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Abstract. In this paper, we present a low-level object tracking system that 
produces accurate vehicle trajectories and estimates the lane geometry using 
uncalibrated traffic surveillance cameras. A novel algorithm known as 
Predictive Trajectory Merge-and-Split (PTMS) has been developed to detect 
partial or complete occlusions during object motion and hence update the 
number of objects in each tracked blob. This hybrid algorithm is based on the 
Kalman filter and a set of simple heuristics for temporal analysis. Some 
preliminary results are presented on the estimation of lane geometry through 
aggregation and K-means clustering of many individual vehicle trajectories 
modelled by polynomials of varying degree. We show how this process can be 
made insensitive to the presence of vehicle lane changes inherent in the data. 
An advantage of this approach is that estimation of lane geometry can be 
performed with non-stationary uncalibrated cameras. 

1 Introduction 

Intelligent traffic surveillance systems are assuming an increasingly important role in 
highway monitoring and city road management systems. Their purpose, amongst 
other things, is to provide statistical data on traffic activity such as monitoring vehicle 
density and to signal potentially abnormal situations. 

This paper addresses the problem of vehicle segmentation and tracking, screening 
of partial and complete occlusions and generation of accurate vehicle trajectories 
when using non-stationary uncalibrated cameras such as operator controlled pan-tilt-
zoom (PTZ) cameras. We demonstrate that by building a self-consistent aggregation 
of many individual trajectories and by taking into account vehicle lane changes, lane 
geometry can be estimated from uncalibrated but stable video sequences. 

In our work, rather than performing object tracking under partial or total occlusion, 
we describe an occlusion reasoning approach that detects and counts the number of 
overlapped objects present in a segmented blob. Trajectory points are then classified 
according to whether they are generated by a single or overlapped object. This paper 
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describes the Predictive Trajectory Merge-and-Split (PTMS) algorithm for 
performing the aforementioned task. It uses a Kalman filter (KF) and a set of simple 
heuristic rules to enforce temporal consistency on merging and splitting overlapping 
objects within detected blobs. The method is independent of the camera viewpoint 
and requires no a priori calibration of the image sequences. 

2 Review of Previous Work 

The starting point for much work in analysing surveillance images is the segmentation 
of moving objects based on background subtraction methods [1-2]. Typically, each 
pixel is modelled using a Gaussian distribution built up over a sequence of individual 
frames and segmentation is then performed using an image differencing strategy. 
Shadow detection and elimination strategies have been commonly employed to 
remove extraneous segmented features [4-7]. 

It is also important to handle partial and complete occlusions in the video data 
stream [7-10]. Occlusion detection can be performed using an extended Kalman filter 
that predicts position and size of object bounding regions. Any discrepancy between 
the predicted and measured areas can be used to classify the type and extent of an 
occlusion [9], [10]. 

Higher level traffic analysis systems have also been developed specifically for 
accident detection at road intersections [9], [11] and estimating traffic speed [12], 
[13]. More general techniques for object path detection, classification and indexing 
have also been proposed [10], [14-17].  

Our work is most closely related to [10], [12], [13]. In [12] an algorithm to 
estimate mean traffic speed using uncalibrated cameras is presented. It employs 
geometric constraints in the image, inter-frame vehicle motion and distribution of 
vehicle lengths. Traffic flow histograms and the image vanishing point are used in 
[13] to measure mean speed but it has similar limitations to the previous approach.  

The work in this paper shows that accurate vehicle trajectories can be built from 
uncalibrated image sequences and can be aggregated to model lane geometry and 
ultimately determine traffic speed and classify normal and anomalous situations.  

