
On the integration of vision and CPG based locomotion for path
planning of a nonholonomic humanoid crawling robot

Sébastien Gay, Sarah Dégallier, Ugo Pattachini, Auke Ijspeert and José Santos Victor

Abstract— In this paper we present our work on integrating
a CPG based locomotion controller with a vision tracker, and
an inverse kinematics solver to design a motion planning algo-
rithm based on potential fields for a non holonomic crawling
humanoid robot, the iCub. We study the influence of the various
parameters of the potential field equations on the performance
of the system and prove the efficiency of our framework by
testing it on a realistic robotics environment and partially on
the real iCub.

I. INTRODUCTION

Humanoids have inspired a lot of researchers and science
fiction authors over the last few decades. Building a machine
that would mimic humans with the same dexterity and
robustness is a problem far from solved. The first step
towards a fully functionnal humanoid robot is to enable it
to move around its environment autonomously, identifying
goals while avoiding collisions.

The work we present here is an attempt to integrate vision,
locomotion, reaching, and potential field based planning
to have a non holonomic humanoid robot, the iCub move
around a simplified environment using no external informa-
tion.

A. Locomotion

The locomotion system we developed uses central pattern
generators (CPG), networks of coupled oscillators inspired
from the spinal cord of many animals. CPG models are
increasingly used for different kind of robots and types
of locomotion as insect like hexapods and octopods [1],
quadrupeds [2] and [3], Swimming [4], and humanoids [5]
and [6]. For a more complete review of CPGs and their
application in robotics see [7]. The main benefits of CGPs
for locomotion is their stability to perturbations, the ability to
smootly modulate the shape of the oscillations with a simple
control signal and the possibility to easily integrate sensory
feedback. Most of the efforts of the past decades have been
dedicated to using CPGs for rhythmic locomotion pattern
generation. Yet, periodic movements do not suit discrete
tasks like manipulation or reaching. Our system embeds both
rhythmic and discrete motion generation in the same CPG.

B. Path planning

Numerous path planning techniques exist in the literature.
Most of them use a geometric description of the environment
and the robot. Grid based approaches overlay a grid on
the map of the environment, reducing the path planning
problem to a graph theory problem . Sampling techniques are
currently considered the state of the art for a vast majority of
motion planning problems. Yet, both these methods require

an exhaustive representation of the world to be efficient,
which is incompatible with vision based planning. They also
require a precise odometry estimation to be able to achieve
the computed roadmap, which is very difficult to achieve on
our robotic platform. See [8] and [9] for comparative studies
of grid based and sampling planning techniques.

Obstacle avoidance techniques are better suited to par-
tial knowledge of the environment. Examples of obstacles
avoidance techniques include vector field histogram [10]
which computes a subsets of motion directions and picks the
best according to some heuristics and the dynamic window
approach [11] which works in a similar way but in the
velocity controls space.

An Alternate method, at the border between path planning
and obstacle avoidance techniques, is Artificial potential
fields [12]. The idea is to place artificial positive potentials
on obstacles and negative potentials on the goal to attain,
and navigate along the gradient of the potential field. The
major problem of this method is its fragility to local minima,
although some harmonic potential field functions have been
developed to counter this weakness [13]. This method has
not been developped specifically for non holonomic robots,
and some variants based notably on fluid dynamics theory
[14] have been developped to cope with the constraints of
these particular robots.

The principal advantages of potential fields approaches
for our application are that it is easily extensible to partial
descriptions of the environment, and dynamically changing
environments and it is computationally inexpensive, a
necessary condition for online path planning.

