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Abstract. This paper presents a method to detect boats and life rafts
on long wave infrared (LWIR) images, captured by an aerial platform.
The method applies the concept of image saliency to highlight distinct
areas on the images. However saliency algorithms always highlight salient
points in the image, even in the absence of targets. We propose a sta-
tistical method based on the saliency algorithm output to distinguish
frames with or without targets. To evaluate the detection algorithm, we
have equipped a fixed wing unmanned aerial vehicle with a LWIR cam-
era and gathered a dataset with more than 44000 frames, containing
several boats and a life raft. The proposed detection strategy demon-
strates a good performance, specially, a low rate of false positives and
low computational complexity.

Keywords: Image Saliency, detection, Infrared images, LWIR, UAV,
Maritime surveillance

1 Introduction

In recent years, many maritime safety issues have challenged the international
community. Since year 2000, more than 22400 emigrants have lost their lives
on the Mediterranean Sea [1]. Countries in South-East Asia carried out large
scale search and rescue operations over sea [2] and waters of the Somali coast
and Malacca Straight have been populated with pirates that endanger vital
navigation routes [9]. On one hand, assuring maritime safety is paramount to
protect human lives and to the world economy, but on the other hand, it is very
difficult to guarantee a proper surveillance or monitoring over a wide area.

Even though there has been a huge investment on technologies to perform
surveillance and monitoring [11] namely coastal radars, manned aircraft and
satellites, there is still a lot to be done on improving the coverage and persistence
of these tasks. One of the rising trends, due to recent significant technological
advances, is the use of unmanned aerial vehicle (UAV). Fixed wing UAVs are
specially attractive because they have large endurance, when compared to its
rotary wing counterparts or similar manned aircraft. They also offer a more
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flexible deployment than coastal resources and satellites, as well as a smaller
cost than other alternatives. Despite its advantages, the vast majority of UAVs
have serious restrictions on the payload which limits the type of sensor they
can carry, being the most commons electro-optical sensors - visible image and
infrared (IR).

This paper focuses on the detection of boats and life rafts in the ocean us-
ing a UAV with cameras observing the ocean surface. We aim at a persistent
surveillance of a large area, which requires the analysis of a huge amount of data
gathered by the sensors. The data in most of the cases does not convey any useful
information and even hampers the ability of the human operators to analyse the
imagery [5]. Additionally, visible images have drawbacks as they highly depend
on the illumination conditions and often contain distractors like waves and sun
glare.

To circumvent the issues presented for images on the visible spectrum, we
have instrumented a fixed wing UAV with an infrared camera able to detect
radiation with wavelength between 8 - 14 µm. Radiation in this range, is often
called Long Wavelength IR (LWIR) or thermal infrared. This designation is
based on the fact that, in this range the intensity of radiation emitted by a
given body depends largely on its temperature.

On an ocean monitoring flight most of the observed background is water
with approximately the same temperature, at each time of the day. Objects like
vessels and life-rafts are expected to present areas with different temperature
and therefore emit LWIR radiation with higher intensity. Sun shades and waves
have a much lower influence at this radiation spectrum that in the visible range.
Nonetheless, the analysis of infrared imagery still presents some challenges. Tem-
perature difference may be very small in some objects. Moreover, an object may
be visible only for a short period of time due to low flying altitude of a small
UAV and consequent small observed area at each given instant.

This work addresses these issues by proposing the application of saliency
algorithms to IR images to detect vessels. Saliency algorithms are inspired in the
ability of humans to easily segment image regions that are distinct from their
neighbourhood, independently of their absolute intensity levels and contrast [8].
Thus they have the advantage of detecting regions on the sea that have only
slight temperature differences to the background. Furthermore, they operate in
single frames, which allow detections of boats that only persist for a few frames.
However, classical saliency algorithms are designed to always detect the most
salient points in an image. This is a problem for our application because in most
of the time the observed images have only background. The most salient objects
detected in these images have no relevance to the application and will produce
false alarms. To tackle this problem, we propose a statistical analysis of the
maps produced by the saliency algorithms. This allows to determine whether we
have a relevant signal or simply background noise, thus reducing the rate of false
alarms.

