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h i g h l i g h t s

• We propose a general method to interpret human grasp behavior in terms of opposition primitives.
• A primitive model consisting of 41 oppositions for the hand is defined.
• The most likely primitive combination is inferred from tactile and configuration data.
• An 87% recognition rate is achieved over a wide range of human grasp behavior.
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a b s t r a c t

In human grasping, choices are made on the use of hand-parts even before a grasp is realized. The human
associates these choices with end-functionality and is confident that the resulting grasp will be able to
meet task requirements.We refer to these choices on the use of hand-parts underlying grasp formation as
the grasp intention. Modeling the grasp intention offers a paradigm whereby decisions underlying grasp
formation may be related to the functional properties of the realized grasp in terms of quantities which
may be sensed/recognized or controlled. In this paper we model grasp intention as mix of oppositions
between hand parts. Sub-parts of the hand acting in opposition to each other are viewed as a basis from
which grasps are formed. We compute a set of such possible oppositions and determine the most likely
combination from the raw information present in a demonstrated grasp. An intermediate representation
of raw sensor data exposes interactions between elementary grasping surfaces. From this, the most likely
combination of oppositions is inferred. Grasping experiments with humans show that the proposed
approach is robust enough to correctly capture the intention in demonstrated grasps across a wide range
of hand functionality.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Significant research has been conducted into the design and
development of anthropomorphic hands to enable robotic sys-
tems [1] as well as prosthetic devices [2] to interact with real-
world environments. However the additional flexibility associated
with these hands comes at the cost of complexity in control due to
the increased degrees of freedom. While these hands can be tele-
operated to perform complex grasping and manipulation tasks,
autonomous control in response to the demands of a task sce-
nario remains a difficult problem. Humans however are extremely
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adept at controlling the high degree of freedom hand–wrist–arm
musculo-skeletal system and are able to grasp and manipulate ob-
jects according to task requirements with aminimum of effort. It is
of interest therefore to study human grasping behavior in order to
extract underlying principles which may be transferred to robotic
or prosthetic devices [3–8]. This paper focuses on an aspect of hu-
man grasp behavior which we will refer to as the grasp intention.

Even before a grasp is realized, choices have been made
regarding parts of the hand that will be engaged and the manner
of their application against object surfaces. These choices stem
from a perception of task demands and are therefore related to
functionality that is brought to the grasp in terms of generating
and controlling force, torque and motion. This is evident from
the four task scenarios shown in Fig. 1. Tasks requiring dexterity
(turning a dial, writing), make use of the finger tips which open
up degrees of freedom and bring into play required manipulability
for in-hand motion. Also, greater sensitivity associated with finger
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Fig. 1. Four task scenarios: turning a dial, writing, opening a tightly closed
bottle-cap, screw-driving show the different use of hand-parts to provide grasp
functionality as demanded by a task.

tips is essential for controlling the manipulation [9]. In contrast,
tasks requiring power (opening a tight bottle cap, screw-driving)
make use of finger surfaces and the palm. Use of these hand-parts
is directly related to transmission of torque and motion generated
by the wrist–arm system.

We refer to these choices on the use of hand-parts underlying
grasp formation as the grasp intention. Grasp intention guides
the realization of a stable grasp, determining outwardly visible
posture and also the grasp function or the particular quality in
which force, torque and motion can be delivered to the grasped
object. Thus, modeling grasp intention provides a way to relate the
decisions underlying grasp formation to end-functionality. This has
applications in constructing an appropriate grasp for a task. From a
learning from demonstration perspective, we are better positioned
to decide on the more important aspects of a grasp to transfer to
the robotic platform under consideration.

Is it possible to characterize grasp intention in some general
way and recognize this from a grasp demonstration? Grasp tax-
onomies such as [3,10], based on studies of human grasp behavior,
have been proposed as a means to capture grasp ability. The au-
thors in [11–13] attempt to recognize a taxonomy category from
human demonstration using cues such as visual features of the
grasp or joint angles from a data glove. In [14,15] tactile informa-
tion is incorporated as well. While it is useful to identify a taxon-
omy category, key information is lacking on how to recreate the
grasp or adapt it to a different object while preserving underlying
functional roles of the fingers involved. For example if the object is
perturbed or used in a task context, are all hand surfaces equally
important for applying pressure or are some more important than
others. Similarly, if the properties of the object change how can
we purposefully change the hand configuration and object con-
tacts made while remaining confident that the essential meaning
of the grasp is preserved. Heuristics have to be designed on a case
by case basis to encode the meaning of each grasp. A more gen-
eral approach defines a set of grasp components fromwhich awide
range of grasps may be constructed. The problem is then identify-
ing and prioritizing the appropriate set of components present in
a grasp demonstration.

In this paper we adopt the hypothesis of Iberall et al. in [4]
that opposition between hand-parts, while engaging the hand in
a well-defined manner, is also correlated with the end-function
to be delivered on a grasped object. Thus it is well suited to
model grasp intention. Accordingly, a grasp is interpreted as a
mix of oppositions between hand-parts. Each opposition serves a
particular functional end. For example, the grasp of screw-driving
in Fig. 2 may be interpreted as a combination of 3 components:
action of the thumb against side of the fingers which supports the
action of fingers against the palm in order to keep the tool gripped
firmly,while use of the thumb-tip against the finger-tip enables the
tool to be directed appropriately during the task. We infer this mix
of oppositions from the hand configuration and tactile information
in a grasp demonstration.

Although the Opposition Space model admits oppositions
where the hand is working against external forces, this paper
relies only on opposition between two hand-parts. Consequently,
we are not able to recognize non-prehensile grasps, such as the
hook or flat-palm grasps, which work against gravity. Similarly,
Fig. 2. A screw-driving graspmay be interpreted in terms of 3 oppositions between
hand-parts. Each opposition serves a particular functional role. Action of the thumb
against side of the fingers supports the action of fingers against the palm in order
to keep the tool gripped firmly. Use of the thumb-tip against the finger-tip enables
the tool to be directed appropriately during the task.

with prehensile grasps, componentswhere hand-partswork solely
against task forces cannot be recognized. Examples of these would
be finger extension for applying cutting force, pressing a button or
resting the side of the palm against a surface during writing.

