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Smooth Foveal Vision with Gaussian Receptive Fields
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Abstract— Despite the huge amount of information, the
human brain is able to perceive and interpret visual signals
in real time. One of reasons is that visual information is
selectively sampled in the retina providing higher acuity in the
center (where usually the most important information is) than
in periphery. Humanoids vision can benefit from such space-
variant representations of the visual field with utility not only in
image data reduction but also in others applications as vergence,
active tracking, as demonstrated in the last decades’ research.
However, classical methods model foveation processes with non-
smooth receptive fields with are a weak match to the human
physiology. Instead we propose an alternative representation
using Gaussian kernels. While increasing redundancy, Gaussian
receptive fields provide a smoother representation of Foveal
images and model certain properties of data acquisition in
human vision. In addition, we propose an algebraic approach
for the analysis, synthesis and processing of Foveal images,
using simple matrix computations and operator theory. We
show how to derive the equivalent Foveal operators to com-
mon Cartesian domain linear processing routines such as
image geometrical transformations and filtering operations.
We present experiments illustrating the performance of the
proposed methodology in comparison to classical approaches
for space-variant image processing both in image reconstruction
and in motion estimation/tracking tasks.

I. INTRODUCTION

Visual perception in biological systems is often charac-
terized by space-variant acquisition and processing mecha-
nisms, which reduce the amount of instantaneous information
to process. The retina of mammals have a three layered
structure: the first layer is composed by the photoreceptors:
rods and cones'. Cones are distributed non-uniformly as
function of the visual position, according to a log-polar
law [21]. They have a high concentration in the fovea®
and a decreasing density toward the periphery of the visual
field. The second layer is called inner nuclear area and
transmits signals form the first to the last layer. The last
layer is composed by ganglion cells that pool together the
information of several photoreceptors. The distribution of
these cells also follow a log-polar law but with sharper
decrease of density than photoreceptors [14], [28], [27].

This complex system is the biological solution for dealing
with information from more than 1 million photoreceptors.
Foveation, the process of transform a regular sampled image
into a log-polar geometry, decreases exponentially the num-
ber of computations, keeping the acuity in the center and a
large field of view.
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!Cones dedicated to daylight color processing, while rods are for low
light vision and fast motion

2The central part of the retina, covering about 1 deg of visual angle.

978-1-4244-4588-2/09/$25.00 ©2009 IEEE 223

Several authors have proposed methods to acquire and
process log-polar images and have developed applications
in multiple fields (check [6] and [30] for recent reviews).
Particularly in humanoid robotics, where robots have moving
eyes and must operate in real-time mimicking some aspects
of human behaviour, several applications of interest have
exploited the properties of log-polar images, namely depth
perception and vergence control [5], [7], image motion
computation and tracking [2], [24], ego-motion estimation
[22], [8], visual attention [17], [1] and integrated binocular
head control [4], [3], [19]. However, most of the existing
methods do not appropriately model the information acqui-
sition properties of biological computational elements, thus
not fully exploiting the analogy the natural vision systems. In
this paper we try to revisit existing foveal vision methods and
go one step further in matching data acquisition properties
of biological systems.

Classical approaches to foveation focus on modeling the
distribution of receptive fields but do not exploit properly
their shapes. Usually, a uniform resolution image (from now
on denoted Cartesian), is subdivided in compact regions of
with positions and sizes following a log-polar law, called
superpixels. Then, the pixels in the original image belonging
to each of those regions are “averaged” and the results stored
in memory. To address image processing operations in space-
variant images, one of the most formal methods proposed to
date was introduced in [26], that performs image processing
and geometrical transformations using graph based opera-
tions.

Our approach, instead, considers ganglion cells’ receptive
fields as the basic units of image analysis, with a closer
resemblance to its biological counterparts. Images are gen-
erated by sampling the information on the modeled retina
with receptive fields of Gaussian shapes, whose locations
and sizes can be determined in an application dependent
manner. In this paper the locations are chosen to match
the distribution of these cells in the human retina (which
is approximately log-polar) and sizes are chosen in a way to
avoid image aliasing effects. Fig 1 shows schematically the
spatial support of receptive fields in the superpixel approach
and in our proposal. Notice that the significant amount of
overlap between receptive fields in our approach and their
shape smoothness are required to reduce image aliasing.

