
Efficient Greedy Estimation of Mixture Models Through a Binary Tree Search

Nicola Greggioa,c,∗, Alexandre Bernardinoc, Paolo Darioa,b, José Santos-Victorc

aARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera, Viale R. Piaggio, 34 - 56025 Pontedera, Italy
bCRIM Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera, Viale R. Piaggio, 34 - 56025 Pontedera, Italy

cInstituto de Sistemas e Robótica, Instituto Superior Técnico - 1049-001 Lisboa, Portugal

Abstract

Unsupervised data clustering can be addressed by the estimation of mixture models, where the mixture components are associated
to clusters in data space. In this paper we present a novel unsupervised classification algorithm based on the simultaneous estimation
of the mixture’s parameters and the number of components (complexity). Its distinguishing aspect is the way the data space is
searched. Our algorithm starts from a single component covering all the input space, and iteratively splits components according to
breadth first search on a binary tree structure that provides an efficient exploration of the possible solutions. The proposed scheme
demonstrates important computational savings with respect to other state-of-the-art algorithms, making it particularly suited to
scenarios where the performance time is an issue, such as in computer and robot vision applications. The initialization procedure
is unique, allowing a deterministic evolution of the algorithm, while the parameter estimation is performed with a modification
of the Expectation Maximization algorithm. To compare models with different complexity we use the Minimum Message Length
information criteria that implements the trade-off between the number of components and data fit log-likelihood. We validate our
new approach with experiments on synthetic data, and we test and compare to related approaches its computational efficiency in
data intensive image segmentation applications.

Keywords: Unsupervised clustering, Expectation Maximization, Image Processing, Robotics, Machine Vision.

1. Introduction

Data clustering is a topic of major interest in many disci-
plines, having an extremely wide application range. Several
techniques for clustering have been developed during the last
decades, including Kohonen maps [1] [2], Growing Neural gas
[3], [4], k-means [5], to Independent component analysis [6],
[7], and mixture models [8].

To cope with the dynamics of changing environments,
robotics applications must process in real-time huge amounts of
sensory data. For example, image processing algorithms play a
key role in many practical applications and demand significant
computational resources due to huge amounts of data.

A paradigmatic application of clustering in robot vision is
image segmentation. Several applications in humanoid robots
[9], [10], rescue robots [11], or soccer robots [12] rely on some
sort on image segmentation [13]. Additionally, many other
fields of image analysis depend on image segmentation algo-
rithms: video surveillance, medical imaging and database re-
trieval are some examples [14], [15].

In this paper we propose an unsupervised data clustering al-
gorithm for data intensive algorithms, moving towards practi-
cal applications in robotics and computer vision. We propose
computational efficiency improvements to the state of the art
unsupervised clustering algorithms and illustrate the achieved

∗Corresponding author
Email address: ngreggio@isr.ist.utl.pt (Nicola Greggio)

performances and computational gains both in synthetic data
and on image segmentation applications. Our goal is not to im-
prove the state of the art in image segmentation, but to demon-
strate efficiency gains with respect to alternative approaches.
The state-of-the-art in image segmentation technology is much
beyond simple data clustering, but our methodology can cer-
tainly be useful for segmentation techniques requiring cluster-
ing algorithms.

Our approach to data clustering is based on the Expectation
Maximization algorithm applied to Gaussian mixtures, which
allows to approximate arbitrary probability distribution func-
tions. Fitting a mixture model to the distribution of the given
data is equivalent, in some applications, to the identification of
the clusters with the mixture components [8]. The selection of
the right model complexity, i.e. the number of mixture com-
ponents, is a critical issue. In fact, this is an ill-posed prob-
lem with multiple possible solutions depending on a trade-off
between data fit and complexity. The higher the number of
components in the mixture is, the better the data fit will be.
Unfortunately, increasing the number of components will lead
both to data overfitting and to increase in the computational bur-
den. Therefore, finding the best compromise between precision,
generalization and speed is an essential concern. A common ap-
proach to address this compromise is to try different hypotheses
for the number of components in the mixture, and then select-
ing the best one according to some appropriate model selection
criteria. In such approaches, the best model is typically selected
by executing independent runs of the EM algorithm for many

Preprint submitted to Robotics and Autonomous Systems Saturday 17th May, 2014

different initializations of the number of components, and then
evaluating each of the solutions with criteria that penalize com-
plex models. Some examples are the Akaike Information Crite-
rion (AIC) [16], the Schwarz’s Bayesian Information Criterion
[17], the Rissanen Minimum Description Length (MDL) [18],
and Wallace and Freeman Minimum Message Length (MML)
[19]. However, all of these criteria, in order to be effective,
have to be evaluated for every possible number of models under
comparison. Thus, it is a combinatorial problem where there is
no guarantee of finding an optimal global solution, except with
exhaustive search methods.

1.1. Our contribution

Our work follows an incremental model selection approach.
Instead of executing independent EM runs spanning a wide
range of parameters, and evaluating each one with a model
selection criteria, we change the model complexity on-the-fly,
while a modified EM algorithm optimizes the mixture parame-
ters. The search for the best number of components in the mix-
ture starts with a single component and progressively adds new
components according to a binary tree structure, i.e. forking
one of the existing components. Using a breadth-first search
scheme on the binary tree structure allows an efficient explo-
ration of the search space and provides “backtracking” capabil-
ities, i.e. if the addition of a new element does not prove use-
ful, we can go back to the best previous solution and continue
exploration on a different part of the search space. Such a strat-
egy allows a good search efficiency allied to a good coverage
of the possible solution’s space, achieving better fits that alter-
native algorithms, in average. The current paper is an extension
of the contents presented in [20]. We compare the proposed
method both with our previous work [21] and with the method
in Figueiredo and Jain [22].

