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José Santos–Victor∗

March 4, 2004

Laboratorio de Visão†

Instituto de Sistemas e Robótica
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Avenida Rovisco Pais

Torre Norte, Piso 7

1049–001 Lisboa

Portugal

∗{lgerstmayr,alex,jasv}@isr.ist.utl.pt
†http://www.isr.ist.utl.pt/vislab

{lgerstmayr, alex, jasv}@isr.ist.utl.pt
http://www.isr.ist.utl.pt/vislab




Abstract

The future aim of the work described in this report is appearance–based topological
navigation of an autonomous aerial vehicle, namely a blimp, over an urban area. Here
we only address the selection of good landmarks, which is one subproblem of the
problems that still have to be solved in order to achieve topological navigation.

Landmark selection methods try to optimize navigation by selecting distinctive fea-
tures therefore minimizing localization errors. Common landmark selection algorithms
select good landmarks in two steps. In the first step they detect possible landmarks, in
the second step, they discard landmarks that are not reliable. The algorithms proposed
in this report only deal with discarding unreliable landmarks. The first algorithm we
called “profile–based algorithm” evaluates pairwise image dissimilarity between possi-
ble landmarks and selects those landmarks that are as distinctive as possible. The sec-
ond one called “IPCA–based algorithm” incrementally updates an existing eigenspace
by adding that landmark that can be expressed worst. Therefore an algorithm for
Incremental Principal Component Analysis (IPCA) is used. Although not addressed
here, this algorithm is capable to perform on–line landmark selection and can be used
for Simultaneous Localization and Mapping (SLAM).

In order to evaluate the quality of the selected landmarks, we propose a method to
measure localization reliability with respect to small deviations in the orientation or
the position of the blimp and small changes in image brightness. The method is based
on computing a limit for the image dissimilarity for which an error–less localization is
guaranteed.

An evaluation of the proposed landmark selection algorithms shows that none of
the algorithms is superior to the other but that both algorithms select reliable and
distinctive landmarks that are stable over a large range of deviations.

The reminder of the report is structured as follows. The first chapter will give
an introduction to the theoretical things that are necessary to understand the report
and to see the work in a context. Therefore we will define the concept of landmarks,
point out the key aspects of localization and landmark selection algorithms and show
related work in this fields. The second chapter introduces the proposed algorithms and
methods and also gives an introduction to the mathematical methods that are necessary
to understand our work. The third chapter shows the experiments, their results and the
conclusions that can be drawn for each group of experiments. The experiments include
visualizations to get familiar with the used eigenspaces, the landmark selection for both
the profile–based and the IPCA–based algorithm and the reliability evaluation using
the proposed method. In the next chapter some ideas and results for failed approaches
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are shown. The ideas include landmark selection based on clustering and an alternative
approach to reliability evaluation. The fifth and last chapter gives the overall results
and conclusions and points out further working directions. The appendices give a
comprehensive overview over the data that would intersect the natural flow of the
document if shown in the experimental section, a skeleton for a visual path integration
algorithm and an overview over the implemented MATLAB functions. Parts of this
work, namely the essentials of chapters 1, 2, 3 and 5, will also be published in Gerstmayr
et al. (2004).
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Rodrigo Jacob, Pĺınio Moreno López, Manuel Lopes, Roger Castros Freitas, Filipe
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1. Introduction

This chapter will describe the aim of the project. Then we will focus on important
theoretical aspects that are necessary to understand the work and see it in a context
of related work. This includes the concepts of landmarks and an introduction to the
localization problem and landmark selection methods. Also a review of related work
in the fields of localization and landmark selection is given.

1.1. Aims of the project

The future aim of the project described here is an appearance–based topological navi-
gation strategy for an autonomous aerial vehicle flying over an urban area. The project
is part of the RESCUE project, that deals with cooperative navigation for rescue robots
and aims to develop robots that help humans in search and rescue missions in disaster
areas like areas destructed by earthquakes, floods or terrorist attacks. For a further
overview over the aims and the first results of the project see the project homepage1

or Lima et al. (2003) and Bernardino et al. (2003). One subproject is to design an
autonomous blimp flying over the scenario. In Lima et al. (2003) is mentioned that
the advantage of aerial robots is that they can provide a broad view from a bird’s po-
sition and that they can therefore map areas of high destruction and guide human and
machine rescue troops to these areas or that they can supply the operation controllers
with very detailed information. In order to solve all these tasks, the used vehicle needs
very robust and good navigation and localization abilities.

Since dealing with a complete catastrophic scenario, which is highly dynamic, is still
too difficult to handle because of the moving rescue workers and the excavation of
the debris, we only deal with navigation over an urban area. For easier testing of the
techniques a practical setup was developed at VisLab: An indoor blimp (approximately
with 0.8 m in diameter and 2 m in length) is flying over a huge poster of an aerial image
of the neighborhood around Instituto Superior Técnio in Lisbon, Portugal. The poster
is shown in figure 1.1(a). The blimp shown in figure 1.1(b) is equipped with a camera
looking downwards to the poster. All the processing and control of the blimp is done
at a host computer, the data is transmitted via a radio link. Beside easier testing the
advantage of the setup is that daylight changes or weather conditions like rain or wind
can be excluded.

For topological navigation the agent has to memorize several places and the links
between these places in a graph–like structure, the topological map (Franz and Mallot,

1http://rescue.isr.ist.utl.pt
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2000). A schematic drawing visualizing the plans is shown in figure 1.2. Therefore one
key aspect on the way to implement the navigation strategy is to find good landmarks
that allow robust localization. In this report we address exactly that problem. The
navigation from landmark to landmark is left for further work. Probably some kind of
visual odometry like in Iida (2003) or based on the ideas described in appendix B will
be used for roughly approximating the goal.

(a) The used aerial image (b) The blimp flying over the poster (will
be used in future work)

Figure 1.1.: Practical setup for the experiments.

Figure 1.2.: Schematic drawing for topological navigation of an autonomous blimp.

In this work, we focus on the selection of good landmarks that make the localization
more robust which is very important for achieving good navigation. All the proposed
methods assume that a map of the environment is already given. It does not matter
how it was obtained, aerial images or by mosaicking are just two example ways. As
usually in the field of appearance–based navigation we use windows around image
features as landmarks.
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Landmark selection algorithms usually select the best landmarks from a set of pos-
sible landmarks. For our approach to the problem, the landmarks are transformed to
an eigenspace. The first algorithm we called “profile–based algorithm” computes pair-
wise image dissimilarities of the landmarks in the eigenspace and selects landmarks
that have the greatest average image dissimilarity to all other possible landmarks.
The second algorithm called “IPCA–based algorithm” updates an existing eigenspace
by iteratively adding exactly that image that can be expressed worst in the existing
eigenspace. This grants that the added image that is selected as landmark, is as dissim-
ilar as possible to all the other landmarks already selected. Because of using the IPCA
the algorithm is capable of online landmark selection and can be used for Simultaneous
Localization and Mapping (SLAM).

So far, only little work was done in measuring the quality of the selected landmarks.
If at all, related works show experimental results but no quantitative measures for the
robustness. For localization the robot has to compare its current camera view to the
stored landmarks. Little deviations in the pose or position of the robot lead to current
images that are different to the stored views of the selected landmarks resulting in
a growing image dissimilarity between the views. A good landmark is very robust
to these deviations. To measure the landmark’s quality we propose a method that
is based on image distances in the eigenspace and that computes a maximal image
dissimilarity for which an error–less localization is granted.

In order to show the context of the work it is necessary to deal with the most
important theoretical aspects underlying the presented work. This includes the concept
of landmarks and an introduction to localization and landmark selection.

1.2. Landmarks

Thrun (1998) states that the concept of landmarks is easy to understand, but very
difficult to define. The definitions vary and are often application specific and often the
term is used without being defined clearly. To allow an overview over the huge range
of possible definitions, some definitions found in the reviewed literature will be cited
here:

Leonard and Durrant-Whyte (1991): “A landmark is a naturally occurring environ-
ment feature that can be reliably observed in successive sensor measurements
and can accurately be described in terms of concise geometric parameteriza-
tion.”

Deng et al. (1996): “A landmark is a localized physical feature that the robot can sense
and use for the estimation of its own position relative to a map that contains
the landmarks absolute position.”

Little et al. (1998): “Landmarks are distinctive locations with identifiable appearances.”

Thrun (1998): “A landmarks is any element (object or feature) which can serve as
reference.”
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Mata et al. (2001): “A landmark is a localized physical feature that the robot can
sense and use to estimate its own position in relation to the map that contains
the landmark’s relative position and/or other mark characterization”.

From all cited definitions, the one given in Thrun (1998) is the most abstract one
and it can also serve as a superordinate concept of the definition used for the proposed
approach to landmark selection. In this work, a landmark is an image that is as
dissimilar as possible to all the considered images. The works of Knapek et al. (2000)
and Ohba and Ikeuchi (1997) use the same definition.

1.3. Visual localization

Whenever the blimp approaches a landmark it has to localize itself in order to de-
termine if the landmark is reached. The localization problem, i.e. the problem to
determine and track a robot’s position relative to its environment (Little et al., 1998;
Thrun, 1998), is often addressed in the recent research because an effective localiza-
tion is a key element for a successful navigation. At the first glance, the problem looks
simple and Little et al. (1998) mention that it would not be any problem, if perfect
odometry and the initial robot position would be available. Methods based on com-
puter vision are often used to overcome the inaccuracy of odometry. All vision–based
methods have in common that they somehow have to characterize the known places.
Therefore, they all use landmarks.

Before characterizing some algorithms proposed in related work, it is necessary to
discuss some fundamentals or possible characterizations of visual localization methods.

1.3.1. Fundamentals

Most of the approaches use single cameras, panoramic vision systems or range data
obtained by laser range scanners or stereo vision systems as input. In the following
paragraphs, the terms in which the methods can be characterized will be explained in
detail.

Topological vs. geometrical localization

Referring to Ulrich and Nourbakhsh (2000) the approaches to visual localization can
be divided into three groups: geometric, topological and hybrid approaches. In Gaspar
et al. (2000) is mentioned that the method which performs best is often problem
dependent and a trade–off between accuracy for short–range navigation and robustness
for large–scale navigation has to be found. The key characteristics of the approaches
are

Geometric: The geometrical methods have in common that they use a 2D grid or
a 3D–model of the environment as map representing the environment.
The robot’s position is tracked or determined exactly with respect to
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the map’s coordinate system. The main advantage of geometrical ap-
proaches is that they are more exactly (Gaspar et al., 2000), but the
methods are more error–prone, because small deviations in odometry or
perception can lead to great localization errors (Mata et al., 2001).

Topological: The topological methods use an adjacency graph as representation of
the environment. They only determine the node, which is closest to the
robot’s actual position but not the exact position. The advantages of
topological navigation are that it is more stable but needs a powerful
perception system to identify the elements of the environment (Mata
et al., 2001; Gaspar et al., 2000; Ulrich and Nourbakhsh, 2000).

Hybrid: Hybrid methods try to combine geometric and topological approaches.

Representation of the environment

All the localization methods described in the previous paragraph need a map–like
representation of the environment, in which the known places or landmarks are stored
and which also has to be chosen application dependent. The most common approaches
to represent the environment are:

Feature maps: In feature maps the global locations of a set of features and the
description of these features are stored (Bailey and Nebot, 2001).
Localization is performed by searching the closest match between
stored features and visible features.

Occupancy grids: Occupancy grids are a matrix–like representation of the environ-
ment and the probability that the area corresponding to the matrix
entry is occupied is stored in the matrix (Bailey and Nebot, 2001).

Topological maps: Topological maps are graph–like representations of the environ-
ment. The edges contain information for traveling from location to
location, the nodes store the representation of the location (Bailey
and Nebot, 2001). Vale and Ribeiro (2003) mention that topolog-
ical maps do not provide metric informations but are useful and
scalable abstractions of an environment.

Surface models: Surface models are a 3D–representation obtained by range data.

Iconic maps: Iconic maps are large images of the robot’s known environment.

Matching

For localization the observation taken at the current robot position has to be somehow
matched with the stored information about the environment to localize the robot.
There are two matching strategies, namely local and global search, which search only
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a part of the search space or the whole space respectively. Mainly, the following
matching strategies are used:

Feature matching: Correspondences between the stored and the observed features are
established and used for localization.

Image matching: The image dissimilarity between the current image and parts of
the stored representation are computed and used to determine the
robot’s position. To speed up the computations needed for image
matching, the images are – like in our work – often transformed
to lower dimensional representations (e.g. using Principal Com-
ponent Analysis, see section 2.1.1). These methods are referred to
as appearance based localization methods.

Model matching: For model matching, the observed environmental model is matched
with the stored model by computing similarity and using the sim-
ilarity measure for localization.

1.3.2. Related work

The following paragraph is supposed to allow a rough overview over proposed visual
localization methods. How these methods can be characterized in relation to the
characteristics described above is shown in table 1.1. Since our approach is too far
away from most of the reviewed works we do not comment on the advantages or
disadvantages of the proposed work but just give a short review trying to characterize
the work according to the possible methods introduced above.

Krotkov (1989): The algorithm detects edges in the input image and tries to match
these edges with the landmarks marked in an a priori known feature map.

Leonard and Durrant-Whyte (1991): The proposed algorithm matches observed fea-
tures with known features in an a priori built feature map. For an estimation
of the search position in the feature map, an Extended Kalman Filter (EKF) is
used.

Andersen et al. (1997): The algorithm builds a topological map from wide–angle im-
ages of the environment. While exploring images are added, when the dissim-
ilarity between the images reaches a certain threshold, and the commands to
step from one place to the next are stored. For navigating, the images at the
robot’s position are compared to the stored images around the robot’s estimated
position.

Betke and Gurvits (1997): The authors use an one–dimensional strip taken from an
panoramic image as sensor input. They try to match landmarks, which are dark
strips in the used sensor data and try to match them in an a priori known map
of landmark positions. The exact robot position is determined by triangulation.
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Olson (1997): The method first generates a range map of the observed environment
and then computes an occupancy map of the terrain surface. For localization,
this surface model is matched against the stored model.

de Verdiere and Crowley (1998): The authors propose an algorithm for topological lo-
calization or object recognition. The input image is divided into a grid of
sub–images. For all the sub–images of all the training images, an eigenspace
is computed. Then for each sample image all the sub–images are transformed
to the lower dimensional subspace. The image is now represented as a surface.
For recognition, the resulting surface of the input image is compared to all the
surfaces of the sample images.

Dudek and Jugessur (2000): The localization method uses attention operators to de-
termine interesting points in the training images. Windows around these in-
teresting points are taken and transformed to a rotation invariant image space.
For these training images an eigenspace is computed. For recognition, the in-
teresting points of the observation are detected and the resulting projections to
the eigenspace are compared to the eigenimages. A voting algorithm is used for
the final place recognition.

Gaspar et al. (2000): The algorithm is based on building a topological map out of the
eigenimages of the computed eigenspace. These eigenimages are used for local-
ization. For navigation between the known places, a feature tracking method is
used.

Kelly (2000): The author proposes a navigation method for large scale environments
with locally flat scenes. He constructs a large image of the known area and
subsequently tracks the robots position using a visual tracking algorithm.

Ulrich and Nourbakhsh (2000): This method uses several histograms to characterize
images. A topological map is built by capturing representative images and asso-
ciating the corresponding location. Locations are characterized by histograms
for several color channels and color models. During navigation the currently
visible image characterization is compared to the stored ones. For each color
channel the location is determined. The final localization is done by voting
between the several channels.

Bailey and Nebot (2001): The authors propose a topologically feature map to com-
bine the better tracking capabilities of feature maps with the better scalability
of topological maps. Each node of the graph stores a feature map and for
localization the robot position is determined according to the feature map’s ref-
erence by tracking the robot’s position. Places are characterized by the feature
arrangement.

Artac et al. (2002b): The authors use Incremental Principal Component Analysis (IPCA,
see section 2.1.2) to built an eigenspace of images. The eigenimages are used
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as landmarks and between these positions in eigenspace were interpolated to
achieve a grid–like representation. For localization, the current view is trans-
formed to the eigenspace and a nearest neighbor search is performed.

Shaw and Barnes (2002): The proposed algorithm uses a topographical map of the
environment taken from an aerial vehicle. There typical surface features are
detected and stored in a feature map of the environment. A feature map of
the current sensor information is computed and matched with the map of the
environment to determine the robot’s position.

Freitas et al. (2003): This appearance–based approach fuses localization and explo-
ration using IPCA. While exploring the robot adds landmarks, in this case
eigenimages, to the topological map. The focus is not on navigational tasks but
on a performance analysis of the method.
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Table 1.1.: Characterization of related localization work
Authors Image data Localization Map Search Matching Place characterization
Krotkov (1989) Single Geometrical Feature Local Features Feature configuration
Leonard and
Durrant-Whyte
(1991)

Range Geometrical Feature Local Features Feature configuration

Andersen et al.
(1997)

Single / Stereo Global Topological Local Image Distinct images

Betke and
Gurvits (1997)

Panoramic (1D) Geometrical Feature Global Features Landmark configuration

Olson (1997) Stereo Geometric Surface Global Image Specific sub–image
de Verdiere and
Crowley (1998)

Single image Topological Feature Global Surface
matching

Surface in eigenspace

Dudek and Juges-
sur (2000)

Single Geometric Feature Global Features and
voting

Configuration of interesting points

Gaspar et al.
(2000)

Panoramic Topological Topological Global Image, ap-
pearance
based

Eigenimages

Kelly (2000) Single Geometrical Image Local Images Images
Ulrich and Nour-
bakhsh (2000)

Panoramic Topological Feature Global Features and
voting

Histograms of distinct images

Bailey and Nebot
(2001)

Range Hybrid Topological
feature
map

Local Features Feature configuration

Artac et al.
(2002b)

Panoramic Geometric Topological Global Image, ap-
pearance
based

Eigenimages

Shaw and Barnes
(2002)

Range Geometrical Feature Global Features Surface features

Freitas et al.
(2003)

Panoramic Topological Topological Global Image, ap-
pearance
based

Eigenimages
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1.4. Landmark selection

The work described in the previous section only uses landmarks to characterize places
without taking into account, which landmarks allow good or robust localization or
assumes that landmarks have already been selected. In the last couple of years some
papers were published, that try to select landmarks to achieve better results and
therefore are related to the algorithms presented here.

In the next paragraph some basics of landmark selection shall be pointed out. Then
related approaches are reviewed.

1.4.1. Fundamentals

Thrun (1998) mentions three disadvantages if a robot can not perform landmarks
selection and is fixed to a certain type of landmark.

Lack of Flexibility: Since a given feature is only useful if it exists in the robot’s en-
vironment, the localization or navigation methods will fail if the robot has to
navigate in a different environment.

Lack of optimality: Even for features that are generally applicable, it is not obvious
what the best landmark would be.

Lack of autonomy: If a certain environment feature is selected as landmark this fea-
ture is not necessarily the best landmark since the sensors of humans and robots
are too different. Therefore features that appear as good landmarks for humans
might not be good landmarks for robots.

Landmark selection methods overcome these drawbacks at least partially. All land-
mark selection methods have in common that they try to minimize the localization
uncertainty. Some approaches like for example Thrun (1998) or Olson (2002) use a
probabilistic approach. Others like Sutherland and Thompson (1994) or Burschka
et al. (2003) try to use landmarks as references for which it is known that they lead to
small localization errors.

The approaches that are more related to our algorithms select the landmarks in two
steps. In the first step, possible landmarks are detected. For this steps most often
attention operators are used. Attention operators detect low–level image features like
edges, edge–density, edge orientation, corners or symmetry. For a review of attention
operators the interested reader is referred to Sim et al. (2003) or Schmid et al. (2000).
In a second step, the algorithms then discard landmarks that are neither reliable nor
unique. Which landmarks are discarded and how the bad landmarks are detected is
highly application or algorithm dependent and therefore cannot be introduced here.

