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ABSTRACT
With the increasing miniaturization of robotic devices, many actuators lack absolute position sensing. In these cases the initial 
position of the joints is unknown at startup. In this paper we present a vision based method for the automatic homing of serial 
kinematic structures composed of rotational joints, and having a perspective camera on the end-effector. Examples of such systems 
are pan-tilt surveillance cameras and most kinds of humanoid robot heads. The method is based on producing motions with known 
amplitude in one of the joints of the kinematic chain to induce image motion in the camera. The analysis of the induced homography 
allows the computation of the unknown angle of the other joint. The method can be iterated on more axes to calibrate longer serial 
chains. It requires calibrated cameras, static objects while homing and short links in the kinematics structure (or, equivalently, far 
away objects). We have implemented and validated the method in a small humanoid robot head. 

1. INTRODUCTION
Many off-the-shelf DC motors are equipped with incremental encoders as 
the main feedback sensor, lacking absolute position sensing. These types 
of motors are often used in the construction of robots and other automated 
devices. In these systems it is not possible to know the initial position of 
the joints at startup and a procedure is necessary to set the robot to a 
known state, denoted as home or zero position. 

To address this problem, it is usual to equip the robot with limit switches, 
or homing switches, that detect when the axes are in particular angular 
positions. However, due to miniaturization constrains, it may not be pos-
sible to install such sensors in the robot. Another possibility is to drive the 
axes to a mechanical stop and monitor the motor current. When the cur-
rent exceeds a certain value, then the motor has reached the mechanical 
limit, whose angle can be known a priori. However, this procedure adds a 
source of physical stress in the system and may damage the mechanical 
components in the long term.

Even when the above strategies are feasible, they require the careful 
placement of limit and home switches, and a precise measurement of 
mechanical limits. Additionally, when attaching the cameras to the end-
effector, there are always some misalignments that may degrade the 
initial calibration procedure.    

In this paper we propose a solution to this problem for certain types of 
kinematics structures having cameras at the last joint of the chain. We 
present a self-homing procedure for system start-up that does not require 
absolute sensors, neither home/limit switches, nor the need to drive the 
system to mechanical hard stops. Instead, it performs small prospective 
motions in the robot joints and observes the image motion induced in the 
camera. It is assumed that the scene is static and that axes almost intersect 
(or, equivalently, objects are distant enough from the camera with respect 
to the length of the kinematics links). In these circumstances the induced 
image motion only depends on the given motion and the angle between 
the camera’s optical axis and the rotation axis. By iterating this procedure 
in the several robot axes, it is therefore possible to automatically determine 
the wake-up state of the system.

There are very few works addressing the problem of visual based homing. 
Sometimes visual homing denotes the process of driving a system to some 
known position in the environment (see for instance [9]). In our case we 
drive the robot to a known kinematic configuration rather that a known 
position in space. To the best of our knowledge, the only work related to 
ours is [10] where the home configuration of a robot arm is achieved using 
images taken from outside cameras. In our case the cameras are “inside” 
the robotic system being calibrated.

The types of kinematic structures we consider are very common both in 
surveillance cameras and in robot heads. We implement the method and 
present results in a small humanoid robot head, calibrating its eyes and 
neck. Notwithstanding, the principle can be easily extended for other 
serial kinematics structures.

This paper is organized as follows. In Section 2 we formulate the problem in 
terms of the system kinematics and a homography estimation procedure. 
Then, in Section 3 we present a methodology to estimate the particular 
homographies arising in this problem. Section 4 is devoted to the presenta-
tion of experimental results of the application of the proposed method to 
the automatic homing of a small robot head. Finally, Section 5 presents the 
conclusion of the work and directions for future developments.

2. PROBLEM FORMULATION
In this section we formulate our problem in terms of a homography estima-
tion problem. A homography is a transformation that is able to explain the 
relationship between the points observed in an image before and after a 
rotation of the camera. From the homography it is often possible to recover 
the rotation angles. Therefore, we are going to analyze the homography 
arising from the prospective motions applied to the robot, as a function 
of the initial, unknown, joint angles.

Let us consider initially the tilt-pan kinematics structure presented in 
Fig. 1. A camera is attached first to a pan unit, and then the pan unit is 
attached to a tilt unit.  A similar analysis can be made for other kinemat-
ics structures.
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Figure 1 . Left: the kinematics structure of the pan-tilt system considered in this paper. Right: 

the adopted orientation for all the involved coordinate frames.

Considering identical reference coordinate frames for all joints in the 
canonical state, as shown in Fig. 1, the rotation matrix representing the 
camera’s orientation with respect to the world reference frame depends 
on the pan and tilt angular displacements:

with          		                    and

Fixed points in the world, at coordinates (X, Y, Z)  can be expressed in the 
camera frame by:

The perspective projections of these points in the image plane have the 
following normalized coordinates:

Let us consider that, at start-up, the system has initial angles q
t
0 and q

p
0. 