Our approach does not claim to design a new state of
the art motion planning algorithm. Instead, the goal of this
work is to study the challenges that emerge when dealing
with real legged non-holonomic robots. In this optic, we
integrated a CPG based crawling locomotion framework,
with a vision tracking system exploiting the embedded
cameras of the robot, a high level motion planner based
on artificial potential fields and acting on the CPG, and an
inverse kinematics solver for reaching. To the knowledge of
the authors approaches aiming at integrating all these features
are very seldom in the litterature. Examples include the
work of [quote] on the HRP-2 robot, and This study shows
that online vision based navigation can be efficient even on
a legged nonholonomic robot where vision and odometry
estimation are strongly perturbed but the specificities of the
quadruped gait (rolling effect, complexity of the inverse
kinematics etc.). It also shows an application of a full control

jasv
Text Box
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, October 18-22, 2010

system based on dynamical systems allowing rythmic and
discrete movements.

II. PRESENTATION OF THE ARCHITECTURE

A. Hardware and sofware platform

The architecture presented here is based on the one de-
scribed in [15].

The iCub is a humanoid robot developed as part of the
RobotCub project [16]. It has been designed to mimic the
size and weight of a three and a half years old child
(approximately 1m tall). It has 53 degrees of freedom. The
iCub’s eyes have 2 DOF each and are composed of two
Dragonly 2 cameras with a 640x480 CCD sensor. The head
of the robot embedds a pentium CPU , allowing for fully
autonomous control, and more demanding computation can
happen outside the robot via ethernet communication.

As the rest of the iCub software, our architecture is build
on top of YARP [17]. The iCub architecture is composed
of multiple independent modules communicating between
each other and devices through YARP ports. These modules
can be run on any computer of a Ethernet network. Using
such a modular architecture gives the possibility to use for
instance different vision modules, or planning algorithms,
without changing the other modules in any way. It also
allows us to parallelize the work between different machines
of a cluster, which can be useful for demanding task like
inverse kinematics, or 3D simulation.

A low-level controller for the generation of both discrete
and rhythmic movements, based on the concept of central
pattern generators (CPGs), was developed with the main
focus of implementing an adaptive, closed-loop controller
for crawling in framework of the RobotCub project. In this
article, we combine this low-level architecture with a high-
level planner algorithm.

We first briefly present the low-level control and then we
discuss more in details the high-level planner that we de-
veloped. For more information on the low-level architecture,
please refer to [15] and [18].

B. Locomotion

Our locomotion framework is built on the concept of
central pattern generators (CPGs), that we take in the sense
of a network of unit generators (UGs) of basic movements
called motor primitives.

All trajectories (for each joint) are generated through a
unique set of differential equations, which is designed to
produce complex movements modeled as periodic move-
ments around time-varying offsets. More precisely, com-
plex movements are generated through the superimposition
and sequencing of simpler motor primitives generated by
rhythmic and discrete unit generators. The dynamics of the
discrete movement is simply embedded into the rhythmic
dynamics as an offset.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

Control Parameters

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0
2
4
6

Limb Trajectory

Fig. 1. Unit pattern generators. Upper panel. Control commands for
discrete and rhythmic movements, that is the target position (in blue) and
the amplitudes (in red), the frequency being not shown on the figure. Bottom
Panel: The resulting discrete and rhythmic movements (resp. in blue and in
red) and the trajectory embedding the two dynamics (black).

The discrete UG is modeled by the following system of
equations

ḣi = d(p− hi) (1)
ẏi = h4

i vi (2)

v̇i = p4−b2

4
(yi − gi)− b vi. (3)

The system is critically damped so that the output yi of Eqs 2
and 3 converges asymptotically and monotonically to a goal
gi with a speed of convergence controlled by b, whereas the
speed vi converges to zero. p and d are chosen so to ensure
a bell-shaped velocity profile; hi converges to p and is reset
to zero at the end of each movement.

