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Abstract We present a novel approach of probabilistic ego-
motion methods for Stereo Visual Odometry using vehicles
equipped with calibrated stereo cameras. We combine a dense
probabilistic 5D egomotion estimation method with a sparse
keypoint based stereo approach to provide high quality es-
timates of vehicle’s angular and linear velocities. To vali-
date our approach, we perform two sets of experiments with
a well known benchmarking dataset. First, we assess the
quality of the raw velocity estimates in comparison to clas-
sical pose estimation algorithms. Second, we cascade our
method’s instantaneous velocity estimates with an Extended
Kalman Filter and compare its performance results with a
well known open source stereo Visual Odometry library. The
presented results compare favorably with state-of-the-art ap-
proaches, mainly in the estimation of the angular velocities,
where significant improvements are achieved.

1 Introduction

Visual Navigation systems [2], have been subject of impor-
tant developments by the robotics research community in
the last decade. The use of low-cost visual sensors (cam-
eras) together with Inertial Measurement Units (IMU) are
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becoming ubiquitous on today’s modern mobile robots and
pushing research on high-performance algorithms for robot
navigation.

The use of vision based methods in navigation systems
is justified by their ability to ground perception to static fea-
tures in the environment and measure the robot relative dis-
placement with respect to those features. Therefore, vision
based methods are, in principle, less prone to bias and drifts
common in other rather common navigation sensory modal-
ities like IMU’s and wheel odometers.

This paper is an extension of the work conducted by
Silva et al. [30], with the addition of a novel parametriza-
tion of the mixed sparse and dense egomotion method (here
on denoted as 6DP), as well as extended results compari-
son with other well known state-of-the-art methods. In [29]
VO was defined as the process of estimating a vehicle’s ego-
motion by using vision cameras. Cameras work as linear and
angular velocity sensors but, because they rely on the ob-
servation of fixed points in the environment, they typically
provide measurements with less drift than IMU’s and wheel
odometers. Ultimately, the linear and angular velocities ob-
tained from the egomotion estimation process are integrated
along time to provide the relative pose of the robot with re-
spect to some inertial frame. In this paper we focus on the
visual egomotion estimation process, since it is the most crit-
ical component of a VO system.

Most of the research on VO employ sparse feature based
methods. These methods have the advantage of being fast,
since only a subset of image points is processed, but de-
pend critically on the features to track between adjacent time
frames and are often sensitive to noise and outliers. On the
contrary, dense (pixel based) methods combined with prob-
abilistic approaches have demonstrated higher robustness to
those source of errors. Domke and Aloimonos [4] proposed
a dense probabilistic egomotion estimation method based
upon epipolar geometry for describing the motion of a cam-
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Fig. 1 Example of the INESC TEC camera calibrated setup for a
vehicle-like robot, with the use of stereo vision cameras for providing
egomotion estimates

era. The method does not commit feature matches between
two images on adjacent time frames, but instead computes
a probability distribution over all possible correspondences.
By exploiting a larger amount of data, a better performance
is achieved under noisy measurements. However, Domke
method is more computationally expensive than standard
feature based methods and only computes the direction of
the linear motion, but not the translation scale factor (i.e.,
the amplitude of the linear motion).

To overcome such limitations, we use a dense proba-
bilistic method such as the one developed by Domke and
Aloimonos [4] but with three important contributions. First
we add a sparse feature based method that provides stereo
vision information needed to compute the translation scale
factor. Second we implement a fast correspondence method
based on recursive Zero Normalized Cross Correlation (ZNCC)
scheme for computational efficiency. Third we integrate the
obtained velocity estimates in an Extended Kalman Filter
able to reduce the noise present in the instantaneous mea-
surements. Our proposed approach to stereo egomotion esti-
mation (6DP) combines a deterministic sparse feature based
method for obtaining depth estimation, with a dense prob-
abilistic egomotion approach that allows to recover camera
rotation (R) and translation (t̃) up to a scale factor (α). For
recovering the missing translation scale factor (α) we use
a Procrustes Absolute Orientation method, that takes regis-
tered 3D point information from two adjacent time frames.

