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Abstract— We present a model-based 3D tracking system,
using wide angle perspective catadioptric sensors. These sensors
acquire 360

o views of the environment and the projection from
3D world points to the image plane is approximated by a
perspective model. This is a major advantage in structured
environments because straight lines on specific surfaces are not
deformed by the sensor, allowing the application of standard
computer vision algorithms. Objects off the surface are dis-
torted according to a complex projection model, but can be
approximated by a simple wide angle perspective mapping.
This is exploited here to develop a robust tracking system
for autonomous robots using a 3D shape and color-based
object model. The use of particle filters allows tracking to
be done with 3D realistic motion models and tackling object
occlusion, overlap and ambiguities. We show that the use of
the perspective model is advantageous over more standard
catadioptric projection models, since it renders a very good
approximation to the true model, being simpler and more
efficient to use, in particular with 3D particle filtering methods.

I. I NTRODUCTION

Wide angle catadioptric sensors have often been used
in robotics, especially for self localization and navigation
[4],[2], as they gather information from a large portion
of the space surrounding a robot. One drawback is that
images are affected by strong distortion and perspective
effects, which may force the use of non-standard algorithms
for target detection and tracking. In structured scenarios,
however, custom sensor designs have been proposed to avoid
distortions in certain parts of the environment. For example,
[11], [12] propose systems with wide-angle and constant-
resolution view of the ground plane, such that structures in
the floor can be treated as in conventional perspective images.

For objects off the ground floor, the constant resolution
property does not hold anymore. If precise measurements are
required, the exact projection model should be employed.
Because the exact model involves complex non-linear and
non closed-form relationships between 3D points and their
2D projections, approximations are often used. A widely
used approximation for catadioptric systems is the Unified
Projection Model (UPM) pioneered by Geyer and Daniilidis
[9]. The UPM models all omnidirectional cameras with a
single center of projection and provides a good approxi-
mation to wide-angle constant resolution sensors. We show,
however, that a simple perspective projection model is as

This work was partially supported by the Fundação para a Cîencia e a
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good as the UPM, with additional advantages of simplicity
and computational efficiency.

To fully evaluate our system, we perform both simulations
studies and experiments in real scenarios. We have developed
a Particle Filtering method [5], [6], that is able to estimate the
3D position and velocity of structured objects, from a single
catadioptric sensor. Particle filtering methods are among
the state-of-the-art techniques for object tracking. Due to
their principled probabilistic approach, they are able to
tackle the uncertainty, ambiguity and complexity of cluttered
environments. We fully describe the employed 3D particle
filtering and observation models. Since PF’s rely on the
test of multiple hypothesis (usually several hundreds), using
simple and computationally efficient measurement methods
will have a high impact on the overall system computational
cost. We show that the employed perspective model requires
about half the computations for the same level of precision,
when compared to the standard UPM.

The tracking system was inspired by the work of [8],
which proposed a PF method based on 2D image coordinates.
On the contrary, we perform tracking in 3D coordinates. This
is advantageous in several scenarios, e.g. in the RoboCup
MSL (Medium Size League), as robots are now provided
with the ability to kick the ball off the ground. 3D tracking
has two main advantages over 2D methods: (i) since the
projection to 2D introduces non-linear effects, the 3D motion
models are closer, and more physically grounded, to the
actual object motion; (ii) with 3D tracking the actual position
of the tracked object is directly available, while in image
tracking a further non-trivial step is needed to compute it.

The paper is organized as follows. Section II describes the
catadioptric sensor and projection models. The 3D particle
filter tracking algorithm and image measurement models are
described in Sections III and IV. Experimental results are
shown in Section V and, finally, Section VI concludes the
paper and presents ideas for future work.

II. CATADIOPTRIC IMAGING SYSTEM

In this section we describe the imaging system, detail
its model, and propose two approximations using well
known projection-models. Our catadioptric vision system,
see Fig.1a, combines a camera looking upright to a convex
mirror, in order to have omnidirectional view in the azimuth
direction [10]. The system is designed to have wide-angle
and constant-resolution view of the ground plane [11], [12].

