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Abstract: We propose an approach that allows a robot to learn a task through
imitation, using motor representations, as suggested by recent findings in neuro-
science. The robot relies on a visuomotor map to convert visual information into
motor data. Then, by observing and imitating other agents, the robot can learn
a set of elementary motions (motor vocabulary), that will eventually be used to
compose more complex actions, for each specific task domain. We illustrate the
approach in a mobile robotics task. Egomotion estimation is used as a visuomotor
map, that allows the robot to learn a motor vocabulary for topological mapping
and navigation.The approach can be extended to different robots and applications.
Encouraging results are presented and discussed.
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1. INTRODUCTION

In the 1960’s, robots were almost exclusively used
in industries: robot arms used to automate the
workspace, achieving high precision and repeata-
bility on the assembly line for mass production.
No “intelligence” was involved and everything was
programmed a priori, enabling a robot to repeat
the same set of movements for weeks or months.
Even in the absence of sensory information, robots
would still accomplish their tasks.

Since then, several new markets for robotics
have emerged, calling for new technologies and
paradigms. Nowadays, there is a move towards
applications where the environment is much less
structured, tasks that require a higher degree of
sensing and interacting with humans and other
agents (toys, house keeping, elderly and patient
assistance, etc). Such tasks pose a great demand
for more complex, intelligent and autonomous
robots. They should be flexible systems, able to
learn in a open-ended way, and adapt while inter-
acting with other agents, people and environment.

The challenges that rise from these new demands
are how to program such complex systems and
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achieve flexibility. Nature seems to have already
solved this problem. Animals are complex and
flexible systems, able to learn and adapt through
a simultaneous motor, sensorial and cognitive de-
velopment. Thus, instead of programming all sit-
uations, actions and reactions, robots could learn
and adapt through a developmental approach
also. After acquiring a self-knowledge, that allows
knowing their own body and how to control move-
ments, robots could improve and become more
flexible by learning through interaction.

One way to learn and afford a high degree of flexi-
bility is through imitation, a powerful social learn-
ing and adaptation method (Dautenhahn, 1995).
Imitation avoids undergoing through extensive
trial and error, since the imitator learns directly
from the teacher’s experience. Learning by imita-
tion has been addressed by many researchers and
there are interesting results for task learning, skill
acquisition and communication (Billard, 2002).
Other works in robotics inspired by imitation in
animals can be seen in (Dautenhahn and Ne-
haniv, 2002).

Recent findings in neuroscience have shed new
insight on the way imitation might be achieved
in nature. A special group of visuomotor neurons,
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designated mirror neurons, was discovered in area
F5 of monkey’s brain (Fadiga et al., 2000). These
neurons activate either when the monkey performs
an action or when it sees the same action per-
formed by a demonstrator or another monkey.
Usually related to hand and mouth movements,
they seem to have the ability to recognize ges-
tures and constitute the basis of the mechanism
of action imitation and understanding (Rizzolatti
and Arbib, 1998).

The visual activation of mirror neurons illustrates
the relationship between perception and action
(Lopes and Santos-Victor, 2003). The fact that
mirror neurons are located in the motor area
of the brain, suggests that observed actions are
first converted to motor information, before being
recognized. Usually, recognizing actions in visual
space is more difficult and costly than in motor
space, where it becomes independent of frame
position, orientation or view-point.

The existence of a visuomotor mapping that con-
verts visual information into motor measurements
is also supported by biology. When newborns look
to their hands and own movements, they are
probably learning the relationship between motor
action and visual stimuli (Metta et al., 2001).
Through this visuomotor mapping, children be-
come able to recognize and repeat movements.

We propose a methodology for open-ended robot
adaptation, using learnt motor representations to
acquire capabilities that go beyond initial pro-
gramming. A central role is played by a visuo-
motor mapping that allows the robot to relate
visual stimuli to its own motor representations.
The advantages of this approach are: (i) through
interaction, a robot is able to learn task-specific
movements that are not defined a priori; (ii) it
represents a natural manner of adapting the ap-
plication to the robot’s motion capabilities; (iii)
it can be applied to different robots and environ-
ments. Whenever the application changes, a new
set of movements can be taught. The overall idea
is illustrated in Figure 1.
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Fig. 1. Robot learning and adaptation approach.