The rhythmic UG is modeled as Hopf oscillator with the
output of the discrete system as offset:

ẋi = a
(
mi − r2

i

)
(xi − yi)− ωizi (4)

żi = a
(
mi − r2

i

)
zi + ωi (xi − yi) +

∑
kijzj (5)

ωi =
ωdown

e−fzi + 1
+

ωup
efzi + 1

(6)

where ri =
√

(xi − yi)2 + z2
i . When mi > 0, Eqs. 4 and 5

describe an Hopf oscillator whose solution xi is a periodic
signal of amplitude

√
mi and frequency ωi with an offset

given by gi. A Hopf bifurcation occurs when mi < 0 leading
to a system with a globally attractive fixed point at (gi,0). The
term

∑
kijzj controls the couplings with the other rhythmic

UGs j; the kij’s denote the gain of the coupling between the
rhythmic UGs i and j and are set here to generate a trot gait.
The expression used for ωi allows for an independent control
of the speed of the ascending and descending phases of the
periodic signal, which is useful for adjusting the swing and
stance duration in crawling for instance [18].

Qualitatively, by simply modifying on the fly the
parameters gi and mi, the system can switch between
purely discrete movements (mi < 0, gi 6= cst), purely
rhythmic movements (mi > 0, gi = cst), and combinations
of both (mi > 0, gi 6= cst) as illustrated on Figure
1. Different values for the kij’s lead to different phase
relationship between the limb, i.e. different gaits for instance.

C. Vision

For a robot to be able to navigate in an environment, it
needs to be able to percieve its environment ; in our case
see it. The iCub is equipped with two cameras, two eyes,
with the same two degrees of freedom as the human eye. As
visual processing is not our main topic here, we chose to use
a very simple marker based tracker, based on the ARToolKit
Plus library [19]. Another reason for us to use this tracker is
the fact that is doesn’t use stereo-vision to compute the three
dimensional position of a fixed sized marker. It actually
uses only one of the two cameras. This allows for faster
tracking, which is especially important when both the eyes
and the head are moving during scanning. The obstacles and
the goals are marked with a different marker. The tracker is
able to output the three dimensional position in the camera
reference frame and the ID of multiple markers. On the real
iCub robot, the tracker is able to detect an 8cm marker and
its ID about 1.5m away. It’s also very robust to changes of
lightning. The position of the marker is translated to the
robot root reference frame frame (attached to the waist)
using forward kinematics.

The main limitation of the vision system of the iCub is
its relatively small vision field(α ≈ 45◦) which implies a
very small map of the environment, and thus may cause to
miss most of the goals and even collide with obstacles when
navigating (see Section II-E). To solve this problem, we have
the robot scan the environment by rotating its head and eyes
from left to right. The head oscillation is coupled with the
limbs movements to have the scanning speed depend on the
locomotion speed. This scanning process extends the vision
field of the robot to θ ≈ 120◦ (see Figure 3.

D. Reaching

Once the robot approaches a goal near enough it should
touch it with its hand. The robot moves its head and eyes
while approaching the goal to keep it in the center of its
vision field. This will allow him to make sure it doesn’t loose
the goal and to have a better precision on the goal position.
The goal position is estimated using the vision tracker
described in the previous section. Once the robot reaches
a specific distance to the goal, it’s considered ”potentially
reachable”. Starting this point we use inverse kinematics to
compute the joints angle of the 7-DOFs arm to achieve the
target position, that is the position of the goal.

An inverse kinematics cartesian solver was designed
specifically for the YARP framework. This solver is based on
the IPOPT (Interior Point OPTimizer) library [20], a library
for large scale non-linear optimization. It uses a primal-dual
interior-point algorithm to solve a problem of the form:

min
x∈Rn

f(x)

s.t. c(x) = 0
xL ≤ x ≤ xU

(7)

where f is the objective function, c are the equality
constraints and xL and xU are the lower and upper bound

of the variable x.

For out problem, given a desired position xd in R3, the
solver finds the joint configuration q in the 7 dimensional
joint space Q ∈ R7 that achieves the nearest position Kx(q)
of the end effector (i.e. a given part of the arm):

q = argmax
q∈R7

(||xd −Kx(q)||2)

s.t. qL < q < qU

(8)

where qL and qU are the lower and upper joint limits of
the arm of the robot. For more details about IPOPT and the
non-linear solver see [20].