Let m = P0(M ;ϑ0) represent the projection of a 3D
point in cylindrical coordinates,M = [r ϕ z]T to 2D polar
coordinates on the image plane,m = [ρ ϕ0]

T , with ϑ0
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containing the system parameters. Considering cameras with
axial symmetry and aligning the coordinate systems such that
ϕ ≡ ϕ0, one obtains the radial model (see Fig.1b):

ρ = P
(
[r z]T ;ϑ

)
. (1)

In the case of the constant resolution design,P is trivial
for the ground-plane, as it is just a scale factor between pixels
and meters. DerivingP for the complete 3D field of view
involves using the actual mirror shape,F which is a function
of the radial coordinatet [12]. Based on first order optics,
and in particular on the reflection law at the specular surface
of revolution,(t, F ), the following equation is obtained:

atan(ρ) + 2 · atan(F ′) = − r − t

z − F
(2)

whereφ = −(r − t)/(z − F ) is the system’s vertical view
angle,θ = atan(ρ) is the camera’s vertical view angle, and
F ′ represents the slope of the mirror shape. WhenF denotes
an arbitrary function and we replaceρ = t/F , (2) becomes
a differential equation, expressing the constant horizontal
resolution property,ρ = a · r + b, for one planez = z0.
F is usually found as a numerical solution of the differential
equation (see details and more designs in [11], [12]).

If F is a known shape then (2) describes a generic Cata-
dioptric Projection Model (CPM), as it forms an equation on
ρ for a given 3D point(r, z). In generalρ has a non-closed-
form solution. Therefore, the CPM is usually implemented
by finding one 3D point fromρ, i.e. doing a back-projection.
We propose the following back-projection algorithm:

1) remove the intrinsic parameters from the image co-
ordinates, i.e. convert an image point to the polar
coordinates[ρ ϕ]T and then to the vertical angleθ,

2) compute, or interpolate from a look-up table,(t, F, F ′)
given thatt/F = tan(θ), and finally

3) obtainφ using Eq.(2).

Note that, to fully define a 3D optical ray, both the direction
φ and the point on the mirror surface,(t, F ) are needed.

Next we will introduce two known models that approx-
imate the CPM: the UPM and the standard Perspective
Projection Model (PPM). The UPM consists of a two-step
mapping via a unit-radius sphere [9]: (i) project a 3D world
point, P = [r ϕ z]T to a pointPs on the sphere surface,
such that the projection is normal to the sphere surface; (ii)
project to a point on the image plane,Pi = [ρ ϕ]T from a
point,O on the vertical axis of the sphere, through the point
Ps. The mapping is mathematically defined by:

ρ =
l +m

l
√
r2 + z2 − z

· r (3)

where the(l,m) parameters describe the type of camera.
The UPM is a widely used representation for CPM whenF
describes (i) an hyperboloid or ellipsoid with focus at(0, 0);
(ii) a paraboloid combined with a telecentric lens (θ = 0) or
(iii) F = const [10]. In our case,F is computed numerically
to have the constant resolution property, and therefore does
not correspond to any of the former cases. The comparison
between CPM and UPM must be done in simulation.
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Fig. 1. (a) Catadioptric camera. (b) The Generic Catadioptric Model. (c)
Image used for calibration. (d) Sample taken in RoboCup MSL scenario.

The PPM is a particular case of the UPM, obtained with
l = 0 and by definingk = −m :

ρ = k · r/z. (4)

Eq.(4) shows that the PPM has constant resolution, i.e. linear
relationship betweenρ andr, at all z-planes.

In Section V-A, we will use the CPM, withF for constant
horizontal resolution, as a simulation methodology for eval-
uating the approximations by the UPM and the PPM models.
The approximations allow assessing the resolution properties
of the system, as e.g. the linear relationship between ground-
and image-measured distances.

III. 3D T RACKING WITH PARTICLE FILTERS

This section introduces a model-based 3D tracking system
using particle filters. In particular, we will point out where
computational gains arise from having a simple projection
model. As a case study, we consider the RoboCup MSL
scenario and use a spherical object-model for tracking balls,
but the system copes with any rotationally symmetric object.
In previous work [13] we have also considered cylindrical
objects representing RoboCup MSL robots.

Let xt = [x, y, z, ẋ, ẏ, ż]T , be the state-vector, with
(x,y,z), (ẋ,ẏ,ż) the object 3D cartesian position and linear
velocities in a robot centered coordinate system. The goal is
to estimate{xt; t ∈ N}, which represents the object state at
each time, assumed to be an unobserved Markov process with
some initial distributionp(x0) and a transition distribution
p(xt | xt−1). The observations{yt; t ∈ N}, yt ∈ R

ny , are
conditionally independent given the process{xt; t ∈ N} with
marginal distributionp(yt | xt), whereny is the dimension
of the observation vector.