2. Related Work

Due to the complexity of the model selection problem, many
algorithms have proposed to escape the classical exhaustive
search methods by adopting an incremental approach. Most
of these algorithms derive from the original EM formulation,
but they are capable of modifying their complexity during the
learning process. Here, it is possible to distinguish three dif-
ferent categories: those starting with a low number of com-
ponents and only increase their number as the algorithm pro-
gresses; those starting with a high number and annihilating
components along time; and those both incrementing and re-
ducing the number of components. Typically new component
are added by random initialization (birth operator) or by divid-
ing existing components (split operation), whereas components
are removed either by annihilation (death operator) or joining
other existing components (merge operator). Split-and-merge
algorithms have been widely used in computer vision, pattern
recognition and signal processing [23] [24], and they are of-
ten more efficient than exhaustive, random or genetic algorithm
approaches. Richardson and Green used split-and-merge op-
erations together with birth-and-death operations to develop a

reversible jump Markov chain Monte Carlo (RJMCMC) algo-
rithm for fully Bayesian analysis of univariate gaussians mix-
tures [25]. The novel RJMCMC methodology elaborated by
Green is attractive because it can preferably deal with parame-
ter estimation and model selection jointly in a single paradigm.
BrieGy, a random-sweep Metropolis Hastings method, con-
structs the dimension matching transform with the reversible
jump methodology [26]. Then, Ueda et Al. proposed a split-
and-merge EM algorithm (SMEM) to alleviate the problem of
local convergence of the EM method [27]. They analyzed the
implications of merge and split operations in terms of their
“well-posedness”. While merging two components is trivial
(the point set in the merged component is the union of the orig-
inal ones), there are many possible ways to split a component,
which results in a ill-posed problem. Merge-only approaches,
thus, alleviate this problem. In this class of methods, the ap-
proach proposed by Figueiredo and Jain in 2002 is especially
interesting [22]. They start with a large number of components
and impose a Dirichlet prior on the mixing weights that drives
to zero the weights of the components that get low support from
data during the steps of the algorithms. Huang et Al. proposed
a refinement of the method using a new penalized likelihood
method that is continuous when components are annihilated and
shows good analytic properties [28]. Despite the remarkable ac-
curacy and robustness of merge-only methods, they suffer from
an high computational burden given that many EM iterations
are performed with a large number of components.

With the aim of reducing as much as possible the required
computational demands, split-only approaches start with a sin-
gle component and add new ones along time according to dif-
ferent criteria. In 2002 Vlassis and Likas introduced a greedy
algorithm [29] that starts with a single component covering all
the data, and sequentially splits it in two new ones. The pa-
rameters of these two components are then adjusted by local
EM iterations. The method takes O(n2) operations, where n is
the number of input data samples. Subsequently, Verbeek et al.
developed another greedy method [30] by starting ’partial’ EM
searches, each of them with different initializations. The total
complexity for the algorithm to learn a sequence of mixtures
composed by k components is O(k2n), where n is as before.

In our previous work [21] we proposed a split-only method
whose decisions were made in accordance to the state of the
gaussian components and a set of adaptive thresholds. In this
paper we propose an approach that introduces significant im-
provements in reducing the number of tuning parameters and
performing a better exploration of the search space, leading to
a more efficient, robust, and easy to use methodology.

3. Mixture Learning Algorithm

Due to the nature of the mixture learning problem with model
selection, finding globally optimal solutions is very hard except
for problems of very small dimension, where exhaustive search
techniques can be applied. All non exhaustive algorithms in
literature are greedy in the sense that, at each step, they take
local/immediate optimal decisions. Likewise, our approach is

2

greedy, but we propose a search strategy that covers and ex-
plores the state space in a more effective way, using a coarse-
to-fine paradigm. To represent this coarse-to-fine approach we
use a binary tree data structure. Each tree’s node represents
a mixture component, while the descendants of a node repre-
sent the mixture components that arise from splitting the parent.
The proposed algorithm adopts a breadth search approach with
branch pruning, based on the following observations:

1. When a component is split in two new ones, the new com-
ponents usually converge to a smaller size than the origi-
nal one, i.e. covering a smaller part of the state-space or,
in other words, having a smaller covariance. This provides
a coarse-to-fine interpretation to the binary tree represen-
tation.

2. If, at a certain stage of the algorithm, splitting a component
does not lead to improvements, it is likely that a similar
result will hold if that same component is split at a latter
stage.

Although these heuristics are not valid for every case, we have
empirically verified their frequent occurrence in our domain of
study. Therefore, based on point 1, we propose an exploration
of the state-space using a breadth-first search of the binary tree
representation, where coarser regions of the search space are
analyzed first. Then, based on point 2, when the expansion of
one branch does not improve the solution, we revert to the pre-
vious solution, and that branch is not expanded anymore in the
future. This rule reflects the intuition that a future expansion
of this component would result in a similar outcome, thus not
being worth the computation. Together, these two heuristics,
create a good balance between computational complexity and
coverage of the search space, that we exploit and experimen-
tally evaluate in this paper.

An overview of our algorithm is described in pseudocode 1.
The first step consists in initializing the first component, as de-
scribed in sec. 3.1. Then, it splits (sec. 3.6) each component
following a breadth-first scheme over a binary tree structure
(sec. 3.7).

We propose a split rule that creates a new component with
the same covariance (replication) of the parent but with a mean
value perturbed in multiple dimensions. We denote this rule by
“multidimensional replication”.

During each replication step, an EM like optimizing proce-
dure re-computes the mixture parameters (sec. 3.3). Each time
the EM procedure converges to a (local) minimum, a cost func-
tion (5) is evaluated and a decision is taken on whether to keep
this solution or try a different one. When there are no nodes el-
igible to have children, the algorithm stops.The following sec-
tions describe all these points in detail.

3.1. Parameters’ initialization

Let a dataset X be composed of N samples of dimension d:

X = {xn,n = 1 · · ·N} , xn ∈ Rd (1)

The starting component is initialized with the mean and the
covariance of the whole data set:

µ =
1
N

N

∑
n=1

xn

Σ =
1
N

N

∑
n=1

(xn−µ)(xn−µ)T

(2)

3.2. Model Selection Criterion
A generic mixture distribution can be defined as:

p(x | ϑ) =
K

∑
k=1

wk p(x | ϑk),
K

∑
k=1

wk = 1 (3)

where K is the number of components of the mixture, and wk
are the class prior weights of each component k. A Gaussian
mixture model is a mixture where all components are Gaussian:

p(x | ϑk) =
exp−

1
2 (x−µk)

T Σ
−1
k (x−µk)√

(2π)d | Σk |
(4)

where µk, Σk are the mean and variance of the kth Gaussian
component, jointly denoted as ϑk. The union of K, wk and ϑk
is denoted ϑ and completely characterizes the mixture.

