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Abstract—Being able to localize the origin of a sound is microphones by cross-correlation. However, the ITD/IPBsio
important for our capability to interact with the environme nt. ot give any information about the elevation of the sound
Humans can localize a sound source in both the horizontal and ¢ ,rce. Furthermore it cannot tell whether a sound comes fro

vertical plane with only two ears, using the head related trasfer . s
function HRTF, or more specifically features like interaural time the front or the back of the head. In robotics this is usually

difference ITD, interaural level difference ILD, and notches in Solved by adding more microphones. The SIG robot [1] [2] has
the frequency spectra. In robotics notches have been left ou four microphones even though two are mainly used to filter the

since they are considered complex and difficult to use. As tye sound caused by the motors and the tracking is mainly done
are the main cue for humans’ ability to estimate the elevatia in the horizontal plane. In [3] eight microphones are used, a

of the sound source this have to be compensated by adding. - . .
more microphones or very large and asymmetric ears. In this " [4][5] a whole array of microphones is used to estimate the

paper, we present a novel method to extract the notches that location of the sound.
makes it possible to accurately estimate the location of a sad While adding more microphones simplifies the task of sound

source in both the horizontal and vertical plane using only wo |ocalization, humans and other animals manage to locaie t
microphones and human-like ears. We suggest the use of sirepl g, nq with only two ears. This comes from the fact that the
splral-shap_ed ears that has similar properties to the humare_ars form of our head and ears change the sound as a function of
and make it easy to calculate the position of the notches. Fally .
we show how the robot can learn its HRTF and build audio- the location of the sound source, a phenomenon known as the
motor maps using supervised learning and how it automaticdy head related transfer function (HRTF). The HRTF describes
can update its map using vision and compensate for changes inhow the free field sound is changed before it hits the eardrum,
the HRTF due to changes to the ears or the environment. and is a functiorf (f, 6, ¢) of the frequency, f, the horizontal
angle,d, and the vertical angle;, between the ears and sound
source. The IPD is one important part of the HRTF. Another
Sound plays an important role in directing humans’ attentiamportant part is that the level of the sound is higher when
to events in their ecological setting. The human abilityde | the sound is directed straight into the ear compared to sound
cate sound sources in potentially dangerous situatidks aln - coming from the sides or behind. Many animals, like cats,
approaching car, or locating and paying attention to a freakave the possibility to turn their ears around in order toaet
in social interaction settings, is a very important compunebetter estimate of the localization of the sound sourcenEve
of human behaviour. In designing a humanoid robot that vgithout turning the ears, it is possible to estimate the tioca
expected to mimic human behaviour, the implementation ofaé the sound by calculating the difference in level intensit
human-like sound location capability as a source of integra between the two ears. This is referred to as the interaural
information is therefore an important goal. level difference (ILD). However, if the ears are positioned
Humans are able of locating the sound sources in bath each side of the head as for humans, ILD will mainly
the horizontal and vertical plane from exploring acoustigive us information about on which side of the head that the
information conveyed by the auditory system, but in a robsbund source is located, i.e. information about the azimuth
that uses two simple microphones as ears there is not enougtich we already have from the ITD/IPD. In order to get new
information to do the same. Typically the robot would b&formation from the ILD we have to create an asymmetry
able to calculate or learn the positions of the sound sourceim the vertical plane rather than in the horizontal. This ban
the plane of the microphones, i.e. the azimuth which usualipne by putting the ears on top of the head and letting one ear
corresponds to the horizontal plane. This can be done bg pointing up while the other is pointing forwards as done in
calculating the difference in time between the signal reagh [6]. The problem with this approach is that a big asymmetry is
the left and the right microphone respectively. This isadll needed to get an acceptable precision and ILD of human-like
the interaural time difference (ITD) or the interaural phasears does not give sufficient information about the elewatio
difference (IPD) if we have a continuous sound signal araf the sound source.
calculate the phase difference of the signal from the two For humans it has been found that the main cue for
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estimating the elevation of the sound source comes fromThe ears are more complex. Each of the robot's ears was
resonances and cancellation (notches) of certain freigenduilt by a microphone placed on the surface of the head and
due to the pinna and concha of the ear. This phenomeremeflector simulating the pinna/concha, as will be desdribe
has been quite well studied in humans both in neuroscierinedetail below. The shape of human ears differs substantial
and in the field of audio reproduction for creating 3D-sterdoetween individuals, but a database with HRTF for different
sound [7][8][9][10][11][12][13], but has often been lefubin individuals [18] provides some general information on the
robotics due to the complex nature of the frequency resporfsequency spectra created for various positions of the doun
and the difficulty to extract the notches. In this paper wsource by human ears. Obviously one way to create ears for
suggest a simple and effective way of extracting the notche@shumanoid robot would be simply to copy the shape of a
from the frequency response and we show how a robot cpair of human ears. That way we can assure that they will
use information about ITD/IPD, ILD, and notches in order thave similar properties. However we want to find a shape
accurately estimate the location of the sound source in bdtiat is easier to model and produce while preserving the main
vertical and horizontal space. acoustic characteristics of the human ear. The most immpiorta
Knowing the form of the head and ears it is possible tproperty of the pinna/concha, for the purpose of locatirg th
calculate the relationship between the features (ITD, lalj sound source, is to give different frequency responses for
the frequencies for the notches) and the position the soudifferent elevation angels. We will be looking for notches i
source, or even estimate the complete HRTF. However, héne frequency spectra, created by interferences between th
we are only interested in the relationship between the featuincident waves, reaching directly the microphone, andrthei
and the position. Alternatively we can get the relationdbyp reflections by the artificial concha, and want the notches to
measuring the value of the features for some known positiobpg produced at different frequencies for different elerai
of the sound source and let the robot learn the maps. Sirkenotch is created when a quarter of the wavelength of the
the HRTF changes if there is some changes to the earssound,), (plus any multiple of\/2) is equal to the distance,
microphones or if some object like for example a hat ig, between the concha and the microphone:
put close to the ears, it is important to be able to update A
the maps. Indeed, although human ears undergo big changes nEg T d(n=0,1,2,..)