The first step represents a motor self-knowledge:
the visuomotor mapping. It allows the robot to
learn its motor capability, by observing the visual
effects due its own motion. It defines a relation
between a motor space (i.e. linear and angular
velocities, joint position and orientation) and a
visual space (i.e. image point coordinates, optical
flow) according to the robot’s body (i.e. wheels

or legs) and visual system (i.e. perspective or
omnidirectional cameras, color or B&W). This
visuomotor mapping can be computed explicitly
through equations or learnt through the observa-
tion of robots own movements.

Once it has a visuomotor mapping ability, the
robot becomes able to recognize actions while
observing and interacting with another agent.
Trough a social learning method (i.e. imitation),
the robot learns a set of purposive actions needed
for solving a motor task. This set of elementary
actions can be seen as a motor vocabulary inter-
nally represented by the robot’s motor repertoire.

Finally, the learnt vocabulary is used to perform
more complex actions related to the desired appli-
cation. This approach seems to be a flexible way of
adapting the desired task and the way it should be
performed to the robot’s motion repertoire. Dif-
ferent robots can learn the same motor vocabulary
and also for different tasks, different vocabularies
can be taught.

As an example, we implemented a motor task
for a mobile robot. The visuomotor mapping is
done through egomotion estimation while the so-
cial learning is based on imitation/following. The
learnt motor vocabulary is used for topological
mapping and navigation. The reason of choosing
such a task was, besides illustrating the proposed
methodology, to implement an application differ-
ent from previous works done on imitation.

In Section 2 we present the implemented visuo-
motor mapping. In Sections 3 and 4 the motor
vocabulary learning and the mobile robot applica-
tion are described. Some experiments and results
are listed in Section 5 while our conclusions and
future work are discussed in Section 6.

2. EGOMOTION AS VISUOMOTOR
MAPPING

A visuomotor map must convert visual measure-
ments to motor space so the robot can relate what
it sees with how it moves. Egomotion estimation
can be seen as a visuomotor mapping method. It
recovers motor information from optical flow mea-
surements obtained from a sequence of images.

In this work, egomotion estimation was done us-
ing omnidirectional images. The problem becomes
easier if a spherical motion field is used instead of
a planar field obtained with perspective cameras
(Nelson and Aloimonos, 1988). From a sequence of
omnidirectional images, we first calculated optical
flow and then remapped image flow vectors to
the unit sphere surface through an image Jaco-
bian matrix. On such hemispherical motion field
either the focus of expansion (FOE) or the focus
of contraction (FOC) are visible. Finally, motor



information was estimated from the motion field
adapting an egomotion algorithm designed for
planar projection to spherical projection (Vassallo
et al., 2002a).

Previously, the Jacobian matrix needed to remap
image flow vectors was defined according to the
system projection model (Gluckman and Na-
yar, 1998). Instead, we used a general projection
model defined by(Geyer and Daniilidis, 2000) to
define a general Jacobian. This projection model
can represent different omnidirectional systems by
combining a mapping of a 3D point P to a sphere
followed by a projection to the image plane. The
center of the sphere C(0, 0, 0) lies on the optical
axis of the projection to the plane and represents
the origin of the reference frame (see Fig. 2).
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Fig. 2. The general projection model.

The parameters l and m adjust the model to
different systems and correspond to the distances
from the sphere center C to the projection center
O and to the projection plane.

By back-projecting an image point (x, y), we can
obtain a point on the unit sphere P̂ (X̂, Ŷ , Ẑ)
corresponding to the direction of the incoming ray
from the original 3D point P (X, Y, Z) (see Eq. 1).
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A = l + m Ẑ = ±
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1 − X̂2 − Ŷ 2 (1)

where Ẑ becomes negative if |l+m|/l >
√

x2 + y2

and positive otherwise. Neither the camera intrin-
sic parameters, image center and focal length are
considered in the above expression.

To reproject flow vectors from the image plane to
the sphere surface, the general Jacobian matrix
J is defined by differentiating the spherical co-
ordinates (X̂, Ŷ , Ẑ) on the back-projection equa-
tion with respect to the image coordinates (x, y)
(Vassallo et al., 2002a). It maps image velocity
vectors to the unit sphere surface, transforming a
planar flow field to a hemispherical motion field
that will help estimate egomotion (see Eq. 2 and
Fig. 3).
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Fig. 3. Image velocities remapped to the unit
sphere surface.
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Egomotion was estimated by adapting the Bruss
and Horn (Bruss and Horn, 1983) algorithm de-
signed for planar perspective projection to spher-
ical projection. The motion field U at a point P̂
on the unit sphere is a function of the camera
rotation Ω, translation T and the corresponding
3D point depth R =

√
X2 + Y 2 + Z2 (Eq. 3).