In this paper we compare our mixed deterministic and
probabilistic egomotion estimation approach (6DP) against
two well known state-of-the art egomotion estimation meth-
ods. First we evaluate 6DP linear and angular velocities raw
estimates (without any type of filtering) against a 5-point al-
gorithm. The use of a dense probabilistic approach allows
to obtain better estimates of the rotation and translation up
to scale factor when compared to the 5-point implementa-
tion, but exhibits an unfavorably performance in the trans-
lation scale factor (α) estimation. Afterwards we have im-
plemented a filtering approach on top of the 6DP estimator
and compared it with LIBVISO Visual Odometry Library
[13], using a standard dataset from this library. The dataset
also provides ground-truth information from the fusion of

IMU and GPS measurements. Results show that our method
presents significant improvements in the estimation of angu-
lar velocities and a similar performance for linear velocities.

This paper is organized as follows: In section 2 related
work regarding stereo VO is presented. The 6DP algorithm
implementation is detailed in section 3. Finally section 4 and
section 5 contain the experimental results and conclusions
with final remarks.

2 Related Work

Stereo VO consists of performing egomotion estimation from
the sequence of images acquired from a stereo camera rig
rigidly attached to the vehicle or robot. One of the advan-
tages of performing VO estimation with a stereo camera
configuration is the ability to recover translation motion scale.
Classical stereo VO algorithms estimate the 3D position of
observed image point features by using triangulation between
the left and right images. Then, relative camera motion can
be calculated through the alignment of 3D feature’s position
between consecutive image frames.

Most of the work on stereo visual odometry methods
was driven by Matthies et al.[17][18] outstanding work on
the famous Mars Rover Project. Their system was able to
determine all 6-DOF of the rover (x,y,z,roll,pitch,yaw) by
tracking the motion of 2D image keypoints between stereo
image pairs, as well as their 3D world coordinates. After-
wards, a maximum likelihood estimation method was used
to compute motion between consecutive image frames. Their
method exploited robust methods for outlier rejection such
as RANSAC [5]. The Stereo VO work performed on Mars
Rover Project was somewhat inspired by Olson et al. [26].
The method was developed as a replacement for wheel odom-
etry dead reckoning methods that were not able to correctly
estimate robot motion over long distances. In order to avoid
large drift in robot position over time, Olson’s method com-
bined stereo egomotion estimation with absolute orientation
sensor information.

Among the different approaches to compute stereo VO,
two main categories have emerged in the literature, either
based on their feature detection scheme or by the way mo-
tion estimation is performed. Usually, motion estimation is
computed using 3D Absolute Orientation (AO) methods or
Perspective-n-Point (PnP) methods. Alismail et al.[1] con-
ducted a study on evaluating both AO and PnP methods
for achieving robot pose estimation using only stereo visual
odometry, and concluded that PnP methods are more accu-
rate than AO methods. The AO methods consist on 3D trian-
gulated points estimation for every stereo pair. Then motion
estimation is solved by using point alignment algorithms
like the Procrustes method [6] or Iterative-Closest- Point
(ICP) method [28], such as the one used by Milella and Sieg-
wart [19] for estimating motion of an all-terrain rover. Nister
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et al.[24], were one of the first to develop a PnP algorithm
(3D-2D camera pose estimation), that could be computed
in real-time with an outlier rejection scheme. The authors
argue that minimizing the re-projection error would benefit
stereo VO method accuracy. Nister et al.[23] also developed
a Visual Odometry system, based on a 5-point algorithm,
that became the standard algorithm for comparison of Visual
Odometry techniques. This algorithm can be used either in
stereo or monocular vision approaches and consists on the
use of several visual processing techniques, namely: feature
detection and matching, tracking, stereo triangulation and
RANSAC for pose estimation with iterative refinement.

Most of stereo VO methods differ on the way stereo in-
formation is acquired and computed: sparse or dense ap-
proaches. One of the most relevant dense stereo VO applica-
tions was developed by Howard [9] for ground vehicle appli-
cations. The method does not assume prior knowledge over
camera motion and so can handle very large image trans-
lations. However, due to the absence of feature detectors
invariant to rotation and scaling, only works on low-speed
applications and with high frame-rate, since large motions
around the optical axis result in poor performance. In [20] a
sparse stereo VO method is presented. A closed form solu-
tion is derived for the incremental movement of the cameras
and combines distinctive features invariant to rotation and
scale (SIFT)[15] with sparse optical flow (KLT) [16]. Some
other authors like Ni et al.[11], minimize dependencies on
feature matching and tracking algorithms by simultaneously
using an algorithm that computes feature displacement in
both cameras, together with a quadrifocal setting within a
RANSAC framework. Later on, the same authors [22], de-
coupled the rotation and translation recovery into two dif-
ferent estimation problems. Instead of using the three-point
method, they used a RANSAC two-point algorithm for ro-
tation recovery and a one-point method for the translation
recovery.

