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1049-001 Lisboa - Portugal

Abstract. We present a method to detect people waving using video streams
from a fixed camera system. Waving is a natural means of calling for attention
and can be used by citizens to signal emergency events or abnormal situations in
future automated surveillance systems. Our method is based on training a super-
vised classifier using a temporal boosting method based on optical flow-derived
features. The base algorithm shows a low false positive rate and if further im-
proves through the definition of a minimum time for the duration of the waving
event. The classifier generalizes well to scenarios very different from where it was
trained. We show that a system trained indoors with high resolution and frontal
postures can operate successfully, in real-time, in an outdoor scenario with large
scale differences and arbitrary postures.

1 Introduction

Surveillance systems are becoming more and more frequent in urban areas and large
public facilities (airports, shopping malls, stadiums). The number of installed cameras
tends to grow as public security concerns increase. The utilization of networked robots
and camera systems is also being investigated in international research projects [1] and
may set the pace for future urban infrastructures. However, the security level has not
been growing in proportion to the number of deployed cameras. Detection of security
threats is done mostly by human operators that cannot deal with the huge amount of
information that streams from the video sources. Even though some automated video
surveillance systems have been proposed to detect some classes of events (like left lug-
gage [2] and people fighting [3]) the number and the nature of possible security threats
makes hard to develop a completely automated system. Our idea goes in the direction
whereby citizens can help the surveillance system by signaling emergency, dangerous
or suspicious situations with a universal alerting gesture: waving. As nowadays people
dial emergency phone numbers to call for help, in the future they may just have to wave
at any location covered by a surveillance system. Within this paradigm, we have been
working in automatic and robust detection of waving events and this paper describes
the current state of our research.
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1.1 Related Work

Detection on waving events can be framed in the current research on video based ac-
tivity recognition. Several works have considered a general approach of action recogni-
tion, for instance aiming to distinguish among several different activities like walking,
jogging, waving, running, boxing and clapping [4, 5]. The state-of-the-art research fo-
cus the limb tracking to model the human activities [6], an approach that is limited to
high resolution targets and uncluttered environments [7]. In order to cope with clut-
tered environments, several works model activities using motion-based features [8, 3],
shape-based features [9], space-time interest points [4] or a combination of some of
the above features [10]. Although these works have achieved good recognition rates,
the real-time performance is rarely mentioned by the authors, although the space-time
“integral video” of [5] is driven by computational efficiency considerations.

1.2 Our Approach

In this paper we aim at a computational efficient representation of waving patterns by
using motion-based features and a boosting classifier. We aim at performances compa-
rable to the state-of-art but also able to run in real time in current video surveillance
cameras. We exploit the constraints of fixed camera systems and develop a real-time
waving detector that can be applied in indoors and outdoors scenarios. Our model of
waving patterns relies on a qualitative representation of body parts’ movements. Hu-
man activity is modeled using simple motion statistics information, not requiring the
(time-consuming) pose reconstruction of parts of the human body. We use focus of at-
tention (FOA) features [11] which compute optical flow statistics with respect to the
target’s centroid. In order to detect waving activities at every frame, a boosting algo-
rithm uses labeled samples of FOA features in a binary problem: wavingvsnot waving.
We use the Temporal Gentleboost algorithm [12] which improves boosting performance
by adding a new parameter to the weak classifier: the (short-term) temporal support of
the features. We improve the noise robustness of the boosting classification by defining
a waving event, which imposes the occurrence of a minimum number of single-frame
waving classifications in an suitably defined temporal window. The robustness of the
waving model (FOA and GentleBoost) is tested on the KTH action database and com-
pared to the state-of-the-art results.

The main requirement of the waving model proposed in this work is the previous
segmentation and labeling of moving targets in the image. Due to real-time performance
constraints, we adopt fast algorithms for segmentation and labeling. Since detection will
be performed in a network of fixed cameras, the initial segmentation is provided by a
background subtraction algorithm. We use the Lehigh Omnidirectional Tracking Sys-
tem (LOTS) method [13], which adapts the background by incorporating the current im-
age with a small weight. After getting a new image, the background detection process
generates a list of bounding boxes corresponding to connected foreground objects in
the image. Then, the tracking algorithm performs data association between consecutive
frames, using the distance between centroids of the bounding boxes. The user can se-
lect the data association algorithm, according to the desired performance: a fast nearest



neighbor or the more robust hungarian assignment [14]. In the image regions corre-
sponding to the detected targets, we compute FOA features based on a dense optical
flow algorithm [15]. The optical flow algorithm is based on a new metric for intensity
matching, which removes noisy flow vectors with a low computational load.