Other works have proposed overlapping receptive fields
models to follow more closely biological data. The models
in [29] and [20] have RF’s with a log-polar distribution but
with circular shapes and a moderate amount of overlap. [29]
proposes a tessellation with a linear relation between recep-
tive field size vs eccentricity, and a receptive field overlap of



50%. The proposal in [20] also uses circular receptive fields
but tries to minimize the amount of overlap between them.
However, these receptive fields have a cylindrical shape (thus
sharp boundaries) and reduced overlap factors, therefore
not providing enough low-pass filtering to avoid aliasing
effects. By using Gaussian receptive fields, we provide the
largest amount of low-pass filtering for the smallest spatial
support (modulated Gaussians have a minimum joint time-
frequency localization [10]), thus making Gaussian receptive
fields ideal in terms of minimizing computations for the same
bandwidth.

To model the analysis, synthesis and image processing
operations in the foveal domain we propose the use of
matrix operations. In contrast to existing approaches, that
use custom or graph based operations, we model cartesian-
to-foveal image acquisition with matrix operations, which
allow us to represent the reconstruction process (foveal-to-
cartesian) using simple pseudo-inverse methods.

We present a procedure to transform linear (cartesian)
maps in the foveal domain (foveal-to-foveal). Using operator
theory in Hilbert spaces, we derive an algebraic method that
models the filtering as matrix-vector product, reducing the
number of computations in account with the space-variant
geometry. We illustrate the application of such methods to
image geometrical transformations and filtering operations,
and at a higher level, in the tracking task.

Fig. 1. Human vision models that inspire the foveation process. Models
based of superpixels (left) and receptive fields (right).

The paper is organized as follows. Section II describes
our model of foveation using Gaussian Receptive fields. In
section III we formulate the analysis and synthesis problems
with matrix algebra operations. Then, in section IV, image
processing operations in the Foveal domain are defined
and also formulated as matrix computations. Using adjoint
operator theory in Hilbert spaces we propose methods to
represent in the Foveal domain common linear Cartesian
processing operations. Results are presented in section V,
illustrating the performance of our approach with respect
to the classical methods. Finally, section VI presents the
conclusion of our work and directions for future research.

II. RECEPTIVE FIELD FOVEATION

Usual approaches to foveation are inspired on the dis-
tribution and shape of the photoreceptors on the retina of
mammals. However, most often such approaches do not
consider that the cortical image is not simply a reflex of the
image sensed on retina, but rather is a representation of the
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(a) Cartesian image

(b) Super pixel (c) Gaussian receptive

fields

Fig. 2. Original image (left) and the reconstructed images using the usual
super pixel approach (middle) and the Gaussian receptive fields approach
(right).

image information in the form of a sample hierarchy [31].
The ganglion cells are the neuron cells responsible to receive
visual information from photoreceptors and send it to the
visual system of the brain [9]. The term receptive field comes
after neurophysiology experiments demonstrating that visual
cells are responsive only to stimulus in a confined region
of the visual field. Also, not all parts of the RF contribute
equally to the cell response, thus leading to the concept of
RF profile. Profile functions have a limited spatial support
(the region where a stimulus elicits cell response) and a
well-defined center or location (where a stimulus elicits the
maximal RF response). The information computed by each
ganglion cell can be modeled as the receptive field response
to the Cartesian image:

M,N
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where c is the Cartesian image, [i, j] are the coordinates and
¢y is the profile function.

We model each profile as a Gaussian function ¢; where
the mean py is the center of the receptive field and the
standard deviation o}, defines its support.
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Taking into account the distribution and scale of receptive
fields in the mammal visual system [14], [15], {ux} should
have a log-polar distribution and {o}} should increase lin-
early with the distance to the center (as in Fig. 1). Moreover,
due to the discretization of the Gaussians and the image
boundary effect, the kernels should be normalized so that
>i; ®kli, j] = 1. The left hand side of Fig. 3 shows the
side view of a single Gaussian receptive field.

As a way to illustrate the advantage of smooth receptive
fields, we show on Fig. 2 the reconstructions of images
performed with the classical and the proposed approach. We
can verify that our approach produces smooth transitions
between pixels and performs a better reconstruction in the
periphery. In section V, we quantitatively evaluate both
approaches on a large image data base.

