IEEE Transactions on Image Processing, Vol 15, N. 11, Nov. 2006.

Fast IIR Isotropic 2D Complex Gabor Filters with
Boundary Initialization

Alexandre Bernardind/ember, |IEEE, and Jogé Santos-VictoMMember, |IEEE

Abstract— Gabor filters are widely applied in image analysis initial conditions, filter output will present spurious misient
and computer vision applications. This paper describes a fast responses near the signal boundaries. These effects age und
algorithm for isotropic complex Gabor filtering that outperforms — gja pecause they generate artificial responses corraisigon
existing implementations. The main computational improvement to step edges in the boundary of the image. Extending the
arises from the decomposition of Gabor filtering into more effi- | S . o
cient Gaussian filtering and sinusoidal modulations. Appropriate image boundaries is a common solution but increases the com-
filter initial conditions are derived to avoid boundary transients, putational cost of the filtering operations. We derive folasu
without requiring explicit image border extension. Our proposal to compute the initial conditions for all filtering stepsugh
reduces up to 39% the number of required operations ywth avoiding explicit boundary extension.
respect to state_—of-the_—art app_roaches. A full C++ implementgéon Experi t th touts of th d filteri
of the method is publicly available. periments compare the outputs of the proposed filtering

technique with FIR filters whose coefficients are samplechfro
the true Gabor functions. Several combinations of paramete
. INTRODUCTION and image types are analyzed. In average, the relative xppro

Fast algorithms for Gabor convolution have been proposedation errors are abo%.
in [1], [2], and take advantage of the separability of ispico  The paper is organized as follows. In section Il we review
Gabor functions in the horizontal and vertical directiolts. some of the underlying theory of Gabor Filtering. In section
[1] a fast Gabor filter approximation is implemented with 3Il we analyse the isotropic case, where efficient separable
pole Infinite Impulse Response (lIR) filters. These are gAneimplementations have been developed in the past. Section
purpose filters, whose parameters can be arbitrarily sgletn |V is dedicated to discrete implementation of state-of-the
[2] separable Finite Impulse Response (FIR) filters areia@pl art Gaussian and Gabor filtering. In section V, we introduce
in a multi-resolution pyramid to implement very optimizedhe main idea of the proposed algorithm, and show how to
real Gabor filtering. Multi-resolution approaches explitie perform Gabor filtering using only Gaussian convolutiond an
particular relationships between Gabor filter parameters gcalar multiplications, reducing the overall computadiorost.
sub-sample the original image and obtain computational im section VI we derive the appropriate boundary conditions
provements. However, this methodology is application gjgec to avoid undesirable transients or explicit boundary esitam
because only particular sets of parameters can be implechentinally, in section VIII we present benchmarking resultsl an
Recent work on object representation and recognition f8], [ performance analysis of the proposed methods, and conclude
[5], require image analysis with general purpose GaboeiSilt with some remarks and ideas for future work.
tuned to arbitrary orientations, scales and frequencies.

We propose methods to reduce the computational cost of Il. GABOR FILTERS
general purpose 2D isotropic complex Gabor Filters. The
method involves rewriting the Gabor Filters as multiplioas
with complex exponentials and convolutions with Gaussi
functions. The motivation for this decomposition consists

Gabor functions are defined by the multiplication of a
aﬁpmplex exponential function (the carrier) and a Gaussian
function (the envelope). Lefr,y) be the spatial coordinates

the fact that state-of-the-art Gaussian convolution isavedfi- 2Nd Wo (2,y) be a two dimensional Gaussian envelope with
cient than Gabor convolution. We focus on the isotropic ,cas%:,alea = (o, 92; 0). The standard deV|at|0nsl' ando, are
where vertical/horizontal separable implementationstexiut  Oriented along directiong andé + /2, respectively:
our method can also be applied to the anisotropic case. tn fac 1 _rcos0tysin)® _ (ycos0—sin0)?
a separable implementation of anisotropic Gaussian filgeri wo(2,y) = 21 272
was recently proposed, consisting in two 1D convolutions
performed in non-orthogonal directions [6]. We describe oket cx.0(2;y), b(_? a complex exponen_tial cgrrier representing
approach in detail and show that allows up3 reduction 2 Plane wave with wavelength and orientatiort:
in computational complexity, with respect to classic Gabor exo(z,y) = 8 3 (@ cos 4y sin 0)
filtering [1]. Comparison with frequency domain FFT based AN
methods and multi-resolution techniques is also provided. To simplify notation, we will drop the pixel coordinatés, y)

An essential contribution of this paper is the derivatiowhenever they are not essential. A two dimensional Gabor
of appropriate filter state initialization. Without apprite function is, thus, written agg, .9 = W, - Cx 0.