These angles are unknown when the system is turned on. Then, a pro-
spective motion of the tilt unit is performed: the tilt angle is changed by 
q

t
. This process is illustrated in Fig. 2.

Figure 2 . The geometry of the system before (a) and after (b) the prospective motion.

For the sake of simplicity, and without loss of generality, we can consider 
a null initial tilt angle, q

t
0 = 0. This corresponds to set the world reference 

frame aligned with the initial robot’s tilt frame. In the above conditions, 
points observed by the camera at system start-up are at coordinates:

(1)

(2)

After the tilt’s prospective motion, these points are observed in new im-
age coordinates:

(3)

(4)

Let us recall that we are willing to estimate q
p0

, the unknown pan angle 
at start-up. q

t
 is a known, actuated angle. The image coordinates x

0
, y

0
, 

x
1
 and y

1
 can be measured from the images by suitable image feature 

detectors and trackers, and X, Y and Z are unknown 3D coordinates of 
world points. Our objective now is to eliminate these coordinates in the 
previous equations. 

From equations (1) and (2) we can write the following constraints:

(5)

(6)

Now, dividing both the numerator and denominator of Eqs. (3) and (4) by 
X, and introducing the constraints in Eqs. (5) and (6), we obtain:

(7)

(8)

These equations can be rewritten in the homography form:

(9)

A close inspection to the homography matrix shows that it has some 
repeated entries and only 6 of them are different. It has the form:

(10)

In the following section we will describe a method to estimate the entries 
of this matrix from the visual data. Once the homography is estimated, 
we can compute the unknown angle q

p0
 by, e.g.:
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RS3. COMPUTING THE HOMOGRAPHY
In this section we describe the method employed to estimate the par-
ticular homography arising in our formulation. The section is divided in 
three parts. The first part describes the methods employed to obtain point 
matches between the images before and after the prospective motion.  
The second part formulates the problem of estimating the homography 
from point matches, measured in the images. The third part presents the 
whole algorithm integrated in a robust estimation architecture (RANSAC).

3.1. Feature Tracker
For the estimation of the homography we need first to extract from the 
images a set of points visible on both images (before and after the pro-
spective motion) and their pairwise correspondences: 

In the above equation, the lower index represents the image (0 for the 
image before and 1 for the image after the rotation), and the upper index 
represents the index of the point in the set, from 1 to N. 

To obtain an adequate set of points in the first image, we use the corner 
detector in OpenCV [4], a open-source computer vision C library. The corner 
detector selects points in the image that are easy to track, and is based in 
[7]. It calculates the minimum eigenvalue of the Hessian matrix for each 
pixel of the image and then performs non-maxima suppression so that 
only local maxima in 3x3 neighborhood remains. Then it rejects the corners 
with the minimal eigenvalue less than a quality level determined by us. 
Finally it checks if all the corners found are separated enough one from 
another according to minimal distance determined by us. 

The next step is to track the selected points. To do this we use the sparse 
iterative version of Lucas-Kanade optical flow method in pyramids [8], also 
implemented in the OpenCV library. It calculates the coordinates of the 
feature points on the current video frame given their coordinates on the 
previous frame. The function finds the coordinates with sub-pixel accuracy 
and rejects the points that cannot be reliably tracked in the second image.

3.2. Homography Estimation
There are several off-the-shelf routines for estimating homographies from 
point matches [5]. However, the homography arising in our problem has 
a special structure and we want to exploit this structure to improve its 
estimation. Using Eqs. (9) and (10) for each point match obtained in the 
tracking procedure, we have: 

Rearranging the previous equations, for each point we get the following 
constraints: 

This can be written vector form

with

Given a set of N corresponding points, we can form the following linear 
system of equations:

with 
 

Since the homography has 6 different entries we need at least 3 points to 
estimate it (each point contributes with two equations).  We can compute 
h through the Singular Value Decomposition (SVD) of A. From the SVD we 
take right singular vector which corresponds to the smallest singular value. 
Finally we can reshape the entries of h into the homography matrix H.

3.3. Robust Estimation
The above homography estimation method works well when there are no 
erroneous correspondences between the points in both images. Unfortu-
nately, the tracking method sometimes provides false point matches that 
will degrade the results of the homography estimation. In order to address 
this problem, we use a well known robust estimation method that is able 
to eliminate the false matches (outliers) from the estimation process. 
The RANdom SAmple Consensus (RANSAC) [6] is an algorithm for robust 
estimation of models in the presence of many data outliers. 

We apply the RANSAC algorithm to our problem as follows:

• Repeat for L times:
—	 Select randomly a set of 3 feature pairs
—	 Compute homography H using the selected feature pairs 
—	 Calculate a degree of fit (d) for all correspondences 
—	 Compute the number K of inliers consistent with H, i.e. the number 

of correspondences for which the degree of fit is lower than a 
threshold (d<t).

• Keep H whose set of inliers is the largest.

In our case, we use the symmetric transfer error to compute the degree 
of fit: 

where x ↔ x’ are the point correspondences.