The paper is organized as follows. In Section 2, we will discuss the related
work. In Section 3 our problem is detailed and our approach presented. In Section
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4, we evaluate the performance of the proposed algorithm with real data. Finally,
in Section 5, we present our conclusions and some directions for future work.

2 Related Work

Aircraft have been used as a privileged observation platform since its appear-
ance. As new sensing technologies emerge, they are readily integrated in aerial
platforms for possible applications [21]. One of the most successfully applied
technologies has been infrared imaging. These images can provide information
that is not present on the visible spectrum (like temperature of a given object),
and therefore may overcome limitations of human vision or complement it[23].

A lot of work has been developed on automatic detection using infrared sen-
sors for military aircraft. Most works focus on the detection of airborne targets
like missiles or other combat aircraft, which typically have high temperature en-
gines and exhaust [20]. The detection of high temperature objects in IR images
was also exploited to detect fires [10] [12].

Other scenarios have also been considered for the detection based on infrared
images gathered by aircraft. For instance, in [15], a UAV detects and follows a
river based on Near-IR images; in [18] and [24] is also reported the detection and
tracking of ground targets. Detection of people also had the attention of several
works, on both visible [22] and IR images [16].

The detection of objects on the ocean has not yet been thoroughly explored.
There are some works which deal with images gathered by surface platforms [19]
[17] which impose constraints on the appearance of the objects to be detected.
There are also some works that use airborne visible images [3] that extract
features and successively select objects of interest. Particularly, in [3] the authors
use five features that depend directly on the three RGB channels. That approach,
while successful on visible spectrum images, is not suitable for LWIR images,
once no color is available.

Another important aspect is that, when observed from an airborne platform,
vessels may have a multitude of appearances, depending on several factors like
the type of vessel, its size, the height of observing aircraft, etc. Facing this re-
striction, we would like to detect a given object, without knowing its appearance
beforehand. Itti et al [8] have introduced a saliency model that mimics the visual
search process of humans. That saliency model indicates areas of a given image
that would be examined on a second stage with more detail. More recently,
works like [7] and [6] have explored the spectral characteristics of an image
to create similar saliency maps. Compared to Itti’s approach, those techniques
show a better detection performance and much faster computation time. With
such advantages, these approaches became very attractive for the application at
hand. There is still one major limitation for this technique in our scenario: the
algorithm is designed to highlight salient areas of the image and therefore will
produce detections, regardless if there is a foreground or not.
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3 Detection on LWIR images

The rationale behind the usage of a camera sensitive to infrared light with wave-
lengths comprised between 8 and 14 µm is that the water in the ocean has an
approximately uniform temperature and objects of interest have different tem-
peratures. With this assumption in mind, it is expectable that, while observing
the ocean, the thermal image has approximately uniform intensity for the water
background and brighter or darker areas corresponding to objects of interest.

Typically, LWIR cameras have smaller resolution than common RGB cam-
eras, so we expect to observe less details of the vessels. Additionally, in the case
of small boats, we expect their temperature to be approximately the same as the
ocean. In the case of bigger vessels some parts (like the engines or the exhausts)
have higher temperatures and therefore are more noticeable.

As visible in Figure 1(a), when acquired, the image exhibits an almost uni-
form background and a foreground with very small contrast. The image pre-
sented in 1(b) shows a more perceivable foreground and was enhanced by his-
togram equalization. Histogram equalisation highlights high contrast areas that,
despite improving the vessel appearance, also increase the image noise level.
Therefore, a simple thresholding technique is prone to numerous false positive
detections. Saliency methods can reduce this effect because they analyse image
neighborhoods instead of single points. However, as we will describe next, they
still present problems when no targets are present in the image.

(a) (b)

Fig. 1: Sample LWIR image: (a) acquired image; (b) image with contrast im-
proved by off-line processing.