_ _ _ _ Image analysis by convolution with Gabor functions has

A. Bernardino and J. Santos-Victor are with the Instituto Sistemas e . . . . .
Robotica, Instituto Superior &cnico, Technical University of Lisbon. Email: been eXtenSNely studied in the literature, and prowdeeam;
{alex,jasy @isr.ist.utl.pt to estimate the oriented local frequency content of image
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The motivation to consider this case comes from the fact that
Gaussian and Gabor Filters become separable in: taed y
directions, and can be written as the tensor product ofoagrti
and horizontal 1D filters. From now on we distinguish 1D and

n X k\ =
2D functions by using, respectively, bold face and regudaef

Fig. 1. A Gabor function (right) results from the product ofGaussian fonts. Gaussian functions are decomposed in:
envelope (left.a = 30 degrees,o; = 8 pixels, oo = 16 pixels), by a

complex exponential carrier (middlex = 8 pixels, § = 30 degrees). Only we () we (y)
real parts are shown.
( ) 1 _L22 1 _LZZ
WolZ,Y) = € 20° . e 20
7 2mo V2ro
regions. In practical terms, the convolution output modullyg Gabor functions are written as:
will be high whenever the local image structure is similar to 1 2 1 o amyeme
the Gabor function shape, in terms of scalg, (wavelength go.x0(z,y) = e 22 TR e 2.7 TR
2mo V2mo

(\), and orientation ). Fig. 1 shows the real part of a
two dimensional Gabor function, the corresponding Gaussia 9o ,x,0(2) 9o,x,0(Y)

envelopew, and carrierc, ». The convolution of an imagé |mage convolution with such functions can be performed with
with a Gaborg,,» ¢ is written as:z, 0 = f xg,,x,0, @nd can o cascaded (horizontal and vertical) 1D convolutions: Fo

be computed by the convolution integral: example, Gaussian filtering can be implemented by:
Zo0(T,Y) = / f(2',y)  gono(x — ',y —y)dedy’ Wo (2, y) % £(2,y) = we(y) * wo (x) * f(z,y)
o Since very fast one-dimensional IIR Gabor and Gaussiandfilte
A. The Zero-Mean Gabor Filter have been developed in the last decade [8], [9], [1], the

. L . - __isotropic case allows very efficient 2D implementations.
For image analysis, it is often desired to obtain invariance |, s case, the zero-mean correction term (2), is indepen-
to image DC level offsets. In these cases, the zero-meaanaggnt of orientationzy, » = exp (_20%2/)\2)
Nox = .

filter is used instead. To distinguish between the two cksse
of filters we name “classic Gabor filter” to the original form,

« i IV. THE DISCRETECASE
and “zero-mean Gabor filter” to the zero-mean corrected. case

We use the form given in [7]: In disgrete coordina}es, filters_ are designed_ to approximat
the continuous operations both in space and in frequency. To
hox0=Wo - (Cro —Yo00) (1) date, the fastest implementations of convolution with rdise

CGaussian and Gabor functions are described in [9] and [1].
In [9] a recursive separable Gaussian filter requires 7 real
5nu|tip|ications and 6 real additions per pixel per dimensio
The extension to 2-dimensional signals thus requires 26 op-
erations. In [1] a recursive separable classic Gabor filter,
Yo.0.0 = We(—2mcos@/\, —2msinf/\) (2) consisting in the cascade of a forward and a backward passes,
implemented by equations(n) = in(n)—zle fdi-v(n—1)

and out(n) = B - v(n) — Zle bd; - out(n — i), where

fd; andbd; are, respectively, the coefficients of the forward
and backward filtersB is a normalizing gain and is the
output of the forward pass. This implementation involves 1
Zoxo = *8oro — Yorof * Wo (3) real addition, 6 complex multiplications, 5 complex adafits

and 1 multiplication between a real and a complex number,

Thus, image convolution with a zero-mean Gabor filter can Bing to 49 operations. With 2-dimensional signals, this
implemented by subtracting two terms: the convolution W‘thlimplementation requires 98 operatibnsmage convolution

classic Gabor filter and a scaled convolution with a Gaussigftn zero-mean Gabor filters consists in 1 Gaussian filtering

filter. In practice it is convenient to perform the classichGa 1 gapor filtering, 1 multiplication and one addition, tatitig
and Gaussian filters separately and subtract the correetion |94 operations per pixel.

afterwards, instead of using directly zero-mean filter,dose In this work we implement Gabor filters using Gaussian

this filter is not separable. filtering operations. We adopt the 1D forward and backward
3 pole IIR filters from [9], defined by th& transforms:

Wi(z)=b Wh(z)=b !

In the isotropic case, the Gaussian envelope is radially 7 (2) 0/Q) -(2) 0/Q(=")
symmetric 61 = o2 = o), and the isotropic Gaussian functiorwhereby = 1 + a; + a2 + ag and:

is defined in space and frequency by:

The parametefy, ¢ » is set to remove the Gabor function D
value, i.e. such that its Fourier transform is zero at thgiori
H(0,0) = 0. Since the Gaussian window is normalized t
have unit DC level, we obtain:

where W, denotes the Fourier transform of, .