This paper makes the following contributions:

• We extend the definition of Opposition Space in [4] so that the
full flexibility of the thumb – in opposing finger surface, palm
and finger sides –may be recognized as separate components of
a demonstrated grasp. Additionally, Opposition Space concepts
are redefined so that they can be more readily applied in a
demonstration context.

• We propose a newway to look at raw information from a grasp
demonstration (configuration, tactile) by quantifying the im-
portance of pair-wise interactions between elementary grasp-
ing surfaces of the hand. This intermediate representation
integrates both hand configuration and interaction force, high-
lighting the multiple roles that a single sensor patch may have
in a grasp. This representation is better able to discriminate
among different kinds of oppositions and serves as a basis from
which their presence in a grasp may be inferred.

• Inference of the most likely oppositions is done automatically
without the use of heuristics. Themethod is not tied to any func-
tional category of grasps. Experiments with human demonstra-
tions show that the proposed method allows for recognition of
a wide range of human grasp intentions with a recognition rate
of 87%.

2. Related work

Different approaches are adopted in the literature when
seeking to represent information from demonstrated human
prehensile posture. Here we consider three approaches that are
commonly encountered: joint angles and joint synergies, discrete
classification of hand function through grasp taxonomies, virtual
fingers in opposition.

Studies in human motion [6,16] have shown that there exists
significant correlation among finger jointmovements in prehensile
postures for everyday tasks. Grasp configurations may therefore
be represented by a low-dimensional subspace of a few principal
components, known as hand synergies. The small number of
dimensions makes it feasible to search for grasp configurations
using metrics for overall grasp stability as presented in [17].
However, synergy representations face problems in task related
scenarios where specific hand configurations appropriate for the
functional requirements of the task are required, such as the
examples shown in Fig. 1.

Alternatively, one may start with a set of grasps representing
the functional categories of interest. Functional taxonomies such
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Fig. 3. Categories of the Opposition Space framework [21]. Each category is made
up of two virtual fingers [22] in opposition. The Virtual-to-Real (or V–R) mapping
specifies real fingers which group together.

as those proposed by Cutkosky [3] and Kamakura [10] are em-
ployed for this purpose. In [7,18] separate synergy subspaces are
found for each category which then enable human-like grasp for-
mation for the identified grasp types. Another strategy commonly
adopted first classifies the demonstrated grasp into a discrete cat-
egory which is then mapped to a robotic system. Grasp recogni-
tion is accomplished by approximate nearest neighbor techniques
on visual features in [11], while [12] discuss the use of neural net-
works trained on hand configuration obtained from a data glove.
The authors in [13] improve classification by also incorporating in-
formation from demonstrated hand trajectories during the reach-
ing phase. These approaches rely solely on visual appearance or
hand configuration and hence suffer from the fact that similar hand
shapes have entirely different functions depending on the partic-
ular hand surfaces employed. For example [13] confuse a power
grasp (power sphere)with a precision grasp (precisiondisc) as both
have similar hand shapes but the former makes use of finger and
palm surfaces while the later uses only the finger-tips. To allevi-
ate this problem, contact information can be used to improve the
recognition of grasp categories. This is shown in [14] where con-
tact information from virtual reality simulations forms the base for
classification heuristics, whereas in [15] information from tactile
sensors is combined with hand configuration to train HMMs. Mu-
rakami et al. [19] focus on the precise placement of tactile sensors
to improve classification, while [20] learn a set of tactile-templates
to interpret in-hand manipulation.

The representations discussed so far, do not capture how fingers
may close to form the grasp or adapt it to different objects while
preserving their functional role. A strategy which closes fingers of
the hand uniformly until contact with the object is made or joint
limits are reached does not preserve multiple axes of oppositional
pressure. These constitute important task related components of
the grasp as was explained earlier with the example of screw-
driving Fig. 2.

A general way by which this problem may be addressed is
through the Opposition Space framework as presented by Iberall
et al. in [23,4]. Here, a prehensile posture is viewed in terms of
oppositions between hand-parts. A set of 3 basic ways in which
hand-parts may oppose are defined. These are shown in Fig. 3.
Each opposition is associated with a different functional role.
Palm opposition provides strong oppositional forces at the cost
of dexterity. In contrast, pad opposition commands lighter forces
but opens up degrees of freedom for manipulability. Finally, side-
opposition provides intermediate forces while leaving some room
for dexterous ability. Combining these oppositions together brings
into play, in the coordinate frame of the hand, different abilities for
the generation and control of force, torque andmotion on a grasped
object. Further, while correlated to how hand parts are employed
functionally, these oppositions can also serve as a guide for lower
level controllers to complete a grasp by driving the opposing hand-
parts together [22,23].

Using concepts from Opposition Space, Iberall et al. [21] ex-
plain hand postures across several functional taxonomies in the
literature. In [24,25] they present a rule based scheme to con-
struct task-oriented grasps for robotic and prosthetic hands. The
authors in [14] base their heuristics for grasp recognition on op-
position between hand-parts. In the computational neuroscience
literature, this has been used to explain behaviors in infant grasp
learning [26] and imitation of grasping from visual stimuli [27].
Kang and Ikeuchi [28,5] use oppositions to characterize a demon-
strated grasp for transfer to robotic systems. In [28] they propose a
method to decompose a grasp into a set of oppositions between
hand-parts. This is done by maximizing force coupling (or simi-
larity between force vectors) among the real fingers assigned to
each hand-part while simultaneously favoring a small number of
functionally distinct hand-parts. This method makes the inherent
assumption that entire fingers are involved in dedicated opposi-
tions.We adopt a different perspectivewherein fingers have grasp-
ing surfaces which can be simultaneously involved in multiple
oppositional roles, for which they oppose different parts of the
hand in varying degrees. We extend the definition of Opposition
Space to identify a set of 41 oppositions for the hand. The exten-
sion allows for different oppositional roles of the thumb to be rec-
ognized as separate parts of a grasp. We propose a general method
to detect the most likely oppositions present from tactile and con-
figuration information in a demonstrated grasp. The method eval-
uated by human grasp experiments achieves an 87% recognition
rate over a wide range of grasp behavior.

