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Abstract—We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more
images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to
handle most of the commonly used assumptions in a unique formulation, independent of the domain of application and type of features. It
performs correspondence and outlier rejection in a single step and achieves global optimality with feasible computation. Feature selection
and correspondence are first formulated as an integer optimization problem. This is a blunt formulation, which considers the whole
combinatorial space of possible point selections and correspondences. To find its global optimal solution, we build a concave objective
function and relax the search domain into its convex-hull. The special structure of this extended problem assures its equivalence to the
original one, but it can be optimally solved by efficient algorithms that avoid combinatorial search. This methodology can use any criterion
provided it can be translated into cost functions with continuous second derivatives.

Index Terms—Correspondence problem, linear and concave programming, sparse stereo.
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1 INTRODUCTION

ESTIMATING feature correspondences between two or more
images is a long standing fundamental problem in

computer vision. Most methods for 3D reconstruction,
object recognition, and camera self-calibration start by
assuming that image feature-points were extracted and
put to correspondence. This is a key problem and, so far, no
general reliable method exists to solve it. There are three
main difficulties associated with this problem. First, there
are no general constraints to reduce its ambiguity. Second, it
suffers from high complexity due to the huge dimension-
ality of the combinatorial search space. Finally, the existence
of outliers must be considered since features can be missing
or added through a sequence of images, due to occlusions
and errors of the feature extraction procedure.

1.1 Overview of Correspondence Methods

Correspondence can be interpreted as an optimization
problem. Each method translates the assumptions into an
objective function—criterion—and a set of constraints.

Constraints are conditions that must be strictly met.
Examples are order [19], [22], epipolar constraint [19],
[22]—rigidity as a constraint—uniqueness [7], visibility [25],
and proximity. Tracking-like algorithms [13] impose strict
proximity constraints so they should be considered as
continuous-time methods. The objective function reflects a
condition that can be relaxed, but which value should be
optimized. The most commonly used objective function is
image correlation [28], [13], [16]—image similarity assump-
tion. Other usual choices are point proximity [13], [30] or
smoothness of disparity fields [19]. Finally, correspondence
algorithms differ also in the computational framework used

to solve optimization problems. Dynamic programming
[19], graph search [22], bipartite graph matching [6], and
convex minimization [13] guarantee optimality. Nonopti-
mal approaches include greedy algorithms [29], simulated
annealing [26], relaxation [7], alternating optimization and
constraint projection [1], and randomized search [28].

Vision systems often have to deal with the existence of
spurious features and occlusions. Algorithms that explicitly
handle these situations are more likely to behave robustly.
The work in [28] presents a pruning mechanism that performs
outlier rejection in sets of previously matched features.

2 CORRESPONDENCE AS AN OPTIMIZATION

PROBLEM

We formulate the correspondence problem as an integer
optimization problem in a generic sense. In other words, it
can handle most of the commonly used assumptions using
one single formalism. Both problems of feature selection
and correspondence were designed as one single optimiza-
tion problem so both tasks are performed in an integrated
way. Furthermore, its global solution can be found avoiding
combinatorial search without having to impose additional
assumptions. We do so by relaxing the discrete search
domain into its convex-hull. The special structure of the
constraints and objective function assure that the relaxation
is exact so the result is an equivalent problem that can be
optimally solved by efficient algorithms. For the sake of
simplicity, we start with the two-image case; however, the
extension to sequences is discussed in Section 2.10.

2.1 Problem Formulation

Consider the images of a static scene shown in Fig. 1.1

Segment p1 represents feature-points on the first image and
p2 on the second—the white dots. Some of these are
projections of the same 3D points. Arrange their representa-
tions in two matrices X and Y as
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X ¼
x1;1 � � � x1;N

..

. ..
.

xp1;1 � � � xp1;N

2
64

3
75;Y ¼

y1;1 � � � y1;N

..