The convolution of an imagé with a zero-mean Gabor
Yo x0 IS Written as:z, » 9 = £ * h, ) . Using the definition
of the zero-mean Gabor filter (1), we get:

Ill. THEISOTROPICCASE

Q(z)=1+arz ' +ayz? +azz™? 4)
1 22442 52(sz§+sz§)

wo(z,y) = DY) e 2, Wi (2,,Qy) =€ 2 lwe consider 1 complex mult equal to 4 real mult's plus 2 real add’s




Filter coefficients,a;, as and a3 depend on filter scales]. f— | ¢ F——»1z
Formulas to compute their values are provided in [9]. The
full 1D filter is represented byV,(z) = b3/ [Q(2)Q(z™)]
which, in the Fourier domainz(= ¢'), can be written as:

98 ops

2 ops 6 ops

W, (e™) = b3/(do + dy cos(w) + da cos(2w) + d3 cos(3w)) f w z
. 52 ops
with do =1+ a% + (l% + ag, d1 = 2(&1 + ajas + agag), c* c
dy = 2(as + ajaz) andds = 2as. Finally, the 2D discrete
filter frequency representation is: Fig. 2. 2D convolution with Gabor filters. Straightforwamiplementation
’ if [1] require 98 operations per pixel (top), while the prepd equivalent
iwe Wy twy iw decomposition method (bottom), only requires 60. Thick/Third and boxes
W"(e )€ y) - W"(e )W" (6 y) represent complex/real signals and filters, respectively.
and the zero-mean correction parametds computed using e y
the discrete version of Eq. (2): o l' op
W X
_i2mcos®  _ ;2mwsin® 1 op
Yo,0,X = Wo’(e A , € X ) f z
" M
V. GABOR FILTERING DECOMPOSITION 98 ops
This section presents the core of our approach. We propose a 26 ops - Lo
decomposition for Gabor filtering consisting in multipliicans w DN
with complex exponentials and convolutions with Gaussian f >z
functions. The motivation for this decomposition is thattst ey W oops
of-the-art Gaussian filtering is more efficient than Gabor o
filtering, compensating the extra multiplications with qaex c* c

exponentials. We consider the isotropic case, where verti- o i )
callhorizontal separable implementations for Gaussitariflg (%, 25 sonoluton uit zero mean Gebor e, usngila Gaborane
exist, but the decomposition described here can also bédppkquivalent decomposition method (bottom), only requires 8&KIThin lines
to the anisotropic case. and boxes represent complex/real signals and filters, resglgc

We will provide a detailed analysis of the computational
cost of the proposed method in comparison to implementsition
based on [1]. We focus our analysis in counting the operation ) X o ¢
that depend directly on the input signal. Variables not imvo with ¢ ) requires 1 complex mu_ltlpl|cat|on per pixel,
ing the input signals can be precomputed at initializatind a ~ corresponding @ operations per pixel.
stored for future use, e.g. the complex exponentials, the Altogether we have 60 operations which, in comparison with
zero-mean scale factoy, ,, and the filter coefficients. Of the reference value of 98 operations, correspond to abdit 39
course, this assumes that the filter parameters must be sévings in computation. Fig. 2 illustrates the filtering qess
priori for each application. in a graphical form.

Discrete convolution with a Gabor filter can be written as:

A. Zero-mean correction
2ono(@.y) = S Ek, 1) Wz — koy 1) -exgla—kyy—1) O 250N COMEO | o
1 ' Including the zero-mean correction term, the filtering eper

. . . ) ation (3) can be written as:
Since the complex exponential functieR o is separable, we

« A demodulation operation (product off - cj ;) * wo

can expand the previous expression into: Zong =Cro- [(FrcXg) *Wo| —Yon0- (Fxws)  (6)
Zo0(1,y) = cro(a, y),zc;e(k’ )£k, 1)-wo (z—Fk,y—1) In this case we nged the f_oIIowmg addltlon_gl operations:
kol « A real Gaussian filtering (f * w,) requiring 26 opera-

tions per pixel.
« A real scalingby v,,,¢, requiresl operation per pixel.
Zorg = Cro- [(F-cho) * W] (5) « Thefinal subtraction, corresponds to onl{ operation
per pixel because only the real part of Gabor functions
Considering the isotropic case and adopting the IR Gaus- have non zero DC value.
sian filtering implementation of [9] (26 operations per e |n total, zero-mean Gabor filtering requires 88 operations,
the required computations on Eq. (5), are: corresponding to 30% savings when compared to the reference
o A modulation (product of f with c3 ,) is computed value of 126 operations. A graphical comparison of methods,
by multiplying one real image and one complex imagdor the zero-mean case, is presented in Fig. 3.
corresponding t@ operations per pixel. When multiple carriers (orientations/wavelengths) are-con
« A complex Gaussian filtering(convolution ofw, with sidered, the ternfixw, in (6) is common to all of them. Thus,
f-c} ) requires52 operationsper pixel. it may be computed only once and applied to all classic Gabor