The number of iterations L is set adaptively, according to the following 
algorithm:

• L = ∞ , samplecounter = 0
• While L = samplecounter repeat

—	 Execute a RANSAC cycle (select random samples, compute hom-
ography and the number of inliers)

—	 Estimate the proportion of outliers by
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—	 Set 	 with p = 0.99 and s = 3 (number of feature 

pairs in a sample). 

—	 Increment sample counter
• Terminate

This rule ensures that, with probability p, one among L samples will be 
free of outliers [5].

4. EXPERIMENTAL RESULTS
The proposed method was written in C++ and implemented as a module 
in the YARP framework [2]. YARP (Yet Another Robot Platform) is a mid-
dleware that facilitates the distributed processing and communication 
among different computers and provides operating system independence. 
We have also used the following additional libraries for the image based 
measurements and homography estimation:

•	 OpenCV (Open Source Computer Vision) which is used to create image 
processing part of the project [4].
•	 GSL (Gnu Scientific Library) [3] which is used to estimate the homography.

All used libraries are free open source software.

The method was then tested with the iCub humanoid robot’s head [1]. It 
contains 6 DOFs: neck pan, tilt and swing and eye pan and tilt as shown 
in Fig. 3.

Figure 3 . Kinematics of the iCub robot head used in the tests.

We have performed the calibration of the right eye and head pan, which 
follow directly the formulation described in this paper. Whereas for calibrat-
ing the left eye the procedure is identical, for calibrating the other joints, a 
different set of equation is required, but can be derived in a straightforward 
manner using the same principles. The testing procedure was the following:

1. Find points of interest to track,
2. Move head or eye tilt,
3. Track points,
4. Compute homography matrix for correspondences,
5. Compute the pan angle.

Fig. 4 shows the sequence of actions required in the calibration procedure. 
Notice that the right eye, at startup, was offset from its canonical position. 

Then we have applied a tilt motion of 5 degrees. After the above steps, if 
we have a sufficient number of point matches (3 is the minimum) we are 
able to compute the homography and the initial pan angle. Fig. 5 shows 
the images and the tracked points used to compute the homography. 
Then we move the pan axis with the symmetrical of the computed value 
in order to set the eye to its canonical position (zero pan).

Figure 4 . Sequence of motions required to calibrate the eye. a) right eye position at startup. b) 

right eye position after prospective tilt motion. c) right eye position after calibration.

Figure 5 . Right eye image grabbed with tracked points, before (a) and after (b) the tilt motion.

The same procedure can be applied to the left eye, so that both eyes are 
calibrated. Once the eyes are calibrated, then we can calibrate the neck 
pan angle using the same method. This is illustrated in Fig. 6.  

a) b)

c)

a)

b)
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Figure 6 . Calibration procedure for the neck pan. The robot starts up with significant offset in 

the neck pan joint, with respect to its canonical position (a). A motion of 10 degrees is applied 

to the neck tilt (b). The proposed method estimates the initial pan angle and compensates it (c).

Notice that, in the beginning, the neck pan angle has a large offset to 
its canonical position. In the calibration procedure we have applied a tilt 
motion of 10 degrees up. Then the neck pan angle was calculated and the 
head set to its canonical position. In the end, the eyes are still a bit tilted, 
because the tilt joint was not calibrated in this test.

For a preliminary quantitative evaluation of the method’s performance, 
we have initialized the system in a known position, and measured the 
pan angle using the proposed method, applying tilt motions of different 
amplitudes. Then, the pan was set to its estimated zero position, and the 
process iterated in a series of steps. The results are represented in Fig. 7, 
where it can be observed that the axis reaches a close vicinity of the cor-
rect position immediately after the first iteration. Then, in the remaining 
steps, the estimated positions are always kept within a 5 degrees range 
to the ideal zero position. In any case we had always good systematic 
results, even for small angular prospective motions. 

Figure 7 . Evolution of the pan angle for an iterative application of the calibration method. Dif-

ferent colors represent different prospective motion amplitudes.

The algorithm was tested many times for different circumstances. We came 
to the conclusion that results depend mostly on the quality of tracking. We 
had the best results while putting in front of robot a chessboard pattern, 
where point matches are very reliable. In other cases, there were a lot 
of points along edges in the image. This may lead to tracking drifts, and 
results may degrade a bit.

5. CONCLUSIONS
We have presented the principles for a vision based automatic calibration 
procedure for determining the initial unknown angles of pan-tilt kinematic 
structures. The method is based on the computation of the homography 
induced by the rotation of the tilt axis. A set of points is tracked in the 
images before and after the prospective motions. A robust estimation 
architecture allows the estimation of the homographies from the tracked 
points, even in the presence of tracker failures (outliers). By relating the 
homography entries with the unknown initial angles, it is possible to 
estimate them reliably from the visual measurements. 

In future work we will further characterize the precision of the method as 
a function of the initial conditions and motion amplitudes. We also aim 
at investigating how errors propagate if the method is to be employed in 
longer kinematics chains. Finally we will study the combination of infor-
mation from both cameras to improve precision in homing the neck joints
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