. ..
.

yp2;1 � � � yp2;N

2
64

3
75: ð1Þ

The N-dimensional features can represent image coordinates
of feature-points orany image-related quantity like intensities
of neighboring pixels. The type of information conveyed by
the features does not affect our formulation. The goal is to find
a correspondence between rows of X and Y.

Using the previous definitions, we formulate the corre-
spondence problem as the integer constrained minimization
Problem 1:

Problem 1.

P� ¼ arg min
P

JðX;Y;PÞ

s:t: P 2 Ppðp1; p2Þ:

J can be almost any scalar objective function—Section 2.2.
P is constrained to Ppðp1; p2Þ, the set of p1 � p2 partial
permutation matrices ðpp-matricesÞ. A pp-matrix is a permuta-
tion matrix with added columns and rows of zeros. The
optimal P� is a zero-one variable that selects and sorts some
rows of Y, putting them in correspondence with the rows of
X. For each entry, Pi;j when set to 1 indicates that features
Xi� (row i of X) and Yj� (row j of Y) are put in
correspondence. Fig. 2 shows an example. To guarantee
robustness in the presence of outliers, P must also represent
unmatched features so it cannot be a simple permutation.
pp-matrices represent, at most, one correspondence for each
feature. If row Pi� is a row of zeros, then feature Xi� does not
have matching feature in Y. If column P�j is a column of
zeros, then feature Yj� does not have a matching row in X.

Both correspondence and outlier rejection are intrinsic to
this formulation because each element of Ppðp1; p2Þ per-
mutes only a subset of all features. The global optimal
solution to Problem 1 is the best among all possible point
samples and permutations.

We generalize the usual definition of pp-matrices to
nonsquare matrices, saying that any p1 � p2 real matrix P is
a pp-matrix iff it complies with the following conditions:

zero-one : Pi;j 2 f0; 1g; 8i � p1; 8j � p2; ð2Þ

row-sum :
Xp1
i¼1

Pi;j � 1; 8j � p2; ð3Þ

col-sum :
Xp2
j¼1

Pi;j � 1; 8i � p1: ð4Þ

To avoid the trivial solution P� ¼ 0, we establish a fixed
number of correspondences pt � minðp1; p2Þ by considering
a slightly different set of matrices Ppt

p ðp1; p2Þ, the set of
rank-pt partial permutation matrices (rank-pt pp-matrices).
This set is constructed by adding (5)

rank-pt :
Xp1
i¼1

Xp2
j¼1

Pi;j ¼ pt ð5Þ

to the three previous conditions. Constraining the optimiza-
tion problem toPpt

p leads to aprocess of picking up just the best
pt correspondences. The case with pt ¼ p2 
 p1 yields a very
simple formulation which is particularly useful when very
few reliable features are extracted from the first image, while
the second image is densely sampled. We refer to the resulting
set of matrices by Pc

pðp1; p2Þ, the set of column-wise partial
permutation matrices (column-wise pp-matrices). Definitions
and properties of Ppt

p and Pc
p can be found in Appendix A.1.

2.2 Matching Criteria

Each correspondence method depends upon particular
instances of JðÞ and particular representations of X and Y.
Image correlation is one of the most popular criterion in the
literature. The goal is to determine the correspondences
that maximize the similarity between image patches on
two frames. In our case, pixel (brightness) values of
N � N windows are mapped into rows of matrix X—Fig. 3.
Likewise, rows of Y contain the window elements of the
second frame. With such a representation, any two window
correlation is just the dot product between correspondent
rows of X and Y. Thus, matrix C ¼ YXT represents all
possible window correlation values. The global problem of
maximizing all possible correlation is then to permute rows in
the second data matrix (Y) such that the sum of the diagonal
elements is maximum. In other words, the cost function is
represented by JðX;Y;PÞ ¼ �trace PYXT

� 	
. This criterion

leads to a linear cost function on the variables Pij.
Not all matching problems are modeled by linear

functions. In Section 4, we show two second order
polynomials which model calibrated stereo matching and
3D point registration. In fact, as long as it has a continuous
second derivative, any function can be used as criterion.
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Fig. 1. Two images from the Hotel sequence, with extracted corners.