One of the most critical parameters to estimate in a mixture
is its complexity, given by the number of components K. Sev-
eral information criteria have been proposed for determining
the best mixture complexity. A comprehensive survey on the
most well-known criteria can be found in [31]. We adopted the
minimum message length (MML) criterion. This criterion is
equivalent to imposing a Dirichlet prior on the distribution of
the class weights wk that favours low complexity models [22].
The optimal set of parameters of the mixture model then results
from the following optimization problem (c.f. [22], Eq. (14)):

ϑopt = argmin
ϑ

P
2

K

∑
k=1

log
N ·wk

12
+

K
2

(
P+1+ log

n
12

)
−LX (ϑ)

(5)
where P is the number of parameters specifying each compo-
nent, which in the case of a normal distribution are the mean
and the covariance matrix parameters, P = d+d(d+1)/2; and
LX (ϑ) is the log-likelihood of the data given the model param-
eters:

LX (ϑ) =
N

∑
n=1

log p(xn | ϑ) (6)

The relationship to the original MML and MDL criteria has
been discussed in [22].

3.3. The modified EM
The EM iterations applied in our work follow a modified ver-

sion proposed in [22]. The E-Step is computed as in the stan-
dard case:

π
n
k =

w(t)
k · pk (xn)

∑
K
k=1 w(t)

k · pk (xn)
(7)

3

where the pk(xn) is the likelihood of a data sample xn being
generated by component k.

The M-Step however differs in the class prior weights update:

w(t+1)
k =

(
∑

N
n=1 πi

k

)
− P

2

∑
K
j=1

[(
∑

N
n=1 πn

j

)
− P

2

] (8)

The difference arises from adopting in (5) improper Dirichlet
priors for the class probabilites [32]:

p(w1, · · · ,wK)∝ exp−
P
2 ∑

K
k=1 logwi (9)

Finally, the means and covariances of each class are computed
in the standard way.

3.4. The Stopping Procedure
We define the stopping criterion for the EM algorithm not

only when the total distribution log-likelihood ceases increas-
ing, but also when all individual components stabilise. This is
assessed by checking the evolution of the partial log-likelihood
functions:

LX (ϑk) =
N

∑
n=1

log p(xn | ϑk) (10)

We define the percentage increment of the partial log-likelihood
of a component as:

Λ
(t)
k (ϑk) =

∣∣∣∣∣L(t)
X (ϑk)−L(t−1)

X (ϑk)

L(t)
X (ϑk)

∣∣∣∣∣ ·100 (11)

When the average percentage increment in partial log-
likelihood is lower than a small value δ, the algorithm stops:

K

∑
k=1

Λk(ϑk)6 c ·δ (12)

In our experiments (see sec. 5) we use δ = 0.1%

3.5. Ill-Conditioned components

It may happen that during the EM steps the computation
leads to a ill-conditioned component. We solved this by con-
trolling the determinant of each component’s covariance ma-
trix every iteration. If it goes under a limit (e.g. 10e−4) this
means that the component may represent (actually cover) a
small amount of data or that the component is too elongated.
An ill-conditioned component generates a higher MML value
(therefore unsatisfactory), since that component does not con-
tribute enough to the input data description. In this case we
reject the current mixture configuration and go along the binary
tree for replicating another component.

3.6. Component Replication

Splitting a mixture component is one of the standard opera-
tors in the algorithms that try to optimize the model complexity
incrementally. The rationale is to divide each existing compo-
nent in two new ones covering roughly the same area as the

Algorithm 1: FSAEM: Pseudocode
input : data set X , replication parameter ε (sec. 3.6)
output: mixture description ϑ (sec. 3.2)

1 Parameters’ initialization; (sec. 3.1);
2 Run EM (sec. 3.3) and evaluate minimum message length criterion (eq. 5) with the single component mixture configuration;
3 best mixture = mixture (Backup the mixture);
4 while (stop = 0) do
5 level = last tree level;
6 le f tNODE = 2(level−1) (most left last level node, being the root = 1);
7 rightNODE = (2level −1) (most right last level node, being the root = 1);
8 for (node = le f tNODE to rightNODE) do
9 Replicate component node (sec. 3.6);

10 Run EM on current mixture (sec. 3.3) ;
11 for (All mixture components) do
12 if (Ill−Conditioned component) then
13 mixture = best mixture (Restore previous mixture);

14 if (log− likelihood percentage increment < δ) (sec. 3.4) then
if (All the single components are stable) (eq. 12) then

15 Stop the EM computation;

16 current mml = Evaluate minimum message length (eq. 5);
17 if (current mml < last mml) then

(Case A: The current information criterion is better than the best one⇒ backup the current mixture as the best one.);
18 best mixture = mixture (Backup (bu) mixture);
19 improvement = true;

else if (current mml > last mml) then
if The component has been replicated along all its covariance matrix dimensions then

(Case B: The current information criterion is worse than the best one⇒ bad replication. Return to the previously bu mixture.);
20 mixture = best mixture (Restore previous mixture);

else
Replicate along another component’s covariance matrix eigenvector (go to line 9);

21 if (improvement , 0) then
22 level = level + 1;

23 else if (improvement = 0) then
24 stop = 1;

4

parent, and search for the new best mixture parameters starting
from that configuration. However, the division of a new com-
ponent is a ill-posed problem since it can be done in many dif-
ferent ways. The simplest possible parameter free way would
be to duplicate one component in two new ones having identi-
cal mean and covariance, and half the prior probability of the
original component. This would maintain the log-likelihood of
the data but increase the complexity of the model, so the overall
cost function would increase its value. Therefore, a new run of
the EM algorithm would be necessary to try to reduce the cost.
However, the initialization of the two new components with ex-
actly the same parameters creates a fixed point in the cost func-
tion that will prevent the algorithm from progressing1. To solve
this situation in practice, the two components must be initial-
ized with different parameters. The classical way to tackle this
problem is to use the so called called split operator: The orig-
inal component’s coverage is divided among the two new ones
by using distinct means and covariance matrices in order to de-
scribe the original data with low overlap. However, there is few
intuition on how to choose the new mean vector and covariance
matrices. Instead, we adopt a simpler procedure, that we found
more effective than the splitting approaches in our experiments:

• The new components are initialized with mean and covari-
ance identical to the original one except for a perturbation
of the mean along one of the components’ principal di-
rections (represented by the covariance matrix’s eigenvec-
tors). The prior probability of each new component is as-
signed to half of the prior probability of the parent. Since
the two new components are very similar to the original
one, this operation is denoted “replication”.

