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The goal of this work is to distinguish between humans and robots in a mixed human-

robot environment. We analyze the spatio-temporal patterns of optical flow-based fea-
tures along several frames. We consider the Histogram of Optical Flow (HOF) and the

Motion Boundary Histogram (MBH) features, which have shown good results on people

detection. The spatio-temporal patterns are composed by groups of feature components
that have similar values on previous frames. The groups of features are fed into the

FuzzyBoost algorithm, which at each round selects the spatio-temporal pattern (i.e.
feature set) having the lowest classification error. The search for patterns is guided by

grouping feature dimensions, considering three algorithms: (a) similarity of weights from

dimensionality reduction matrices, (b) Boost Feature Subset Selection (BFSS) and (c)
Sequential Floating Feature Selection (SFSS), which avoid the brute force approach.

The similarity weights are computed by the Multiple Metric Learning for large Margin

Nearest Neighbor (MMLMNN), a linear dimensionality algorithm that provides a type
of Mahalanobis metric [44]. The experiments show that FuzzyBoost brings good gener-

alization properties, better than the GentleBoost, the Support Vector Machines (SVM)

with linear kernels and SVM with Radial Basis Function (RBF) kernels. The classifier
was implemented and tested in a real-time, multi-camera dynamic setting.

Keywords: Human robot environments; boosting algorithms; people vs. robot detection;
optical-flow based features

1. Introduction

Current trends in robotics research envisage the application of robots within public

environments helping humans in their daily tasks. Furthermore, for security and

surveillance purposes, many buildings and urban areas are being equipped with

extended networks of surveillance cameras. The joint use of fixed camera networks

together with robots in social environments is likely to be widespread in future

applications. This is the case of urban pedestrian areas in big cities, which are

growing in Europe because of mobility and quality-of-life issues.

The pioneer work of the URUS project [36] addressed the implementation of

a sensor network with robots that interact with people in urban public areas. A

key element of the project is a monitoring and surveillance system composed by

a network of fixed cameras that provide information about the human and robot
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activities. In the URUS project, the communication framework sends and receives

messages between the agents (robots and vision-based algorithms) over a network of

wireless routers, ensuring acknowledgment of sucess/failure. The goal of the agents

is to make decisions that respond to requests by the people and emergency messages

sent by the sensors. For pedestrians, the system was required to pay attention and

discern gestures from each person, to be able to detect when someone was in trouble

or purposely calling the attention of the system by waving to one of the cameras.

Robot detections on the other hand required communication attempts with the

robot, to provide it with accurate position information given by the camera, to help

the robot improve its self-localization. In addition, the classification of pedestrian

and robots will remove false pedestrians and false robots detections that generate

false attention signals and uncertainty in the position of the robots. The goal of

the MAIS-S project1 was to add robustness and study scalability issues to the

decision making in a similar setup to the URUS project. In particular, if a camera

fails the robot should go to the location and “replace” temporarily the fixed camera.

Another example is the “robot guard”, where the robot is required to go and provide

surveillance of an area currently sparsely covered by the human guards. In this

context, the ability to discriminate between robots and people was also essential to

the successful outcome of the project.

But these multi-camera applications must also consider constraints such as real-

time performance and low-resolution images due to limitations on communication

bandwidth. Thus, it is fundamental to be able to discriminate between people and

mobile robots using low resolution video and efficient features.

1.1. Our approach

In this work we address the unexplored issue of discrimination between people and

robots, which is essential to the development of surveillance techniques for mixed

human-robot environments. The need and benefit of automatic person-robot dis-

crimination is particularly evident in the URUS project [36], where the people vs.

robot classification provides the input for other problems. On one hand, detected

humans are fed to gesture detection and classification. On the other hand, detected

robots are fed to self-localization algorithms in order to improve their pose estima-

tion.

People are notorious in their appearance variability given their infinite clothes

possibilities and quite articulate possible poses (as can be seen in Figure 1). Robots

even more so, given that there are robots of every size, shape and color, and more

keep coming every year. In the URUS project alone we experienced a multitude of

different robots, as illustrated in Figure 2.

One thing that distinguishes the two is their motion patterns. If we restrict

ourselves to rigid mobile-platform robots, that mostly only have one direction of

1http://gaips.inesc-id.pt/mais-s/

http://gaips.inesc-id.pt/mais-s/
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Fig. 1. Illustration of person appearance variability. Depending on the clothes, facial features, hair
style and configuration of the limbs, appearance-based models for people detection suffer from

large variability and ambiguity

motion in the image, their motion patterns should be quite distinguishable from

people’s non-rigid motion.

Optical flow is one feature that encodes motion patterns. Optical flow is also

independent with respect to visual appearance. And it is not limited to high resolu-

tion images, being able to capture enough information from only a limited amount

of pixels. Therefor using optical flow to separate robots’ movement from people’s

movement is appealing for its independence on people and robot visual appearances

(i.e., color, size or shape). Training a classifier based on optical flow also gives more

generality than appearance. The same classifier may be applied to several scenarios

with different people and different robots, without needing explicit re-training.

Our approach relies on the motion patterns extracted from optical flow, which

have been used previously by Viola et al. [41] and Dalal et al. [4, 5] in order to

detect pedestrian in images and videos. Viola et al. combine the optical flow with

wavelet-based features to model people’s appearance, while Dalal et al. compute

histograms of the flow directions and histograms of the directions of the spatial

derivative of the optic flow. These approaches consider the instantaneous detection

of people, so they utilize just one optical flow image for classification. In contrast

to these approaches, we propose to build a feature vector that contains the optical

flow statistics across several frames (i.e. spatio-temporal volume).

Our model, thus exploits the optic flow differences between the non-rigid peo-

ple’s motion and the robot’s rigid displacements.