from birth to adulthood, humans are capable of adapting thei =, hese wavelengths, the sound wave that reaches the

auditory maps to compensate for acoustic consequences,f,nnone directly are cancelled by the wave reflected by the

_the anatomical changes_. It has been shown th_at vision is @ cha Hence the frequency spectra will have notches éor th
important cue for updating the maps [14], and it can also l&%rresponding frequencies:

used as a mean for the robot to update its maps [6].
In the rest of this paper, Section 2 will show how we can ¢ (2¥n+1)xv
design a simple head and ears that give a HRTF similiar to f = NT T aed (1)
the human head and ears’ HRTF. In Section 3 we discuss how ¢ = {speedof sound} ~ 340m/s @)
to extract features such as ITD/IPD, ILD, and notches from
the signals provided from the ears. In Section 4 we show howTo get the notches at different frequencies for all elevetio
the robot can use the features to learn its audio-motor-mé&g want an ear-shape that has different distance between the

In Section 5 we show some experimental results. Conclusiohécrophone and the ear for all elevations. Lopez-Poveda and

and directions for future work are given in Section 6. Meddis suggest the use of a spiral shape to model human ears
and simulate the HRTF [19]. In a spiral the distance between
Il. DESIGN OFHEAD AND EARS the microphone, placed in the center of the spiral, and the

ear increases linearly with the angle. We can thereforeaxpe

In this section we want to describe the design of a robotke position of the notches in the frequency response to also
head and ears with a human-like HRTF, and hence wighange linearly with the elevation of the sound source.
acoustic properties for the ITD, ILD, and frequency notches We used a spiral with the distance to the center varying from
similar to those observed in humans. The HRTF depengsm below to 4 cm in the top, Figure 1. That should give us
on the form of both the head and the ears. The ITD/IPfe first notch at around 2800 Hz for sound coming straight
depends on distance between the ears and the ILD is primafitym the front and with the frequency increasing linearlytes
dependent on the form of the head and to less extent also #hevation angle increases, Figure 2. When the free fielddsoun
form of the ears, while the peaks and notches in the frequersywhite noise as in the figure it is easy to find the notches
response mainly are related to the form of the ears. directly in the frequency spectra of either ear. Howeveunnsb