The rest of the paper is organized as follows. Section 3 describes
the sensing infrastructure we use to capture human demonstra-
tions of grasping. Section 4 outlines a model of grasp intention
based on opposition between hand-parts. For this, the framework
described in [4] is extended and relevant terminology is introduced
leading to the definition of a grasp signature characterizing grasp
intention. Section 5 proposes a method by which the grasp sig-
nature can be inferred from the raw sensor information obtained
from a grasp demonstration. Section 6 reports on empirical eval-
uation of the proposed approach using human demonstrations of
grasping conducted over a wide range of hand function. Sections 7
and 8discuss directions for future research and conclude the paper.

3. Hardware setup

Human grasp demonstrations are captured using the hardware
setup shown in Fig. 4(a). Hand configuration is measured through
a data glove (Cyberglove [29]). The Cyberglove has 22 bend sensors
strategically located over the hand joints. Since bending can be de-
tected anywhere along the sensor length, the glove can adapt well
to different hands sizes. The glove needs to be calibrated in order to
transform raw sensor output to hand joint angles. Raw data from
the glove is of dimension R22. Interaction forces from the grasp-
ing surfaces of the hand (including the sides of the fingers) are ob-
tained through a tactile sensory array (TekScan [30]). The Tekscan
sensor array consists of 18 sensors patches which are matrices of
pressure sensitive sensing elements or sensels. The patches in one
array are strategically located so as to cover the grasping surfaces of
the humanhand. Two tactile arrays are employed in anoverlapping
configuration in order to cover the frontal grasping surfaces of the
hand aswell as all finger-sideswhich are able to oppose the thumb.
Wemake use of uncalibrated tactile response as only relative force
levels are necessary for analyzing synergistic use of grasping sur-
faces. Raw data from the tactile sensory array is of dimension R581.
A careful calibration of the data glove is conducted so that the rel-
ative geometry of the patches in the kinematic model reconstruc-
tion corresponds to the grasp demonstration. Data streams from
the hand configuration and tactile response are synchronized. The
combined data is obtained at a frequency of 200Hz and is averaged
over a pre-determined time interval over which the grasp demon-
stration is maintained. Further details on the hardware setup, the
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Fig. 4. (a) shows the hardware setup to capture human grasp demonstrations. The
raw sensory data is interpreted in terms of 34 sensor units with the large palm
patches divided into subunits (b). (c) shows a grasp demonstration and the raw
information captured using the tactile glove. Each sensor unit can be represented by
a force vector fi equal to the sum of all sensel activations and acting at the centroid
of pressure pi defined in a coordinate frame centered at the wrist.

hand kinematic model employed and its calibration may be found
in [31].

For the purpose of analyzing how the instrumented grasping
surfaces of the hand are employed in a human grasp demonstra-
tion, they are subdivided into a set of elementary grasping patches
as shown in Fig. 4(b). A total of 34 grasping patches are identified.
These are denoted by

GP = {gpi}34i=1 . (1)

Each grasping patch is viewed as a single unit of grasping force.
The force fi ∈ R3 associated with a grasping patch gpi is obtained
as the sum of all the sensel activations associated with it and is
assumed to be acting normally to the patch at the centroid of sensel
activations pi ∈ R3 (Fig. 4c). The position and orientation of each
patch is expressed with respect to a coordinate frame centered
at the wrist. Data from a grasp demonstration can therefore be
summarized as

D = {pi, fi}34i=1 . (2)

We consider only hand surfaces that are actively engaged in
applying force on the object. Other sources of tactile response
arise from artifacts induced due to glove construction. Prior to
analysis, the active patches are identified by applying a threshold
on the tactile response normalized by the maximum ∥fi∥ detected.
While this method works for frontal surfaces of the fingers and
the palm it does not always work with finger sides. Due to
artificial enlargement of the finger, the tactile signal may be quite
large even when the finger side is not actively engaged with the
object. For this paper, sides of fingers actually impacting the object
are identified by visual analysis of the grasp. This could also be
achieved automatically by fitting an object approximation given
the tactile information and patch geometry.

4. A model for grasp intention

Even before a grasp is realized the human has an intention
in mind regarding the grasping patches to be engaged and how
these patcheswill be employed against an object.We have referred
to this earlier as the grasp intention. In this section we define a
model to recognize grasp intention from human demonstrations
of grasping. The model builds on the Opposition Space framework
introduced by Iberall and Arbib in [4]. We revisit these concepts
in terms of the information provided by the sensing infrastructure
described in Section 3.

The authors in [4] were motivated by the incompleteness of all
existing prehensile posturing taxonomies in the literature. While
taxonomies explain broad categories of grasps from a functional
perspective, they do not explain how grasps are formed and
consequently lack the ability to explain the myriad of variations
that occur in practice. This motivated the authors in [4] to look
for a functional basis with which grasps could be explained in
a bottom-up manner. After analyzing a large number of grasp
taxonomies in the literature, they reached the conclusion that
all taxonomies investigated could be explained by 3 types of
oppositions between hand-parts. The oppositions identified were:
pad, the thumb-tip opposing the set of finger-tips, palm, the set
of frontal finger surfaces opposing the palm surface, and side, the
thumb-tip opposing the side of the index finger. Fig. 5(a) depicts
this visually.

Our view is that while this model may not explain all variations
in human grasp behavior, it presents a means by which we may
interpret the high level intention governing the way hand-parts
are committed for use even before the grasp is formed. This has
implications for control of robot hands. The high level oppositional
intention mandates a coupling between sub-parts of each finger
and other parts of the hand which can be expressed in terms of
opposing and cooperating constraints. Controlling for constraints
can be used to preshape the hand as well as conform it to object
profile and adapt it to perturbation while serving some high level
intention. This could be advantageous over controlling each finger
independently.

4.1. Extended definition for opposition space

Underlying the concept of oppositions is a sub-division of
the hand’s grasping patches into hand-parts based on similar
functional roles, such as the set of finger-tips. Each hand-part can
be seen as the maximal set of grasping patches which can be
committed together for use with the same oppositional intention.
The original set of hand-parts (Fig. 5(a)), has some limitations
in properly representing the full flexibility of the thumb, leaving
some grasping ability unaccounted for. side opposition accounts
only for opposition of the thumb against the index finger side.
This implies that thumb usage against other finger sides cannot be
recognized. Fig. 5(b) shows some examples where this forms an
important component of commonly encountered grasps. Another
issue is that the oppositional intention of the thumb surfaces is
always clubbed with that of the palm. While this is true for some
grasps (where the thumb acts as an extension of the palm), in
many instances, such as the examples shown in Fig. 5(c), thumb
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Fig. 5. (a) shows a hand-part decomposition as prescribed by the Opposition Space
framework [23]. 3 oppositions are formed when the hand-parts are combined
in kinematically feasible ways. (b) and (c) show common scenarios illustrating
limitations of this framework in capturing full flexibility of thumb surface usage. (d)
shows the new hand-part decomposition proposed along with feasible oppositions
between them.

action has quite a different functional meaning and should form
a separate component of the grasp. That the original set of hand-
parts leaves some grasping capability unaccounted for may also be
seen from the fact that the union of oppositions between them is
not equal to the entire set of grasping patches.