wherec* denotes complex conjugation. In compact form:



filtering uses a multi-resolution pyramidal implementatio

f Wo 1 compute the even Gabor decomposition of images into 4
52 0ps —ywﬁ?« different scales and orientations, with 190 operationgpel.
20 w. 6 ops S > z,, The same set of filters is applied to reduced versions of
% Lop the image through low-pass filtering and down sampling in
o € Yoy "0 a factor of 2. In [11] a multi-resolution approach without
2 ops Szops 6 aps o sub-sampling, based on tletrous filter [12], requires 704
H%" Wo _’§_‘®——> Z;.p operations for a similar decomposition, but in this caseneve
o 1y ‘ and odd Gabor responses are computed. To obtain a similar
v : v ‘ decomposition, our method would require 1408 operatioms pe
. J pixel. However we must stress that pyramidal implementatio
. -VW?@ require particular settings or relationships betweenrpataers,

filtering problem, with unconstrained parameter settings.
Finally, we would like to comment on our evaluation of
Fig. 4. 2D Zero-mean Gabor filtering with multiple carriers.idkiThin ~COmputational complexity. We are considering application
lines and boxes represent complex/real signals and filtespectively. Close where Gabor Filter parameters can be defined at initiatinati
to each computational element we indicate the number of reaiatpes For example in video processing applications, banks ofilte

2 ops W 6 ops lo l e.g. scales of the forra?, which limits the generality of the
% > ° ’% >o—> 7., application. In this paper we are aiming at the general Gabor
*
c
WI,

YL

required. . . . .
are defined at startup and then applied to all images in
Image size| Operations per pixel the sequence. In these cases, all variables depending only
64x64 62.03 in the filtering parameters (and not on the images) can be
;ggggg gg:gg computed off-line, e.g. the filter coefficients and the coerpl
512x512 101.87 exponentials. Thus, our operation count only considered op
TABLE | erations depending directly on the images to process. When

filter parameters are required to change on-line, we incur
in additional operations. In comparison with [1], sinceefilt

coefficients must be recomputed in both cases, the additiona
cost is concentrated in the computation of the complex ex-

filtering results at the same scale. A graphical representatponentials for modulation/demodulation. Assuming that 1D

of the method is shown in Fig. 4 for the multiple-carrier cas€omplex exponentials can be efficiently computed by look-
up tables, to obtain the 2D complex exponentials we will

require one additional complex multiplication per pixel (6
ops). Therefore, our operation count would increase to 66
In this section we have presented a methodology for redusps for classic Gabor filtering and 94 for zero-mean filters.
ing the computational cost of general purpose Gabor filggrinimprovements would drop to 33% and 25% respectively.
implemented in the time domain by separable IIR filters.
Fast linear space-invariant filtering techniques are aky v
frequently applied in the frequency domain, with the aid of
the Fast Fourier Transform. It is thus convenient to compareAn essential part of the proposed algorithm is the derivatio
our approach to FFT based ones. To date, on of the fastekboundary conditions for recursive Gaussian filteringligpop
implementations of the FFT is presented in [10]. The numbtr modulated images. Without special initialization, fiibe
of operations for the implementation of 2D filtering on reabperations produce spurious transients at image bousdarie
images is dependent on the size of the images and is shdwat complete transient extinction, the boundary should be
in Table | for several image dimensions. From the table wextended by more than 3 times the scale of the filter. Thus,
observe that the method presented in this paper, in theiclader large scale filters, this would imply a significant incsea
Gabor filter case (60 ops), compare favorably to the FFT for computation time. A better solution is to derive adequate
image sizes larger that 64x64. Including zero-mean coorect values to initialize the filter state at the boundaries, thus
our algorithm has a favorable operation count (88 ops) fawoiding explicit filtering at the extended boundaries.
images larger that 256x256. It must be taken into accountln the domain of signal processing, several approaches
that FFT methods can not compensate for boundary effeet® common to address this problem, often involving the
without explicitly extending image boundaries, thus reiqpgi  extension of the signal and making certain assumptions on
larger image sizes. In the following section we will fullysignal properties, for instance constancy, continuousatare
derive the filter initialization conditions, for our propds or symmetry. Recently, [13] has developed a method for
without increasing image size. This fact presents an amtditi computing boundary conditions for IR Gaussian filters when
advantage over the FFT. the original signal is extended by constancy. However, we
Another point worth discussing is the comparison witmust stress the fact that, in our method, the Gaussian filters
multi-resolution approaches. In [2] an approach for Gabare applied to images that result from the multiplication of

REAL OPERATIONS PER PIXEL IN THEFFT ALGORITHM OF [10].

