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Evolving Predictive Visual Motion Detectors

Jonas Ruesch and Alexandre Bernardino

Abstract—The geometrical organization of a visual sensor is of
major importance for the later processing of sensed stimuli. We
present an approach to evolve artificial visual detectors which
adapt their size and orientation according to the experienced
sensory stimulation. The criterion for the introduced optimization
method is given by a Reichardt correlation measure on the input
signal. Under the described conditions, the visual receptors orga-
nize their spatial arrangement following the average luminance
flow recorded by the sensor over time.

Index Terms—Sensor morphology, Reichardt correlation, el-
ementary motion detection, visual receptor distribution, self-
organization, optimization.

I. INTRODUCTION

Since the first light sensitive receptors appeared in primitive
animals, presumably 550 million years ago, visual sensors
have evolved into highly complex perception systems occu-
pying big areas of the human brain. As has been shown in
embodied artificial intelligence research, the structure of the
information flow in a sensory system is essential for later
processing [1], [2]. This structure is determined conjointly by
the agent’s behavior and the organization of the sensor.

In this paper we address the aspect of evolving a geometrical
sensor layout given the particular stochastic properties of an in-
put signal. In nature many examples can be found where visual
sensors have evolved in accordance to an animal’s behavior.
For instance the human retina was shown to have an optimal
spatial organization for tracking tasks [3]. Another example
is the housefly’s compound eye, whose photo-receptors are
distributed such as to simplify distance estimation from motion
parallax [4], [5]. An interesting study in [6] has recorded
images from a camera mounted on a cat’s head and has found
that the video stream presents clear statistical regularities. For
example a predominance of horizontal and vertical orientations
over oblique contours was found. These statistics seem to
influence the organization of retinal ganglion cells and their
dendrites, that are preferentially arranged along the vertical
and horizontal meridians.

The mechanism that drives the emergence of such sensory
organization has been subject of research by several authors
[7]-[9]. Simulations have shown that sensor structures can
evolve in direct response to the structure of the visual stimulus
[10]. In that work a Kohonen learning rule is used to adapt
a network of receptors. The network is adapted according to
self-induced transformations of previous receptor locations. It
is shown that the network converges to a retina-like spatial
organization with efficient prediction of the expected trans-
formation. Thus the sensor morphology adapts to the signal’s
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statistical properties in order to simplify motion prediction.
Clippingdale’s work [10] addresses sensor structure adaptation
assuming known motions. However, motion estimation in
visual sensors is by no means trivial and a large body of
research has been dedicated to this issue. Energy-based models
[11] and Reichardt-detectors [12], [13] have a clear biological
motivation and have been shown to outperform linear gradient
schemes under varying spatial frequencies [14]. In our work
we follow Clippingdale’s paradigm but use Reichardt type
detectors that are adapted incrementally according to the
statistics of a two-dimensional image stream. We propose
an on-line algorithm to optimize the detector’s layout to
reflect the average intensity displacements. For this purpose
we furthermore study some aspects of the strongly non-linear
properties of Reichardt-detectors.

In related work [15] a one-dimensional array of receptors is
used for obstacle avoidance in a mobile robot. The morphology
of the sensor is evolved using an genetic algorithm where each
solution codes for a different sensor geometry. On the contrary,
we adopt an ontogenetic approach to organize two-dimensional
detectors which continue to adapt if the characteristics of the
input stimulus change over time.

In the next section we briefly review the Reichardt Correla-
tion Model. The proposed optimization is introduced in section
IIT and accompanied by an analysis of the search landscape.
Demonstrations and results for one- and two-dimensional
sensors are presented in section I'V.

II. MEASURING INTENSITY DISPLACEMENTS

Motion directly defined by intensity changes is called pri-
mary motion or Fourier motion and can be predicted from
the spatio-temporal Fourier transform [14]. The Reichardt-
detector described in the next section is suitable and biological
plausible to measure direction and velocity of this type of
motion.

