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Abstract—The application of learning-based vision tech-
niques to real scenarios usually requires a tunning procedure,
which involves the acquisition and labeling of new data and in
situ experiments in order to adapt the learning algorithm to
each scenario.

We address an automatic update procedure of the L2boost
algorithm that is able to adapt the initial models learned
off-line. Our method is named UAL2Boost and present three
new contributions: (i) an on-line and continuous procedure
that updates recursively the current classifier, reducing the
storage constraints, (ii) a probabilistic unsupervised update
that eliminates the necessity of labeled data in order to adapt
the classifier and (iii) a multi-class adaptation method.

We show the applicability of the on-line unsupervised
adaptation to human action recognition and demonstrate that
the system is able to automatically update the parameters of
the L2boost with linear temporal models, thus improving the
output of the models learned off-line on new video sequences,
in a recursive and continuous way. The automatic adaptation
of UAL2Boost follows the idea of adapting the classifier incre-
mentally: from simple to complex.

Keywords-online, unsupervised and semi-supervised learn-
ing; L2 boosting; multi-class human action classification

I. INTRODUCTION

Cognitive and evolutionary processes allow living beings
to adapt models acquired by the brain in a continuous
way. These adaptation processes allows biological systems
to maintain classification and detection performances under
large modifications on the environment, and consequently
enables a high level of generalization. Recent research on
semi-supervised learning aims to provide these generaliza-
tion capabilities to machines, by considering both labeled
and unlabeled data to improve the performance of standard
machine learning algorithms [1], [2], [3]. Most of the
semi-supervised approaches belong to the class of offline
learning problems, where all the available data (labeled and
unlabeled) is fixed at the beginning [1], [2], [4]. However,
this is an unrealistic assumption for video-based scenarios,
where online classifiers fit better due to their intrinsic update
capability [5], [6], [7]. An application oriented scenario
for semi-supervised learning should follow the divide and
conquer approach using two phases: (a) the offline learning
using labeled data and (b) the online and continuous adap-
tation using the unlabeled data.

There are recent works that adopt the same idea [8],
[9], nevertheless they are tailored to a problem-specific
binary detection task, which needs the tunning of several
parameters.

In this paper we propose an application of multi-class
semi-supervised learning, incorporating an automatic tun-
ning of classifiers during the online phase. The goal of
this application is to reduce the in situ experiments, which
require acquisition, labeling and (re)training of the classifiers
on the new scenarios. For instance, it is very difficult to
consider all the possible variations in the visual appearance
of an object due to illumination conditions (appearance,
speed, etc.). Instead, if we consider the most representative
changes and let the semi-supervised tunning adapt the object
model to a particular scenario, the requirements of in situ
experiments would be ideally none.

We address the general problem of online unsupervised
adaptation of the base learners of the L2 boosting algorithm
[10] and apply the algorithm on the unsupervised adaptation
of models for human action recognition, from video, and
evaluate the algorithm in two scenarios: (i) an adaptable
scenario, and (ii) a non-adaptable scenario.

A. Related work

The state-of-the-art semi-supervised boosting methods
such as SemiBoost [1] and ASSEMBLE [2] work in a batch
fashion, so these models do not take advantage of new
data. ASSEMBLE aims to improve the classification margin
of boosting by selecting unlabeled examples with large
classification confidence and assigning them the class label
(pseudolabel), which are provided by the current classifier.
The labeled data along with the selected pseudolabeled data
are utilized in the next iteration to train a second classifier.
The process is repeated for the other boosting iterations.
SemiBoost defines a confidence measure that takes into
account two sources: the strong classifier output and the
similarity matrix, and the pseudolabel is computed from this
confidence measure. Furthermore, SemiBoost is designed to
wrap around any given supervised algorithm and adapt it to
use also unsupervised data. An application of Semiboost for
visual detection [4] demonstrate its improvement capabili-
ties, thus we present a direct comparison of this state-of-the-
art batch method against our UAL2Boost.
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Javed et al. [7], use the online boosting method proposed
by Oza ([5]) in conjunction with the co-training idea, in-
troducing a method that adapts previous boosting classifiers
online and in an unsupervised manner for binary problems.
Their basic idea is to use some weak learners to co-train all
the others for the points that introduce new information to
the problem, i.e. that are confidently classified by some weak
learners but not by the strong learner (the final classifier),
guarantying that the adapted points are near the decision
boundary. They propose to use a validation set that defines
the confidence thresholds, which in the end adapts a small
amount of the observed data points. In addition, the use of a
fixed validation set to define the adaptation process is biasing
the adapted data to be, somehow, similar to that set.