For the sake of calculating the HRTF, a human head can lde spoken language will have its own maxima and minima
modeled by a spheroid [15] [16]. The head used in this woik the frequency spectra depending on what is said. It is not
is the iCUB head which is close enough to a human headdlear how humans separate what is said from where it is said
expect the same acoustic properties. The detailed desitdpe of[20]. One hypothesis is that we perform a binaural compariso
head is described in [17] but here we can simply considerdt the spectral patterns, as have also been suggested fer owl
a sphere with a diameter of 14 cm. [21]. Both humans and owls have small asymmetries between



m, + 1
st ) = 21 ")

wherem,.=maxima number for right ean;=notch number for
coticha left ear, andd;=distance between the microphone and ear for
left ear.
If we for example want to detect the third notch of the left
; ear, and want the right ear to have its second maxima for the
i same frequency, we should chose the distance between the
- microphone and ear for the right ear as:

241 @) =6/ di(9)

Fig. 1. Pinna and concha of a human ear (right), and the aatific dr((b) = m
pinna/concha (left) ] . .
In the case of two identical ears we can not have a maxima

of the right ear at the same place as the left ear has a notch
for all elevations. The best we can do is to choose the angle
between the ear so that the right ear has a maxima for the
= } wanted notch when the sound comes from the front. In the
1 specific case of the ears in Figure 1 the optimal angle becomes
18 degrees.
7 The ears were constructed from a thin metal band which
H was easy to bend into a spiral shape. Metal also has the
} property that it almost completely reflects the sound which
w2z makes it a good material for making ears. The metal band
was then fixed onto a of thick paper with holes in the center
/ for the microphone. For the first experiments presentedig th
A paper we used professional omnidirectional condenseromicr
phones fixed directly to the head pointing sideways/forward
at an angle of 45 degrees with the tip of the microphone
approximately 7 mm outside the head. We then changed to
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Fig. 2. Example of the HRTF for a sound source at a) 50 degreegeab)
front, and c) 50 degrees below

the left and right ear that can give excellent cues to vdrtica
localization in the higher frequencies. These relativehah Fig. 3. icub with ears

asymmetries that provide different spectral behaviouwvbeh

the ears should not be confused with the large asymmetries

needed to give any substantial difference for the ILD. Heee w IIl. FEATURES

only need the difference in distance between the microphoneéAs discussed in the introduction, humans mainly depend on
and the ear for the right and left ear to be enought to separtitece different features for localizing the sound sourte t
the spectral notches. In the optimal case we would like tlrteraural time difference ITD, the interaural level difface
right ear to give a maximum for the same frequency that thieD, and the notches in the frequency response of each ear.
left ear has a notch and hence amplify that notch. This can Ipethis section we show how to extract the features given the
done by choosing the distance for the right e&r, as: signalss;(t) ands,.(t) from the left and right ear respectively.



The first step is to sample the sound. We sample the sound
for 1/10 s using the sample frequenéy=44100 Hz. This
gives usk=4410 samples. We then calculate the mean energy
as a sum of square of the given samples divided by the numbe

3 2 2 H
of samples:)_,, (Sl (k) + Sr(k)) /k. A simple threshold value interested in the exact formula since we want the robot to

IS use_d to decide if the sound has enough energy to mal_(%ét able to learn the relationship between the ITD and the
meaningful to try to extract the features and try to Iocallzg
the sound source. The calculation of the individual featuse

explained below.