A. A Short Review on the Reichardt-Detector

Originally proposed by W. Reichardt, the so-called elemen-
tary motion detector of the correlation type (EMD) detects the
displacement of a luminance distribution in a given direction.
This particular mechanism is also referred to as the Reichardt-
detector and was developed based on the analysis of insect
behavior [12], [13], [16]. The detector consists of two input
elements located at two different spatial locations A and B
(Fig. 1). Each of these receptors has a receptive field filtering
the input intensity I(x,t) spatially with F(I(x,t)).

To compute the response of a Reichardt-detector, a first
correlation measure is computed by multiplying the resulting
signal at location B with the temporally filtered signal at
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location A. By repeating this step in a reciprocal way, a
second correlation measure is obtained. In a next step, these
two results are subtracted from each other yielding the actual
correlation measure related to intensity displacement:

Cap = F(Ip)  F(Ia) — F(1a) - F(IB), (1)

where F computes the temporally filtered response. Note that
the subtraction step eliminates any output resulting from tem-
poral stationary intensity signals and that directional sensitivity
to intensity displacements is conserved by this operation. The
sign of the output indicates the orientation of the detected
change. The response of this detector is influenced on the
one hand by the receptor locations A and B, and on the
other hand by the time constant 7' of the temporal filter in
use. For visual receptors in insects, the temporally delayed
signal is usually assumed to be low-pass filtered. An additional
parameter influencing the correlation measure is the size o
of the receptive field, which affects the spatial frequency
resolution of the detector.

B. Implementation

Each receptor samples an intensity value from an underlying
pixel array using a gaussian filter with a kernel size o.
Receptors can be placed with sub-pixel accuracy and interpo-
late intensity values linearly between pixels. Pixels can have
assigned a value in the range of [0,1].

In order to subsequently express a correlation measure
depending on the receptor locations and the location x of a
detector we rewrite (1) as:

Ou(d,t) = F(I(x +d/2,t)) - F(I(x — d/2,t)—

F(I(x—d/2,t)- F(I(x+d/2,t), (2)

where the vector d = B — A describes the distance between
the receptors for the detector at location x.

For our analysis we define F as a time delay with period
T = 1. Although such simple time delays are not commonly
found in nervous systems, this model corresponds qualitatively
to motion detectors found in flies [16].

Fig. 1. A Reichardt-detector located at position x with receptors at locations
A and B at a distance d from each other. The four marked positions at
distance 1, from A and B indicate the perturbed receptor locations used in
the gradient estimation step of the optimization algorithm.

Section — E FE F(Ia)

Fig. 2. Intensity measured for each spatial location (x-axis) while an intensity
pulse is moving from left to right. Each location filters intensity with a
Gaussian receptive field. The situation corresponds to the response to an
intensity pulse passing at the characteristic velocity v*. The pulse moves
at a distance per time step of exactly d and is currently located at location
B. The dashed curve represents the time-delayed response.

Of major importance for our work is that implicitly, the
distance ||d|| and the time constant T define a velocity for
which a signal traveling in the direction of the detector evokes
a maximum response (see Fig. 2). This characteristic velocity
v* increases if the the distance between A and B is enlarged
or if the time constant 7" is decreased and vice versa. As we
keep T constant, the vector d only defines the characteristic
velocity v*. The receptive field of each sensor is modeled by
a Gaussian of size o.

III. OPTIMIZATION ALGORITHM

Our objective is to place the receptor pairs of each
Reichardt-detector in a way such that the maximum correlation
is recorded over time. If we consider the detectors to be placed
at fixed locations x, the maximization of the total correlation
over time and space can be done by optimizing each individual
detector independently. In the discussion of the computational
algorithms we consider that Reichardt-detectors are sampled
at the rate of the incoming images, thus ¢ is considered, from
now on, a discrete time variable.