• The mean perturbation is applied sequentially along each
components’ principal dimensions until improvements are
obtained or all dimensions have been explored. We denote
this operation “multidimensional replication”.

Still, the perturbation parameter, ε, is an empirical value in
our algorithm we must tune. According to our experiments, ε

depends mostly in the dimensionality and amplitude range of
the data. Although we did not study the problem in depth, we
have noticed this parameter’s optimal value does not change
significantly for different samples of the same type of data.
Therefore, ε can be tuned off-line in a few samples of data of
the same type. We will report the values we used in our experi-
ments in sec. 5.1.

Then, the modified EM is run for optimizing the mixture.
Finally, the algorithm decides whether keeping the new com-
ponents or reverting them to the original one, based on the cost
function evaluated by (5).

3.7. Binary Tree Search
To represent the state of the search algorithm we adopt a bi-

nary tree structure. The current mixture components are de-
fined at each time step by the leaves of the tree. Beyond the

1In practice the algorithm will exit the fixed point due to numerical noise,
but this may take a large number of iterations.

parameters of the corresponding component, a node of the tree
contains a tag indicating whether that specific component has
been previously replicated without success, so it would not be
replicated again. The optimization procedure corresponds to an
exploration of the tree until a configuration can not be improved
anymore. We adopt a breadth-first search exploration:

• The initial tree starts with the root, representing the initial
component covering all the dataset covariance;

• Each node either has no children (it is a leaf) or two chil-
dren;

• Only the leaves correspond to active components

• When a component is replicated, the corresponding node
is expanded into two children. One of the children is an
exact copy of the parent and the other is perturbed in posi-
tion, as explained before.

• When a multidimensional replication step finishes without
improvement, the solution is backtracked to the original
component. Otherwise the current solution is accepted.

• The next node to replicate is the left-most, least-depth
node that has not previously been replicated.

The breadth-first nature of the tree search algorithm results in
a coarse to fine exploration of the state-space. Since, in general,
the first levels of the tree represent coarser components, these
are explored during the first stages of the optimization. Then,
at later stages, increasingly finer decompositions are tested.

The actual implementation of the binary tree is made with an
implicit data structure in an array (Ahnentafel list). Nodes are
stored linearly from top to bottom and from left to right. This
structure needs no pointers and allows easy indexing to any of
the tree nodes. In Fig. 1 we show an example of a binary tree
representing a certain configuration and the structure actually
implemented in memory. Because parents are not necessary
after successful optimization of their children, more efficient
structures could be used. Since our tree search algorithm is
breath-first, an alternative implementation could be made via
a list-like structure: The parents are removed from the head,
replicated and, after successful optimization, the two resulting
components are moved to the tail. If unsuccessful, the parent
is moved to the tail and marked. The algorithm stops when all
the elements are marked. We note that, depending on the search
algorithms used on a tree, different data structures may be used.

3.7.1. Example
To exemplify the binary tree representation and its relation-

ship to the mixture components, we show in Fig. 2 a run of
the algorithm in a 2D point set generated by a mixture with
three Gaussians. Each of the sub-figures shows the state of the
mixture estimate and the associated binary tree, at the steps of
the algorithm when the new components are added or removed
from the tree. The grey nodes correspond to the active compo-
nents in the mixture, while the white nodes are used as backup
for backtracking operations. In the proposed algorithm, only

5

1

2

4

11

5

10

3

(a) Binary tree indices

0

0

2

4

0

3

1

(b) Binary tree contents

Figure 1: Binary tree example: On the left we show the nodes’ in-
dices as they are stored in a linear array; on the right we show the
corresponding number of the mixture component, which points to a
structure with the component parameters. The 0 represents and empty
nodes corresponding to parent nodes that have been replicated and re-
placed by their descendants. On the given example, the tree’s actual
implementation is via the array: [0,0,1,2,0,0,0,0,0,3,4,0,0,0,0].

the immediate parents of the active nodes will be necessary for
backtracking. Whenever a component is expanded and none
of its expansions improves the solution, it is marked with an
asterisk, (∗). These nodes will not be further elected for ex-
pansion. The numbers in the tree node represent the order the
components were created in the process. At the end of the opti-
mization, components 2, 10 and 11 constitute the solution. Note
that iteration 158 proposed an unsuccessful expansion of com-
ponent 3 along the principal dimension, while in iteration 163
the expansion of the same component along the second dimen-
sion succeeded. This illustrates the advantage of using a mul-
tidimensional replication strategy, without which the algorithm
might have been stopped prematurely.

4. Other finite mixture learning algorithms

In this section we provide a brief description about other two
approaches, based on finite mixture model estimation, namely:
(i) a previous work of ours (FASTGMM) [21], and (ii) the algo-
rithm of Figueiredo and Jain[22], that we denote FIGJ. These
methods will be used for comparison purposes in the experi-
mental results.

4.1. FASTGMM
The FASTGMM algorithm has been proposed in [21] and

uses a split-only approach. FASTGMM also starts with a single
component and sequentially splits components until no further
improvements are obtained. The main difference to the current
proposal is that in FASTGMM the component to split is cho-
sen in an irreversible way based on a few control parameters.
Each component in the mixture is characterised by the follow-
ing variables:

• Likelihood - the data likelihood for that component, i.e.
with other components removed.

• Age - a variable that measures how long the component’s
likelihood does not increase significantly;

• Area - the determinant of the covariance matrix, which
represents the “size” of the component.

A set of per-component time varying thresholds are considered:

• ΛT H - for determining a significant increase in likelihood;

• AT H - for triggering the split process based on the compo-
nent’s age;

• ξT H - for deciding to split a gaussian based on its area.

At each time step, all components whose age is larger than AT H
and have not varied in likelihood more than ΛT H are elected
for possible split. The largest component of the eligible set (the
one with highest covariance matrix determinant) whose area ex-
ceeds ξT H is split in two components with smaller covariance
and with means on major semi-axes middle points. The thresh-
olds are adapted at each iteration to prevent the algorithm from
stalling. When a component is split, its thresholds are reset.
The algorithm stops when the global log-likelihood no longer
increases. For more details please check [21].