To address these limitations the original framework is modified
by adding another hand-part definition, Thumb Surface, which
separates out the action of thumb surfaces from that of the palm.
Also, the Index Side, now called just Side, is enlarged to cover sides
of all fingers. The new set of hand parts is shown in Fig. 5(d). They
are collectively referred to as H , below, where each hand-part is
abbreviated by its starting letter (e.g. Fingers Surface = FS).

H = {TT , TS, P, FT , FS, S}. (3)

Note that for all hand-parts h ∈ H ,

h ⊂ GP ,


h
h∈H

= GP ,


h
h∈H

≠ ∅.

Theunionof these hand-parts nowcovers the entire graspingpatch
set, but their intersection is not empty. The overlapping hand-parts
model the fact that individual grasping patches can play multiple
functional roleswhen different oppositions cooperate in delivering
the overall functionality of a grasp. There are 5 ways in which
oppositions between these hand-parts are kinematically feasible.
These are shown in Fig. 5(d). Let Ox

y be a notation to represent an
opposition between the hand-parts x and y. Using this notation, the
set of hand-part oppositions can be denoted as:

OH = {OTT
FT ,O

P
FS,O

TS
P ,O

TS
FS ,O

TS
S }. (4)

This is a new definition for Opposition Space. The set OH cannot
be used directly as a model for grasp intention, due to ambiguities
that exist. To resolve these ambiguities, we use the concept of a
virtual finger and impose constraints on how virtual fingers may
be formed. This leads to a set of 41 opposition primitives. The
following sub-sections explain this in more detail.

4.2. Opposition primitives

In practice, the elements of OH , with the exception of OTS
P , do

not uniquely determine a grasp intention. This is because of the
different ways fingers may group together in response to object
properties or functional requirements of the task. For example, in
the turning-a-dial task of Fig. 1, which is a case of opposition OTT

FT ,
3 fingers (index–middle–ring) group together to act against the
thumb. In general however, this number depends on the diameter
of the dial. Thus each element of OH is actually a category of
oppositions.

The virtual finger concept is used by [22,4] to represent a set of
real fingers that act together with the same oppositional intention.
In the context of a recognition framework, we define a virtual
finger as a cooperating set of grasping patches belonging to a hand-
part. Examining H closely, we see that with the hand-parts TT , TS
and P , there is no ambiguity, as they identify a set of grasping
patches that are constrained to be used in their entirety. Thus the
hand-part name is sufficient to identify the virtual finger. With
FT , FS, S however, ambiguity exists, as several combinations are
possible based on the number of real-fingers that act together with
the same oppositional intention. To denote these possibilities let
the index, middle, ring, little fingers be identified by numbers 2–5
and let F represent all their combinations.

F =


f | f ⊂ {2, 3, 4, 5}, f ≠ ∅


. (5)

A virtual finger is denoted by concatenating a hand part h ∈

{FT , FS, S} with a real-finger grouping f ∈ F . So, FT234 denotes
the set of grasping patches belonging to tips (distal phalanges) of
the index, middle and ring fingers, whereas with FS234 the set of
cooperating grasping patches is extended to cover also the middle
and proximal phalanges of the same fingers.

An opposition made between two virtual fingers belonging to
different hand parts, provided opposition between the hand-parts
is kinematically feasible, is termed as an opposition primitive
(or just primitive for brevity). It is denoted by OVF1

VF2
. Using this

terminology, we can explain the turning-a-dial task of Fig. 1 as
making use of the opposition primitive OTT

FT234.

4.3. Primitive set for recognizing grasp intention

The cardinality of F is 15 (C4
1 + C4

2 + C4
3 + C4

4 ). In conjunction
withOH , this gives a total of 4∗15+1 = 61 opposition primitives.
Many of these however are never employed in practice. This can be
seen by examining grasp taxonomies in the literature, such as [32],
made from studies of human grasping behavior. Motivated by the
same studies, we find that it is almost always the case that virtual
finger span is contiguous. For example, this means that if fingers
2 and 4 are being used with the same oppositional intention, say
OP
FS2 and OP

FS4, finger 3 is required to cooperate with them and
the primitive being used is actually OP

FS234. With this simplifying
assumption there are 10 valid real-finger groupings: 2, 3, 4, 5, 23,
34, 45, 234, 345, 2345 and a total of 41 opposition primitives. These
are indicated in Fig. 6.

Let this primitive set be denoted by P = {P1, . . . , P41}. As seen
from Fig. 6, each element of P is associated with a pre-shape con-
figuration fromwhich the opposing hand-parts can be brought to-
gether to manifest the opposition on an object. Thus selecting a
primitive as part of a grasp in effect commits grasping patches for
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Fig. 6. Shows the set of opposition primitives with which grasp intention is interpreted. For the categories OTT
FT ,O

P
FS ,O

TS
FS ,O

TS
S , there are several ways in which real-fingers

may group together with the same oppositional intention. Using the simplifying assumption of contiguous virtual finger span, 10 possibilities may be identified: 2, 3, 4, 5,
23, 34, 45, 234, 345, 2345. For clarity only a selected number of these are shown above.
use with a well defined intention, cooperating with some and op-
posing others, even before a grasp is formed. The setP is therefore
able to represent grasp intention. The difference of this primitive
set with the original Opposition Space framework is seen in the
additional primitives in the bottom half of Fig. 6 (primitives no.
21–41). These primitives model flexibility of thumb usage (against
finger surfaces, against palm, against sides of all fingers) all of
which play an important role towards overall hand functionality.
The addition of these primitives implies that they can now be rec-
ognized as separate intentions in a grasp demonstration.