More recently the application focus of stereo VO meth-
ods has moved from planetary rover application to the devel-
opment of novel intelligent vehicles by automotive indus-
try. Obdrzalek et al.[25] developed a voting scheme strat-
egy for egomotion estimation, where 6-DOF problem was
divided into a four dimensions problems and then decom-
posed in two sub-problems for rotation and translation es-
timation. Another influential work, is the one developed by
Kitt et al. [13]. Their method, is available as an open-source
visual odometry library named LIBVISO. Stereo egomotion
estimation is based on image triples and the online estima-
tion of the trifocal tensor [8]. It uses rectified stereo image
sequences and produces an output 6D vector with estimated
linear and angular velocities. Comport et al. [3] also develop
a stereo VO method based on a different geometry estima-
tion solution, the quadrifocal tensor. By using tensor nota-
tion, the authors can compute motion using 2D-2D image

pixels matches, thus yielding a more precise motion estima-
tion.

Another way of developing stereo VO is to combine with
other absolute sensor information. Rehder et al.[27] devel-
oped a stereo visual odometry method that combined visual
data with GPS and IMU information. The proposed method
consistently fused stereo visual odometry information with
inertial measurements and sparse GPS information into a
single pose estimate in real-time. Kneip et al.[14] also pro-
posed an alternative tightly coupled approach with vision
and IMU information. Their strategy for continuous robust
pose computation is based on the triangulation of frame to
frame point clouds when there is sufficient disparity among
them.

More recently Kazik et al.[12] developed a framework
that performed 6-DOF absolute scale motion with a stereo
setup that copes with non-overlapping fields of view in in-
door environments. It estimates monocular VO from each
camera and afterwards scale is recovered by imposing the
known stereo rig transformation between both cameras.

3 A mixed approach to stereo visual odometry:
combining sparse and dense methods

Our method, denoted 6DP, combines sparse feature based
methods with dense probabilistic methods [30]. While fea-
ture based methods are less computational expensive and
are used in real-time applications, dense correlation meth-
ods tend to be computational intensive and used in more
complex applications. However, when combined with prob-
abilistic approaches, such methods are usually more robust
and tend to produce more precise results. Therefore we de-
veloped a solution that tries to exploit the advantages of both
methods.

Our 6DP method, as schematically illustrated in Fig 2,
can be roughly divided into three main steps:

– Keypoint Detection
The first step is to detect sparse features in an image
stereo pair. To obtain such features a feature detector
such as the well known Harris corner [7] or a SIFT de-
tector [15] is used. By performing stereo triangulation
3D point clouds at time Tk and Tk+1 are computed but
correspondences between points are not resolved at this
stage.

– Correspondence and Egomotion estimation
In order to be able to estimate egomotion, first there
is the need to compute correspondence information be-
tween images IT k and IT k+1, where T k and T k + 1 are
consecutive time instants. For egomotion estimation a
variant of the dense probabilistic egomotion estimation
method of [4] is used. By doing so, we establish a prob-
abilistic correspondence between the left images at con-
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secutive time steps, IL
T k and IL

T k+1, and estimate camera
rotation (R) and translation (t̃) up to a scale factor (α).

– Scale Estimation
The missing translation scale factor (α), is obtained by
using the sparse features in each of stereo pairs at con-
secutive time instants and, by triangulation, compute two
3D registered point sets in consecutive frames. After-
wards an AO method like the Procrustes method [6] is
used to obtain the best alignment between the two sets
of points and determine the value of the translation scale
factor (α).

3.1 Probabilistic Correspondence

The key to the proposed method relies on a robust proba-
bilistic computation of the epipolar geometry relating the
camera’s relative pose on consecutive time steps. This will
speed-up and simplify the search for 3D matches on the
subsequent phases of the algorithm. Usual methods for mo-
tion estimation consider a match function M that associates
coordinates of points x = (x,y) in image 1 (IL

T k) to points
x′ = (x′,y′) in image 2 (IL

T k+1) :

M(x) = x′ (1)

Instead, the probabilistic correspondence method defines a
probability distribution over the points in image 2 for all
points in image 1:

ρx(x′) = ρ(x′|x) (2)

Thus, all points x′ in image 2 are candidates for match-
ing with point x in image 1 with a likelihood proportional to
ρx(x′). One can consider ρx as images (one per each pixel
in image 1) whose value in x′ is proportional to the likeli-
hood of x′ matching with x. In Fig.4, we can observe the
likelihood results of a point x in image IL

T k with all matching
candidates x′ in IL

T k+1. For the sake of computational cost,
likelihoods are not computed for the whole range in image 2
but just on windows around x, or suitable predictions based
on prior information (see Fig. 3).