Fig. 2. A partial permutation matrix representing a particular selection

and permutation of rows of Y.

Fig. 3. Data matrices for correlation matching criterion. Each 3� 3

window is lined one row of X and Y. Matrix C represents the cost of

each matching.



2.3 Reformulation with a Compact Convex Domain

Problem 1 is a brute force integer minimization problem. In
general, there is no efficient way of finding its optimal
solution. Nonetheless, there is a related class of optimiza-
tion problems for which there are efficient, optimal
algorithms. Such a class can be defined as Problem 2.

Problem 2.

P� ¼ arg min
P

J�ðX;P;YÞ

s:t: P 2 DSsðp1; p2Þ;

where J� is a concave2 version of J , (to be defined later—(17)).
DSsðp1; p2Þ is the set of doubly substochastic matrices defined by
the row-sum (3), col-sum (4), and a new condition (6):

row-sum :
Xp1
i¼1

Pi;j � 1; 8j � p2;

col-sum :
Xp2
j¼1

Pi;j � 1; 8i � p1;

real in zero-one : Pi;j 
 0; 8i � p1; 8j � p2:

ð6Þ

Set DSsðp1; p2Þ is the convex hull of Ppðp1; p2Þ, a real
compact convex set. In other words, this set results from
relaxing the integer domain of Ppðp1; p2Þ into the continuous
domain of its polytope.

Problems 1 and 2 can be shown to be equivalent3

—Section 2.5. The latter belongs to the class of concave
programming (CP) problems, which is one of the best-studied
classes of problems in global optimization—Section 3. This
new formulation has the advantage that several efficient and
practical algorithms are available for its resolution. For
example, when cost function is linear, the simplex algorithm
can be used. Most CP algorithms take advantage of the
linearity of the constraints and the concavity of the cost
function. Their efficiency is also improved if the constraints
are written in canonical form and the cost function is an
explicit polynomial.

The equivalence of these problems means that we can
guarantee that the solution of the relaxed problem is still a
p-matrix, with integer (0-1) entries. The same relaxation can
be made to Ppt

p and Pc
p—see Appendix A.1.

2.4 Outline of the Methodology

As explained before, feature point correspondences are
determined by the solution of a constrained integer optimiza-
tion problem, which is very hard to solve. On the other hand,
if the optimizing function is concave, the solution found with
relaxed constraints is the same, and this we know how to
solve efficiently. Furthermore, matching criteria can be any,
as long as features are represented by equal-length vectors
and cost functions are class C2—continuous second deriva-
tives—so that a concave equivalent can be found. Each choice
of criterion produces a particular correspondence method,
for which the global optimal solution is guaranteed to be
found with feasible computation.

An outlier rejection mechanism is directly embedded in
the formulation. Finally, prior knowledge can be included in
the form of extra support constraints that cannot be expressed

as linear equations of the variables. We use these extra
constraints to reduce the dimensionality of the problem,
while keeping the special structure of the linear constraints. In
stereo matching, for example, limiting the maximum allowed
disparity can decrease the search space dramatically. The
whole process is outlined as follows:

In the remaining sections, we will present the details.
Also, two important issues must be addressed: showing
that the integer problem (1) is equivalent to the relaxed
problem (2)—Section 2.5—and extending the formulation to
multiview—Section 2.10.

2.5 Equivalence of Problems 1 and 2

Theorem 1 states the fundamental reason for the equiva-
lence of Problems 1 and 2.

Theorem 1. A strictly concave function J : C ! IR attains its
global minimum over a compact convex set C � IRn at an
extreme point of C.