Due to that two–step pattern that is shared by many landmark selection algorithms,
one can state the following properties of good landmarks. The properties are proposed
by Ohba and Ikeuchi (1997) for selecting image regions that are best chosen for recog-
nizing an object and can also be applied to landmarks. The three properties are:
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Detectability: The landmark has to be detectable within the image. Usually the
first step of the algorithms selects landmarks that are detectable by
applying attention operators.

Uniqueness: Since the detectability criterion only detects landmarks but does not
grant the global uniqueness of a landmark a further property is needed.
In order to select discriminative landmarks already detected landmarks
that are too similar are excluded.

Reliability: The last criterion selects landmarks that are unique but don not lead
to robust localization. It ensures that the selected landmarks are ro-
bust against little errors in the robot’s position or pose. Discarding
landmarks that are neither unique nor reliable are usually discarded in
the second step of the landmark selection methods.

1.4.2. Related work

After introducing the basic things about landmark selection the related work will be
reviewed. The focus will be on the selection criterion and not on the methods how
localization is performed, how the images are represented or on the advantages and
drawbacks of the methods. The following paragraph is not restricted to landmark
selection for visual navigation, because similar ideas are used in visual recognition and
image retrieval too and the number of published papers is much smaller than for visual
localization.

Sutherland and Thompson (1994): The authors analyze how measurement errors lead
to localization errors. They propose a simple algorithm that uses geometric
properties of a set of given landmarks to select an optimal subset. The sub-
set minimizes the localization uncertainty. The algorithm also can propose an
optimal area for detecting new landmarks.

Yeh (1995): The proposed algorithm selects these features from a list of given 3D
features that will be most likely recognized from single image data and that
are as distinctive as possible. As byproduct, the algorithm builds a topological
map.

Murphy et al. (1997): The paper presents a homing algorithm that selects the land-
marks in order to minimize the homing error. Heuristics are used to rank possi-
ble landmark triples. The best triple is then evaluated by applying several test
cases. If the tests could not be completed satisfactory, another triple is taken.

Ohba and Ikeuchi (1997): In this paper an eigenwindow method is proposed that al-
lows stable object recognition. At several interesting points, subimages are taken
and an eigenspace is built for all subwindows of the training set. For recogni-
tion each subwindow is recognized and a voting algorithm is used. For selecting
interesting points, three measurements, namely detectability, uniqueness and
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reliability are used. Therefore, an attention operator detecting corners, a com-
parison of the pairwise uniqueness of all views and a measure for recognition
quality under rotations are used respectively. This work is very related to the
work presented here and the criterion for discarding influenced our approach for
measuring a landmark’s quality.

Schmid and Mohr (1997): In this paper an algorithm to characterize images for im-
age retrieval is proposed. It is based on local gray value invariants which are
computed for corner points detected with an attention operator. For retrieval a
voting algorithm is used.

Takeuchi et al. (1997): In the paper a learning–algorithm for landmark recognition is
presented. It uses a training set of images to group the images corresponding to
the same distinctive landmark. Each landmark is described by a set of features
and for recognition the current feature set is compared to the ones stored in the
database. The algorithm can be used for topological robot localization as well
as for image categorization.

Bourque et al. (1998): The authors propose a method for image acquisition with a
mobile robot for building an environmental representation based on images.
Images are only taken at representative places. The problem of detecting these
views is solved by an attention operator evaluation of the edge structure.

Little et al. (1998): The authors use range data obtained from a trinocular camera
system to built a 2D occupancy grid of the environment for navigation and
obstacle avoidance. The occupancy grid is combined with sparse 3D landmarks
that allow a better localization of the robot. For landmark detection a corner
detector is used and afterwards corners are excluded where the local surface is
not planar. This approach keeps corners that are visible from many directions
and were not formed by the projection of areas separated in space.

Sim and Dudek (1998): The proposed algorithm detects landmarks by using an at-
tention operator which detects image regions of high edge density. Then for
subwindows an eigenspace is computed to get low–dimensional descriptions of
the observed landmarks. For position estimation, the arrangement of interest-
ing areas in the image is evaluated. For localization the detected landmarks are
tracked over several image frames.

Simhon and Dudek (1998): The authors propose a method for building a collection
of local coordinate frames to cover a large scale environment. Therefore they
analyze the environment to find areas of high distinctiveness, i.e. areas where
good sensor data is provided and sufficient spacial structure is available. The
authors show examples for orthogonal lines detected with an ultrasonic range
sensor and smooth areas with varying features detected by a vision system.
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Thrun (1998): The author proposes a learning algorithm that is very abstract but
very powerful because it allows the autonomous selection of optimal landmarks
and also provides environmental and sensor flexibility. The idea is to optimize
the localization uncertainty with a Bayesian approach. The proposed algorithm
enables the robot to learn which features or landmarks are best used for local-
ization and provides the association between sensor readings and robot position.
The author also proposes an artificial neural network to extract features from
sensor readings.

Bourque and Dudek (2000): The paper describes an approach to characterizing an en-
vironment with views that are as interesting as possible. To measure the interest
of an image, they perform image statistics on the edge density and orientation
of an image. They provide a way for online–selection of images that are unusual
for the environment and therefore are of maximal interest.

Johnson (2000): The proposed algorithm computes feature vectors to characterize sur-
face points by combining pose dependent oriented surface points and pose in-
variant surface structures. Afterwards feature vectors that would decrease lo-
calization quality are excluded by checking for each feature vector, if it is very
similar to others or if it is in an area, where small measurement errors would
result in great localization errors. Therefore vectors in plains or respectively in
areas with great slope are excluded.

Jugessur and Dudek (2000): The approach is based on using an attention operator
detecting corners to obtain good visual features. In a second step all these
features are discarded, for which the standard deviation of an neighborhood
around the feature is below a thresholds. The selected features serve as cues
to obtain recognition. For all selected features of the training set, an image
eigenspace is computed using PCA in the frequency domain. For recognition
the features of the image to be recognized are selected and each feature is
recognized for its own. The object is recognized using a consensus of all the
feature recognitions. The approach allows robust localization even for rotated,
scaled, partially occluded objects and for variable backgrounds.

Knapek et al. (2000): In this paper a landmark selection algorithm is used to detect
image features that are distinctive and salient. First salient features are detected
with an attention operator. From this preselected set the most distinctive fea-
tures are computed by comparing the similarity between features and selecting
the most dissimilar ones. In the paper experimental proofs are provided to show
that the algorithm is stable in selecting and recognizing landmarks. This work
is closely related to the profile based landmark selection described in section
2.3.2. The algorithm computes a distance matrix for feature vectors.

Se et al. (2001): The algorithm uses trinocular stereo for ego–motion tracking of a
robot. For each of the three images, features that are invariant to image trans-
lation, scaling and rotation are computed. Correspondences are established
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between the images, and the features are tracked between frames. For 3D map
building, the coordinates of the points are computed.

Olson (2002): In this work a method for selecting optimally image areas for terrain
matching by selecting good landmarks is proposed. Therefore a sensor error
model is used for estimation of the probability distribution of the environment as
seen from the current robot position. The estimated distribution is compared to
a known map of the terrain and the optimal landmark is selected by minimizing
the predicted uncertainty for the localization.

Burschka et al. (2003): The authors propose a method to optimally place or select
landmarks for tracking to optimize vision based control of a mobile robot. For
a setup using a single camera or a panoramic vision system, they show theoret-
ically and experimentally that trying to minimize the distance between robot
and tracked landmarks leads to better results. In future work, the authors want
to apply the method for automatically selecting good landmarks for visual path
following.

Sim et al. (2003): In the paper several attention operators for landmark selection and
the resulting localization errors are compared.

The following tables are supposed to give an overview over the key aspects of the
reviewed works.
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Table 1.2.: Characterization of related landmark selection methods
Citation Aim Input Landmarks Landmark Selec-

tion
Localization,
Recognition

Greiner and
Isukapalli
(1994)

Learning landmark se-
lection

Panoramic image (1D) Features Experience–based
learning algorithm

Triangulation

Sutherland
and Thomp-
son (1994)

Geometric localization Single image Features Minimizing ex-
pected error

Triangulation

Yeh (1995) Landmark selection Single image Features Measure feature ro-
bustness

Future work

Murphy et al.
(1997)

Homing Single image / Laser
data

Features Optimize feature
arrangement

Triangulation

Ohba and
Ikeuchi
(1997)

Recognition Single image Subwindows Corner detection,
uniqueness and
reliability measures

Recognizing fea-
tures, voting

Schmid and
Mohr (1997)

Image retrieval Single image Features Corner detection Feature matching

Takeuchi
et al. (1997)

Single image Topological localiza-
tion

Feature distri-
bution

Distinctiveness of
feature distribution

Comparing feature
sets

Bourque
et al. (1998)

Building environmen-
tal description

Single image – Attention operator
evaluating edge
structure

–

Little et al.
(1998)

Geometric localization Trinocular stereo Features Corner detection,
excluding of cor-
ners not located on
planar surfaces

Future work

Sim and
Dudek (1998)

Geometric localization Single Image Subwindows Detecting areas of
high edge density

Recognizing in-
teresting features,
tracking, eval-
uation of the
landmark arrange-
ment
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Table 1.3.: Characterization of related landmark selection methods continued
Citation Aim Input Landmarks Landmark Selec-

tion
Localization,
Recognition

Simhon and
Dudek (1998)

Map building for hy-
brid localization

Single Image / Ultra-
sonic Range data

Areas with high
distinctiveness

Detecting areas of
high distinctiveness

Map matching

Thrun (1998) Geometric localization Variable, single color
camera, ultrasonic
range sensors

Features ex-
tracted from
sensor reading

Minimizing uncer-
tainty

Bayesian / Proba-
bilistic

Bourque and
Dudek (2000)

Topological navigation
(future work)

Panoramic images Landmarks: Im-
ages of maxi-
mum interest

Image statistic of
edge density and
orientation

Future work

Johnson
(2000)

Geometric localization Range data Feature vectors Excluding feature
vectors

Matching feature
vectors

Jugessur and
Dudek (2000)

Object Recognition Single Image Subwindows Corner detection,
gray value variance

Recognizing fea-
tures, voting

Knapek et al.
(2000)

Selection of recogniz-
able landmarks

Single image Image features Corner detection
and measure of
distinctiveness

Feature matching

Se et al.
(2001)

Geometric localization Trinocular Stereo Scale–invariant
features

Detection of swift
features

Feature tracking

Olson (2002) Geometric localization Stereo image Features in sur-
face map

Minimizing local-
ization uncertainty

Terrain matching

Burschka
et al. (2003)

Visual path following
(Future work)

Single image /
Panoramic Image

Selectable image
features

Features a priori
known

Future work

Sim et al.
(2003)

Pose estimation Single image Features Several attention
operators

Feature matching
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2. Our approach

In this chapter we give a detailed introduction to the profile–based and the IPCA–
based landmark selection algorithms and the reliability measurement we propose in this
report. Before describing the algorithms an introduction to the necessary mathematical
background, namely to Principal Component Analysis (PCA), Incremental Principal
Component Analysis (IPCA) and clustering is given for readers not familiar with these
methods.

We tried to keep the same mathematical notation like in Murase and Nayar (1995)
and in Freitas et al. (2003). Vectors are set in boldface lower case letters, matrices in
capital boldface letters, sets in capital letters.

2.1. Mathematical methods

2.1.1. Principal Component Analysis – PCA

Principal Component Analysis (PCA) got an established method for finding patterns or
reducing dimensionality in high dimensional datasets. Besides statistics, data mining
and signal processing it is widely used in computer vision for face (Turk and Pentland,
1991) and object recognition (Murase and Nayar, 1995; Leonardis and Bischof, 2000)
or in the field of robot vision for localization (Jogan and Leonardis, 2000) and robot
navigation (Gaspar et al., 2000; Winters and Santos-Victor, 2002; Vasallo et al., 2002).

The following paragraphs are supposed to give an introduction to the mathematics
behind the PCA and are based on Murase and Nayar (1995). The idea behind the
PCA for a set of training images is to compute an orthogonal basis of eigenvectors for
the training set, so that the origin of the new coordinate system equals the average
image and the first axis points in the direction of the greatest variation in the data
set, the second axis points in the direction orthogonal to the first covering the second
greatest variation and so on. Figure 2.1 points out the idea of the PCA.

Although for an exact reconstruction often a large set of eigenvectors is required,
only few eigenvectors or dimensions are sufficient to capture significant image charac-
teristics. Especially for this work, where many computations of image similarity are
needed, the reduction of the dimensionality results in faster computations.

Building the basis of eigenvectors

The images X i; i = 1...n that are going to build the training set for the PCA, are
reshaped to column vectors xi ∈ Rm×1 where m is the number of pixels in each image.
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(a) The zero–mean data set
with the original coordinate
axis

(b) The data set with ro-
tated axis, so that the first
axis covers the greatest vari-
anceand the second axis is
perpendicular covering the
second greatest variance.

(c) The data set with re-
duced dimensionality. The
points are projected to the
first axis

Figure 2.1.: Idea of the PCA

In the next step the average image vector

x̄ =
1

n

∑
i

x̄i (2.1)

is computed and subtracted from every image xi

x̂i = xi − x̄. (2.2)

These zero–mean vectors x̂i are put together to a m× n matrix

A := [x̂1, x̂2, ..., x̂n] . (2.3)

Then the m×m covariance matrix

C := AA> (2.4)

is computed. Solving the Eigenvalue Decomposition (EVD) for C leads to the eigen-
values λi and the associated eigenvectors ei ∈ Rm×1 with i = 1...m. The eigenvectors
belonging to the non–zero eigenvalues span a basis with at most κ := min (m,n) vec-
tors, because the rank of C can be smaller then κ and the matrix has at most κ
non–zero eigenvalues.

32



Since C is actually a matrix of the size m×m and therefore is very huge, the computa-
tion of the EVD is very expensive. In Murase and Nayar (1995) are several algorithms
mentioned to overcome the problem. Here we focus on the algorithm used for this
work which is based on Single Value Decomposition (SVD). If the number of images
n is much smaller then the number of pixels m it is better to compute the implicit
covariance matrix

C̃ := A>A (2.5)

which is of the size n× n. Then the eigenvectors ẽi; i = 1...n and eigenvalues λ̃i of C̃
are computed by SVD of the matrix C̃. The eigenvectors and eigenvalues of C can be
computed using

λi = λ̃i (2.6)

and

ei = λ̃i
− 1

2 Aẽi (2.7)

For both ways the result is a set of eigenvalues λi where λ1 ≥ λ2 ≥ ... ≥ λκ and a
set of associated eigenvectors ei; i = 1...κ. Since C and C̃ are both positive definite,
every eigenvalue λi is positive and is a measure for the variance or variation in the
data set covered by ei. Up to that point, the PCA is nothing else then a rotation of
the existing basis so that the first axis covers the greatest variation, the second axis
covers the second greatest variation and so on. The axis of the new coordinate system
are the eigenvectors.

Transformation to the eigenspace

Since in this thesis the number of pixels m in the images is always greater then the
number of images n, only this case will be mentioned from now on. To project the
images into the eigenspace a dimension k has to be chosen with 1 ≤ k ≤ n. The more
dimensions are chosen, the more accurate is the representation of the images in the
eigenspace. A way to measure the covered variance is to compute the following ratio

t :=

∑k
i=1 λi∑n
i=1 λi

, (2.8)

which should be close but less then unity. For k = n each image of the training set can
be represented exactly by a vector of the length k. In this case the PCA only performs
an image compression.

Then the transformation matrix

T := [e1, e2, ..., ek] , (2.9)
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where the columns are the first k eigenvectors has to be built. At this step an eigenspace
model Ω = (x̄, T ,Λ, n) has been computed and an image y can be transformed to the
eigenspace by using

g := T> (y − x̄) . (2.10)

Recovering images

The transformation of a point g in the eigenspace to an image can be expressed as a
linear combination of all n eigenvectors weighted with the coordinates gi of the point:

y =
n∑

i=1

giei + x̄ (2.11)

= Tg + x̄. (2.12)

In case of a reduced dimensionality the image can only be recovered with a certain
residue vector r:

y =
k∑

i=1

giei + x̄ + r. (2.13)

Image Distance in the eigenspace

For the computations described in this report, computing the similarity between images
using the Sum of Squared Differences (SSD) or some normalized equivalent is very
important. Therefore the proof given in Murase and Nayar (1995) will be recapitulated
showing that the SSD of two images y1, y2 in the image space is approximately the
SSD of the corresponding points g1, g2 in the eigenspace:

‖x1 − x2‖2 ≈

∥∥∥∥∥
k∑

i=1

g1ei −
k∑

i=1

g2ei

∥∥∥∥∥
2

(2.14)

The right hand side can be simplified∥∥∥∥∥
k∑

i=1

g1ei −
k∑

i=1

g2ei

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

(gi1 − gi2)ei

∥∥∥∥∥
2

(2.15)

=
k∑

i=1

k∑
j=1

e>i ej × (gi1 − gi2)
2. (2.16)

Using that the eigenvectors are orthogonal and therefore e>i ej = 1 for i = j and 0
otherwise, we obtain∥∥∥∥∥

k∑
i=1

g1ei −
k∑

i=1

g2ei

∥∥∥∥∥
2

= ‖g1 − g2‖
2 . (2.17)
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And finally

‖x1 − x2‖2 ≈ ‖g1 − g2‖
2 . (2.18)

This equation guarantees that similar images will be transformed to similar points in
the eigenspace. Because of this property of the PCA it is possible to compute image
similarities in the eigenspace resulting in much faster computations.

Annotations

Before the Incremental Principal Component Analysis will be explained, we want to
point out some properties of the PCA without proofing them.

• The columns of the transformation matrix T , i.e. the eigenvectors, are also
referred to as eigenimages.

• After Hall et al. (1998) the set of points can be understood as k–dimensional
hyper–ellipse in the n–dimensional space. The center of the ellipse is the mean
image x̄, the axis are the first k eigenvectors and the length of the axis is the
square root of the associated eigenvalues.

• de Verdiere and Crowley (1998) mention that the reduction of dimensionality
leads to a k–dimensional approximation of the dataset that is optimal in the
least–square sense. So the first principal component can be understood as re-
gression line minimizing the perpendicular distance to the data set.

• In Rupar et al. (2002) the authors state that spatial relation between pixels is not
exploited because the image is reshaped to a vector. To overcome this drawback,
the authors use the tensor rank method.

• Several authors, e.g. Ohba and Ikeuchi (1997), Dudek and Jugessur (2000),
de Verdiere and Crowley (1998) and Jugessur and Dudek (2000) state that the
PCA is very sensitive to image changes like rotations, shifts and differences in
scale and changes in lightning conditions. When projected into the eigenspace the
resulting points are not necessarily close to their corresponding training image
points. To overcome these drawbacks, good segmentation and normalization
methods have to be found.

• If an image is divided into a grid of sub–images and the PCA is computed
using these sub–images, the method is called eigenwindow method. It was first
proposed by Ohba and Ikeuchi (1996).

2.1.2. Incremental Principal Component Analysis – IPCA

The batch method for computing the eigenspace model described in the previous sec-
tion has some drawbacks if tasks involving exploration behavior of the robot are
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concerned. Exploration is strongly related to the problem of adapting an existing
eigenspace model by adding unknown images. Therefore, the major drawbacks of the
batch method are that learning and localization stage are strictly separated that all
training images have to be known before the model can be constructed and that for
adapting the model all images have to be kept in storage resulting in a need of huge
storing capabilities and the re–computation of the model from scratch.

Because of these drawbacks, algorithms for Incremental Principal Component Anal-
ysis (IPCA) were proposed e.g. by Hall et al. (1998) and improved by Artac et al.
(2002b). Like the batch method, IPCA is widely used in robot localization and nav-
igation (Artac et al., 2002b; Freitas et al., 2003) or object recognition (Artac et al.,
2002a). In the following paragraphs, the algorithm will be described more detailed.
The description is based on Artac et al. (2002b) and Freitas et al. (2003).