In a statistical setting, the problem is posed as the esti-
mation of theposteriori distribution of the state given all



observationsp(xt | y1:t). Under the Markov assumption:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1) p(xt−1|y1:t−1)dxt−1

The a posteriori distribution can be computed recursively,
using the previous estimate,p(xt−1 | y1:t−1), the motion-
model,p(xt | xt−1) and the observation model,p(yt | xt).

We use Particle Filtering methods in which the probability
distribution of an unknown state is represented by a set of
M weighted particles{x(i)

t , w
(i)
t }M

i=1 [6]:

p(xt | y1:t) ≈
M∑

i=1

w
(i)
t δ(xt − x

(i)
t ) (5)

whereδ(·) is the dirac delta function. Based on the discrete
approximation ofp(xt | y1:t), different estimates of the
best state at timet are possible to be devised. For instance
we use the Monte Carlo approximation of the expectation,
x̂

.
= 1

M

∑M

i=1 w
(i)
t x

(i)
t ≈ E(xt | y1:t), or the maximum

likelihood estimate,̂xML
.
= argmaxxt

∑M

i=1 w
(i)
t δ(xt−x

(i)
t ).

The computation of theposteriori distribution is decom-
posed in four steps:

1) Prediction - computes an approximation ofp(xt |
y1:t−1), by moving each particle according to the
motion model;

2) Observation - computes the likelihood of each particle,
based on image data.

3) Update - each particle’s weighti is updated using its
likelihood p(yt | x(i)

t ), usingw(i)
t ∝ w

(i)
t−1p(yt | x(i)

t )
4) Resampling - the particles with a high weight are

replicated and the ones with a low weight are forgotten.
For this purpose, we need to model probabilistically both
the motion dynamics,p(xt | xt−1) , and the computation
of each particle’s likelihoodp(yt | x(i)

t ) (steps 1 and 2). In
particular, step 2 involves the sensor model and will benefit
from using an adequate projection model. These two steps
will be further detailed in the following sections.

A. The Motion Dynamics

Our method assumes that object motion follows a standard
autoregressive dynamic model,xt = Axt−1 + wt, where
wt ∼ N (0, Q). We have chosen a constant velocity model,
in which the motion equations correspond to a uniform ac-
celeration during one sample time, i.e.xt = Axt−1+Bat−1,
with:

A =

[
I (∆t)I
0 I

]
, B =

[
(∆t2

2 )I
(∆t)I

]
(6)

where I is the 3 × 3 identity matrix, ∆t = 1, and at

is a 3 × 1 white zero mean random vector corresponding
to an acceleration disturbance. The covariance matrix of
the random acceleration vector was experimentally tuned to
cov(at) = σ2I, with σ = 120mm/frame2.

Since the tracker uses real-world coordinates, the motion
model for an object can be chosen in a principled way,
both by using realistic models (constant velocity, constant
acceleration, etc.) and by defining the covariance of the noise
terms in intuitive metric units.

Fig. 2. Plot of the 3D points projected to obtain the 2D contour points for
balls at different positions.

IV. OBSERVATION MODEL

To calculate the likelihood of a particle we project its cor-
responding contour on the image (as a function of the object
3D shape, position and orientation) using an approximated
model for the catadioptric system. The idea is to determine
which points of the 3D model would be projected on the
object’s contour on the image (see Fig.2) and then create
sets of 2D points in the inside and outside boundaries.

For a ball, the 3D contour points lie on the intersection
between its spherical surface and the plane orthogonal to
the line connecting the virtual projection center to the center
of the sphere. With this model, it is possible to adjust the
number of points describing the 2D contour, obtaining faster
processing times (less points) or more robustness (more
points). For our sensor, we will compare the performance
of the tracking system using both the UPM and the PPM
projection models.

The computation of the particles’ likelihood is based on
three color histograms: (i) the object color model; (ii) the
inner, and (iii) outer boundaries of the projected contour.
The first is computed in a training phase with several object
examples taken from different locations and illumination
conditions, and the others are computed at each frame for
each particle. The idea is to assign a high likelihood to the
contours for which the inner pixels have a color similar to
the object, and are sufficiently distinct from the outer ones.

Formally, let xt represent a target state hypothesis. A
set of N points in the 3D object boundary is collected:
{Dn

boundary}, n = 1, . . . , N . These points are projected on
the image, using the selected projection model, resulting in
the 2D point set{dn

boundary}, n = 1, . . . , N . Each point
d in the image is represented by its color vector in the
HSI representationyt(d). We will use this information to
compute HSI histograms, withB = BhBsBi bins.