Figure 3 shows a global view of our approach, which has the following steps:

(i) pre-processing, (ii) feature computation and (iii) learning. The learning can be

further subdivided in (a) linear dimensionality reduction, (b) feature selection and

(c) FuzzyBoost learning. The pre-processing step (Fig. 3(a)) performs background

subtraction for detection [2] and nearest-neighbor for tracking, followed by the

(dense) optic flow computation [29] in the bounding boxes of the tracked objects.

On the feature computation step (Fig. 3(b)), we consider the following raw features:
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Fig. 2. Illustration of robot appearance variability. Also visible in an EuroNews report at http:

//youtu.be/Swrwe4NYG4o

• Histogram Of Gradients (HOG) [4], which computes the histogram of the

optic flow orientation, weighted by its magnitude. We consider both Carte-

sian and Polar cells.

• Motion Boundary Histogram (MBH) [5], computed from the spatial gra-

dient of the optical flow. Similarly to HOG, this feature is obtained by

weighting the histogram of the optical flow’s gradient. We consider both

Cartesian and Polar cells.

The feature computation is followed by stacking the features of each cell for the

previous frames in order to build the feature vector. Thus, the model contains flow

statistics of the cells in the previous frames.

The main difference between our previous work [13] and this paper is the search

for spatio-temporal patterns (i.e. searching for several feature dimensions along

frames). The main difference in this work to another previous work by us [27] is the

added comparisons of our whole feature selection algorithm (that exploits linear di-

mensionality reduction) with Sequential Floating Feature Selection (SFSS) [32] and

Boost Feature Subset Selection (BFSS) [46]. And also added comparisons between

the learning part of our algorithm (FuzzyBoost) with Support Vector Machines

(SVM) with linear kernels and with Radial Basis Function (RBF) kernels.

In our initial approach, the TemporalBoost algorithm assumes just temporal

patterns (i.e. a single feature dimension along frames) for each dimension of the

http://youtu.be/Swrwe4NYG4o
http://youtu.be/Swrwe4NYG4o
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(a) Illustration of the pre-processing steps. The cuboid represents a slice of the video,

the shaded regions are the ouptut of the background detection + tracking at each frame.
Then, the optical flow is computed for each track on the sequence. The right-side image

shows an example of a person’s optical flow

(b) Illustration of the feature computation step. The top figures show the two types of
cells considered in this work. At each cell, the optic flow or optic flow derivatives are
extracted in order to compute the weighted histogram of the orientations. The bottom

figures shows an example of the feature vector, which contains the concatenated weighted
histograms of the current and previous frames

Fig. 3. Overview of the pre-processing (top) and feature computation (bottom) steps of our ap-

proach.
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data samples. Although the TemporalBoost algorithm improves the classification

performance, it is ignoring the information contained in the spatio-temporal pat-

terns. In this work we present the advantages of the FuzzyBoost algorithm, which

finds both the temporal and spatio-temporal patterns that improve the classifica-

tion performance. We find that the FuzzyBoost has better generalization proper-

ties than the GentleBoost [17], the TemporalBoost [35] and the Support Vector

Machines (SVM) with either linear kernels [3] and Radial Basis Function (RBF)

kernels on this type of problems.

1.2. Related Work

Detection of humans in images is a very active research area in computer vision with

important applications such as pedestrian detection, people tracking and human

activity recognition. On one hand, the articulated models consider each body part in

order to construct the full body model, which allows to detect a person and the pose

of each body part. On the other hand, the global models compute image features

in a bounding box, which allows just person detection. Although the part-based

models provide more information, they have a low efficiency and cannot cope with

self-occlusions when compared to the global models. In addition, global models have

attained very low false positive rates in challenging scenarios [41, 42, 7, 39, 23, 9].

These reasons have lead to the current trend on people detection: (a) Efficient

representations that (b) minimize the false positive rate and (c) will be applied

mostly to pedestrian detection for cars.

Efficiency is attained by the application of boosting cascades, which reduces the

amount of weak learners evaluated on the image [41]. At each step of the cascade,

the weak learner output discards image regions that are not promising detections.

Iterative bootstrapping during the learning phase is essential to attain low false

positive rates [41, 7, 12]. At each iteration, bootstrapping augments the training

set of the negative samples by adding the false positives of the current classifier.

Finally, the availability of challenging datasets such as the Caltech pedestrian [8],

TUD-Brussels [45] and the new version of INRIA’s [39], allows to set standards for

evaluation and comparison of the results.

Several features have been proposed to extract the common patterns of people’s

global appearance: silhouette [6, 43], image gradient [4], color distribution of each

limb [33], Haar wavelets [41], optic flow [41, 5], color self-similarity [42], sparse

granular features [16], integral images of several color channels [7] and combinations

of some of the features mentioned above [42].

Detection of robots in images have become a very popular field of research in

the RoboCup2 framework, which focus on cooperative robot interaction [19, 26, 21].

Previous works have addressed the visual detection of the middle size league robots,

which are similar to most of the commercial mobile platforms used for research.

2http://www.robocup.org/

http://www.robocup.org/
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The rules of the middle size league provide context information that brings robust

features for the soccer game, but with a lack of generalization for other scenarios. For

instance, the robots should be mostly black and the teammates and opponents have

markers of different colors. The context information and the real-time constraints

of the game has biased the utilization of very simple features such as: percentage of

black pixels on a region, image region entropy, length of the black/green contours

[26, 19]. More complex features include the gradient orientation histogram [26, 19]

and the Eigenimages [21].

The boosting algorithms build a strong classifier as an addition of “weak learn-

ers”, which usually are “decision stumps” [17]. These stumps select a threshold on

one of the dimensions of the samples, a procedure that is sensitive to noise and

overlapping between classes.

When considering fields such as pattern recognition and regression, several works

have shown experimental performance improvements by grouping subsets of data

samples in the weak learner.

