
Image Segmentation for Robots: Fast Self-Adapting
Gaussian Mixture Model

Nicola Greggio1,2, Alexandre Bernardino2, José Santos-Victor2

1 ARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

2 Instituto de Sistemas e Robótica, Instituto Superior Técnico - 1049-001 Lisboa, Portugal

ngreggio@isr.ist.utl.pt

Abstract. Image segmentation is a critical low-level visual routine for robot
perception. However, most image segmentation approaches are still too slow to
allow real-time robot operation. In this paper we explore a new method for im-
age segmentation based on the expectation maximization algorithm applied to
Gaussian Mixtures. Our approach is fully automatic in the choice of the number
of mixture components, the initialization parameters and the stopping criterion.
The rationale is to start with a single Gaussian in the mixture, covering the whole
data set, and split it incrementally during expectation maximization steps until a
good data likelihood is reached. Singe the method starts with a single Gaussian,
it is more computationally efficient that others, especially in the initial steps. We
show the effectiveness of the method in a series of simulated experiments both
with synthetic and real images, including experiments with the iCub humanoid
robot.

Keywords - image processing, unsupervised learning, self-adapting gaussians mix-
ture, expectation maximization, machine learning, clustering

1 Introduction

Nowadays, computer vision and image processing are involved in many practical ap-
plications. The constant progress in hardware technologies leads to new computing ca-
pabilities, and therefore to the possibilities of exploiting new techniques, for instance
considered to time consuming only a few years ago. Image segmentation is a key low
level perceptual capability in many robotics related application, as a support function
for the detection and representation of objects and regions with similar photometric
properties. Several applications in humanoid robots [1], rescue robots [2], or soccer
robots [3] rely on some sort on image segmentation [4]. Additionally, many other fields
of image analysis depend on the performance and limitations of existing image segmen-
tation algorithms: video surveillance, medical imaging and database retrieval are some
examples [5], [6].

Two main principal approaches for image segmentation are adopted: Supervised and
unsupervised. The latter one is the one of most practical interest. It may be defined as
the task of segmenting an image in different regions based on some similarity criterion

jasv
Text Box
International Conference on Image Analysis and Recognition (ICIAR), Povoa de Varzim, Portugal, June 21-23, 2010

2

among each region’s pixels. Particularly interesting is the Expectation Maximization al-
gorithm applied to gaussians mixtures which allows to model complex probability dis-
tribution functions. Fitting a mixture model to the distribution of the data is equivalent,
in some applications, to the identification of the clusters with the mixture components
[7].

Expectation-Maximization (EM) algorithm is the standard approach for learning the
parameters of the mixture model [8]. It is demonstrated that it always converges to a lo-
cal optimum. However, it also presents some drawbacks. For instance, EM requires an
a-priori selection of model order, namely, the number of components (M) to be incorpo-
rated into the model, and its results depend on initialization. The more gaussians there
are within the mixture, the higher will be the total log-likelihood, and more precise the
estimation. Unfortunately, increasing the number of gaussians will lead to overfitting
the data and it increases the computational burden. Therefore, finding the best compro-
mise between precision, generalization and speed is a must. A common approach to
address this compromise is trying different configurations before determining the opti-
mal solution, e.g. by applying the algorithm for a different number of components, and
selecting the best model according to appropriate criteria.

1.1 Related Work

Different approaches can be used to select the best number of components. These can
be divided into two main classes: off-line and on-line techniques.

The first ones evaluate the best model by executing independent runs of the EM
algorithm for many different initializations, and evaluating each estimate with criteria
that penalize complex models (e.g. the Akaike Information Criterion (AIC) [9] and the
Rissanen Minimum Description Length (MDL) [10]). These, in order to be effective,
have to be evaluated for every possible number of models under comparison. Therefore,
it is clear that, for having a sufficiently exhaustive search the complexity goes with the
number of tested models, and the model parameters.