B. Discussion

V1. BOUNDARY CONDITIONS



Original signal with boundary extension Modulated signal including boundary regions
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Fig. 5. Left: 1D signal boundary extension my constancy. Rigdfter
modulation by a sinusoid.

)

Fig. 8. Results of intermediate processing steps with exglicundary
extension. a) The modulated imagén(x,y) b) After horizontal forward
filtering: hf (z,y). c) After horizontal backward filteringhb(z, y). d) After

vertical forward filtering: vf(z,y). e) After vertical backward filtering:
vb(z,y). f) After demodulationz(z, y).

Fig. 6. Left: Original image. Middle: Image with boundariesended by
constancy. Right: Extended image modulated by a complex expiahaith
parameterg = 15 degree and\ = 29.6 pixel.

exponentially modulated image:

. . . . . — L i (weztwyy)
complex exponentials with the original image. Therefohe, t fm(z, y;w,wy) = £(z,y) - v

boundques to deal with are no tlike any conventlpn_al .boqndawhere wg, wy are the horizontal and vertical frequencies
extension method proposed in the literature. This is ilhtsd ; .
g . of the complex exponential carriety, = 2mcos(6)/A,
in Fig. 5, for a 1D signal whose boundary has been extended . . ' .
by constancy. After modulation by a complex exponentia. t£°F — 2w sin(@)/A. The full 2D Gaussian filtew, (z,y) is
y CY- vatl y piEX €xp & 1 plemented separately by cascaded forward-backward 1D
boundary is not constant anymore, and can not be treaied. . . .

; : . orizontal and vertical filters:
by conventional methods. The same applies for 2D signals.
Fig. 6 shows an image whose boundary has been extended Qy<x y) = w! ()

constancy, before and after modulation by a sinusoid.

The 2D Gaussian filtering operation is applied to the modghere subscripr has been removed for convenience. The
ulated image in cascaded passes of horizontal forward (HE@scaded filtering operations generate the sequence oésmnag
horizontal backward (HB), vertical forward (VF) and vedic

s w(z) * wl (y) x w(y) = w(z) * w(y)

backward (VB) passes, as illustrated in Fig. 7. hf(z,y) = w/(z) * fm(z,y),  HF pass
Let f(z,y) denote the original image anfim be the hb(z,y) = w’(z) * hf(z,y), ~ HB pass
vf(z,y) = v/ (y) * hb(z,y), VF pass

vb(z,y) = w’(y) * v(z,y), VB pass

Intermediate results of the several processing steps are
1 shown in in Fig. 8, including the extended boundary regions.
Top Boundary | At each pass, boundary regions change, not only as function o
> Vijpess ‘ the image, but also as a function of the Gaussian and complex
R ; exponential parameters. Therefore, initial conditionssirhe
Left Right | computed explicitly for each pass.

Boundary Boundary i+oo
i

—o0 !
'
'

2.HB pass

A. Implicit Boundary Extension in Modulated Images

4. VB pass
Bottom Boundary § Horizontal Gaussian filtering operations are performed on
| imagefm(x, y), whereas vertical Gaussian operations are ap-
Fmremmrennemre oo ‘ plied to imagehb(z, y). To compute the boundary conditions
foo we need to represent the values of imades(x,y) and
] o _ o o hb(z,y) at the boundary regions before filtering.
oy e e oo et ey o, Considering constancy in the boundary of the original

it is considered that the original imag&(, ), is extended by repiicating the image f(z,y), image fm(xz,y) is computed by modulating
first and last values at each line/column in the adjacent baynd the original image with complex exponentials and has the




following values in the boundary regions: whereas for vertical filtering, input signal’s boundaries:a

fml(l‘a y) = f(O, y) . ei(wmr+w;/y)’ x <0 in_(t) — hb(I,O) . twyt (12)
fmt(x, y) = f(z,0) - eilwaztwyy) y <0 ) ing(t) = hb(z,N—1)- eiwyt (13)
fm" (z,y) = £(0, N — 1) - e?(wertwyy), >N

. Thus, input signals at the left and top boundary regions
b _ _ . pt(wertwyy)

fm’(z,y) = £(N —1,0) -e s yzN are constituted by pure frequencies along the correspgndin

where the superscriptd™; “t”, “r” and “b” stand for the left, filtering direction. Therefore, to compute the forward filbe

top, right and bottom boundary regions, respectively, ahd output at these boundaries, we just need to multiply by the

is the image size (both horizontally and vertically). Imagé&equency response of the forward filters. Thus, we have, for

hb(z,y) is obtained fromfm(x,y) by gaussian filtering and the horizontal stage:

its top and bottom boundaries can be computetibyz, y) = _ s sy f (i ot

fm(z, y) * w(z). Using (7), the previous expression can be v (t) = in_(t) xw’ (t) = £(0,y)e" W (") - e