To find the optimum receptor configuration for a detector
at location x we want to find a receptor distance d which
maximizes the expected value of the correlation measure:

argmax F [Cx(d, t)], 3)
d
As long as we keep d constant, C' is a stationary stochastic
process and a good estimate of the expected value in (3) is
given by the sample mean:

t

— 1
Cx(d,t) = 3 > Cx(d,7) “)

7=0

For the purpose of finding a d which maximizes Cy(d,t)
we employ a stochastic gradient descent method where the
respective gradient is:

a9 1 (< 0
SqCx(dit) = - ; 5qCx(d1) Q)

Though, because the statistical properties of C'x changes as
soon as d is changed, we would need to wait an infinite amount
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of time so that C'y adapts to the changes in the input statistics.
On the other end we could use the approximation:

0 — 0

—Cx(d,t) = —Cx(d,t 6

S Cx(di D)~ 2= Ci(d,) ©)
However, using such a coarse approximation of 9C,/dd
proofed to be too noisy to update d. We therefore opt for using
an exponentially smoothed moving average and estimate C'x
using the update rule:

0 — _
—Cx(t,d) = (1 — a)=—=Cx(t,d —Cx(t—1,d-1),
7 Oxlt,d) = (1= )5 Cx(t,d) + a5 Ox( )
where o defines the time window over which Cy is averaged.
The final update of the receptor positions can then be done as:

(1) = Ot 1), ®)

Note, as the update of the estimation of 0Cx(d,t)/0d and
the update of d are done concurrently at each time step, the
parameters « and [ are interdependent. This interdependency
is discussed later.

A. Receptor Perturbations

To compute dCx(d,t)/0d we use a finite difference ap-
proximation where the correlation measures for the differences
are obtained by perturbing the receptors in every dimension
by a distance of r, in positive and negative direction. The
current gradient is then calculated by subtracting correlation
measures from two opposing perturbed configurations in each
dimension.

Applying this scheme to the two-dimensional case, we com-
pute for each receptor the correlation values C' g, Csn, Cw g,
and Cgyy using the receptor pairings Ag-By, Ax-Bg, Ay-
Bpg, and A g-Byy. The indices code for receptor perturbations
in direction north, west, south and east of the receptor’s
original position (see Fig. 1). The gradient 0Cx(d)/0d for
the current time step is then approximated as:

> ©))

20 (d) = ( (Cns(d) = Csn(d))/2rp

od ™ (Cwr(d) — Cpw(d))/2rp.
In this work, the receptor perturbations are done during one
time step. Referring to a real sensor in an artificial or biological
system, the analogon to such a mechanism could either happen
at a faster timescale or be provided by a number of coupled
receptors. Furthermore, we want a detector at location x with
direction 7y to give the same response as a detector at location
x with direction v + 180 deg. We therefore use the absolute
value of the correlation response to compute 0Cx(d,t)/0d.
This in fact introduces a second optimum ds which equals d;
mirrored at the origin.

B. Optimization Parameters

Adjustable parameters for the described optimization are the
gradient averaging rate «, the optimization update rate /3, the
perturbation radius 7, and the o of the input filter.

For the parameter «, two things have to be taken into
account:

1) Considering d constant, o corresponds to a learning rate
for 9C,/0d, or seen from a different perspective, o
is related to the bandwidth of a temporal filter which
must be tuned to attenuate the noise in the instantaneous
gradient calculations.

2) If d is changing, « also corresponds to a momentum
term as used in common acceleration techniques in
gradient based optimization.

So, when choosing the parameter v, we must primarily find
a value specifying a time window which is large enough for
having a good estimate of JC,/0d and at the same time,
we have to keep in mind that by increasing o« we increase
the momentum term which can lead to overshooting and
oscillation when optimizing d. Because we want to estimate
the average gradient over long time courses, we are forced to
choose a relatively high o and therefore the momentum of the
gradient descent is necessarily high. To keep this momentum
within reasonable bounds we should nevertheless choose « as
low as possible. How low « can be chosen depends on the
observed signal variability. If the characteristic patterns of the
input signal are repeated in short time periods, then o can
be smaller. The values chosen for the actual experiments are
described in section IV.

Because of the introduced momentum, care has to be
taken as well when choosing the update rate ( in relation
to o because a high adaptation rate combined with a high
momentum leads to the previously mentioned behavior of
overshoot and oscillation. In other words, we need a 3 small
enough for the gradient to have time to be updated sufficiently
accurate for a new distance d.

Choosing the perturbation radius 7, is less tricky. The
bounds for 1, are constrained by the curvature of the search
landscape. As the highest curvature always occurs close to the
maximum, as can be seen from Fig. 4, we just need to choose
r, small enough to estimate the gradient around the optimum
with a desired accuracy.