It is then possible to compute the euclidian distance
between the desired and achieved positions ρ(x, xd) and set
a threshold ε defining the reachability Re(g) of the goal g
as:

Re(g) : ρ(x, xd) < ε (9)

Once the goal is ”reachable”, the robot stops, lift its
reaching arm to avoid collisions with the ground and and
then moves it to the computed position q that achieves x
using the dicrete system desribed in Section II-B.

E. Planning

The purpose of the planning module is to have to robot
navigate in a world composed of multiple goals and multiple
obstacles. In a metaphor of a real infant, one can think of
the goals as toys scattered around a room with furnitures and
various kinds of obstacles. The input of this module is a set of
3D positions of goals and obstacles sent by the vision tracker
described in Section II-C and expressed in robot coordinates.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

2 4 6 8 10

5

10

−50

0

50

Fig. 2. An example of map of the environment (top left) with the obstacles
represented as red circles and the goals as green ones. The associated
potential field is represented on the right. The field of action of an attractive
potential is wider than that of a repulsive one due to the maximum distance
of action ρ0 = 2 and kr = 4 of the repulsive potentials (see Equation 10

Every time a head scanning is finished, a partial map
of the environemnt is generated and, attractive potentials
Ua(q) are placed on the goals and a repulsive ones Ur(q)

on the obstacles, q

(
x
y

)
being the robot 2D position on

the map. Figure 2 shows an example of a partial map of the
environment and the potential field associated to it.

Usual potential methods have a unique goal and thus
define the attractive potential and the corresponding
attracting force proportional to the distance to the goal or
even to a power of it. Having multiple goals, we cannot
define it this way since the robot would keep oscillating
between goals without ever reaching one.

Instead, we chose to define the attractive and repulsive
forces (~Fa) and (~Fr) created respectively by the goal and
obstacle potentials as:

~Fa = −∇Ua(q) = −ξ 1
ρ(q)ka

~u

~Fr = −∇Ur(q) =

{
η 1
ρ(q)kr

(1
ρ(q) −

1
ρ0

)~u if ρ ≤ ρ0,

0 if ρ > ρ0.
(10)

where :
• ρ(q) is the euclidian distance between the origin of the

potential and the robot.
• ρ0 is the maximum distance of influence of a repulsive

potential.
• ka and kr are positive factors that determine the curva-

ture of the potential surface.
• ξ and η are positive scaling factors.
• ~u = ∇ρ(q) is a unit vector oriented away the origin of

the potential and towards the robot.
The resulting force ~FΣ that applies on the robot is then

simply:

~FΣ =
n∑
i=0

~Fai +
m∑
j=0

~Frj (11)

n being the number of goals and m the number of obstacles.
The robot moves then of a small distance following this

resulting force. Its displacement ~D and angle of rotation φ
can be defined as :

~D = ∆
~FΣ

||~FΣ||
φ = atan2(~r⊥.~u, ~r.~u)

(12)

Where where ~r is the current direction of motion of the
robot and ∆ is a small distance to be defined and ⊥. is the
perp-dot product.

Here we only compute φ explicitly and let ∆ be the
distance achieved by the robot between two refreshing of
the potential field (between two full scans). Note that the
actual rotation angle of the robot corresponds to the torso
roll angle of the robot (see Figure 3

The values of kr, ka and ρ0 in Equation 10 influence
strongly the shape of the potential field. Figure 4 shows this
influence for two different values of ρ0. A potential with
a low k (kr or ka) has a sligher slope, and thus a larger
range of influence than one with a big k. By variying ρ0,
one can explicitly limit the range of influence of an obstacle

ρ0
α
θ

R

Fig. 3. A snapshot of the Webots world with annotations of the important
quantities. The red pylon is an obstacle, the green cube a goal (notice the
ARToolKit markers on them). α is the field of view of the robot, θ the
extended field of view and R the radius of curvature

potential. Setting a low ρ0 is particulary useful if one wants
the robot to be able to squeeze in between obstacles. Setting
a high kr may have a similar effect, while also changing the
slope of the potential field. Section III presents a study of
the influence of these various parameters on the performance
of robots with different minimum curvature radius.