ITII. ANALYSIS AND SYNTHESIS

In this section we present methods for the foveation
(analysis) and reconstruction (synthesis) of the Cartesian



image. The analysis process consists of representing the
Cartesian image with a code obtained from sampling it with
Gaussian receptive fields. This code can be represented as a
simple array or, if sampling points are a 2D transformation of
the uniform grid, as an image. The synthesis process consists
of reconstructing the Cartesian image from the Foveal code.
We model the problem considering both the Cartesian
image and the Foveated image belonging to Hilbert spaces.
Foveation is defined as an operator between these spaces.
This allows to represent both the analysis and synthesis
processes as matrix operations, not only simplifying the
calculus, but also allowing the exploitation of the algebraic
properties of Hilbert spaces and operator theory to address
complex image representation and processing problems. For,
instance, in this setting, the analysis process will be defined
as a simple matrix multiplication, and the reconstruction
process defined as its Moore-Penrose pseudo-inverse.

A. Analysis

For fixed M, N, the space C, of the usual Cartesian images
with values in RM:V is associated with the usual operations
and the norm induced by the inner product of two images

c1 and co:
M,N

C1-C2 = Z Cl[i,j]CQ[i,j}

i=1,j=1

3

It is thus considered as a discrete Hilbert space. Analogously,
the space F' of the Foveated images with fixed size K < M x
N is also a Hilbert space. Moreover, the foveation process
is an operator that maps C' on F. Let the operator Fov be
defined in a matrix form as:

Fov:C — F

c— dc

where @ is a matrix of which each row k contains the
values of a ganglion cell profile function ¢, and c is the
Cartesian image (the profile functions and Cartesian images
are reshaped in order to become a single vector). This matrix
has size (K, M x N), which is the number of Foveated pixels
vs the number of Cartesian pixels. Although ® can be a large
number, it is centrosymmetric [18] and very sparse, thus its
space in memory can be reduced.

B. Synthesis

Foveation provides an incomplete representation of the
image, thus Fov is injective but not surjective (there is not an
inverse operator). However, Fov is right invertible, meaning
that there is a Fov™! such that f = Fov(Fov~!(f)).

We define:

Fov'!: F—C
f—otf
where ®T is the Moore-Penrose pseudo-inverse [23] of ®.
If f = Fov(c), then ¢ = Fov~!(f) is the best solution

in the least squares sense, i.e., ||¢ — c||> is the minimal
solution for the inversion problem. Moreover, since the rows
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(a) Gaussian receptive field (b) Reconstruction function

Fig. 3. Shape of the analysis and synthesis functions, corresponding to
rows of ® and &%, respectively.
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Fig. 4. Cartesian (a), Foveated (b) and reconstructed (c) images

of ® are linearly independent, we have &+ = &7 (9dT)~L,
Though we are not concerned in this paper with com-
putational complexity issues, the number of computations
in the pseudo-inverse can be reduced using the fact that
® is centrosymmetric [18]. Moreover, there are iterative
methods for obtaining approximations to the pseudo-inverse
that trade-off computation time by approximation quality
[23].

The rows of ® represent the reconstruction functions.
In Fig. 3 we can see the shape of the typical analysis
and synthesis functions. Note that, despite the shape of the
analysis functions is very regular (Gaussians), the shape of
the synthesis functions is not. Notwithstanding they have
a limited support which can be exploited to implement
synthesis methods faster than raw matrix multiplication.

Fig. 4 illustrates the analysis and synthesis processes,
showing the Cartesian image, the Foveal code and its recon-
struction. The Foveal image is displayed in log-polar coordi-
nates (logarithm of the distance to the center vs angle) where,
due to boundary effects and oversampling in the center, part
of the space is not represented (black pixels). Note that there
is a faithful reconstruction of the center due to the high
sampling density. In the periphery, where profile functions
have larger support, the reconstruction has less detail, but
due to the smooth shape of Gaussian receptive fields, the
reconstruction does not present strong discretization artifacts.
In section V we evaluate the average relative error as a
function of the radial distance in a large image set.