A. Deformable parametric contours - B-splines

Throughout this paper we use B-splines to represent the
object contour. Indeed, this representation is widely usedin
computer graphics and in computer vision [1].

A B-spline has the following representation

f(t) =

k−m−1∑

i=0

ciBm
i (t), t ∈ [tm, tk−m] (7)

where {Bm
k (t), k = 0, . . . , k − m − 1} is the set of basis

functions such thatBm
i (t) ≥ 0, and

∑
i Bm

i (t) = 1;
{c0, c1, . . . , ck−m−1} is the set of coefficients; and[ti−1, ti]



is an interval in which the spline functions are polynomial
and exhibit a certain degree of continuity at the knots.

Planar curves are simply theR2 version of Eq. (7), i.e.
v(t) ≡ [x(t) y(t)] =

∑k−m−1
i=0 ciBm

i (t). A discretized
spline is a set ofN equispaced samples ofv(t) collected as
theN×2 vector,v = [vT

0 , . . . ,v
T
N−1] = [x y], N > k. If

we arrange the coordinates of control points into a parameter
θ(k) = [cT0 , . . . , c

T
k−1]

T = [θx
(k) θ

y

(k)]
1, the discretized

closed splinev can be obtained by the matrix product
v = B(k)θ(k) ⇔ {x = B(k)θ

x
(k); y = B(k)θ

y

(k)}, where

the elements ofB(k) are [B(k)]ij = Bj(t0 + (tk−t0)i
N

).
In computer graphicsm = 3 or 4 is generally found to be

sufficient. Herein, we use quadratic B-splines, i.e.,m = 3.

B. B-spline Fitting: 2-D with known number of control points

After obtaining the 2D points{dn
boundary}, n = 1, . . . , N ,

we convert them into a B-spline which best fits to this set. As-
suming that we known the knots, theN ×k matrix B(k) can
be computed. Thus, given the vectord with N data points
and a choice ofk, aN × k matrix B(k) can be built and its
pseudo-inverseB†

(k) computed. The estimated control points

are given byθ̂(k) = B
†

(k)d, with B
†

(k) = (BT
(k)B(k))

−1BT
(k)

and the curve is given byv = [B†

(k)x B
†

(k)y] = B(k)θ̂(k).
The regions in which the histogram is computed are defined
at the points of the normal lines radiating from the discrete
B-spline curvev, i.e.

H =
N⋃

i=1

(±∆)v(si) n̄(si) (8)

where the sign+, and− distinguishes whether the inspection
is performed inside (Hinner) or outside (Houter) the reference
contour respectively;̄n(si) is the normal vector at the point
si; ∆ ∈ [0, 1], Fig. 3 depicts the technique proposed herein.
A quadratic B-spline of a generic shape and the orthogonal
lines are shown in Fig. 3 (a). Fig. 3 (b) displays the lines
at which the histogram values are collected. In some cases,
e.g. when using cameras displaying color mosaicking errors
at image edges, it may be convenient to avoid sampling at
the middle of the line segment. In our case, however, color
information at the contour pixels is quite acceptable and one
can perform the inspection along the entire line segment.

(a) (b)

Fig. 3. Generic B-spline shape with the orthogonal lines. Control points
are represented by circles (a). Bold lines show the image locations where
the histogram values are collected (b).

1(k) is the total of number of control points

In the experiments of Section V we use12 control points,
50 orthogonal lines along the contour, each one having 6
points, both inside and outside the object boundary.

C. Color Histograms

Let bt(d) ∈ {1, . . . , B} be the bin index associated with
the pixel color at locationd and framet. The color histogram
of a generic set of points can be computed by a kernel density
estimateH

.
= {h(b)}b=1,...,B of the color distribution at

frame t, and is given by [3]:h(b) = β
∑

n δ[bt(d
n) − b],

whereδ is the Kronecker delta function andβ is a normal-
ization constant so thath is a probability distribution.

To compute the similarity between two histograms we
apply the Bhattacharyya similarity metric, as in [7]:

S
(
H1,H2

)
=

B∑

b=1

√
h1(b) · h2(b) (9)

We adopt a distance metric inspired in [8]. Two quantities
are taken into account: (i) distance between the object color
model and the color measures inside the contour and; (ii)
similarity between regions inside and outside the contour.