particularized for the top boundary region: and for the vertical stage:

hbt(.% y) = Zf(mla O)ei(uzm’-&-wyy)w(x _ .T/) = v_(t) = hb(z, O)Wf(eiwy) . eiwyt

= (fmt(;c’()) *w(z)) ¥ = hb(z,0) - ¥ (8) Evaluatingv_(—1), v_(—2) and v_(—3), we get the initial
conditions for the forward passes. Since the complex expone
Analogoulsy, for the bottom boundary we have: tials and filter frequency responses do not depend on the inpu
hbb(x’y) — hb(z,0) - ¢ 9) sig_nal, their values can be precomputed z_;md premultiplied
offline, thus the run time cost for computing the forward
To simplify notation we will consider, at each step, a singlgoundary conditions is of 3 real multiplications per linedan
line or column in the image, and define the following signal® complex multiplications per column.

« the input signal to the Gaussian filtering

fm(t,y) horizontal pass C. Backward Boundary Conditions

in(t) = .
®) {hb(a:,t) vertical pass To derive boundary conditions for the backward passes,
we consider that the forward pass continues from the right

« the output of the forward filter . S A
or bottom boundaries to infinity, with input.,. and output

hf(t,y) horizontal pass v4, and compute the Z-transform of the result. Then, the
(t) = vi(z,1) vertical pass backward pass starts at infinity with input, outputout ;. and
zero initial conditions. The full Z-transform of this forng
« the output of the backward filter backward simulated filtering at the boundary, along with the

boundary values at the end of the forward image pass, will
allow the determination of the initial conditions for image
backward filteringout (N), out (N +1) andouty (N +2).

Additionally, each signal is break into three parts: (i) ki To simplify notation we will shift the origin of coordinates
or top boundary; (ii) inside the image; and (iii) the right of0 the right or bottom boundaries & ¢t — N, 7 > 0). With
bottom boundary. Subscripts “-” and “+” are used to indicatéhis notation, the horizontal input signal (11) is given by:
respectively, cases (i) and (iii), e.g.: in () = £(N — 1, y)ei(wnyrsz) . giwaT

Ht) = hb(t,y) horizontal pass
| vb(z,t)  vertical pass

in_(t) =1dn(t), t<0 and ing(t)=in(t), t>N . . o
and, in the vertical filtering stage, from (13):

Since the utilized filters are 3rd order, for each filtering ‘ ,
stage we require 3 values at the boundary to initialize the iny (1) = hb(z, N — 1) . g™nT
filters. Let us consider that both image coordinates staét at
(first pixel) and end afVv — 1 (last pixel). Therefore, we need
to computev_(¢),t € {—1,—2,—3} to initialize the forward
pass, andout(t),t € {N,N + 1, N 4+ 2} to initialize the
backward pass.

Forward filtering now continues beyond the boundary and
is represented by the recursive difference equation:

v4(7) = boing (1) —a1v4 (7 —1) —agvy (1—2) —agvy (7 —3)

with initial conditionsvy (1) = v(t = N —7),7 € {1,2,3}.
Converting the previous difference equation to the unitdte

B. Forward Boundary Conditions i
Z transform domain, we get:

Boundaries of the input signais(¢) are given directly by

the values at.the bogndgries of imades and hb, in Egs. Vi(z) = bo Inu() — v (71)% +agz !+ azz 2
(7-9). For horizontal filtering we have: + 7@(2’) + + 00)
; _ wWyy | L iwgt -1
z.n, (t) = f£(0,y)e e » (10) oy (~2) az tazz " vy (=3) as (14)
ing(t) = f(N—1,y)e"“vy. s (11) Q(z) Q(z)



with Q(z) as defined in (4). In the backward passf. (1),
is computed by the anti-causal recursive difference eqoati

I'4 W 4 g-.;“\
out(7,y) = bov4(7) — arout4 (1 + 1)— 5 N M

— agouty (T + 2) — agouty (1 + 3)

c) S.Diego(N.Island NAS)

Because this filtering operations startat we consider zero 3. g ” e
initial conditiong. In the Z-transform domain: e il
Vi(2)
Outy(z) = by (15)
+( ) Q(Zfl)

e) SanDiego f) WoodlandHills g) Airplane(U-2) h) Baboon

Joining (14) and (15), we gett as a function of the input
signal,in, and the initial conditions in_:

b2 a; + azz"! + azz™?
Out(2) = ﬁoz)fnﬁz)—%r(—l)bo ' QP(z) -
az + a;;zfl as
- U+(*2)bow - bov+(*3)m

where P(z) = Q(z2)Q(z~'). To obtain the solution for
outy (T) we must invert the previous Z transform. Details are
given in appendix. The final solution is of the form:

m) Chem.Plant(closeview) n) Chem.Plant1(farview)

outy (1) = Zv+(—j)04j(7) +1in4.(0) - B(7)