In [4] the probabilistic correspondence images were com-
puted via the normalized product, over a filter bank of Ga-
bor filters with different orientation and scales, of the expo-
nential of the negative differences between the angle of the
Gabor filter responses in x and x′. The motivation for us-
ing a Gabor filter bank is its robustness to changes in the
brightness and contrast of the image. However, it demands a
significant computational effort, thus we propose to perform
the computations with the well known Zero Mean Normal-
ized Cross Correlation function (ZNCC):

Algorithm 1: 6DP Method
Input: 2 stereo Image pairs (IL

T k, I
R
T k) and (IL

T k+1, I
R
T k+1),

Output: (Velocities) V, Ω

Step 1. Using a Feature Detector obtain corresponding
inliers
This sparse feature detector is only used to obtain the
translation scale estimation. We conducted experiments using
both Harris corners and Scale Invariant Features (SIFT)
Fk← Feature Detector(IL

T k, I
R
T k)

Step 2. For a new stereo image pair we keep the feature
detection points that match in the stereo image pair IL

T k+1
and IR

T k+1.
Therefore a correlation procedure is conducted over the
epipolar line to match corresponding key points in both images.
The points P2k+1 which are the matching key points of the
stereo pair (inliers) are kept.

Fk+1← Feature Detector(IL
T k+1, I

R
T k+1)

P2k+1← Epipolar Correlation(Fk+1)

Step 3. Initiate the dense part of the 6DP method and
estimate the motion.

Step 4. Compute the probabilistic correspondences between
images IL

T k and IL
T k+1 .

ρx(x′)← ZNCC(x,x′; IL
k , I

L
k+1);x′ ∈W (IL

k+1); W (pre-defined
window size)

Step 5. Compute using probabilistic approaches the Motion
(E)
The Essential Matrix (E) is obtained from the from the
probabilistic correspondences over the 5-dimensional space of
essential matrices Ei. For a single point x in image IL

T k, the
likelihood of a motion hypothesis (Ei) is proportional to the
likelihood of the best match obtained along the epipolar line
generated by the essential matrix.

ρ(Ei) ∝ ∏x ρ(Ei|x)
Step 6. Perform stereo triangulation to obtain 3D points in
both IT k and IT k+1 time instants, only the matches of P2k,
P2k+1 that are correlated by the epipolar line given by the
obtained motion (E) are utilized

P3k,k+1 ← Stereo Triangulation (P2k,P2k+1)

Step 7. Perform a robust estimation step (using RANSAC)
to disregard 3D points that are outliers. For avoiding biased
samples a bucketting estimation procedure is used
Xk+1 = RXk +T Ransac (P3k,k+1)

Step 8. Perform Translation scale estimation using an
Absolute Orientation method (Procrustes) The Procrustes
method allows to recover rigid body motion between frames
through the use of 3D point matches. This transformation can
be represented as:
Yi = R′Xi + t′

α ← Procrustes(P3k,k+1)

Step 9. Estimate Linear and Angular Velocities

V← α t̃
∆T

r← R(rx,ry,rz)
Ω ← r

∆T

Step 10. Extended Kalman Filtering

Repeat from Step 2
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Fig. 2 6DP architecture

Fig. 3 Image feature point correspondence for ZNCC matching, with
searching regions( f ,g) defined with window size W between points x
and point x′ represented in red and green respectively

Cx,y(u,v)=
∑

x,y∈W
( f (x,y)− f̄ )(g(x+u,y+ v)− ḡ)√

∑
x,y∈W

( f (x,y)− f̄ )2
√

∑
x,y∈W

(g(x+u,y+ v)− ḡ)2

(3)

The ZNCC method allows to compute the correlation
factor Cx,y(u,v) between regions of two images f and g by
using a correlation window around pixel x = (x,y) in image

Fig. 4 Likelihood of a point x in image IL
T k with all matching candi-

dates x′ in IL
T k+1, for the case of Fig. 3. Points with high likelihood are

represented in lighter colour

f and pixel x’ = x+(u,v) in image g, being the correlation
window size NW = 20. Having f̄ and ḡ as the mean values
of the images in the regions delimited by the window size.
This correlation factor is then transformed into a likelihood
match between f and g:

ρx(x′) =
Cx,y(u,v)

