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Abstract: In this work we address the problem of controlling the arm of a humanoid robot 
to reach for moving objects. 3D target’s trajectory is measured by the robot’s active 
stereo head with color based segmentation and tracking methods. Future positions of the 
target are predicted, at an appropriate time horizon, by fusing the information from 
multiple motion model estimators, including constant velocity, acceleration, circular and 
periodic motions. The arm positioning system is controlled by setting its reference to the 
target’s position at the prediction horizon, to cope with the arm slow dynamics. 
Experimental results show that, compared to a non-predictive approach, the proposed 
method reduces the average tracking error in about 50%. 
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1. INTRODUCTION 

 
A common task in robotics manipulation is to position 
an end-effector in the vicinity of a target. Whereas 
most authors address this issue considering static 
objects only, in this work we aim at controlling the 
robot arm with respect to moving objects. Due to the 
slow dynamics of robot manipulators, as well as 
latencies in the control and perception systems, a 
predictive control strategy must be employed to 
minimize the positioning error. A suitable choice of 
the prediction horizon is done in run-time to ensure 
that the robot is able to reach the target independently 
of its initial conditions.   
 
Trajectory prediction had a huge development due to 
military proposes. Some applications in the robotic 
field regarding the tracking delay can be found in the 
literature. In (Piepmeier, et al., 1998) a prediction 
method was proposed to control a robotic arm. A 
Kalman filter was used to estimate the position of the 
target assuming a constant velocity and zero mean 
Gaussian acceleration errors. Our method, instead of a 
single motion model, uses several models running in 
parallel, providing better results in complex 
trajectories and dealing explicitly with the slow 
dynamics of robotics manipulators.   
 
The 3D position of the target is measured by a pair of 
cameras. A color based segmentation algorithm tracks 

in 2D the image region corresponding to a pre-
selected object through the frames. Then, a stereo 
triangulation method and the robot head kinematics 
are employed to convert the 2D image based 
measurements in the 3D position of the target, in a 
world fixed reference frame. The position of the 
manipulator is controlled to intersect the target, but 
delay compensation has to be done in order cope with 
the manipulator slow dynamics. If we command the 
robot to the current target position, it won’t reach it 
because the robot can’t move instantaneously. We 
need to predict the position of the target in a future 
time and move the robot arm to that position instead. 
 
Section 2 of this article describes our robot, Baltazar, 
some aspects of its kinematics and the 3D position 
measurement system. The purpose is to track a 
selected area of an image through time in both 
cameras, and process this information to get the 3D 
target location. The following three sections deal with 
the target prediction problem, starting with the 
mathematical models, their fusion, and finally the 
computation of the necessary time span to compensate 
the inertia effects. The last chapter presents some 
experimental results obtained with our robot. Two 
platforms were used: a virtual robot, simulated with 
Webots™, and the real robot available in the 
laboratory. Finally we present the conclusions of this 
paper and some directions for future work.  



2. ROBOT SETUP 
 
In this section we present the humanoid robot 
platform used in this work, describing its kinematics 
and visual measurement system. A picture of the 
robot (Baltazar) is shown in XFig. 1X. It is composed by 
and active stereo head with 4 degrees of freedom 
(DOF), an anthropomorphic manipulator with 6 
DOFs and a human-like hand with 4 actuated DOFs.  
 

 
Fig. 1. The ISR/IST Humanoid Head-Torso, Baltazar, 

on its working scenario. 

 
2.1. Kinematics 

 
The kinematics of Baltazar’s manipulator and head 
are both motivated by the anatomy of humans. The 
arm consists in six joints, two of them associated with 
the shoulder, two with the elbow and the remaining 
joints are positioned in the wrist. The head has four 
joints: two for the neck pan/tilt and two for the eyes’ 
pan. The robot’s arm and head joints are represented 
in Fig. 2. 
 

  

 

Fig. 2. Robotic Arm and Head schematics 

To control the robot arm, we convert 3D coordinates 
corresponding to the target’s future position into the 
joint angles required to achieve that position (inverse 
kinematics). A solution to compute the inverse 
kinematics on this robot arm is presented in (Lopes, et 
al.,2004) and will be employed in this work. To 
control the head we use a tracking system to keep the 
target in the center of the retinas (Bernardino and 
Santos-Victor, 1999). 