The adaptation of offline learned prototypes for specific
binary problems was proposed by [8], [9]. Wu and Neva-
tia [9] proposed the development of an oracle with high
precision that is able to adapt the simple features and
the complexity of the classifiers. Although the system is
able to: (i) perform online learning on a cascade-structured
detector and (ii) integrate noise restraining strategies, it
is not applicable to general machine learning problems.
Their application is restricted binary problems with cascade
structures and involves the tunning of a large number of
parameters. Furthermore, and similarly to the method pro-
posed by Huang et al. [8], the selection of the samples for
adaptation does not consider a probability-based measure,
they just pick the best online samples to adapt. Thus, the
adaptation procedure needs to be tuned for each particular
problem.

B. Our approach

The semi-supervised boosting algorithms [2], [1] are
based on the idea of, at round m, compute the current
strong classifier output to: (i) predict the class of unlabeled
data and (ii) obtain a margin-based confidence weight. Then,
the unlabeled data with their predicted labels (pseudolabels)
and weights are combined with the labeled data in order
to select the weak learner at round m + 1. Similar to
previous works, we build our unsupervised adaptation using
the pseudolabels and confidence weights. In difference to
previous approaches, we do not add new weak learners to
adapt the new data, but we: (a) update the current weak
learners and (b) propose a margin-based confidence weight
for multi-class problems. We propose an algorithm based on
the L2Boost learning, due to the simpler weighting process
in comparison to AdaBoost, and compensate for the use
of an quadratic loss function for classification using a [−1
1] constrained classifier at each round. Our proposal is an
Unsupervised Adaptation of L2Boost weak learners, the
UAL2Boost algorithm, for binary and one vs. all multi-class
problems. Figure 1 depicts the two steps of our approach:
(i) the offline learning and (ii) the unsupervised adaptation.
The first step consists of the offline supervised learning of a

Figure 1. Global description of the learning framework. The top row
describes the supervised learning of a classifier prototype and the bottom
row the ongoing update of the models using all the observed data.

classifier prototype, which has two types of parameters for
each iteration: The feature dimension j and its corresponding
model β (Θj , and Θβ denote the parameters of all the
iterations). This step is basically supervised learning to
obtain the prototype using the labeled database, (I, Y ).
The second step is an unsupervised online process (see the
bottom row of Fig. 1), which incorporates the ongoing data
samples into the previously learned classifier by adapting
the models, Θβ . These new data points do not have label,
so the adaptation of the model Θβ uses the pseudo-label (Y )
provided by the previous classifier, weighted by the margin-
based confidence measure Γ. Then, the adapted models Θβ

become the current classifier when the next data sample
arrives.

II. SUPERVISED L2BOOST WITH TEMPORAL MODELS

In a formal description, the L2boost algorithm, for bi-
nary problems, estimates the function F : Rd → R
by minimizing the expected cost E [C(y, F (X))] based
on the data (yi, Xi), i = 1, ..., n. The cost function is
C(y, f) = (y − f)2/2 with y ∈ {−1, 1} and its respective
population minimizer is F (X) = E [y|X = x]. The overall
optimization is achieved by means of a sequential stagewise
approximation along M rounds, optimizing a so called weak
learner in each round, m [10].

We use a featurewise implementation that optimizes each
weak learners to be a linear temporal model for the feature
that achieves less cost: fm(Xi) = Xjm

i βm, with Xjm

i ∈
RT+1, βm ∈ RT+1 and jm the feature chosen in round m
from the set of D features. In order to use matrix notation,
we stack all the yi values into the vector Y ∈ RN and all the
Xi data points into the matrix X ∈ RN×D×T+1 (see chapter
5 for a detailed explanation of the feature computation and
structure). This means that, at each round m, we optimize
a temporal model β for each possible feature j = 1, ..., D,
choosing the one that achieve less error:

bβ = arg min
β,j

(Y − Xjβ)T (Y − Xjβ). (1)

The solution is β̂m = (Xjm T
Xjm

)−1Xjm T
Y , where jm is

the feature that achieves less error, for a specific round m,
and β̂m the corresponding temporal model for that feature.



The featurewise L2boosting algorithm with linear tempo-
ral models is as follows:

1) Initialization Chose M and set m=0. Given data (Y, X), fit
the first weak learner, bF0 = Xj0 bβ0. β0 and j0 are computed
from Eq. 1.