The second ones start with a fixed set of models and sequentially adjust their con-
figuration (including the number of components) based on different evaluation criteria.
Pernkopf and Bouchaffra proposed a Genetic-Based EM Algorithm capable of learn-
ing gaussians mixture models [11]. They first selected the number of components by
means of the minimum description length (MDL) criterion. A combination of genetic
algorithms with the EM has been explored.

An example are the greedy algorithms. Applied to the EM algorithm, they usually
start with a single component (therefore side-stepping the EM initialization problem),
and then increase their number during the computation. The first formulation was orig-
inally proposed in 2000, by Li and Barron [12]. Subsequently, in 2002 Vlassis and
Likas introduced a greedy algorithm for learning Gaussian mixtures [13]. Nevertheless,
the total complexity for the global search of the element to be splitted O(n2). Subse-
quently, Verbeek et al. developed a greedy method to learn the gaussians mixture model
configuration [14]. However, the big issue in these kind of algorithm is the insertion
selection criterion: Deciding when inserting a new component and how can determine
the success or failure of the subsequent computation.

3

Ueda et Al. proposed a split-and-merge EM algorithm to alleviate the problem of lo-
cal convergence of the EM method [15]. Subsequently, Zhang et Al. introduced another
split-and-merge technique [16]. Merge and split criterion is efficient in reducing number
of model hypothesis, and it is often more efficient than exhaustive, random or genetic
algorithm approaches. Particularly interesting is the method proposed by Figueiredo
and Jain, which uses only merge operations, therefore starting with a high number of
mixture parameters, merging them step by step until convergence [17], making then no
use of splitting operations. This method can be applied to any parametric mixture where
the EM algorithm can be used. However, the higher the number of mixture components
is, the more expensive the computation will be. Therefore, since the idea of Figueiredo
and Jain starts with a very high number of mixture components, greatly slowing the
computation from the first steps.

1.2 Our contribution

In this paper, we propose an algorithm that automatically learns the number of compo-
nents as well as the parameters of the mixture model. The particularly of our model is
that we approach the problem contrariwise than Figueiredo and Jain did, i.e. by starting
from only one mixture component instead of several ones and progressively adapting
the mixture by adding new components when necessary. Therefore, in order to accom-
plish this we needed to define a precise split and stopping criteria. The first is essential
to be sure to introduce a new component (and therefore new computational burden) only
when strictly necessary, while the second one is fundamental to stop the computation
when a good compromise has been obtained (otherwise the algorithm will continue to
add components indefinitely, until the maximum possible likelihood is obtained). Our
formulation guarantees the following advantages. First, it is a deterministic algorithm;
we avoid the different possibilities in the components initializations that greatly affect
the standard EM algorithm, or any EM technique that starts with more than one compo-
nent, by using a unique initialization independently from the input data. Therefore, by
applying the same algorithm to the same input data we will get always the same results,
Second, it is a low computationally expensive technique - in fact, new components will
be added only when strictly necessary.

1.3 Outline

The paper is organized as follows. In sec. 2 we introduce the proposed algorithm.
Specifically, we describe the insertion of a new gaussians in sec. 2.4, the initializations
in sec. 2.2, the decision thresholds update rules in sec. 2.5, and the stopping criterion
2.6. Furthermore, in sec. 3 we describe our experimental set-up for testing the valid-
ity of our new technique and the results. Finally, in sec. 4 we conclude and propose
directions for future work.

2 FASTGMM: FAST Self-Adapting Gaussian Mixture Model

We distinguish two main important features for our algorithm: The splitting criterion
and the stopping criterion. The key issue of our algorithm is looking whether one or

4

more gaussians are not increasing their own likelihood during optimization. In other
words, if they are not participating in the optimization process, they will be split into
two new gaussians. We will introduce a new concept related to the state of a gaussians
component:

– Its age, that measures how long the component’s own likelihood does not increase
significantly (see sec. 2.1);

Then, the split process is controlled by the following adaptive decision thresholds:

– One adaptive threshold LTH for determining a significant increase in likelihood
(see sec. 2.5);

– One adaptive threshold AgeTH for triggering the merge or split process based on
the component’s own age (see sec. 2.5);

– One adaptive threshold STH for deciding to split a gaussians based on its area (see
sec. 2.4).