 

2.2. The 3D Position Measurement System  
 
 An active stereo head computes the 3D position of 
targets in the environment with respect to a fixed 
reference frame. In a first stage, the 2D position of the 
target in the two images is extracted, using a color 
based segmentation and tracking method. Then, using 
the head kinematics and a triangulation process we 
estimate the 3D instantaneous position of the target in 
a fixed reference frame. 
 

2.2.1. Image Segmentation and Tracking 
 
This section describes the algorithm used to follow 
the selected object trough the image frames. There are 
a plenty of approaches available in the literature but 
much of them assume static cameras and can’t 
comply with the fact that cameras are moving during 
the robot’s operation. Additionally the algorithm 
should be computationally efficient, because it is 
supposed to work in real time, feeding the prediction 
module with the updated 3D localization. 
 
The camshift algorithm (Bradski, 1998) is able to deal 
with the above issues and is already implemented in 
open source code libraries. It is based on the color 
histogram of an image region. A negative aspect of 
this algorithm is that the region to track must be 
initialized manually and the objects to deal with 
should have sufficiently distinct colors. Anyway, due 
to its good real-time performance, we have adopted 
this algorithm to perform 2D target tracking in the 
stereo images.  An illustrative example of the 
algorithm output is shown in XFig. 3X. 
 

 
Fig. 3. Color based object segmentation with the 

camshift algorithm. 

 
2.2.2. 3D Position Measurement 

 
Measurement of the 3D target position is done with a 
stereo camera system.  Since the cameras aren't static 
two classes of problems emerge: one that deals with 
the representation of coordinates in a moving axis and 
conversion to a fixed system, and the other that 
merges the information from both cameras to get 3D 
coordinates. 
 
Firstly we compute the 3D coordinates of the target in 
the neck (moving) reference frame. A sketch of 

     



Baltazar’s head and its cameras is presented in XFig. 4X. 

 

(4) 

(5) 

( ) 2 (i i
iR Hσ= )

Fig. 4 – Geometry of the verging system. 

 It can be shown (Olson, 1993) that, using this 
configuration, the 3D coordinates are given by:  

 
 

(1) 
 

 
where (xR, yR) and (xL, yL) are the 2D coordinates 
obtained with the image segmentation algorithm in 
the right and left images, respectively. 
 
To express the coordinates of the target referenced to 
a static frame we just have to use the head kinematics 
(Bernardino and Santos-Victor, 1999).  
 

3. MOTION MODELS 
 
Targets in the real world may undergo very diverse 
types of trajectories. If trajectories are smooth, it is 
often the case that a simple constant velocity model is 
suffucient to locally approximate the target’s 
trajectory. However, this may only provide good 
predictions at very short time horizons and for objects 
with large inertial mass. In our case, however, 
prediction time horizons may be relatively large, due 
to the slow response of the robotic arm. Thus, a 
simple constant velocity model may not be sufficient 
to model target’s motion, unless objects slide or roll 
in a table with slow friction. Since we aim at being as 
general as possible, we must consider a much more 
enlarged set of possible motion models. Therefore, 
the development of suitable target’s trajectory 
prediction methods, capable of dealing with a 
diversity of motion types, is the major task of this 
work. This section presents a very short description 
for each one of the implemented motion models. 
 
We consider two types of motion models: linear 
(Gaussian) and non-linear/(non-Gaussian). The 
former can be optimally estimated with Kalman 
filters and fused with Multiple Model Adaptive 
Estimation (MMAE) theory. The latter cannot be 
easily fused with the former, but may be selected by 
analysing the residues of the estimations and applying 
a chi-square test. 
 

3.1. Linear Models 
 
We assume the target is a particle with all mass at its 

center, and that measurements are taken at discrete 
instants of time. A linear discrete time model in a 
noisy environment can be written as: 

 

(2) 

 
where the noise introduced in the model and sensor 
equations is assumed to be Gaussian, with zero mean 
and known variance. A standard tool in this setting is 
the Kalman filter. It consists in two steps: time update 
(prediction) and measure update (correction): 

 
 Prediction 
 

(3) 
 Update 

 
 
To implement a model using this technique six 
matrices should be specified: A, B, C, D, Q and R. 
These matrices specify the type of trajectory 
considered to model target’s motion, the 
measurement noise and the model uncertainty. A 
detailed account of the considered linear models can 
be found in (Li, et al., 2003). 
 
