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Abstract— Gabor filters are widely applied in image analysis
and computer vision applications. This paper describes a fast
algorithm for isotropic complex Gabor filtering that outperforms
existing implementations. The main computational improvement
arises from the decomposition of Gabor filtering into more effi-
cient Gaussian filtering and sinusoidal modulations. Appropriate
filter initial conditions are derived to avoid boundary transients,
without requiring explicit image border extension. Our proposal
reduces up to 39% the number of required operations with
respect to state-of-the-art approaches. A full C++ implementation
of the method is publicly available.

I. I NTRODUCTION

Fast algorithms for Gabor convolution have been proposed
in [1], [2], and take advantage of the separability of isotropic
Gabor functions in the horizontal and vertical directions.In
[1] a fast Gabor filter approximation is implemented with 3
pole Infinite Impulse Response (IIR) filters. These are general
purpose filters, whose parameters can be arbitrarily selected. In
[2] separable Finite Impulse Response (FIR) filters are applied
in a multi-resolution pyramid to implement very optimized
real Gabor filtering. Multi-resolution approaches exploitthe
particular relationships between Gabor filter parameters to
sub-sample the original image and obtain computational im-
provements. However, this methodology is application specific
because only particular sets of parameters can be implemented.
Recent work on object representation and recognition [3], [4],
[5], require image analysis with general purpose Gabor Filters
tuned to arbitrary orientations, scales and frequencies.

We propose methods to reduce the computational cost of
general purpose 2D isotropic complex Gabor Filters. The
method involves rewriting the Gabor Filters as multiplications
with complex exponentials and convolutions with Gaussian
functions. The motivation for this decomposition consistsin
the fact that state-of-the-art Gaussian convolution is more effi-
cient than Gabor convolution. We focus on the isotropic case,
where vertical/horizontal separable implementations exist, but
our method can also be applied to the anisotropic case. In fact,
a separable implementation of anisotropic Gaussian filtering
was recently proposed, consisting in two 1D convolutions
performed in non-orthogonal directions [6]. We describe our
approach in detail and show that allows up to39% reduction
in computational complexity, with respect to classic Gabor
filtering [1]. Comparison with frequency domain FFT based
methods and multi-resolution techniques is also provided.

An essential contribution of this paper is the derivation
of appropriate filter state initialization. Without appropriate
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initial conditions, filter output will present spurious transient
responses near the signal boundaries. These effects are unde-
sired because they generate artificial responses corresponding
to step edges in the boundary of the image. Extending the
image boundaries is a common solution but increases the com-
putational cost of the filtering operations. We derive formulas
to compute the initial conditions for all filtering steps, thus
avoiding explicit boundary extension.

Experiments compare the outputs of the proposed filtering
technique with FIR filters whose coefficients are sampled from
the true Gabor functions. Several combinations of parameters
and image types are analyzed. In average, the relative approx-
imation errors are about3%.

The paper is organized as follows. In section II we review
some of the underlying theory of Gabor Filtering. In section
III we analyse the isotropic case, where efficient separable
implementations have been developed in the past. Section
IV is dedicated to discrete implementation of state-of-the-
art Gaussian and Gabor filtering. In section V, we introduce
the main idea of the proposed algorithm, and show how to
perform Gabor filtering using only Gaussian convolutions and
scalar multiplications, reducing the overall computational cost.
In section VI we derive the appropriate boundary conditions
to avoid undesirable transients or explicit boundary extension.
Finally, in section VIII we present benchmarking results and
performance analysis of the proposed methods, and conclude
with some remarks and ideas for future work.

II. GABOR FILTERS

Gabor functions are defined by the multiplication of a
complex exponential function (the carrier) and a Gaussian
function (the envelope). Let(x, y) be the spatial coordinates
and wσ(x, y) be a two dimensional Gaussian envelope with
scaleσ = (σ1, σ2, θ). The standard deviationsσ1 andσ2 are
oriented along directionsθ andθ + π/2, respectively:

wσ(x, y) =
1

2πσ1σ2
e
−

(x cos θ+y sin θ)2

2σ2
1

−
(y cos θ−x sin θ)2

2σ2
2

Let cλ,θ(x, y), be a complex exponential carrier representing
a plane wave with wavelengthλ and orientationθ:

cλ,θ(x, y) = ei 2π
λ

(x cos θ+y sin θ)

To simplify notation, we will drop the pixel coordinates(x, y)
whenever they are not essential. A two dimensional Gabor
function is, thus, written as:gσ,λ,θ = wσ · cλ,θ.

Image analysis by convolution with Gabor functions has
been extensively studied in the literature, and provides a means
to estimate the oriented local frequency content of image
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Fig. 1. A Gabor function (right) results from the product of aGaussian
envelope (left:α = 30 degrees,σ1 = 8 pixels, σ2 = 16 pixels), by a
complex exponential carrier (middle:λ = 8 pixels, θ = 30 degrees). Only
real parts are shown.