5
10

5
10

0

2

4

k = 1

5
10

5
10

0

2

4

k = 4

5
10

5
10

0

2

4

k = 1

5
10

5
10

0

2

4

k = 4

Fig. 4. Influence of k (kr or ka) on the shape of the potential field for
ρ0 = 2 and ρ0 = 10. the slope of the potential shape increases with k,
while ρ0 allows an explicit limition of the range of influence of the potiential

III. RESULTS

In order to study the influence of the various parameters
described in Section II-E on the performance of the motion
planning algorithm with the constraints of the real robot
we used a two stage simulation approach: first using a 2D
simulator, having enough simplicity and speed to test a wide
range of parameters and then using a real robotics simulator
environment. The third stage, implementation on the real
robot, has been started and will be discused at the end of
this section.

We performed a series of systematic test using a simple
2D simulator on the following parameters: ka, kn, and
ρ0 and R, the radius of curvature of the robot. In this
simulator, no vision is involved but the field of view of
the robot is constrained geometrically. Thus obstacles and
goals are only ”seen” by the planning algorithm if they are

in an area corresponding to a field of view of 120, with
a depth of two meters, from the robot position and along
its orientation. These values are coherent with the real
robot properties. We generated 70 corridor-like worlds of
dimension 4 × 40 m, containing 10 goals and 15 obstacles
each, and enclosed by walls of obstacles. The goals and
obstacles were randomly position with the only condition
that the distance between each of them was at least 1m.
This is to ensure a rather uniform distribution of goals
and obstacle and avoid worlds with conglomerates that
would be impossible for any parameters and thus would
lead to similar scores for all trials. The parameters ranged
as follows: kr = [0.5, 1, 2, 4, 6], ka = [0.5, 1, 2, 4, 6],
ρ0 = [1, 1.3, 1.5, 2], R = [0.7, 1, 2, 3, 4, 6] (42000 runs).

The results of these systematic tests are presented in Figure
5.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

R (in m)

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

goals reached
obstacles collided

0

2

4

6

1
1.2

1.4
1.6

1.8
2
0

2

4

6

8

10

R (in m)ρ
0
 (in m)

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

goals reached
obstacles collided

2
4

6

123456

0

1

2

3

4

5

6

7

8

k
r

R = 1m − ρ
0
 = 2m

k
a

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

1
2

3
4

5
6

2

4

6

1

1.5

2

2.5

3

3.5

4

4.5

k
r

R = 4m − ρ
0
 = 2m

k
a

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

goals reached
obstacles collided

Fig. 5. Results of the systematic tests using the 2D simulator. Top left:
number of reached goals and obstacles collided over the whole pool of tests.
Top right: influence of ρ0 on the performance. Bottom left: influence of ka

and kr on the performance for a small radius of curvature (R = 1) for
ρ0 = 1. Bottom right: influence of ka and kr on the performance for a big
radius of curvature (R = 4) for ρ0 = 2.

The top left graph shows the mean number of reached
goals and collided obstacles over all runs for each value of
R. As can be expected the smaller the radius of curvature
R the better the performance. The fact that the number of
obstacles collided is lower for R = 6 than for R = 4 is
due to the corridor shape of the world tested. Indeed, for
R = 6 the robot moves almost in straight line and thus the
probability to collide with the walls is reduced.

The top right surface plot shows the influence of ρ0 on the
number of goals reached and obstacles collided. For low R,
the value of ρ0 has barely any influence on the performance.

The small radius of curvature of the robot allows it to avoid
obstacles even if they influence its motion only very late
(ρ0 small). For higer R however, the performance strongly
decreases with ρ0. This time the robot can only avoid
obstacles if it can anticipate enough (ρ0 big).