2
+0.5 (4)

The ZNCC function is known to be robust to brightness
and contrast changes and recent efficient recursive schemes
developed by Huang et al. [10] render it suitable to real-
time implementations. That method is faster to compute and
yields the same quality as the method of Domke. For more
detail about the recursive scheme, see the Appendix.
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3.2 Probabilistic Egomotion Estimation

From two images of the same camera, one can recover its
motion up to the translation scale factor. Given the camera
motion, image motion can be represented by the epipolar
constraint which, in homogeneous normalized coordinates,
can be written as:

(x̃′)T Ex̃ = 0 (5)

where E is the so called Essential Matrix [8], a 3X3 matrix
with rank 2 and 5 degrees-of-freedom and x̃, x̃′ the homoge-
neous coordinate representations of points x and x′. Given a
point x̃ in image 1, this expression constraints the points x̃′
in image 2 to lie on line Ex̃, thus it expresses the loci in im-
age 2 that should be searched for matches of points in image
1. It can be factored by:

E = R
[
t̃
]
× (6)

where R and t̃ are, respectively, the rotation and translation
direction of the camera between the two frames, with t̃× the
skew symmetric representation of t̃, as defined in the follow-
ing expression:

t̃× =

 0 −t̃z t̃y
t̃z 0 −t̃x
−t̃y t̃x 0

 (7)

To obtain the Essential matrix from the probabilistic cor-
respondences, [4] proposes the computation of a probability
distribution over the 5-dimensional space of essential matri-
ces. Each dimension of the space is discretized in 10 bins,
thus leading to 100000 hypotheses Ei. For each point x the
likelihood of these hypotheses is evaluated by:

ρ(Ei|x) ∝ max
(x̃′)T Eix̃=0

ρx(x′) (8)

Intuitively, for a single point x in image 1, the likelihood
of a motion hypothesis is proportional to the likelihood of
the best match obtained along the epipolar line generated
by the essential matrix. Assuming statistical independence
between the measurements obtained at each point the over-
all likelihood of a motion hypothesis is proportional to the
product of the likelihoods for all points:

ρ(Ei) ∝ ∏
x

ρ(Ei|x) (9)

After the dense correspondence probability distribution
has been computed for all points, the method [4] computes a
probability distribution over motion hypotheses represented
by the epipolar constraint. Finally, having computed all the
motion hypotheses, a Nelder-Mead simplex method [21] is

Image I
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Fig. 5 Image feature point marked in colour green in image IL
T k lies in

the epipolar line (blue) estimated between IT k to IT k+1. The point with
higher correlation score, marked in red in image IL

T k+1 is chosen as the
matching feature point.

used to refine the motion estimate using a pre-defined num-
ber of the highest scoring samples Ei. The idea behind this
approach already applied in [4] is to robust the final solution
in a way that missing the global maximum becomes highly
unlikely. The motion sample returned by the optimization
method that has the highest probability is considered to be
the final solution.

3.3 Scale Estimation

By using the previous method, we compute the 5D trans-
formation (R, t̃) between the camera frames at times Tk and
Tk+1. However, translation t̃ component does not contain
translation scale information. This type of information, will
be calculated by an Absolute Orientation(AO) method like
the Procrustes method.

Once the essential matrix between images IL
T k and IL

T k+1
has been computed by the method described in the previous
section, we search along the epipolar lines for matches in
IL
T k+1 to the features computed in IL

T k, as displayed in Fig. 5.
Finally, the matches in IL

T k+1 are propagated to IR
T k+1 by

searching along horizontal stereo epipolar lines. From this
step we compute 3D point clouds at time Tk+1 correspond-
ing to the ones obtained for Tk. Points whose matches are
unreliable or were not found are discarded from the point
clouds.

3.3.1 Procrustes Analysis and Scale Factor Recovery

The Procrustes method allows to recover rigid body motion
between frames through the use of 3D point matches. Let the
set of 3D keypoints computed by triangulation of the Harris
Corners in instant Tk be described by {Xi}Tk

. At time Tk+1
they move to a new position and orientation. Let the new
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set be described by {Yi}Tk+1
. This transformation can be

represented as:

Yi = R′Xi + t′ (10)

In order to estimate the motion [R′, t′], a cost function
that measures the sum of squared distances between corre-
sponding points is used.

c2 =
n

∑
i

∥∥Yi− (R′Xi + t′)
∥∥2 (11)

Performing minimization of equation (11) is possible to
estimate [R′, t′]. However these estimates are only used to
obtain the missing translation scale factor α , since rotation
(R) and translation direction (t̃) were already obtained by the
probabilistic method. Although conceptually simple, some
aspects regarding the practical implementation of the Pro-
crustes method must be taken into consideration. Namely,
since this method is very sensible to data noise, obtained re-
sults tend to vary in the presence of outliers. To overcome
this difficulty, RANSAC [5] is used to discard possible out-
liers within the set of matching points.