In [10], a proof is presented. The constraining set of a
minimization problem with a concave objective function can
be replaced by its convex-hull, provided that all the points in
the original set are extreme points of the new compact set.
This is what happens inDSs. In Appendix A.2, we prove that,
for a given p1 and p2, DSsðp1; p2Þ is the convex-hull of
Ppðp1; p2Þ and the set of vertices of DSsðp1; p2Þ is exactly
Ppðp1; p2Þ. A crucial part of this demonstration consists on
showing that DSs is an integral polytope—all vertices have
integer coordinates.

Note that the cost function JðPÞneeds not to be concave by
construction, since we also present a way of building a
concave equivalent J�ðPÞ. Fig. 4 summarizes the whole
process. It remains valid in the presence of the rank-fixing
constraint because the vertices of Spt

s ðp1; p2Þ are exactly the
elements of Ppt

p ðp1; p2Þ and the vertices of Sc
sðp1; p2Þ are the

elements of Pc
pðp1; p2Þ—see Appendix A.2.

Relaxing the constraints of a combinatorial problem into its
convex-hull is a well-known method of simplifying its
solution [18]. This is particularly useful in problems with
constraining integral polytopes because the relaxation is exact
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2. Symmetric of a convex.
3. Two optimization problems are equivalent when they have the same

global solution. Fig. 4. Efficient solution to the combinatorial problem.



[10]. This means that the optimal solution of the relaxed
problem is still an integer, so there is no need to project the
solution on the neglected 0-1 constraints—e.g., rounding.
Fig. 5 shows one example.

Exact relaxation is often regarded as an academic
exercise because useful constraining polytopes are seldom
integral. A classical exception is the set of doubly stochastic
matrices, which is an integral polytope [9], [2]. It is the
convex-hull of the set of permutation matrices.

2.6 Constraints in Canonical Form

Most concave and linear programming algorithms assume
that problems have their constraints in a special way, called
canonical form. We will now express the constraints that
define the hypercube DSs, in the canonical form. We restate
Problem 2 as

Problem 3.

P� ¼ arg min
P

J�ðX;P;YÞ

s:t: Aq � b; q 
 0

q ¼ vecðPÞ:

The natural layout of the variables is a matrix P, so we use
q ¼ vecðPÞ, where vecðÞ stacks the columns of its argument
into a column vector. The row-sum condition (3) can now be
written as

Xp1
i¼1

Pi;j � 1 , P:1½p2�1� � 1½p1�1�: ð7Þ

Applying the vecðÞ operator [9] to both sides of this
inequality, we obtain

1>
½1�p2� � I½p1�


 �
q � 1½p1�1�; ð8Þ

where � is the Kronecker product and (3) becomes
equivalent to A1q � b1 with

A1 ¼ 1>
½1�p2� � I½p1�; b1 ¼ 1½p1�1�: ð9Þ

We can write similar inequalities for (4) and (5) and (32) of
Appendix A.1, which are used in the definitions of Spt

s and
Sc
s . In conclusion, we define

P 2 DSs , qi 2 IRþ
0 ; 8i ^

A1

A3

� 

q �

b1

b3

� 

; ð10Þ

P 2 Spt
s , qi 2 IRþ

0 ; 8i ^

A1

A3

A4

A5

2
6664

3
7775q �

b1

b3

b4

b5

2
6664

3
7775; ð11Þ

P 2 Sc
s , qi 2 IRþ

0 ; 8i ^
A1

A2

A3

2
64

3
75q �

b1

b2

b3

2
64

3
75: ð12Þ

using

A2 ¼ �1>
½1�p2� � I½p1�; b2 ¼ �1½p1�1�; ð13Þ

A3 ¼ I½p2� � 1>
½1�p1�; b3 ¼ 1½p2�1�; ð14Þ

A4 ¼ 1>
½1�p1p2�; b4 ¼ pt; ð15Þ

A5 ¼ �1>
½1�p1p2�; b5 ¼ �pt: ð16Þ

2.7 Concave Equivalent to a Class C2 Cost Function

We will now describe how to find a concave function J� :