regions. In practical terms, the convolution output modulus
will be high whenever the local image structure is similar to
the Gabor function shape, in terms of scale (σ), wavelength
(λ), and orientation (θ). Fig. 1 shows the real part of a
two dimensional Gabor function, the corresponding Gaussian
envelopewσ and carriercλ,θ. The convolution of an imagef
with a Gaborgσ,λ,θ is written as:zσ,λ,θ = f ∗ gσ,λ,θ, and can
be computed by the convolution integral:

zσ,λ,θ(x, y) =

∫

x′,y′

f(x′, y′) · gσ,λ,θ(x − x′, y − y′)dxdy′

A. The Zero-Mean Gabor Filter

For image analysis, it is often desired to obtain invariance
to image DC level offsets. In these cases, the zero-mean Gabor
filter is used instead. To distinguish between the two classes
of filters we name “classic Gabor filter” to the original form,
and “zero-mean Gabor filter” to the zero-mean corrected case.
We use the form given in [7]:

hσ,λ,θ = wσ · (cλ,θ − γσ,λ,θ) (1)

The parameterγσ,θ,λ is set to remove the Gabor function DC
value, i.e. such that its Fourier transform is zero at the origin,
H(0, 0) = 0. Since the Gaussian window is normalized to
have unit DC level, we obtain:

γσ,θ,λ = Wσ(−2π cos θ/λ,−2π sin θ/λ) (2)

whereWσ denotes the Fourier transform ofwσ.
The convolution of an imagef with a zero-mean Gabor

γσ,λ,θ is written as:z̄σ,λ,θ = f ∗ hσ,λ,θ. Using the definition
of the zero-mean Gabor filter (1), we get:

z̄σ,λ,θ = f ∗ gσ,λ,θ − γσ,λ,θf ∗ wσ (3)

Thus, image convolution with a zero-mean Gabor filter can be
implemented by subtracting two terms: the convolution witha
classic Gabor filter and a scaled convolution with a Gaussian
filter. In practice it is convenient to perform the classic Gabor
and Gaussian filters separately and subtract the correctionterm
afterwards, instead of using directly zero-mean filter, because
this filter is not separable.

III. T HE ISOTROPICCASE

In the isotropic case, the Gaussian envelope is radially
symmetric (σ1 = σ2 = σ), and the isotropic Gaussian function
is defined in space and frequency by:

wσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , Wσ(Ωx,Ωy) = e−
σ2(Ω2

x+Ω2
y)

2

The motivation to consider this case comes from the fact that
Gaussian and Gabor Filters become separable in thex andy
directions, and can be written as the tensor product of vertical
and horizontal 1D filters. From now on we distinguish 1D and
2D functions by using, respectively, bold face and regular face
fonts. Gaussian functions are decomposed in:

wσ(x, y) =

wσ(x)
︷ ︸︸ ︷

1√
2πσ

e−
x2

2σ2 ·

wσ(y)
︷ ︸︸ ︷

1√
2πσ

e−
y2

2σ2

and Gabor functions are written as:

gσ,λ,θ(x, y) =
1√
2πσ

e−
x2

2σ2 +i 2πx cos θ
λ

︸ ︷︷ ︸

gσ,λ,θ(x)

· 1√
2πσ

e−
y2

2σ2 +i
2πy sin θ

λ

︸ ︷︷ ︸

gσ,λ,θ(y)

Image convolution with such functions can be performed with
two cascaded (horizontal and vertical) 1D convolutions. For
example, Gaussian filtering can be implemented by:

wσ(x, y) ∗ f(x, y) = wσ(y) ∗ wσ(x) ∗ f(x, y)

Since very fast one-dimensional IIR Gabor and Gaussian filters
have been developed in the last decade [8], [9], [1], the
isotropic case allows very efficient 2D implementations.

In this case, the zero-mean correction term (2), is indepen-
dent of orientation:γσ,λ = exp

(
−2σ2π2/λ2

)
.

IV. T HE DISCRETECASE

In discrete coordinates, filters are designed to approximate
the continuous operations both in space and in frequency. To
date, the fastest implementations of convolution with discrete
Gaussian and Gabor functions are described in [9] and [1].
In [9] a recursive separable Gaussian filter requires 7 real
multiplications and 6 real additions per pixel per dimension.
The extension to 2-dimensional signals thus requires 26 op-
erations. In [1] a recursive separable classic Gabor filter,
consisting in the cascade of a forward and a backward passes,
implemented by equations:v(n) = in(n)−∑3

i=1 fdi ·v(n−i)

and out(n) = B · v(n) − ∑3
i=1 bdi · out(n − i), where

fdi and bdi are, respectively, the coefficients of the forward
and backward filters,B is a normalizing gain andv is the
output of the forward pass. This implementation involves 1
real addition, 6 complex multiplications, 5 complex additions
and 1 multiplication between a real and a complex number,
adding to 49 operations. With 2-dimensional signals, this
implementation requires 98 operations1. Image convolution
with zero-mean Gabor filters consists in 1 Gaussian filtering,
1 Gabor filtering, 1 multiplication and one addition, totalizing
126 operations per pixel.