It is worth noticing that even though we consider three thresholds to tune, all of
them are adaptive, and only require a coarse initialization.

These parameters will be fully detailed within the next sections.

2.1 FASTGMM Formulation

Our algorithm’s formulation can be summarized within three steps:

– Initializing the parameters;
– Adding a gaussians;
– Updating decision thresholds.

Each mixture component i is represented as follows:

ϑ̄i = %(wi, µ̄i, Σi, ξi, Λlast(i), Λcurr(i), ai) (1)

where wi is the a-priori probabilities of the class, µ̄i is its mean, Σi is its covariance
matrix, ξi its area, Λlast(i) and Λcurr(i) are its last and its current log-likelihood value,
and ai its age. Here, we define two new elements, the area (namely, the covariance
matrix determinant) and the age of the gaussians, which will be described later.

During each iteration, the algorithm keeps memory of the previous likelihood. Once
the re-estimation of the vector parameter ϑ̄ has been computed in the EM step, our
algorithm evaluates the current likelihood of each single gaussians as:

Λcurr(i)(ϑ) =
k∑

j=1

log(wi · pi(x̄j)) (2)

If ai overcomes the age threshold AgeTH (i.e. the gaussians i does not increase its own
likelihood for a predetermined number of times significally - over LTH), the algorithm
decides whether to split this gaussians or merging it with existing ones depedending on
whether their own single area overcome STH .

Then, after a certain number of iterations the algorithm will stop - see sec. 2.6. The
whole algorithm pseudocode is shown in Fig. 2.1.

5

Algorithm 2.1 Pseudocode
1: - Parameter initialization;
2: while (stopping criterion is not met) do
3: Λcurr(i), evaluation, for i = 0, 1, . . . , c;
4: L(ϑ̄) evaluation;
5: Re-estimate priors wi, for i = 0, 1, . . . , c;
6: Recompute center µ̄(n+1)

i and covariances Σ(n+1)
i , for i = 0, 1, . . . , c;

7: - Evaluation whether changing the gaussians distribution structure -
8: for (i = 0 to c) do
9: if (ai > AgeTH) then

10: if ((Λcurr(i) − Λlast(i)) < LTH) then
11: ai+ = 1;
12: - General condition for changing satisfied; checking those for each gaussians -
13: if (Σi > STH) then
14: if (c < maxNumgaussians) then
15: split gaussians→ split ;
16: c+ = 1;
17: reset STH ← SM−INIT

ng
;

18: reset LTH ← LINIT ;
19: reset aA, aB ← 0, with A, B being the new two gaussians;
20: return
21: end if
22: end if
23: STH = STH · (1 + α · ξ);
24: end if
25: end if
26: end for
27: end while

2.2 Parameters initialization

At the beginning, STH will be automatically initialized to the Area of the covariance of
all the data set - i.e. the determinant of the covariance matrix relative to the whole data
set. The other decision thresholds will be initialized as follows:

LINIT = kLTH

AgeINIT = kATH

(3)

with kLTH and kATH (namely, the minimum amount of likelihood difference be-
tween two iterations and the number of iterations required for taking into account the
lack of a likelihood consistent variation) relatively low (i.e. both in the order of 10,
or 20). Of course, higher values for kLTH and smaller for kATH give rise to a faster
adaptation, however adding instabilities.

2.3 Gaussians components initialization

The algorithm starts with just only one gaussians. Its mean will be the whole data mean,
while its covariance matrix will be those of the whole data set. Of course, one may de-

6

sire to start with more than one gaussians in case that a-priori the gaussians components
of the data set are more than one, for sake of convergence speed. In that case means and
covariances will be as follows.

2.4 Splitting a gaussian

If the covariance matrix determinant of the examined gaussians at each stage overcomes
the maximum area threshold STH , then another gaussians is added to the mixture.