Updating the eigenspace model

The algorithm described here assumes that there was already an eigenspace model
Ω = (x̄, T ,Λ, n) built. To update the existing model by adding a new image xn+1 the
mean has to be updated:

x̄′ =
1

n + 1
(nx̄ + xn+1) . (2.19)

Then the new image is projected to the current basis T

gn+1 = T> (xn+1 − x̄) . (2.20)

The residual vector r caused by projecting xn+1 into a lower dimensional subspace
and recovering, can be computed according to equation (2.13)

rn+1 =
(
Tgn+1 + x̄

)
− xn+1. (2.21)

The residual vector rn+1 is orthogonal to all other basis vectors of T and so its nor-
malized equivalent

r̂n+1 =

{
rn+1

‖rn+1‖ ‖rn+1‖ 6= 0

0 otherwise
(2.22)

will be used to update the existing basis T . The new m × (k + 1) sized basis T ′ is
obtained by appending r̂n+1 to the current basis T and applying a rotation R

T ′ = [T , r̂n+1] R, (2.23)

where R is of the size (k + 1)×(k + 1). To update the existing eigenimages gi; i = 1...n
it is necessary to reconstruct each image gi using equation (2.12) and to transform it
again to a new low dimensional representation

g′
i =

(
T ′>
)

(xi − x̄′) ; i = 1...n + 1. (2.24)
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After updating the basis the original images and the old basis can be discarded. The
n + 1 images are now represented in a k + 1 dimensional eigenspace.

The rotation matrix

Since the computation of the matrix R is not so essential for the proposed landmark
selection algorithm, only a short description will be given here. Interested readers are
referred Hall et al. (1998). The rotation matrix R is a solution for the eigenproblem

DR = DΛ′ (2.25)

where Λ′ is a diagonal Matrix with the new eigenvalues λ′i; i = 1...k + 1 and D is a
matrix consisting of known components of λ and xn+1

D =
n

n + 1

[
Λ 0
0 xn+1

]
+

n

(n + 1)2

[
gn+1g

>
n+1 γgn+1

γg>
n+1 γ2

]
(2.26)

with

γ = ĥ
>
n+1 (xn+1 − x̄) . (2.27)

Following these steps a new eigenspace model Ω′ = (x̄′, T ′,Λ′, n + 1) was computed.

Model’s dimensionality

The algorithm described above allows an exact representation of all n + 1 images
because the spanned subspace is k + 1 dimensional. So with every image added, the
subspace grows which is – according to the application – not desired. On the other
hand the computed model Ω′ allows an representation with the same accuracy as Ω
and the images xn + 1 is also represented accurately.

Several methods were proposed in the literature to find a trade–off between accuracy
and keeping dimensionality low. These solutions include adding a new vector when-
ever the size of the residue vector exceeds a certain threshold, whenever the sum of
the reconstruction errors of the image representations exceeds a certain threshold or
whenever the smallest eigenvalue exceeds a certain threshold.

The reduction of dimensionality takes place before the images are transformed to
the new basis by keeping only the first k columns of the transformation matrix T ′ and
the k greatest eigenvalues of Λ′.

2.2. Clustering

Cluster analysis tries to find an optimal grouping of data into clusters so that every
observation in the cluster is very similar to the other observations in the same cluster
but all the clusters are dissimilar to each other. The two most often used methods for
clustering are Hierarchical Clustering and K–means Clustering. These methods will be
described below. Our description is based on Rencher (2002) and Duda et al. (2001).
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2.2.1. Hierarchical Clustering

Hierarchical clustering methods can be divided into agglomerative and divisive meth-
ods. Here we focus on agglomerative hierarchical clustering, which starts with one
cluster per observation and iteratively joins clusters into a new cluster leading to a
single cluster containing all observations in the final step. Therefore the pairwise ob-
servation distance is computed and in the joining step the two closest clusters are
melted. Therefore the distance function is essential for the results of the clustering.
Once the clusters are melted, they remain together resulting in an hierarchical sequence
that can be represented as tree. The underlying algorithm is given in algorithm 2.1.

Algorithm 2.1: Algorithm for agglomerative hierarchical clustering

1: procedure clusterTree=hierarchicalClustering(Z)
2: c = |Z|
3: while c > 1 do
4: c = c− 1
5: find i, j for which dist (Zi, Zj) ; i, j ∈ [1, c] gets minimal
6: Z = Z \ Zi

7: Z = Z \ Zj

8: merge Zi and Zj to a new cluster Zij

9: Z = Z ∪ Zij

10: end while
11: return Z

For hierarchical clustering the resulting tree is called dendrogram. It shows all the
steps in the hierarchical procedure including the distances at which the clusters are
merged. The dendrogram often gives a hint for the optimal number of clusters. The
number of clusters is given by cutting all the edges in the tree at a certain distance
level. The cut should be done between two levels that are far away from each other.
An example dendrogram and several possible cuts are shown in figure 2.2.

Distance functions

So far we did not mention the distance function used to determine which clusters
have to be melted. For well separated clusters all functions will compute the same
clusters, but for badly separated clusters the choice of the distance function can have
an influence on the results. The distance functions used most often are:

Single Linkage
For the single linkage or nearest neighbor method the distance between two clusters A
and B is defined as the minimum distance between a point in A and B

distmin (A, B) = min{d (xi, xj) |xi ∈ A, xj ∈ B} (2.28)

where d is any distance function.
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Figure 2.2.: An example dendrogram with cuts resulting in 2, 4 or 7 clusters.

Complete Linkage

The complete linkage or farthest neighbor method defines the distance between A and
B as the maximum distance between a point of A and B:

distmax (A, B) = max{d (xi, xj) |xi ∈ A, xj ∈ B}. (2.29)

Average Linkage

For the average linkage method the distance between A and B is defined as the average
of the nAnB distances between the nA points in A and the nB points in B with any
distance function d:

distavg (A, B) =
1

nAnB

nA∑
i=1

nB∑
j=1

d
(
yi, yj

)
. (2.30)

Centroid

The centroid method defines the distance between A and B as the distance between
the mean vectors of A and B:

distcent (A, B) = d

(
1

nA

nA∑
i=1

yi,
1

nB

nB∑
j=1

yj

)
(2.31)

The mean vector of the vectors of one cluster is often referred to as centroid.

There are a lot of other approaches that can be used to measure the distance,
e.g. the ward’s method, the median method or the flexible beta method. Which of
the methods leads to the best results or separates the clusters optimally is highly
application dependent.

39



2.2.2. K–means clustering

K–means clustering assumes an initial clustering and then reallocates the observation
in order to minimize some error function. The class of algorithms K–means clustering
belongs to is called partitioning or optimization clustering. A good strategy for parti-
tioning would be to test every possible partition of the data set and find the optimal
partition according to some error criterion. Since the number of possible partitions
grows very fast with the number of observations it is not possible to test all of them.

The K–means algorithm first selects c observations where c is the number of clusters.
There are several strategies how to choose the seed, for example the observations can
be chosen randomly, the first c items of the data set can be chosen or those points that
are farthest away from each other can be used as seed. Independent on which method
is used, the number of clusters has to be specified before the clustering begins. After
choosing the seeds, each remaining observation is assigned to the nearest seed. As soon
as a cluster has more then one member, the seed is replaced by the cluster’s centroid.
After assigning each element to one cluster, each item is examined again if it is closer
to another cluster’s centroid then to its own cluster’s centroid. If so, it is moved to the
corresponding cluster and the centroids are updated. This process is updated until the
clustering can not be improved any more. A pseudo–code notation of the algorithm
can be found in algorithm 2.2.

Algorithm 2.2: Algorithm for k–means clustering

1: procedure clusters=kMeansClustering(Z, c)
2: initialize seeds µ1, µ2, ..., µc

3: repeat
4: classify the samples according to nearest µi (Nearest Neighbor Search)
5: recompute µi

6: until no change in µi

7: return {µ1, µ2, ..., µc}

The k–means procedure is sensitive to the initial choice of the seeds. If choosing
different seeds that lead to different results or if the clustering converges only very
slowly, there may be no natural clusters in the data or the number of clusters is not
chosen appropriately.

2.3. Proposed landmark selection algorithms

In this section, the proposed algorithms for landmark selection will be described. The
basic idea of the proposed algorithms is to select landmarks that are as dissimilar
as possible to all other landmarks. The profile–based algorithm uses pairwise image
dissimilarity between sub–images as ranking criteria, the IPCA–based algorithm uses
Incremental Principal Component Analysis. Before introducing the algorithms we
point out some things that are supposed to outline the purpose of our studies.

40



2.3.1. Introductory annotations

As we have shown in section 1.4.1 most of the landmark selection algorithms preselect
possible landmarks in a first step and then – in the second step – discard unreliable
or un–unique landmarks. Here we do not propose methods for preselecting possible
landmarks. The proposed algorithms assume that a list of preselected landmarks is
already given. This is due to the fact that in the used aerial image the distribution of
features like corners, edges, edge–density or symmetry detected by standard attention
operators (Sim et al., 2003) is rather uniform and does not constrain the number
of landmarks or the location of possible landmarks to distinguishable image regions.
Therefore we do not achieve any advantages of preselecting possible landmarks.

However, nothing prevents the proposed algorithms from having such a prior atten-
tional module. For future work and for larger environments we think it is necessary to
built such an attentional module to speed up the necessary computations.

Our approach assumes that an image of the environment as seen from the blimp is
given as map of the environment. For example, the map can be obtained by mosaicking
or can be an aerial image like in this case. For a review of mosaicking approaches see
Gracias (2002). Since we do not preselect possible landmarks the image is divided into a
grid and all the sub–images are used as possible landmarks. The algorithms then select
the most promising landmarks according to the algorithm’s criterion. Both of the al-
gorithms operate on a set of sub–images transformed to an eigenspace. The eigenspace
is computed using PCA–methods. PCA coefficients lead to a compact representation
and – if only few dimensions are used – also to generalization. Although pure appear-
ance based methods have been proposed for localization and object recognition, there
are only few works like Ohba and Ikeuchi (1997) that use appearance–based methods
to compute the ranking between possible landmarks in order to select the best ones.

2.3.2. Profile–based algorithm

The key aspect of the algorithms is the computation of a distance matrix of pairwise
image dissimilarities. For each possible landmark, the average dissimilarity to all
other possible landmarks is computed and those landmarks that are most dissimilar
are selected.

In detail this algorithm takes a set G of images gi; i = 1...n in k–dimensional
eigenspace and the number of landmarks l that should be selected as input. In the
next step it computes a distance matrix D with the pairwise image distances as entries

Di,j = dist
(
gi, gj

)
. (2.32)

As a distance measure any kind of dissimilarity function ρ that holds the following
requirements

ρ(gi, gj) ≥ 0 and ρ(gi, gj) = 0 ⇔ gi = gj (non–negative) (2.33)

ρ(gi, gj) = ρ(gj, gi) (symmetrical) (2.34)
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can be used. Due to the properties of the similarity function the matrix is symmetrical
with zeros at the diagonal. For this work a normalized Sum of Squared Differences
(nSSD) is used:

nSSD
(
gi, gj

)
=

∑k
ν=1

[(
g

(ν)
1 − ḡ

(ν)
1

)
−
(
g

(ν)
2 − ḡ

(ν)
2

)]2
2 (‖g1 − ḡ1‖+ ‖g2 − ḡ2‖)

, (2.35)

where g(ν) denotes the ν–th element of vector g and ḡ is the k × 1 vector

ḡ =
1

k

k∑
ν=1

g(ν) · (1, ..., 1)> . (2.36)

The nSSD guarantees a normalization to 0 ≤ nSSD
(
gi, gj

)
≤ 1. A proof for the

normalization is given in Stürzl (2003).

For the further evaluation a distance profile vector p is computed by averaging over
the rows of column j of the distance matrix

pj =
1

n− 1

n∑
i=1;i6=j

Di,j. (2.37)

For this approach sub–images that are very dissimilar to all other views are consid-
ered as landmarks. Since Di,j is close to unity if the views gi, gj are very dissimilar, a
sub–image that is very dissimilar to all other sub–images will have a profile value close
to unity. The ranking is done by sorting the profile values in an descending order and
selecting the l most dissimilar views.

Algorithm 2.3 gives a formal description of the algorithm described above. The
algorithm is of squared complexity and storage requirement, since the distance matrix
has to be computed and stored.

2.3.3. IPCA–based algorithm

The second algorithm uses IPCA to compute the image ranking. It iteratively updates
an existing eigenspace by adding that image that can be expressed worst in the existing
eigenspace. The image that can be expressed worst is exactly that image, for which
the norm of the residue vector is maximal. Because of using the IPCA the algorithm
is capable of online–landmark selection and can therefore be used for Simultaneous
Localization and Mapping (SLAM). For an overview over current SLAM approaches
see Bailey and Nebot (2001) and Frese and Hirzinger (2001). Most of the approaches
to landmark selection require an exploration phase during which the map is built and
a selection phase to select the best landmarks from the map. The advantage of the
online–algorithm is that the both steps are combined to a single step. Anyway, here
we do not deal with online landmark selection.
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Algorithm 2.3: Algorithm for distance–profile based landmark selection

1: procedure landMarkList=profileRanking(G, l)
2: p = 0 ∈ Rn

3: for i = 1 to n do
4: for j = i to n do
5: Di,j = Dj,i = dist

(
gi, gj

)
6: end for
7: end for
8: for j = 1 to n do
9: for i = 1 to n do

10: pj = pj + 1
n−1

Di,j

11: end for
12: end for
13: (values, indices)=sortDescending(p)
14: return indices[1 : l]

In detail, the algorithm requires a set of images S, the number of landmarks l and
the set of all possible sub–images X. It then computes a k–dimensional eigenspace
model Ω using the batch method described in section 2.1.1 for the set of start images
S, which will be updated later. The images of S are used as the the first landmarks.

Then every image xi is transformed to the eigenspace according to equation (2.10)
and the resulting residue vectors ri are computed using equation (2.21). Since the norm
of the residue vector is a measure how good the considered image can be expressed
with the eigenvectors of the current basis, the maximal norm of the residue vectors
is computed and the corresponding image is selected as new landmark. Therefore the
added landmark is exactly that image that is as different as possible to the already
selected landmarks.

Then the picked image has to be removed from X and the eigenspace model is
updated. The algorithm terminates if the number of selected landmarks is greater
then l. Alternatively some threshold for the residue vector can be used although we
did not try it here to achieve a better comparability to the profile–based algorithm.

One aspect of the IPCA–based ranking that has to be mentioned before describing
the experiments are the methods how the start set of images S and the number of start
images are chosen. Since the images contained in the start set are used as landmarks,
the further ranking is dependent on the selected images. For this work a fixed number
of start images and two methods for selecting start views were considered:

1. Choosing the start set according to the profile ranking. The advantage of this
method is that the first landmarks are very dissimilar to all other views and
should therefore be good landmarks to start the further ranking. The disadvan-
tage is that the profile ranking has also to be computed.

2. Choosing images randomly. The advantage of the method is that there is no
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Algorithm 2.4: Algorithm for IPCA based landmark selection

1: procedure landMarkList=ipcaRanking(S, l, k,X)
2: X = X\S
3: k = |S|
4: (x̄, T ,Λ, n) = computeEigenspaceModel (S, k)
5: while k ≤ l do
6: r = 0 ∈ R|X|

7: for i = 1 to |X| do
8: g = T> (xi − x̄)
9: ri = (Tg + x̄)− xi

10: end for
11: m = arg max{‖ri‖|i ∈ 1...|X|}
12: X = X\ {xm}
13: S = S ∪ {xm}
14: (x̄, T ,Λ, n) = updateEigenspaceModel (x̄, T ,Λ, n)
15: end while
16: return S

computational overhead. The disadvantage is that it is not predictable how
the start images influence the further ranking. The influence of the further
ranking, if very similar images are chosen, is also unpredictable (or would require
experiments that were not performed for this work).

2.4. Robustness and reliability evaluation

After presenting the landmark selection algorithms a detailed overview over the reli-
ability evaluation will be given. The method computes an upper limit of the image
dissimilarity for which an error–less localization is guaranteed.

When the blimp has to localize itself in the topological map a nearest neighbor search
has to be done in order to determine that landmark that is the closest one. For each
known landmark the camera image has to be compared with every known landmark
and the landmark to which the current image is most similar is selected as the blimp’s
current position.

To measure a landmark’s reliability we assume the blimp is at the landmark’s po-
sition except for small errors in the orientation, the position or the altitude. These
small errors result in views that are either rotated, translated or have a different scaling
respectively. Additionally we consider changes in the image brightness. The current
view is transformed to the eigenspace resulting in a point with coordinates differing
from those of the landmark. The task is now to find out, how much the view can be
changed so that the landmark is still selected as nearest neighbor.

Therefore we propose to compute for a set L := {gi′|i′ = 1...l} of selected landmarks
the maximal image dissimilarity ε so that the correct landmark is still selected. We
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define this limit ε as half the minimal dissimilarity between the known landmark gj

and all other selected landmarks:

ε :=
1

2
min

i′=1...l,i′ 6=j′

(
dist

(
g′

i, g
′
j

))
(2.38)

For a landmark g and a view g̃ the equation

dist (g, g̃) < ε (2.39)

gives us a sufficient but not a necessary criterion. The criterion can be understood as
a sphere around the considered landmark with radius ε. If the point representing the
current image is within this sphere, it is guaranteed that the localization is errorless.
As figures 2.3(a) and 2.3(b) show ε is great for a good landmarks g, i.e. a landmark
that is very dissimilar to all other landmarks, and small if at least one other landmark
is very similar. The greater ε is, the greater can the errors be so that equation (2.39)
still holds. Figure 2.3(c) visualizes that for certain arrangements the criterion is only
a sufficient one: The current image g̃ is closest to the landmark g but it is rejected by
our criterion since is not in the sphere around g.

g

ε

(a) Good landmark

g

ε

(b) Bad landmark

g̃

g

(c) Sufficient but not
necessary criterion

Figure 2.3.: Reliability evaluation

To measure the robustness of the landmarks with respect to deviations in orienta-
tion, altitude and image brightness and to give a range of parameters for which the
localization can be done errorless we start with g̃ as an identical view and make it more
and more dissimilar. For each parameter (orientation, scale and brightness), both the
upper and lower limits of the range for which (2.39) still holds is computed. For evalu-
ating deviations in the position we spiral pixel by pixel around the exact position and
count the number of views, for which the image similarity value is below the threshold
ε and for which another view in a 3 × 3 neighborhood around the current view was
already marked as similar enough. So we compute the size of a catchment area, for
which exact localization to the considered landmark is possible.

45



A similar method was used by Ohba and Ikeuchi (1997) to select the most stable
and therefore the most reliable landmarks. The authors have chosen a fixed limit
and a fixed rotation angle. If the image dissimilarity between the landmark and the
landmark rotated by the angle is not within the threshold, the landmarks is discarded
as unreliable landmark. Most other related works only show experimental data to
proof the reliability of the selected landmarks.
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3. Experiments and Results

In this chapter we describe the experiments that were done within this work. The
experiments include some basic experiments in order to get familiar with the PCA and
the eigenspaces. Then the experiments and the results for the landmark selection for
the used aerial image and the reliability evaluation are presented.

3.1. Fundamentals

For the experiments described in this chapter, an aerial image of the area around
Instituto Superior Técnico at Lisbon, Portugal, was used. This image is referred to as
“floormap”. The size of the original image I is 1600× 1200 pixels with a resolution of
approximately one square meter per pixel.

The floormap was divided into sub–images, in further referred to as “views”. 42
views were taken along a grid with six rows and eight columns. The chosen arrangement
results in a view size of v1 = 200 × 200 pixels. Another 35 views were taken at these
points, where the other views are adjoining, resulting in a total amount of 83 views
with an overlap between two views of 25%. Figure 3.1 shows the floormap and the
positions of the 83 views taken. Figure A.1 shows the same more clearly arranged.

The experiments were run with several levels of scaling and smoothing. For a given
scale factor si the view size vi was computed by

vi = bv1sic. (3.1)

In order to cover the whole image with views and to keep the number of views constant,
the original image I was down-scaled to an image size of 8vi×6vi which is coupled with
small changes in the aspect ratio. The view sizes for the considered scaling factors are
listed in table 3.1. After picking out of the floormap and down-scaling, the sub–views
were smoothed with several levels of Gaussian smoothing (in further referred to as
“blurring”), listed in Table 3.2.