On one hand, when the context of the problem leads to the definition of the

groups, the search for the most relevant groups is constrained to a small number of

hypotheses which we refer to as context-oriented search. This type of search depends

on the particular assumptions provided by the context of problem, so its application

is constrained to certain data sample structure. Examples of context-oriented subset

search include the analysis of genomic data [25], image segmentation [1], scale-space

regression [31] and human activity recognition [37, 35, 34] amongst others. The main

advantage of these approaches is the low computational complexity of the search,

while their main drawback is the applicability range.

On the other hand, when the context of the problem do not provide clear hints

to define the groups, the search for the most relevant groups lies in the feature selec-

tion approaches [15]. The feature selection paradigm relies on a cost function that

ranks either single features [15, 20, 10] or subsets of features [28, 32]. This type

of approach allows to apply the same search algorithm across several problems,

having better generalization properties than the context-oriented search. However,

the computational complexity of the search could be prohibitively large, so various

heuristics have been proposed to avoid the exhaustive cost function computation.

Examples of individual feature selection include: the correlation coefficient [15],

mutual information [15] and the RELIEF algorithm [20], amongst others. Exam-

ples of subset feature selection include branch-and-bound [28], Sequential Floating

Feature Selection (SFSS) for classification [32] and regression [22], amongst others.

The more recent dimensionality reduction algorithms [18, 14, 44] address feature

selection by mapping the initial data space onto a subspace where regression and

classification tasks perform better than in the original space. The map between

features is computed from a cost function that considers criteria such as variance

maximization [18], relative variance between and across classes [14] and local dis-

crimination properties in the proximity of the decision boundary [44].

We compare the performance of our approach to the classical subset selec-
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tion of SFSS[32] and the more recent bootstraping approach by replication. SFSS

[32] defines a cost criterion as a function of the feature subset, performing addi-

tions/removals of features that increase/decrease the cost criterion. SFSS copes

with non-monotonic criterion functions and obtains the very good results while

having few parameters than plus l-take away r [38]. We consider SFSS to select

the feature subsets, designing an adequate criterion function for the fuzzy decision

stumps.

A recent trend on boosting selects features (either single or subsets) using the

idea of bootstraps. Bootstraps are sets of samples either constructed by selection

(subset) [11, 30] or replication (multiset) [46], designed to capture local feature

properties which are not extracted by the global weights of the boosting methods.

We consider the Boost Feature Subset Selection (BFSS) [46] that at each round,

builds multisets in order to select the best feature and then reduces the sampling

probability of the worst samples according to the best feature. The final step is

to remove the best feature from the samples and then repeat the procedure until

the subset feature size is reached. We design an adequate criterion function for the

BFSS algorithm when using fuzzy decision stumps.

2. Target Representation

Regarding the (dense) optical flow computation, we use Ogale et. al. [29] implemen-

tation3, an algorithm that introduces a new metric for intensity matching, based

on the unequal matching (i.e. unequal number of pixels in the two images can be

correspondent to each other). We chose this algorithm for its good balance between

computational load and robustness to noise. Figure 4 shows examples of this flow

for a person and a robot.

Previous works have shown the advantages of the Histogram Of Gradient fea-

tures [4, 24], which divide the image in cells and compute the histogram of the

orientation of the gradient weighted by its magnitude. This approach has been

applied on the optical flow image and the spatial derivatives of its components

[4, 5]. We follow these approaches by considering both the Histogram of Optical

Flow (HOF) and the Motion Boundary Histogram (MBH), using two types of cells:

Cartesian and polar cells (illustrated in Figure 3(b)).

2.1. Histogram Of Flow

The most discriminative and efficient features based on gradients compute weighed

histogram of the raw features, such as the histogram of gradients (HOG) [4] and

Histogram of Optic Flow (HOF) [5]. Given an optic flow image, the first step is

to divide the image in cells (according to a Cartesian or Polar sampling strategy)

followed by the computation of the histogram of flow orientation weighed by its

3http://www.cs.umd.edu/~ogale/download/code.html

http://www.cs.umd.edu/~ogale/download/code.html
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(a) Overlaid images of a pioneer

robot moving

(b) Overlaid images of a person walk-

ing

(c) Optical flow of the robot (d) Person’s optical
flow

Fig. 4. Examples of optical flow for robot and person.

magnitude. In difference to the original HOG features, that overlap sampling re-

gions, we don’t consider overlapping. In the case of the Cartesian cells, the features

are parametrized by the number of intervals the x direction nIx, the number of

intervals in the y direction nIy and the number of bins nB, which defines nIx×nIy
cells. We denote the flow histograms as the row vector computed at frame t as
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HOFt =
[
HOFt1,1 . . . HOFti,j . . . HOFtnIx,nIy

]
∈ RnIy·nIx·nB ,

where HOFti,j ∈ RnB denotes the HOF computed at cell (i, j) and frame t. The

target representation stacks all the HOFt vectors in the previous τ − 1 frames,

xi =
[
HOFt . . . HOFt+τ−1

]
∈ RnIy·nIx·nB·τ . (1)

In the case of the polar cells, the features are parametrized by the number of angular

regions nR and the number of bins nB, which defines nR cells.

HOFt =
[
HOFt1 . . . HOFti . . . HOFtnR

]
∈ RnR·nB ,

where HOFti denotes the HOF computed at cell i and frame t. The target repre-

sentation is

xi =
[
HOFt . . . HOFt+τ−1

]
∈ RnR·nB·τ . (2)

2.2. Motion Boundary Histogram

The computation of MBH [5] has the following steps: (i) separation of the x and

y components of the optical flow into independent images, (ii) compute the gra-

dient of each flow component image, (iii) divide each gradient image in cells, (iv)

compute the weighted histogram of the gradient images and (v) stack the weighted

histograms of both images in a single feature vector.