In this work we implement Gabor filters using Gaussian
filtering operations. We adopt the 1D forward and backward
3 pole IIR filters from [9], defined by theZ transforms:

W f
σ (z) = b0/Q(z) , W b

σ(z) = b0/Q(z−1)

whereb0 = 1 + a1 + a2 + a3 and:

Q(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 (4)

1we consider 1 complex mult equal to 4 real mult’s plus 2 real add’s.
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Filter coefficients,a1, a2 and a3 depend on filter scale (σ).
Formulas to compute their values are provided in [9]. The
full 1D filter is represented byWσ(z) = b2

0/
[
Q(z)Q(z−1)

]

which, in the Fourier domain (z = eiω), can be written as:

Wσ(eiω) = b2
0/(d0 + d1 cos(ω) + d2 cos(2ω) + d3 cos(3ω))

with d0 = 1 + a2
1 + a2

2 + a2
3, d1 = 2(a1 + a1a2 + a2a3),

d2 = 2(a2 + a1a3) and d3 = 2a3. Finally, the 2D discrete
filter frequency representation is:

Wσ(eiωx , eiωy ) = Wσ(eiωx)Wσ(eiωy )

and the zero-mean correction parameterγ is computed using
the discrete version of Eq. (2):

γσ,θ,λ = Wσ(e−i 2π cos θ
λ , e−i 2π sin θ

λ )

V. GABOR FILTERING DECOMPOSITION

This section presents the core of our approach. We propose a
decomposition for Gabor filtering consisting in multiplications
with complex exponentials and convolutions with Gaussian
functions. The motivation for this decomposition is that state-
of-the-art Gaussian filtering is more efficient than Gabor
filtering, compensating the extra multiplications with complex
exponentials. We consider the isotropic case, where verti-
cal/horizontal separable implementations for Gaussian filtering
exist, but the decomposition described here can also be applied
to the anisotropic case.

We will provide a detailed analysis of the computational
cost of the proposed method in comparison to implementations
based on [1]. We focus our analysis in counting the operations
that depend directly on the input signal. Variables not involv-
ing the input signals can be precomputed at initialization and
stored for future use, e.g. the complex exponentialscλ,θ, the
zero-mean scale factorγσ,λ,θ and the filter coefficients. Of
course, this assumes that the filter parameters must be seta
priori for each application.

Discrete convolution with a Gabor filter can be written as:

zσ,λ,θ(x, y) =
∑

k,l

f(k, l) ·wσ(x− k, y− l) · cλ,θ(x− k, y− l)

Since the complex exponential functioncλ,θ is separable, we
can expand the previous expression into:

zσ,λ,θ(x, y) = cλ,θ(x, y)·
∑

k,l

c∗λ,θ(k, l)·f(k, l)·wσ(x−k, y−l)

wherec∗ denotes complex conjugation. In compact form:

zσ,λ,θ = cλ,θ ·
[(

f · c∗λ,θ

)
∗ wσ

]
(5)

Considering the isotropic case and adopting the IIR Gaus-
sian filtering implementation of [9] (26 operations per pixel),
the required computations on Eq. (5), are:

• A modulation (product of f with c∗λ,θ) is computed
by multiplying one real image and one complex image,
corresponding to2 operationsper pixel.

• A complex Gaussian filtering(convolution ofwσ with
f · c∗λ,θ) requires52 operationsper pixel.

X Xw

c

f z

gf z

98 ops

52 ops

2 ops 6 ops

c*

Fig. 2. 2D convolution with Gabor filters. Straightforward implementation
if [1] require 98 operations per pixel (top), while the proposed equivalent
decomposition method (bottom), only requires 60. Thick/Thin lines and boxes
represent complex/real signals and filters, respectively.
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Fig. 3. 2D convolution with zero-mean Gabor filters, using classic Gabor and
Gaussian filters, require 126 operations per pixel (top), while the proposed
equivalent decomposition method (bottom), only requires 88. Thick/Thin lines
and boxes represent complex/real signals and filters, respectively.

• A demodulation operation (product of(f · c∗λ,θ) ∗ wσ

with cλ,θ ) requires 1 complex multiplication per pixel,
corresponding to6 operationsper pixel.

Altogether we have 60 operations which, in comparison with
the reference value of 98 operations, correspond to about 39%
savings in computation. Fig. 2 illustrates the filtering process
in a graphical form.

A. Zero-mean correction

Including the zero-mean correction term, the filtering oper-
ation (3) can be written as:

z̄σ,λ,θ = cλ,θ ·
[(

f · c∗λ,θ

)
∗ wσ

]
− γσ,λ,θ · (f ∗ wσ) (6)

In this case we need the following additional operations:

• A real Gaussian filtering (f ∗ wσ) requiring26 opera-
tions per pixel.

• A real scaling by γσ,λ,θ, requires1 operation per pixel.
• The final subtraction, corresponds to only1 operation

per pixel because only the real part of Gabor functions
have non zero DC value.

In total, zero-mean Gabor filtering requires 88 operations,
corresponding to 30% savings when compared to the reference
value of 126 operations. A graphical comparison of methods,
for the zero-mean case, is presented in Fig. 3.

When multiple carriers (orientations/wavelengths) are con-
sidered, the termf ∗wσ in (6) is common to all of them. Thus,
it may be computed only once and applied to all classic Gabor
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Fig. 4. 2D Zero-mean Gabor filtering with multiple carriers. Thick/Thin
lines and boxes represent complex/real signals and filters, respectively. Close
to each computational element we indicate the number of real operations
required.

Image size Operations per pixel
64x64 62.03

128x128 75.36
256x256 88.59
512x512 101.87

TABLE I

REAL OPERATIONS PER PIXEL IN THEFFT ALGORITHM OF [10].

filtering results at the same scale. A graphical representation
of the method is shown in Fig. 4 for the multiple-carrier case.