4.4. Grasp signature from opposition primitives

A grasp signature, GS, is defined as an importance distribution
over the set of opposition primitives.

GS =


x ∈ R41

| xi ≥ 0,


xi = 1

.

The grasp signature characterizes the grasping intention underly-
ing a demonstrated grasp.

5. Inferring a grasp signature

In this sectionwe see how the presence of opposition primitives
along with the importance with which they are manifested can
be inferred from hand configuration and contact force information
present in a grasping demonstration. For this the interactions
between active grasping patches in a grasp demonstration are
quantified. If a primitive is an important component of a grasp,
it becomes more likely to find ‘‘strong’’ patch level interactions
between the opposing groups of grasping patches by which it is
defined.

We first define ametric of opposition strengthwhich quantifies
the importance of pairwise oppositions between grasping patches
in the context of the demonstrated grasp. This is defined in terms
of normal force and geometrical opposition of grasping patch pairs,
Section 5.1. It is then applied to all grasping patch pairs for which
opposition is kinematically feasible (as defined in Section 5.2)
using information from the grasp demonstration D = {pi, fi}34i=1
wherepi and fi denote theposition and force vector associatedwith
grasping patch gpi. This results in an intermediate representation
exposing the contribution towards different primitives in which a
single grasping patchmay be involved and serves as the basis from
which they can be inferred (Fig. 7).

5.1. A metric for patch level opposition

Given a pair of grasping patches gpi, gpj, we wish to quantify
how relevant is the opposition of gpi against gpj to the demon-
strated grasp. We propose a metric of opposition strength based
on two measures:

(1) The normal force. The minimum of the two forces fi and fj is
taken.

φforce(fi, fj) = min

∥fi∥, ∥fj∥


. (6)

(2)Quality of geometrical opposition. Two angles arising from the
relative geometry of the patches are considered and the one having
the greater influence is used.
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(a) Grasp demonstrated with the tactile glove. Raw information collected is
shown in Fig. 4(c).

(b) Intermediate representation of the grasp in terms of Patch Level
Oppositions (PLO).

(c) PLOs (magenta lines) are overlaid on raw
tactile and configuration data. Thickness of the
lines indicates PLO strength. Black lines
indicate the primitives discovered. End points
are derived from centroids of the patches
belonging to a virtual finger weighted by
magnitude of normal force.

(d) Recognized grasp signature. See Fig. 11 for an explanation on how to
interpret the plot.

Fig. 7. Inferring a grasp signature (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Angles arising from relative geometry of patches are used to quantify
opposition quality. α is angle between the normal force vectors fi, fj . βi, βj are the
angles that normal force vectors make with the line joining patch centroids p̂ij .

The first is the angle between the normal force vectors.

α = cos−1


fi
∥fi∥

,
fj

∥fj∥


.

Patches oppose the best when α = 180, Fig. 8(a). The quality of op-
position decreases with decreasing α. Once α crosses a threshold
i.e. α < αt , opposition between the patches is deemed not rele-
vant.
The second is the angle that force vectors make with the line
joining patch centroids.

βi = cos−1


fi
∥fi∥

, p̂ij


βj = cos−1


fj

∥fj∥
,−p̂ij


β = max


βi, βj


.

In contact models used for analytical grasping analysis [33], this
angle is related to the maximum force that can be applied to a
surface before incurring the risk of slipping. β should lie within
the friction cone of the surface. We use it here to indicate
opposition capability even when the angle between the normal
force vectors decreases significantly such as in Fig. 8(b). In such
cases, opposition is still possible if enough friction exists or if the
object is immobilized by other parts of the hand. Smaller the angle
β greater is the force which can be applied.

As along as opposition is deemed relevant i.e. α ≥ αt , the
influence ofα andβ on opposition strength can be quantified using
the functions fα and fβ as follows:

fα = e

−
π−α
αc

γ
fβ = e


−
β
βc

γ
.
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Values for all parameters are indicated below.

αt = 1.48 Opposition is considered only if angular
separation between normals is greater than 85°.

αc = 1.22 Reduces the effect of α once α ≤ 110°.
βc = 1.22 Conservative estimate of a friction cone taken

at 70°.
γ = 1.5 Determined empirically.

fα and fβ are dominant in different situations. In Fig. 8(b), fα is low
but opposition is still possible, fβ is the better indicator. In Fig. 8(c),
fβ is low but the patches arewell opposed, fα is the better indicator.
The effect of patch geometry on the quality of opposition is defined
considering both functions as follows:

φgeom(p̂ij, fi, fj) =

0 α < αt

max

fα, fβ


α ≥ αt .

(7)

Finally, the metric of opposition strength, φplo, is defined as:

φplo = φgeom · φforce. (8)

Since 0 ≤ φgeom ≤ 1, φplo may be seen as the normal force modu-
lated by the geometrical quality of the opposition.

5.2. Feasible patch level oppositions (PLO-space)

There are C34
2 = 561 pairwise combinations for the 34 grasping

patches in GP . Of these, the set of grasping patch pairs for which
opposition is kinematically feasible is termed as the PLO-space. Let
OPLO ∈ R34×34 represent all valid pairwise interactions between
grasping patches.

OPLO(j, k) =


1 patch gpj can oppose gpk
0 otherwise. (9)

Each primitive Pi = O
VF i1
VF i2

∈ P defines a set of valid pairwise

interactions between grasping patches as a consequence of oppo-
sition between its virtual fingers.

Oi
PLO(j, k) =


1 j ∈ VF i

1 and k ∈ VF i
2

0 otherwise. (10)

The PLO-space can be computed as a union of Oi
PLO and is shown in

Fig. 9.

OPLO =


i∈P

Oi
PLO.

This method of determining a PLO-space captures the fact
that it is infeasible for each major hand-part to oppose its own
self. Further, surfaces of the fingers (excluding the thumb) cannot
oppose their sides and distal patches of the fingers cannot oppose
the intermediate patches.

5.3. Grasp signature

The grasp signature is a distribution over the primitive set
corresponding to the importance with which each primitive is
manifested in the grasp demonstration. To discover this from
hand configuration and tactile force in a grasp demonstration, the
oppositional roles possible for each finger are examined. These
correspond to the set of primitives listed below.