3.3.2 Bucketing

For a correct motion scale estimation, it is necessary to have
a proper spatial feature distribution through out the image.
For instance, if the Procrustes method uses all obtained im-
age feature points without having their image spatial dis-
tribution into consideration, the obtained motion estimation
[R, t] between two consecutive images could turn out bi-
ased. Given these facts, to avoid having biased samples in
the RANSAC phase of the algorithm a bucketing technique
[31] is implemented to assure a balanced image feature dis-
tribution sample. In Fig. 6 a possible division of the image is
displayed. The image region is divided into Lx×Ly buckets,
based on the minimum and maximum image width of the
feature points. Afterwards, image feature points are classi-
fied as belonging to one of the buckets. In case a bucket does
not contain any feature, it will be disregarded. The bucket
size must be previously defined: in our case we divided the
image into a 8× 8 buckets. Assuming we have l buckets, the
interval between [0...1] is divided into l intervals such that
the width of the bucket interval is defined as ni/∑i ni, where
ni is the number of matches assigned to each bucket. Based
on this computation the RANSAC sample points are cho-
sen based on point bucket probability. Buckets that contain
higher number of points have higher probability, the method
allows a faster RANSAC convergence and avoids having bi-
ased point samples.

3.4 Linear and Angular Velocity Estimation

To sum up the foregoing, we determine camera motion esti-
mation up to a scale factor using a probabilistic method, and
by adding stereo vision combined with Procrustes estima-
tion method, we are able to determine missing motion scale
α:

α =
‖t′‖
‖t̃‖

(12)

Then, the instantaneous linear velocity is given by:

V =
α× t̃
∆T

(13)

where

∆T = Tk+1−Tk (14)

Likewise, the angular velocity is computed by:

Ω =
r

∆T
(15)

where r contains the incremental roll, pitch and yaw angles
computed from R.

Thus, using motion scale information given by the Pro-
crustes method, we can estimate vehicle linear velocity be-
tween time instants Tk and Tk+1. The AO orientation method
is only used for linear velocity estimation (motion scale).
For the angular velocity estimation we use the rotation ma-
trix R calculated by Domke’s probabilistic method, that is
more accurate than the rotation obtained by the AO method.

In order to achieve a more robust estimation, we also
develop an Extended Kalman filter approach. The Extended
Kalman filter is used to integrate the velocity estimates and
thus obtain vehicle pose algorithm. The EKF filter dynamics
follows a constant velocity model given by:


Vk+1
Ωk+1
tk+1
Rk+1

=


Vk +∆Ta
Ωk +∆T n

tk +RkVk∆T
RkRI

 (16)

where a and n are the linear and angular accelerations re-
spectively, taken as independent white noise sequences. As
for RI , it is parametrized as an incremental rotation using
Rodrigues formula:

RI = I+
θ

||θ ||
×sin(||θ ||)+

(
∆T 2

ΩkΩ
T
k − I

)
×(1− cos(||θ ||)

(17)
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Fig. 6 Feature detection bucketing technique used to avoid biased samples in the RANSAC method stage. The image is divided in buckets where
feature points are assigned to and pulled according to the bucket probability.

where θ is given by:

θ = Ωk∆T (18)

Only linear and angular velocities (V,Ω ) are observed
by the Extended Kalman Filter, thus the observation model
is given by:

[
V
Ω

]
=

[
I 0 0 0
0 I 0 0

]
Vk
Ωk
tk
Rk

+η (19)

where η is the observation noise taken as a zero mean inde-
pendent process.

4 Results

4.1 Computational requirements

The code used to compute 6DP was written in MATLAB
as a prove of concept, without using any kind of code opti-
mization. The experiments conducted to compute the 6DP,
were performed using an Intel I5 Dual Core 3.2 GHz. The
dataset images have resolution of 1344 × 391, which con-
sumes a considerable amount of computational and memory
resources making unfeasible the computation of all image
points using standard CPU hardware. The 6DP results were
obtained using only 1000 points to estimate the motion. It
computes at around 12 sec per image pair. Most of time is
consumed in the first stage of the implementation, with the
dense probabilistic correspondences and the motion up to
a scale factor estimates. The recursive ZNCC approach al-
lowed to reduce Domke Gabor Filter processing time by 20
%.