B. Discussion

In this section we have presented a methodology for reduc-
ing the computational cost of general purpose Gabor filtering,
implemented in the time domain by separable IIR filters.
Fast linear space-invariant filtering techniques are also very
frequently applied in the frequency domain, with the aid of
the Fast Fourier Transform. It is thus convenient to compare
our approach to FFT based ones. To date, on of the fastest
implementations of the FFT is presented in [10]. The number
of operations for the implementation of 2D filtering on real
images is dependent on the size of the images and is shown
in Table I for several image dimensions. From the table we
observe that the method presented in this paper, in the classic
Gabor filter case (60 ops), compare favorably to the FFT for
image sizes larger that 64x64. Including zero-mean correction,
our algorithm has a favorable operation count (88 ops) for
images larger that 256x256. It must be taken into account
that FFT methods can not compensate for boundary effects
without explicitly extending image boundaries, thus requiring
larger image sizes. In the following section we will fully
derive the filter initialization conditions, for our proposal,
without increasing image size. This fact presents an additional
advantage over the FFT.

Another point worth discussing is the comparison with
multi-resolution approaches. In [2] an approach for Gabor

filtering uses a multi-resolution pyramidal implementation to
compute the even Gabor decomposition of images into 4
different scales and orientations, with 190 operations perpixel.
The same set of filters is applied to reduced versions of
the image through low-pass filtering and down sampling in
a factor of 2. In [11] a multi-resolution approach without
sub-sampling, based on thea trous filter [12], requires 704
operations for a similar decomposition, but in this case even
and odd Gabor responses are computed. To obtain a similar
decomposition, our method would require 1408 operations per
pixel. However we must stress that pyramidal implementations
require particular settings or relationships between parameters,
e.g. scales of the form2i, which limits the generality of the
application. In this paper we are aiming at the general Gabor
filtering problem, with unconstrained parameter settings.

Finally, we would like to comment on our evaluation of
computational complexity. We are considering applications
where Gabor Filter parameters can be defined at initialization.
For example in video processing applications, banks of filters
are defined at startup and then applied to all images in
the sequence. In these cases, all variables depending only
in the filtering parameters (and not on the images) can be
computed off-line, e.g. the filter coefficients and the complex
exponentials. Thus, our operation count only considered op-
erations depending directly on the images to process. When
filter parameters are required to change on-line, we incur
in additional operations. In comparison with [1], since filter
coefficients must be recomputed in both cases, the additional
cost is concentrated in the computation of the complex ex-
ponentials for modulation/demodulation. Assuming that 1D
complex exponentials can be efficiently computed by look-
up tables, to obtain the 2D complex exponentials we will
require one additional complex multiplication per pixel (6
ops). Therefore, our operation count would increase to 66
ops for classic Gabor filtering and 94 for zero-mean filters.
Improvements would drop to 33% and 25% respectively.

VI. B OUNDARY CONDITIONS

An essential part of the proposed algorithm is the derivation
of boundary conditions for recursive Gaussian filtering applied
to modulated images. Without special initialization, filtering
operations produce spurious transients at image boundaries.
For complete transient extinction, the boundary should be
extended by more than 3 times the scale of the filter. Thus,
for large scale filters, this would imply a significant increase
in computation time. A better solution is to derive adequate
values to initialize the filter state at the boundaries, thus
avoiding explicit filtering at the extended boundaries.

In the domain of signal processing, several approaches
are common to address this problem, often involving the
extension of the signal and making certain assumptions on
signal properties, for instance constancy, continuous derivative
or symmetry. Recently, [13] has developed a method for
computing boundary conditions for IIR Gaussian filters when
the original signal is extended by constancy. However, we
must stress the fact that, in our method, the Gaussian filters
are applied to images that result from the multiplication of
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Fig. 5. Left: 1D signal boundary extension my constancy. Right: After
modulation by a sinusoid.

Fig. 6. Left: Original image. Middle: Image with boundaries extended by
constancy. Right: Extended image modulated by a complex exponential with
parametersθ = 15 degree andλ = 29.6 pixel.

complex exponentials with the original image. Therefore, the
boundaries to deal with are not like any conventional boundary
extension method proposed in the literature. This is illustrated
in Fig. 5, for a 1D signal whose boundary has been extended
by constancy. After modulation by a complex exponential, the
boundary is not constant anymore, and can not be treated
by conventional methods. The same applies for 2D signals.
Fig. 6 shows an image whose boundary has been extended by
constancy, before and after modulation by a sinusoid.

The 2D Gaussian filtering operation is applied to the mod-
ulated image in cascaded passes of horizontal forward (HF),
horizontal backward (HB), vertical forward (VF) and vertical
backward (VB) passes, as illustrated in Fig. 7.