Initial conditions for the backward image filtering step are
now given by evaluatingut (0), out (1) andout (2). Since
a;(r) and 5(7) are complex coefficients than do not depend
on the input image, their values can be computed at initializ
tion. Therefore, the run time cost of computing the backwardy
initial conditions consists in 12 complex multiplicatioasd
3 complex additions per image line and column. = Fr : g AN
The full cost of computing the boundary conditions is W 1212 V1213 W) 1502 X) 15,05
obtained by summing the cost of the forward pass (3 real mul-
tiplication per line and 3 complex multiplications per coin) Fig. 9. Images chosen from the USC-SIPI database. Aerial imageo f).
to the cost of the backward pass (12 complex multiplicatiohdscelianeous: g) to l). Sequences: m) to r). Textures: s)to x
and 3 complex additions per image line and column). With

square images of siz& in both dimens_ions, this _correqund We have used images from the USC-SIPI database [14].
to a number of201 x N real operations per image, 1€.This image dataset is composed by images from four different

%asses: aerial, miscellaneous, sequences and textuedsawy

201/N operations per pixel. For example, with images of si
128 > 128 it corresponds to about 2 operations per pixel, ang, sen 6 images from each class, the ones presented in Fig 9.

an efficiency penalty of abo@%. For larger image sizes, the

efficiency loss becomes negligible. Since our method is based on Gaussian IR filters, we

start by evaluating the approximation quality of those Hfilte

VIl. RESULTS . oo
| h litv of th | h h as a function of the scale parameter. Although this is not a
To evaluate the quality of the developed method, we haygpin tion of this work, it will allow us to determine the

performed several experiments comparing the proposed filtg 516 range for which it is expected the method to perform
ing |mplementat|on/ersus_|mage convolution with F_IR fllters well. The quality index has been computed for a large set
sampled from the continuous kernels. The quality index |§ <cales in all chosen images. In Fig. 10 we show the
defined as the average signal-to-error ratio on image Sets. b iy index for each scale and data set. Notice that the
Iy p(w, y) be the result of convolving imagewith FIRfilters - 550y imation is good (above 40dB, error = 1%) for the range
with image boundary extension, and I8y, p(z,y) be the ot qoa1600.5 — 1 41 to 255 = 45.25. Above 27 the quality
result of image filtering with our method. Then, in a Setof  yeqrades abruptly. Therefore, in the following experirmewe
images, the quality index is defined as: will evaluate performance only for scales with good Gaussia
P HOur(@:y) — I, (2, y)|” filtering approximation (we use dyadic scale_ts between 2
> I3z 9] ando = 32). For scales lower tham = 2, FIR filters are more
(@) FOURLYD efficient alternatives to IIR filtering because of their shside.
2In fact initial conditions are indetermined but finite, thusyaransient _TO eva_luate the_ proposed Gabor filtering approximation we
vanishes before reaching the boundary will consider the influence of all three parameters: scale, o

N
SER[dB] = - 10log,,
n=1



Average Gaussian filter approximation for different scales
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Fig. 10. Top: Average approximation quality of IIR Gaussidtefs as a 30-%; —+— Segs
function of scale. Bottom: Average approximation quality cdgosed Gabor @ ,, r —+— Textures
filters as a function of orientation. 10
24 8 16 32 64
A
\ \ Fig. 12. Approximation quality of the Gabor imaginary part afuaction
\ W \ \ i
x\\\\\\ \\\\\\\ \\\\\\ \\\\\\ of o, X and image type.
K = 4 real x = 4 imag r = 2 real x = 2imag produce very similar outputs. In Fig. 11 we show the shape
of Gabor filters for different wave numbesks and it is visible
\\\ \\\ \ \\ that for k < 0.25, their shape do not change significantly,
therefore no important additional information is extrachem
the images. Notwithstanding, some application may require
© =1, real x = 1, imag k= 0.5, real x = 0.5, imag either to compute large scale and wavelength information in

full resolution images, or use very small wave numbers,,thus
for the sake of completeness, we present the results obtaine
for the whole set of parameters. For the imaginary part we
can observe in Fig. 12 that performance is about 308 (

relative error) in average, and above 24d(relative error)
for the whole range of parameters. For the real part, average
Fig. 11. Shape of Gabor functions with different wave numbee o/x. Performance is also around 30dB but perfomance drops to
Both real and imaginary parts are shown. about 20dB 10% relative error) for some images when= 2
and \ = 4, as can be seen in Fig. 13. The reason for this fact
is a mismatch between the DC values of IIR and FIR filters,
entation and wavelength. Experimentally we have verified, ththat happens to be larger at this range.
in our dataset, approximation quality is not very sensitve Different classes of images do not show significant dif-
orientation. We have considered values {0, 15,30,45,90} ferences in approximations quality. Anyway, images in the
degrees, which, due to symmetry considerations, are ggud reexture set have a bit lower approximation quality, espicia
resentatives of the whole set of orientations. Then, awegagfor low values of the wave number, which correspond to
the approximation errors over and A we have obtained the frequency bands with low energy in textured images. The filte
results shown in Fig. 10, which illustrate that the influenfe output at these bands has low amplitude, which decreases the
orientation is not critical in the approximation error. approximation quality.