2) Projection of gradient to learner Compute the negative
gradient (in this case are the residuals) um+1

i = yi −
F̂m(Xi)(i = 1, ..., n). For simplicity, stack all ui values
into the vector U ∈ RN .
Use the residuals Um+1 to fit the learner bfm+1 =

Xjm+1 bβm+1 changing Y for U in Eq. 1.
Update F̃m+1 = bFm + bfm+1. Make bFm+1 =
sign(F̃m+1)min(1, |F̃m+1|).

3) Iteration If m + 1 < M increase m by 1 and goto step2.
If m + 1 = M return Θj = {j0, ..., jm, ...}, and one set of
models, Θβ = {β0, ..., βm, ...}

The classification of a new point Xi is given by the sign of
the strong classifier result, sgn F̂M (Xi), but notice that at
each round the classifier is constraint to be in [−1 1]. This
procedure works better when using L2Boost for classifica-
tion because it compensates for the use of a quadratic loss
function, and it’s called L2Boost with constraints [10]. The
strong classifier F (x) relates the class-conditional probabil-
ities,

F (x) = 2p(y = 1|x) − 1, |F (x)| = |p(y = 1|x) − p(y = −1|x)|,
(2)

and its module |F (Xi)| is the classification margin, that
is the probability of labeling the new data point given the
models estimated.

III. UNSUPERVISED ADAPTATION OF L2BOOST: THE
UAL2Boost ALGORITHM

A. Online update of learned models
For now lets assume that the data comes with labels, but

the next section relaxes this assumption allowing to adapt
observed data without supervision. The objective here is to
update the set of temporal models Θβ , using the previously
learned set of features, Θj . The update is performed without
storing any of the previous data points. For that, let us
parameterize βm as

βm = P m−1sm = (Xjm T
Xjm

)−1Xjm T
Um,

where Pm = Xjm T
Xjm

and sm = Xjm T
Um, which

allows to express βm in recursive summations. Let us
assume that we have seen data Xτ so far, and new data
Xτ+1 just arrived. Thus, the complete dataset matrix is
X =

[
XT

τ XT
τ+1

]T
. In order to update the parameters, Θβ ,

we must minimize the residuals, U =
[
UT

τ UT
τ+1

]T
. The

updated parameters are

P m = P m
τ + P m

τ+1, sm = sm
τ + sm

τ+1, (3)

where Pm
τ = Xjm

τ

T
Xjm

τ , Pm
τ+1 = Xjm

τ+1

T
Xjm

τ+1, sm
τ =

Xjm

τ

T
Um

τ and sm
τ+1 = Xjm

τ+1

T
Um

τ+1. Considering the update
procedure of Eq. (3), the online integration of new labeled
data is as follows:

1) Batch L2 boost Given an initial training set {(Yτ , Xτ )},
compute the parameters {P m

τ , sm
τ , Θj , m = 0, . . . , M − 1}

by applying the algorithm of Section II.

2) Initialization Set m = 0. Wait for new data (Xτ+1, Yτ+1)

to arrive, then fit the first weak learner bF0 = Xj0 bβ0 by
updating the model bβ0.

P 0
τ+1 = Xj0

τ+1

T

Xj0

τ+1, s0
τ+1 = Xj0

τ+1

T

Yτ+1, bβ0 =
(P 0

τ + P 0
τ+1)

−1(s0
τ + s0

τ+1).
3) Adaptation of the linear models

Um+1
τ+1 = Yτ+1 − F̂m(Xτ+1),

P m+1
τ+1 = Xjm+1

τ+1

T

Xjm+1

τ+1 , sm+1
τ+1 = Xjm+1

τ+1

T

Um+1
τ+1 ,bβm+1 = (P m+1

τ + P m+1
τ+1 )−1(sm+1

τ + sm+1
τ+1 ).bfm+1 = Xτ+1

bβm+1, F̃m+1 = bFm + bfm+1, bFm+1 =
sign(F̃m+1)min(1, |F̃m+1|).

4) Iteration If m + 1 < M increase m by 1 and goto step3.
If m + 1 = M goto step2.

The online L2 with temporal models is an approximation
to the batch version of L2Boost of Section II, due to the
incremental computation of the residuals of the step 3. This
approximation allows us to update the linear models without
storing any of the data points. Furthermore, we intentionally
use the same set of features learned offline in order to be
able to perform this update online and during run time.