The effects of changing parameter o are described in the
following section.

C. Search Landscape

Before running the optimization, we briefly analyze the
search landscape on which it operates. This will provide us
with an insight on the relationship between receptor distances
for which results a maximum correlation response and the
corresponding intensity displacement velocities.

For the one-dimensional case the correlation response for
a moving intensity pulse plotted against the receptor distance
and the signal velocity is shown in Fig. 3. The receptors have
a receptive field of size o = 2.5. Note that for every distance
and velocity configuration the plot actually shows the response
value for the point in time when the detector reacts with
maximum response to the passing intensity pulse. For different
points in time the plot remains the same up to a scale factor.
Of importance for our purpose is the approximately one-to-one
relationship between distances and velocities for distances > 5
which maximize the correlation response. Due to the drop in
response close to the origin, the receptor distances found by
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the optimization have a minimum bound. One can envisage
this relationship by looking at Fig. 2: When decreasing the
signal velocity and decreasing at the same time the measuring
distance, then there will be a point where the correlation
response starts to decrease because the result of F(14)-F (/)
approaches F(Ip) - F(I4) before F(Ip) and F(I4) reach
their peak response. The distance d for which this happens
depends on the o used in the pre-processing of the input signal
and equals approximately 2¢0. Fig. 4 shows two cut-sections
of Fig. 3 for two different velocities. These are the profiles on
which the gradient descent is performed for a fixed velocity.
Measures in pixels relate to the resolution of the observed
signal. To see the changes to the correlation response for a
different 0 compare these plots with Fig. 6(d).

A plot for the two-dimensional case can be seen in Fig. 5.
Again, the correlation response is maximized for receptor dis-
tances d, and d,, which match the given intensity displacement
velocity v; = 6 and vy, = 4.

Apart from defining a lower bound for d, the o of the pre-
processing filter has another important impact: If one wants to
prevent aliasing, then the width of the receptive field should
be twice the distance d between the receptors. This relation is
in accordance with the Nyquist sampling theorem. However,
as can be seen from Fig. 3, the proposed optimization requires
a o which does not fulfill this condition and therefore aliasing
can occur. This means a motion detector can be stimulated
not only by a single moving edge, but by different portions
of the intensity distribution moving over it. The effect of this
related to our optimization is that receptor pairs initialized
at a distance far away from the optimum can converge to a
different distance which corresponds to maximum correlation
in case of aliasing.

IV. RESULTS

To test the proposed algorithm we present first an exper-
iment for a one-dimensional d. Subsequent results relate to
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Fig. 3. The correlation response plotted against the receptor distance (x-
axis) and the signal velocity (y-axis). The correlation is computed assuming
an intensity pulse filtered by receptive fields of size o = 2.5. The curve in
bold red indicates for each velocity value the receptor distance for which the
maximum correlation is measured. Values in pixels relate to the resolution of
the input signal.
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Fig. 4. The correlation response plotted against the receptor distance d for

two different intensity displacement velocities (cut-sections of Fig 3).

two-dimensional input signals.

A. One-Dimensional Case

In this setup 20 detectors are uniformly distributed over a
one-dimensional input signal of size 320 pixels. Each detector
is initialized with its receptors at a distance of 8 pixels. The
receptive field of each receptor has size o = 1.5. During the
simulation an intensity pulse moves on the input image in
positive direction according to a sinusoidal velocity profile
with a mean displacement of 8 pixels and an amplitude of 4
pixels while the period 27 of the sine extends over 160 pixels
(see Fig. 6(b)).