Even so, the approach is feasible and can be implemented
in real-time for use on mobile robotics applications. The

main option is to develop a GPGPU version of the method
since the method copes with multiple hypothesis of corre-
spondences, as well as generated motion hypothesis, making
it suitable to be implemented into parallel hardware.

4.2 6DP-RAW vs 5-point

In this section, one can observe results comparing our ap-
proach versus the 5-point RANSAC algorithm. Linear and
angular velocities estimation results are presented in the cam-
era reference frame. Results were obtained using only 1000
keypoints in IL

T k.
In Fig. 7, one can observe the angular velocity estima-

tion between our 6DP method versus IMU and 5-point RANSAC
information. We also show the Inertial Navigation System
data (IMU/GPS OXTS RT 3003), which is considered as
ground-truth information. The displayed results demonstrate
a high degree of similarity between performance obtained
using 6DP and IMU/GPS information. Results obtained by
6DP were performed without using any type of filtering tech-
nique, thus the display of one or two clear outliers. Most
importantly, when it comes to angular velocities estimation,
the 6DP method performance is better than the performance
exhibited by the 5-point RANSAC algorithm.

However, for linear velocities as displayed in Fig. 8, the
5-point RANSAC algorithm implementation performance is
smoother than our 6DP approach, especially in Z axis Tz. As
shown in Fig. 10, the 5-point algorithm contains more image
features when performing Procrustes Absolute Orientation
method (after RANSAC) which may also explain the higher
robustness in motion scale estimation in Fig. 9, where the 5-
point algorithm displays a constant translation scale value.

The results here displayed demonstrate complementary
performances, one more suitable for linear motion estima-
tion and the other more suitable for angular motion estima-
tion.
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Fig. 7 Comparison of angular velocity estimation results between IMS/GPU( red), raw 6DP measurements (blue) and a native 5-point implemen-
tation (black). The obtained 6DP raw measurements are similar to the data estimated by the IMU/GPS, contrary to the 5-point implementation that
has some periods of large errors (e.g. the regions indicated with arrows in the plots).
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Fig. 8 Comparison of linear velocity estimation results, where the 5-point implementation (black) exhibits a closer match to the IMU/GPS in-
formation (red). The 6DP method (blue) displays some highlighted outliers due to the use of the Harris feature detection matching in the sparse
method stage.

4.3 6DP-EKF vs LIBVISO

Based on the previous results for translation scale (α) esti-
mation, we modified the 6DP method and replaced the Har-
ris corner feature detector [7] for the more robust and in-
variant to rotation and scale SIFT detector [15] (see Fig.10)
and added a EKF filter to the 6DP method. To illustrate the

performance of our method, we compared our system per-
formance against LIBVISO [13], which is a standard library
for computing 6 DOF motion. We also compared our per-
formance against INS information of the previous experi-
ment(IMU/GPS information) acting as ground truth info us-
ing the same Kitt et al.[13] Karlsruhe dataset sequences.
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Fig. 9 Translation scale factor comparison between 5-point and 6DP,
where the 5-point method exhibits a more constant behavior for the
translation scale factor estimation.
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Fig. 10 Number of Features at different steps of 6DP and 5-point.
SIFT features display a more robust matching behavior between im-
ages, contrary to Harris Corners, most of the SIFTS are not eliminated
in the RANSAC stage.

In Fig. 11 one can observe angular velocity estimation
from both IMU/GPS and LIBVISO, together with 6DP-RAW
and EKF filtered measurements. All vision approaches ob-
tained results consistent with the IMU/GPS, but the 6DP-
EKF displays a better performance in what respects the an-
gular velocities. These results are stated in Table 1, where
root mean square error between IMU/GPS, LIBVISO and
6DP-EKF estimation are displayed. Both methods display
considerable low standard deviation results, but 6DP-EKF
shows 50% lower error than LIBVISO for the angular ve-
locities estimation.

Although not as good as for the angular velocities, the
6DP-EKF method also displays a competitive performance
in obtaining linear velocity estimates using the sparse fea-
ture approach based on SIFT features combined with Pro-
crustes Absolute Orientation method, as displayed in Fig.
12.

5 Conclusions and Future Work

In this work, we developed a novel method of stereo vi-
sual odometry using sparse and dense egomotion estimation
methods. We utilized dense egomotion estimation methods
for estimating the rotation and translation up to scale and
then complement the method with the use of a sparse fea-
ture approach for recovering the scale factor.