X =

OTT
FT2,O

TT
FT3,O

TT
FT4,O

TT
FT5,O

P
FS2,O

P
FS3,O

P
FS4,O

P
FS5,

OTS
FS2,O

TS
FS3,O

TS
FS4,O

TS
FS5,O

TS
P ,O

TS
S2,O

TS
S3,O

TS
S4,O

TS
S5


To obtain primitive likelihood we use the notion of a primitive

template. The studies by Kamakura [10], using real world
Fig. 9. The space of kinematically feasible patch level oppositions. Each axis
represents the set of 34 grasping patches grouped by major hand-part: FS—Finger
Front Surface, TS—Thumb Surface, P—Palm Surface, S—Finger Side Surface. Patch
level oppositions are color-coded according to the hand parts between which they
occur. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

objects, identified tactile signatures commonly encountered when
employing certain finger pre-shapes. Similarly [20] use tactile
templates of grasping regions to characterize 7 grasps with which
to interpret in-hand manipulations. In our case, the template for
each opposition primitive is based on the pairwise oppositions
that could be generated by it Oi

PLO, see (10). Since the oppositional
intention for any given primitive is known, we may identify
patches on each opposing hand part where we can expect to
see oppositional pressure focused if the primitive is being used.
These are termed as primary patches. The surrounding patches,
acting in support of these are termed secondary patches. Following
the reasoning that interactions between primary patches have
the most importance followed by primary–secondary interactions
and then secondary–secondary interactions, a relevance mask or
template for a primitive can defined as in Eq. (11).

M i

i∈X
(j, k) =


1 gpj, gpk is a primary patch pair
0.7 gpj, gpk is a primary–secondary patch pair
0.3 gpj, gpk is a secondary patch pair
0 gpj, gpk ∉ Pi i.e. Oi

PLO(j, k) = 0.

(11)

This may then be used as a prior knowledge filter to determine a
value proportional to the likelihood of a primitive’s presence given
the observed patch level oppositions in a grasp demonstration
Eq. (12).

Φ
i∈X
(i) =

34
j,k=1

M i(j, k) · φplo(p̂jk, fj, fk) (12)

Φ once normalized represents primitive likelihood.
Due to the kinematic coupling that exists between the finger

joints, choosing one of these as the dominant intention in a grasp
makes others infeasible. Coexistence between these oppositional
intentions can be pre-analyzed and is recorded in a primitive
compatibility matrix, Fig. 10.

Discovering a set of cooperating primitives proceeds in an
iterative fashion. First the most likely primitive ψ = maxi∈XΦ

is chosen. The span of the virtual finger is expanded by selecting
all primitives in X having a non-zero likelihood of opposition with
the same hand-part as ψ . Normal force of patches contributing to
the selected primitives are reduced by strength of the contributing
PLOs and Φ is recomputed. The new likelihood thus incorporates
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Fig. 10. The opposition compatibility matrix captures co-existence between
oppositional intentions at the finger level. Black squares indicate cooperation is
possible.White squares indicate incompatibility. CategoriesOP

FS ,O
TS
FS ,O

TS
P ,OTS

S mostly
cooperate but conflicts arise between these and finger-tip opposition OTT

FT .

an explanation of the raw data due to the selected primitives. The
selected primitives as well as those that are not compatible with
the ones selected are excluded from consideration and the process
is iterated. The process terminates when there are no more single
finger oppositions likely i.e.Φ(i) = 0 ∀i ∈ X.

The grasp signature discovered above is modified to express
contiguity of virtual finger span. For example, if fingers 2, 3 and 4
are found to be opposing the palm i.e. OP

F2, O
P
F3 and OP

F4 are present,
then these are combined and reported as OP

F234. If O
P
F3 is absent,

then to ensure contiguity of the virtual finger, palm opposition for
finger 3 is added and the primitive OP

F234 is reported. Finally, each
primitive reported is assigned an importance by summing the PLO
strength for each participating finger and taking the average.

6. Experimental results

The system for recognizing grasp intention from tactile and con-
figuration data is evaluated using human grasp demonstrations
carried out over several grasp scenarios. We first establish the in-
tention that will be demonstrated and then vary other variables in
the system to evaluate recognition performance. A grasp scenario
consists of an object–grasp pair. The grasp chosen is motivated by
how the object should be handled in order to perform a particular
task. Alternatively, it can be picked from a grasp taxonomy. Identi-
fying a grasp scenario implies that a specific intention for grasping
is communicated to the human subject who will manifest this on
an object. Performance of the system is based on whether the rec-
ognized signature corresponds to the pre-identified grasp inten-
tion. All grasps are demonstrated using the tactile glove described
earlier. We differentiate between expert and naïve demonstrator.
An expert is one who has a lot of experience with using the tac-
tile glove to grasp objects and is well versed in grasp taxonomy. A
naïve demonstrator has no knowledge of either.

Several parameters can be varied to examine the generality
and reliability of the system. These include the grasp intention
itself, the object on which the grasp is manifested or the hand
(subject) making the grasp. A set of experiments are designed to
vary the different parameters. An underlying theme behind the
experiments is that if the intention is the same then regardless
of whether the grasp is demonstrated by different hands or on
different objects, the grasp signature recognized should remain
unchanged. However, if the intention changes then this change
should be correctly reflected in the grasp signature. The change
can be small such as the importance given to different grasp
components or the number of fingers employed, or large, as when
employing a different combination of oppositions.

6.1. Single demonstrator

The performance of grasp intention recognition is evaluated us-
ing a single expert demonstrator. By using an expert demonstrator
we minimize the possibility of misunderstanding the grasp inten-
tion or improperly manifesting it on the object using the tactile
glove.

We test first the outcome of exercising same intention on dif-
ferent objects. The first scenario involves the task of opening a
tight bottle cap. Three different caps are used having different
size and/or shape (round, square). The grasp does not need to de-
liver any motion rather it needs to grip the cap firmly in order to
transmit the strong torques and coarse motion generated by the
wrist–arm without allowing any slippage. This is done by using
the thumb surface against the side of the ring finger supported
by the action of finger-tips (index–middle) against the fleshy part
of the thumb (Fig. 11(a)). Grasp intention remains the same for
cap 2 and 3 but is changed slightly for cap 1 to accommodate
the smaller diameter. Referring to the figure, the recognized sig-
nature for each grasp–object pair corresponds to the grasp inten-
tion and also correctly captures the change in intention for the
small diameter cap. A grasp scenario involving a cutting tool is also
taken. Three handles of different diameter andweight are used. The
grasp chosen grips the handle firmly using action of fingers (mid-
dle–ring) against the palmwhile directional ability is provided by a
tripod grip between thumb, middle-side and index-tip (Fig. 11(b)).
This intention remains the same for tool 1 and 2 but is changed
slightly to accommodate the larger diameter and weight of tool 3.
The grasp signatures plotted shows that this intention is well rec-
ognized including the change in intention for tool 3.