To speed up computations all the necessary computations on the images and views
were done in the eigenspace. Therefore, all the views were transformed according to
section 2.1.1. For the experiments a set E of dimensions was used:

E = {1, 2, 3, 5, 7, 10, 12, 15, 18, 20, 25, 35, 50, 65, 83} (3.2)
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Figure 3.1.: Position and view number of the views taken out of the floormap image.

Table 3.1.: Scale factors and resulting view sizes.
scale factor s−1

i 1 2 3 4 5 6 8 10 12 15 20
view size vi [pixels] 200 100 66 50 40 33 25 20 16 13 10

Table 3.2.: Parameters for Gaussian smoothing.
Blurring: neighborhood–size Standard deviation σ

none – –
gauss1 3 0.48
gauss2 5 0.65
gauss3 7 0.76
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3.2. PCA–related experiments

3.2.1. Aim and description

The aim of the PCA–related experiments was to visualize how many percent of the
image information are covered by the first n dimensions in the PCA–space. Therefore
the first n eigenvalues were summed. Another aim was to visualize eigenimages, in
order to get a feeling for them and for the influence of the dimension to the accuracy
of the representation.

3.2.2. Results

In figure 3.2 the plots of the covered variance against the number of dimensions for
several scale factors are shown. The plots show that

• the more the views are smoothed, the greater is the variance covered by the first
principal component (i.e. the greatest eigenvalue). Therefore the resulting graph
gets steeper.

• the more the views are down–scaled, the greater is the greatest eigenvalue.

To summarize, the plots show that there are less dimensions needed to represent the
views if the views were more down–scaled and smoothed.

Figure 3.3 shows the first 25 eigenimages. The first three eigenimages are very gen-
eralized, there do not appear much shapes like crossroads or streets. If an image in the
eigenspace is understood as linear combination of the eigenimages, it is clear that the
image can only be represented very bad. Then in the following eigenimages structures
like blocks or streets appear. These structures get more and more detailed. So it
is visible that a huge number of eigenimages can be necessary to represent an image
accurately, but only few eigenimages are sufficient for a generalized representation.

3.2.3. Conclusions

The results are especially interesting, because a small view size and a small number
of principal components both speed up the necessary computations. But the more
the views are down–scaled and smoothed the more difficult will be the localization in
the map, because the number of similarities will rise. Therefore it is necessary to find
a good trade–off between localization quality and fast computation or view size and
smoothing.

The visualization of the eigenimages shows clearly that a certain number of di-
mensions is needed in order to achieve a clear and unique representation of the view
allowing reliable or robust localization. In order to visualize this fact again, the quality
of recovered views for several dimensions is shown in figure A.2.
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(a) Blurring: none (b) Blurring: gauss1

(c) Blurring: gauss2 (d) Blurring: gauss3

Figure 3.2.: Covered variance against number of dimensions of PCA space for several
scale factors and blurrings.
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(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 6 (g) 7 (h) 8 (i) 9 (j) 10

(k) 11 (l) 12 (m) 13 (n) 14 (o) 15

(p) 16 (q) 17 (r) 18 (s) 19 (t) 20

(u) 21 (v) 22 (w) 23 (x) 24 (y) 25

Figure 3.3.: The first 25 eigenimages. Scale: 10−1, Blurring: gauss1
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3.3. Profile–based landmark selection

3.3.1. Aim and description

The aim of this experiment was to compute the profile–based landmark selection for
the floormap and all the possible combinations of parameters and to find out which
parameters lead to the best results and how the parameters influence the landmark
selection and all the sub–steps needed for computing the selection. In the following we
present the results for each of the sub–steps, namely the computed distance matrices,
the computed distance profiles and finally the result of the algorithm, the landmark
ranking.

3.3.2. Results

Distance matrices

An example distance matrix1 is shown in figure 3.4, for a more comprehensive overview
see figures A.3 to A.8. In the plots white entries mark very dissimilar and black entries
mark identical views.

Figure 3.4.: Example distance matrix. Scale factor: 10−1, dimensions: 3, blurring:
gauss1

The surface plots show that

• there are – especially in low dimensional eigenspace – views that are quite similar
to each other. These views show out as dark blocks in the distance matrices and
usually contain a region of adjacent views. There are also a couple of white blocks
that show regions of views that are very dissimilar to other regions. These blocks
disappear if more dimensions in the eigenspace are used.

1The white diagonal is a plotting error which is due to MATLAB
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• there are views that are very dissimilar to all other views. These views show out
in the distance matrices as white rows or columns. These views are very difficult
to detect visually in the shown matrices.

• the more dimensions in PCA–space are used, the more homogeneous the distance
matrices get, i.e. the most entries are approximately 0.5. The less dimensions
are used, the wider is the range of gray values.

• the more the views are downscaled the greater gets the difference between smoothed
and unsmoothed views, especially in higher dimensional eigenspace.

Distance profiles

For easier evaluation the computed profiles were sticked together in a matrix with
|D| = 15 rows and 83 columns and visualized as matrix plots. An example matrix is
shown in figure 3.5(a), for a more comprehensive overview over the profile matrices
see figures A.9 to A.11. The profiles for each dimension were normalized to [0, 1] and
again white codes dissimilar and black similar.

(a) Example profile matrix. Scale factor:
8−1, blurring: gauss1

(b) Sorted profile values for several dimen-
sions. Scale factor 8−1, blurring: gauss1

Figure 3.5.: Example distance profiles.

The profile matrices show that

• the dimensions can be roughly divided into three groups. The first for 1D and 2D,
the second for three to ten dimensional PCA–space, the third for more then 10
dimensions. The profiles for the first group are always different then the profiles
of the other groups. The ones for the second group, are more similar to those of
the third group, but minima and maxima change more often then in the third
group. For the third group, the extreme values seldom change and many views
have values around an average gray.
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• especially for the smoothed views and for views with a scale factor smaller then
4−1 there are many columns that have very similar entries for all the dimensions.

• at a first glance these columns or views that show out to be very similar or
very dissimilar to others, seem to be very stable for all the different possible
parameters.

• there are a lot of views with average dissimilarities and only little outstanding
or very similar views.

Additionally figure 3.5(b) visualizes the dissimilarities for different dimensions. The
plots show better then the profile matrix that there are only less views that are very
dissimilar or very similar to all other views and there is a huge number of views with
an average similarity.

Landmark selection

Some examples for possible profile rankings are shown infigure 3.6, tables with all the
results are shown in tables A.1 to A.6.

The tables and figures show that

• the division into three groups according to the number of used dimensions men-
tioned in the paragraph about the profile matrices is also visible in the rankings.
These results can be compared to the grouping found in the eigenimages.

• the rankings get more stable for smoothed images and more then five dimensions.
That means that there are less changes in the order of the view numbers and
that there are very often the same views selected. The selected images are often
the same for a constant scale factor and variable dimensions and vice versa. The
first couple of selected landmarks seem to be more stable then the others.

• the selected views really look different. They often contain one unique image
region, like for example the roads crossing in an acute angle2 in view 29, the
black square34 in view number 20 or the big building shaped like an eight5 in
view number 3.

• no views of neighborhoods that look very similar or even grid–like were selected.
These areas include the left part6 and the right part of the floormap7.

2For insiders: Avenida Rovisco Pais and Avenida Almirante Reis
3The north Tower of Instituto Superior Técnico
4Watch out that the algorithm does not select the lab’s building as best landmark ;-)
5The building of Caixa Geral de Depositos
6The neighborhoods between Saldanha and Campo Pequeno
7Anjos, Areeiro and Alamada Almirante Reis
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(a) Scale factor: 8−1; Dimension: 18; Selected Views: 35, 11, 51, 80, 29, 20, 50, 3

(b) Scale factor: 15−1; Dimension: 20; Se-
lected Views: 35, 80, 29, 20, 50, 3, 75, 51

Figure 3.6.: Example profile rankings. Blurring for both images: gauss1
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3.3.3. Conclusions

Like in the work of Knapek et al. (2000) and Ohba and Ikeuchi (1997) computing the
distance matrix leads to a robust landmark selection. The averaging over the profile
seems to weight landmarks that are very dissimilar to all other landmarks. It seems like
for the chosen arrangement of landmarks the views are already too dissimilar because
many views have an average dissimilarity and there are only view very similar or
dissimilar views. This conclusion is based on figure 3.5(b). It is left for further work to
find out how the overlap between images influences the distance matrices and profiles.
Here we will focus on the conclusions that can be drawn from the sub–experiments.

Distance matrices

The fact that the matrices get more homogeneous the more dimensions in PCA–space
are used, shows that generalization is needed for landmark detection, although it is
expected that more dimensions in PCA–space are needed for a better localization. So
there is another hint that it is necessary to find a trade–off between robust localization
and computation speed and robust landmark detection.

The blocks representing adjacent views that are only visible in matrices for low
dimensional eigenspace, are a hint that the views are only similar if there is a huge
degree of generalization. If the number of dimensions raises, the blocks disappear and
the views get more and more dissimilar to each other. Further experiments could
evaluate, how this result changes with changing the overlap between the images.

Since some views are quite dissimilar to all other views the proposed method of
averaging over the dissimilarities is a good method for further evaluation of the data.

Distance profiles

The fact that the views that are very similar or very dissimilar to all the other views
seem to be constant for all possible parameters might be a hint that the chosen method
is an appropriate way to select and characterize landmarks, although further tests have
to show that the selected views are really better landmarks then the others. This fact
could also be used to average over the columns of the profile matrices to put more
weight on those views that have great entries for a lot of dimensions.

Landmark selection

Promising results are that the landmark selection seems to be stable and the selected
landmarks all look different. Another good result is that the views were only taken
from regions of the floormap that look very dissimilar. So the landmark distribution
of the shown figures is not a problem of the algorithm, but is due to the geometry of
the shown neighborhoods.
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3.4. IPCA–based landmark selection

3.4.1. Aim and description

The landmark selection with the IPCA–based algorithm was computed systematically
for all possible parameters. The several start lists used are listed in table 3.3 and
visualized in figure A.12. They were chosen in order to see how the landmarks are
selected if a certain case for the arrangement of the start list occurs. Every start list
contained three landmarks and again eight landmarks were selected to allow a better
comparison to the profile–based algorithm.

Table 3.3.: Differences between randomly chosen start lists.
Method Views Description

rnd1 20, 52, 79 Very different views
rnd2 2, 29, 69 Very different views
rnd3 9, 36, 62 Two views in the same grid–like area, the third in an-

other grid–like ares
rnd4 37, 77, 78 Each view is distinctive, but maximal overlap between

views
rnd5 15, 62, 77 Two of the views are very similar, the third is different

and distinctive to all other possible views

3.4.2. Results

Some example selections are shown in figure 3.7, a comprehensive overview over the
results can be found in tables A.7 to A.12 for the selection with profile–based start
list and in tables A.13 to A.15 for the selection based on random start lists. Since
the IPCA–based ranking is independent of the dimension of the used eigenspace. The
dimension only gets important if the start list is based on the profile–based ranking
or if further computations like the reliability evaluation have to be done. That is the
reason why the tables of the results for the IPCA–based selection with profile startlist
include several dimensions and the results for the selection based on random startlists
do not.

Looking at the results it strikes out that:

• also for the IPCA–based algorithm all the selected landmarks look different.
They also show one characteristic pattern per landmark.

• Independent from the start list, the ranking selects landmarks that are dissimilar
to every other selected landmark.

• the ranking is very dependent on the selected start list. For different startlists
with very similar views the results will be similar. Vice versa, if the start lists
only contain distinctive views, the selection will be completely different.
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(a) Profile startlist (b) rnd1

(c) rnd2 (d) rnd3

(e) rnd4 (f) rnd5

Figure 3.7.: Example selections for the IPCA–based landmark selection. Scale factor
10−1, dimension of figure 3.7(a): 15; Blurring: gauss1
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• for some parameter combinations numerical instabilities appeared. Since these
stabilities are rather seldom compared to the number of performed rankings, the
affected data is marked in the tables showing the results with dashes (“–”).

3.4.3. Conclusions

The results show that the IPCA–based algorithm also selects – except for the cases
when numerical instabilities appeared that will be fixed in further work – good and
distinctive landmarks. Anyway it is not as clear as for the profile–based algorithm
which landmarks are selected and what characterizes the selected landmarks. With
the selected landmarks it is not visible, which startlist leads to a good or to a bad
ranking or if the start list has any influence on the quality of the selected landmarks.
What can be concluded from the data is that if there is an influence it is not as great
as we expected so that also a start list containing very similar landmarks can lead to a
good ranking. It is far beyond the scope of this report to do experiments investigating
the influence of the start lists more detailed.

3.5. Reliability Evaluation

3.5.1. Aim and description

In this section we are going to describe the results of the reliability evaluation. For
each considered parameter, namely orientation, position, altitude and image bright-
ness, we computed a lower and an upper bound for which equation (2.39) still holds.
Values between the upper and lower limit curves of the presented plots do not produce
erroneous localizations.

Orientation

To analyze deviations in the orientation of the blimp the image dissimilarity between
the landmark and a view rotated leftwards or rightwards respectively was computed.
Therefore a sub–image that is centered at the landmark’s position, was cut out of
the floormap. This sub–image was sufficiently big, so that after rotating it, a view of
the view size vi, could have been inscribed without loosing image information at the
corners of that view. For comparison with the landmark, a view of the appropriate
size was cut out of the sub–image. From step to step the rotation angle was changed
by 1 ◦.

Altitude

Deviations in the altitude of the blimp show out in views that contain a bigger or
smaller area of the underlying floormap. This effect can be modelled by taking subim-
ages of different sizes out of the floormap and scaling them all to the same view size
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vi. For each step, the size of the subimages was changed by 1% compared to the view
of view size vi.

Position

To measure the quality of a landmark with respect to deviations in the blimp’s position
the size of the catchment area around the correct landmark position was computed by
stepwise spiraling around the correct position and counting the number of positions
for which a correct localization is possible and for which another position in a 3 × 3
neighborhood has also been marked as successful.

Image brightness

Changes in the illumination conditions were modelled by applying a gamma–correction
to the original image. The change of the gamma value between two steps was 0.5.

3.5.2. Results

Representative plots showing the reliability for a constant scale and a varying dimen-
sion of the eigenspace are shown in figure 3.8.

Orientation

For up to ten dimensions an increase of stability is visible, i.e. the absolute values of
the upper and the lower limit are increasing. Then, for more then ten dimensions, the
stability slowly decreases. The maximal reliability is reached for ten to 15 dimensions
allowing – for the representative data shown in figure 3.8(a) – a deviation of approxi-
mately ±25 ◦ from the correct orientation. The level of smoothing seems to have only
little influence on the reliability, the values are roughly identical. It seems that the
views that have been smoothed more, seem to be a little bit more stable. Independent
of the dimension of the eigenspace, the difference between the levels of blurring gets
greater for images that have been downscaled a lot. A comprehensive overview over
the data is given in figures A.13 to A.19.

Altitude

The results for the altitude look very similar as those for the orientation: Again stability
increases for one to ten dimensions, then it keeps at a constant level or slightly decreases
again depending on the selection. The range gets much smaller for images that where
downscaled for more then one tenth of the original size. For the example plot of figure
3.8(b) the maximal scale factor is approximately 1.35 for the upper bound scale factor
and 0.825 for the lower bound. The limits for the different levels of blurrings are again
close together. An overview over the complete data is given in figures A.20 to A.26.
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(a) Orientation (b) Altitude

(c) Position (d) Image brightness

Figure 3.8.: Representative plots for the reliability evaluation. Scale factor: 10−1, blur-
ring: gauss1, dimension for the profile–based ranking: 15.
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Position

For presenting the results, the size of the catchment area was normalized by the total
number of pixels in the floormap. So the plots show the relative size of the catchment
area compared to the floormap size. At the first glance, the percentages seem to be
rather small but one has to keep in mind that one view only covers approximately
2% of the floormap image and that landmarks are characterized by unique patterns
that have to be visible and at approximately the same position of the view in order to
recognize the place properly.

The sizes of the catchment areas seam to be bigger if the dimensions of the eigenspace
are low. For more then ten dimensions, it decreases or keeps at a constantly low level.
Although the images blurred stronger very often have larger catchment areas, they are
often much larger if less then ten dimensions are used. Generally the percentages vary
a lot for different selections and parameter combinations. Plots for position evaluation
are given in figure 3.8(d) and in figures A.27 to A.33. If the dimensions are kept
constant and the scale factor varies, differences between the several rankings show out:
for the profile–based ranking and the IPCA–based ranking with profile–based start
list, things look quite regular and predictable. The size of the catchment area grows
with the level of smoothing and the level of down–scaling. For the randomly selected
start lists, the relative sizes get rather unpredictable.

An extreme example is given in figure 3.9. There the views 15, 62 and 66 are
surrounded by very large catchment areas and dominate the mean size. For more
then ten dimensions, the images are represented more accurately and the sizes of the
catchment areas are comparable to those of other landmark selections.

(a) Selected landmarks (b) Relative size of catchment area

Figure 3.9.: Extreme example for the relative size of catchment areas. Scale factor:
8−1, blurring: gauss1, start list for IPCA–based ranking: rnd5
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Image brightness

The plots for the possible range of deviations of the gamma value presented in figure
3.8(d) and in figures A.34 to A.40 all show an approximately linear increase of stability
with the number of dimensions. All the plots show that the more the views have been
smoothed the less reliable they are. For more then 25 dimensions, the differences can
get quite large. If the dimension is kept constant and the scale factor varies, it shows
out that the range gets much smaller for images that were downscaled and smoothed
a lot.

3.5.3. Conclusions

The results – especially those for the evaluation of image deviations with respect to
errors in the blimp’s altitude and orientation – show that for achieving reliable local-
ization at least ten dimensions are needed. The range between ten to 15 dimensions
seems to be the optimal dimension of the eigenspace for the used setup. Also the
optimal level of down–scaling seems to be around 8−1 to 12−1. So the views can be
compressed to approximately 38% of the originally view size, if we assume a scale
factor of 12 and a 15–dimensional eigenspace. For the considered levels of Gaussian
smoothing, the landmarks get more reliable if the images are smoothed more. Anyway,
it is left for further work to find an optimal level of smoothing, because it seems that
the used level “gauss3” is not some kind of threshold level.

The only parameter that does not produce optimal results in the mentioned range of
scale factors and dimensions seems to be the image brightness. Therefore for real world
experiments with changing light conditions, it is necessary to think about contrast or
gray value normalization.

The relative size of the catchment area seems to give a good measure if a landmark
is located in a region where surrounding views look very similar or not. In case it is,
then the size of the catchment areas is very huge or even bigger then the size of the
landmark, otherwise it is rather small. That results in a great variance of the data
contributing to the mean size. In further work, we have to find a suitable method
to solve that problem, e.g. by normalizing the data so that landmarks with a huge
catchment area contribute more then landmarks with only a small area or vice versa.
Another important aspect of further work is to find a suitable measure that combines
all the parameters and therefore reducing the amount of data.
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4. Failed approaches

In this chapter a short overview of approaches and experiments that did not lead to
promising results shall be given. Namely, these are experiments that were done to
select landmarks by clustering views in the eigenspace and experiments to measure a
landmark’s reliability by computing and analyzing localization matrices.

4.1. Cluster–based landmark selection

We had the idea to cluster the points in the eigenspace using the clustering methods
described in section 2.2 to detect landmarks. We thought that it might be a good
approach to use clustering methods because the views within a neighborhood should
be similar to each other but very dissimilar to views from other neighborhoods.

Unfortunately, the approach did not lead to promising results, so we only show
the first experiments and their results that made us conclude that there are better
approaches to the landmark selection problem.

4.1.1. Aim and description

For clustering the points the hierarchical method as well as the k–means algorithm
have been used.