For example, the constant velocity model assumes a 
low power acceleration noise. The position (p) and 
speed (v) at the k+1 sample given the kth state is given 
by 

 
The supra-index i refer to ith coordinate of the 3D 
Cartesian system. Rewriting those equations using 
matrix notation results in: 

 
with 

 
 

(6) 
 
 
 
The covariance noises Q and R for each one of the 
coordinates are 
 

 
 

(7) 
 
Since no correlation is assumed between the 

     



(8) 

(9) 

coordinates, the global matrix is diagonal where each 
element corresponds to the sub-matrices presented 
above. This very simple model can deal with almost 
any motion given that, with an adequate time scale, 
all motions can be approximated by constant velocity 
models. However, for long predictions horizons like 
the ones required in our case, the inclusion of models 
specific for likely target motions will let us improve 
the performance of the tracking system. We have 
implemented the acceleration models (Singer Model 
and Wiener Process) described in (Singer, 1970), the  
Curvilinear and Circular motion models presented in 
(Li, et al., 2003), and a Ballistic motion model with 
collisions. The latter will be detailed in next section. 
 

3.1.1. Ballistic Model and Collisions 
 
Humanoid robots have to deal several times with 
Ballistic like trajectories. These are the trajectories of 
a non-maneuvering target subject to the acceleration 
of gravity. The present model is just an adaptation of 
the constant speed/acceleration models for the 
particular workspace of the Baltazar robot.  

(12) 

(11) 

(10) 

 
For simplification proposes, the implemented 
algorithm deals only with collisions in a plane defined 
a priori. The differences between this and the 
constant speed model are: (i) instead of white noise 
acceleration, the mean of the acceleration in the y axis 
is set to the gravity acceleration; (ii) adjusts the speed 
in the position where the collision is expected. The 
easier solution was adopted which means that the 
speed is set to its symmetric value. The A and Q 
matrices must be changed whenever a collision is 
imminent. The mechanism used to detect collisions is 
very simple and is based just in the y coordinate. If 
the y position gets close to the plane height, the 
changes are performed and immediately restored.  
The modified A and Q matrix are: 

  

 
To properly modulate the acceleration, the B matrix 
should also be changed, leading to: 

 
3.2. Non-Linear Model - Periodic Motion 

 
The proposed approach uses the autocorrelation of 
each one of the coordinates to detect the presence of 
periodic motion. If the maximum of the 
autocorrelation is higher than a certain threshold a 
periodic trajectory is reported and the output becomes 
the sequence of recorded samples that exactly match a 
period of the trajectory. This operation is 
computationally heavy so some changes must be 
done. Instead of continuously computing the 
autocorrelation, a burst strategy was adopted. The 

measured data is stored in an appropriate buffer, and 
the whole buffer is processed when full. The counter 
part is that the update rate of this model is a function 
of the buffer size, which can't be arbitrary set. To 
correctly deal with a period of N samples a 3N 
window is required. If the maximum detected period 
is 50 samples, it requires a 150 positions buffer. The 
way to merge this model with the remaining ones is 
given in the next section. 
 

4. MODEL ESTIMATION 
 
The proposed estimator handles two different types of 
models. It merges all the Kalman (linear) models 
using the Multiple Model Adaptive Estimator 
(MMAE) proposed in (Maybeck, 1994) and then 
blends them to the periodic model with a chi-squared 
based hypothesis test. A block diagram of the full 
estimator is shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 – Multiple Model Estimator block diagram. 

4.1.1. Linear Model Fusion 
 
The MMAE algorithm weights the outputs produced 
from each of the models with the conditional model 
probabilities given the data. The output is thus, a 
weighted average of all models.  
 

 
 
It can be shown that the residues covariance matrix of 
a model that fits the target's trajectory is given by 

 
 

 
The conditional density function for model m at 
sample k, knowing all the past measures zk-1 is 
 

 

     



 
where qm is the likelihood ratio at sample k and hm is 
the hypothesis of the mth model. 
 
The conditional probability that weights each vector 
to produce the estimation is finally given by 

 
(13) 

 
 

4.1.2. Non-linear Model Fusion 
 
To mix the linear estimate with the trajectory 
computed by the periodic model, a simple hypothesis 
test assuming chi-squared distribution is applied. The 
hypothesis test is a statistical tool that produces a 
decision based on the analysis of the probability 
density function using only sampled data. Given this 
function and a required significance level, two 
decision areas are set, the critical region and the 
acceptance region. Given a sample we just have to see 
if it’s outside or inside the critical region to reject or 
accept the hypothesis respectively. 
 