B. Unsupervised adaptation
We aim to update the temporal models of the L2boost

in order to tune the classifiers to work correctly in the
new environments it’s deployed. Thus, we aim to adapt
every new data point acquired into the model using the
online framework just described, in difference to previous
approaches that discard [7], or select points [2], [1] at every
adaptation step. We address the problem in two separate
steps: (i) Offline-supervised learning, that outputs a classifier
prototype consisting of one set of features, Θj , and one set of
temporal models, Θτ

β , and (ii) ongoing unsupervised update
of the temporal models Θτ

β .
Then, the adaptation step updates the parameters by taking

into account the new data points, Xi,τ+1, i = 1, . . . , n,
generating the updated temporal models Θτ+1

β , from the
following unsupervised cost function:

β̂τ+1 = arg min
β

nX
i=1

γi(ŷi,τ+1 − F (Xi,τ+1; β))2. (4)

Where ŷi,τ+1 = sgn(FM (Xi,τ+1; Θj ,Θτ
β)) is the pseudola-

bel for the new unlabeled point, Xi,τ+1, and γi =
|FM (Xi,τ+1; Θj ,Θτ

β)| the probability of that point belong-
ing to that class (i.e. margin-based confidence). Note that
the class probability works as a weighting factor in the
optimization and that both parameters are computed using
the previous classifier, {Θj ,Θτ

β}.
To use matrix notation, consider Γ as a diagonal matrix

with entries Γii =
√

γi and Uτ+1 as a vector that contains
the objective values for all the new points (note that this
vector represents the pseudolabel in the first round and the
residuals in the following ones). Eq. (4) solves, at each
round, a weighted least squares problem as follows:

βm
τ+1 = arg min

β
(Uτ+1 − Xjm

τ+1β)T Γ2(Uτ+1 − Xjm

τ+1β) (5)

= ((ΓXjm

τ+1)
T (ΓXjm

τ+1))
−1(ΓXjm

τ+1)
T ΓUτ+1



In order to use the online algorithm described in the previous
section with unlabeled data, (Xτ+1), three changes must be
made: i) substitute Xjm

τ+1 for ΓXjm

τ+1, ii) substitute Um
τ+1 for

ΓUm
τ+1 and iii) use the pseudolabel vector Ŷτ+1 instead of

the nonexistent label Y .

C. Multi-class update
On binary problems, the weights γi compute the proba-

bility of classifying one class vs. other class (Eq. (2)). In
order to extend the regularization weights Γ to multi-class
problems we use the one vs. all approach, which solves C
binary problems to discriminate between C classes where
Y ∈ {1, . . . , C}. The multi-class version of L2 starts by
computing F̂

(c)
M on the basis of the binary response variables

Y
(c)

i =

(
1 if Yi = c

−1 if Yi 6= c
i = 1, . . . , n (6)

and then builds the classifier as Ĉm(x) =
arg maxc∈{1,...,C} F̂

(c)
M (x).

After the arrival of new data Xτ+1, we need to adapt
the C binary classifiers in order to update the multi-class
model.In addition, we must compute weights that consider
the classification probability of a multi-class problem. In
difference to the binary case that uses the two available
classes, in multi-class problems we have c weights, one from
each binary problem. For each point the multi-class weight
is computed considering two cases:

γ
(c)
i =

(
| bF ( bCm(x))(x) − bF ( bCm

1 (x))(x)|/2 if c = bCm

| bF ( bCm(x))(x) − bF (c)(x)|/2 if c 6= bCm
(7)

bCm
1 (x) = arg max

c∈{1,...,C}∧c 6= bCm(x)

bF (c)(x),

where Ĉm
1 is the second most probable class label of point

x. In practice, only if one have a probability of more than
50% one can have some confidence that the new point is
correctly classified.

IV. ONLINE ADAPTIVE HUMAN ACTIONS CLASSIFIER

In order to assess the adaptation of the L2boost we
recorded sequences in two different scenarios with slightly
different conditions and the same activities recorded in the
Weizmann data set.