More precisely, the original gaussians with parameters ϑ̄old will be split within other
two ones. The new means, A and B, will be:

µ̄A = µ̄old +
1
2

(Σi=j)1/2

µ̄B = µ̄old −
1
2

(Σi=j)1/2 i, j = {1, 2, . . . , d}
(4)

where d is the input dimension.
The covariance matrixes will be updated as:

ΣA(i,j) = ΣB(i,j) =

{
1
2Σold(i,j), if i = j;
0, othrewise.

(5)

The a-priori probabilities will be

wA =
1
2
wold wB =

1
2
wold (6)

The decision thresholds will be updated as follows:

STH =
SM−INIT

ng
LTH = LINIT (7)

where ngold and ng are the previous and the current number of mixture components,
respectively. Finally, their ages, aA and aB , will be reset to zero.

2.5 Updating decision thresholds

The thresholds LTH , and STH vary at each step with the following rules:

LTH = LTH −
λ

ng
· LTH = LTH · (1−

λ

ng
)

STH = STH −
αMax

ng
· STH = STH · (1−

αMax

ng
)

(8)

with ng is the number of current gaussians, λ, and αMax Using high values for λ,
and αMax results in high convergence speed. However, with faster convergence comes
significant instability around the optimal desidered point. Following this rules LTH

will decrease step by step, approaching the current value of the global log-likelihood
increment. This is the same for STH , which will become closer to the maximum area of
the gaussians, allowing splitting. This will allow the system to avoid some local optima,
by varying its configuration if a stationary situation occurs.

Finally, every time a gaussians is added these thresholds will be reset to their initial
value.

7

2.6 Stopping criterion

Analyzing the behavior of the whole mixture log-likelihood emerges a common trend:
It always acts like a first order system. In fact, it produces a curve with a high derivate
at beginning that decreases going on with the number of iterations, reaching the log-
likelihood maximum value asymptotically. We know from the theory that the rate at
which the response approaches the final value is determined by the time constant. When
t = τ (in our case i = τ), L has reached 63.2% of its final value. When t = 5τ , L has
reached 99.3% of its final value. Again, we know from the theory that the time constant
τ is the angular coefficient of the output curve at the time t = 0.

We know from the EM theory that at each iteration it has to grow, or at least re-
maining the same. However, spikes during the splitting operations that make the log-
likelihood decreasing abruptly are present. Moreover, in order to avoid local optima-like
situations, we average the log-likelihood increments by sampling it with a fixed sam-
pling rate (e.g. Ts = 25 iterations).

For each i = n · Ts, with n an integer number, we store the current log-likelihood
within an array. The first time the log-likelihood increment between two consecu-
tive sampled value increases less than 0.7% we store the relative number of iterations
ifirst = nstopTs. Then, we stop after the log-likelihood does not increase over 0.7%
for a number of times equal to nstop.

2.7 Computational complexity evaluation

Within this section we will use the following convention: ng is the number of the mix-
ture gaussians components, k is the number of input vectors, d is the number of input
dimension, and it is the number of iterations.

The computational burden of the EM algorithm is, referring to the pseudocode in
tab. 2.1 as follows:

– the original EM algorithm (steps 3 to 6) take O(k · d · ng) for 3 and 6, while step 4
and step 5 take O(1) and O(k · ng);

– our algorithm takes O(ng) for evaluating all the gaussians (step 8 to 26);
– our split (step 15) operation requires O(d).
– the others take O(1).

Therefore, the original EM algorithm takes O(k · d · ng), while our algorithm adds
O(d · ng) on the whole, giving rise to O(k · d · ng) + O(d · ng) = O(k · d · ng + d ·
ng) = (ng · d · (k + 1)). Considering that usually d << k and ng << k this does
not add a considerable burden, while giving an important improvement to the original
computation in terms of self-adapting to the data input configuration at best.

3 Experimental Validation

3.1 Experimental set-up

To compare our algorithm other EM-based methods we choose three techniques, BIC,
AIC, and MDL, as the most common used selection criteria. In order to reduce the arti-
fact of the initialization on the standard EM algorithm, we adopted a standard approach:

8

Fig. 1. The 2D representation of the final gaussians mixture generated by our algorithm vs. the
real one and the relative log-likelihood outputs as function of the iterations number, for different
input mixtures of data (4, 8, 12 gaussians components). Moreover the 8-gaussians case compari-
son between the generated and computed mixtures is shown on the bottom right.