The gradient of the flow components captures the local orientations of motion

edges, which extract the contours of rigid motions. For instance, the region of

a moving forearm has self-similar motion, so the MBH feature will extract the

forearm’s motion edge. Thus, the person’s MBH extracts the contours of the moving

limbs. In the case of the ideally clean optical flow of a robot, the MBH extracts

the contour of the robot. We do it by considering the two flow components (x and

y) as independent images, and taking their gradients. The target representation of

the Cartesian cells is as follows:

HOGt
x =

[
HOGt

1,1 . . . HOGt
i,j . . . HOGt

nIx,nIy

]
∈ RnIy·nIx·nB ,

where HOGt
x denotes the concatenation of the histograms computed on the Otx,

the x component of the optical flow. HOGt
i,j denotes the HOG computed at the

Cartesian cell (i, j) and frame t of image Otx.

HOGt
y =

[
HOGt

1,1 . . . HOGt
i,j . . . HOGt

nIx,nIy

]
∈ RnIy·nIx·nB ,

where HOGt
y denotes the concatenation of the histograms computed on the Oty,

the y component of the optical flow. The target representation stacks all the HOGt

vectors in the previous τ − 1 frames,
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xi =
[
HOGt

x HOGt
y . . . HOGt+τ−1

x HOGt+τ−1
y

]
∈ R2·nIy·nIx·nB·τ . (3)

In the case of the polar sampling of the cells, the target representation is as follows:

HOGt
x =

[
HOGt

1 . . . HOGt
i . . . HOGt

nR

]
∈ RnR·nB ,

where HOGt
i denotes the HOG computed at the polar cell i and frame t of image

Otx. The correspondent HOG of the y component is:

HOGt
y =

[
HOGt

1 . . . HOGt
i . . . HOGt

nR

]
∈ RnR·nB .

The target representation stacks all the HOGt vectors in the previous τ −1 frames,

xi =
[
HOGt

x HOGt
y . . . HOGt+τ−1

x HOGt+τ−1
y

]
∈ R2·nR·nB·τ . (4)

3. The FuzzyBoost algorithm

Boosting algorithms provide a framework to sequentially fit additive models in order

to build a final strong classifier, H(xi). The final model is learned by minimizing,

at each round, the weighted squared error

J =

N∑
i=1

wi(yi − hm(xi))
2, (5)

where wi = e−yihm(xi) are the weights and N the number of training samples. At

each round, the optimal weak classifier is then added to the strong classifier and

the data weights adapted, increasing the weight of the misclassified samples and

decreasing for the correctly classified ones [40].

In the case of GentleBoost it is common to use simple functions such as decision

stumps. They have the form

hm(xi) = aδ
[
xdi > θ

]
+ bδ

[
xdi ≤ θ

]
, (6)

where d is the feature index and δ is the indicator function (i.e. δ[condition] is one

if condition is true and zero otherwise). Decision stumps can be viewed as decision

trees with only one node, where the indicator function sharply chooses branch a or

b depending on threshold θ and feature value xdi . In order to find the stump at each

round, one must find the set of parameters {a, b, d, θ} that minimizes J w.r.t. hm.

A closed form for the optimal a and b are obtained and the value of pair {d, θ} is

found through exhaustive search [40].
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3.1. Fuzzy weak learners optimization

We propose to include the feature set (F ) as an additional parameter of the decision

stump, as follows:

h∗m(xi) =
1

||F ||
(
a FT δ [xi > θ] + b FT δ [xi ≤ θ]

)
, (7)

which can be rearranged in order to put a and b in evidence

h∗m(xi) = a
FT δ [xi > θ]

||F ||
+ b

FT δ [xi ≤ θ]
||F ||

. (8)

where xi ∈ RD and the vector F ∈ ZD2 , denotes a D dimensional vector with binary

components, and the non-zero components of F define a feature set. The vector F

chooses a group of original sample dimensions that follow the indicator function

constraints of Eq. (7) in order to compute the decision stump h∗m(xi). Note that

the feature sets of classic decision stump are

F = {F1, . . . Fd . . . , FD},where Fd =



0
...

1d
...

0

 . (9)

Therefore, the vector F generalizes GentleBoost by considering additional fea-

ture dimensions. From Eq. (8) it is easier to see that the selector F is replacing the

indicator function (i.e. a true or false decision) by an average of decisions. The new

functions are:

∆+(xi, θ, F ) =
FT δ [xi > θ]

||F ||
, (10)

∆−(xi, θ, F ) =
FT δ [xi ≤ θ]
||F ||

(11)

and they compute the percentage of features selected by F that are above and

below the threshold θ. The functions ∆+ and ∆− = 1 − ∆+ of Eq. (11) sample

the interval [0 1] according to the number of features selected (i.e. non-zero entries

of F ). For example, if ||F || = 2 this yields to ∆ ∈ {0, 1/2, 1}, if ||F || = 3 to

∆ ∈ {0, 1/3, 2/3, 1} and so on. The new weak learners, the fuzzy decision stumps,

are expressed as h∗m(xi) = a∆+ + b∆−.

We illustrate in Fig. 5 the difference between the classic decision stumps and our

proposed fuzzy stumps. The response of the decision stump is either a or b according

to the feature point xdi , while the fuzzy stump response is a linear function of ∆+

that weights the contribution of the decisions a and b, thus the name fuzzy stump.
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(a) (b)

Fig. 5. Response of the weak learners: (a) decision stumps and (b) fuzzy stumps

Replacing the fuzzy stumps of Eq. (8) in the cost function (Eq. (5)), the optimal

decision parameters a and b are obtained by minimization,

a =
ν̄+ω̄− − ν̄−ω̄±
ω̄+ω̄− − (ω̄±)

2 , b =
ν̄−ω̄+ − ν̄+ω̄±
ω̄+ω̄− − (ω̄±)

2 , (12)

with

ν̄+ =
∑N
i wiyi∆

T
+, ν̄− =

∑N
i wiyi∆

T
−,

ω̄+ =
∑N
i wi∆

T
+, ω̄− =

∑N
i wi∆

T
−,

ω̄± =
∑N
i wi∆

T
−∆T

+.