U(P̂ ) =
1

R
((T · P̂ )P̂ − T )− Ω × P̂ (3)

Depth dependency is removed by taking the cross
product with P̂ and the dot product with T (see
Eq. 4). Estimation was done through an iterative
process using non-linear minimization considering
|T | = 1, once it is not possible to recover the linear
velocities values.

T · (P̂ × (U + (Ω × P̂ ))) = 0 (4)

Egomotion acts as a visuomotor mapping that
converts visual information to motor measure-
ments, T (Tx, Ty, Tz) and Ω(ωx, ωy, ωz), according
to the robot’s motor and visual capabilities.

3. LEARNING A PURPOSIVE MOTOR
VOCABULARY THROUGH IMITATION

Through imitation, a robot can get the same
type of visual information used by the visuomotor
mapping to perceive and define an internal mo-
tor coding for the executed actions. Elementary
movements can be learnt and constitute a motor
vocabulary important for performing a particular
motor task. This approach allows a flexible way of
adapting the task to the available robot’s motor
capability.



In this work, we considered a mobile robot which
motion is restricted to the ground plane. Imitation
was implemented as a person-following behavior.
For simplicity, we assumed that the person to be
followed carries a distinctive green-colored rect-
angle. The target is first detected using the hue
channel of frontal images captured by a color
camera. Noise in the resulting binary image is
filtered through morphological operators and the
largest remaining blob is selected. The contour
is detected and the rectangle lines are estimated
by a robust fitting procedure. Finally, the corners
coordinates are determined from the lines inter-
section, as shown in Figure 4. A visual servoing
strategy was implemented so that the robot could
follow the green rectangle at a predefined distance
(1m) and oriented toward its center (Vassallo et
al., 2002b).

Fig. 4. The green rectangle’s corners detection.

While the robot follows a person, it uses its
visuomotor mapping (egomotion) to perceive the
movements. Then all the egomotion estimations
are classified into clusters by an unsupervised
learning method based on K-means. The number
of wanted clusters is defined by the user. Centroids
represent the learnt movements that constitute a
motor vocabulary. Labels can also be associated
to each movement as they were motor words.

Once the vocabulary is created, the robot can
recognize movements of interest and use them to
perform a desired task. Movement recognition is
done in motor space using the Euclidean distance
as the discriminant function.

4. THE TASK: TOPOLOGICAL MAPPING
AND NAVIGATION

Egomotion was considered as the visuomotor
mapping for a mobile robot and a following be-
havior was used to teach the robot a purposive
motor vocabulary. The learnt vocabulary was then
used for a specific application: building topologi-
cal maps and navigation.

For map building, the robot was guided through
the environment. During motion, the robot cap-
tures omnidirectional images to define nodes and
recognizes movements using the learnt motor vo-
cabulary to associate motor words to links in the
map. The decision of whether or not inserting
a new node in the map is taken based on a

comparison with the previously stored reference
image or changes in motion. The sum of squared
differences (SSD) is used as a metric to assess the
difference between images. Whenever a new node
is stored, the most frequently recognized motor
word is attributed to the link between that node
and the previous one.

To navigate using the created map, the robot first
auto-localize and find a path between the initial
and the goal positions. During map navigation, it
monitors its progress along the route by compar-
ing the captured images against the current image
node and the subsequent one in the path. A hill-
climbing strategy is used to determine when the
robot position should be updated.

Whenever a new node is reached, the motor word
stored in the following link determines the next
motor command. This behavior continues until
the final location is reached. Some experiments
and results are shown in the next section.

5. EXPERIMENTS AND RESULTS

The robot we used is a Pioneer DX2 equipped with
an on board computer (Pentium II MMX - 266
MHz - 128 MRAM). A color camera is used for
the following behavior and a B&W catadioptric
omnidirectional camera is used for egomotion and
mapping. The omnidirectional system is mounted
on the top of the robot with its axis coincident to
the platform’s rotation axis (see Figure 5).

X

Y

front

Fig. 5. The robot, the vision systems and the
adopted reference frame.