We selected 10 different initial random conditions, keeping those giving the highest
likelihood. The stopping criteria we adopted for the EM computation is the most com-
mon used, i.e. it requires that the log-likelihood increment goes below a threshold ε. We
used ε = 10 · e−5. We evaluated our technique’s performances by applying it both to
synthetic data (artificially generated with a known mixture) and with different kind of
pictures, i.e. some well known pictures and some real images (taken by a webcam or by
our robotic platform iCub’s cameras).

Mixture precision estimation It is possible to see that FASTGMM usually achieves
a higher final log-likelihood than the other techniques, although running more itera-
tions. This suggests a better approximation of the data mixture. However, a higher log-
likelihood does not strictly imply that the extracted mixture covers the data better than
another one. This is because it is based on the probability of each component, which
may be more or less exact, being not deterministic. Nevertheless, it is not a good index
on the probability that such mixture would be better.

A deterministic approach is to adopt a unique distance measure between the gen-
eration mixture and the evaluated one. In [18] Jensen et Al. exposed three different
strategies for computing such distance: The Kullback-Leibler, the Earh Mover, and the
Normalized L2 distance. The first one is not symmetric, even though a symmetrized
version is usually adopted in music retrival. However, this measure can be evaluated in
a close form only with mono-dimensional gaussians. The second one also suffers ana-

9

log problems of the latter. The third choice, finally is symmetric, obeys to the triangle
inequality and it is easy to compute, with a comparable precision with the other two.
We then used the last one. Its expression states [19]:

zcNx(µ̄c, Σ̄c) = Nx(µ̄a, Σ̄a) ·Nx(µ̄b, Σ̄b)
where

Σ̄c =(Σ̄−1
a + Σ̄−1

b)−1 and µ̄c = Σ̄c(Σ̄−1
a µ̄a + Σ̄−1

b µ̄b)

zc =|2πΣ̄aΣ̄bΣ̄
−1
c |

1
2 · exp

{
−1

2
(µ̄a − µ̄b)T Σ̄−1

a Σ̄cΣ̄
−1
b (µ̄a − µ̄b)

}
=|2π(Σ̄a + Σ̄b)|

1
2 · exp

{
−1

2
(µ̄a − µ̄b)T (Σ̄a + Σ̄b)−1(µ̄a − µ̄b)

}
(9)

Therefore, we evaluated the Normalized L2 distance as a measure of synthetic data
estimation precision, and we reported our result in tab. 3.3.

3.2 Synthetic data

Actual number Detected number Total number Final Normalized
of Gaussian Algorithm of Gaussian of iterations log-likelihood L2
components components distance

4

AIC 4 91 -7403.656573 6.595441
BIC 4 91 -7405.021887 6.382962

MDL 6 98 -7460.206259 13.715347
FASTGMM 4 268 -7405.078438 0.075190

8

AIC 9 120 -8400.626025 34.796101
BIC 7 91 -8428.323612 18.092732

MDL 8 111 -8554.125701 22.052649
FASTGMM 8 650 -8446.063794 6.184175

12

AIC 14 103 -7475.658908 45.687874
BIC 12 124 -7547.612061 2.811907

MDL 13 161 -7613.774605 21.293496
FASTGMM 12 393 -7511.032752 2.658803

Table 1. Experimental results on synthetic data.

In order to evaluate the performance of our algorithm, we tested it by classifying dif-
ferent input data randomly generated by a known gaussians mixture, and subsequently
saved to a file. We choose to show the results for 2-dimensional input because they are
easier to show than multidimensional ones (for instance, a 2-dimensional gaussians is
represented in 2D as an ellipse).