The bottom two graphs show the influence of kr and ka
on the performance for a small and a big value of R, and for
ρ0 = 2. When the radius of curvature is sufficiently small,
the values of kr and ka are, like ρ0 in the previous graph,
not critical. This independance of the parameters for small R
is a good feature of the planning algorithm for real robotics
applications, since it means that the system is stable in the
parameter space. Very small values of kr and ka lead to
slightly lower performace, since the robot cannot get near
enough obstacles to performe quick maneuvers, which would
be made possible and safe by its small curvature.

For big R the number of collided obstacles mostly
increases with the value of kr, since for big kr the influence
of the obstacle potentials decreses rapidly with the distance
and so the robot cannot anticipate enough to cope with its
big radius of curvature. A less intuitive observation is that
the number of reached goals decreases for small values of
ka. This can be explained by the fact that, where several
goals are in the field of view of the robot, and ka is small,
their influence would mosly balance until one is significantly
nearer than the other. At that point however, with a big R,
the robot would not be able to turn fast enough to reach the
nearest one. This happens in Figure 6 for R = 4 for the 2D
simulator. At y ≈ 12 the robot passes in between two goals
without reaching any of them.

These observations are useful to adapt a potential field
based planning algorithm to the constraint of a real non-
holonomic robot. But first we have to check that the behavior
of a real robot would match that of the 2D simulation,
at least concerning curvature radius issues. We used the
Webots [21] robotics simulator, which is based on the Open
Dynamics Engine for the physics simulation and on OpenGL
for the rendering. It is rather realistic in the sense that is
enables to set robot specific contraints such as joints limits
of position, velocity, acceleration and force, as well as the
proportional term P of the low level controller. Parameter
of the environment like gravity, friction coefficient etc. are
also open. The Webots model of the iCub fully respects the
Daenavit-Hartenberg parameters of the real robot as well
as the limits of the joints. The same controller is used in
Webots and on the real robot thanks to a YARP interface
for Webots. Detection of the obstacles and goals is not
geometrical anymore as in the 2D simulator but uses the
perspective projection webots cameras, the ”eyes” of the
robot, to perform visual processing using the ARToolKit
based marker tracker described in Section II-C. Hence de-
tection is not deterministic anymore but subject to noise in
the position extraction of the markers. Locomotion of course
is significantly different since it uses the CPG based system
described in Section II-B and not a simple translation like
in the 2D simulator. This also induces noise in the vision

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

R (in m)

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

goals reached
obstacles collided

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

R (in m)

nu
m

be
r

of
 g

oa
ls

/o
bs

ta
cl

es

goals reached
obstacles collided

−2 0 2

0

5

10

15

20

25

30

35

40

x (in m)

y
(in

 m
)

R=1

−2 0 2

0

5

10

15

20

25

30

35

40

x (in m)

y
(in

 m
)

R=2

−2 0 2

0

5

10

15

20

25

30

35

40

x (in m)

y
(in

 m
)

R=3

−2 0 2

0

5

10

15

20

25

30

35

40

x (in m)

y
(in

 m
)

R=4

Fig. 6. Comparison of the performance of the planning algorithm for
different radius of curvature in one world using the the 2D simulator
(top left) and Webots (top right). Comparison of trajectories with similar
performance in Webots (blue solid line) and the 2D simulator (black dashed
line) for different values of R (bottom figure).

tracker due to movements of the head and a high variance
in the potential field generation since markers are constantly
entering and escaping the field of view of the robot, causing
the modifications in the potential field. To cope with these
issues, we performed noise filtering at the vision level and
introduced a short term memory at the planning level. This
memory introduces damping in the changes of the potential
field and thus prevents the robot from constantly changing
direction.