Hierarchical clustering

To find out how many clusters or landmarks should be used, we visualized the hierar-
chical clustering by plotting and analyzing dendrograms. Also we systematically com-
puted the cophenetic correlation coefficient (MathWorks, 2002; Everitt et al., 2001). It
measures the distortion of the dendrogram by comparing distances in the dendrogram
and in the observation. Values close to unity signal a good correlation. The cophenetic
correlation coefficient (CCC) is defined as

CCC =

∑
i<j (Oi,j − ō) (Ci,j − c̄)√∑
i<j (Oi,j − ō)2 (Ci,j − c̄)2

(4.1)

where Oi,j is the pairwise distance between two observations, Ci,j is the pairwise dis-
tance of two observations in the dendrogram and ō, c̄ are the mean distances in the
observations and the dendrogram respectively. Depending on the distance measure
used to cluster the observations, Oi,j is not the same as the corresponding entry of the
distance Matrix D.
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K–means clustering

Some fundamental experiments with the k–means clustering were to visualize some
clusterings by marking those views that have been assigned to the same cluster.

The drawback of the k–means clustering is that you have to know the number
of clusters in advance. Therefore we systematically tried each value from 1 to 83.
As distance measure for all experiments with k–means clustering the sum of squared
differences (SSD) was used.

To compare the validation of the different clusterings, the silhouette value was com-
puted for each view. After Bolshakova and Azuaje (2003) the silhouette value (SIL)
has a value between −1 and 1 and is a confidence indicator on the membership of the
i–th observation of cluster Cj; j = 1...c and all the other observations contained in
clusters Ck; k = 1...c; k 6= j. It is defined as

SIL(i) =
(b(i)− a(i))

max{a(i), b(i)}
(4.2)

where a(i) is the average distance between the i–th observation and all other samples
included in Cj and b(i) is the minimum average distance between the i-th observation
and all of the samples clustered in Ck. If SIL(i) is close to 1, one can assume that the
i–th sample was assigned to the cluster correctly, if the value is close to −1 it indicates
that the sample has been misclassified.

In order to find out the optimal parameter combination, we analyzed the mean and
the median SIL values of all the views for a given number of clusters, scale factor, di-
mension and blurring. Additionally we computed the percentage of negative silhouette
values.

4.1.2. Results

Since we only want to give a short overview why we think the clustering of the views
did not lead to the results we expected, we do not show all the results and data. We
only pick out those results that looked promising but made us decide to focus on other
approaches.

Hierarchical clustering

The systematical analysis of the CCC showed that the use of the Euclidean distance
function to measure the distance between two observations and the average, centroid
or single linkage method gave the best results. For this clustering parameters, the
CCC is often in a range between 0.7 and 0.8.

Some example dendrograms are shown in figure 4.1. The upper one shows a good
dendrogram that can be used to cluster the views. There it is easy to set a cut–off value
and to determine the number of clusters. In the example, 300 was chosen as cut–off
value resulting in 15 clusters. Table 4.1 lists which views are within the same cluster,
figures A.41 to A.43 visualize the selections. These plots show, that only sometimes
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views of one neighborhood are within the same cluster. Often the clusters are very
big but the views in the clusters are distributed all over the floormap. Sometimes the
clusters look like they could easily be divided into two clusters, like e.g. cluster 11.
Chosing a smaller cut–off value would result in smaller clusters, but also the amount
of clusters that only contain a single view would raise.

(a) Example for a good dendrogram; scale factor: 6−1, dimensions: 2, blurring: gauss3, CCC:
0.7173

(b) Example for a useless dendrogram; scale factor: 10−1, dimensions: 10, blurring: gauss1,
CCC: 0.7673

Figure 4.1.: Example dendrograms for clustering views. Clustering parameters for both
dendrograms: Average linkage and Euclidean distance

If more dimensions of the eigenspace are used, the dendrograms look rather like
figure 4.1(b). For these dendrograms it is very difficult to set an appropriate cut–off
value, because the distance level at which the clusters are fused is more or less the
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Table 4.1.: Clusters for a good dendrogram; scale factor: 6−1, dimensions: 2, blurring:
gauss3. The clusters are marked in figures A.41 to A.43.

cluster views

1 5, 24, 32, 40, 47, 48, 83
2 16, 31, 38, 53, 69, 76, 82
3 12, 49, 57, 74
4 26, 44, 45, 65, 79
5 6, 7, 8, 13, 14, 15, 34, 46, 61, 67, 68, 70, 73
6 23, 25, 39, 55, 62, 75
7 9, 17, 22, 27, 28, 30, 33, 42, 52, 54, 56, 58, 60, 63, 71, 81
8 1, 4, 37
9 2, 20, 21
10 18, 59, 72, 77
11 10, 11, 19, 29, 35, 36, 64, 78, 80
12 41, 50, 51
13 43
14 3
15 66

same and the views within one cluster are very dissimilar to each other. So there
would either be view very big clusters or many clusters containing only a single view.

K–means clustering

Figure 4.2 shows a scatter–plot of the points corresponding to views in a 2D eigenspace.
The plot shows, that there are no obvious clusters in the data, the views are somehow
close to the other views assigned to the same cluster, but other boarders between the
clusters also seem suitable.

A single silhouette plot is shown in figure 4.3(a). It shows for each cluster the SIL
values of its members. It can be seen that there are only 5 observations with negative
silhouette values. There are a couple of observations – including the negative ones
– whose absolute silhouette value is close to 0, showing that these observations are
approximately equally far away from the cluster’s centroid it was assigned to and its
closest neighbor. There are only view observations with SIL values greater then 0.75
showing that the clustering is not too good. This plot is meant as a help to better
understand what we have done by systematically computing the mean and the median
SIL values for several parameter combinations.

A representative plot of this analysis is shown in figure 4.3(b). The analyzed values
get worse if more dimensions of the eigenspace are used. There are several optimal
parameter combinations, but there does not seem to be a range, for which the clustering
leads to the best results. So the optimal combinations have to be found individually.
For the shown example one such optimal parameter combination is the one used for
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Figure 4.2.: scatter–plot of k–means clustering in 2D eigenspace; scale factor: 12−1,
dimensions: 2, blurring: gauss1, 15 clusters; the numbers give the cluster
number and the view number
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the shown plots. Of course the analyzed values get better, i.e. the mean and average
SIL value are closer to unity and the percentage of negative values decreases to 0, if
the number of clusters is increased and many clusters only contain one view.

(a) Silhouette plot for 15 clusters (b) Systematical analysis

Figure 4.3.: Analysis of silhouette values; scale factor: 12−1, dimensions: 2, blurring:
gauss1

To round up the experiments related with k–means clustering, the clustering was
performed on the views. The results for the sample parameter combination used in this
section is shown in table 4.2 and is visualized in figures A.44 to A.46. The resulting
partition has the same problems as the one based on hierarchical clusterings: Some
clusters contain views that are distributed all over the floormap, some clusters look
like they could easily be divided into to clusters looking more suitable and so on.

4.1.3. Conclusions

The most important conclusion is that there are no obvious or natural clusters in the
views. So it is difficult to find an appropriate number of clusters. There also exists a
trade–off between the number of clusters and the quality of clustering. If the number
of clusters is kept small, the quality is low, i.e. there are many clusters that seem to be
unreasonable and can easily be divided into two better clusters. On the other hand,
if the number of clusters increases, there are many clusters that include only a single
view.

Another problem showing out from the results is the difficulty to find an appropriate
landmark representing the views that were assigned to a cluster. Since often the views
of one cluster are distributed all over the floormap, using the centroid view is not an
appropriate method. For example if the views in the upper left and the lower right
corner are clustered together as well as the views in the lower left and the upper right,
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Table 4.2.: Example k–means clustering; scale factor: 12−1, dimensions: 2, blurring:
gauss1. The clusters are marked in figures A.44 to A.46

cluster views

1 7, 8, 15, 27, 46, 52, 54, 61, 68, 75
2 22, 28, 33, 39, 43, 45, 58
3 5, 24, 32, 40, 47, 48, 69, 82, 83
4 12, 26, 44, 49, 57, 65, 74, 79
5 13, 23, 25, 38, 55, 62
6 20
7 2, 3, 21
8 10, 11, 19, 29, 35, 36, 64, 78, 80
9 16, 31, 53, 76
10 41, 66
11 18, 59, 72, 77
12 6, 14, 30, 34, 67, 70, 73
13 9, 17, 42, 56, 60, 63, 71, 81
14 1, 4, 37
15 50, 51

both cluster’s centroids are located at the image center resulting in two more or less
identical landmarks that are both far away from the images they are representing.

Also the clustering methods are not selective for neighborhoods as we expected them
to be. It is obvious that the clustering is done on PCA–coefficients and not on image
coordinates and that views which are far away from each other in the floormap but
which share a common pattern are projected to similar points in the eigenspace. But
landmark selection for topological navigation is dependent on representing areas by
characteristic Al landmarks. Therefore we conclude from the outcome of our experi-
ments that clustering views is – at least for our setup – not an appropriate approach
for the landmark selection problem.

Possible strategies to achieve a neighborhood selectivity by clustering could be the
use of a special distance function that is based on image dissimilarity and on the land-
mark’s distances in the floormap, which for us seems to be a valuable information to
achieve region selectivity. Another approach could be to use fuzzy k–means clustering
(Duda et al., 2001) so that these observations that cannot be assigned confidently are
partially assigned to more clusters.

After considering the problems that were posed by the results we want to point out
several conclusions. The hierarchical clustering iteratively merges the two most similar
clusters. So the most distinctive landmarks are merged last. Therefore the hierarchical
clustering is strongly related to the profile–based landmark selection, although in our
case different distance measures have been used.

Another point to be mentioned is that the results seem to show that the views as
possible landmarks are too dissimilar. Maybe clusters would show out and the ideas
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would work if we would use more views with greater overlap. It seems that the cluster-
ing approach needs much more possible landmarks then the proposed algorithms. This
is due to the fact that by clustering similar patterns in the image have to be found.

4.2. Localization matrices

If the image similarity between a certain view and every possible position of the
floormap is computed, a minimum will show out at the view’s position. Around the
view’s position, the values will increase again and in an ideal case the minimum will be
the only one. In the usual case – and especially if the landmark is not a very distinctive
one – there will show out several other minima. In an extreme situation, the global
minima could even appear at a position, that is not the view’s position. The idea
for an alternative approach to reliability evaluation was to compute these localization
matrices and to analyze the shape, the number and several other parameters of the
resulting peaks to characterize good and bad landmarks.

In order to measure properties of the peaks in the image, it is necessary to detect
the peaks. Therefore we use an algorithm that is similar to the water shed algorithm
invented by Vincent and Soille (1991). Our algorithm computes the position of the
peaks, i.e. the local minimum, as well as the pixels belonging to a peak. The algorithm
takes a localization matrix, sorts the entries in ascending order and iterates over every
entry. Each entry is a possible peak. So the algorithm checks if the corresponding
pixel is in a neighborhood region of another peak. If it is, then a neighborhood region
around the point is marked as belonging to the peak. Therefore the pixel only con-
tributes to the size of the peak. If the current pixel is not located in an already visited
neighborhood region, then its position is added to the list of peaks and the pixels in
it’s neighborhood are marked as belonging to the new peak. The algorithm stops if the
maximal number of peaks is reached or if the dissimilarity values are above a threshold
for which it can be assumed that they are not part of a peak.

4.2.1. Aim and description

Since we decided not to follow up this approach at an early stage only fundamental
experiments are shown. These include the visualization of localization matrices and
some test runs for the algorithm described above.

4.2.2. Results

The localization matrices show several peaks as we expected. The variance of the
similarity values and in correlation the number of local minima and maxima is greater
if the images were downscaled a lot and smoothed a lot. An example localization
matrix is shown in figure 4.4(a). The view for which the dissimilarities were computed
is view number 20 which shows the institute’s building approximately at the center of
the floormap. It seems like the most similar position was detected at the upper left
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corner of the matrix. In this case a correct localization based on detecting the global
minimum of the image dissimilarities is not successful.

Figure 4.4(b) shows the results of the peak analysis. The colder the color tempera-
ture is, the earlier the peaks have been detected. Since the figure is only supposed to
be an example, no further results shall be pointed out.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

Columns

R
ow

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Localization matrix

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

Columns

R
ow

s
0

5

10

15

20

25

30

(b) Peak matrix. ”Blue“ shows peaks that
have been detected first

Figure 4.4.: Example results for the analysis of localization matrices; scale factor:
15−1, dimension: 18, blurring: gauss1, view number 20

4.2.3. Conclusions

One big problem of this approach is the time needed for computations. So we decided
to focus on the reliability measurements described in section 3.5. The trade–off that
is visible for the localization matrices between down–scaling a lot and the capability
for a robust localization is interesting for real world experiments.

The peak–detection algorithm seems to work but there are still some situations that
should be handled better, e.g. at those pixels where regions of different peaks meet.
Another aspect to think about is the further analysis of the data computed by the
algorithm. A lot of things from the field of multivariate data analysis could be done to
characterize the peaks and the landmark’s quality. Among these, we think the size of
the regions, the slope of the peaks, the depth of the minima and the difference between
the global and the local minima could be of interest. Anyway, one has to keep in mind
that beside the needed computational times the analysis would also produce a huge
amount of data so it would probably be necessary to find a combined measure for the
landmark’s quality.

72



5. Final conclusions and further work

In this section the results of the work will be summarized and future working directions
will be pointed out.

5.1. Final conclusions

The most conclusions have already been pointed out. So here only the main conclusions
and the conclusions that can be drawn from all experiments will be mentioned.

The most important conclusion is that the proposed algorithms work and that both
algorithms select distinctive landmarks. The landmarks often contain one character-
istic feature like a certain pattern formed by the streets or an unique building. At
least for the experiments that were done for this report it is not possible to differ-
entiate when it is better to use the profile–based landmark selection algorithm and
when it is better to use the IPCA–based one. The profile–based algorithm is a little
bit more transparent, because it is not clear how the views contained in the start list
of the IPCA–based algorithm influence the further selection. On the other hand the
advantage of the IPCA–based algorithm is that it can be used for on–line landmark
selection and therefore does not need an exploring phase before it is possible to select
the landmarks like the profile–based algorithm.

The reliability evaluation showed that the selected landmarks were all stable over a
huge range of image deviations which are due to simulated deviations in the blimp’s
pose or simulated changes in the light conditions.

A problem influencing the results presented in section 3 as well as the failed ap-
proaches presented in section 4 seems to be the chosen arrangement of the landmark
candidates. The drawback of grid–like arrangement is that outstanding features of the
floormap can be located at the boarder of the view and not in the center like it would
be the case if the views have been selected by an attention operator. The drawback of
the small overlap of 25% is, that two neighbored landmarks are already very dissimilar.
This is due to the observations that the clustering approach did not lead to good re-
sults and that there are only view very dissimilar and view almost identical landmarks.
Especially for the clustering approach a huge amount of landmark candidates seems to
be necessary in order to group views of similar neighborhoods. Although the chosen
arrangement has drawbacks for the clustering approach and the proposed algorithms,
it was sufficient to show that both algorithms are capable of selecting reliable land-
marks. Anything else and especially a preselection of views that is optimal for the
given floormap is far beyond the scope of this report.
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5.2. Further work

Several ideas for future work have already been proposed in the concluding sections of
chapter 3 or in section 1.1 where we described how the presented work fits in the context
of the RESCUE project. Here we want to point out the future working directions for
the part dealing specifically with the appearance–based landmark selection.

If a human has a look at the floormap image shown in figure 5.1(a), the striking
things are on the one hand the streets and patterns that are formed by the streets and
on the other hand the color transitions between black streets and red roofs. In both
cases, humans have to perform some kind of image preprocessing or segmentation.
Since further work will be done at the department of Cognitive Neuroscience at the
University of Tübingen1, Germany, we will focus on biologically motivated algorithms
for preprocessing or segmentation.

5.2.1. Color segmentation

In Lucchese and Mitra (2003) color segmentation is defined as the partition of an
image by determing disjoint and homogeneous regions or by determing boundaries
between different regions. The authors also define properties for good segmentations:
the segmented regions should be as simple as possible without having small holes in
the interior. Adjacent regions should differ significantly with respect to the feature on
which they are uniform. And finally the boundaries between regions should be simple,
not ragged and should be spatially accurate.

In the last years a lot of algorithms were proposed for color segmentation. From
the viewpoint of modeling human perception, the algorithms of Yoon et al. (2000)
and Yoon and Kweon (2001) are especially interesting. In both approaches k–means
clustering (see section 2.2.2) is performed in the CIELab color space. One advantage
of the CIELab color space is that the Euclidean distance of two colors is proportional
to the difference perceived by the human visual system. The algorithms also take
into account that the human visual system has different sensitivities according to the
spatial color pattern of the image. Therefore they compute weights according to the
color variance in the neighborhood that is taken into account for clustering the color
values. The output of the algorithms is a palette image where similar colored regions
have been merged to bigger regions of one color.

The output should be comparable to the image shown in figure 5.1(b), which was
created by simply reducing the number of colors. Using color segmentation hopefully
reduces the number of small holes inside regions.

For further processing the palette values can be mapped to gray values in order to
apply standard image processing methods. Since color segmentation produces homoge-
neous regions, edges will only appear at the borders of regions. So color segmentation
can be an appropriate preprocessing for edge detection, because only important edges
will be detected. Since in the floormap image edges most often appear between streets

1http://www.uni-tuebingen.de/cog
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(a) Colored floormap. See how transitions
from red to dark gray correspond to tran-
sitions from buildings to streets.

(b) The floormap as palette image with
four colors (black, dark gray, light gray
and red). In a good segmentation approach
small holes in the interior of regions should
disappear.

Figure 5.1.: Floormap images to visualize ideas for color segmentation

and buildings, the palette value for streets and for roofs can be mapped to gray scales
with maximal contrast which will lead to better responses of edge detecting filters. For
example in figure 5.1(b) black and dark gray could be mapped to black and light gray
and white could be mapped to white ensuring a maximal contrast between streets and
houses.

Mapping color values back to gray values has also advantages for computing im-
age similarities. Since palette indices can not be chosen so that color differences are
proportional to the differences of the indices (which is due to the fact that it is not
possible to build an order of color values by sorting them), the whole color information
(usually one triple for each pixel) has to be used to compute image similarity. Com-
puting the image similarity of gray scale images is much faster, because only each pixel
is represented by only one value.

Especially for localization, when an image taken by the camera of the blimp has to be
compared with the stored floormap, changes in brightness or contrast or noise can be
a problem. Therefore performing color segmentation on the input image and mapping
the palette color values to known gray scales can help to minimize the differences
between the stored floormap and the input image. By segmenting a huge amount of
images taken at different illumination conditions it should be possible to compute some
average color values resulting from color segmentation of these images and to define a
mapping from these color values to gray scales. Then it is possible to segment an input
image, perform a nearest neighbor search between the known average color vectors and
the segmented color vectors and finally do the mapping to gray scales.
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5.2.2. Line segmentation

Another approach is to detect the streets in the gray scale image and to use the
network or pattern formed by the streets instead of the pure image. In an ideal case,
the algorithm for the line segmentation would output something like the blue lines in
figure 5.2.

Figure 5.2.: Pattern formed by the streets

A lot of work related to biologically motivated edge detection and enhancement was
published (Grigorescu et al., 2002; Kolesnik et al., 2002; Hugues et al., 2002; Thielscher
et al., 2002). There are also some works modeling computational neural network models
for line segmentation in the visual cortex of humans that seem to be more suitable to
our problem. Here we will focus on the work of Li (1999) and Neumann and Sepp
(1999).

Both methods assume oriented edge segments, how they can be computed using
Gabor filters, as input stimulus. Again the change from red roofs to black or dark gray
streets could be used for edge detection. Therefore it would be necessary to create a
color sensitive edge detector or to use the gray value mapping described above.

Both networks enforce edge segments that form good line segments and inhibit edge
segments that do not build line segments. In Li (1999) horizontal links between the
neurons of the primary visual cortex V1 are modeled to achieve the inhibition and
excitation. In Neumann and Sepp (1999) recurrent feedforward and feedbackward
links between V1 and the secondary visual cortex V2 are modeled. The excitation
pattern of the V1 neurons is compared to “curvature templates”, which are models of
good line segments. In the feedback step, the neurons in V1 are inhibited or excited
according to the correlation with the curvature templates.