Let f(x, y) denote the original image andfm be the

!4

!4

+4

+4

1.  HF pass

Right
Boundary

2. HB pass

Top Boundary

3. VF pass

Left
Boundary

Bottom Boundary

4. VB pass

Fig. 7. Sequence of filtering operations, first in the horizontal directions (steps
1 and 2) and then in the vertical direction (steps 3 and 4). In boundary regions,
it is considered that the original image,f(x, y), is extended by replicating the
first and last values at each line/column in the adjacent boundary.

a) b) c)

d) e) f)

Fig. 8. Results of intermediate processing steps with explicit boundary
extension. a) The modulated image:fm(x, y) b) After horizontal forward
filtering: hf(x, y). c) After horizontal backward filtering:hb(x, y). d) After
vertical forward filtering: vf(x, y). e) After vertical backward filtering:
vb(x, y). f) After demodulation:z(x, y).

exponentially modulated image:

fm(x, y;ωx, ωy) = f(x, y) · ei·(ωxx+ωyy)

where ωx, ωy are the horizontal and vertical frequencies
of the complex exponential carrier,ωx = 2π cos(θ)/λ,
ωy = 2π sin(θ)/λ. The full 2D Gaussian filterwσ(x, y) is
implemented separately by cascaded forward-backward 1D
horizontal and vertical filters:

w(x, y) = wf (x) ∗ wb(x) ∗ wf (y) ∗ wb(y) = w(x) ∗ w(y)

where subscriptσ has been removed for convenience. The
cascaded filtering operations generate the sequence of images:







hf(x, y) = wf (x) ∗ fm(x, y), HF pass

hb(x, y) = wb(x) ∗ hf(x, y), HB pass

vf(x, y) = wf (y) ∗ hb(x, y), VF pass

vb(x, y) = wb(y) ∗ vf(x, y), VB pass

Intermediate results of the several processing steps are
shown in in Fig. 8, including the extended boundary regions.
At each pass, boundary regions change, not only as function of
the image, but also as a function of the Gaussian and complex
exponential parameters. Therefore, initial conditions must be
computed explicitly for each pass.

A. Implicit Boundary Extension in Modulated Images

Horizontal Gaussian filtering operations are performed on
imagefm(x, y), whereas vertical Gaussian operations are ap-
plied to imagehb(x, y). To compute the boundary conditions
we need to represent the values of imagesfm(x, y) and
hb(x, y) at the boundary regions before filtering.

Considering constancy in the boundary of the original
image f(x, y), image fm(x, y) is computed by modulating
the original image with complex exponentials and has the
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following values in the boundary regions:






fml(x, y) = f(0, y) · ei(ωxx+ωyy), x < 0

fmt(x, y) = f(x, 0) · ei(ωxx+ωyy), y < 0

fmr(x, y) = f(0, N − 1) · ei(ωxx+ωyy), x ≥ N

fmb(x, y) = f(N − 1, 0) · ei(ωxx+ωyy), y ≥ N

(7)

where the superscripts “l”, “ t”, “ r” and “b” stand for the left,
top, right and bottom boundary regions, respectively, andN
is the image size (both horizontally and vertically). Image
hb(x, y) is obtained fromfm(x, y) by gaussian filtering and
its top and bottom boundaries can be computed byhb(x, y) =
fm(x, y) ∗ w(x). Using (7), the previous expression can be
particularized for the top boundary region:

hbt(x, y) =
∑

x′

f(x′, 0)ei(ωxx′+ωyy)w(x − x′) =

=
(
fmt(x, 0) ∗ w(x)

)
eiωyy = hb(x, 0) · eiωyy (8)

Analogoulsy, for the bottom boundary we have:

hbb(x, y) = hb(x, 0) · eiωyy (9)

To simplify notation we will consider, at each step, a single
line or column in the image, and define the following signals:

• the input signal to the Gaussian filtering

in(t) =

{

fm(t, y) horizontal pass

hb(x, t) vertical pass

• the output of the forward filter

v(t) =

{

hf(t, y) horizontal pass

vf(x, t) vertical pass

• the output of the backward filter

out(t) =

{

hb(t, y) horizontal pass

vb(x, t) vertical pass

Additionally, each signal is break into three parts: (i) theleft
or top boundary; (ii) inside the image; and (iii) the right or
bottom boundary. Subscripts “-” and “+” are used to indicate,
respectively, cases (i) and (iii), e.g.:

in−(t) = in(t), t < 0 and in+(t) = in(t), t ≥ N

Since the utilized filters are 3rd order, for each filtering
stage we require 3 values at the boundary to initialize the
filters. Let us consider that both image coordinates start at0
(first pixel) and end atN − 1 (last pixel). Therefore, we need
to computev−(t), t ∈ {−1,−2,−3} to initialize the forward
pass, andout+(t), t ∈ {N,N + 1, N + 2} to initialize the
backward pass.

B. Forward Boundary Conditions

Boundaries of the input signalsin(t) are given directly by
the values at the boundaries of imagesfm and hb, in Eqs.
(7-9). For horizontal filtering we have:

in−(t) = f(0, y)eiωyy · eiωxt (10)

in+(t) = f(N − 1, y)eiωyy · eiωxt (11)

whereas for vertical filtering, input signal’s boundaries are:

in−(t) = hb(x, 0) · eiωyt (12)

in+(t) = hb(x,N − 1) · eiωyt (13)

Thus, input signals at the left and top boundary regions
are constituted by pure frequencies along the corresponding
filtering direction. Therefore, to compute the forward filtering
output at these boundaries, we just need to multiply by the
frequency response of the forward filters. Thus, we have, for
the horizontal stage:

v−(t) = in−(t) ∗ wf (t) = f(0, y)eiωyyW f (eiωx) · eiωxt

and for the vertical stage:

v−(t) = hb(x, 0)W f (eiωy ) · eiωyt

Evaluatingv−(−1), v−(−2) and v−(−3), we get the initial
conditions for the forward passes. Since the complex exponen-
tials and filter frequency responses do not depend on the input
signal, their values can be precomputed and premultiplied
offline, thus the run time cost for computing the forward
boundary conditions is of 3 real multiplications per line and
3 complex multiplications per column.