We show in both indoors and outdoors datasets the robustness and generalization
properties of the approach, attaining high frame rate performance (up to 20fps) and
low false positive rate. In addition, the method is able to detect waving patterns in low
resolution targets, which is frequently the case in cameras with wide field of view. In
section 2, we describe the waving model in detail and evaluate its properties, then in
section 3 we explain the real-time implementation, followed by the results in section 4
and conclusions in section 5.

2 Waving model

In this section we explain what image features and classification techniques are used to
be able to detect waving gestures in a stream of video.

2.1 Focus Of Attention (FOA) features

FOA features encode the motion patterns of parts of the body with respect to its center
[11]. This representation is based on the statistical distribution of the optical flow in
the image region corresponding to the detected targets. We assume that the center of
the bounding box corresponds rougly to the center of the person’s body, and then the
following computations are performed:

1. The mean value of the optical flow is computed around several angular directions
with respect to the centroid of the target’s segmented pixels. Particular gestures
involve motion of body parts within a limited range of angles. For instance, the
expected angular variation of legs during walking span a certain range∆θ, as illus-
trated in the left part of Figure 2.1. A range∆θ can be seen as an receptive field
tuned for the extraction of the movement of a particular part of the body.

2. For each angle, the optical flow vectors within the receptive field are pooled and
projected on the radial and normal directions. The final motion representation is the
concatenation of such projections for all angles (with an appropriate discretization).
The right part of Figure 2.1 shows an example of the mean optical flow vector at
the arm direction.

Different types of body movements will activate different receptive fields in dif-
ferent ways, forming characteristic patterns that represent basic movements like ris-
ing/putting down arms, bending, sitting, etc. The response of the receptive fields form-
ing the FOA representation at each time will provide the information required to identify
such basic movements.

2.2 Temporal Gentleboost

To train classifiers able to recognize waving patterns in images, we use a boosting al-
gorithm. Boosting algorithms provides a framework to sequentially fit additive models



Fig. 1.Focus Of Attention examples.

in order to build a classifier:

H(x) = sign

(
M∑

m=1

hm(x)

)
(1)

In the previous equationH is calledthe strong classifierand is obtained by the com-
puting the sign of the sum ofM weak classifiersh. Variablex denotes the vector
of FOA features we want to classify. IfH(x) = 1 we detect a positive example
whereas ifH(x) = −1 no detection is obtained fromx. The training of such a clas-
sifier , hm, is done by minimizing at each roundm the weighted squared errorJ =∑N

i=1 wi(yi − hm(xi))2 with respect to the classifier parameters, whereN is the num-
ber of training samples,yi are the ground truth values (1 for detection and−1 for no
detection) andwi = e−yihm(xi) are weights. At each round, the weak classifier with
lowest error is then added to the strong classifier and the data weights adapted, increas-
ing the weight of the misclassified samples and decreasing correctly classified ones
[16].

We use a particular class of boosting algorithm called GentleBoost [16] that com-
monly uses very simple functions, known as regression stumps, to implement the weak
classifiers. Regression stumps have the formhm(x) = aδ

[
x(f) > θ

]
+ bδ

[
x(f) ≤ θ

]
,

where the scalarx(f) is thef th entry of data samplex. Functionδ is an indicator, i.e.
δ[condition] is one if condition is true and zero otherwise. Regression stumps can be
viewed as bifurcations on decision trees, where the indicator function sharply chooses
brancha or b depending on thresholdθ and featurex(f). To optimize the stump one
must find the set of parameters{a, b, f, θ} that minimizeJ . A closed form exists to
compute the optimala andb, and the pair{f, θ} is found using exhaustive search [17].

A recent approach considers the temporal evolution of the features in the boosting
algorithm, improving its noise robustness and performance [12]. That work models the
temporal consistency of the features by parameterizing time in the weak classifiers. The
Temporal Stumps compute the mean classification output of the regression stump, in a
temporal window of sizeT ,

hm(xi) = a

(
1
T

T−1∑
t=0

δ
[
xf

i−t > θ
])

+ b

(
1
T

T−1∑
t=0

δ
[
xf

i−t ≤ θ
])

. (2)



1. Given:(x1, y1), . . . , (xN , yN ) wherexi ∈ X, yi ∈ Y = {−1, +1}, setH(xi) := 0,
initialize the observation weightswi = 1/N , i = 1, 2, . . . , N

2. Repeat form = 1, . . . , M

(a) Find the optimal weak classifierhm over(xi, yi, wi).
(b) Update strong classifierH(xi) := H(xi) + h∗m(xi)
(c) Update weights for examplesi = 1, 2, . . . , N , wi := wie

−yih∗m(xi)

Fig. 2.Temporal Gentleboost algorithm.