In an ideal case, the proposed networks would compute some similar segmentation
like the one shown in figure 5.2. A possible adaptation of the network proposed in
Neumann and Sepp (1999) is to model crossroads or rotaries and to use these models as
curvature templates. Then landmarks can be selected at image positions corresponding
to the neurons that are excited most.
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5.2.3. Preselection of landmarks

Another approach that seems worth thinking about is the preselection of possible
landmarks. As the results show, taking possible landmarks at grid positions with
only 25% of overlap between adjacent landmarks as proposed for this work has some
drawbacks.

So one possibility would be to raise the overlap and therefore select more possible
landmarks. This method is extremely expensive, because of the complexity of the
proposed algorithms. In order to save computational costs it will be necessary to
preselect good landmarks according to some criterion and later select only the best
ones. As table 1.2 and 1.3 show a lot of proposed methods use attention operators to
overcome this problem.

Attention or interest operators often detect low–level image features like edge density
and orientation, contours or corners and therefore act like a spatial filter for these image
features. There are a lot of standard attention operators that are reviewed in Sim et al.
(2003) that can be applied for a large number of problems. But finding the best one
or designing an operator that is most suitable for the detection of landmarks in the
aerial image can be quite hard. The greatest problem (and the reason why we did not
address one for this work) related with the use of attention operators is the stability of
feature detection. The operator has to detect exactly the same features in the current
camera image of the blimp and in the floormap image. To achieve this, a good image
preprocessing reducing scene clutter and color variances is helpful or even necessary.

Another approach for designing an application specific attention operator would be
to identify distinctive parts of the floormap or the street pattern, like for example
specially shaped crossroads, and to match models of these in the floormap. Then the
preselected landmarks are chosen at these places, where the matching resulted in a
good correlation.

5.3. Final summary

In this work we present two algorithms for appearance–based landmark selection.
Landmark selection algorithms try to optimize the navigation and localization abilities
by selecting good landmarks. The algorithms, which will in future work be used to
select landmarks for topological navigation of an autonomous blimp, are called “profile–
based algorithm” and “IPCA–based algorithm”. The first algorithm evaluates image
dissimilarities between possible landmarks represented by PCA–coefficients. The sec-
ond one enlarges an existing eigenspace stepwise by adding that possible landmark,
that can be represented worst in the existing eigenspace. Both algorithms tend to select
those landmarks that are as dissimilar as possible to all other landmark candidates.
To measure a landmark’s quality a reliability criterion was proposed. It uses the image
dissimilarities between all the landmarks to compute an upper limit of image dissimi-
larity for which a correct localization to a given landmark is guaranteed. Additionally
we presented the ideas for some approaches that did not lead to promising results.
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Namely this were ideas for selecting landmarks by clustering the possible landmarks
and to globally evaluate the image dissimilarities between a landmark and the known
map of the environment.

The results show, that none of the proposed algorithms is superior to another. In
case a more then 10–dimensional eigenspace is used, all methods select landmarks that
are robust over a large range of image deviations and that all have a very similar
averaged reliability.

Since the proposed methods will be applied in large scale environments, there will be
the need for discarding possible landmarks in order to speed up the analysis. Therefore
we want to apply image preprocessing like color segmentation or contour grouping to
bring out the underlying geometrical pattern. We think that these overall geometrical
aspects of roads and buildings are the most relevant features for human observers. An-
other future working directory could be to implement a biologically inspired attention
mechanism that is combined with the image preprocessing steps we plan to use.
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A. Even more plots and data

A.1. View positions

(a) Position of the views 1–48

(b) Position of the views 49–83

Figure A.1.: Position of the views taken from the floormap
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A.2. Quality of Recovered images

Figure A.2.: Quality of recovered images. The columns show the landmarks 3, 13, 15,
29, 75 transformed and recovered from an eigenspace with 1, 5, 20, 50 and
83 dimensions. Scale Factor: 10−1, blurring: gauss1
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A.3. Distance Matrices

(a) Dim.: 1, blurr.: none (b) Dim.: 1, blurr.:gauss3

(c) Dim.: 3, blurr.: none (d) Dim.: 3, blurr.:gauss3

(e) Dim.: 7, blurr.: none (f) Dim.: 7, blurr.:gauss3

Figure A.3.: Distance matrices; scale factor: 1−1
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(a) Dim.: 12, blurr.: none (b) Dim.: 12, blurr.:gauss3

(c) Dim.: 25, blurr.: none (d) Dim.: 25, blurr.:gauss3

(e) Dim.: 83, blurr.: none (f) Dim.: 83, blurr.:gauss3

Figure A.4.: Distance matrices; scale factor: 1−1 continued
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(a) Dim.: 1, blurr.: none (b) Dim.: 1, blurr.:gauss3

(c) Dim.: 3, blurr.: none (d) Dim.: 3, blurr.:gauss3

(e) Dim.: 7, blurr.: none (f) Dim.: 7, blurr.:gauss3

Figure A.5.: Distance matrices; scale factor: 10−1
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(a) Dim.: 12, blurr.: none (b) Dim.: 12, blurr.:gauss3

(c) Dim.: 25, blurr.: none (d) Dim.: 25, blurr.:gauss3

(e) Dim.: 83, blurr.: none (f) Dim.: 83, blurr.:gauss3

Figure A.6.: Distance matrices; scale factor: 10−1 continued
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(a) Dim.: 1, blurr.: none (b) Dim.: 1, blurr.:gauss3

(c) Dim.: 3, blurr.: none (d) Dim.: 3, blurr.:gauss3

(e) Dim.: 7, blurr.: none (f) Dim.: 7, blurr.:gauss3

Figure A.7.: Distance matrices; scale factor: 20−1
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(a) Dim.: 12, blurr.: none (b) Dim.: 12, blurr.:gauss3

(c) Dim.: 25, blurr.: none (d) Dim.: 25, blurr.:gauss3

(e) Dim.: 83, blurr.: none (f) Dim.: 83, blurr.:gauss3

Figure A.8.: Distance matrices; scale factor: 20−1 continued
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A.4. Profile Matrices

(a) Scale factor: 1−1 (b) Scale factor: 2−1

(c) Scale factor: 4−1 (d) Scale factor: 8−1

(e) Scale factor: 10−1 (f) Scale factor: 12−1

(g) Scale factor: 15−1 (h) Scale factor: 20−1

Figure A.9.: Profile matrices; blurring: none
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(a) Scale factor: 1−1 (b) Scale factor: 2−1

(c) Scale factor: 4−1 (d) Scale factor: 8−1

(e) Scale factor: 10−1 (f) Scale factor: 12−1

(g) Scale factor: 15−1 (h) Scale factor: 20−1

Figure A.10.: Profile matrices; blurring: gauss1
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(a) Scale factor: 1−1 (b) Scale factor: 2−1

(c) Scale factor: 4−1 (d) Scale factor: 8−1

(e) Scale factor: 10−1 (f) Scale factor: 12−1

(g) Scale factor: 15−1 (h) Scale factor: 20−1

Figure A.11.: Profile matrices; blurring: gauss3
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A.5. Landmark selection

A.5.1. Results of profile based ranking

Rank
Dim. 1 2 3 4 5 6 7 8

1 22 71 39 68 27 59 34 73

2 39 25 55 70 13 59 67 43

3 67 30 18 72 59 1 14 29

5 11 19 67 18 35 72 14 60

7 18 29 60 72 3 20 11 17

10 60 72 29 18 16 17 14 20

12 47 60 29 17 16 72 18 76

15 72 17 29 24 76 67 10 77

18 17 28 10 72 29 59 77 76

20 17 28 59 77 21 2 53 76

25 28 53 17 3 24 77 40 72

35 40 28 17 53 24 32 9 77

50 24 77 17 53 3 40 5 18

65 24 77 53 32 16 17 5 40

83 24 53 77 3 32 17 41 69

(a) Scale factor: 1−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 22 71 27 39 34 68 59 43

2 39 55 25 70 13 34 43 59

3 67 18 30 72 1 29 59 14

5 1 19 11 67 35 18 72 29

7 18 60 29 11 3 72 17 20

10 60 29 72 18 17 20 10 14

12 29 60 17 72 16 47 20 18

15 72 29 17 10 24 77 76 20

18 17 28 77 10 59 29 72 67

20 17 28 59 77 53 21 3 76

25 28 3 17 53 77 72 24 32

35 28 17 53 40 24 77 3 9

50 77 24 17 3 53 18 20 41

65 77 24 53 17 41 3 5 32

83 24 3 77 17 53 41 32 69

(b) Scale factor: 2−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 8 43 34 27 15 75 39 61

2 60 81 56 17 1 37 30 21

3 18 29 72 1 67 19 2 30

5 1 19 11 35 18 72 29 60

7 60 29 18 17 3 11 72 10

10 60 29 72 20 18 17 10 3

12 29 17 72 20 10 60 3 35

15 29 72 17 20 77 10 2 24

18 28 17 77 42 20 59 3 50

20 28 17 42 20 72 77 3 59

25 3 28 17 72 77 53 21 24

35 17 28 3 53 50 9 24 77

50 77 17 3 24 20 41 53 49

65 77 17 41 3 24 53 50 57

83 3 17 77 41 24 53 28 57

(c) Scale factor: 4−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 63 60 71 52 13 55 67 73

2 17 2 30 11 21 9 19 18

3 18 19 29 35 9 10 11 78

5 29 78 1 11 72 35 2 18

7 29 17 72 10 80 81 3 64

10 72 29 20 3 17 35 10 18

12 29 72 20 3 10 17 49 35

15 72 3 29 20 76 28 35 77

18 28 76 3 72 20 50 77 29

20 28 76 3 50 29 77 72 20

25 28 3 76 53 20 11 17 72

35 3 17 28 53 77 18 50 49

50 3 77 41 20 28 17 50 57

65 3 41 77 17 20 28 50 57

83 3 41 17 77 57 24 53 20

(d) Scale factor: 8−1

Table A.1.: Results for profile ranking; blurring: none
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Rank

Dim. 1 2 3 4 5 6 7 8

1 8 77 51 41 50 66 34 39

2 21 9 17 1 11 56 10 2

3 18 29 11 72 10 19 9 35

5 11 29 18 35 72 4 10 19

7 29 60 17 81 10 49 3 72

10 29 60 35 72 20 3 4 17

12 29 72 10 20 35 17 3 80

15 72 29 3 20 77 76 42 2

18 72 76 3 20 77 28 42 29

20 72 50 42 76 28 3 20 17

25 72 3 28 76 17 77 50 20

35 50 28 3 17 72 77 24 20

50 49 77 17 72 50 28 3 24

65 17 3 77 41 24 49 28 72

83 3 17 41 77 24 28 49 72

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 52 6 72 77 58 28 75 43

2 60 56 30 42 37 17 21 11

3 60 11 18 59 19 29 2 56

5 72 18 14 29 70 3 60 2

7 72 18 14 3 16 70 11 29

10 72 29 68 10 60 20 19 3

12 72 68 29 20 60 10 19 3

15 72 68 20 29 76 3 10 21

18 72 68 20 42 29 59 76 10

20 68 72 20 59 76 42 3 29

25 72 68 3 20 59 24 56 53

35 72 3 20 17 49 21 24 42

50 72 20 24 3 17 56 49 77

65 72 3 17 20 24 56 49 77

83 72 24 3 20 17 77 21 56

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 63 7 33 44 54 45 81 46

2 81 46 7 37 4 11 2 10

3 7 37 46 21 11 59 18 30

5 29 70 42 35 20 28 64 17

7 29 35 20 3 72 28 16 17

10 20 3 16 72 29 35 17 14

12 20 35 29 3 14 37 72 19

15 29 20 3 72 17 13 19 77

18 29 3 53 20 13 72 24 76

20 3 29 53 20 77 76 24 47

25 3 77 29 24 20 53 17 32

35 3 20 77 53 17 32 29 25

50 3 20 77 29 53 17 24 41

65 3 20 24 29 77 17 53 41

83 3 24 20 77 17 29 53 32

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 56 45 72 11 44 18 17 42

2 27 13 14 77 30 62 48 55

3 62 13 48 38 68 55 60 39

5 48 13 55 27 82 14 5 7

7 13 18 48 47 16 73 28 70

10 16 11 55 20 82 29 28 32

12 11 20 28 72 35 49 77 29

15 77 53 28 13 76 17 24 72

18 77 2 76 28 17 72 42 53

20 77 17 28 29 3 2 76 50

25 77 28 76 2 24 17 3 41

35 77 24 17 76 53 28 3 42

50 77 17 41 3 53 24 28 76

65 77 41 24 53 17 3 76 28

83 77 41 24 53 17 3 76 28

(d) Scale factor: 20−1

Table A.2.: Results for profile ranking; blurring: none
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Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 39 68 59 27 45 73

2 42 39 34 70 55 25 13 73

3 18 67 1 30 72 29 60 14

5 11 19 35 18 72 60 67 29

7 18 60 29 11 72 3 20 17

10 60 72 29 18 17 20 10 14

12 29 60 17 72 16 47 20 3

15 72 29 17 24 10 20 77 76

18 28 17 77 59 29 10 76 35

20 28 17 59 77 3 2 21 50

25 28 17 3 53 77 72 24 2

35 17 28 53 40 9 24 3 77

50 77 17 24 3 53 20 41 18

65 77 24 17 41 53 3 28 57

83 24 3 17 77 41 53 32 69

(a) Scale factor: 1−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 71 68 39 22 59 27 67 34

2 60 56 17 21 81 1 9 37

3 1 17 18 60 29 9 19 56

5 19 11 35 1 18 60 72 29

7 60 29 18 11 17 10 72 3

10 60 29 72 18 20 10 17 3

12 29 17 72 60 20 10 3 35

15 29 72 17 20 10 35 2 24

18 28 17 77 10 20 41 59 29

20 28 17 50 3 77 72 2 29

25 17 3 28 72 77 53 2 50

35 17 28 3 50 9 20 53 77

50 17 3 77 20 41 24 50 49

65 17 77 41 3 24 50 57 53

83 17 3 41 77 24 53 20 28

(b) Scale factor: 2−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 42 41 66 51 59 39 67 68

2 17 1 21 60 56 9 2 37

3 9 56 11 19 1 35 17 60

5 10 35 11 60 1 29 80 19

7 60 10 29 35 11 17 18 72

10 35 60 29 72 20 3 10 18

12 35 29 10 20 17 3 72 60

15 35 29 20 72 3 17 10 2

18 20 42 10 77 17 3 41 35

20 20 77 50 3 42 41 17 10

25 50 3 17 20 35 9 72 77

35 50 3 20 17 9 2 77 35

50 20 50 3 17 41 77 49 29

65 41 3 17 20 50 77 29 9

83 3 41 20 17 50 77 29 9

(c) Scale factor: 4−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 71 33 18 81 60 45 63 37

2 17 37 1 9 21 60 11 4

3 9 35 19 10 11 78 17 56

5 35 10 60 11 19 80 29 36

7 35 29 10 11 80 60 51 19

10 35 80 51 11 4 49 10 29

12 35 51 80 29 11 20 10 4

15 35 11 51 80 20 29 50 10

18 35 11 51 80 29 20 50 3

20 35 11 51 80 29 50 20 3

25 35 50 51 11 20 80 3 29

35 35 51 11 50 20 3 29 80

50 51 35 20 50 29 3 80 41

65 51 20 50 35 3 41 29 80

83 51 20 50 3 35 41 29 80

(d) Scale factor: 8−1

Table A.3.: Results for profile ranking; blurring: gauss1
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Rank

Dim. 1 2 3 4 5 6 7 8

1 27 58 28 42 63 65 21 44

2 17 9 37 21 10 11 4 1

3 9 17 19 35 11 10 78 1

5 35 10 11 80 19 64 60 36

7 35 10 80 11 64 19 29 4

10 35 80 51 64 11 49 4 10

12 35 80 11 10 29 51 49 50

15 35 80 11 10 50 51 29 49

18 35 80 11 50 51 10 29 49

20 35 80 11 50 29 51 10 20

25 35 80 11 50 51 20 10 49

35 35 80 50 11 51 29 20 49

50 80 35 50 11 51 20 29 41

65 80 35 50 51 11 20 29 41

83 80 35 50 51 11 20 41 29

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 22 56 45 37 1 9 17 26

2 17 56 60 11 1 37 10 29

3 19 10 11 17 78 9 35 1

5 35 11 10 19 80 60 29 36

7 35 10 11 19 29 80 50 51

10 35 80 19 11 10 29 51 64

12 35 80 11 10 51 29 50 49

15 35 80 11 10 29 50 3 19

18 35 80 11 10 29 50 51 3

20 35 80 11 10 50 29 20 51

25 35 80 11 10 50 29 20 3

35 35 80 10 11 50 29 20 3

50 35 80 10 11 29 20 50 3

65 35 80 10 11 29 20 50 3

83 35 80 10 20 29 11 50 3

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 37 45 44 81 54 63 9 1

2 63 9 11 81 37 19 10 29

3 9 19 10 35 78 11 7 37

5 19 35 37 10 29 80 4 9

7 10 19 29 35 80 64 4 37

10 35 80 29 64 10 51 37 4

12 80 35 29 20 51 50 19 78

15 80 35 29 50 20 64 36 51

18 80 35 29 20 50 3 78 51

20 35 80 29 20 50 3 78 51

25 35 80 29 20 50 3 51 78

35 80 35 29 20 50 3 51 78

50 80 29 35 20 50 3 51 78

65 80 29 35 20 50 3 51 78

83 80 29 35 20 50 3 51 78

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 54 15 26 44 9 1 45 17

2 81 17 11 19 54 64 78 15

3 11 19 81 63 15 37 78 64

5 19 81 37 15 10 4 80 72

7 37 35 49 80 19 4 10 36

10 37 49 80 35 4 64 36 2

12 37 49 80 35 64 4 50 36

15 80 37 49 4 35 50 2 36

18 80 37 4 49 36 35 50 64

20 80 49 37 4 36 64 50 35

25 80 49 4 50 36 35 37 2

35 80 49 4 50 36 2 35 37

50 80 49 4 50 36 2 35 37

65 80 49 4 50 36 2 35 37

83 80 49 4 50 36 2 35 37

(d) Scale factor: 20−1

Table A.4.: Results for profile ranking; blurring: gauss1
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Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 68 39 59 67 27 73

2 60 56 17 81 21 1 37 9

3 1 17 60 9 18 29 19 56

5 11 19 35 60 18 72 10 29

7 60 18 29 11 10 35 72 3

10 60 29 72 18 20 17 10 3

12 29 17 60 72 20 3 10 35

15 29 17 72 20 10 35 24 2

18 28 17 77 35 29 41 10 20

20 28 17 50 3 2 29 77 72

25 17 3 28 77 2 53 72 50

35 17 28 9 3 50 20 77 53

50 17 3 77 20 41 24 50 49

65 17 77 41 3 24 50 53 57

83 17 3 41 77 24 53 20 28

(a) Scale factor: 1−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 68 43 39 34 59 67 75 27

2 17 21 60 1 56 9 2 37

3 9 56 19 11 17 1 35 60

5 35 11 10 60 29 19 80 1

7 60 10 35 29 11 18 17 72

10 60 35 29 72 18 20 10 3

12 35 29 10 20 17 3 72 41

15 35 29 20 72 3 17 10 2

18 35 20 10 17 77 29 3 72

20 20 50 17 77 42 3 10 41

25 50 17 3 35 20 9 77 72

35 50 20 3 9 17 2 28 77

50 20 3 50 41 17 77 9 29

65 41 3 17 20 50 77 29 10

83 41 3 17 20 77 50 29 10

(b) Scale factor: 2−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 27 51 28 50 41 66 80 58