Defining Hmodel, Hinner and Houter as a reference (ob-
ject) color model, the inner boundary points and the outer
boundary points histogram, respectively, we will measure
their pairwise similarities using (9). The distance metric
should be high when candidate color histograms are different
from the reference histogram and similar to the background.
This can be expressed by the following quantity:

D =

(
1 − S(Hmodel,Hinner)

)
+ κS(Houter,Hinner)

κ+ 1
(10)

This allows us to take into account the object-to-model
mismatch (first term) and the object-to-background similarity
(second term). Parameterκ allows to balance the two terms
and was set toκ = 1.5, from experimental tests. The data
likelihood functionL is modeled as a Laplacian distribution
over the distance metric:p(yt | x

(i)
t ) ∝ e−

|D|
b . In our

experiments we setb = 1/30.

V. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed meth-
ods. Firstly, we present a simulation where arbitrarily gener-
ated 3D points are projected to the image plane using three
projection models: (i) the exact model – CPM; (ii) the UPM
approximation; and (iii) the PPM approximation. All models
use realistic calibration parameters. We show that both cases
have equivalent re-projection errors.

These results are confirmed in non-simulated experiments,
with a catadioptric system calibrated using the pattern shown
in Fig.1c, with 3D points placed at several heights around
the robot. Color models are obtained from manually selected
regions in the image sequence containing the object of inter-
est. All object pixels were used to train the color histograms,
whereas in run-time, only a subset of points is used. In the
first experiment we place a still ball at different positions
around the robot and measure the error with respect to the
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Fig. 4. Comparing projection models. (a) UPM (blue) and PPM (red)
approximations to the CPM constant-resolution camera vs the height above
the ground plane,z = z0. The colored areas are standard deviations, lines
show the mean re-projection error. (b) constant resolution analysis for CPM
(red, dash-dot-), UPM (blue, dash-) and PPM (black, solid-line) vs distances
measured on the ground plane. Lines show max and min error bounds. (c)
zoom of (b) showing only the error differences to the PPM.

ground truth, using the proposed 3D tracking technique. In
a final experiment, we track a bouncing ball, illustrating
qualitatively the overall 3D tracking performance.

A. Camera-model approximations

Using the back-projection detailed in Sec.II, given the
nominal parameters,ϑ and the mirror shape,(t, F ) specified
as a look-up table, one obtains a set of 3D rays from a set
of image points. Sampling the 3D rays at several heights of
interest from the ground plane, in our casez−z0 ∈ [0, 30]cm
for a camera60cm above the ground, results in a set of 3D
points and their projections, that represents the exact-model
– CPM. From the set of 3D points and their projections,
the UPM and PPM can be fitted to the data using least-
squares of the re-projection errors. These UPM and PPM
approximations can now be compared with the CPM.

Figure 4a shows that the approximation errors are sub-
pixel for almost all the consideredz range. Notice that the
PPM approximates exactly the CPM at the ground plane, as
expected since it is a design specification, while the UPM
approximates the CPM at a middle height so that the overall
mean squared re-projection error is minimized. Qualitatively,
the UPM encompasses some radial distortion allowing to
approximate better the CPM.

On the other hand, the approximation given by the PPM
allows studying how close to perspective the CPM and UPM
are. Figure 4b shows that the perspective camera (solid-
line) follows exactly a linear relationshipρ = k0Z0 · r/Z,
while CPM and UPM yield that property only approximately
(dashed and dash-dotted bounded areas).

Concluding, despite the fact that CPM has by design
the constant-resolution property just for the ground plane,
simulations show that the property holds for a reasonable

Fig. 5. A 3D view of ground truth (blue) and measurements obtained with
the PPM (red) for error evaluation.

part of the 3D FOV and the CPM is well approximated in
that volume by both the UPM and the PPM. Simulations
also show that the PPM is the most accurate model for the
ground plane, as expected due to the design, while the UPM
allows more accurate approximations for planes above the
ground, involving however more computations.

We would like to stress that the constant-resolution design
is a good compromise between approximating ubiquitous
constant-resolution and enlarging the field of view, w.r.t
perspective cameras. Note that perspective cameras only have
constant-resolution on all planes orthogonal to the optical
axis, for narrow view fields. Large fields-of-view imply small
focal length lenses that introduce radial distortions.

B. Error evaluation

The previous results show the validity of UPM and PPM
model approximations using simulated 2D and 3D target
positions. Here we use the real catadioptric camera and
image measurements to estimate target’s 3D positions. The
camera is calibrated either with the PPM or the UPM models.
Both calibrations share the same 3D- and imaged-points
calibration-data.́In [13] we show that UPM produces small
re-projection errors. In this section we assess the qualityof
PPM calibration combined with the ball localization method.