3.1 Image signature

An image with characteristics like exhibited in Figure 1 is prone to the applica-
tion of saliency detection algorithms. They do not require a full characterization
of the object of interest but rather highlight areas that are different from the
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background. As stated before, algorithms that explore the spectrum of the im-
age, like [7] and [6], have shown good performance and low computational cost.
Therefore, these algorithms are specially interesting for our application. We have
tested and compared both approaches, hereafter designated as Spectral Residual
[7] and Image Signature [6]. To perform this evaluation, we have implemented
both algorithms. The mean computation time to create a saliency map of 64 by
48 pixels was 6.5 and 5 miliseconds for Spectral Residual and for Image Signa-
ture, respectively. Even though the detection of saliency in LWIR images was
similar, the improvement in computation time lead us to the selection of Image
Signature algorithm.

3.2 Description of the method

In [6] the authors show that, for an image x expressed as

x = f + b, x, f, b ∈ RN (1)

where N is the number of pixels, f represents the foreground and b represents
the background, the separation of f and b can be performed given only x. The
assumption followed is that the foreground is sparsely supported in image space
and the background is sparsely supported in the Discrete Cosine Transform
(DCT) basis. The method consists of isolating the spatial support of f , which is
accomplished by computing the sign of x in the DCT domain and then transform
back to the spatial domain. This operation is written as

x̄ = IDCT [ sign( DCT(x) ) ] , (2)

where x̄ is the saliency map and IDCT is the Inverse Discrete Cosine Transform.
The intuition behind Eq. 2 is that the sign of DCT(x) is more strongly correlated
with the sign of DCT(f) than with the sign of DCT(b). In one hand, because
DCT(b) is sparse, most of its coefficients are zero or very close to zero outside
its support Ωb. Thus:

sign(DCT(x)) = sign(DCT(f) + DCT(b)) ≈ sign(DCT(f)). (3)

On the other hand, inside Ωb, because f and b are independent, there is still a
positive correlation between the signs of DCT(f) and DCT(x). As shown in [6]:

Prob(sign(DCT(x) = sign(DCT(f))) ≥ 0.5 . (4)

In practice, we resize x to an image of 48 by 64 pixels, which results in four-fold
decrease in computation time and still highlights the areas of interest. The final
saliency map (examples in Figure 2) is obtained by convolving the result with a
Gaussian kernel, to reduce noise.

With a saliency map already computed, we would like to isolate the objects
of interest in the image. However, the separation between different areas must
be done carefully. According to the authors’ premise that a foreground is present
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(a) (b)

Fig. 2: Saliency maps overlayed on the LWIR images: (a) image with boat
present; (b) image without boat present. Areas in red are more salient and areas
where grey is visible are considered less salient.

and has a sparse spacial representation, the saliency map will always highlight
the most conspicuous areas of the image. In cases where no foreground is present,
slight variations on the intensity of radiation emitted by the ocean’s surface as
shown in Figure 2(b), will be amplified. This fact precludes the direct application
of a thresholding technique, as it will produce numerous false positives.

In [7], the authors suggest an empirical method to isolate foreground from
background. Their method consists on setting a threshold to three times the
average of the saliency map and then segment this map. We think that this
approach is highly dependent on the adjustment of the threshold by an user,
otherwise the results may be poor. We extend this idea by multiplying different
scalars (α) and we will designate it as Saliency Threshold (ST) algorithm.

However, a Saliency Threshold method lacks the ability to associate a con-
fidence level to the obtained detections. Confidence levels are important for a
number of applications, such as giving feedback to a human operator or feeding
probabilistic time filtering methods like HMMs [14]. To address this issue, we
analyse the statistical distribution of the saliency values in the saliency maps
with two different options, that we will designate as histogram ratio saliency
confidence (HRSC) and entropy saliency confidence (ESC). By assigning a score
to each detection based on the statistical properties, instead of setting a fixed
threshold, we are able to easily set the operating point of the algorithm (trade-
off between precision and recall rates) according to the task at hand. The first
strategy considers the properties of the histogram of saliency values. In cases
where a boat is visible, most of the pixels are contained in the lower saliency
range, as shown by Figure 3(a). In the cases where only ocean is visible, then,
there are more pixels with other intensities (Figure 3(b)). Based on this fact, we
compute a confidence score (HRSC) for each image as

ρ = 1− bin#2 count

bin#1 count
(5)
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where bin#1 count and bin#2 count are the number of pixels in the lower inten-
sity bin and in the second lowest bin. If the ratio between the histogram bins is
small, then it is more likely to have a boat in sight and therefore a higher score
is assigned. In case the ratio is bigger, then the confidence will be closer to zero
and is less likely to have a boat in the image.