C. Backward Boundary Conditions

To derive boundary conditions for the backward passes,
we consider that the forward pass continues from the right
or bottom boundaries to infinity, with inputin+ and output
v+, and compute the Z-transform of the result. Then, the
backward pass starts at infinity with inputv+, outputout+ and
zero initial conditions. The full Z-transform of this forward-
backward simulated filtering at the boundary, along with the
boundary values at the end of the forward image pass, will
allow the determination of the initial conditions for image
backward filtering:out+(N), out+(N +1) andout+(N +2).

To simplify notation we will shift the origin of coordinates
to the right or bottom boundaries (τ = t − N, τ ≥ 0). With
this notation, the horizontal input signal (11) is given by:

in+(τ) = f(N − 1, y)ei(ωyy+ωxN) · eiωxτ

and, in the vertical filtering stage, from (13):

in+(τ) = hb(x,N − 1)eiωyN · eiωyτ

Forward filtering now continues beyond the boundary and
is represented by the recursive difference equation:

v+(τ) = b0in+(τ)−a1v+(τ−1)−a2v+(τ−2)−a3v+(τ−3)

with initial conditionsv+(τ) = v(t = N − τ), τ ∈ {1, 2, 3}.
Converting the previous difference equation to the unilateral
Z transform domain, we get:

V+(z) =
b0

Q(z)
In+(z) − v+(−1)

a1 + a2z
−1 + a3z

−2

Q(z)
−

− v+(−2)
a2 + a3z

−1

Q(z)
− v+(−3)

a3

Q(z)
(14)
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with Q(z) as defined in (4). In the backward pass,out+(τ),
is computed by the anti-causal recursive difference equation:

out+(τ, y) = b0v+(τ) − a1out+(τ + 1)−
− a2out+(τ + 2) − a3out+(τ + 3)

Because this filtering operations starts at∞, we consider zero
initial conditions2. In the Z-transform domain:

Out+(z) = b0
V+(z)

Q(z−1)
(15)

Joining (14) and (15), we getout+ as a function of the input
signal,in+, and the initial conditions inv+:

Out+(z) =
b2
0

P (z)
In+(z)−v+(−1)b0

a1 + a2z
−1 + a3z

−2

P (z)

− v+(−2)b0
a2 + a3z

−1

P (z)
− b0v+(−3)

a3

P (z)

where P (z) = Q(z)Q(z−1). To obtain the solution for
out+(τ) we must invert the previous Z transform. Details are
given in appendix. The final solution is of the form:

out+(τ) =
3∑

j=1

v+(−j)αj(τ) + in+(0) · β(τ)

Initial conditions for the backward image filtering step are
now given by evaluatingout+(0), out+(1) andout+(2). Since
αj(τ) andβ(τ) are complex coefficients than do not depend
on the input image, their values can be computed at initializa-
tion. Therefore, the run time cost of computing the backward
initial conditions consists in 12 complex multiplicationsand
3 complex additions per image line and column.

The full cost of computing the boundary conditions is
obtained by summing the cost of the forward pass (3 real mul-
tiplication per line and 3 complex multiplications per column)
to the cost of the backward pass (12 complex multiplications
and 3 complex additions per image line and column). With
square images of sizeN in both dimensions, this correspond
to a number of201 × N real operations per image, i.e.
201/N operations per pixel. For example, with images of size
128× 128 it corresponds to about 2 operations per pixel, and
an efficiency penalty of about2%. For larger image sizes, the
efficiency loss becomes negligible.

VII. R ESULTS

To evaluate the quality of the developed method, we have
performed several experiments comparing the proposed filter-
ing implementationversus image convolution with FIR filters
sampled from the continuous kernels. The quality index is
defined as the average signal-to-error ratio on image sets. Let
In
FIR(x, y) be the result of convolving imagen with FIR filters

with image boundary extension, and letIn
OUR(x, y) be the

result of image filtering with our method. Then, in a set ofN
images, the quality index is defined as:

SER [dB] = −
N∑

n=1

10 log10

∑

(x,y) |In
OUR(x, y) − In

FIR(x, y)|2
∑

(x,y) |In
OUR(x, y)2|

2In fact initial conditions are indetermined but finite, thus any transient
vanishes before reaching the boundary

a) EarthfromSpace b) Pentagon c) S.Diego(N.Island NAS) d) S.Francisco4

e) SanDiego f) WoodlandHills g) Airplane(U-2) h) Baboon

i) Couple j) Girl(lenna) k) House1 l) Peppers

m) Chem.Plant(closeview) n) Chem.Plant1(farview) o) WC9 p) WalterCronkite1

q) motion01.512 r) motion10.512 s) 1.1.02 t) 1.2.03

u) 1.2.12 v) 1.2.13 w) 1.5.02 x) 1.5.05

Fig. 9. Images chosen from the USC-SIPI database. Aerial images: a) to f).
Miscellaneous: g) to l). Sequences: m) to r). Textures: s) to x)

We have used images from the USC-SIPI database [14].
This image dataset is composed by images from four different
classes: aerial, miscellaneous, sequences and textures. We have
chosen 6 images from each class, the ones presented in Fig 9.