Due to the complexity of the simulator + locomotion +
vision tracker + planning alorighm system, we only per-
formed a limited amount of tests, to prove the efficiency
of the whole framework and show that the result match
that of the 2D simulation. We chose a world that gave
significantly different results for different values of R in
the 2D simulations. We run 5 runs for each values of R ≈
[1, 2, 3, 4]. We could not find a stable gait leading to R < 1
(the robot would not move) or R > 4 (the robot would move
in straight line). A significant difference between the way
the radius of convergence is computed in the 2D simulator
and in Webots is worth mentioning. In webots, turning is
achieved by changing the torso roll angle (see Figure 3)
and modifying the amplitudes of the left and right limbs
accordingly. However, the robot cannot reach its maximum

turn angle at once since it cause a lot of sliding and big
constraints on the motors. Thus at each step the turn angle
increases by a small amount, and so the radius of curvature
is not constant, unlike in the 2D simulator. The values of R
given before are the curvature after the maximum turn angle
has been reached, which may be different from the actual
turn angle while navigating.

Figure 6 (top two graphs) shows the performance of the
planning for different values of R in Webots and in the 2D
simulator. Interestingly the relation between the maximum
curvature and the number of goals reached and obstacles
collided is qualitatively the same as in the 2D simulator.
Thus the 2D simulator is a good approximation of the
Webots simulation which should be a good approximation of
what should happen when implementing on the real robot.
However, quantitatively, the values are different, the values
in the 2D simulator corresponding approximatively to those
in Webots for 2 × R. This is mostly due to the imperfect
match between the curvature in both simulators, as discused
before.

Overall the planning algorithm proved to solve well the
planning problem with the proper parameters. For R = 1 the
robot was able to reach 9 goals out of 10 and collide with
no obstacle (even reach 10 in the 2D simulator). The fast
online refreshing of the potential field during locomotion
allows the robot to handle dynamical enviroments. The
video attached with this paper shows the iCub navigating in
a Webots world with only one goal moved around manually.
The obstacles were also moved during this experiment. In
the end the iCub was able follow the moving goal while
avoiding the obstacles.

Finally we implemented the crawling, vision and reaching
mechanisms on the real iCub robot. We did not yet imple-
ment steering and thus did not test the planning algorithm
on the iCub. The experiment consisted in having the robot
crawl for a couple of meters, then detect a marker placed on
the ground, follow it with its head and reach it with its right
arm. Crawling proved very stable even though controlled in
open loop, and the robot was able to switch instantly from
rythmic to dicrete movement when reaching. Visual detection
and tracking showed good performance and the robot seldom
lost track of the marker before reaching it. The attached
video presents this experiment. Figure 7 show the output
of the CPG and the actual trajectories of the four controlled
joints of the right limbs (the left ones are symetrical). The
robot followed very closely the commands sent by the CPG
when crawling and reaching. The small offset between the
encoders and the CPG output when reaching for joint 0 is due
to the velocity limit of this joint. The small oscillation when
crawling for joint 2 is due to a mechanical coupling of the
three shoulder joints, but was not problematic for crawling.

IV. CONCLUSIONS

We have presented in this document a full system to
allow a humanoid to navigate in a simplified environment
using only its vision to get knowledge about its surrounding.

Crawling Reaching

Discrete
System

Rythmic Sytem

Fig. 7. Output of the CPG (solid line) and encoders of the four controlled
joints of the right leg and right arm during crawling then reaching. Joint 0:
shoulder/hip pitch, joint 1: soulder/hip roll, joint 2: shoulder/hip yaw, joint
3: elbow/knee

The low level locomotion mechanism, the Generator, uses
coupled non-linear oscillators (CPG), to generate complex
locomotion patterns using simple control inputs. These in-
puts are modulated by the Manager to cope with internal
constraints. High level command are sent by the Planner to
the manager. This locomotion framework is able to perform
rythmic movements, for crawling, and discrete movements
for reaching. At the highest level, we designed a motion
planning system based on potential field and using the
visual cues provided by a maker based tracker. The whole
locomotion + vision + motion planning + reaching is thus
fully autonomous.

We proved the efficiency of our system on a realistic
robotics environment and using a 2D simulator to study
the influence of the various parameters of the potential
field equations on the performance while respecting the
constraints of non-holonomic robots. We showed that for
small radius of curvature, the system is very stable to changes
in parameters, while for big radius of curvature, setting the
values of kp and kn low and ρ0 high allows the robot to
anticipate more and compensate for its big curvature.