2 17 37 60 56 9 1 4 21

3 9 19 35 11 17 10 78 56

5 35 60 11 10 80 29 19 36

7 35 60 80 11 29 10 51 36

10 35 80 51 11 10 64 4 29

12 35 80 29 10 51 11 20 64

15 35 11 20 80 51 29 10 50

18 35 80 20 11 10 50 29 51

20 35 11 80 50 29 20 10 51

25 35 50 80 20 11 29 3 10

35 35 50 80 20 51 11 3 29

50 35 50 20 51 3 80 29 41

65 50 20 35 51 41 3 29 80

83 20 50 35 51 3 41 29 80

(c) Scale factor: 4−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 63 3 26 9 65 56 44 37

2 63 81 17 9 11 60 29 64

3 63 17 9 35 19 10 11 78

5 35 19 10 80 9 11 37 17

7 35 10 19 80 11 29 49 17

10 35 80 10 19 49 11 51 29

12 80 35 10 49 11 19 51 29

15 80 35 11 10 49 29 50 36

18 35 80 11 49 10 29 36 51

20 35 80 10 49 11 29 36 50

25 35 80 10 11 49 50 29 36

35 35 80 10 11 49 50 29 36

50 80 35 10 11 50 49 29 51

65 80 35 10 11 50 49 29 51

83 80 35 10 11 50 49 29 51

(d) Scale factor: 8−1

Table A.5.: Results for profile ranking; blurring: gauss3
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Rank

Dim. 1 2 3 4 5 6 7 8

1 30 18 52 54 42 15 21 2

2 63 17 81 64 11 29 19 10

3 63 19 35 11 17 36 10 78

5 19 37 35 80 11 10 17 50

7 19 35 10 80 17 11 37 50

10 80 19 35 37 10 49 50 36

12 80 35 10 19 49 11 37 50

15 80 35 10 49 50 11 36 29

18 80 35 10 50 49 36 11 29

20 80 35 10 50 49 11 36 29

25 80 35 10 50 11 49 36 19

35 80 35 10 50 49 11 36 19

50 80 35 10 50 49 11 36 19

65 80 35 10 50 49 11 36 29

83 80 35 10 50 49 11 36 29

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 18 30 3 44 37 17 26 4

2 81 60 63 64 11 37 19 10

3 63 11 19 37 60 35 78 10

5 37 19 78 35 80 60 63 30

7 19 37 60 78 80 10 71 35

10 19 10 37 80 35 71 78 36

12 19 80 35 37 10 36 50 78

15 80 35 19 37 10 78 50 36

18 80 19 35 10 37 36 78 50

20 80 19 35 10 37 36 78 50

25 80 35 19 10 37 36 78 50

35 80 19 35 10 37 78 36 50

50 80 19 35 10 37 78 36 50

65 80 19 35 10 37 78 36 50

83 80 19 35 10 37 78 36 50

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 56 30 1 58 44 45 77 9

2 63 81 30 37 54 65 19 64

3 37 30 63 19 81 64 35 78

5 30 37 63 54 64 7 78 19

7 54 30 78 7 64 19 6 36

10 54 78 37 64 6 30 36 7

12 54 78 6 36 64 50 7 2

15 54 78 6 7 36 64 50 1

18 54 78 6 36 7 64 50 1

20 54 78 6 36 7 64 50 2

25 54 78 6 36 7 64 50 2

35 54 78 6 36 7 64 50 2

50 54 78 6 36 7 64 50 2

65 54 78 6 36 7 64 50 2

83 54 78 6 36 7 64 50 2

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 75 1 23 22 14 52 60 42

2 31 53 7 8 5 16 76 61

3 30 60 15 67 18 62 8 77

5 15 7 62 8 81 52 6 78

7 15 7 62 8 81 6 52 46

10 15 8 7 62 6 52 46 5

12 8 15 7 62 6 46 5 1

15 8 15 7 62 6 46 1 5

18 8 15 7 62 6 46 1 5

20 8 15 7 62 6 46 1 5

25 8 15 7 62 6 46 1 5

35 8 15 7 62 6 46 1 5

50 8 15 7 62 6 46 1 5

65 8 15 7 62 6 46 1 5

83 8 15 7 62 6 46 1 5

(d) Scale factor: 20−1

Table A.6.: Results for profile ranking; blurring: gauss3
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A.5.2. Results of profile–based IPCA ranking

Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 39 – – – – –

2 39 25 55 49 45 16 36 63

3 67 30 18 14 53 22 20 2

5 11 19 67 24 40 57 41 51

7 18 29 60 3 44 54 58 16

10 60 72 29 26 59 68 3 21

12 47 60 29 41 66 20 2 3

15 72 17 29 3 59 68 48 21

18 17 28 10 65 61 49 1 45

20 17 28 59 65 2 21 72 76

25 28 53 17 65 41 10 29 2

35 40 28 17 34 66 50 2 51

50 24 77 17 19 59 66 50 78

65 24 77 53 19 59 4 66 41

83 24 53 77 19 59 4 66 41

(a) Scale factor: 1−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 27 41 1 8 30 6

2 39 55 25 49 45 16 36 63

3 67 18 30 14 53 22 20 2

5 1 19 11 46 71 2 5 24

7 18 60 29 44 3 54 58 16

10 60 29 72 26 68 59 3 21

12 29 60 17 3 65 34 54 20

15 72 29 17 3 59 68 21 48

18 17 28 77 45 65 62 21 4

20 17 28 59 65 2 21 72 24

25 28 3 17 34 20 23 33 2

35 28 17 53 65 41 10 2 29

50 77 24 17 19 59 66 50 2

65 77 24 53 19 59 4 66 41

83 24 3 77 69 20 19 59 66

(b) Scale factor: 2−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 8 43 34 69 20 30 73 78

2 60 81 56 30 61 9 13 66

3 18 29 72 68 26 59 21 16

5 1 19 11 9 5 71 46 2

7 60 29 18 44 3 54 16 58

10 60 29 72 26 21 68 3 59

12 29 17 72 3 68 59 21 48

15 29 72 17 3 68 59 21 48

18 28 17 77 45 65 21 3 2

20 28 17 42 65 34 8 2 13

25 3 28 17 34 20 23 33 65

35 17 28 3 34 20 23 33 65

50 77 17 3 45 20 33 34 59

65 77 17 41 45 57 66 78 20

83 3 17 77 45 20 33 34 59

(c) Scale factor: 4−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 63 60 71 70 50 41 28 5

2 17 2 30 65 53 34 40 24

3 18 19 29 67 10 24 2 65

5 29 78 1 – – – – –

7 29 17 72 34 68 3 16 21

10 72 29 20 43 68 3 41 51

12 29 72 20 43 68 3 41 51

15 72 3 29 33 59 68 16 21

18 28 76 3 23 20 41 51 9

20 28 76 3 23 20 41 51 9

25 28 3 76 23 20 41 51 9

35 3 17 28 34 20 23 2 21

50 3 77 41 23 66 57 51 78

65 3 41 77 23 66 57 51 78

83 3 41 17 24 23 66 78 34

(d) Scale factor: 8−1

Table A.7.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: none
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Rank

Dim. 1 2 3 4 5 6 7 8

1 8 77 51 66 20 57 45 41

2 21 9 17 65 56 34 41 18

3 18 29 11 66 61 21 52 65

5 11 29 18 66 61 21 52 65

7 29 60 17 65 3 20 34 41

10 29 60 35 66 3 52 13 41

12 29 72 10 68 51 59 21 49

15 72 29 3 33 68 59 21 67

18 72 76 3 20 33 41 11 19

20 72 50 42 66 63 51 57 64

25 72 3 28 33 23 12 68 44

35 50 28 3 63 33 66 36 64

50 49 77 17 57 45 65 41 3

65 17 3 77 20 45 34 33 57

83 3 17 41 24 20 66 34 80

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 52 6 72 20 14 21 24 8

2 60 56 30 53 5 9 25 3

3 60 11 18 44 46 66 3 9

5 72 18 14 – – – – –

7 72 18 14 – – – – –

10 72 29 68 41 46 26 20 21

12 72 68 29 41 46 26 20 21

15 72 68 20 41 3 51 29 75

18 72 68 20 41 3 51 29 75

20 68 72 20 41 3 51 29 75

25 72 68 3 33 20 26 21 9

35 72 3 20 41 55 21 76 51

50 72 20 24 41 3 19 51 78

65 72 3 17 33 34 20 49 26

83 72 24 3 19 20 78 2 59

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 63 7 33 29 18 24 43 17

2 81 46 7 18 78 27 32 68

3 7 37 46 – – – – –

5 29 70 42 41 72 7 4 50

7 29 35 20 37 57 30 41 3

10 20 3 16 32 41 66 29 10

12 20 35 29 37 57 30 41 3

15 29 20 3 45 10 79 54 7

18 29 3 53 40 45 41 51 20

20 3 29 53 40 45 41 51 20

25 3 77 29 45 51 57 23 54

35 3 20 77 41 45 10 23 75

50 3 20 77 41 45 10 23 75

65 3 20 24 41 19 10 66 65

83 3 24 20 41 19 10 66 65

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 56 45 72 – – – – –

2 27 13 14 41 57 24 22 6

3 62 13 48 16 66 53 36 41

5 48 13 55 70 66 41 69 62

7 13 18 48 24 83 2 66 51

10 16 11 55 2 66 20 41 36

12 11 20 28 72 29 5 23 33

15 77 53 28 – – – – –

18 77 2 76 66 68 74 51 79

20 77 17 28 8 67 34 39 23

25 77 28 76 68 69 61 35 23

35 77 24 17 66 19 3 78 2

50 77 17 41 31 66 34 57 49

65 77 41 24 66 78 3 19 20

83 77 41 24 66 78 3 19 20

(d) Scale factor: 20−1

Table A.8.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: none
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Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 39 14 30 1 78 41

2 42 39 34 49 3 17 53 8

3 18 67 1 71 52 68 36 2

5 11 19 35 9 66 41 24 2

7 18 60 29 44 3 54 58 16

10 60 72 29 26 68 59 3 21

12 29 60 17 3 65 34 54 20

15 72 29 17 3 59 68 21 48

18 28 17 77 45 65 61 21 4

20 28 17 59 65 2 21 72 76

25 28 17 3 34 20 23 33 65

35 17 28 53 65 41 10 29 2

50 77 17 24 19 59 66 50 78

65 77 24 17 19 59 66 50 78

83 24 3 17 20 66 19 78 41

(a) Scale factor: 1−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 71 68 39 75 46 41 78 1

2 60 56 17 65 34 9 43 50

3 1 17 18 71 34 52 65 66

5 19 11 35 9 66 41 24 55

7 60 29 18 44 52 3 54 16

10 60 29 72 21 54 68 59 3

12 29 17 72 3 59 68 21 48

15 29 72 17 3 59 68 21 48

18 28 17 77 45 65 21 3 4

20 28 17 50 65 66 63 36 64

25 17 3 28 34 20 23 65 33

35 17 28 3 34 20 23 65 33

50 17 3 77 45 20 33 34 59

65 17 77 41 45 66 57 9 78

83 17 3 41 23 24 66 57 12

(b) Scale factor: 2−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 42 41 66 40 53 59 5 24

2 17 1 21 71 34 13 6 78

3 9 56 11 63 8 20 59 10

5 10 35 11 9 18 30 73 70

7 60 10 29 70 21 52 54 3

10 35 60 29 66 52 3 21 33

12 35 29 10 66 33 52 37 9

15 35 29 20 33 52 66 21 37

18 20 42 10 3 43 5 29 18

20 20 77 50 66 63 57 51 45

25 50 3 17 66 63 65 33 34

35 50 3 20 63 66 33 17 12

50 20 50 3 63 66 33 17 12

65 41 3 17 24 23 66 20 12

83 3 41 20 66 51 12 57 80

(c) Scale factor: 4−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 71 33 18 3 20 41 1 66

2 17 37 1 65 70 58 34 12

3 9 35 19 10 24 28 26 63

5 35 10 60 66 41 9 3 20

7 35 29 10 52 33 21 66 9

10 35 80 51 21 76 72 69 57

12 35 51 80 21 76 72 69 57

15 35 11 51 53 72 66 28 79

18 35 11 51 53 72 66 28 79

20 35 11 51 53 72 66 28 79

25 35 50 51 72 70 71 63 41

35 35 51 11 53 72 66 28 79

50 51 35 20 33 12 66 52 3

65 51 20 50 3 66 33 12 21

83 51 20 50 3 66 33 12 21

(d) Scale factor: 8−1

Table A.9.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: gauss1
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Rank

Dim. 1 2 3 4 5 6 7 8

1 27 58 28 21 67 41 20 17

2 17 9 37 65 52 1 59 63

3 9 17 19 65 56 24 34 10

5 35 10 11 9 66 71 28 17

7 35 10 80 21 66 9 11 2

10 35 80 51 21 76 72 69 79

12 35 80 11 28 66 78 17 1

15 35 80 11 28 66 78 17 1

18 35 80 11 28 66 78 17 1

20 35 80 11 28 66 78 17 1

25 35 80 11 28 66 78 17 1

35 35 80 50 72 70 71 40 63

50 80 35 50 72 70 71 40 63

65 80 35 50 72 70 71 40 63

83 80 35 50 72 70 71 40 63

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 22 56 45 77 59 21 8 25

2 17 56 60 65 58 70 34 9

3 19 10 11 55 9 18 65 28

5 35 11 10 66 9 17 65 50

7 35 10 11 66 9 17 65 50

10 35 80 19 21 28 69 64 66

12 35 80 11 66 69 17 1 21

15 35 80 11 66 69 17 1 21

18 35 80 11 66 69 17 1 21

20 35 80 11 66 69 17 1 21

25 35 80 11 66 69 17 1 21

35 35 80 10 21 66 2 65 64

50 35 80 10 21 66 2 65 64

65 35 80 10 21 66 2 65 64

83 35 80 10 21 66 2 65 64

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 37 45 44 2 72 3 77 18

2 63 9 11 1 21 56 51 66

3 9 19 10 32 16 18 76 63

5 19 35 37 5 16 41 66 29

7 10 19 29 63 52 18 41 20

10 35 80 29 21 66 2 52 58

12 80 35 29 21 66 2 52 58

15 80 35 29 21 66 2 52 58

18 80 35 29 21 66 2 52 58

20 35 80 29 21 66 2 52 58

25 35 80 29 21 66 2 52 58

35 80 35 29 21 66 2 52 58

50 80 29 35 21 66 2 52 58

65 80 29 35 21 66 2 52 58

83 80 29 35 21 66 2 52 58

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 54 15 26 44 2 3 62 59

2 81 17 11 62 18 58 21 52

3 11 19 81 16 8 18 20 3

5 19 81 37 43 3 20 17 77

7 37 35 49 1 76 6 59 18

10 37 49 80 32 76 66 21 36

12 37 49 80 32 76 66 21 36

15 80 37 49 32 76 66 21 36

18 80 37 4 76 66 41 78 12

20 80 49 37 32 76 66 21 36

25 80 49 4 28 41 21 78 52

35 80 49 4 28 41 21 78 52

50 80 49 4 28 41 21 78 52

65 80 49 4 28 41 21 78 52

83 80 49 4 28 41 21 78 52

(d) Scale factor: 20−1

Table A.10.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: gauss1
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Rank

Dim. 1 2 3 4 5 6 7 8

1 22 71 68 14 57 30 41 1

2 60 56 17 65 34 9 43 50

3 1 17 60 71 34 13 52 31

5 11 19 35 9 66 41 24 55

7 60 18 29 44 52 3 54 21

10 60 29 72 21 54 68 59 3

12 29 17 60 65 3 34 20 54

15 29 17 72 3 59 68 21 20

18 28 17 77 45 65 61 21 3

20 28 17 50 65 66 63 36 64

25 17 3 28 34 20 23 33 65

35 17 28 9 65 34 56 64 18

50 17 3 77 45 20 33 34 59

65 17 77 41 45 66 57 9 51

83 17 3 41 53 23 66 57 12

(a) Scale factor: 1−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 68 43 39 69 75 20 48 14

2 17 21 60 65 75 34 59 3

3 9 56 19 10 77 41 42 24

5 35 11 10 9 18 73 70 28

7 60 10 35 66 9 3 41 13

10 60 35 29 66 21 3 52 33

12 35 29 10 66 33 9 21 37

15 35 29 20 33 66 52 21 37

18 35 20 10 33 43 3 9 52

20 20 50 17 3 66 65 72 34

25 50 17 3 66 63 65 34 33

35 50 20 3 63 66 33 17 12

50 20 3 50 63 66 33 17 12

65 41 3 17 53 23 66 12 57

83 41 3 17 53 23 66 12 57

(b) Scale factor: 2−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 27 51 28 41 66 36 64 20

2 17 37 60 65 34 52 13 8

3 9 19 35 24 10 78 28 17

5 35 60 11 66 41 3 28 78

7 35 60 80 66 41 50 63 78

10 35 80 51 21 76 69 72 57

12 35 80 29 21 66 52 58 8

15 35 11 20 33 52 12 3 66

18 35 80 20 33 21 66 3 12

20 35 11 80 78 28 66 17 71

25 35 50 80 72 70 71 63 59

35 35 50 80 72 70 71 63 59

50 35 50 20 33 66 3 63 21

65 50 20 35 33 66 3 63 21

83 20 50 35 33 66 3 63 21

(c) Scale factor: 4−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 63 3 26 12 33 20 77 24

2 63 81 17 21 24 65 52 58

3 63 17 9 65 56 24 42 70

5 35 19 10 28 55 9 24 79

7 35 10 19 28 55 9 24 79

10 35 80 10 21 2 66 36 50

12 80 35 10 21 2 66 36 50

15 80 35 11 66 28 50 1 36

18 35 80 11 66 28 50 1 36

20 35 80 10 21 2 66 36 50

25 35 80 10 21 2 66 36 50

35 35 80 10 21 2 66 36 50

50 80 35 10 21 2 66 36 50

65 80 35 10 21 2 66 36 50

83 80 35 10 21 2 66 36 50

(d) Scale factor: 8−1

Table A.11.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: gauss3
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Rank

Dim. 1 2 3 4 5 6 7 8

1 30 18 52 20 3 53 44 25

2 63 17 81 24 21 32 52 65

3 63 19 35 28 66 41 9 1

5 19 37 35 5 66 41 40 29

7 19 35 10 28 79 55 21 66

10 80 19 35 28 21 66 64 50

12 80 35 10 21 66 2 4 50

15 80 35 10 21 66 2 4 50

18 80 35 10 21 66 2 4 50

20 80 35 10 21 66 2 4 50

25 80 35 10 21 66 2 4 50

35 80 35 10 21 66 2 4 50

50 80 35 10 21 66 2 4 50

65 80 35 10 21 66 2 4 50

83 80 35 10 21 66 2 4 50

(a) Scale factor: 10−1

Rank

Dim. 1 2 3 4 5 6 7 8

1 18 30 3 48 43 20 52 1

2 81 60 63 24 21 41 32 66

3 63 11 19 21 1 18 67 56

5 37 19 78 32 41 24 66 29

7 19 37 60 32 24 41 66 20

10 19 10 37 5 41 21 29 66

12 19 80 35 21 66 4 64 50

15 80 35 19 21 66 4 64 50

18 80 19 35 21 66 4 64 50

20 80 19 35 21 66 4 64 50

25 80 35 19 21 66 4 64 50

35 80 19 35 21 66 4 64 50

50 80 19 35 21 66 4 64 50

65 80 19 35 21 66 4 64 50

83 80 19 35 21 66 4 64 50

(b) Scale factor: 12−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 56 30 1 28 3 58 2 21