9 = arcsin (ITD « ;)

However for the sake of controlling the robot we are not

ngle rather than hard coding this into the robot. The ingodrt
thing is that there exists a relationship that we will be dble
learn. We therefore measured the ITD for a number of differen

A. Interaural time difference, ITD angles in an anechoic room, figure 5.
The interaural phase difference is calculated by doing 2
cross-correlation between the signals arriving to the defd

right ear/microphone. If the signals have the same shape
can expect to find a peak in the cross-correlation for tt
number of samples that corresponds to the interaural tir
difference, i.e. the difference in time at which the sigrraivas
at the microphones. We can easily find this by searching 1
the maximum in the cross correlation function. Knowing th  e.
sampling frequencyF; and the number of samples that
corresponds to the maximum in the cross-correlation foncti
we can calculate the interaural time difference as:
n
ITD = T
If the distance to the sound source is big enough in compi
ison to the distance between the edrsye can approximate
the incoming wave front with a straight line and the diffesen
in distanceAl traveled by the wave for the left and right ear

can easily be calculated as: Fig. 5. ITD for different positions of the sound source
Al = [sin(9)
B. Interaural level difference, ILD
! The interaural level difference ILD, is calculated as a
Txsin (@) function of the avarage power of the sound signals reaching
the left and right ear.
2
k
ILD = 10+ logy, <ZLEZ())
>k s7(F)

Sometimes the ILD is calculated from the frequency re-
sponse rather than directly from the temporal signal. It is
easy to go from the temporal signal to the frequency response
by applying a fast Fourier transform FFT. The reason for
working with the frequency response instead of the temporal
signal is that it makes it easy to apply a high-pass, low-
pass, or band-filter on the signal before calculating itsaye
power. Different frequencies have different propertieswL
frequencies typically pass more easily through the head and
ears while higher frequencies tend to be reflected and their
intensity more reduced. One type of filtering that is often

Fig. 4. Interaural time difference used is dBA which corresponds to the type of filtering that
goes on in human ears and which mainly takes into account
where 6 is the horizontal angle between the head’s mithe frequencies between 1000 Hz and 5000 Hz. In [6] a band-
sagittal plane and the sound source, Figure 4. Knowing thass filter between 3-10 kHz have been used which gives them
the distance traveled is equal to the time multiplied with tha better calculation of ILD. Different types of head and ears
velocity of the sound we can now express the angle directtyay benefit from enhancing different frequencies. Here we
as a function of the ITD: calculate the ILD directly from the temporal signal which is




equivalent to considering all frequencies. The responsa fofitted polynomial are shown in Figure 7. From the fitted
sound source placed at different angles from the head isrshdwnction it is easy to extract the minima. In this work we have
in figure 6. chosen to use the first minima over 5000 Hz as a feature.
In this specific setup that corresponds to the second notch.
However the position of the notches depends on the design
of the ears and for other types of ears other frequencies will
have to be used.
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C. Spectral notches h

Existing methods for extracting spectral notches such
[22][23][24] focus on finding the notches in spectral diagsa B0 A
obtained in anechoic chambers using white noise, such as | \‘ @
diagrams presented in Figure 2. For a humanoid robot that 208 R ; /o)
to be able to turn towards any type of sound these methc f | ,rj “\\
are not suitable. In this section we suggest a novel method 1sp ‘/\\\ 2 Vin
extract the frequency notches that is reasonable fast enplesi Y [ | \/
to implement while giving better accuracy for calculatirg t 101 J,’ e\ j \ ,"ff \E\(\;
elevation of the sound source than methods based on ILD. T ¢ i/ \\\ [ \\/" ’
method makes use of the fact that we have a slight asymme s . o
between the ears and has the following steps: ’/“‘1 \ ’/ i ‘«' ‘\ !

1) Calculate the power spectra density for each ear "“Lqﬂ&\%" L’\ ! ;“/\ J i

2) Calculate the interaural spectral differences Y b /‘/ ‘»\! i

3) Fit a curve to the resulting differences - o) !

4) Find minima for the fitted curve /

To calculate the power spectra we use the Welch spec -0 —— Y EVRTT o500

[25]. Typical results for the power spectra densit /) and
H.(f), for the left and right ear respectively are shown in

figure 7. As seen the notches disappears in the complex 8pegl. 7. Above: The power spectra for left ear (solid line) aight ear
of the sound, which makes it very hard to extract them diyectidotted line). Note that the spectras are shown in dB,1i0ex log(Hz (f)).

