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On the use of perspective catadioptric sensors for 3D model-based
tracking with particle filters
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Abstract—We present a model-based 3D tracking system, good as the UPM, with additional advantages of simplicity
using wide angle perspective catadioptric sensors. These sensor and computational efficiency.
acquire 360° views of the environment and the projection from To fully evaluate our system, we perform both simulations

3D world points to the image plane is approximated by a . - . .
perspective model. This is a major advantage in structured studies and experiments in real scenarios. We have dewklope

environments because straight lines on specific surfaces are not & Particle Filtering method [5], [6], that is able to estimtte
deformed by the sensor, allowing the application of standard 3D position and velocity of structured objects, from a singl

computer vision algorithms. Objects off the surface are dis- catadioptric sensor. Particle filtering methods are among
torted according to a complex projection model, but can be e giate-of-the-art techniques for object tracking. Dae t

approximated by a simple wide angle perspective mapping. . o I
This is exploited here to develop a robust tracking system their principled probabilistic approach, they are able to

for autonomous robots using a 3D shape and color-based tackle the uncertainty, ambiguity and complexity of cleete
object model. The use of particle filters allows tracking to environments. We fully describe the employed 3D particle
be done with 3D realistic motion models and tackling object filtering and observation models. Since PF’s rely on the
occlusion, overlap and ambiguities. We show that the use of yaqt of multiple hypothesis (usually several hundredsjgis
the perspective model is advantageous over more standard . . .

catadioptric projection models, since it renders a very good S|mple and (_:om_putatlonally efficient measurement me_thods
approximation to the true model, being simpler and more Will have a high impact on the overall system computational
efficient to use, in particular with 3D particle filtering methods.  cost. We show that the employed perspective model requires
about half the computations for the same level of precision,
when compared to the standard UPM.

Wide angle catadioptric sensors have often been usedThe tracking system was inspired by the work of [8],
in robotics, especially for self localization and navigati which proposed a PF method based on 2D image coordinates.
[4],[2], as they gather information from a large portionOn the contrary, we perform tracking in 3D coordinates. This
of the space surrounding a robot. One drawback is th@ advantageous in several scenarios, e.g. in the RoboCup
images are affected by strong distortion and perspectif@SL (Medium Size League), as robots are now provided
effects, which may force the use of non-standard algorithmgith the ability to kick the ball off the ground. 3D tracking
for target detection and tracking. In structured scenariofas two main advantages over 2D method$:s{nce the
however, custom sensor designs have been proposed to avgigjection to 2D introduces non-linear effects, the 3D mioti
distortions in certain parts of the environment. For exanpl models are closer, and more physically grounded, to the
[11], [12] propose systems with wide-angle and constankctual object motion;if) with 3D tracking the actual position
resolution view of the ground plane, such that structures igf the tracked object is directly available, while in image
the floor can be treated as in conventional perspective imaggacking a further non-trivial step is needed to compute it.

For objects off the ground floor, the constant resolution The paper is organized as follows. Section Il describes the
property does not hold anymore. If precise measurements &gadioptric sensor and projection models. The 3D particle
required, the exact projection model should be employegiter tracking algorithm and image measurement models are
Because the exact model involves complex non-linear aféscribed in Sections Ill and IV. Experimental results are
non closed-form relationships between 3D points and theghown in Section V and, finally, Section VI concludes the
2D projections, approximations are often used. A widelpaper and presents ideas for future work.
used approximation for catadioptric systems is the Unified
Projection Model (UPM) pioneered by Geyer and Daniilidis Il. CATADIOPTRIC IMAGING SYSTEM
[9]. The UPM models all omnidirectional cameras with a |n this section we describe the imaging system, detail
single center of projection and provides a good approxits model, and propose two approximations using well
mation to wide-angle constant resolution sensors. We shokhown projection-models. Our catadioptric vision system,
however, that a simple perspective projection model is asge Fig.1a, combines a camera looking upright to a convex
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containing the system parameters. Considering camerhs wit N
axial symmetry and aligning the coordinate systems sucah tha \

P=(r)

© = o, one obtains the radial model (see Fig.1b):
p="P(r=";7). 1)

In the case of the constant resolution designis trivial
for the ground-plane, as it is just a scale factor betweeelpix
and meters. Deriving® for the complete 3D field of view
involves using the actual mirror shapé which is a function
of the radial coordinate [12]. Based on first order optics,
and in particular on the reflection law at the specular serfac
of revolution, (¢, F'), the following equation is obtained:

-1
2. atan(F') = —— 2
atan(p) + 2 - atan(F") T F 2
where¢ = —(r — t)/(z — F) is the system’s vertical view , |
angle,fd = atan(p) is the camera’s vertical view angle, and ' © )

F' represents the slope of the mirror shape. Whedtenotes o _ o
an ambiary funcion and we replage= /", (2) becomes [, L &) Caadenie s, ) The Senere Cariotece
a differential equation, expressing the constant horilont
resolution propertyp = a - r + b, for one planez = z.
F is usually found as a numerical solution of the differential The PPM is a particular case of the UPM, obtained with
equation (see details and more designs in [11], [12]). I = 0 and by definingk = —m : '
If F'is a known shape then (2) describes a generic Cata- ’
dioptric Projection Model (CPM), as it forms an equation on p=k-r/z. (4)
p for a given 3D point(r, z). In generalp has a non-closed-
form solution. Therefore, the CPM is usually implementedtq,(4) shows that the PPM has constant resolution, i.eadine
by finding one 3D point fronp, i.e. doing a back-projection. relationship betweep andr, at all z-planes.
We propose the following back-projection algorithm: In Section V-A, we will use the CPM, with" for constant
1) remove the intrinsic parameters from the image cdiorizontal resolution, as a simulation methodology forl-eva
ordinates, i.e. convert an image point to the polagating the approximations by the UPM and the PPM models.

coordinategp ¢]” and then to the vertical angl The approximations allow assessing the resolution prigsert
2) compute, or interpolate from a look-up table,F, F')  of the system, as e.g. the linear relationship between groun
given thatt/F = tan(6), and finally and image-measured distances.
3) obtaing using Eq.(2).
Note that, to fully define a 3D optical ray, both the direction I1l. 3D TRACKING WITH PARTICLE FILTERS

¢ and the point on the mirror surfacg, F') are needed. . o .

Next we will introduce two known models that approx- This section introduces a model-based 3D tracking system
imate the CPM: the UPM and the standard Perspecti®$ing particle filters. In particular, we will point out wieer
Projection Model (PPM). The UPM consists of a tWO_Stngzomputatmnal gains arise from haymg a simple projection
mapping via a unit-radius sphere [9]) project a 3D world model._ As a case study,. we C(_)nS|der the RoboC.up MSL
point, P = [r ¢ 27 to a point P, on the sphere surface, Scenario and use a spherical object-model for tracking ball
such that the projection is normal to the sphere surfaick; (but the system copes with any rotationally symmetric object
project to a point on the image plang; = [p ¢|T from a In previous work [13] we have also considered cylindrical
point, O on the vertical axis of the sphere, through the poinPPi€cts representing RoboCup MSL robots.

P,. The mapping is mathematically defined by: Let x;, = [z,y,2,,5,2", be the state-vector, with
(z,y,2), (%,9,2) the object 3D cartesian position and linear

p=————— 1 (3) velocities in a robot centered coordinate system. The goal i
IWr? 422 — 2 to estimate{x;;¢ € IN}, which represents the object state at

where the(l,m) parameters describe the type of cameraeach time, assumed to be an unobserved Markov process with

The UPM is a widely used representation for CPM whén some initial distributionp(x) and a transition distribution

describesi) an hyperboloid or ellipsoid with focus &b,0);  p(x: | x¢—1). The observationgy,;¢ € N}, y, € R"Y, are

(4i) a paraboloid combined with a telecentric lefis50) or ~ conditionally independent given the procéss; ¢t € IN} with

(iii) F = const [10]. In our caseF is computed numerically marginal distributionp(y, | x;), whereny is the dimension

to have the constant resolution property, and therefors doef the observation vector.

not correspond to any of the former cases. The comparisonin a statistical setting, the problem is posed as the esti-

between CPM and UPM must be done in simulation. mation of theposteriori distribution of the state given all

l+m



observation®(x; | y;.;). Under the Markov assumption: oo 0

P(Xely1.e) O<P(Yt\xt)/p(Xt|Xt—1)p(Xt—1|Y1;t—1)dXt—1 o ﬁ O, v 1

-0

) 10001500

The a posteriori distribution can be computed recursively, R

using the previous estimatg(x;—1 | y;4+_1), the motion-

model,p(x; | x;—1) and the observation model(y, | x;). Fig. 2. Plot of the 3D points projected to obtain the 2D confoaints for