The temporal weak classifier of Eq. 2 can be viewed as the classic regression stump
with a different “indicator function”. IfT = 1 it becomes the original regression stump,
and forT > 1 the indicator function changes. The new indicator functions are

∆T
+(f, θ, T ) =

1
T

T−1∑
t

δ
[
xf

i−t > θ
]
, ∆T

−(f, θ, T ) =
1
T

T−1∑
t

δ
[
xf

i−t ≤ θ
]
, (3)

and compute the percentage of points above and below the thresholdθ, in the temporal
windowT , for the feature numberf . The indicator functions with temporal consistency
in Eq. 3, can take any value in the interval[01], depending on the length of the temporal
window used. For example, ifT = 2 the functions can take3 different values,∆T

+ ∈
{0, 1/2, 1}, if T = 3 can take four values,∆T

+ ∈ {0, 1/3, 2/3, 1} and so on. The
output of the new “indicator function”,∆, represents the confidence on the threshold
selection to use the data with temporal supportT . Thus, at each boosting round, we use
a weighted confidence of both branches, instead of choosing only one branch.

Using the weak classifier with temporal consistency of Eq. 2 in the cost function
it is possible to obtain closed form solutions for the parametersa andb that minimize
the errorJ [12]. The optimalf ,θ andT are obtained by exhaustive search. The learning
algorithm shown in figure 2 is similar to GentleBoost, but optimizes the temporal stump
of Eq. (2).

2.3 Waving event

The temporal boost algorithm described above improves the single frame classification
of the waving activity using the short-term consistency of the FOA features. However,
there are problems at the on-set and off-set of the waving gestures both in the generation
of ground truth data and on the classification output. Also, some other gestures have
short term similarity with waving actions but are of different nature. Thus, in order to
reduce the false positive rates we require waving gestures to be persistent for a few
frames otherwise they are discarded. This is in accordance with the human behavior as
we usually wave for a long enough time if we want to make sure our sign is detected.
We define the waving event as active when occurs a minimum number of single-frame
waving classifications in a temporal window. In addition, the filtering property of the
event definition can be adapted to different frame rates by selecting the value of the
temporal window.



2.4 Evaluation of the waving model

The model presented in the previous sections exploits the characteristics of the motion
of the waving activity and its temporal extent. In this section we evaluate the suitability
of this model in the KTH action database [4], which has video sequences of six activ-
ities: walking, running, jogging, boxing, clapping and waving. We use a subset of this
database in order to distinguish between waving and the negative samples (boxing and
clapping). The negative samples selected have motion patterns very similar to those
of the waving activity and the experimental results from previous works support this
selection [4, 5, 18].

For this comparison we use the training and testing set of [4]. A user clicks in the
first image of every sequence to provide the centroid of the targets. Then, the FOA
features are computed in the entire image (∆θ = π/4), using the dense optical flow of
[15]. The final step is the supervised temporal boost learning followed by the single-
frame classification and event classification. The accuracy of classifying every sequence
correctly (i.e. classifying correctly the occurence of the waving event in the sequence,)
is shown in Table 1.

Related work Accuracy
Our method 91.7%

Niebles et al. [18] 93%
Ke et al. [10] 88%
Ke et al. [5] 91.7%

Schuldt et al. [4] 73.6%

Table 1. Accuracy of state-of-the-art methods in waving detection on the KTH action database.
In our method, the temporal support of the Temporal boost algorithm is 25 frames (1s) and the
classification of every sequence uses an event window size of 4s, considering a waving event if
at least 60% of the single-frame classifications are positive in that sequence.

Our model for waving detection has a performance comparable to the state-of-the-
art with the advantage of a very low computational load at detection time. We have
implementation running in real time (20fps) on full sized images (640x480).

3 Real-time implementation

The robustness and real-time performance of the presented system partly rely on the
employed target segmentation and tracking methods. In our case we use the LOTS
background subtraction for segmentation [13] and distance based data association for
tracking. In addition, the FOA features computation rely on the fast optical flow imple-
mentation of [15] which presents a good balance between speed and quality.

Like many segmentation systems, LOTS processing starts with a change-detection
method based on background subtraction. The main difficulties of such approach lie in
the fact that, even in controlled environments, the background undergoes a continual



change, mostly due to the existence of lighting variations and distractors (i.e., clouds
passing by, branches of trees moving with the wind). Target occlusion and interac-
tion with the scene rises additional problems. To overcome these difficulties, the robust
and fast algorithm described in [13] was implemented. The robustness towards lighting
variations of the scene is achieved using adaptive background models and adaptive per-
pixel thresholds. The use of multiple backgrounds and grouping pixels through quasi-
connected-components (QCC) contribute to the robustness of the algorithm towards
unwanted distractors.