(a) (b)

Fig. 3: Normalized intensity histogram of the saliency map (a) for a image with
a boat present and (b) for a image without boat present.

The second option to perform the statistical analysis, is the use of saliency
map entropy. As we have shown in Figure 2, images with no boats produce
apparently random saliency maps, while images with boats produce more struc-
tured maps. Image entropy is a measure of the randomness of the information
contained in a given image and is computed as

η = −
n∑
i

(pi log2(pi)) (6)

where pi is the normalized value of bin i, of the saliency map histogram. As
before, we define a confidence score varying from zero to one, which results from
normalizing the image entropy (that in this case, we will designate as Entropy
Saliency Score - ESC). If η has a high value, then is less likely to have a boat in
the image and therefore, the score is low. If the entropy of the map is low, then
the confidence score will be higher.

In the final step of the proposed method, we isolate the areas of the saliency
map with higher values. We use Otsu’s method [13] to compute the threshold
value. This method does not need an adjustment, as it minimizes the variance in
each of the classes (in the resulting binary image). After thresholding the map,
a connected components algorithm clusters the pixels into detections. At last, a
bounding box for each detection is created and scaled back to the original image
size, as shown in Figure 5(b). The algorithms are summarized in Table 1.

4 Experimental results

The dataset used to test the algorithms consisted of a sequence with 44677
frames, with a resolution of 384 by 288 pixels. This sequence corresponds to
24 minutes and 49 seconds of images captured by a LWIR camera on-board a
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Table 1: Saliency Confidence (HRSC and ESC) and Saliency Threshold algo-
rithm.

Algorithm 1: Saliency Confidence Algorithm 2: Saliency Threshold

Input: LWIR image Input: LWIR image

Parameters: detection threshold Parameters: multiplying factor α
Resize LWIR image Resize LWIR image
Compute saliency with Eq. 2 Compute saliency with Eq. 2
Compute confidence with Eq. 5 or Eq. 6 Compute average of saliency map
If confidence <detection threshold Segment pixels with intensity > α× average

Apply Otsu segmentation Apply connected components
Apply connected components Compute bounding box
Compute bounding boxes Output: Bounding boxes

Else
Discard image

End
Output: Bounding boxes

UAV (represented in Figure 4(a)). The camera is a GOBI-384 (Figure 4(b)),
equipped with a 18 mm lens and a relative aperture of f/1. The camera has
an Ethernet connection to the UAV’s computational board, which allows us to
store the images directly on a digital format. The UAV flew over two small boats
(with a length of 16 and 12 meters) and a life-raft.

(a) (b)

Fig. 4: (a) UAV and (b) LWIR camera used to obtain the set.

The sequence was annotated manually with the position of the boats and life
raft in each frame. The annotation consisted of a bounding box that encompassed
each vessel and that we use as Ground Truth (GT). The GT is represented in
Figure 5(b) as a red rectangle.

To evaluate the performance of the algorithm and compare it against other
approaches, we have followed a method similar to what is proposed in [4]. The
evaluation pipeline that we have followed has a slight difference to the original
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(a) (b)

Fig. 5: (a) Binary image with a boat present; (b) Original LWIR image with
bounding boxes visible. Ground Truth annotation represented in red and the
output of the algorithm represented in green.

method. The difference consists in considering a detection as a true positive as
long as its center is included on the GT Bounding Box. The results are presented
as a ratio between Precision and Recall.

On our trials, we have tested histogram ratio saliency confidence, entropy
saliency confidence, saliency threshold and some other simple methods as bench-
mark. These methods were naive approaches and consisted on direct segmenta-
tion without analysing any properties of the image or the saliency map. The
benchmark methods are described in Table 2.

Table 2: Benchmark algorithms.