To evaluate the influence of and A we compute the  Summarizing, the proposed filters have a good fidelity for
approximation error for parametess € {2,4,8,16,32} and all classes of images, with the considered range of parasiete
A € {2,4,8,16,32,64}. To reduce computation times, onlyoc € [2,32], A € [2,64], § € [0,360]. Scales smaller tha@
one orientation was considered: = 30 degrees. Figs. 12 can be efficiently implemented by FIR filters instead. Large
and 13, present the approximation quality for, respegtiteke scale values with large wavelengths can be implemented in a
real and imaginary parts of Gabor filters, as a functiompf multi-scale framework, where image resolution is first izt
for all considered scales and image classes. In practice sam match the scale and wavelength range of existing filters.
combinations of parameters may not be interesting to ugéis is not possible, however, with small wavelengths, due t
For instance, large scales and wavelengths may be obtaiadidsing effects. Even though we have not tested scaleghigh
by first reducing the image resolution and applying smalléhat 32, the approximation error for small wavelengths do not
scale and wavelength filters. Also, very small wave numbetlecay significantly with scale, and it is likely that largenkes
(x = o/A) have large overlap in the frequency domain anstill have good approximations.

w = 0.25, real x = 0.25, imag w = 0.125, real x = 0.125, imag
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auxiliary variables. . . . .
. . In this appendix we invert the Z transform required for

Sev_eral appllcatlons of Gabqr analysis can t_’e found r‘OWt‘Ep’b'mputing the backward boundary conditions in the filtering

days in the literature, e.g. object representation [5]futex process of Section VI:

classification [15], [16], image segmentation [17], mot&sti-

mation [18], image compression [19] and visual attentidd].[2 Outy(z) =

The results presented in this paper thus have a wide spectrym

of application, and may drive further research on severaloGa Bl (2)A(2) = 04 (-1)B(2) =04, (-2)C(2) =04 (=3)D(2)

analysis related topics. A full C++ implementation of thavhere A(z), B(z), C(z) and D(z) are Z-transforms

method presented in this work is publicly available at théaat only depend on filter parameterd(z) = b2/P(z),

author’'s web page. Each filtering operation takes about 4B$z) = by (a1 + a2z™ ' +azz™2) /P(z), C(z) =

on 128 by 128 images, with a P4 2.66 GHz computer. bo (a2 +asz"") /P(z), D(z) = boas/P(z). We decompose
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the signal on a natural ternV(z) depending only on the In the Z transform domain, the input signals are:

initial conditions and a forced terrfi(z) depending only on 1
. . i I _ 1
the input signal: ni(z) = iny(0) 1—pyot
N(z) = —vp(-1)B(z) —v4(=2)C(2) — v+ (=3)D(2) The partial fraction expansion aof (z) now involves the
F(z) = Ing(2)A(z) pole of the input signal.
. L . 3 /
To compute the time domain signail$t) and f(¢t) we will F(s) — i ) T4 T T
perform a partial fraction expansion in first order terms.jhe (2) = in+(0) 1—pyz—t + ; 1—piz—1 + 1—p;tzt

p2 and pz be the poles of)(z). Then, P(z) = Q(2)Q(z71)

can be written as: where the forced response causal residues are given by:

3 1 3 T2:R7bg/ (17p4p1_1)a26 {172a3}7 T4_b /P( )|Z:p4
};[1 (1-piz 1;[1 (1=piz) Consequently, the forced responge) for 7 > 0 is given by:
and its inverse is given by: . -
f(7) =iy (0) - rip]
1 boa‘3 273 i=1
P(z) Hz L (1= pz— 1)H (1 - p; -1 71) Finally, the desired initial conditions are obtained by iadd

. . . . , the natural and forced terms, evaluatedrat 0,1, 2:
Performing a partial fraction expansion of the previousregp

sion, we obtain: A , .
outy (T Z vy (— Z r(i, j)p; +in4(0) - Z ripl
3 R i=1 i=1
(R W HS v T S
—~ 1-piz -1 1—p; 271 ;i (7) B(r)

whereR; and R} are the residues of the causal and anti- causapmplex coefficientsy; (7) and3(7) only depend on the filter
terms respectlvely. To initialize the backward passes w orParameters and can be precomputed at initialization.
require values obut (7) for 7 > 0. Therefore, only the causal

residues need to be computed explicitly

_ 1 —1 -
RZ—W(I piz ") la=p,  i=1{1,2,3}
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