Depending on the position and size of receptive fields, the
matrix ¢ can be ill posed. To avoid these problems, one can
simply increase the value of o}, for each receptive field, or,
use Tikhonov regularization [13]. This, however, increases
the approximation error and should be used only when &
has a very large condition number. In our experiments we
did not require regularization but retinas with other receptive



fields distribution and shapes may benefit from it.

IV. OPERATIONS ON THE FOVEAL DOMAIN

One of the major difficulties about working with Foveal
images is to apply the usual Cartesian operations in the
Foveal domain, i.e., without explicitly reconstructing the
Foveal image to the Cartesian domain. This happens because
of the peculiar shape of Foveated pixels and the complex
pixel neighborhood relationships, that make cumbersome
even the computation of a simple image translation.

A classical model for image processing in space variant
domains is given by the Connectivity Graph of [26]. In that
approach a graph-like structure is used to represent neigh-
borhood relationships in Foveal images. Then, graph trans-
formations and associated pixel computations are defined to
implement the desired operations (image translations, edge
detection, etc.). However, the definition of such graphs is
a hard to program and error prone process. Furthermore, it
lacks a theoretical support to analyze certain operations like
composition of transformations or inversions.

In this section we present a method to derive the equiva-
lent operations in Foveal images corresponding to common
Cartesian image processing operations. We consider linear
and bounded operations that map C on itself (endomorphic
operators). We will present a procedure to define the equiv-
alent operators on the Foveated space and represent them as
matrix multiplications.

If Pc is an operator on the Cartesian domain, we want to
define Pp that, when applied to f, simulates Fov(Pg(c)).
When P¢ is linear and bounded, there exists Pg, the adjoint
operator of Pc [11] such that, for each Foveated pixel k:

Fov(Po(e))[k] = (dr, Po(c))
= (Pe(9r), )
~ (PG (x), Fov™'(f)) )

Since Pr domain is Foveal, we define

pF F— F
f— P&(®)Fov=(f)

where ¢, is the receptive field k and Pj(®P) is a matrix
whose rows are Pf(¢y,). Given that Fov™ is represented by
matrix ®F, then P is a matrix of size K x K, defined by
P (®)®T. Note that, for fixed receptive fields geometry, Pr
can be computed offline, meaning that the number of online
computations is O(K?).

The simplicity of this approach allows to easily repre-
sent chains of operations by using matrix multiplications.
Whereas in classical techniques (e.g. [26]) the definition of a
chain of operations requires the construction of a new custom
graph, in the proposed approach the combined operation is
obtained by a simple matrix multiplication.

In the next section, we give examples of the transposition
of Cartesian image processing operations to the Foveal
domain: geometrical transformations and image filtering.
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A. Geometrical Transformations

Without loss of generality we illustrate the case of trans-
lation. Other geometrical transformations are similar. Let the
translation (Ai, Aj) be given by the operator’:

TC :C—-C
cli,j) = cli — i, j — Aj)
Expanding the inner product, we have:

(b, To(e)) = éulis 1 To(cli, 4])
0,J
= éuli,jleli — A, j — Aj]
0,J
take i’ =i — Ai,j =5 — Aj
=" ouli’ + Ai,j + Agleli’, ]

i3’
=(T5"(6x), 0) Q)

where T Lis the operator associated with the translation
(—=Aié, —Aj). Therefore, for this operation, the adjoint op-
erator of T is the inverse translation T, ! In practice, this
consists in inverse transforming the receptive field positions
and shapes and then apply to the untranslated image.

Finally, we define the translation on the Foveal domain for
each pixel k as:

Tr(f(k)) = (T5 ' (1), Fov ™" f) (6)

meaning that, for the Foveated image, we have that
Tr(f) =T (®) Fov= ' (f)

where T5'(®) is a matrix where each row k is given by
75 (dn).

Analogously, for any invertible coordinate transform of
the Cartesian plane S¢, the corresponding Sy on the Foveal
domain is given by

Se(f) = St (®)Fov='(f) @)

Fig. 5 is an example of a vertical translation on the Foveal
domain. In this case, the number of computations online
depends on 1284 pixels instead of the 10000 corresponding
Cartesian.