Algorithm 1: Generation of feature sets F of Eq. (7) using the Temporal-

Boost algorithm [35]. Line 3 sets ones at components Fij(d) where feature bin,

cell and frame conditions are fulfilled.
input : Spatio-temporal feature, such as HOF (1), (2), MBH (3), (4) with

nB bins and nC cells

output: F = {F11, . . . Fij . . . , FnBnC}
1 for each bin bi i = 1 . . . nB do

2 for each cell cj j = 1 . . . nC do

3 Fij(d) = δ[db = bi ∧ dc = cj ∧ dt = t, . . . , t+ τ − 1];

4 end

5 end

There is no closed form to compute the optimal θ and F , thus exhaustive search

is usually performed. Although finding the optimal θ is a tractable problem, the
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search for the best F is NP-hard thus generally impossible to perform. In previous

work, we assumed the temporal similarity of each feature dimension in order to build

the feature sets F [35]. Alg. 1 shows the feature set selection of TemporalBoost,

a heuristic that builds temporal stripes in the spatio-temporal feature volume. In

this work we address the search for sets in the full spatio-temporal volume, guiding

the search and reducing the number of possible candidates through dimensionality

reduction algorithms.

Dimensionality reduction algorithms, as explained below, provide a projection

matrix that we explore in order to find feature set candidates. Figure 6 shows the

FuzzyBoost algorithm, which relies on the sets of features

F = {F11, . . . Fij . . . , Fnrowsns
}, (13)

provided by a feature search on a linear projection matrix L with nrows rows and a

predefined number of intervals ns. In the following section we present the algorithm

that searches for F using a linear dimensionality reduction technique.

(1) Given:

(x1, y1), . . . , (xN , yN ) and F = {F11, . . . Fij . . . , Fnrowsns}. Data xi ∈ X, yi ∈ Y = {−1,+1}
and feature sets F provided by a feature search on a linear projection matrix L with nrows

rows and a predefined number of intervals ns.

Set H(xi) := 0, initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

(2) Repeat for m = 1, . . . ,M

(a) Find the optimal weak classifier hm over (xi, yi, wi) using the feature sets F .

(b) Update weights for examples i = 1, 2, . . . , N , wi := wie
−yih

∗
m(xi)

(3) Compute the strong classifier as H(xi) =
∑M

m h∗
m(xi) and classify the sample xi according

to sgnH(xi)

Fig. 6. FuzzyBoost algorithm

3.2. The search space for the feature set

The search for the feature set is a NP-hard problem so exhaustive search could

take a prohibitive long time. For instance, consider a case with twenty dimensions

(d = 20), the number of available feature sets is already conb =
∑20
k=1 C

20
k ≈ 106.

Since the computational complexity is exponential on the number of dimensions,

the search is infeasible for databases with a high dimensionality. In addition, some

of the dimensions do not provide useful information for discriminative purposes.

In a previous work [27], we introduced an algorithm that relies on linear dimen-

sionality reduction techniques in order to find good set candidates for the Fuzzy-

Boost. The linear mapping

x∗ = Lx (14)
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contains relevant information about the correlations between dimensions of the orig-

inal feature space. Our proposal analyzes each row of the matrix L (row projection

vector) by grouping vector components with similar values. Our rationale follows

the weight similarity approach: if the weight of a dimension in the (row) projection

vector is similar to other dimension(s) in that vector, this implies some correla-

tion level between those dimensions. Amongst three dimensionality reduction algo-

rithms, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA)

and Multiple Metric Learning for large Margin Nearest Neighbor (MMLMNN) Clas-

sification [44], MMLMNN provided the best results [27]

The recently proposed MMLMNN method [44] attempts to learn a linear trans-

formation of the input space, such that each training input should share the same

labels as its k nearest neighbors (named target neighbors) and the training inputs

with different labels (named impostors) should be widely separated. These two

terms are combined into a single loss function that has the competing effect of at-

tracting target neighbors on one hand, and repelling impostors on the other. The

optimization of the cost function obtains the projection matrix L that is related to

the Mahalanobis metric M = LTL. The MMLMNN method learns multiple locally

linear transformations instead of a single global linear transformation, which is the

case of the Large Margin Nearest Neighbor classifier (LMNN) [44]. The multiple

transformations allow to model better the decision boundaries on highly nonlinear

problems, due to the association of different Mahalanobis distance metrics for dif-

ferent parts in the input space. The parts (clusters) are defined by the class label,

so there is a projection matrix for each class. Thus, MMLMNN acts as LDA but

considers local constraints to build the linear transformation.

3.2.1. Computing F from L

Given the linear mapping L computed by MMLMNN, each row of the matrix is

considered separately in order to extract feature set candidates. The sets are built

by selecting the components of the row vector having very similar values and dis-

carding components having very low values (see Alg. 2). The quantitative measures

of closeness and low values are: the size of the similarity interval (∆s in Alg. 2) and

the lower threshold (s0 in Alg. 2). The values of the projection matrix are scaled

as follows: Lij =
|Lij |

max(L) , which ensures that 0 < Lij ≤ 1.

The lower threshold s0 ∈ [0, 1[ removes components of Li having low projection

weights, which are the less meaningful dimensions. The number of intervals ns ∈ N
defines the size of the similarity interval ∆s (line 2 of Alg. 2 ), which leads to the

criterion to group dimensions with similar weights (line 5 of Alg. 2 ). On one hand,

a large number of intervals ns implies a low ∆s that will group a few dimensions.