4.2. FIGJ

The work of Figueiredo and Jain [22] (FIGJ) can be con-
sidered as a merge-only approach. A large number of compo-
nents is initially selected via random sampling on the available
dataset. As the algorithm progresses, components are evolved
and annihilated whenever their prior probability is too low,
which implicitly merges the deleted component with nearby
components.

To address the ill-posedness of random sampling initializa-
tion, the authors fixed a desired minimum probability of suc-
cessful initialization, ε, i.e. the probability that after k samples
from the mixture, none is generated from a component with less
than αmin prior probability (sec. 6.1 of [22]). This leads to the
rule:

k >
lnε

ln(1−αmin)
(13)

The means of the components are assigned to the value of the
sampled points and the covariances are initialized to σ2I, where
σ2 a fixed fraction of the mean of the variances along each data
dimension. For instance, suppose that to describe a data mixture
with about 12 classes, we decide to set the initial components
with the same prior probability, i.e. 1/12. Then, for a proba-
bility of successful initialization (draw at least one sample from
each component) of 90% =⇒ 1− ε = 0.9 =⇒ ε = 0.1 leads
to cmin = 26,4 � 27 as the minimum number of components,
i.e. which is more than double the real number components.
This may lead to a computational burden larger than other ap-
proaches.

5. Experiments and Discussions

In this section we describe the experiments performed to
validate the proposed algorithm, which we denote FSAEM.
We compare to our previous approach (FASTGMM), and to
Figueiredo and Jain (FIGJ) algorithm.

We performed three experiments:

1. Clustering synthetic data with know generating mixture

6

2. Generic image segmentation
3. Object segmentation in simplified backgrounds

The first experiment is evaluated quantitatively with distance to
the ground truth mixture. The second experiment is evaluated
both quantitatively with data log-likelihood and qualitatively on
the characteristics of the segmentation. The third experiment is
evaluated qualitatively on human judgement about the correct
result. The latter has the purpose of assessing the applicability
of the algorithms to object manipulation in table-top scenar-
ios. All the experiments are benchmarked quantitatively on the
computation time.

5.1. Setting the Parameters
The only critical parameter in our algorithm is ε, i.e. the

amount of perturbation that is given to the mean of each com-
ponent after replication (see sec. 3.6). For the experiments,
we have performed a grid search for the best mixture log-
likelihood, in the range 10E-6 to 10E1, with steps of 0.1 in
the exponent. The ”optimal” values found were ε = 2.8 for the
2D data, and ε = 0.1 for the color images. With respect to the
other two algorithms (FASTGMM and FIGJ) we followed the
guidelines presented in the corresponding publications.

5.2. Synthetic Data Clustering
In the first batch of experiments, we artificially created sets of

bi-dimensional data points by sampling known (ground truth)
Gaussian mixture distributions. Each set is composed by 2000
2D points using mixtures with different number of components.
We present 3 cases: i) a mixture with 3 low overlap compo-
nents; ii) 8 high overlapping components; and iii) 16 low over-
lap components. We applied the algorithms from Figueiredo
and Jain’s approach (FIGJ), our previous technique (FAST-
GMM), and our new approach (FSAEM) on the data sets. We
evaluated the output (estimated density) in terms of distance to
ground truth and the computation time of the algorithms. All
implementations are in non-optimized MATLAB code.

We evaluate the difference between the generated mixture
and the estimated one by a distance metric. Several metrics
have been proposed in the literature to measure distance be-
tween Gaussian mixture distributions, being the most common
ones the Kullback-Leibler distance, the Earth Mover’s distance,
and the Normalized L2 distance [33]. For computational rea-
sons, we have chosen the Normalized L2 distance because it
can be computed in closed form [34] with Gaussian mixtures
with more than one component, on the contrary to the Kulback-
Leibler and the Earth Mover’s distances [33].

Let us consider two Gaussian mixture distributions, indexed
by m:

pm(x) =
Km

∑
i=1

wmiN (µmi,Σmi) ,
Km

∑
i=1

wmk = 1, m = 1,2 (14)

where N is the multivariate Gaussian density function.
The normalized L2 distance was introduced in [33] as:

dnL2(p̃1, p̃2),
∫

x
(p̃1(x)− p̃2(x))

2 dx

where the input distributions are normalised to unit L2-norm:

p̃m(x) =
1

Zm
pm(x), Zm =

√∫
x

pm(x)2 dx

Because distributions are normalized (
∫

x p̃m(x)2 dx = 1), we
get:

dnL2(p̃1, p̃2) = 2
(

1−
∫

x
(p̃1(x)p̃2(x)) dx

)
(15)

To compute the normalisation terms and the closed form ex-
pression of the distance for Gaussian mixtures, the formulas for
the product of two Gaussian distributions are used [34], (Eqs.
5.1 and 5.2):

N (µa,Σa) ·N (µb,Σb) = za·bN (µa·b,Σa·b)

with

Σa·b =
(
Σ−1

a +Σ
−1
b

)−1

µa·b = Σa·b
(
Σ−1

a µa +Σ
−1
b µb

)
za·b =| 2π(Σa +Σb) |−

1
2 exp−

1
2 (µa−µb)

T (Σa+Σb)
−1(µa−µb)

Thus, for the Gaussian mixtures, the normalisation terms can
be computed by:

Zm =

(
Km

∑
i=1

Km

∑
j=1

wmiwm j
exp−

1
2 (µmi−µm j)

T (Σmi+Σm j)
−1(µmi−µm j)

| 2π(Σmi +Σm j) |
1
2

) 1
2

The L2 distance (15) between two mixtures (14) then be-
comes:

dnL2(p1, p2) = 2

(
1−

∑
K1
i=1 ∑

K2
j=1 w1iw2 jz1i·2 j

Z1Z2

)
(16)

Fig. 3 shows the output of the test. Each row corresponds
to one of the datasets (3, 8, and 16 components respectively),
and each column corresponds to a different algorithms (FIGJ,
FASTGMM, and FSAEM respectively). Both FSAEM and
FIGJ successfully find a number of components close to the
ground truth, and have similar data fits, as shown in Fig. 3
and Tab. 1. Quantitatively, the log-likelihood and normalised
L2 distance values in FIGJ and FSAEM are very similar, with-
out significant differences. However, FSAEM has significantly
better computational times. FASTGMM shows a less stable be-
haviour in all aspects. Despite being the fastest algorithm, it
clearly presents worse results in the estimation of the number
of components and normalised L2 distance. For the mixture
with 3 components, FASTGMM actually shows the best log-
likelihood values, but this is an artefact due to the overestima-
tion of the number of components (the log-likelihood tends to
improve as the number of components grow, whereas the nor-
malised L2 distance is immune to this fact).