3 Predictive Trajectory Merge-and-Split (PTMS) Algorithm 

The proposed system uses a multi-stage approach to determining the vehicle motion 
trajectories and eventually the lane geometry. Firstly, we build a background model to 
segment foreground objects. A detected foreground blob comprises a connected 
region having more than a certain pre-defined minimum number of pixels (Kmin) in its 
area. A constant acceleration Kalman Filter (KF) is used to track the blobs through 
image coordinate space. The PTMS algorithm is then used to perform a time-
consistent analysis of those detected blobs allowing for merging and splitting due to 
partial and complete occlusions. An overview of the system is shown in Fig. 1.   



 

 
Fig. 1. Block diagram of the proposed system 

3.1 Background Initialization 

We use a Gaussian distribution in the Adaptive Smoothness Method [1] to build a 
background model. Detected blobs having an area smaller than Kmin are deemed to be 
noise and disregarded. Erode and dilate operations are used to eliminate small holes 
within blobs. Shadow removal is not incorporated, but during the background update 
stage, a double thresholding operation is performed to eliminate self-shadowing. 

3.2 Steady State Kalman Filter 

If we wish to build complete motion histories for each tracked object, i.e. to determine 
the position of an object at each time step, it is necessary to implement KF[19] to 
resolve tracking instabilities caused by near and partial occlusions, shadows and 
image noise. If the case of multiple simultaneous object tracking, if we lose track of 
one vehicle and another vehicle is suddenly detected nearby, there is an obvious 
danger of mistaken vehicle identification. 

Even assuming that vehicles drive at constant velocity, due to camera perspective 
effects their velocity in the image plane is time varying. Therefore, we approximate 
vehicle position in the image with a constant acceleration Kalman Filter. In the 
equations that follow, we work in image coordinates and assume that tuning 
parameters are the same for objects moving towards and away from the camera. At 
this stage we are not modelling the noise in vehicle position, thus we use a constant 
coefficient KF, whose coefficients are manually tuned for good performance 
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We use a steady state version of the KF, often referred to alfa-beta-gamma filter 
[19]. Let measurement vector X = (x,y) represent the centroid of the detected blob, and 
the state vector S = (x, y, x’, y’, x”, y”) where prime and double prime denote first and 
second derivatives with respect to time, i.e. velocity and acceleration in the x, y 
directions. In the initial state the velocity and acceleration are set to zero.  

Let X(k|k), V(k|k) and A(k|k) be, respectively, the estimated position, velocity and 
acceleration at time step k, and X(k+1|k), V(k+1|k) and A(k+1|k) their predicted 
values.  If X(k) is the blob centroid position and T the sampling period, then the filter 
equations are the following: 
 

Update equations: 

A(k|k) = (1-γ)A(k|k-1)+ γ/T2 (Y(k) –X(k|k-1)) (1) 

V(k|k) = (1-β)V(k|k-1)+ β/T (Y(k)– X(k|k-1)) (2) 

X(k|k) = (1-α)X(k|k-1)+α(Y(k)-X(k|k-1)) (3) 

Prediction equations: 

A(k+1|k) = A(k|k) (4) 

V(k+1|k) = V(k|k) + T A(k|k) (5) 

X(k+1|k) = X(k|k)+ TV(k|k)+ 0.5 T2 A(k|k) (6) 

A value of α = β = γ = 0.5 is chosen for the parameters. When the PTMS detects an 
occlusion, the KF is not updated with the new value of X.  

3.3 Heuristic Merge-and-Split Rules 

The presence of shadows or ‘near’ occlusions caused by traffic congestion can 
seriously degrade accuracy of blob detection. Typically, several vehicles may be mis-
detected as one single vehicle with consequent problems for generating an object 
trajectory. Approaches based on spatial reasoning use more complex object 
representations such as templates or trained shape models. However, this is dependent 
on image resolution and only works under partial occlusion. A better approach is to 
use a temporal smoothness constraint in checking vehicle positions under different 
types of occlusion. Here, we propose a set of temporal rules that can easily 
complement a spatial approach.  