Fig. 6(e) and 6(f) show the results of a simulation lasting
10’000 time steps. Remember that receptors can move and
measure intensity with sub-pixel accuracy using linear inter-
polation. A slight overshoot can be observed for some distance
values. The noise in the gradient estimation is dependent on
the parameter o. The parameters used for this simulation are
summarized in TABLE I. In Fig.6(d) a plot of the search
landscape according to the used o is shown. On the dashed
line the initial distances are marked. The arrows point in the
direction the distances change to reach the optimum on the
bold red line.
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Fig. 5. The correlation response of an intensity pulse moving in two-
dimensional space in x-direction at a velocity of 6 pixels per time step and
in y-direction at 4 pixels per time step. The correlation response is plotted
against varying horizontal and vertical receptor distances. The dot in bold red
marks a receptor with distances d; = 6 and dy; = 4 which maximizes the
correlation response.
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TABLE I
PARAMETER SETTINGS
Parameter one- two-
dimensional dimensional
Perturbation radius rp  0.5pixels 0.5 pixels
momentum, (1 - learning rate) @ 1 —2-1073 1—-5-10"%
Receptor position update rate G 0.1 1.0
Receptive field size o 1.5 pixels 1.5 pixels

B. Two-Dimensional Case

The results for a two-dimensional input image were ob-
tained by generating a pattern of 80 intensity pulses at random
locations on a 96 by 96 pixel array. The initial configuration
consists of 64 detectors distributed as shown in Fig. 7(b) with
receptors at a distance of 3 pixels randomly oriented. The
receptive field of each receptor has a size of 1.5 pixels. A
typical input pattern as filtered by the receptors is shown
in Fig. 7(a). To prevent a particular pattern to introduce a
bias, a random pattern is regenerated every 100 time steps.
The response from two different motion patterns are presented
here. The final detector configurations can be seen in Fig. 7(e)
and Fig. 7(f): i) The random pattern is rotated at an angle of
15deg per time step for 10’000 time steps; ii) The intensity
pulses are repeatedly scaled to a distance of 0.875 and 1.125
times their original distance from the center of the image.

V. DISCUSSION AND FUTURE WORK

In the two-dimensional experiments a minor number of
receptors did not converge to the optimum distance after
10’000 time steps. As can be seen from the plots in Fig. 7,
these are mainly detectors which have their receptors located
at a d perpendicular to the optimum d. Referring to the search
landscape these detectors are located on the contour curve of
level 0 in Fig. 5. To explain this, we have to take into account
that the motion patterns we generate exert a displacement
velocity in exactly one direction at each location. Depending
on the distance of a receptor pair, this displacement cannot be
detected by receptors with a d perpendicular to this direction.

Another observation concerns a few detectors which show
a receptor distance which is too large to match the intensity
displacement at that location. These detectors suffer from the
effect of aliasing described in section III-C.

In future work we expect both of the above described flaws
to diminish by introducing an inter-unit coupling. Coupling
forces between detectors could lead to a smoothing effect
eliminating outliers. Furthermore, by connecting neighboring
units the organization of a coherent network of motion de-
tectors of different sizes becomes possible. Some work is
required related to the optimization, as with this extension
the assumption of a fixed location for each detector must be
abandoned.

Eventually we will investigate how such detector-networks
organize when observing image streams similar to the ones
sensed by organisms moving in their natural environment; e.g.
images corresponding to the perspective of a fly during flight,
or the image stream resulting from a saccading sequence of a
human.
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Fig. 6. Results for the one-dimensional case: (a) An intensity pulse and its delayed response travelling from left to right over 320 pixels. (b) The initial
receptor distances for 20 detectors (red dots) and the intensity pulse displacement profile (green dots). (c) The final receptor distances after 10’000 iterations.
(d) Search landscape for a receptive field of size ¢ = 1.5. The dots on the dashed line mark the initial receptor distances within the observed intensity
displacement velocity range. The arrows indicate the changes during the optimization towards the optimum value on the bold red line. Note that each receptor
experiences one particular velocity and therefore the gradient points in a horizontal direction in this plot. (e) The receptor distances plotted against time. (f)
OCx /0d plotted against time.
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Fig. 7. Results for the two-dimensional case: (a) A typical input pattern of 80 intensity pulses distributed randomly on an image of 96 by 96 pixels. (b) The
initial distribution of 64 detectors initialized with receptors at a distance of 3 pixels at random orientation. (c), (d) The evolution of the receptor distances
over 10’000 timesteps. (e), (f) The final configurations for the 64 receptor pairs after observing a rotating, respectively a scaled input pattern for 10’000 time
steps.
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