The LOTS algorithm provides the bounding boxes of the regions of interest and their
corresponding segmented pixels. The distance between the center points of two bound-
ing boxes is the feature selected to do data association between consecutive frames.
The user has two options for data association algorithms: (i) nearest neighbor or (ii)
hungarian assignment. The nearest neighbor is the more efficient option, while the hun-
garian assigment minimizes the global cost of the assignments in polynomial time. The
hungarian algorithm1 works better than the nearest neighbor when the paths of two or
more targets intersect each other. However, the computational load of the hungarian
algorithm may be a problem when tracking a large number of targets (greater than 10).

In addition to the segmentation and labeling techniques, the computational load of
the optical flow algorithm (dense) is crucial to attain high frame rates. We use the imple-
mentation of [15]2, an optical flow algorithm that introduces a new metric for intensity
matching, based on the unequal matching (i.e. unequal number of pixels in the two im-
ages can be correspondent to each other). The optical flow used has a good balance
between computational load and robustness to noise in the motion estimation [15]. The
software was implemented in C++ using YARP libraries, using a P4(2.8GHz) PC. The
frame rate of the waving detector varies according to the setup of the algorithms, as
follows:

– Frame rate: 20fps. LOTS algorithm uses images of size640 × 480, the optical
flow uses images of size160× 120 and is computed only in the bounding boxes.

– Frame rate: 10fps. LOTS algorithm uses images of size640 × 480, the optical
flow uses images of size320× 240 and is computed only in the bounding boxes.

4 Experiments and results

The real-time implementation of the waving detector was developed specifically for
the URUS project [1] and was trained and tested on different databases, considering
two sequences for training and one sequence for testing. Figure 4 shows one sample of
each data set, which contains several actions of the negative class (walking, pointing,
and wandering). The training sequences have 4229 frames (2303 waving and 1926 not
waving), and the testing sequence has 4600 frames (1355 waving and 3245 not waving).
The FOA feature sampling is∆θ = π/4. The support window of the Temporal boost
algorithm is 20 frames. The event window size is 2s (20 frames), considering a waving
event if at least 60% of the single-frame classifications are positive. Table 2 shows the
robustness improvement obtained by the definition of the event in both data sets.

1 obtained from http://www.mathworks.com/matlabcentral/fileexchange/6543
2 http://www.cs.umd.edu/˜ogale/download/code.html



single-frame Event
training set 92.01% 92.74%
testing set 85.95% 94.43%

Table 2.Waving detector accuracy on the sequences of Figure 4.

The definition of the event brings robustness to noisy classifications, improving up
to 9% the accuracy of the results. In addition, the event window size can be adapted to
different frame rates. Figure 4 shows examples of waving events detected correctly in
the case of sequences grabbed at 10fps, in which the event window size is 1s.

Fig. 3. Sample images of the indoors data set. In the first row, positive and negative samples of
the training set. In the second row, samples of waving events correctly detected. In the third row,
samples of the negative class (not waving) correctly detected.

Though we do not yet have performed a quantitative analysis of the outdoor re-
sults, we noticed that the classifier generalizes well to conditions very distinct from the
ones on the training data, in terms of scale (trained with large targets but also detects
small ones), lighting (trained indoors but also works outdoors), and posture (trained
with frontal postures but also detects lateral postures).



Fig. 4. Sample images of waving events correctly detected in different scenarios. Notice the cor-
rect detection of the bottom images, where the subject is waving away from the camera.

5 Conclusions

We have addressed the real-time detection of waving gestures in fixed camera systems,
showing its application in indoors and outdoors settings. The waving model extracts
motion information of the targets using the statistics of optical flow features. Then the
temporal boost algorithm learns to discriminate between waving and other patterns. In
addition, the definition of a waving event by pooling the results of the classification
result in a temporal window, adds robustness to the detection. The model presented is
efficient and accurate, with performance comparable to the state-of-the-art approaches.

The adopted algorithms for segmentation, data association and optical flow com-
putation have a low computational load, thus enabling the real-time execution of the
waving detection algorithm. In future work, the addition of an efficient person detec-
tor should remove erroneous segmentations provided by the background subtraction
algorithm. Also, a tracking algorithm with richer features will certainly increase the
robustness of the waving detections.
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