Benchmark algorithms Description

SM Otsu Apply Otsu method on a saliency image
SM THRSH Use an optimal value to segment the saliency map
LWIR THRSH CE Use an optimal value to segment the LWIR image with con-

trast enhancement
LWIR Otsu CE Apply directly Otsu method on a LWIR image with contrast

enhancement
LWIR Otsu Apply directly Otsu method on a LWIR image
LWIR THRSH Use an optimal value to segment the LWIR image

The evaluation method assumes that each detection has a confidence score
associated. In the proposed methods, HRSC and ESC, these scores are intrinsic
to the method, but the other tested approaches do not have a confidence level
associated. To overcome this hindrance, for evaluation purposes, we superimpose
a unitary confidence value to each detection. In practice, this means that these
different approaches will have only one working condition.
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Fig. 6: Precision-Recall results obtained in the LWIR image sequence. Scores
presented for ESC and HRSC represent the area under the curve.

Figure 6 present the scores of HRSC and ESC. These results, were com-
pared against Saliency Threshold with different multiplying scalars and also the
six combinations of direct segmentation. In the case of LWIR THRSH, LWIR
THRSH CE and SM THRSH, we searched the optimal value by testing a suf-
ficiently large range of values, and chose the one that, for each case achieved
better precision-recall values.

The results of the six benchmark methods were poor, with numerous false
positives, even when an optimal threshold value was used. These results indicate
the need for a better detection strategy. We would like to mention that SM Otsu
(which happens to be overlapped by ST with α = 3) is a particular case of HRSC
and ESC, when no criteria is applied to validate or discard images. Saliency
Threshold with α = 3 had poor results. However, when higher α were used, it
attained a good performance, with its scores near the plots of HRSC and ESC.
HRSC and ESC demonstrated a performance similar to Saliency Threshold but
provided a confidence parameter that may be incorporated on another detection
layer. For instance, it could be used on a temporal filter and therefore improve
the overall performance of the system even further.

When analysing the absolute performance of the proposed methods, one of
the results that we would like to focus on is the relatively low rate of false
positives. This is an indicator that the strategies to compute the confidence score
were adequate. After considering the different results between the histogram
ratio approach and the entropy approach, we believe that the best option is to
use the Entropy Saliency Confidence. Not only is a more tangible concept but
on a system performing a search task, is usually preferable to have lower rate
of false positives (higher precision) than a low rate of missed detections (high
recall). As visible in Figure 6, the option based on entropy may be set to an
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operating point with slightly higher precision, while maintaining a considerable
recall. With the system running at a high frame rate, there is a considerable
probability that the object may be detected in at least one frame.

Fig. 7: Typical distribution along the image set of the occurrence of correct de-
tections, missed detections and false positives. Area in white represents frames
without boats. Three images bellow represent common cases of missed detec-
tions.

We consider the results particularly encouraging, because most of the missed
detections consisted of demanding conditions even for a human operator. In
Figure 7, we present some of the typical situations where the algorithm fails.
The left and center images represent situations where boats are visible but at
least one is near the border of the image. The right image represents a missed
detection of a life raft. The life raft was the object that was mostly present from
frame 36000 to 42500, which corresponds to the big areas highlighted in red.
The detection of the life raft, however, is very challenging as can be seen in the
image that already has its contrast enhanced for visualization purposes. One of
the reasons for this difficulty was the fact that it was unmanned and had no
heat source. Due to its small size and mass, the temperature converged rapidly
to the ocean’s temperature.

5 Conclusion and future work

This papers presents the use of a saliency algorithm to detect vessels in ther-
mal images, captured by a UAV. This saliency algorithm is designed to separate
foreground from background and therefore two strategies were proposed to deal
with the cases where only ocean is visible. The tests on real data showed a good
performance of the algorithm, more so because no temporal information is be-
ing considered. For future work we consider adding temporal information and
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incorporate the confidence parameter in a temporal filter. Now, we considered
the entropy of the entire saliency map but the computation of entropy of subsets
of the map may be useful to deal with images with regions of different charac-
teristics. These challenges, that span from sun glare, to wave crests, to bright
sky, have hindered the application of saliency-based methods to visible spectrum
images in maritime context.
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