; ; ;i Lhe vertical lines represent the expected frequencieshfanbtches. Below:
from the power spectra. To get m_j of the max,lma and mmmtﬁ:e interaural spectral difference (dotted line) and thediturve (solid line)
caused by the form of the free field sound, i.e. what is said,

we calculate the interaural spectral difference as: o o
As seen in Figure 7 the minima more or less corresponds to

AH(f) =10x*logyy Hi(f) — 10 xlogyo H-(f) = the expected frequencies of the notches for the left eas Thi
H(f) is because we carefully designed the ears so that the notches
=10 *log, (Hl (f)) from the two ears would not interfere with each other. In this

case we could actually calculate the relationship betwhen t
Finally we fit a 12 degree polynomial to the interauralrequency of the notch and the position of the sound source.
spectral difference. The interaural spectral difference the However, in the general case it is better to let the robonlear



the HRTF than to actually calculate it since the positionhaf t

notches is critically affected by small changes in the shape

the conchas or the acoustic environment. Also, if we learn Sg = MC
the relationship rather than calculating it we do not have to

worry about the fact that the minimas that we find do not Thijs simpler model allows a faster and more robust learning.

directly correspond to the notches as long as they changle Wiy estimate the value ofi/ a linear regression with the

the elevation of the sound source. In figure 8 we show tR@indard error criteria was selected:

extracted feature with the sound source placed at a number of

different positions in relation to the head. . )
M:argmj\}nZHA@—MCiH (3)

=1

notch

This solution gives an offline batch estimate, for online
estimation a Broyden update rule [26] was used. This rule
is very robust, fast, has just one parameter and only keeps in
memory the actual estimative 8f. Its structure is as follows:

notch frequency (Hz)

(AH - M(t)C) cT
cre

M(t+1)=M(t)+a

(4)

whereq is the learning rate. This method is useful to be used
in a supervised learning method, where the positions corre-
sponding to a certain sound are given. This is not the case for
an autonomous system. A robot needs an automatic feedback
vt s, oe 7 . m_e_chanism to I_eam the aqdio—_motor relation auton_omou_sly.
Vision can provide information in a robust and non-intresiv
way. As the goal of this robot is to interact with humans the
Fig. 8. Notch frequencies for different position of the sdsource test sound will be produced by humans and so the robot knows
the visual appearance of the sound source. A face detection
IV. AUDIO-MOTOR MAPS algorithm based on [27] and [28] was used and Figure 9
Lesents the result of the algorithm. After hearing a sound
e robot moves to the position given by the map. If the
uman head is not centered in the image then a visual servoing
behavior is activated in order to bring the observed facé¢o t
ge center, for this the robot is controlled with the faliog

In this section we are going to map sound features to t
corresponding D localization of sound sources. We prese
solutions to: i) learn this map, ii) use it to control a robo
toward a target and iii) to improve its quality online. )

As seen before, differences in the head size, ear shapeé'ﬁflf‘rl
even a hat in the robot can dramatically change the frequerﬂ:’)ﬁz
response of the microphones. The coordinate transformatio ) .
from the ears to the vision and the control motors is difficult 0= JgF,
to calibrate. Because of this, the system should be able to
adapt to these variations. The exact solution we have for théered is the velocity for the head motors;; is the pseudo-
pan localization is only valid when the sound source is in thBverse of the head jacobian aid is the desired motion of
same plane as the receptors, by having a learning mechanibgface in the image. When the face is in the center of the
we can combine the vertical and horizontal information techaimage the audio-motor map can be updated using the learning
a better localization. rule of Eq. 4. Table | presents the final algorithm.

A map m from the sound feature§ to its localization
written in head spherical coordinat8g can be used to direct TABLE |
the head toward a sound source. This map can be represenfé@ORlTHM FOR AUTONOMOUSLY LEARNING A AUDIO-MOTOR MAP BY
by Sy = m(C). A simple way to move the head toward the INTERACTING WITH A HUMAN
target is to move the head pan and tilt by an increm&ét _
equal to the position of the sound source, i = Sy. 1) listen to sound .

