within the scope.
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12 Appendix E: Phalanx Width 
Estimation

Estimating phalanx width is a way of producing more accurate templates of the image 
profile derivatives. Normally, the width would be a constant value set by the user, but 
in this case the goal is to determine that constant with the help of the Kalman filter.

Since  the  unknown in  question  is  a  constant  along  time,  the  only  part  of  the 
Kalman filter  needed to  be  used is  the  one referring  to  position.  Hence,  first  and 
second order aspects such as velocity and acceleration will  not be considered. It is 
important to notice however, that this constant can be determined in different ways, 
depending if the width is associated with one profile or all profiles of a link.

In  the  first  case  the  associated  width  of  each  profile  is  estimated  with  direct 
application of the position equations of the filter. Replacing position with width should 
make no confusion.

On the other hand, if all profiles of a link are being used to estimate the width of 
the phalanx, the filter will have to consider the information supplied by each of them 
in order to determine the single width.

Hence, if each i -th width is considered independently, the prediction equation is
pk∣k−1 

i =pk−1 
i

and the update is
pk 

i =pk∣k−1 
i ge i ,

with  e i=pk
i −pk∣k−1 

i . But if the  N  widths are considered as redundant measures of 

the same single width, then the prediction is set by
pk∣k−1 =pk−1 

and the update by 

pk 
=p

k∣k−1 
g E [ei ] ,
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where  e i=pk
i −pk∣k−1   and  E [ei ]= 1

N ∑
i=1

N

 pk
i −pk∣k−1  .  Hence, the update equation can 

be rewritten as

pk =1−g pk∣k−1 
g
N ∑

i=1

N

pk
i .
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