Some egomotion results (vectors (Tx, Ty) and ωz)
obtained by a mobile robot while moving on
the ground plane and observing its own motion
are shown in Figure 6. Estimation values and
errors calculated by comparing the results with
the nominal values are also listed in Table 1.

During the vocabulary learning phase, a set of
following experiments were done. Egomotion val-
ues were normalized and classified into clusters
defining the motor words. Because the robot is a
differential platform, just the angular velocity ωz
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Fig. 6. Examples of (a) Translation, (b) Rotation
and (c) Combined move. Egomotion vectors
(Tx,Ty) and ωz indicated in the middle of the
hemispherical flow.

(a) Translation Rotation
T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 1] Ω = [0]

estimation T̂ = [0.0128 0.9999] Ω̂ = [−0.0132]
error et = 0.734o eΩ = [−0.0132]

(b) T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 0] Ω = [−3.1255]

estimation T̂ = [0 0] Ω̂ = [−3.4965]
error et = 0o eΩ = [−0.371]

(c) T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 − 1] Ω = [3.8776]

estimation T̂ = [0.0252 − 0.9997] Ω̂ = [4.3284]
error et = 1.45o eΩ = [0.4508]

Table 1. Egomotion estimations/errors.

and the Ty component of translation correspond-
ing to the robot forward direction were considered.
Although both Tx and Ty were estimated, the
values for Tx are usually due to sliding of the robot
wheels or noise in the estimation process.

The clusters found in the (Ty, ωz) space are shown
in Figure 7. The mean values are represented by
asterisks and Voronoi lines separating the various

clusters are drawn. The centroids represent the
purposive motor vocabulary. Names were given
to each cluster defining motor words which are
detailed in Table 2.
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Fig. 7. Clusters of the created vocabulary.
Black/gray points indicate inliers/outliers.

N Motor Word Ty ωz (degress/s)

W 1 left turn 0 4.4722
W 2 front right 0.9948 -2.4749
W 3 back left -0.9927 3.8223
W 4 back right -0.9927 -3.6440
W 5 right turn 0 -4.3646
W 6 back -0.9972 0.0386
W 7 front left 0.9973 2.1350
W 8 front 0.9974 0.0488
W 9 stopped 0 0

Table 2. Motor words for each cluster.

The vocabulary in Table 2 was created with a
specific intention: topological mapping and nav-
igating. The executed path for map building is
shown in Figure 8. The places where images were
captured are indicated by asterisks.

Robot Trajectory (cm)
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Fig. 8. Robot trajectory (odometry) during map
building. Asterisks indicate map nodes.

Some navigation experiments are shown in Figure
9. The robot was asked to navigate between dif-
ferent points crossing the map and moving either
in the same or opposite direction of that used for
map creation.
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Fig. 9. Robot trajectories (odometry) when map
navigating. Asterisks are position updates.

The places where the robot updated its position
are indicated by asterisks. Although some points
correspond to the same node in the map, the
asterisks did not happen exactly at the same
coordinates but at the same region, characterizing
a qualitative navigation.

6. CONCLUSIONS AND FUTURE WORK

We proposed an approach that allows a robot
to learn a task through imitation, using motor
representations. Inspired by biology and brain
theory, a visuomotor mapping is considered to
convert visual information into motor commands
allowing the robot to relate what it sees with
how it moves and to recognize movements while
imitating another agent.

The main contributions are (i) to make a robot
able to learn through interaction sets of move-
ments that were not programmed or defined a
priori and (ii) provide a natural manner of adapt-
ing the desired application and the way it is per-
formed to the robot’s motion repertoire. This ap-
proach represents an open-ended methodology for
robot adaptation that can be applied to different
robots and applications. The visuomotor mapping
and the created motor vocabulary are defined
according to robot’s body and visual system. Also,
whenever the application or environment changes
a new set of movements can be taught.

We illustrated the approach by a mobile robot
that used egomotion as the visuomotor mapping
and that learnt, through a following behavior,
a motor vocabulary used for topological map-
ping and navigating. Omnidirectional images im-
proved both egomotion and mapping/navigation
processes, once the large field of view helps find-
ing and tracking objects and allows more of the
environment to be caught in just one image.

The obtained results are encouraging. Our future
work will focus on extending this ideas to other

robots/applications and implementing a way of
learning the visuomotor mapping instead of com-
puting it explicitly through egomotion equations.
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