5.3. Image Segmentation
In the second set of experiments we use real color image data,

considering both pictures taken from photographic cameras and
pictures taken from video streaming cameras (webcams and

7

Input Algorithm # Initial # Detected Actual gaussian # Iterations Elapsed Time Log-likelihood Normalized L2
gaussians gaussians number [s] Distance [×10−3]

FIGJ 16 3 309 9.55 −7249.1 2.7
3-gau: FASTGMM 1 4 3 670 2.07 −7231.7 202.4

FSAEM 1 3 1106 4.59 −7249.0 3.1
FIGJ 23 7 225 14.69 −8397.5 9.8

8-gau: FASTGMM 1 5 8 257 0.85 −8959.7 199.1
FSAEM 1 7 2055 11.11 −8397.4 10.2

FIGJ 48 14 364 34.82 −8150.8 39.1
16-gau: FASTGMM 1 8 16 476 2.94 −8693.8 311.9

FSAEM 1 16 2659 23.02 −8133.7 33.7

Table 1: Experimental results on synthetic data.

(R,G,B,x,y) Color Segmentation Results

Input Algorithm # Initial # Detected # Iterations Elapsed time Log-likelihoodcomponents components [s]
FIGJ 6 6 304 308.476 -4.5e5

1 FASTGMM 1 7 590 75.355 -4.3e5
FSAEM 1 6 104 8.288 -3.9e5

FIGJ 18 18 206 113.051 -4.6e5
2 FASTGMM 1 5 328 102.416 -4.3e5

FSAEM 1 5 64 47.665 -4.3e5
FIGJ 2 2 18 2.603 -4.6e5

3 FASTGMM 1 3 121 4.02 -4.1e5
FSAEM 1 3 58 3.303 -3.5e5

FIGJ 18 18 233 151.035 -4.5e5
4 FASTGMM 1 8 231 19.515 -4.2e5

FSAEM 1 6 117 9.990 -4.1e5
FIGJ 24 24 351 605.001 -5.1e5

5 FASTGMM 1 10 631 99.515 -4.6e5
FSAEM 1 12 581 78.27 -4.4e5

FIGJ 16 16 352 242.379 -2.6e5
6 FASTGMM 1 12 260 130.416 -3.2e5

FSAEM 1 5 152 16.348 -4.3e5
FIGJ 18 18 305 220.185 -5.9e5

7 FASTGMM 1 21 810 193.59 -4.5e5
FSAEM 1 19 735 161.534 -4.9e5

FIGJ 5 5 503 18.557 -4.4e5
8 FASTGMM 1 3 354 37.059 -4.2e5

FSAEM 1 3 245 17.354 -3.9e5
FIGJ 18 18 273 237.854 -5.3e5

9 FASTGMM 1 6 246 37.913 -4.9e5
FSAEM 1 7 213 26.259 -4.9e5

FIGJ 14 14 183 89.011 -4.7e5
10 FASTGMM 1 7 320 68.422 -4.2e5

FSAEM 1 8 283 33.461 -4.1e5
FIGJ 13 12 159 47.778 -4.4e5

11 FASTGMM 1 8 329 35.269 -4.1e5
FSAEM 1 8 230 23.645 -3.7e5

FIGJ 13 13 180 144.418 -6.9e5
12 FASTGMM 1 4 193 30.269 -6.4e5

FSAEM 1 5 133 21.348 -6.4e5

Table 2: Experimental results on real images segmentation.

robot cameras). Each image generates a 5-dimensional data set,
where each data point is composed by the three components of
the RGB color space and its two dimensional pixel coordinates.
An input point pi has the form: pi = (Ri,Gi,Bi,xi,yi).

Again, we use the algorithms FIGJ, FASTGMM and FSAEM
to cluster the data points. However, the distance to the origi-
nal mixture cannot be evaluated in this case, since no ground
truth data is available. Therefore, we rely on a qualitative eval-
uation through the data likelihood and a visual assessment of
the obtained segmentation. Again, we note that the purpose of
this work is not to improve the state-of-the-art of image seg-
mentation, but to compare the ability of our algorithm to be
quicker than other state-of-the-art in Gaussian mixture estima-
tion, while being competitive in terms of performance. A vi-
sual inspection of the segmentation results and the assessment
of the data log-likelihood will be the means to check similarity
between different methods.

Fig. 4 shows the experimental results. For each row, from left
to right, we show the original image, the results of the FIGJ,
FASTGMM, and FSAEM. Table 2 presents numeric details,
namely the final number of components, the data log-likelihood
and the computation time. From Fig. 4 we can notice the sim-
ilarity in output between the different methods, with FIGJ of-
ten resulting in a more detailed segmentation (higher number
of components). However this tendency for over-segmentation
does not bring much added value to practical applications since
objects become fractioned. In Table 2, we can notice that
FSAEM often produces slightly better data fits that the other
methods and surpasses FIGJ about 8 × in computational per-
formances, being now the clear winner.

5.4. Object Segmentation
Finally, in the last experiments, we evaluate the ability to

segment objects in a simplified background scenario, typical
of robotic manipulation settings. We have used images taken
by the cameras of our robotic platform (the iCub), in differ-
ent lighting conditions. The scenario is composed by multiple
objects of interest with simple characteristics (blob like shapes
and uniformly coloured) laying on a table. As it was observed
in the previous experiment, the algorithm FIGJ proved too ex-
pensive for eventual real-time applications dealing with image
data, so it was not used in this last set of experiments.