B. Image Filtering

Image filtering operations can usually be performed with
the aid of masks (FIR filters). Here we illustrate the deriva-
tion of Foveal filters analogous to given Cartesian masks. Let
us take the case of the Laplacian filter. The Laplacian is a 2-
D isotropic measure of the 2nd spatial derivative of an image.
Many procedures, such as edge detection, use this filter as an
intermediate step. There are various masks to approximate
the discrete Laplacian kernel [12]. Let us consider the most
usual one:

Lo 1o
d=7|1 —4 1 8)
0 1 0

3While dealing with images, we assume that the image was not defined
beyond its given limits



Fig. 5. On the upper row the initial Cartesian image and its vertical
translation of 10 pixels, on the lower row the correspondent Foveal images.

Fig. 6. Illustration of the Laplacian operator applied to Foveal images
(bottom) in comparison to ground truth (top). On the top row a Cartesian
image is filtered with a Laplacian mask and after, converted to the Foveal
domain. On the bottom, the Foveal image corresponding to the original
Cartesian in processed with the Foveal Laplacian operator. As can be seen
in the images of the last columns, both computations give similar results.

The second derivative operator can be computed by the
convolution of the image with this kernel.

Lc:C—>C

c—dx*xc

The symbol * denotes the convolution operation.
Applying the procedure above, the corresponding Foveal
operator is defined by:

L :F —F
f— (d*fb)Fovfl(f)

where (d x ®) is a matrix whose row k is the correlation
between d and ¢y, (the proof that correlation is the adjoint
operator of convolution follows in an analogous manner to
the translation case).

Fig. 6 compares the Laplacian obtained using the proposed
approach with a ground truth provided by computing the
Laplacian in the Cartesian domain and mapping the result to
the Foveal space.

Since any linear filtering operation can be implemented by
convolution, this formulation can be extended to any linear
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Method Aerials Misce Seqs Texts || Total

Super Pixel 388 725 442 1843 || 907
Gaussian RF 354 594 325 1774 || 816
TABLE I

ERROR AVERAGE OF THE IMAGE RECONSTRUCTION USING MSQ

Method Aerials Misce Seqs Texts || Total
Super Pixel 287 1030 149 1833 || 1269
Gaussian RF 260 965 137 1835 || 1260
TABLE II
ERROR STANDARD DEVIATION OF THE IMAGE RECONSTRUCTION USING
MSQ

and bounded operator, like Laplacian of Gaussian, Gabor
filters, etc.

V. RESULTS

In this section we show some quantitative results compar-
ing our approach with the classical super pixel approach [26].
We consider the following problems: image reconstruction
of Foveal images and tracking in a video sequence. In all
tests the number of log-polar pixels and their distribution are
the same. We generate the super pixel tessellation first, and
then, with their centroid position £ and area 7, we define the
center of the receptive field at £ and the standard deviation
of the Gaussian was set by /7. These choices were taken
to have the same number and distribution of pixels in both
approaches and perform a fair enough comparison between
the two methods.

A. Reconstruction

If SP is the super pixel method for foveation and SP~!
its reconstruction, we compare both methods using the Mean
Square Error:

M,N
€SP = 1w i]z;[c[m] — SPY(SP(c[i, > (9)
1 M,N
€GF = YN ijzzl[c[z’,j} — Fov’l(Fov(c[i,j]))]2 (10)

over the “USC-SIPI Image Database” [25]. On this
database, there are 4 types of images: Aerials (38 images),
Miscellaneous (44 images), Sequences (70 images in 4
sequences) and Textures (154 images). The Cartesian images
were normalized to size 100 x 100, and the Foveal images
have 1284 pixels.

Fig. 2 shows an example of an image on the data base,
its foveation and reconstruction using both the super pixel
method and the Gaussian Foveation method.

Both the mean square error and standard deviation on
reconstruction are consistently smaller in all image data sets



Average of the radial errors

1000,

Error

+ Super Pixel Method
—Gaussian Receptive Fields

50 60 70

10 20

30 40
Radial Distance

Fig. 7. Average of the radial errors using the MSE

using our approach (see Tables I and II). Moreover, a deeper
analysis of the radial squared error, i.e., the sum of the errors
for all pixels with radius 7, shows that our approach performs
better than the usual one at all image eccentricities (see
Fig. 7). Once the variance of the foveation with Gaussian
receptive fields error is less then the variance of the super
pixel approach error we can conclude that out approach
is less subject to the particular characteristics of the input
images.