We have placed a ball at various positions around a
robot and confronted the positions measured with our system
against the ground truth. The positions were either on the
floor or at a height of 340mm, as illustrated in Fig. 5.

Measurements were made with the proposed 3D tracking
system, using both the UPM and PPM projection models.
Particles were initialized with a Gaussian distribution with
large variance around the ground truth positions and zero
velocity. We have computed the errors between ground truth
and measurements, in spherical coordinatesγ, φ and ψ,
respectively distance, elevation and azimuth. Results forthe
errors’ mean and standard deviation are presented in Table I.
As can be observed from the table, there are no significant
differences between the two projection models. However, the
computation time for PPM is about half the time taken by the
UPM (last line of Table I). Therefore, the usage of the PPM
is advantageous for the overall 3D tracking system, since it
reduces computation time for the same level of precision.

C. Ball tracking

In this experiment we track a bouncing ball. The ball’s
projection on the image plane changes dramatically along
time (see Fig.6a), due to the nature of the catadioptric system



UPM PPM
meanγ error (mm) -19.8712 -18.2616
std.devγ error (mm) 48.1137 47.9484
meanφ error (rad) 0.0005 0.0006
std.devφ error (rad) 0.0310 0.0276
meanψ error (rad) 0.0072 0.0072
std.devψ error (rad) 0.0314 0.0312
Computation Time (ms) 11.2 6.3

TABLE I

COMPARISON OF ERRORS MEASURED WITH THEUPM vs PPM. LAST

LINE SHOWS THE COMPUTATION TIMES FOR PROJECTING50000POINTS,

ON A P4 2.6GHZ COMPUTER.

(a) (b)

Fig. 6. Ball jumping. (a) Three frames of the sequence (top row), the
corresponding close-ups of the tracked ball with the pixelsused to build
the inner and outer color histogram marked in yellow and blue,respectively
(middle row), the same close-ups with the contour projected bya ball placed
in the estimated position drawn in white (bottom row). (b) Close-ups of the
ball showing motion blur and noise.

used. The images are affected by both motion blur and heavy
sensor noise (see Fig.6b). Images were acquired at 25fps
and we used 10000 particles in the tracker. Particles were
initialized by a Gaussian distribution with large variance,
centered at rough estimates of ball’s initial position and
velocity. To compute the inner and outer color histograms
for each hypothesis, we have usedN = 50 points on the
sphere’s contour, as described in Section IV. We repeated the
tracking 10 times on the same image sequence to illustrate
the variance of the estimated trajectories on different runs.
In previous work [13] we presented results on this sequence
using the UPM model. In this paper we run the same
experiment using the PPM model. A comparison between the
two models is shown in Fig. 7. No noticeable differences are
observed between the two models, but computational savings
justify the choice of the PPM model.

VI. CONCLUSIONS

We have presented a model-based 3D tracking system with
particle filters, using a wide angle perspective catadioptric
sensor. Although in most of the 3D space these sensors
only provide an approximation to the perspective model and
are often approximated by the more general UPM model,
we have shown experimentally that the perspective model

Fig. 7. Ball jumping: plot of the tracked paths resulting from10 runs
of the algorithm performed on the same image sequence. The estimated
trajectories using the PPM and the UPM models are shown, respectively,
with blue and red lines. Both the 3D trajectory and its projections on the
ground and lateral planes are shown.

is advantageous in terms of simplicity and computational
efficiency, yielding a comparable accuracy.

We have described in detail the proposed 3D tracker,
including both the motion and observation models. We
have performed extensive experiments with real robots in a
RoboCup MSL scenario. We showed the performance of our
method in tracking jumping balls, demonstrating its ability to
deal with off-the-floor targets and sudden trajectory changes.
Additionally, we evaluated the precision of the system in
static scenarios with ground truth measurements.

The results show that the combination of wide angle
sensors with 3D model-based tracking methods is able to
cope with complex target motions in challenging observation
conditions. In future work we will further characterize the
proposed observation model, evaluating its robustness to
occlusions and ambiguities. Also, we will extend the particle
filter method to address the following issues: (i) include
object pose in the state vector, such as to deal with non
rotationally symmetric objects; (ii) use multiple motion
models to characterize common objects’ maneuvers; and (iii)
take into account robot self-motion and express particle’s
state in a fixed reference frame.
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