The output of the two algorithms is shown in Fig. 1. Each distribution has a total of
2000 points, but disposed differently. The first one has been generated by a 4 gaussian
mixture, the second one by a 8 gaussian mixture and the third one by a 12 gaussian
mixture. The generation mixture (blue) and the evaluated one (red) are represented in
each subfigure. Finally, the 3D histogram representation of the 8-components generated
gaussians mixture data and the estimated one. Due to space limitations, we choose to
show only the one that gave rise to the worst log-likelihood estimation plot, i.e. the one
with 8 components.

10

We can see that our algorithm is capable to learn the input data mixture starting
from only one component with a good accuracy.

3.3 Colored real images

Fig. 2. Color image segmentation results. We divide these images into two groups: Some general
images, on the left (from (1) to (5)), and some images taken by the iCub’s cameras, on the right
(from (6) to (11)). For each group we show the original images, those obtained with the standard
EM algorithm initialized with the BIC/AIC/MDL criteria, and those obtained with our algorithm
on the left, in the middle, and on the right, respectively.

Learning the right number of color components (i.e. mixture components) within
a colored image is a difficult task. This is because an general image contains several
of the three fundamental color combinations. Therefore, it is clear that the number of
mixture components needed to represent the image at best rapidly rises up excessively,
becoming too high.

The color image segmentation results are shown in Fig. 2. The set of images is
divided into two groups: Some general images, on the left (from (1) to (5)), and some
images taken by the iCub’s cameras, on the right (from (6) to (11)). For each group
we show the original images, those obtained with the standard EM algorithm initialized
with the BIC/AIC/MDL criteria, and those obtained with our algorithm on the left, in
the middle, and on the right, respectively.

11

Image Detected number Total number Image Detected number Total number
(Fig. 2) Algorithm of mixture of iterations (Fig. 2) Algorithm of mixture of iterations

components components

(1)

AIC 8 85

(6)

AIC 8 234
BIC 7 91 BIC 7 180

MDL 7 106 MDL 8 213
FASTGMM 10 400 FASTGMM 8 350

(2)

AIC 4 120

(7)

AIC 5 92
BIC 4 91 BIC 4 90

MDL 4 134 MDL 4 104
FASTGMM 4 175 FASTGMM 3 150

(3)

AIC 20 213

(8)

AIC 4 92
BIC 18 192 BIC 4 90

MDL 18 221 MDL 4 94
FASTGMM 22 475 FASTGMM 4 175

(4)

AIC 18 145

(9)

AIC 4 78
BIC 17 126 BIC 3 94

MDL 16 153 MDL 3 97
FASTGMM 20 325 FASTGMM 3 150

(5)

AIC 4 86

(10)

AIC 16 121
BIC 4 93 BIC 16 112

MDL 4 91 MDL 15 146
FASTGMM 4 175 FASTGMM 18 300

(11)

AIC 7 131
BIC 7 124

MDL 6 156
FASTGMM 8 350

Table 2. Experimental results on real images.

Here we will find some differences in the number of mixture components detected
by our algorithm and those detected by the BIC/AIC/MDL techniques. Our approach
tends to use more components than BIC/AIC/MDL do. This is more evident on the real
images (which of course contain more color variations than the artificial ones). In table
3.3 the results of our algorithm and the BIC/AIC/MDL criteria applied to the selected
images are shown.

4 Conclusion and Future work

In this paper we proposed a unsupervised algorithm that learns a finite mixture model
from multivariate data on-line. We approached the problem starting from a single mix-
ture component and sequentially growing both increases the number of components
and adapting their means and covariances. Therefore, its initialization is unique, and
it is not affected by different possible starting points like the original EM formulation.
Moreover, by starting with a single component the computational burden is low at the
beginning, increasing only whether more components are required. We also defined a
precise stopping criteria, otherwise the algorithm continues to split indefinitely. Finally,
we presented the effectivity of our technique in a series of simulated experiments with
synthetic data, artificial, and real images.

- Future work: At the moment we tested our algorithm with synthetic data and static
images. As future work, we will improve our algorithm by implementing also a merge
technique. So far, it will be possible to remove unused components, too. Our final aim
is to apply it to moving objects, online adapting the mixture description with varying
input.