On the other hand, a low number of intervals will generate a larger feature set Fij .

In order to see the effect of several choices of s0 and ns, we apply the Algorithm 2

using several pairs (s0, ns) for the linear mapping L (see Section 4.2).

In addition to the introduced new algorithm that relies on linear dimensional-
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Algorithm 2: Generation of feature sets F of Eq. (7) from a scaled linear

mapping L
input : s0 lower threshold, ns number of intervals, L projection matrix

output: Fij i = 1 . . . nrows j = 1 . . . ns
1 for each projection (row) vector Li do

2 compute ∆s = (max(Li)− s0)/ns;

3 for j = 1 . . . ns do

4 compute sj = s0 + (j − 1)∆s;

5 Fij = δ[sj ≤ Li < sj + j∆s];

6 end

7 end

ity techniques to select subsets of features, we also test and compare against two

previously introduced approaches that rank subsets of features: The SFSS [32] and

the BFSS [46] algorithms.

3.2.2. Sequential Floating Feature Selection (SFSS)

The SFSS algorithm creates and updates subsets of features according to a feature

selection criterion. The algorithm begins with an empty set, then evaluates the

inclusion of a new feature to the current set by evaluating the criterion function.

The feature that maximizes the criterion function across all the augmented sets

is added to the current set. The subsequent step is to evaluate the exclusion of a

feature from the current set according to the criterion function on the reduced sets.

If the function’s value of one of the reduced sets is greater than the value of the

criterion function of the current set, the feature is removed from the set. Finally, if

a feature is removed (Line 12 of Alg. 3), the exclusion step is performed again on

the reduced set (Line 14 of Alg. 3), otherwise the inclusion step is performed (Line

16 of Alg. 3). The Alg. 3 shows the SFSS algorithm.

SFSS can be applied both on top-down and bottom-up searches, copes with

non-monotonic criterion functions, avoids the “nesting-effect” (i.e. not being able

to remove a wrongly added feature) and just has one parameter to tune, the size of

the subset k. The criterion function for the FuzzyBoost should consider the classifi-

cation performance of the individual features (i.e. decision stump performance) and

the correlation between features in order to rank groups of features. The criterion

function is as follows:

GFS(xF ) =
1

N

(∑
i∈P

∑
d∈F

sgnH(xdi )−
∑
i∈N

∑
d∈F

sgnH(xdi )

)
(15)

SFSS(xF ) = GFS(xF ) +
∑

di,dj∈F,i6=j,i<j

ρi,j(x
F
i , x

F
j ), (16)
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Algorithm 3: Exhaustive SFSS algorithm. The feature set is initialized with

every dimension {1, . . . , d, . . . ,D}.
input : H strong GentleBoost classifier, k subset size, data samples x,

labels y

output: F = {F1, . . . Fd . . . , FD}
1 for each feature d do

2 Fd = d

3 j = 0

4 while j < k do

5 Inclusion step

6 d∗ = arg max SFSS(xFd∪d)

7 Fd = Fd ∪ d∗
8 j = j + 1

9 Conditional exclusion step

10 d− = arg maxd∈Fd
SFSS(xFd−d)

11 if SFSS(xFd−d) > SFSS(xFd) then

12 Fd = Fd − f−
13 j = j − 1

14 go to Conditional exclusion step

15 else

16 go to Inclusion step

17 end

18 end

19 end

where P denotes the positive samples,N the negative samples, F the feature set,

xF the selected features F of sample x and ρi,j(x
F
i , x

F
j ) the correlation coefficient

between feature i and j. Eq. (16) has two components: (i) The Group Feature Score

(GFS) (Eq. (15)) that computes the average of the contribution of the features in

the set F to the GentleBoost sample classification and (ii) the correlation coefficient

between features that belong to F .

3.2.3. Boost Feature Subset Selection (BFSS)

The BFSS algorithm builds incrementally a subset of features according to an

individual feature score function. The algorithm begins with an empty set, then

generates a bootstrap sample set using sample probabilities, p(xi). The individual

feature score is computed on the bootstrap set and the top feature is added to

the feature subset. The subsequent step is to find the worst w samples in the

bootstrap set according to the top feature. The individual score of the top feature

is computed in sets with removed samples and the top w scores select the worst

samples. Finally, the sample probabilities of the other samples (best samples) are
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reduced by a constant factor and the top feature is removed from the samples. This

process is repeated until the subset size is reached.

BFSS is motivated by the fact that individual feature scores do not provide

information to the subsequent feature selection steps. In order to provide informa-

tion, the sample probability is reduced on the best classified samples by the current

top feature, thus increasing the sample probability on the most difficult samples of

the current feature. Then on the subsequent selection steps, the features selected

are more likely to address the most difficult samples according to the previously

selected features. The Alg. 4 shows the BFSS algorithm. The parameter values

are: mb = 2N , where N is the number of training samples, k = 1
2N , w = 0.96N ,

ε = 0.96.

Algorithm 4: BFSS algorithm

input : H strong GentleBoost classifier, w worst set size, ε decreasing

factor, subset size k, bootstrap set size mb, data samples x, labels y

output: F = {F1, . . . Fj . . . , Fk}
1 p(xi) = 1/N , where N is the number of samples;

2 j = 0;

3 Fj−1 = ∅;
4 while j < k do

5 Generate bootstrap sample set B = {b1, . . . , bmb
} with size mb, using p(x)

and x;

6 Compute IFS(bi ∈ B);

7 d∗ = arg max IFS(Bd);
8 Fj = Fj−1 ∪ d∗;
9 Select the worst w samples Bworst;

10 Update the p(xi) = εp(xi) where xi ∈ B − Bworst;
11 Remove f∗ from x;

12 j = j + 1;

13 end

BFSS has shown experimental advantages on gene-based classification and acts

like boosting algorithms, but needs to tune three parameters: the size of the boot-

strap set, the size of the worst set of samples and the degradation sampling factor.