The purpose of this experiment is to evaluate the ability of
color based mixture model estimation to be used as a pre-

8

(R,G,B,x,y) Object Segmentation Results

Image number Algorithm Detected number of Number Elapsed Percentage time Final Percentage difference
Gaussian components of iterations Time [s] difference [%] log-likelihood on log-likelihood [%]

(1) FASTGMM 2 38 1.244 -37.1 -2.8e5 -55.5FSAEM 2 26 1.705 -4.3e5

(2) FASTGMM 3 21 0.933 -129.2 -3.1e5 -12.9FSAEM 2 38 2.135 -3.5e5

(3) FASTGMM 11 332 46.743 95.5 -4.0e5 -2.4FSAEM 3 31 2.080 -4.1e5

(4) FASTGMM 11 285 34.017 82.4 -3.9e5 -4.2FSAEM 4 106 5.983 -4.0e5

Table 3: Experimental results on real robotic images. Segmentation performed in the (R,G,B,x,y) color space.

processing step in the pipeline of a simple object segmenta-
tion algorithm. The output of the mixture model clustering is
post-processed with a smoothing gaussian blur and a connected
components labelling in order to obtain compact and connected
objects on the scene.

Results are shown in Fig. 5. The obtained connected compo-
nents are highlighted with a cross identifying their centroid and
an ellipse showing their second order geometrical moments.
The first three columns on the left correspond to the FAST-
GMM method and the other columns present the FSAEM ver-
sion. We have chosen images with significant differences in
brightness, contrast and number of objects but we observe that
both algorithms perform similarly. FSAEM is able to better de-
tect the relevant objects in images (2) and (4), since FASTGMM
misses a couple of them. However, FSAEM detects one spuri-
ous object in image (3) and has problems in the left boundary
of image (1). Despite these problems could be mitigated via a
better tuning on the connected component parameters, the pur-
pose of this analysis is to comprove that both approaches are
viable to tackle this problem. The quantitative results presented
in Tab. 3 demonstrate that generally FSAEM runs faster in aver-
age. However, in images (1) and (2), the elapsed time is similar.
This is due to the low contrast of these images that produce a
segmentation with a low number of components, therefore both
algorithms finish early. We note however that the number of
components is not identical to the number of the detected ob-
jects due to the post-processing step via the connected compo-
nents algorithm. For images (3) and (4), a much larger number
of components was obtained and the computational advantages
of FSAEM are significant.

5.5. Final considerations

In this section we applied the proposed mixture model es-
timation algorithm to three different problems: Clustering 2D
data points, image segmentation and object segmentation. The
results of the proposed method were confronted with other two
state-of-the-art algorithms on gaussian mixture model estima-
tion. From the obtained results two main observations can be
made: (i) the proposed method is consistently more computa-
tionally efficient that the others, and (ii) there is no clear ad-
vantage of any of the algorithms in terms of output quality. In
some cases one algorithm shows slightly better output quality

than the others, but there is no systematic trend we could ar-
gue about. The proposed method also presents the advantage of
having a simple initialization procedure, a single parameter to
tune, and a deterministic behavior. As such, we believe FSAEM
is an approach worth exploring in practical applications requir-
ing real-time clustering and segmentation methods, as well as
for further advances on the theoretical aspects of mixture model
estimation.

6. Conclusion

This work presented a new unsupervised clustering algorithm
that estimates a finite mixture model by means of a modifica-
tion of the Expectation Maximization algorithm. The algorithm
determines both the model complexity and the mixture parame-
ters in an incremental fashion. It starts from a single component
describing all the data set and evolves by replicating compo-
nents in a binary tree structure in order to cover a significant
part of the search space. The resulting mixture is evaluated
with the Minimum Message Length model selection criterion.
The binary tree organization of the computations is a key fea-
ture of our approach. It improves the space coverage in a way
that leads to systematic gains in efficiency with respect to other
approaches of the same purpose. We performed experiments
involving synthetic data and real images, comparing our new
approach against the alternative approaches. We showed that
our new algorithm performs considerably faster while achiev-
ing competitive accuracy in data description. In future work
we will study more systematic ways of tuning the single free
parameter of the algorithm, looking forward for fully unsuper-
vised and automated mixture model estimation methods.

Acknowledgements

This work was supported by the Portuguese FCT agency
through project PEst-OE/EEI/LA0009/2013, and the European
Commission project POETICON++ (FP7-ICT-288382).
[1] T. Kohonen, Analysis of a simple self-organizing process., Biological

Cybernetics 44 (1982) 135–140.
[2] T. Kohonen, Self-organizing formation of topologically correct feature

maps., Biological Cybernetics 43 (1982) 59–69.
[3] B. Fritzke, A growing neural gas network learns topologies., Adv an-

ces in Neural Inform ation Processing Systems 7 (NIPS’94), MIT Press,
Cambridge MA (1995) 625–632.

9

[4] J. Holmström, Growing Neural Gas - Experiments with GNG, GNG with
Utility and Supervised GNG, Master’s thesis, Uppsala University Depart-
ment of Information Technology Computer Systems Box 337, SE-751 05
Uppsala,, 2002.

[5] J. B. MacQueen, Some methods for classification and analysis of multi-
variate observations., Proceedings of 5th Berkeley Symposium on Math-
ematical Statistics and Probability. (1967) 281–297.

[6] P. Comon, Independent component analysis: a new concept?, Signal
Processing, Elsevier 36 (1994) 287–314.

[7] A. Hyvärinen, J. Karhunen, E. Oja, Independent component analysis,
New York: John Wiley and Sons ISBN 978-0-471-40540-5 (2001).

[8] G. McLachlan, D. Peel, Finite mixture models., John Wiley and Sons
(2000).

[9] L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor, Learning ob-
ject affordances: From sensory motor maps to imitation, IEEE Trans. on
Robotics 24 (2008).

[10] N. Greggio, A. Bernardino, C. Laschi, J. Santos-Victor, P. Dario, Real-
time 3d stereo tracking and localizing of spherical objects with the icub
robotic platform, Journal of Intelligent & Robotic Systems (2011) 1–30.
10.1007/s10846-010-9527-3.

[11] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper, Bridging
the gap between simulation and reality in urban search and rescue”, in:
Robocup 2006: Robot Soccer World Cup X.

[12] N. Greggio, G. Silvestri, E. Menegatti, E. Pagello, Simulation of small
humanoid robots for soccer domain., Journal of The Franklin Institute -
Engineering and Applied Mathematics 346 (2009) 500–519.

[13] M. Vincze, Robust tracking of ellipses at frame rate, Pattern Recognition
34 (2001) 487–498.

[14] J. G. G. Dobbe, G. J. Streekstra, M. R. Hardeman, C. Ince, C. A. Grim-
bergen, Measurement of the distribution of red blood cell deformability
using an automated rheoscope, Cytometry (Clinical Cytometry) 50 (2002)
313–325.