The algorithm works as follows: First, we define a blob as a connected region 
resulting from the background subtraction process. Then use KF to predict for each 
blob the most likely position in the next frame that the blob will appear. Each blob is 
considered to have a number of children, i.e. number of different objects a blob is 
composed of. At the beginning, every blob is initialized as having one child. For each 
frame and for every blob: 



 

1. Determine whether there is a 1-1 correspondence by checking size and position of 
blobs in consecutive frames and comparing positions and sizes. 

2. For every blob that does not match the previous condition; determine whether the 
size has decreased by more than Ω expressed as a percentage. If so, decrease the 
number of its occluded objects by 1. 

3. If any blob has decreased its size by less than Ω, store that information. 

4. Determine whether any new blob has appeared in the vicinity of a blob whose size 
decreased and had a number of children greater than 1. If so, decrease the number 
of occluded objects in the old blob - the old blob was occluding the new blob. 

5. Check if there are any new blobs in the new frame. 

6. If there are any new blobs in the same position of several old blobs, it means that 
the new blob is composed of the old blobs, and the number of its children is 
increased by the number of the old blobs minus 1. 
 
The algorithm works fairly well for most of the time, the principal drawback is 

when the initial blob is composed of several objects. In this case, it will be mis-
detected as one single object. To tackle this problem, a spatial algorithm could be 
applied to the initial blobs to determine whether they are composed of one or more 
objects. The results of applying PTMS algorithm are presented in section 5. 

4 Estimating Lane Geometry from Object Trajectories 

In highly constrained environments such as highways, it is tempting to use vehicle 
motion trajectories rather than conducting image analysis of static scenes when 
determining lane geometry. The former approach has a number of advantages:  
• Allows the use of controlled pan-tilt-zoom cameras rather than static cameras.  
• Object trajectories are independent of scale and viewpoint considerations. 
• Motion is more robust than spatial data with respect to light variation and noise. 
The method assumes that the average lane width in image coordinates is known in 
advance. However, it does not require a priori knowledge of the number of lanes or 
road geometry, i.e. whether it is a straight or curved section of highway. 

First, we apply a pre-filtering stage to remove obviously invalid trajectories that 
are produced by poor background initialization. Excluded trajectories are those that 
have consecutive inter-point differences greater than some threshold, or the total 
length less than some pre-defined threshold. 

To calculate the approximate centre of each lane, first we fit a least squares 
polynomial of degree M for each trajectory. The average residual error of fit can be 
used to ascertain the optimal value of M. Next, we apply a robust K-means clustering 
algorithm that works in the coefficient space of the polynomials. To reduce the time 
complexity, we use a heuristic to limit the number of candidate trajectories to those 
with greater likelihood of belonging to a lane. Finally, the RANSAC [18] algorithm is 
used on the clustered trajectories to determine a least squares polynomial fit to the 



 

lane centres. RANSAC is robust to outlier trajectories produced by frequent vehicle 
lane changes, undetected overlapped vehicles and noise in the video sequence. Further 
details of this method are presented in a companion paper. 

5 Results 

The results of applying PTMS algorithm are now presented. The video sequences 
were recorded in grey scale at a rate of 15 frames/sec with a 176x144 pixel resolution.  
In Fig. 2 we show the result of background subtraction. Segmented objects whose 
areas < Kmin are denoted in red whereas detected vehicles are coloured purple. We use 
a different colour to signify the bounding box of a tracked vehicle. When tracking of 
one vehicle is lost, we place a cross to highlight the position predicted by KF. In this 
sequence, the influence of KF prediction was not very significant. 

 

 
Fig. 2. Tracked vehicles   Fig. 3. Tracking and occlusion handling 

Fig. 3 shows the result of occlusion handling applied to the previous figure. Observe 
that the two cars in the left of the image are detected as a single blob, and through the 
use of PTMS algorithm, we can determine that it corresponds to two cars in the 
previous frame. The detected blob is displayed with its bounding box in red with a 
cross drawn in the middle. 