The Individual Feature Score (IFS) function is as follows:

IFS(xd) =
1

N

(∑
i∈P

sgnH(xdi )−
∑
i∈N

sgnH(xdi )

)
. (17)

The Individual Feature Score (IFS) (Eq. (17)) computes the average of the contri-

bution of the strong classifier of GentleBoost.
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4. Experimental results

We consider the target representations described in section 2: (i) HOF using Carte-

sian cells of Eq. (1), (ii) HOF using polar cells of Eq. (2), (iii) MBH using Cartesian

cells of Eq. (3), (iv) MBH using polar cells of Eq. (4) and (v) combination of HOG

and MBH with Polar cells. Regarding the learning algorithms, we consider the

GentleBoost [17], the FuzzyBoost with feature set search [27], the Support Vector

Machines with linear kernel [3] and the SVM with Radial Basis Function (RBF)

kernel. The search space of FuzzyBoost is performed with three algorithms: (i) The

similarity between the components of the MMLMNN transformation, (ii) the SFSS

and (iii) the BFSS.

We compute the six different flow-based features on three scenarios: people

walking, people loitering and robot moving. The motion patterns of people walking

and robot moving will be properly extracted by optical flow-based features, so they

are the nominal classification scenario. People loitering on the other hand, is a

difficult situation as it provides small optical flow values. Both people walking and

loitering are very common activities, therefore we decide to focus on them in this

work. Figure 7 shows the setup of each scenario, which includes video sequences

from 10 cameras and was recorded for our initial approach to this problem [13].

We implemented the feature computation and learning algorithm that provide

a good trade-off between accuracy and speed. The parameters of the learning algo-

rithm are extracted from the indoor setup with 10 cameras. We tested the software

in an outdoors dynamic environment, running it on the video feed of the camera

and classifying different unseen people and robots at the same time4.

4.1. Database and scenario assumptions

We grabbed five groups of sequences, where each one includes images from 10

cameras. One group with a person walking, another group with a different person

walking, two groups with the same pioneer robot moving in two different conditions,

and the last group with a third person loitering. The people class videos have a total

of 9500 samples of the optical flow and the robot class videos have a total of 4100

samples. The segmentation and tracking of the moving objects in the scene are

provided by LOTS background subtraction for detection [2] and nearest neighbor

for tracking. The LOTS algorithm provides the bounding boxes of the regions of

interest and its respective segmented pixels. Nearest neighbor is computed between

the center points of the two bounding boxes.

We follow a cross validation approach to compare the classification results, build-

ing two different groups of training and testing sets. The people loitering data is

always in the testing set, each person belongs to the training set for one of the

experiments, and each pioneer robot sequence belongs to the training set once. The

recognition rates below are obtained through averaging the rates of the two tests.

4http://youtu.be/fGQtUcfZf9A

http://youtu.be/fGQtUcfZf9A
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Fig. 7. Experimental setup for training scenario

4.2. Parameters of the feature computation

The spatio-temporal volume is constructed by stacking the feature vector of the

current frame with the vectors of the previous four frames. The Cartesian HOF

of Eq. (1) has eight bins and three cells in each direction, which yields nB = 8,

nIy = 3, nIx = 3, τ = 5 so xi ∈ R360. The Polar HOF of Eq. (2) has eight bins and

eight cells, which yields nB = 8, nR = 8, τ = 5 so xi ∈ R320. The Cartesian MBH

of Eq. (3) has eight bins and three cells in each direction, which yields nB = 8,

nIy = 3, nIx = 3, τ = 5 so xi ∈ R720. The Polar MBH of Eq. (4) has eight bins and

eight cells, which yields nB = 8, nR = 8, τ = 5 so xi ∈ R640. The concatenation of

Polar HOF and Polar MBH yields a feature vector xi ∈ R960.

4.3. Parameter selection of the feature search

We define a set of pairs (s0, ns) in order to see the effect of the parameter selection in

the performance of the generated feature sets in the FuzzyBoost algorithm. We set

three low thresholds s0 ∈ {0.1, 0.2, 0.3}, and three number of intervals, as follows: (i)

(0.1, 9), (0.1, 18) and (0.1, 27) for the first s0, (ii) (0.2, 8), (0.2, 16) and (0.2, 24) for

the second s0 and (iii) (0.3, 7), (0.3, 14) and (0.3, 21) for the third s0. The rationale

behind this choice is to have ∆s intervals with the same length across the different

s0 values, which allows to evaluate the pairs (s0, ns) fairly. For each pair (s0, ns), we
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Fig. 8. On top, we have examples of person and robot training samples, and in the bottom we
show samples of real-time classification in a dynamic outdoors setting featuring several different

robots and people at the same time (visible at http://youtu.be/fGQtUcfZf9A). Red indicates a

Person classification and Green indicates a Robot classification.

apply the Alg. 2 using the MMLMNN method in order to generate the feature sets

F . Then, F is applied on the FuzzyBoost algorithm of Figure 6 in a fixed number

of rounds M = 1000. The quantitative evaluation considers two measures: (i) The

maximum recognition rate attained on the testing set and (ii) the True Positives

(TP) vs. False Positives (FP) curve.

4.4. Discussion

In the case of HOF-based features, Figure 9 and Figure 10 show that the Fuzzy-

Boost algorithm with MMLMNN feature search finds spatio-temporal patterns (i.e.

feature sets) that improve the detection performance of the GentleBoost and the

TemporalBoost. The best performance is provided by the HOF using polar cells

and the FuzzyBoost with MMLMNN feature search using s0 = 0.3,∆s = 0.05.

http://youtu.be/fGQtUcfZf9A
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In the case of MBH-based features, the results of Figure 9 and Figure 10 suggest

that the MMLMNN search heuristic cannot cope with the size of the feature space,

while the SFSS and BFSS are able to extract meaningful feature sets. The best

performance is provided by the MBH using polar cells and the FuzzyBoost with

SFSS feature search.