We verify that, over the same conditions, our approach
performs better that the usual one. As Fig. 2 illustrates, re-
construction using our method provides a better interpolation
and smoothness in the transition between receptive fields.
This provides not only less error in terms of the defined
metrics but also better and more pleasant visualization since
the discretization effect almost disappears.

B. Tracking

The tracking problem consists in discovering and com-
pensating the motion of one object in a video during time.
There are numerous methods to solve this problem. We have
applied template matching. This method is very simple: the
main idea is to search for the motion that produces minimal
mismatch between the image and a translation of a template
in a discrete set of hypothesis.

We consider two tracking approaches for this problem:
passive tracking (considering that the camera is fixed) or
active tracking (considering that the camera dynamically
changes its parameters to track the object). The latter type of
search makes more sense in a biological paradigm because
the eyes of humans track objects when they move in the
environment, trying to center their projections on the highest
resolution area (fovea).

Using two video sequences, we compared Gaussian
Foveation with the Super Pixel approach, on passive (Fig. 8)
and active (Fig. 10) tracking experiments, with several target
velocities* (Fig. 9). The increase of velocity allows us to test
the robustness of the tracking method on increasingly longer
displacements. On both approaches, the grid of possible mo-
tions had resolution Ah = 2 and Av = 2 pixels (horizontal
and vertical, respectively), on a set of 7 x 7 hypothesis, and
the number of Foveated pixels was 1284. The ground truth

“4on velocity one we analyzed all frames of the video sequence, on velocity

two we analyzed every second frame, on velocity three we analyzed all third
frame, and so on.

228

e'/

(a) Frame 15

(b) Frame 150 (c) Frame 450

Fig. 8. Passive tracking using Gaussian Foveation on film A. The white
mark is the estimated position of the tracking point.
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Fig. 9. Distances to ground truth on film A with velocity one, two, and
three, using active tracking.

was calculated frame-by-frame by manually selecting a fixed
landmark on the object.

In most of the cases, tracking results were very similar,
meaning that, for velocity one, both approaches were able
to follow the focus point. The approaches failed at velocity
3,(see Fig. 9) both in film A and B. However, there was
one case (see Fig. 10) where the Super Pixel approach
was not able to follow the tracking point and the Gaussian
Foveation was. This does not demonstrate a general behavior
but indicates a potential higher robustness of the Gaussian
Foveation method.

(c) Frame 260

Fig. 10. Active tracking using Super Pixel on film B. The white mark is
the estimated position of the tracking point



VI. CONCLUSION

Space-variant vision and eye movements are fundamental
characteristics of the human visual system. As humanoid
robots try to replicate human behavior and operate in real-
time on unconstrained environments, they may benefit from
artificial implementations of foveal vision. This paper pre-
sented a novel formulation for space-variant image synthesis,
reconstruction, and processing for artificial vision systems
that tries to mimic two important aspects of the human
retina: the distribution and the shape of retinal ganglion
cells. In the contrary to classical approaches that rely on
graph based approaches and non-smooth receptive fields,
we adopt an algebraic methodology that deals conveniently
with smooth and overlapping receptive fields. Such type of
receptive fields model more closely biological data acquisi-
tion systems but have large overlap with many neighbors,
which we have found to be more elegantly represented
using algebraic methods than graph based methods. The
foveation process is modeled as a matrix multiplication,
allowing the representation of the reconstruction process
as a pseudo-inverse problem. Furthermore, using adjoint
operators in Hilbert spaces we were able to derive the Foveal
equivalent operators to common Cartesian image processing
functions: geometrical transformation and filtering. Results
show the advantage of the proposed approach with respect
to graph based methods in terms of the quality of image
reconstruction and robustness in tracking applications. On
the negative side, due to the large overlap between receptive
fields and extended neighborhoods, the proposed approach
is computationally more demanding than usual methods.
Notwithstanding, our foveation operations are easily paral-
lelizable and can be implemented in accelerated hardware
(GPUs, FPGA).

In future work we intend to further characterize the
properties of the proposed formulation. On the theoretical
side we aim at investigating the use of Frame Theory [16] to
derive error bounds for the foveation operations with respect
to their Cartesian counterparts. On the practical side we aim
at evaluating the benefits of the smooth foveal representation
for the purposes of pattern categorization.
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