Next we test different intention on the same object. Opening a
tight bottle cap scenario is taken. The grasp for this was explained
earlier. However, when the cap becomes loose a new grasp is
employed. The strong action of palm opposition is no longer
required and is replaced instead by use of finger tips. Fig. 12(a)
shows that this different intention is correctly detected from the
demonstration. A cutting tool scenario is also examined. Here the
position of the cutting blade is changed to the middle (tool 2)
and the top (tool 3) of the handle as shown in Fig. 12(b). Entirely
different grasps are now required in each case. The grasp for tool
2 uses exclusively side-opposition, whereas grasp for tool 3 uses
a combination of palm opposition and side opposition. Examining
the recognized grasp signatures, we see that these intentions are
well detected.

From the above experiment it is seen that the method for grasp
recognition performs well when intention is kept the same, is
changed in a small way or when completely different. However,
only 1 hand is used and relatively few number of intentions are
demonstrated. In the next experiment we widen the set of grasps
and objects considered. Also, grasps are demonstrated by several
naïve subjects who do not have experience using the tactile glove
nor are knowledgeable about grasp taxonomy.

6.2. Multiple demonstrators

The performance of grasp intention recognition is evaluated
using a 10 naïve demonstrators. The subjects were male (between
21–30 years of age) with different hand sizes as summarized in
Fig. 14. Ten grasp scenarios are selected representing a broad
range of grasp intention. Grasps are taken from the taxonomy from
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Fig. 11. Similar grasp intention on different objects. Single demonstrator. (a) Examines opening a tight bottle-cap with different size/shape. Cap1 and Cap2 are round with
diameter 4 and 8.5 cm, while Cap3 is square with side 7 cm. Grasp intention is changed slightly for Cap1 to accommodate smaller diameter. (b) Examines cutting with
different diameter/weight handles: Tool 1 (� = 0.8 cm, 23 gm), Tool 2 (� = 2 cm, 500 gm), Tool 3 (� = 5 cm, 3136 gm). Grasp intention is changed slightly for Tool3 to
accommodate larger diameter and weight.
The recognized grasp signatures are plotted below the figures in each case. The y-axis denotes the grasp scenario and the x-axis denotes the different opposition classes.
Fingers thumb–index–middle–ring–little are numbered 1–5. For each grasp scenario, primitives detected are denoted by filled circles. The circle diameter corresponds to
the importance of the primitive in the grasp. The horizontal line in each circle indicates the virtual finger span i.e. the real fingers detected as having the same oppositional
intention. This representation allows any subset of the 41 primitives to be presented in a compact manner. For example, recognized signature for scenario Cap2 and Cap3
comprise of the primitives OP

FS23 and OTS
S4 , whereas for Cap1 the primitives recognized are OP

FS2 and OTS
S3 .
Fig. 12. Different grasp intention on the same object. Single demonstrator. Fig. 12(a) examines opening a bottle-cap when it is tight and when it is loose. Entirely different
grasps are required for each case. Fig. 12(b) examines cutting with different tools. Tools 1–3 use the same handle but have the cutting blade positioned differently requiring
entirely different grasps for each case. See Fig. 11 for an explanation on how to interpret the plots.
Feix et al. [32] which represents a comprehensive summary of
several grasp taxonomies proposed in the literature. Grasps are
selected to cover a wide range of hand functions. These range
from high precision grasps, which allow fine resolution of motion,
to intermediate grasps mixing power with the ability to control
force and torque at a tool tip, to high power grasps with strong
resistance to externalwrenches fromall directions. Grasps selected
are presented in Table 1. Other than wide range of intention, we
may note that scenarios 5–7 test the casewhere different intention
is manifested on the same object. Also, scenarios 7, 8, 9 are all
examples of power grasp with directional ability. Different grasp
components provide the directional capability in each case.
For each grasp scenario, the grasp intention is communicated
to the human subject using a picture of the grasp and a high level
description (as recorded in Table 1). The subject first tries out the
grasp with the ungloved hand and then with the gloved hand.
Tactile and configuration data are recorded once the subject is
comfortable with creating the grasp with the gloved hand. Fig. 13
shows an example of the grasps in Table 1 being demonstrated
with the tactile glove.

A total of 100 trials were conducted across all scenarios and all
subjects. Fig. 15 and 16 present the recognition results. Based on
a visual analysis of the taxonomy category an expected signature
may be identified for each grasp scenario (indicated in red in
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Fig. 13. Grasp scenarios in Table 1 demonstrated on objects using the tactile glove.
Table 1
Grasp scenarios covering a range of different grasp intentions.
Scenarios and figures (except for 8, 10) are taken from [32].

Scenario Description

1 Power grasp. Object is
encaged and grasped
firmly.

2 Power grasp. Object is
encaged and grasped
firmly.

3 Power grasp including
finger side. Object is
encaged and grasped
firmly.

4 Fingertip grasp.

5 Fingertip grasp with side
support.

6 Tripod grasp. Tripod is
made using fingertip and
finger side.

7 Directional power grasp.
Directional ability is
provided using thumb
and finger side.

8 Directional power grasp.
Directional ability is
provided using thumb
and finger tips.

9 Directional power grasp.
Directional ability is
provided using thumb,
finger side and finger tips.

10 Power grasp with
dexterous ability.
Dexterous ability is
provided using thumb
and finger tip.

Figs. 15 and 16). However, it was noticed that subjects did not
always adhere to the communicated intention. Clear variations
exhibited on the communicated intention were noted at the time
of demonstration and are reported in the results (indicated in blue).
Out of 100 trials, 10 variations were noticed.