In the case of the concatenation of HOG polar and MBH polar features, the

results of Figure 11 show that the FuzzyBoost algorithm with MMLMNN feature

search finds spatio-temporal patterns (i.e. feature sets) that improve the detection

performance of the GentleBoost. The best performance is provided by the HOF +

MBH with polar cells and the FuzzyBoost with BFSS feature search, followed by

FuzzyBoost with MMLMNN feature search using s0 = 0.2,∆s = 0.033.
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Fig. 9. The vertical bars indicate the performance for several parameters of the FuzzyBoost with

the MMLMNN search. The horizontal bars show the performance of SVM with linear kernel

(red), SVM with RBF kernel (yellow), GentleBoost (black), FuzzyBoost with SFSS (cyan), and
FuzzyBoost with BFSS (magenta). On the top left plot, the SVM with linear kernel performance

is very poor (54.35%) so it is not visible

Table 1 summarizes the results by taking the recognition rate at Equal Er-

ror Point (EEP). We remark that the concatenation of features HOG and MBH

improves the performance in almost all the classifiers. The best overall result is
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Fig. 10. True Positives vs. False Positives curves of MBH using polar cells (left) and HOF using
polar cells (right). In the MBH plot is also displayed the best result of the HOF polar (FuzzyBoost

with MMLMNN) and the top two results of the HOF polar + MBH polar for comparison purposes.

The plots were created by varying the threshold of the strong classifier H(x)
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Fig. 11. True Positives vs. False Positives curves of the concatenation of MBH polar cells and

HOF polar cells(left), where is displayed the curve of HOF polar (FuzzyBoost with MMLMNN).
On the right side we show the accuracy of the classifiers for the concatenation of MBH polar and

HOF polar, following the same presentation of the individual features in Figure 9.

provided by the FuzzyBoost with BFSS feature search.

4.5. Real-Time Implementation

Finally we take a compromise between the accuracy of the classifier and speed. We

implemented HOF features extracted from polar cells and the FuzzyBoost classifier.

The feature sets during training are provided by the MMLMNN heuristic. We test

this implementation in an outdoor environment, aiming for real-time classification

of several pedestrians and robots and the same time.

The larger part of the computational load is the dense optical flow computation.
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Table 1. Summary of results (Recognition rate % at the Equal Error Point (EEP) of the Fig. 10).
The bold underlined value is the best classification rate attained over all features and learning

algorithms. The bold results highlight the best performance for each type of feature across the

different learning algorithms

HOF polar MBH polar HOF polar + MBH polar

SVM linear 80.07 90.6 91.83

SVM RBF 87.56 92.01 89.11

TempBoost 87.01 88.76 -

GentleBoost 81.85 88.95 93.35

FuzzyBoost + MLMNN 93.01 89.01 93.84

FuzzyBoost + BFSS 82.26 88.42 94.57

FuzzyBoost + SFSS 82.25 88.02 91.85

It must be computed efficiently because the output of the classifier is associated

to messages streamed to other components that require low latency. Our choice

was to subsample the images before computing the dense optical flow, defining a

subsample ratio parameter according to the image size. We vary this parameter

from 8 to 16 depending on the camera resolution.

In addition, we chose to extract optical flow only when a target has taken

a “step” of S meters. This choice is motivated by three issues: (1) we wished to

standardize the optical flow extracted from the moving targets – one pixel movement

of a target close to the camera corresponds to much less movement than one pixel

movement of a target “far away” from the camera; (2) optical flow from very small

displacements are known to be noisier; (3) we wish to reduce the computational

load and thus prevent computing optical flow between every frame.

Therefor, to reduce computational load, prevent very small flows, and guarantee

some measure of standardization in the optical flows computed, we set this step

parameter S to 1 meter. To do this, extrinsic camera calibration is required and

the assumption of a flat ground plane.

The algorithm was able to run at 7 Frames Per Second on a single core machine,

with 84.4% classification rate.

5. Conclusions

In this work we propose to analyze the spatio-temporal similarities of optical flow

based features in order to distinguish people from robots. We compare two op-

tical flow features, their combination and four learning algorithms. We test the

Histogram Of Flow (HOF) [4], the Motion Boundary Histogram (MBH) [5] and

their concatenation, extracted from Cartesian cells or polar cells. We applied the

GentleBoost algorithm, the TemporalBoost algorithm, the SVM algorithm and the

FuzzyBoost algorithm [27]. For the SVM we applied the linear and RBF kernels, and

for the FuzzyBoost we compared three different feature search algorithms: Boost

Feature Subset Selection (BFSS), Sequential Floating Feature Selection (SFSS)
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and the Multiple Metric Learning for large Margin Nearest Neighbor (MMLMNN).

FuzzyBoost is able to improve the classification rate by considering spatio-temporal

decision functions (i.e. feature sets) at each round, a procedure that provide gener-

alization capabilities over the common single feature decision functions.

The experimental results show that the concatenation of HOF and MBH consis-

tently outperforms the individual features. In addition, FuzzyBoost almost always

outperforms GentleBoost, TemporalBoost and SVM algorithms. The best overall

result is provided by the FuzzyBoost with BFSS feature search, using the concate-

nation of HOF and MBH extracted from polar cells.

Finally, we implemented the FuzzyBoost with HOF features extracted from

Polar Cells, which provides a trade-off between accuracy and speed. This imple-

mentation was tested in a real-time multi-camera dynamic scenario.
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