2 63 81 30 21 59 24 41 1

3 37 30 63 24 21 67 66 41

5 30 37 63 24 21 67 66 41

7 54 30 78 32 66 41 51 3

10 54 78 37 32 24 66 41 51

12 54 78 6 66 51 41 12 49

15 54 78 6 66 51 41 12 49

18 54 78 6 66 51 41 12 49

20 54 78 6 66 51 41 12 49

25 54 78 6 66 51 41 12 49

35 54 78 6 66 51 41 12 49

50 54 78 6 66 51 41 12 49

65 54 78 6 66 51 41 12 49

83 54 78 6 66 51 41 12 49

(c) Scale factor: 15−1

Rank
Dim. 1 2 3 4 5 6 7 8

1 75 1 23 44 3 2 6 43

2 31 53 7 41 66 20 3 1

3 30 60 15 44 2 3 21 4

5 15 7 62 20 51 66 41 29

7 15 7 62 20 51 66 41 29

10 15 8 7 66 51 29 10 79

12 8 15 7 66 51 29 10 79

15 8 15 7 66 51 29 10 79

18 8 15 7 66 51 29 10 79

20 8 15 7 66 51 29 10 79

25 8 15 7 66 51 29 10 79

35 8 15 7 66 51 29 10 79

50 8 15 7 66 51 29 10 79

65 8 15 7 66 51 29 10 79

83 8 15 7 66 51 29 10 79

(d) Scale factor: 20−1

Table A.12.: Results for IPCA-ranking. The startlist is determined by the best three
landmarks selected with profile ranking; blurring: gauss3
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A.5.3. Start lists for IPCA ranking with random start list

(a) Method 1: Views 20, 51, 79 (b) Method 2: Views 2, 29, 69

(c) Method 3: Views 9, 36, 62 (d) Method 4: Views 34, 77, 78

(e) Method 5: Views 15, 62, 77

Figure A.12.: Visualization of the used start lists for IPCA–based ranking
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A.5.4. Results of IPCA ranking with random startlist

Rank

1 2 3 4 5 6 7 8

1 20 51 79 3 72 66 43 64

2 2 29 69 41 17 51 1 21

3 9 36 62 50 2 41 4 63

4 34 77 78 69 45 17 41 51

5 15 62 77 45 69 24 4 3

(a) Scale factor: 1−1

Rank

1 2 3 4 5 6 7 8

1 20 51 79 3 72 43 66 64

2 2 29 69 41 17 21 1 64

3 9 36 62 50 2 63 4 41

4 34 77 78 45 69 17 41 51

5 15 62 77 45 69 24 4 3

(b) Scale factor: 2−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 43 66 64

2 2 29 69 41 21 17 64 1

3 9 36 62 63 50 2 41 4

4 34 77 78 45 41 17 12 51

5 15 62 77 45 69 24 3 4

(c) Scale factor: 4−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 43 64 72 66

2 2 29 69 41 21 19 50 51

3 9 36 62 50 2 41 66 18

4 34 77 78 41 45 36 51 17

5 15 62 77 45 69 31 3 57

(d) Scale factor: 8−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 63 64 41

2 2 29 69 41 21 18 59 50

3 9 36 62 57 56 50 41 66

4 34 77 78 45 51 12 17 41

5 15 62 77 45 69 3 31 59

(e) Scale factor: 10−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 55 43 50

2 2 29 69 41 64 66 20 46

3 9 36 62 57 41 66 50 18

4 34 77 78 24 41 12 45 17

5 15 62 77 45 57 69 3 7

(f) Scale factor: 12−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 77 40 41 72

2 2 29 69 80 18 17 41 67

3 9 36 62 31 50 4 41 49

4 34 77 78 32 54 45 41 29

5 15 62 77 – – – – –

(g) Scale factor: 15−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 6 72 3 23 12

2 2 29 69 46 20 77 3 19

3 9 36 62 56 66 41 29 49

4 34 77 78 45 80 41 17 24

5 15 62 77 57 72 3 31 7

(h) Scale factor: 20−1

Table A.13.: Results for IPCA-ranking. The startlist is determined by randomly choos-
ing three landmarks; blurring: none
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Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 43 66 64

2 2 29 69 41 17 21 1 51

3 9 36 62 2 50 63 41 4

4 34 77 78 69 45 17 41 51

5 15 62 77 45 69 24 4 3

(a) Scale factor: 1−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 43 66 64

2 2 29 69 41 17 21 1 51

3 9 36 62 63 2 50 51 41

4 34 77 78 45 69 41 17 51

5 15 62 77 45 69 24 4 3

(b) Scale factor: 2−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 43 66 72 12

2 2 29 69 41 21 17 50 51

3 9 36 62 48 2 50 63 41

4 34 77 78 45 41 17 12 51

5 15 62 77 45 69 57 3 4

(c) Scale factor: 4−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 43 3 66 12 64

2 2 29 69 41 21 80 50 66

3 9 36 62 48 63 50 66 41

4 34 77 78 41 45 66 36 51

5 15 62 77 45 3 69 20 2

(d) Scale factor: 8−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 43 66 12 64

2 2 29 69 41 21 20 51 80

3 9 36 62 48 41 66 51 50

4 34 77 78 41 45 12 66 21

5 15 62 77 45 3 20 4 19

(e) Scale factor: 10−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 43 66 12 64

2 2 29 69 48 41 20 66 51

3 9 36 62 – – – – –

4 34 77 78 41 45 12 21 66

5 15 62 77 45 3 20 2 21

(f) Scale factor: 12−1

Rank

1 2 3 4 5 6 7 8

1 20 51 79 3 40 21 66 12

2 2 29 69 24 41 20 66 51

3 9 36 62 24 2 66 51 50

4 34 77 78 41 66 45 21 12

5 15 62 77 45 3 20 21 79

(g) Scale factor: 15−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 32 3 66 21 12

2 2 29 69 48 66 20 21 36

3 9 36 62 66 41 51 80 20

4 34 77 78 41 21 3 80 66

5 15 62 77 41 3 20 51 29

(h) Scale factor: 20−1

Table A.14.: Results for IPCA-ranking. The startlist is determined by randomly choos-
ing three landmarks; blurring: gauss1
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Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 72 43 66 64

2 2 29 69 41 17 21 1 51

3 9 36 62 2 50 63 41 51

4 34 77 78 69 45 41 17 51

5 15 62 77 45 69 24 4 3

(a) Scale factor: 1−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 43 66 72 64

2 2 29 69 41 21 17 51 50

3 9 36 62 48 2 50 63 51

4 34 77 78 45 41 17 51 12

5 15 62 77 45 69 24 3 4

(b) Scale factor: 2−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 43 3 66 12 64

2 2 29 69 41 21 20 50 51

3 9 36 62 48 63 2 50 51

4 34 77 78 45 41 12 51 66

5 15 62 77 45 69 3 20 4

(c) Scale factor: 4−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 3 66 12 21 64

2 2 29 69 48 41 66 51 21

3 9 36 62 48 66 41 51 50

4 34 77 78 41 66 21 12 51

5 15 62 77 45 3 20 66 4

(d) Scale factor: 8−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 40 3 66 21 12

2 2 29 69 48 41 20 66 51

3 9 36 62 48 66 41 51 50

4 34 77 78 41 21 66 12 51

5 15 62 77 20 3 51 21 66

(e) Scale factor: 10−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 48 3 66 21 12

2 2 29 69 48 66 51 41 20

3 9 36 62 24 66 51 41 20

4 34 77 78 – – – – –

5 15 62 77 20 3 21 2 29

(f) Scale factor: 12−1

Rank

1 2 3 4 5 6 7 8

1 20 51 79 48 3 66 21 36

2 2 29 69 48 66 51 41 20

3 9 36 62 24 66 51 21 2

4 34 77 78 66 21 41 51 50

5 15 62 77 48 3 20 21 51

(g) Scale factor: 15−1

Rank
1 2 3 4 5 6 7 8

1 20 51 79 32 48 66 3 36

2 2 29 69 48 66 51 3 36

3 9 36 62 48 66 51 21 80

4 34 77 78 66 21 41 80 51

5 15 62 77 20 41 51 3 66

(h) Scale factor: 20−1

Table A.15.: Results for IPCA-ranking. The startlist is determined by randomly choos-
ing three landmarks; blurring: gauss3
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A.6. Reliability Evaluation

A.6.1. Orientation

(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.13.: Possible deviations of the blimp’s orientation for profile–based ranking.
Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.14.: Possible deviations of the blimp’s orientation for IPCA–based ranking
with profile–based start list. Blue lines: un–blurred, green: gauss1, red:
gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.15.: Possible deviations of the blimp’s orientation for IPCA–based ranking
“rnd1”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.16.: Possible deviations of the blimp’s orientation for IPCA–based ranking
“rnd2”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.17.: Possible deviations of the blimp’s orientation for IPCA–based ranking
“rnd3”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.18.: Possible deviations of the blimp’s orientation for IPCA–based ranking
“rnd4”. Blue lines: un–blurred, green: gauss1, red: gauss4
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.19.: Possible deviations of the blimp’s orientation for IPCA–based ranking
“rnd5”. Blue lines: un–blurred, green: gauss1, red: gauss5
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A.6.2. Altitude

(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.20.: Possible deviations of the blimp’s altitude for profile–based ranking. Blue
lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.21.: Possible deviations of the blimp’s altitude for IPCA–based ranking with
profile–based start list. Blue lines: un–blurred, green: gauss1, red:
gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.22.: Possible deviations of the blimp’s altitude for IPCA–based ranking
“rnd1”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.23.: Possible deviations of the blimp’s altitude for IPCA–based ranking
“rnd2”. Blue lines: un–blurred, green: gauss1, red: gauss3

116



(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.24.: Possible deviations of the blimp’s altitude for IPCA–based ranking
“rnd3”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.25.: Possible deviations of the blimp’s altitude for IPCA–based ranking
“rnd4”. Blue lines: un–blurred, green: gauss1, red: gauss4
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.26.: Possible deviations of the blimp’s altitude for IPCA–based ranking
“rnd5”. Blue lines: un–blurred, green: gauss1, red: gauss5
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A.6.3. Position

(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.27.: Possible deviations of the blimp’s position for profile–based ranking.
Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.28.: Possible deviations of the blimp’s position for IPCA–based ranking with
profile–based start list. Blue lines: un–blurred, green: gauss1, red:
gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.29.: Possible deviations of the blimp’s position for IPCA–based ranking
“rnd1”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.30.: Possible deviations of the blimp’s position for IPCA–based ranking
“rnd2”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.31.: Possible deviations of the blimp’s position for IPCA–based ranking
“rnd3”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.32.: Possible deviations of the blimp’s position for IPCA–based ranking
“rnd4”. Blue lines: un–blurred, green: gauss1, red: gauss4
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.33.: Possible deviations of the blimp’s position for IPCA–based ranking
“rnd5”. Blue lines: un–blurred, green: gauss1, red: gauss5
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A.6.4. Image Brightness

(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.34.: Possible deviations of the image brightness for profile–based ranking.
Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.35.: Possible deviations of the image brightness for IPCA–based ranking with
profile–based start list. Blue lines: un–blurred, green: gauss1, red:
gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.36.: Possible deviations of the image brightness for IPCA–based ranking
“rnd1”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.37.: Possible deviations of the image brightness for IPCA–based ranking
“rnd2”. Blue lines: un–blurred, green: gauss1, red: gauss3

130



(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.38.: Possible deviations of the image brightness for IPCA–based ranking
“rnd3”. Blue lines: un–blurred, green: gauss1, red: gauss3
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.39.: Possible deviations of the image brightness for IPCA–based ranking
“rnd4”. Blue lines: un–blurred, green: gauss1, red: gauss4
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(a) Scale factor: 1−1 (b) Scale factor: 1−2 (c) Scale factor: 1−4

(d) Scale factor: 1−8 (e) Scale factor: 1−10 (f) Scale factor: 1−12

(g) Scale factor: 1−15 (h) Scale factor: 1−20

Figure A.40.: Possible deviations of the image brightness for IPCA–based ranking
“rnd5”. Blue lines: un–blurred, green: gauss1, red: gauss5
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A.7. Landmark selection by hierarchical clustering

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure A.41.: Example for landmark selection by hierarchical clustering; scale factor:
6−1, dimensions: 2, blurring: gauss3, 15 clusters
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(a) Cluster 5 (b) Cluster 6

(c) Cluster 7 (d) Cluster 8

(e) Cluster 9 (f) Cluster 10

Figure A.42.: Example for landmark selection by hierarchical clustering continued
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(a) Cluster 11 (b) Cluster 12

(c) Cluster 13 (d) Cluster 14

(e) Cluster 15

Figure A.43.: Example for landmark selection by hierarchical clustering continued
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A.8. Landmark selection by k–means clustering

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure A.44.: Example for landmark selection by k–means clustering; scale factor:
12−1, dimensions: 2, blurring: gauss1, 15 clusters
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(a) Cluster 5 (b) Cluster 6

(c) Cluster 7 (d) Cluster 8

(e) Cluster 9 (f) Cluster 10

Figure A.45.: Example for landmark selection by k–means clustering continued
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(a) Cluster 11 (b) Cluster 12

(c) Cluster 13 (d) Cluster 14

(e) Cluster 15

Figure A.46.: Example for landmark selection by k–means clustering continued
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B. Tracking algorithm

Here we are going to present the ideas for a visual path integration algorithm. First
we planned to use the algorithm for navigation between the known nodes of the topo-
logical map. But since landmark selection was a harder problem then we expected, the
algorithm was neither completed nor simulated or real world experiments were done.

For the tracking of points we assume that the blimp only moves forward. Therefore
we divide the camera image into several regions: The “incoming–region”, the “center–
region” and the “outgoing–region”. The arrangement of the regions is shown in figure
B.1. In each step of the algorithm, the corners in the center region are tracked. If
the blimp moves forward, new image features will appear there. Therefore we run a
corner detector in this image region, detecting new features. These features will be
tracked in the next step and need to have a certain distance from points that are
already tracked. If the blimp moves some points will move from the center–region to
the outgoing–region. Corners in this region of the camera image are discarded, because
they will disappear within the next tracking steps. Because the assumption that the
blimp only moves forward is sometimes violated because of drifting there can occur
situations, where only little corners are in the center–region. Then the corner detector
is restarted, detecting corners in the center–region.
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incoming–region

center–region

outgoing–region

Figure B.1.: Regions for the tracking algorithm

As corner detector, an implementation of the Harris Corner Detector (Harris and
Stephens, 1988) and as feature tracker an implementation of the Lucas Kanade Feature
Tracker (Shi and Tomasi, 1994) is used1. Without optimizing the code, real–time
tracking is possible for images sized 200 × 200 pixels. An example sequence is shown
in figure B.2.

1Both implementations can be downloaded at http://omni.isr.ist.utl.pt/~alex/resources.
html
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Algorithm B.1: Skeleton for visual path integration algorithm

1: Rc = detectCorners (center–region)
2: repeat
3: P = trackCorners (Rc)
4: Ro = findPointsInRegion (P, outgoing–region)
5: Rc = P\Ro

6: if ‖Rc‖ ≤ cornerTreshold then
7: Rc = detectCorners (incoming–region)
8: else
9: I = detectCorners (center–region)

10: for all c ∈ I do
11: d = minfi∈Ro∪I (dist (c, fi))
12: if d ≤ dtreshold then
13: I = I\{c}
14: end if
15: end for
16: Rc = Rc ∪RI

17: end if
18: until end of tracking

Figure B.2.: Example tracking sequence, frames 1 to 8
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Figure B.3.: Example tracking sequence, frames 9 to 28
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C. MATLAB files for the experiments

In this chapter we will give a rough overview over the developed MATLAB files and
functions. It is supposed to be a help for those people that have to built up on this
work, and therefore is not interesting for other readers.

The working directory includes four subdirectories. In the data–directory, every-
thing that is used for further computations is kept to save computation time. In the
results–directory the results of the experiments are kept. Both directories have sub-
directories according to the scale factor of the data. The results directory has another
results–subdirectory where results that are not specific for a certain scale factor are
stored. The third directory is the seldom used backup–directory. The graveyard–
directory is used to keep all the files that were declared obsolete or that were only used
to visualize things for that report.

In the following tables a short description of the files and functions is given. More
information is available by using help filename in the MATLAB shell. Even more
information is available by looking at the source code.

Table C.1.: Special files or functions
File Description

make.m Some kind of LINUX–goody in the M$
world. Manages all the necessary compu-
tations.

image_viewer.m Script that helps to browse the computed
data.

README.TXT The results and overview of the work.
Related to section 3. For a complete
overview over the work and the data
please refer to this report or to Gerstmayr
et al. (2004).

Contents.m List of the filenames. Similar to this sec-
tion.

ist_map_bw.png The aerial image used.
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Table C.2.: Functions for fundamental computations.
Function Description

create_training_set Takes the views out of the floormap.
create_pca Computes the SVD for a given training

set and creates the transformation matrix
to PCA–space.

transform_views Transforms the views to the PCA–space
with a certain dimension.

pca_transformation_matrix Computes the transformation matrix that
is necessary to transform views.

visualize_explain Visualizes the variance covered by the
first n principal components.

analyse_dimension Further visualization of the variance cov-
ered by the first principal components.

create_all_subviews Alternative function to take views out of
floormap.

Table C.3.: Functions related to landmark selection.
Function Description

visualize_distance_matrix Visualization and computation of dis-
tance matrices.

visualize_profiles Computation of profile matrices and visu-
alization as single line plots.

visualize_profiles_2 Alternative visualization of the profile
matrices as surfaces.

profile_rank_max Performs profile–based ranking to find
best landmarks.

profile_rank_min Performs profile–based ranking to find
worst landmarks.

ipca_ranking Computes the IPCA–based landmark se-
lection.

compare_ranks Function that compares the different se-
lection methods.

evaluate_ranking Computes tables of selected landmarks.
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Table C.4.: Functions related with reliability evaluation.
Function Description

evaluate_catchment_area Evaluation for deviations in robot posi-
tion.

evaluate_gamma_change Evaluation of deviations in image bright-
ness.

evaluate_landmark_dissimilarity Evaluation of average landmark dissimi-
larity.

evaluate_rotation Evaluation of deviations in orientation.
evaluate_scaling Evaluation of deviations in altitude.
analyse_catchment Visualization of possible deviations in

robot position.
analyse_catchment_dim Same, but varying scale.
analyse_gamma Visualization of possible deviations in im-

age brightness.
analyse_gamma_dim Same, but varying scale.
analyse_landmark_similarity Visualizes average landmark similarity.
analyse_rotation Visualization of possible deviations in ori-

entation.
analyse_rotation_dim Same, but varying scale.
analyse_scaling Visualization of possible deviations in al-

titude.
analyse_scaling_dim Same, but varying scale.

Table C.5.: Functions related to localization experiments
Function Description

visualize_localization Compute localization matrices.
visualize_localization_matrix Visualize localization matrices.
analyse_localization_matrix Numerical analysis of localization matrix.
create_pca_localization_matrix Compute localization matrices for several

dimensions.
visualize_pca_localization_matrix Visualizes these matrices.
analyse_pca_localization_matrix Analyzes these matrices numerically.
analyse_peaks_8 Evaluation of peaks in a matrix.
final_evaluation Combines landmark selection and peak

evaluation.
peak_detection Function to detect minima in a localiza-

tion matrix.
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Table C.6.: Functions related with landmark clustering
Function Description

visualize_scatterplots Visualizes 2D or 3D scatter–plots.
visualize_cophenet Visualizes and computes cophenetic ma-

trices.
analyse_cophenet_matrices Searches for optimal clustering parame-

ters.
visualize_clustered_scatterplot Visualization of clustering results.
visualize_dendrogram Visualizes dendrograms.
visualize_kmeans_clustering Experiments and visualization for k–

means clustering.
centroids2viewnumbers Searches best view for given image coor-

dinates.

Table C.7.: Auxiliary functions
Function Description

ssd Computes the SSD between two vectors.
mssd Computes the SSD between two matrices.
find_row_index Function that searches for a row vector in

each column of a matrix.
int2framenumber Formatting function.
pick_given_element Function that picks an element of a vec-

tor.
mark_matrix_elements Function that marks matrix elements that

are smaller then a given threshold.
mark_matrix_tresholds Marks matrix elements according to a

given threshold.
pcacov Computes PCA out of a given covariance

matrix.
randint Computes a matrix of random integers.
randn_bound Computes a limited Gaussian random dis-

tribution.
draw_rectangle Draws a rectangle.
auto_crop Crops the boarder around an image.
auto_crop_current_dir Crops all the images in the current direc-

tory.
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