In Fig. 4 we display the trajectories generated by use of KF and PTMS algorithm 
applied to the same sequence from which Figs. 2 and 3 were drawn. Trajectories in 
green correspond to single vehicles successfully tracked, whereas those in purple 
correspond to vehicles previously detected but whose tracking was subsequently lost. 
The points are predicted by output of KF. The red points correspond to trajectories of 
averaged position of two or more overlapped vehicles detected through use of PTMS. 

 
Fig. 4.Vehicle trajectories generated through hybrid tracking and PTMS algorithm 

Since the approach adopted is low-level and independent of camera viewpoint and 
type of object motion, we tested the hybrid tracking and PTMS approach with a 



 

different data set recorded at a road intersection. A typical frame taken from the 
sequence is shown in Fig. 7a.  
In Fig. 5 we can observe that there are no object occlusions, and all the vehicles are 
detected as single objects. In Fig. 6 the PTMS algorithm detects a blob comprised of 
two vehicles and a second blob with four occluding vehicles. An unidentified moving 
object is mis-detected as comprising two occluding vehicles. 

 

 
Fig. 5. Tracked vehicles   Fig. 6. Tracking and occlusion handling 

In Fig. 7b we display the set of trajectories calculated from the sequence1 7a, with the 
colours employing the same semantics as in Fig. 4. 

 

 
Fig. 7 (a) Typical scene at a road intersection. (b) Trajectories  

We now show some preliminary results of applying the clustering approach to the 
computed trajectories described in section 4. The computed point trajectories of single 
vehicles (Fig. 8a) are used to estimate the lane centres (Fig. 8b) on a curved segment 
of highway. From a total of 175 partial trajectories in the image sequence, the K-
means clustering algorithm uses 20 trajectories per lane to estimate the centres. It 
should be noted that although the original trajectory data contains vehicle lane 
changes, the RANSAC fitting method can be made insensitive to these by careful 
parameter tuning. The clustering is carried out as a post-processing operation. 
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Fig. 8. (a) Original trajectories of single tracked vehicles containing outliers. (b) 
Estimated lane centres.  (c) Processing time for applying clustering algorithm  
 

                                                           
1 Image sequence downloaded from http://i21www.ira.uka.de/image_sequences 



 

Next figure illustrates similar results for a straight highway segment using 
uncalibrated PTZ cameras. Here we start from an initial total of 200 partial 
trajectories and again use 20 trajectories per lane to estimate the centres. 
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Fig. 9. (a) Original trajectories of single tracked vehicles containing outliers. (b) 
Estimated lane centres. (c) Processing time for applying clustering algorithm 

The processing times for each frame in the respective sequences are shown in Fig. 
8c and Fig. 9c. In each case, the algorithm starts with zero clusters and adds 2 new 
trajectories per frame. More results can be found at the author webpage2.  

6 Discussion and Conclusions 

This paper proposes an algorithm for vehicle tracking with the following 
characteristics; temporal integration with a Kalman Filter, time-consistent merging-
and-splitting of overlapped detected blobs, aggregation of trajectory data to estimate 
lane centres and removal of the need for calibrated cameras.  

The preliminary results demonstrate the feasibility of using ordinary uncalibrated 
stationary or PTZ cameras to analyse traffic behaviour in real-time. The algorithm is 
viewpoint independent and does not make any a priori assumption regarding lane 
geometry. The results can be used as input to higher level traffic monitoring systems 
for estimating traffic speed, frequency of lane changes, accident detection and 
classification of anomalous driver behaviour. We use some limited assumptions 
regarding camera zoom and image scale.  

One drawback of the clustering approach is that due to occlusions, vehicle 
trajectories are sometimes miss detected and hence partitioned into erroneous cluster 
sets. It is often difficult to distinguish these from genuine lane changes at the post-
processing stage. In future work, we intend to tackle this limitation. 
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