The sequences of the first scenario just add a non-
uniform background to the activities, while the sequences
of the second scenario are recorded in a very textured
background with several shadows and several amounts of
motion blur. The objective of the first scenario is to evaluate
the performance of the adaptation quantitatively, while the
objective of the second scenario is to check the limits of the
adaptation procedure. Example images of the three scenarios
are presented in Figure 2(a).The actions used are: {1 -
bending down, 2 - jumping jack, 3 - jumping, 4 - jumping
in place, 5 - running, 6 - galloping sideways, 7 - walking,
8 - waving one hand, 9 - waving both hands}. 1

1The sequences used, the ground truth and the code used can be found
on the web: ual2boost.wikispaces.com

(a)

(b)

Figure 2. (2(a)) Example image for the three setups (top row) used in
the experiments: Weizmann (top left), IST1 (top middle) and IST2 (top
right). Rows 2,3 and 4 show zoomed examples of the action run for all the
three scenarios with an interval of four frames (2(b)) Feature computation:
A) example of a volume of video used to compute the features for the
person detected in image It, B) the two types of raw features used, gradient
and flow vectors, computed inside the volume correspondent to the person
detected, C) polar sampling used to divide each window into subregions
and D) weighted histograms computed for each region, producing a 2D
matrix coding the evolution of each bin over a set of T frames.

A. Feature computation

The state-of-the-art action recognition approaches use a
combination of appearance and motion-based features in
order to extract the activities’ patterns from videos [11]. We
follow this approach, using the image gradient and optical
flow (dense) as the raw features to extract the action patterns.
Figure 2(b)-A and 2(b)-B show an example of the video
volume for feature computation. Note that the bounding
box maintain the same location over the frames selected,
so we do not apply any person tracking or segmentation
algorithm before the feature computation.Given a gradient



Semi-
Offline (Weizmann) UAL2Boost boost

Feats Classf Test Test Test
Weiz. IST1 IST1 IST1

PCA[11] SVM [11] 99,6 75,4 - 55,3
(99,6) (77,5) (56,7)

Ours L2boost 94,8 73,5 89,7 84,1
(97) (73,7) (90,5) (85,9)

Table I
RESULTS OF IST1 SCENARIO: TRACE OF THE CONFUSION MATRIX

(TRUE RECOGNITION RATE).

image or optic flow image, the weighed histogram divides
the image in subregions (according to a sampling strategy,
e.g. cartesian, polar) and computes the histogram of the gra-
dient (or flow) orientation weighted by its magnitude. Figure
2(b)-C shows the polar sampling strategy, which shown
better discrimination capabilities. The histogram features
are parametrized by the number of subregions nR and the
number of bins nB of the histogram. We denote the gradient
histogram as gt ∈ RnB·nR and the flow histograms as
ot ∈ RnB·nR, computed at frame t. For all the experiments
the number of bins of the polar sampling are nR = 16,
nB = 16, obtained from an initial parameter selection stage.

We compute the gradient and flow weighted histograms
in consecutive frames in order to extract a “volume” of his-
tograms that encode the temporal evolution of the features,
as shown in Figure 2(b)-D. The gradient and optic flow
histogram volume of size T corresponds to the action model,
H = {gt, ot}, t = 1, . . . , T . The size of the temporal model
is T = 10, obtained from an initial parameter selection
stage. At frame t, the appearance and motion feature vector
for each person detected is ht = [gtot]T ∈ R2·nB·nR. We
define the component ht

j in the previous T frames as the
feature vector of the L2boost. Thus, each feature vector
is Xj

i = [ht
jh

t−1
j · · ·ht−T−1

j 1] ∈ RT+1, and the L2Boost
selects the component j = {1, . . . , 2 · nB · nR} and the
linear parameters β that minimizes the cost function in Eq.
1.

B. Experiments

We compare of our approach for feature computation
and unsupervised adaptation with: (i) One of the recent
approaches for the supervised learning of human activities
in the Weizmann data set and (ii) the semi-boost learning
algorithm, with parameters: rounds T = 30, σ = 97th per-
centile, selecting the top 10% samples [1]. The performance
of the multi-class learning on the testing set is evaluated with
two criteria: (i) The mean value of the trace of the confusion
matrix and (ii) the recognition rate over all the samples. The
adaptation procedure is performed sequentially for each new
data sample.

1) Adaptable scenario - IST1: The IST1 scenario con-
tains the same actions of the Weizmann data set, performed

by nine subjects. The differences of IST1 with respect to the
Weizmann setup are: (i) a non-uniform background, (ii) the
subject’s size is smaller with respect to the image size and
(iii) the presence of motion blur in some actions. These slight
changes will allow the unsupervised adaptation to update
the temporal models in order to improve the performance
on the IST1 scenario after the adaptation. The table I shows
the results of the test performed on the IST1 scenario.