We use Particle Filtering methods in which the probability@!ls at different positions.
distribution of an unkngwn state is represented by a set of
. . )

M weighted particlesx; } =1 [6F V. OBSERVATION MODEL

p(xt | yi.0) Z w5(x; — x! )) (5) To cal_culate the Iikelihoo_d of a particle we _project its cor-
responding contour on the image (as a function of the object

éSD shape, position and orientation) using an approximated

model for the catadioptric system. The idea is to determine

which points of the 3D model would be projected on the

object’s contour on the image (see Fig.2) and then create

sets of 2D points in the inside and outside boundaries.

For a ball, the 3D contour points lie on the intersection
between its spherical surface and the plane orthogonal to
the line connecting the virtual projection center to theteen
of the sphere. With this model, it is possible to adjust the

whered(-) is the dirac delta function. Based on the discret
approximation ofp(x; | y;.), different estimates of the
best state at time are possible to be devised. For instance
We use the Monte Carlo approximation of the expectation,

= 37 Zl LW t ~ BE(x; | Y1:t) or the maximum
Ilkellhood estlmatexML = argmax, E 1 wt(”é(xt—xf)).

The computation of th@osteriori distribution is decom-
posed in four steps:

1) Prediction - computes an approximation of(x; | number of points describing the 2D contour, obtaining faste
Y14—1), by moving each particle according to theprocessing times (less points) or more robustness (more
motion model; points). For our sensor, we will compare the performance

2) Observation - computes the likelihood of each particle, of the tracking system using both the UPM and the PPM
based on image data. projection models.

3) Update - each partlcles Welght is updated usmg itS  The computation of the particles’ likelihood is based on
likelihood p(y, | x{”), usingw” o w”,p(y, | x| three color histograms:)( the object color model;if) the

4) Resampling - the particles with a high weight are inner, and {ii) outer boundaries of the projected contour.
replicated and the ones with a low weight are forgottenthe first is computed in a training phase with several object

For this purpose, we need to model probabilistically botlexamples taken from different locations and illumination
the motion dynamicsp(x; | x;—1) ' and the computation conditions, and the others are computed at each frame for
of each particle’s likelihoog(y, | xt ) (steps 1 and 2). In each particle. The idea is to assign a high likelihood to the

particular, step 2 involves the sensor model and will benefitontours for which the inner pixels have a color similar to

from using an adequate projection model. These two steffse object, and are sufficiently distinct from the outer ones

will be further detailed in the following sections. Formally, let x; represent a target state hypothesis. A

. . set of N points in the 3D object boundary is collected:

A. The Motion Dynarmics boundny} n = 1,...,N. These points are projected on

Our method assumes that Ob]eCt motion follows a Standafﬁe |mage us|ng the Se|ected prO]ecuon model, resu|mg i
autoregressive dynamic modet, = Ax;_1 + w¢, Where the 2D point Set{dboun(hry} n = 1,...,N. Each point

w; ~ N(0,Q). We have chosen a constant velocity modelg in the image is represented by its color vector in the
in which the motion equations correspond to a uniform agqs) representatiory,(d). We will use this information to
celeration during one sample time, ise.= Ax; 1+ Ba;_1, compute HSI histograms, witB = B, B, B; bins.

with:

e [I (Atﬂ] B= {(Af)l} (6) A Deformable parametric contours - B-splines

0 I At)I . .
(A1) Throughout this paper we use B-splines to represent the

where I is the 3 x 3 identity matrix, At = 1, and a;  object contour. Indeed, this representation is widely tised
is a3 x 1 white zero mean random vector correspondingomputer graphics and in computer vision [1].

to an acceleration disturbance. The covariance matrix of A B-spline has the following representation
the random acceleration vector waséexperimentally tuned to
cov(ay) = 21, with o = 120mm/frame.