We see that in 87 trials the recognized signature matches
the expected exactly, thus indicating that the system is good
at detecting expressed intention from tactile and configuration
data over a wide range of ways in which the hand may be
utilized to generate grasps. Cases where mismatch occurred were
investigated and are noted below. In the following (X-a.b.c) should
be read as scenario-X, subjects-a,b,c.

(a) In 9 trials although the grasp was demonstrated correctly,
tactile signal was too weak. This resulted in the virtual finger
Fig. 14. Dimensions for measuring hand size and dispersion of hand size data
across the 10 subjects. For each dimension, the vertical line indicates extremes, box
covers 25th–75th percentiles and the red line denotes the median.

span being smaller than expected (1–9, 2–5, 6–1.6, 7–10), or
certain components not getting detected at all (1–2.3, 5–5.10).

(b) In 4 trials, confusion occurs where oppositions are detected
which have clearly not been demonstrated (6–9, 7–4.6.8). In all
these cases, OP

FS2 is detected but it is clear that the index finger
is employed differently.

(c) In 23 trials, an additional component of the typeOTS
F is detected

when not expected. This is seen in scenarios 3 and 7–10. This
can be explained due to the natural tendency to include this
component when the power grasp OP

F is being exercised as a
strong intention, which is the case in all these scenarios.

Examination of the confusions detected (point b) showed that
these were caused due to patches which exhibited geometrical
opposition but whose tactile response came from some other in-
volvement. When two patches oppose geometrically and also ex-
hibit tactile response, the system assumes mutual opposition and
quantifies opposition strength. The system cannot tell if the tactile
response is due to other causes. Recognition of the correct signa-
ture relies on the fact that the grasp intention being demonstrated
results in oppositions that are stronger, causing the correct prim-
itives to be prioritized. However relying solely on geometry and
interaction force can result in confusion and other indicators of op-
position would need to be considered.

Although the system reports on importance of the grasp com-
ponents recognized, we have no basis for examining the detected
importance. For static grasping there is no cause for giving impor-
tance to different grasp components. Importance only becomes rel-
evant in a task context when the capabilities brought to the grasp
by a component are exercised in response to task demands that
occur. This may also be partly responsible for tactile signal being
absent or very weak for some components even though they were
demonstrated. For example, side stabilization in scenario 5.

7. Discussion

Let us revisit again the problemposed in the introductionwhere
we have selected a taxonomy category for performing a given task.
A demonstration of the grasp now emphasizes the important grasp
components that are cooperating. Using the method described in
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Fig. 15. Recognized signatures for scenarios 1–5 (Table 1) across all 10 subjects. Based on a visual analysis of the taxonomy category an expected signature is identified
for each grasp scenario. This is indicated in red. For some grasp scenarios, certain subjects executed variations on the communicated intention. These were noted at the
time of demonstration are indicated in blue. Results are grouped according to the variation demonstrated. See Fig. 11 for an explanation on how to interpret the plots. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
this paper, this can be recognized for a wide range of grasps in
the space of human prehensile ability. The grasp signature be-
comes input to an Opposition Space controller which does not
focus on achieving similar configuration nor contacts but recre-
ates the relevant oppositions in order of the importance that was
demonstrated. In response to perturbations or task demands, the
controller can apply pressure purposefully by emphasizing the op-
positions that comprise the grasp. When adapting the grasp to an
object with different properties the problem lies with positioning
oppositions appropriately. A grasp controller focuses on finding
configuration and contacts to serve this high level intention.

To map the grasp to a robot hand, a correspondence problem
must be solved. This can be tackled at the level of Opposition Space.
We first define an Opposition Space for the robot hand under con-
sideration and then establish a mapping between the primitives
of the human hand to that of the robot hand. This mapping may
impose additional constraints on the real finger groupings that are
allowed (Section 4.2). These constraints can be used to find a new
set of primitives which map one–one to the robot. Thus the pro-
posedmethod discovers a signature in terms of the robot hand un-
der consideration.

The method proposed a new way to look at raw information
from a grasp demonstration (configuration, tactile) by combining
them into an intermediate patch-level opposition (PLO) represen-
tation. This representation highlights different roles of a single
sensor patch in the grasp which otherwise get overlapped when
raw information for patch is considered alone. It was shown to
be useful in identifying the most likely primitives present in the
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Fig. 16. Recognized signatures for scenarios 6–10 (Table 1) across all 10 subjects. Results are grouped according to grasp intention demonstrated. Communicated intention
represented in red, variations on this in blue. See Fig. 11 for an explanation on how to interpret the plots. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
grasp. Seen objectively, the PLO is a 144 dimensional feature. In fu-
ture, data-driven models could be used to capture PLO correlation
with other components of a task scenario namely, object proper-
ties, force/torque andmotion. In conjunctionwith themethod pro-
posed in the paper, this allows for automatic generation of grasp
signature in response in task requirements.

The present work is limited to static grasping. However hand-
parts become more actively engaged and the importance of grasp
components becomes relevant only when actually performing a
task. Examining recognition over an entire task duration is also a
direction for further work. The signatures detected may be used as
a means to segment task sequences based on the grasp employed.
Also, a set of grasp signatures detected over several trials and
subjects can be used as basis for grasp adaptation.
8. Conclusion

In a grasp demonstration, individual hand-parts are employed
so as to leverage their particular functional qualities in order
to provide overall grasp function in terms of generating and
controlling forces, torques and motion. This is termed as the grasp
intention. Modeling the grasp intention provides ways to relate the
decisions underlying grasp formation to hand function in terms of
quantities which may be sensed/recognized or controlled. Further,
it allows for a demonstrated grasp to be reconstructed or adapted
while preserving its functional properties.

This paper characterizes grasp intention using the concepts of
Opposition Space proposed in [4], where virtual fingers in oppo-
sition are used to form a set of opposition primitives. These con-
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cepts were expressed in a manner suitable for a demonstration
framework. Extensions were proposed to cover the additional op-
positional roles assumed by the thumb frequently encountered in
everyday grasps. A general method was proposed by which the
specific combination of primitives present in a grasp demonstra-
tion could be identified. Using a single expert demonstrator, sce-
narios testing the same grasp intention expressed on different
objects, and different grasp intentions on the same object were
recognized successfully. A recognition rate of 87% was achieved
withmultiple naive demonstrators over a wide range of categories
taken from a grasp taxonomy.
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