We observe in Table I that the UAL2Boost improves the
recognition rate when compared to the L2Boost offline clas-
sifier. In addition, our approach attain better classification
results than the semi-boost algorithm. It is important to
remark that our approach works on-line, while semi-boost
works offline with all the data (Weizmann + IST1). Thus,
our offline approach has selected the appropriate features Θj

that allow an online model adaptation.
We show the detailed results of the confusion matrix

computed before and after the adaptation in Figure 3(a),
remarking that in almost all actions the algorithm was able to
improve the performance. Figure 3(b) shows the recognition
rate after adaptation for several confidence thresholds ( i.e.,
if γ

(c)
i ≥ t then perform adaptation of (7)), considering 50

different shuffles of the IST1 data samples. The curve shows
that a confidence threshold between 50% and 70% provides
good adaptation results. Figure 3(c) shows the evolution
of the recognition rate over the selected data points, with
γ

(c)
i ≥ 0.5, which is the minimum probability we should

attain to consider the new point correctly classified.
2) Non-adaptable scenario - IST2: The IST2 scenario

contains the same actions of the Weizmann data set, per-
formed by three subjects. The design of the new scenarios
(IST1 and IST2) was based on the incremental complexity
levels, so the IST1 is more complex than Weizmann and
IST2 is more complex than IST1. This means that we should
be able to obtain better classification results on IST2 by
performing: (i) L2Boost offline on the Weizmann data set,
(ii) UAL2Boost on IST1. Table II shows that the incremental
adaptation performs much better than the semi-boost applied
on the union of all data sets.

These results clearly suggest that it is possible to create
self tunning classifiers that adapt in an incremental way to
more complex situations. This kind of learning paradigm can
be viewed as starting from simple cases and gradually mov-
ing towards more complex ones. Note also the performance
gap between the semi-boost with L2Boost and UAL2Boost.

Figure 3(c) shows the evolution of the recognition rate
over the IST2 data set along the adaptation of the selected
point from IST1, showing an improvement form 62% to
88%. It is important to remark that our method is not able to
adapt the classifier learnt offline on the Weizmann scenario
directly to the IST2 scenario, due to the large differences on
the sequences. Nevertheless, the approach of from simple to
complex is able to improve the performance of the classifier
on the IST2 scenario in an unsupervised fashion.



(a) (b) (c)

Figure 3. (3(a)) On the top row, the confusion matrices for the IST1 setup before and after adaptation. On the bottom row, the confusion matrices for
the IST2, before and after adaptation. (3(b)) shows the recognition rate over all data for different values of the confidence threshold for the IST1 scenario.
(3(c)) shows the evolution of the recognition rate over the selected data points

Our features + L2boost IST2
Offline (Weizmann) + UAL2Boost (IST1) 86,2(88,0)

Semi-boost (Weizmann + IST1 + IST2) 55,6 (54,6)

Table II
RESULTS OF WEIZMANN + IST1 SCENARIO.

V. CONCLUSIONS

We introduce a learning algorithm that is able to perform
automatic update of the models of the L2boost procedure
in multi-class problems. Our algorithm performs an unsu-
pervised and on-line adaptation of the new data samples
in two stages: (i) the offline initialization of the linear
temporal models of L2boost and (ii) the online unsupervised
adaptation of the models. The adaptation step relies on:
(a) the pseudo-labels and (b) the margin-based confidence
weights. These elements allow to: (i) improve the classifica-
tion performance of unlabeled data and (ii) include all the
new samples during the adaptation.

We apply the algorithm on the unsupervised adaptation
of models for human action recognition and evaluate the
algorithm in two scenarios: (i) an adaptable scenario, which
introduces minor changes to the patterns trained offline, and
(ii) a non-adaptable scenario, which introduces large changes
that generally need the retraining of the classifier. The
experimental results demonstrate that our algorithm is able
to: (i) attain very good classification rates in the adaptable
scenario and (ii) improve the classification rates in the non-
adaptable scenario following a from simple to complex ap-
proach. In addition, our algorithm obtains better results than
a batch state-of-the-art semi-supervised method, the semi-
boost algorithm [1], and clearly outperforms the current
state-of-the-art supervised method [11], in this database,
with respect to its applicability to other similar scenarios.

Further analysis of our approach should explore the con-
ditions that guarantee convergence to a better classification
result and test the system during very long periods of time.
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