The chi-square distribution is usually employed since 
it can fit a large variety of situations, although it is not 
the optimal solution in many cases. The most 
commonly used test statistic in the literature is the 
one used in this work, and is given by: 
 

 
(14) 

 
 

5. COMPUTING THE PREDICTION HORIZON 
 
Once a model has been identified, it is still necessary 
to predict the position of the target at the time the arm 
will intercept it. The prediction can be easily obtained 
by iterating the state space equations. If the model 
selection stage chooses the periodic model, no 
iterations are required since the prediction N-samples-
ahead is found in the Nth position of the buffer. 
 
We have observed that the prediction error becomes 
too large if a horizon bigger than 50 samples is used. 
In our setup, however, the robot arm can reach any 
position of the workspace in no more than 20 steps.   
To estimate the requested anticipation we check, for 
each possible time horizon between 1 and 20, if the 
arm is able or not to reach the predicted position from 
its initial position. This is done by computing the joint 
velocities required to go from the initial position to 
the predicted final position for a given time horizon. 
If the computed speed exceeds the joint maximum 
values, then a bigger time horizon will be tested. The 
selected prediction horizon thus minimizes the time to 
intercept the target, given the speed limitations in the 
arm joints.  
 
This approach is sufficient to perform basic reaching, 

but other approaches could be devised to allow for 
more demanding actions like grasping or hitting. 
These modes would require not only to control the 
position of the arm to a certain set point, but also to 
control its velocity and acceleration at the intercept 
point. These modes will be subject of future work. 
 

6. EXPERIMENTAL RESULTS 
 

The proposed method was applied in the Baltazar 
robot. To improve the development stage, and allow 
testing on ideal conditions with ground truth, a 
simulator was also designed based in the Webots™ 
platform (Michael, 2004), see XFig. 6X. All the 
available data from CAD models used to assemble the 
robot were imported to the simulator and an interface 
was developed to easily commute between the 
simulator and the real robot. 
 

 
Fig. 6. – The Webots simulator permits testing our 
methods with several types target motions: pendulum 
(periodic), constant velocity, ballistic with collisions, 
and circular motion. 

 
Fig. 7.– Absolute error between hand and object 
position. Solid lines: without prediction. Dotted lines: 
with prediction. The arm starts moving at time 50. 

In XFig. 9X we present some simulation results on 
tracking a circular motion. The plots show the 
absolute errors between the hand and the object 
positions, comparing the cases with and without 
prediction. The prediction approach is able to achieve 
a 50% reduction in the absolute error, going from 
0.2m to 0.1m, in average. 
 
The experiment performed in the real robot consists 

     



in the manual generation of an approximately circular 
motion (see XFig. 8X). In the plots on XFig. 9X we can also 
observe that, despite some overshoot, the use of 
prediction allows to reduce significantly the lag on 
the hand position with respect to the object.  

     

 

 
Fig. 8. – Experiments with the real robot. 
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Fig. 9 – Experiments with the real robot. Comparison 
between the position of the object (solid lines) and the 
hand (dotted lines). Top: without prediction. Bottom: 
with prediction. 

The algorithm proved it can correctly handle noisy 
environments allowing a standard deviation up to 
12cm in each of the 3D coordinates. However, we 
found that the major error source wasn’t due to the 
prediction itself but was a consequence of modeling 
errors involved in the head and arm kinematics.   
 

7. CONCLUSION 
 
The suggested approach effectively reduces the delay 
to reach a moving target. The method revealed a good 
performance in handling the very noise measurements 
acquired in the real system. The main performance 
limitations right now are due to modeling errors in the 
kinematics models. In fact there is a systematic bias 
on the arm positioning. This will be addressed in 

future work by using visual feedback on the end-
effector. 
 
The adaptive estimation using multiple filters was 
impressive in the sense that it has reduced the 
tracking error in about 50%. 
 
The motion segmentation algorithm provided an 
excellent performance providing good results even 
with background changes. There is however space for 
future work, especially to deal with occlusions. The 
predicted position could also be useful in the presence 
of occlusions providing for example the search 
window localization and its size. 
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