[15] H. Shim, D. Kwon, I. Yun, S. Lee, Robust segmentation of cerebral ar-
terial segments by a sequential monte carlo method: Particle filtering,
Computer Methods and Programs in Biomedicine 84 (2006) 135–145.

[16] Y. Sakimoto, M. Iahiguro, G. Kitagawa, Akaike information criterion
statistics, KTK Scientific Publisher, Tokio (1986).

[17] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978)
461–464.

[18] J. Rissanen, Stochastic complexity in statistical inquiry., Wold Scientific
Publishing Co. USA (1989).

[19] C. Wallace, P. Freeman, Estimation and inference by compact coding, J.
Royal Statistic Soc. B 49 (1987) 241–252.

[20] N. Greggio, A. Bernardino, J. Santos-Victor, Sequentially greedy unsu-
pervised learning of gaussian mixture models by means of a binary tree
structure, 11-th International Conference on Intelligent Autonomous Sys-
tems (IAS-11) - Aug 30, Sept 1 (2010).

[21] N. Greggio, A. Bernardino, C. Laschi, P. Dario, J. Santos-Victor, Fast
estimation of gaussian mixture models for image segmentation, Machine
Vision and Applications (2011) 1–17. 10.1007/s00138-011-0320-5.

[22] A. Figueiredo, A. Jain, Unsupervised learning of finite mixture models,
IEEE Trans. Patt. Anal. Mach. Intell. 24 (2002).

[23] L. Xu, Vector quantization, cluster number selection and the emalgo-
rithms, International Conference on Neural Networks and Signal Pro-
cessing, Nanjing, China (1995) 149–152.

[24] Z. Zhang, C. Chen, J. Sun, K. Chan, Em algorithms for gaussian mixtures
with split-and-merge operation, Pattern Recognition 36 (2003) 1973 –
1983.

[25] S. Richardson, P. Green, On bayesian analysis of mixtures with an un-
known number of components (with discussion), J. R. Stat. Soc. Ser. 59
(1997) 731–792.

[26] P. Green, Reversible jump markov chain monte carlo computation and
bayesian model determination, Biometrika 82 (1995) 711–732.

[27] N. Ueda, R. Nakano, Y. Ghahramani, G. Hiton, Smem algorithm for
mixture models, Neural Comput 12 (2000) 2109–2128.

[28] T. Huang, H. Peng, K. Zhang, Model selection for gaussian mixture mod-
els, http://arxiv.org/abs/1301.3558 (2013).

[29] N. Vlassis, A. Likas, A greedy em algorithm for gaussian mixture learn-
ing, Neural Processing Letters 15 (2002) 77–87.

[30] J. Verbeek, N. Vlassis, , B. Krose, Efficient greedy learning of gaussian
mixture models, Neural Computation 15 (2003) 469–485.

[31] A. Lanterman, Schwarz, wallace and rissanen: Intertwining themes in
theories of model order estimation, Int’l Statistical Rev. 69 (2001) 185–
212.

[32] B. J., A. Smith, Bayesian Theory, Chichester UK: John Wiley and Sons,
1994.

[33] J. H. Jensen, D. Ellis, M. G. Christensen, S. H. Jensen, Evaluation
distance measures between gaussian mixture models of mfccs, Proc.
Int. Conf. on Music Info. Retrieval ISMIR-07 Vienna, Austria (October,
2007) 107–108.

[34] P. Ahrendt, The Multivariate Gaussian Probability Distribution., Techni-
cal Report, http://www2.imm.dtu.dk/pubdb/p.php?3312, 2005.

10

(a) Iteration 1 (b) Iteration 9

(c) Iteration 59 (d) Iteration 137

(e) Iteration 158 (f) Iteration 163

(g) Iteration 177 (h) Iteration 216

(i) Iteration 226 (j) Iteration 241

(k) Final solution

Figure 2: Illustration of the evolution of the algorithm. Each subfigure represents a stage when new components are created or removed. In the
left of each subfigure it is represented the current state of the estimated mixture. The ellipses represent each of the components of the estimated
mixture. In the right of each subfigure it is shown the current structure of the search tree. Greyed nodes correspond to the active mixture
components. Nodes with an asterisk are marked as frozen because they have been expanded previously without success.

11

3-Gaussians
FIGJ FASTGMM FSAEM

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

8-Gaussians
FIGJ FASTGMM FSAEM

−5 0 5

−6

−4

−2

0

2

4

−5 0 5

−6

−4

−2

0

2

4

−5 0 5

−6

−4

−2

0

2

4

16-Gaussians
FIGJ FASTGMM FSAEM

−4 −2 0 2 4

−4

−2

0

2

4

6

−4 −2 0 2 4

−4

−2

0

2

4

6

−4 −2 0 2 4

−4

−2

0

2

4

6

Figure 3: Results of input clustering. Two-dimensional points, generated by the mixtures depicted in blue are represented as black dots in the 2D
plane. The estimated mixtures are represented in red. One can observe the equivalence between the tested methods on three different data sets,
generated by 3, 8 and 16 Gaussian mixtures, respectively.

12

Original Image FIGJ FASTGMM FSAEM Original Image FIGJ FASTGMM FSAEM

(1) 50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550 (7) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

(2) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120 (8) 20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

(3) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120 (9) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(4) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120 (10) 20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

(5) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140 (11) 20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

(6) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120 (12) 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

Figure 4: Color images segmentation: From image (1) to (6) we tested the algorithms on real images captured by our robotic platform RobotCub’s
cameras, and from (7) to (12) we exploit the algorithms’ possibilities on general real images.

13

Original Image FASTGMM color FASTGMM Original Image FSAEM Color FSAEM
reconstructed image binary image reconstructed image binary image

(1)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(2)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(3)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

(4)

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Original image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Segmented image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

CC Image blobs

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Figure 5: Image segmentation in the (R,G,B,x,y) color space. FASTGMM results are shown on the left, while FSAEM outcomes are represented
on the right. For each image, there is a subset composed by the original image, the color image reconstruction, and the binary image labeled
with the connected components, respectively. Each image contains the objects of interest highlighted in red for the color output, and green for the
binary output. The objects have been marked with their mean and covariance, represented as a regular ellipse in 2D, obtained with the connected
components labelling.

14