12

Acknowledgements

This work was supported by the European Commission, Project IST-004370 RobotCub
and FP7-231640 Handle, and by the Portuguese Government - Fundação para a Ciência
e Tecnologia (ISR/IST pluriannual funding) through the PIDDAC program funds and
through project BIO-LOOK, PTDC / EEA-ACR / 71032 / 2006.

References
1. L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “earning object affordances:

From sensory motor maps to imitation,” IEEE Trans. on Robotics, vol. 24, no. 1, 2008.
2. S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Bridging the gap between

simulation and reality in urban search and rescue”,” in Robocup 2006: Robot Soccer World
Cup X, 2006.

3. N. Greggio, G. Silvestri, E. Menegatti, and E. Pagello, “Simulation of small humanoid robots
for soccer domain.” Journal of The Franklin Institute - Engineering and Applied Mathemat-
ics, vol. 346, no. 5, pp. 500–519, 2009.

4. M. Vincze, “Robust tracking of ellipses at frame rate,” Pattern Recognition, vol. 34, pp.
487–498, 2001.

5. J. G. G. Dobbe, G. J. Streekstra, M. R. Hardeman, C. Ince, and C. A. Grimbergen, “Mea-
surement of the distribution of red blood cell deformability using an automated rheoscope,”
Cytometry (Clinical Cytometry), vol. 50, pp. 313–325, 2002.

6. H. Shim, D. Kwon, I. Yun, and S. Lee, “Robust segmentation of cerebral arterial segments
by a sequential monte carlo method: Particle filtering,” Computer Methods and Programs in
Biomedicine, vol. 84, no. 2-3, pp. 135–145, December 2006.

7. G. McLachlan and D. Peel, “Finite mixture models.” John Wiley and Sons, 2000.
8. A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood estimation from incomplete

data via the em algorithm,” J. Royal Statistic Soc., vol. 30, no. B, pp. 1–38, 1977.
9. Y. Sakimoto, M. Iahiguro, and G. Kitagawa, “Akaike information criterion statistics,” KTK

Scientific Publisher, Tokio, 1986.
10. J. Rissanen, “Stochastic complexity in statistical inquiry.” Wold Scientific Publishing Co.

USA, 1989.
11. F. Pernkopf and D. Bouchaffra, “Genetic-based em algorithm for learning gaussian mixture

models,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 27, no. 8, pp. 1344–1348, 2005.
12. J. Li and A. Barron, “Mixture density estimation,” NIPS, MIT Press, vol. 11, 2000.
13. N. Vlassis and A. Likas, “A greedy em algorithm for gaussian mixture learning,” Neural

Processing Letters, vol. 15, pp. 77–87, 2002.
14. J. Verbeek, N. Vlassis, , and B. Krose, “Efficient greedy learning of gaussian mixture mod-

els,” Neural Computation, vol. 15, no. 2, pp. 469–485, 2003.
15. N. Ueda, R. Nakano, Y. Ghahramani, and G. Hiton, “Smem algorithm for mixture models,”

Neural Comput, vol. 12, no. 10, pp. 2109–2128, 2000.
16. Z. Zhang, C. Chen, J. Sun, and K. Chan, “Em algorithms for gaussian mixtures with split-

and-merge operation,” Pattern Recognition, vol. 36, pp. 1973 – 1983, 2003.
17. A. Figueiredo and A. Jain, “Unsupervised learning of finite mixture models,” IEEE Trans.

Patt. Anal. Mach. Intell., vol. 24, no. 3, 2002.
18. J. H. Jensen, D. Ellis, M. G. Christensen, and S. H. Jensen, “Evaluation distance measures

between gaussian mixture models of mfccs,” Proc. Int. Conf. on Music Info. Retrieval ISMIR-
07 Vienna, Austria, pp. 107–108, October, 2007.

19. P. Ahrendt, “The multivariate gaussian probability distribution,”
http://www2.imm.dtu.dk/pubdb/p.php?3312, Tech. Rep., January 2005.