First, we compared the raw estimates of our 6DP algo-
rithm against a native 5-point implementation without any
type of filtering. The results obtained proved that 6DP per-
formed better in the angular velocities estimation but com-
pared unfavorably in the linear velocities estimation due to
lack of robustness in the translation scale factor(α) estima-
tion. On a second implementation, we replaced the Harris
feature detector with the more robust SIFT detector, imple-
mented EKF filtering on top of the raw estimates and tested
the proposed algorithm against a state-of-the-art 6D visual
Odometry Library such as LIBVISO. The presented results
demonstrate that 6DP performs accurately when compared
to other techniques for stereo VO estimation, yielding robust
motion estimation results, mainly in the angular velocities.

The benefits of using dense probabilistic approaches are
thus tested and validated in a real world scenario with practi-
cal significance. Even though more computational intensive,
dense methods produce more accurate results than feature
based methods and are a competitive alternative to stereo
egomotion computation.

To overcome increased computational cost one should,
in future work, explore their potential implementation in
parallel hardware such as a GPU.
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Appendix

The global objective of the ZNCC method is to compare a
reference subset (the correlation window sampled in the ref-
erence image) to a corresponding template in another image.
The method developed by Huang et al.[10] uses a recursive
scheme for calculating the numerator of (20) and a global
sum-table approach for the denominator, thus saving signif-
icant computation time.

In summary, the method has two distinctive parts one for
calculating ZNCC numerator and other for the denominator
calculation. The ZNCC equation (3) can be described in the
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Fig. 11 Results for angular velocities estimation between IMU/GPS information (red), raw 6DP measurements (blue), filtered 6DP measurements
6DP-EKF (black), and 6D Visual Odometry Library LIBVISO (green). Even though all exhibit similar behaviors the filtered implementation
6DP-EKF is the one which is closer to the ”ground truth” IMU/GPS measurements (see also Table 1).

Table 1 Standard Mean Squared Error between IMU and Visual Odometry (LIBVISO and 6DP-EKF). The displayed results show a significant
improvement of the 6DP-EKF method performance specially in the angular velocities estimation case.

Vx Vy Vz Ωx Ωy Ωz ||V || ||Ω ||
LIBVISO 0.0674 0.7353 0.3186 0.0127 0.0059 0.0117 1.1213 0.0303
6DP-EKF 0.0884 0.0748 0.7789 0.0049 0.0021 0.0056 0.9421 0.0126

following form.

Cx,y(u,v) =
P(x,y;u,v)−Q(x,y;u,v)√

F(x,y)
√

G(x,y;u,v)
(20)

where the numerator term can be calculated using the fol-
lowing equations:

P(x,y;u,v) =
x+Nx

∑
x=x−Nx

y+Ny

∑
y=y−Ny

[ f (x,y)×g(x+u,y+ v)]. (21)

Q(x,y;u,v) =
1

(2Nx +1)(2Ny +1)

[
x+Nx

∑
x=x−Nx

y+Ny

∑
y=y−Ny

f (x,y)

]

×

[
x+Nx+u

∑
x=x−Nx+u

y+Ny+v

∑
y=y−Ny+v

g(x,y)

]

(22)

On the other hand, although Q(x,y;u,v) can be calculated
using a sum-table approach, the term P(x,y;u,v) involves
cross correlation terms between both images and cannot be
calculated recurring to a sum-table approach, since (u,v) are
sliding window parameters.

For the denominator calculation a global sum-table ap-
proach can be used:

F(x,y) =
x+Nx

∑
x=x−Nx

y+Ny

∑
y=y−Ny

f 2(x,y)− 1
(2Nx +1)(2Ny +1)

×

[
x+Nx

∑
x=x−Nx

y+Ny

∑
y=y−Ny

f (x,y)

]2 (23)
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Fig. 12 Results for linear velocities estimation, where the LIBVISO implementation and 6DP-EKF display similar performance when compared
to IMU/GPS performance.

G(x,y;u,v) =
x+Nx+u

∑
x=x−Nx+u

y+Ny+v

∑
y=y−Ny+v

g2(x,y)− 1
(2Nx +1)(2Ny +1)

×

[
x+Nx+u

∑
x=x−Nx+u

y+Ny+v

∑
y=y−Ny+v

g(x,y)

]2

(24)

where the four global sum schemes can be calculated as
an integral window approach.
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