. . . . ! ; 2) move head toward the sound using the map

Although the function is not linear, if we restrict to the spa  3) locate human face in the image
of motion of the head in can be considered as such, we car#) if face not close enough to the center
observe this by noting that the features in Figures 5 and 8 are @ do a visual servoing loop to center the face

. . . b) update the map
almost planar. Because of this, the nonlinear function can b
approximated by a linear function:



Fig. 9. Result of the face detection algorithm used as a fddbkignal for
the sound localization algorithm.

V. EXPERIMENTAL RESULTS

We acquired a dataset in a silent room with a white
noise sound-source locatédm from the robot. We recorded
1 second of sound in132 different head positiong by moving
the head with its own motors. A set of features was evaluat
from this data consisting of 7'D and the notch frequency
evaluate or).1 second. Figure 8 shows the resulting feature
surfaces after averaging them oh samples. This is used as
the training dataset.

A second dataset was created to test the learning meth
The procedure was similar to the previous one but the sour
source was replaced by a human voice sound. This w
done because the system should operate in an human-rc
interaction and also to evaluate the generalization ptigser
of the method.

The map was then estimated with the optimization proble
in Eq. 3, Figure 10 presents the reconstruction error |
showing for each head position the corresponding error
reconstruction. We can see that the worst case correspond
the joint limits of the head but it is always less than rad,
which is very small. As a comparison we can note thatrad
is the size of a adult human face when seen frafnm of
distance. The error increase near the limits is due to the nc
linearity of the features being approximated by a linear ehod
however with this small error the computational efficienogla
robustness makes us choose this model. 10. Audio-motor map reconstruction error for each hpasition (Top:

Finally we have done a test in a real world enVWO”me@Fror in pan, Middle: error in tilt, Bottom: total error)
and interaction. The test was done in our offices and after
hearing a sound the head moves to the corresponding position
The previously learned function was used as a bootstrap. Ttoavards less than one degree.
map quality would always guaranty that the sound source was
located in the camera images, even though it was not learned
neither in the same environment nor considering the ey&-nec In this paper we have presented a novel method for estimat-
coordinate transformation. In order to improve even furthéng the location of a sound source using only two ears. The
the results we followed the steps of the algorithm presentetethod is inspired by the way humans estimate the location
in Table I. Figure 11 presents the evolution of the errdrom features such as interaural time difference ITD, atieal
during the experiment. The error represents the differeimce level difference ILD, and spectral notches. We suggest siee u
radians, from the position mapped by the model and the redlspiral formed ears of slightly different size or with difent
localization of the person. We can see that this error dseckainclination to make it easy to extract the notches. The bpira

VI. CONCLUSION
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Fig. 11. Convergence rate of the audio-motor map learniggrishm when
running online with feedback given by a face detector.

[11]
[12]
form also makes it easy to mathematically derive the HRTF
for the robot, thus making it possible to simulate the feadur
and/or building controllers based on the HRTF.

We have also shown that the robot can learn the HRTF
either by supervised learning or by using vision. Initiatims 14
motor maps either calculated or learnt combined with amenli15)
vision-based update of the maps are suggested for the tontro
of the robot. This makes it possible for the robot to comptmsaﬂl6
for small changes in the HRTF caused by dislocations of the
ears, exchange of microphones, or placement of objectalikél?]
hat close to the ear.

The suggested method has good accuracy within the pas;
sible movements of the head used in the experiments. The
error in the estimated azimuth and elevation is less than ?1@';]
radians for all angles, and less than 0.02 radians for thieecen
position.

The method is especially suitable for humanoid robote”)
where we want ears that both look like human ears and
perform like them. The precision in the estimate of the pasit [21]
is more than enough for typical applications for a humanoid
like turning towards the sound.

Future work includes resolving front-back ambiguities ani@2]
learning the HRTF for wider angles than the movements of the
head which demands other approximations of the audio-motor
map than linear. [23]

[13]
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