S(inc)e the tracker uses real-world coordinates, the motion (1) = Z G (), € ftm, tim] (7)
model for an object can be chosen in a principled way, =0
both by using realistic models (constant velocity, coristarwhere {B;*(t),k = 0,...,k —m — 1} is the set of basis
acceleration, etc.) and by defining the covariance of theenoifunctions such that8*(t) > 0, and ), B"(t) = 1;
terms in intuitive metric units. {co,c1,...,ck_m—1} is the set of coefficients; and;_, ¢;]

k—m—1



is an interval in which the spline functions are polynomial In the experiments of Section V we u$2 control points,

and exhibit a certain degree of continuity at the knots. 50 orthogonal lines along the contour, each one having 6
Planar curves are simply thR? version of Eq. (7), i.e. points, both inside and outside the object boundary.

v(t) = [z(t) yt)] = S, eBr(t). A discretized

spline is a set ofV equispaced samples oft) collected as o ) )

the N x2vector,v = [vI, ... vl =[x y], N>kIf Let b.(d) € {1,...,B} be the bin index associated with

we arrange the coordinates of control points into a parameté€ pixel color at locatiorl and framef. The color histogram
Oy = [l 7 = | % e?gk)]l, the discretized Of @ generic set of points can be computed by a kernel density
closed splinev can be obtained by the matrix productéStimateH = {A(b)};—1...5 of the color distribution at
v =By < {x = B(k)efk); y = B(k)%c)}, where framet, and is given by [3]:h(b) = 3", d[b.(d"™) — 0],

A whered is the Kronecker delta function anglis a normal-
the elements 0B ;) are By li; = B;(ty + (L5,

| ¢ hicsr — 3 or 4 i v found to b ization constant so thdt is a probability distribution.
fl computer graphics: = 5 or 2 1S generally found to be compute the similarity between two histograms we
sufficient. Herein, we use quadratic B-splines, ire.= 3.

apply the Bhattacharyya similarity metric, as in [7]:

C. Color Histograms

B. B-spline Fitting: 2-D with known number of control points B
¥ g P S(HLH) = VA R () ©)
After obtaining the 2D point§d} hn=1,...,N, b=1

boundary

we convert them into a B-spline which best fits to this set. As- \ye adopt a distance metric inspired in [8]. Two quantities

suming that we known the knots, théx k matrixBx) can 4y taken into accounti)(distance between the object color
be computed. Thus, given the vecrwith N data points qqe| and the color measures inside the contour aiij; (

and a choice ok, a NV x k matrix B(y) can be built and its - gimjjarity between regions inside and outside the contour.
pseudo-mversBIk) computed. The estimated control points  pefining H™4!, H™*" and H*"**" as a reference (ob-
are given bye/(k\) = sz)d, with sz) = (Bﬁ)B(k))_lBﬂ) ject) color model, the inner boundary points and the outer

PN boundary points histogram, respectively, we will measure

and the curve is given by = [ng)x sz)y] = B)0)- X JF TN : _ _
The regions in which the histogram is computed are defind§€ir pairwise similarities using (9). The distance metric
at the points of the normal lines radiating from the discretghould be high when candidate color histograms are difteren

B-spline curvev, i.e. from the reference histogram and similar to the background.

This can be expressed by the following quantity:
N

H=— U(iA)V(SZ) I_I(Si) (8) - (1 o S(Hmodel7 Hinner)) + HS(Houter7Hinner)

i=1 o k+1

where the sign-, and— distinguishes whether the inspection
is performed insideKI™"") or outside H°"'*") the reference

contour respectivelyfi(s;) is the normal vector at the point

(10)
This allows us to take into account the object-to-model
mismatch (first term) and the object-to-background siritylar

A c0.1]. Fig. 3 depicts the techni dh . (second term). Parameterallows to balance the two terms
si A € [0,1], Fig. epicts the lechnique proposed herel Pd was set tac = 1.5, from experimental tests. The data

A quadratic B-spline of a generic shape and the Orthc’gonf“?kelihood function£ is modeled as a Laplacian distribution

lines are shown in Fig. 3 (a). Fig. 3 (b) displays the lines . . () _ Dl
. . over the distance metrico(y, | x;’) o« e~ . In our
at which the histogram values are collected. In some cases,” .
. : . . experiments we sét=1/30.
e.g. when using cameras displaying color mosaicking errors

at image edges, it may be convenient to avoid sampling at V. EXPERIMENTAL RESULTS

the middle of the line segment. In our case, however, Color rig section presents an evaluation of the proposed meth-

information at the contour pixels is quite acceptable anél on,ys Firstly, we present a simulation where arbitrarilygren

can perform the inspection along the entire line segment. ;o4 3p points are projected to the image plane using three
projection models:if the exact model — CPMj4) the UPM

o approximation; andi{i) the PPM approximation. All models
i\\\\\k\ \ \ / ///é// \\\\\\\\ 1 H/é: use realistic calibration parameters. We show that botascas
:§ have equivalent re-projection errors.