Since our method is based on Gaussian IIR filters, we
start by evaluating the approximation quality of those filters
as a function of the scale parameter. Although this is not a
contribution of this work, it will allow us to determine the
scale range for which it is expected the method to perform
well. The quality index has been computed for a large set
of scales in all chosen images. In Fig. 10 we show the
quality index for each scale and data set. Notice that the
approximation is good (above 40dB, error = 1%) for the range
of scales20.5 = 1.41 to 25.5 = 45.25. Above 25.5 the quality
degrades abruptly. Therefore, in the following experiments, we
will evaluate performance only for scales with good Gaussian
filtering approximation (we use dyadic scales betweenσ = 2
andσ = 32). For scales lower thanσ = 2, FIR filters are more
efficient alternatives to IIR filtering because of their small size.

To evaluate the proposed Gabor filtering approximation we
will consider the influence of all three parameters: scale, ori-



8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

10

20

30

40

50

60

Scale [log2(σ)]

S
ig

na
l−

to
−

E
rr

or
 R

at
io

 (
dB

)

Average Gaussian filter approximation for different scales

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

Orientation [degrees]

S
ig

na
l−

to
−

E
rr

or
 R

at
io

 (
dB

)

Average Gabor filter approximation for different orientations

 

 

Aerial
Miscelaneous
Sequences
Textures

Fig. 10. Top: Average approximation quality of IIR Gaussian filters as a
function of scale. Bottom: Average approximation quality of proposed Gabor
filters as a function of orientation.

κ = 4, real κ = 4, imag κ = 2, real κ = 2, imag

κ = 1, real κ = 1, imag κ = 0.5, real κ = 0.5, imag

κ = 0.25, real κ = 0.25, imag κ = 0.125, real κ = 0.125, imag

Fig. 11. Shape of Gabor functions with different wave numberκ = σ/λ.
Both real and imaginary parts are shown.

entation and wavelength. Experimentally we have verified that,
in our dataset, approximation quality is not very sensitiveto
orientation. We have considered valuesθ ∈ {0, 15, 30, 45, 90}
degrees, which, due to symmetry considerations, are good rep-
resentatives of the whole set of orientations. Then, averaging
the approximation errors overσ andλ we have obtained the
results shown in Fig. 10, which illustrate that the influenceof
orientation is not critical in the approximation error.

To evaluate the influence ofσ and λ we compute the
approximation error for parametersσ ∈ {2, 4, 8, 16, 32} and
λ ∈ {2, 4, 8, 16, 32, 64}. To reduce computation times, only
one orientation was considered:θ = 30 degrees. Figs. 12
and 13, present the approximation quality for, respectively, the
real and imaginary parts of Gabor filters, as a function ofλ,
for all considered scales and image classes. In practice some
combinations of parameters may not be interesting to use.
For instance, large scales and wavelengths may be obtained
by first reducing the image resolution and applying smaller
scale and wavelength filters. Also, very small wave numbers
(κ = σ/λ) have large overlap in the frequency domain and
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Fig. 12. Approximation quality of the Gabor imaginary part as afunction
of σ, λ and image type.

produce very similar outputs. In Fig. 11 we show the shape
of Gabor filters for different wave numbersκ, and it is visible
that for κ < 0.25, their shape do not change significantly,
therefore no important additional information is extracted from
the images. Notwithstanding, some application may require
either to compute large scale and wavelength information in
full resolution images, or use very small wave numbers, thus,
for the sake of completeness, we present the results obtained
for the whole set of parameters. For the imaginary part we
can observe in Fig. 12 that performance is about 30dB (3%
relative error) in average, and above 24dB (6% relative error)
for the whole range of parameters. For the real part, average
performance is also around 30dB but perfomance drops to
about 20dB (10% relative error) for some images whenσ = 2
andλ = 4, as can be seen in Fig. 13. The reason for this fact
is a mismatch between the DC values of IIR and FIR filters,
that happens to be larger at this range.

Different classes of images do not show significant dif-
ferences in approximations quality. Anyway, images in the
texture set have a bit lower approximation quality, especially
for low values of the wave number, which correspond to
frequency bands with low energy in textured images. The filter
output at these bands has low amplitude, which decreases the
approximation quality.

Summarizing, the proposed filters have a good fidelity for
all classes of images, with the considered range of parameters:
σ ∈ [2, 32], λ ∈ [2, 64], θ ∈ [0, 360]. Scales smaller than2
can be efficiently implemented by FIR filters instead. Large
scale values with large wavelengths can be implemented in a
multi-scale framework, where image resolution is first reduced
to match the scale and wavelength range of existing filters.
This is not possible, however, with small wavelengths, due to
aliasing effects. Even though we have not tested scales higher
that 32, the approximation error for small wavelengths do not
decay significantly with scale, and it is likely that larger scales
still have good approximations.
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Fig. 13. Approximation quality of the Gabor real part with zero-mean
correction as a function ofσ, λ and image type.

VIII. C ONCLUSIONS

We have presented a novel algorithm for the computation
of Gabor features. Computational improvements with regard
to state of the art methods are obtained by an efficient de-
composition of Gabor convolution into Gaussian convolutions.
The method is able to reduce computations up to 39%, when
compared to other fast methods. Since the method is based
on IIR filters, we provide the full derivation of the boundary
conditions for filter initialization. Without such conditions, ex-
plicit image boundary extension would be required, penalizing
the computational efficiency of the algorithm.