Once specificity of our work worth mentioning is the shape
of the environments tested: corridor like. We suppose that the
behavior of the system would be similar in different shape
of environments but proving it is left for future work.

Implementation on the real iCub showed promising results,
the robot beeing able to crawl, track a marker on the ground
while crawling and finally reach it.

Further work should include more systematic tests of the
planning system in the realistic robotics environment and on
the real robot.

REFERENCES

[1] S. Inagaki, H. Yuasa, T. Suzuki, and T. Arai, “Wave cpg model
for autonomous decentralized multi-legged robot: Gait generation and

walking speed control,” Robotics and Autonomous Systems, vol. 54,
no. 2, pp. 118 – 126, 2006. Intelligent Autonomous Systems.

[2] H. Kimura, S. Akiyama, and K. Sakurama, “Realization of dynamic
walking and running of the quadruped using neural oscillator,” Auton.
Robots, vol. 7, no. 3, pp. 247–258, 1999.

[3] J. Buchli, F. Iida, and A. J. Ijspeert, “Finding Resonance: Adaptive
Frequency Oscillators for Dynamic Legged Locomotion,” in Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3903–3909, IEEE, 2006.

[4] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal cord
model,” Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[5] G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of
bipedal locomotion by neural oscillators in unpredictable environ-
ment,” Biological Cybernetics, vol. 65, pp. 147–159, July 1991.

[6] L. Righetti and A. J. Ijspeert, “Programmable Central Pattern Gener-
ators: an application to biped locomotion control,” in Proceedings of
the 2006 IEEE International Conference on Robotics and Automation,
2006.

[7] A. J. Ijspeert, “Central pattern generators for locomotion control
in animals and robots: a review,” Neural Networks, vol. 21, no. 4,
pp. 642–653, 2008.

[8] S. M. LaValle and M. S. Branicky, “On the relationship between
classical grid search and probabilistic roadmaps,” 2004.

[9] R. Geraerts and M. H. Overmars, “Sampling techniques for proba-
bilistic roadmap planners,” 2004.

[10] J. Borenstein, Y. Koren, and S. Member, “The vector field histogram -
fast obstacle avoidance for mobile robots,” IEEE Journal of Robotics
and Automation, vol. 7, pp. 278–288, 1991.

[11] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
1997.

[12] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Rob. Res., vol. 5, no. 1, pp. 90–98, 1986.

[13] K. Sato, “Collision avoidance in multi-dimensional space using laplace
potential,” in Proc. 15th Conf. Robotics Soc. Jpn., 1987.

[14] D. Jo and K. Didier, “A reactive robot navigation system based on a
fluid dynamics metaphor,” in Parallel Problem Solving from Nature,
vol. 496 of Lecture Notes in Computer Science, pp. 355–362, Springer
Berlin / Heidelberg, 1991.

[15] S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta, and A. Ijspeert,
“A modular bio-inspired architecture for movement generation for the
infant-like robot iCub,” in Proceedings of the 2nd IEEE RAS / EMBS
International Conference on Biomedical Robotics and Biomechatron-
ics (BioRob), 2008.

[16] RobotCub, “http://www.robotcub.org/.” An Open Framework for
Research in Embodied Cognition.

[17] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot plat-
form,” International Journal of Advanced Robotics Systems, special
issue on Software Development and Integration in Robotics, vol. 3,
no. 1, 2006.

[18] L. Righetti and A. J. Ijspeert, “Pattern generators with sensory
feedback for the control of quadruped locomotion,” in Proceedings of
the 2008 IEEE International Conference on Robotics and Automation
(ICRA 2008), pp. 819–824, 2008.

[19] D. Wagner, “http://studierstube.icg.tu-graz.ac.at/handheld ar/-
artoolkitplus.php.” Augmented Reality Tracking Library.

[20] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.

[21] Webots, “http://www.cyberbotics.com.” Commercial Mobile Robot
Simulation Software.