These results are confirmed in non-simulated experiments,
with a catadioptric system calibrated using the patternvsho
in Fig.1c, with 3D points placed at several heights around
(@) (b) the robot. Color models are obtained from manually selected
Fig. 3. Generic B-spline shape with the orthogonal linesnt@s points ~ regions in the image sequence containing the object of-inter
are represented by circles (a). Bold lines show the imageitomawhere  ast, All object pixels were used to train the color histogsam
the histogram values are collected (b). . . . .
whereas in run-time, only a subset of points is used. In the
first experiment we place a still ball at different positions
L(k) is the total of number of control points around the robot and measure the error with respect to the

= = &<
S et
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z-z,[em] Fig. 5. A 3D view of ground truth (blue) and measurements obthinith
(a) the PPM (red) for error evaluation.
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part of the 3D FOV and the CPM is well approximated in
' — - that volume by both the UPM and the PPM. Simulations
also show that the PPM is the most accurate model for the
y s ground plane, as expected due to the design, while the UPM
allows more accurate approximations for planes above the
radius [em] radius [em] ground, involving however more computations.
(b) (c) We would like to stress that the constant-resolution design
Fig. 4. Comparing projection models. (a) UPM (blue) and PPMi)re iS @ good compromise between approximating ubiquitous
“?PFOXimz“O?S to the CP%S‘Z’LT;?QS??;’Q?;’PE°§§ne52r55§£3?“a?iiﬁiv‘fineCO”Sta”t'reSO'U“O” and enlarging the field of view, w.r.t
;h?)v%r?huenmgainf:—[;o?g.ction error. (b) constant resoluti@ilyais for CPM %erSpeCtive cameras. Note that perspective cameras ordy ha
(red, dash-dot-), UPM (blue, dash-) and PPM (black, safid)lvs distances constant-resolution on all planes orthogonal to the optica
measured on the ground plane. Lines show max and min error bo(@)ds gxjs, for narrow view fields. Large fields-of-view imply srhal

f (b) showi ly th diff to the PPM. . o )
zoom of (b) showing only the error differences to the focal length lenses that introduce radial distortions.

radius [pix]
error [pix]
4

* Y 30x error zoom

. . , B. Error evaluation
ground truth, using the proposed 3D tracking technique. In

a final experiment, we track a bouncing ball, illustrating Th€ Previous results show the validity of UPM and PPM

qualitatively the overall 3D tracking performance. model approximations using simulated 2D and 3D target
o positions. Here we use the real catadioptric camera and
A. Camera-model approximations image measurements to estimate target’s 3D positions. The

Using the back-projection detailed in Sec.ll, given the&camerais calibrated either with the PPM or the UPM models.
nominal parameters} and the mirror shapéf, F') specified Both calibrations share the same 3D- and imaged-points
as a look-up table, one obtains a set of 3D rays from a se@libration-dataln [13] we show that UPM produces small
of image points. Sampling the 3D rays at several heights 6¢-projection errors. In this section we assess the quafity
interest from the ground plane, in our casez, € [0,30]cm  PPM calibration combined with the ball localization method
for a camera0cm above the ground, results in a set of 3D We have placed a ball at various positions around a
points and their projections, that represents the exacteino robot and confronted the positions measured with our system
— CPM. From the set of 3D points and their projectionsagainst the ground truth. The positions were either on the
the UPM and PPM can be fitted to the data using leasfioor or at a height of 340mm, as illustrated in Fig. 5.
squares of the re-projection errors. These UPM and PPM Measurements were made with the proposed 3D tracking
approximations can now be compared with the CPM. system, using both the UPM and PPM projection models.