We have presented a quantitative evaluation of the approx-
imation error between the proposed filters and FIR masks
obtained by sampling the Gabor function, for a wide range of
images and parameters. Results show that the approximation
error is, in average, below 3%, which confirms the effective-
ness of the approach. The computational analysis presentedin
this work assumes that Gabor filter parameters can be defined
at initialization and remain constant during the duration of
the application. This allows the pre-computation of several
auxiliary variables dependent on the parameters. However,if
the application requires arbitrary parameter change in run-
time, computational penalties are incurred. Future work should
address this issue and consider the cost of computing the
auxiliary variables.

Several applications of Gabor analysis can be found nowa-
days in the literature, e.g. object representation [5], texture
classification [15], [16], image segmentation [17], motionesti-
mation [18], image compression [19] and visual attention [20].
The results presented in this paper thus have a wide spectrum
of application, and may drive further research on several Gabor
analysis related topics. A full C++ implementation of the
method presented in this work is publicly available at the
author’s web page. Each filtering operation takes about 4ms
on 128 by 128 images, with a P4 2.66 GHz computer.
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APPENDIX

In this appendix we invert the Z transform required for
computing the backward boundary conditions in the filtering
process of Section VI:

Out+(z) =

In+(z)A(z)−v+(−1)B(z)−v+(−2)C(z)−v+(−3)D(z)

where A(z), B(z), C(z) and D(z) are Z-transforms
that only depend on filter parameters:A(z) = b2

0/P (z),
B(z) = b0

(
a1 + a2z

−1 + a3z
−2
)
/P (z), C(z) =

b0

(
a2 + a3z

−1
)
/P (z), D(z) = b0a3/P (z). We decompose
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the signal on a natural termN(z) depending only on the
initial conditions and a forced termF (z) depending only on
the input signal:

N(z) = −v+(−1)B(z) − v+(−2)C(z) − v+(−3)D(z)

F (z) = In+(z)A(z)

To compute the time domain signalsn(t) andf(t) we will
perform a partial fraction expansion in first order terms. Let p1,
p2 and p3 be the poles ofQ(z). Then,P (z) = Q(z)Q(z−1)
can be written as:

P (z) =

3∏

i=1

(
1 − piz

−1
)

3∏

i=1

(1 − piz)

and its inverse is given by:

1

P (z)
=

b2
0a

−1
3 z−3

∏3
i=1 (1 − piz−1)

∏3
i=1

(
1 − p−1

i z−1
)

Performing a partial fraction expansion of the previous expres-
sion, we obtain:

1

P (z)
=

3∑

i=1

Ri

1 − piz−1
+

3∑

i=1

R′

i

1 − p−1
i z−1

whereRi andR′

i are the residues of the causal and anti-causal
terms respectively. To initialize the backward passes we only
require values ofout+(τ) for τ ≥ 0. Therefore, only the causal
residues need to be computed explicitly3:

Ri =
1

P (z)

(
1 − piz

−1
)
|z=pi

, i = {1, 2, 3}

Now, the natural termN(z) can be written as:

N(z) = −
3∑

i=1

3∑

j=1

v+(−j)

(
r(i, j)

1 − piz−1
+

r′(i, j)

1 − p−1
i z−1

)

with the natural causal residuesr(i, τ) given by:






r(i, 1) = R1b0

(
a1 + a2p

−1
i + a3p

−2
i

)

r(i, 2) = R2b0

(
a2 + a3p

−1
i

)

r(i, 3) = R3b0a3

To obtain the time functionn(τ), t ≥ 0, only the causal
residues are used:

n(τ) =

3∑

j=1

v+(−j)

3∑

i=1

r(i, j)pτ
i , τ ≥ 0

We now consider the forced response. Boundary input
signals, (11) and (13), are of the form:in+(τ) = in+(0)pτ

4 .
The values ofin+(0) and p4 depend on the processing step.
In the horizontal filtering stage we have, from (11):

in+(0) = f(N − 1, y)ei(ωyy+ωxN) and p4 = eiωx

and, in the vertical filtering stage, from (13):

in+(0) = hb(x,N − 1)eiωyN and p4 = eiωy

3the response associated to non-causal terms only exists forτ < 0.

In the Z transform domain, the input signals are:

In+(z) = in+(0)
1

1 − p4z−1

The partial fraction expansion ofF (z) now involves the
pole of the input signal.

F (z) = in+(0)·
(

r4

1 − p4z−1
+

3∑

i=1

ri

1 − piz−1
+

r′i
1 − p−1

i z−1

)

where the forced response causal residues are given by:

ri = Rib
2
0/
(
1 − p4p

−1
i

)
, i ∈ {1, 2, 3}, r4 = b2

0/P (z)|z=p4

Consequently, the forced responsef(τ) for τ ≥ 0 is given by:

f(τ) = in+(0) ·
4∑

i=1

rip
τ
i

Finally, the desired initial conditions are obtained by adding
the natural and forced terms, evaluated atτ = 0, 1, 2:

out+(τ) =

3∑

j=1

v+(−j) ·
3∑

i=1

r(i, j)pτ
i

︸ ︷︷ ︸

αj(τ)

+in+(0) ·
4∑

i=1

rip
τ
i

︸ ︷︷ ︸

β(τ)

Complex coefficientsαj(τ) andβ(τ) only depend on the filter
parameters and can be precomputed at initialization.
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