Figure 4a shows that the approximation errors are sularticles were initialized with a Gaussian distributiorthwi
pixel for almost all the considered range. Notice that the large variance around the ground truth positions and zero
PPM approximates exactly the CPM at the ground plane, &glocity. We have computed the errors between ground truth
expected since it is a design specification, while the UPNMNd measurements, in spherical coordinajesp and 1),
approximates the CPM at a middle height so that the overdispectively distance, elevation and azimuth. Resultshier
mean squared re-projection error is minimized. Qualitdyiv  errors’ mean and standard deviation are presented in Table |
the UPM encompasses some radial distortion allowing t8s can be observed from the table, there are no significant
approximate better the CPM. differences between the two projection models. However, th

On the other hand, the approximation given by the PPNomputation time for PPM is about half the time taken by the
allows studying how close to perspective the CPM and UPMPM (last line of Table I). Therefore, the usage of the PPM
are. Figure 4b shows that the perspective camera (soli-advantageous for the overall 3D tracking system, since it
line) follows exactly a linear relationship = kyZ, - r/Z, reduces computation time for the same level of precision.
while CPM and UPM yield that property only approximately .

(dashed and dash-dotted bounded areas). C. Ball tracking

Concluding, despite the fact that CPM has by design In this experiment we track a bouncing ball. The ball's
the constant-resolution property just for the ground plan@rojection on the image plane changes dramatically along
simulations show that the property holds for a reasonabteme (see Fig.6a), due to the nature of the catadioptriegyst



UPM PPM
mean~y error (mm) -19.8712 | -18.2616
std.dev~ error (mm) 48.1137 | 47.9484
meang error (rad) 0.0005 0.0006
std.dev¢ error (rad) 0.0310 0.0276
mean) error (rad) 0.0072 0.0072
std.dev) error (rad) 0.0314 0.0312
Computation Time (ms) 11.2 6.3

TABLE |
COMPARISON OF ERRORS MEASURED WITH THEJPM vs PPM. LAST
LINE SHOWS THE COMPUTATION TIMES FOR PROJECTINE0OOOOPOINTS,
ON A P4 2.6GH COMPUTER

(b)

Ball jumping. (a) Three frames of the sequence (top raing

Fig. 6.
corresponding close-ups of the tracked ball with the pixeded to build
the inner and outer color histogram marked in yellow and biespectively
(middle row), the same close-ups with the contour projected ball placed
in the estimated position drawn in white (bottom row). (b) $&&eaups of the
ball showing motion blur and noise.

e 1000
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600
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Fig. 7. Ball jumping: plot of the tracked paths resulting frdf@ runs

of the algorithm performed on the same image sequence. The &sdima
trajectories using the PPM and the UPM models are shown, cteply,
with blue and red lines. Both the 3D trajectory and its prtgets on the
ground and lateral planes are shown.

is advantageous in terms of simplicity and computational
efficiency, yielding a comparable accuracy.

We have described in detail the proposed 3D tracker,
including both the motion and observation models. We
have performed extensive experiments with real robots in a
RoboCup MSL scenario. We showed the performance of our
method in tracking jumping balls, demonstrating its apild
deal with off-the-floor targets and sudden trajectory clegng
Additionally, we evaluated the precision of the system in
static scenarios with ground truth measurements.

The results show that the combination of wide angle
sensors with 3D model-based tracking methods is able to
cope with complex target motions in challenging observatio
conditions. In future work we will further characterize the
proposed observation model, evaluating its robustness to
occlusions and ambiguities. Also, we will extend the péetic
filter method to address the following issues) include
object pose in the state vector, such as to deal with non
rotationally symmetric objects;id) use multiple motion
models to characterize common objects’ maneuvers;ai)d (
take into account robot self-motion and express particle’s

used. The images are affected by both motion blur and head{ate in a fixed reference frame.

sensor noise (see Fig.6b). Images were acquired at 25fps
and we used 10000 particles in the tracker. Particles were
initialized by a Gaussian distribution with large variance E}
centered at rough estimates of ball’s initial position and
velocity. To compute the inner and outer color histograms
for each hypothesis, we have usadd = 50 points on the
sphere’s contour, as described in Section V. We repeated th
tracking 10 times on the same image sequence to illustrate
the variance of the estimated trajectories on differensrun 5
In previous work [13] we presented results on this sequences)
using the UPM model. In this paper we run the same
experiment using the PPM model. A comparison between tht!
two models is shown in Fig. 7. No noticeable differences argsg;
observed between the two models, but computational savings
justify the choice of the PPM model. [9]

VI. CONCLUSIONS [10]

We have presented a model-based 3D tracking system Wl[tlﬁ
particle filters, using a wide angle perspective catadioptr[12]
sensor. Although in most of the 3D space these sensors
only provide an approximation to the perspective model anas3]
are often approximated by the more general UPM model,
we have shown experimentally that the perspective model
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