DSsðp1; p2Þ ! IR having the same values of the original JðÞ at

every point of Ppðp1; p2Þ. We will only guarantee concavity

inside the polytope DSsðp1; p2Þ, not over the entire IRp1p2 , but

this is enough to verify the conditions of Theorem 1.
Consider our canonical optimization problem (Problem 3),

where JðqÞ is a class C2 scalar function. Each entry of its

Hessian is a continuous function HijðqÞ. The concave version

of JðqÞ is

J�ðqÞ ¼ JðqÞ �
Xp1p2
i¼1

�iq
2
i þ

Xp1p2
i¼1

�iqi: ð17Þ

Since P 2 Pp, all entries Pij are either 0 or 1. The two extra

terms in (17) cancel, so we conclude that J�ðqÞ ¼ JðqÞ
whenever q ¼ vecðPÞ and P 2 Pp. On the other hand,

Ppðp1; p2Þ is bounded by hypercube

B ¼ q 2 IRp1p2 : 0 � qi � 1; 8if g:

All HijðqÞ are continuous functions, so they are bounded

for q 2 B—Weierstrass’ theorem. This means that we can

always choose a set of finite values �i, defined by

�i 

1

2
max

q

Xp1p2
j¼1;j6¼i

HijðqÞ
�� �� !

þ max
q

HiiðqÞð Þ
" #

; ð18Þ

which impose a negative strictly dominant diagonal to the

Hessian of J�, that is, to say,

@2J�ðqÞ
@q2i

< �
Xp1p2

j¼1;j6¼i

@2J�ðqÞ
@qi@qj

����
����; 8i: ð19Þ

A strictly diagonally dominant matrix having only negative

elements on its diagonal is strictly negative definite [9], so

these values of �i will guarantee that J�ðqÞ is concave for

q 2 B and, consequently, also for q 2 DSsðp1; p2Þ. The same

is true for Ppt
p ðp1; p2Þ and Pc

pðp1; p2Þ sets. Fig. 6 illustrates this

process for a simple 1D example.
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Fig. 5. Minimum of a concave function over a convex compact set is

always a vertex.



2.8 Inclusion of other Constraints

In this section, we describe how to complement Problem 3
with constraints that cannot be expressed as linear equations
on the variables. The use of a priori conservative con-
straints—like epipolar or bounds on the disparity— reduces
the dimensionality of the problem and the number of
ambiguous solutions. As an example, with 50 points in each
image, searching for the 20 best correspondences creates a
search space with size 1033. Imposing constraints on the
possible candidates in the example of Fig. 7, the search space
decreases to 109.

This type of a priori knowledge can be represented
within our framework. First, express the new constraints by
an indicator matrix S—Fig. 7. S is the support of solution
P�. If entry ði; jÞ of S is set to 0, then entry ði; jÞ of variable P
is permanently set to 0. This means that point i on the first
image cannot correspond to point j on the second image.
On the other hand, entry ði; jÞ of S is set to 1 if entry ði; jÞ of
P should remain as a variable.

Then, we squeeze vector q, eliminating all entries set to 0.
Thus, we obtain a new variable qc of dimension n ¼

P
i;j Sij.

This new variable is such that q ¼ Bqc, where B is
p1p2 � n½ � row-wise pp-matrix—the transpose of a column-

wise pp-matrix—such that vecðSÞ ¼ B:1>½n�1�. Finally, the
new constraints are implicitly included in Problem 4
through variable qc

Problem 4.

qc� ¼ arg min
qc

J�ðX;Y;BqcÞ

s:t: ABqc � b; qc 
 0:

In Appendix A.3, we show that these constraints also define
an integral polytope—vertices remain integer—so that the
0-1 relaxation is still valid.

2.9 Feature Rejection in All Images

In a general case, features on the first image can be rejected
using PP>X. If P is a fixed-rank pp-matrix, then PP> is
an identity matrix with some zeros on the diagonal, so
points on the first image are rejected wherever P has a row
of zeros. Though effective, this rejection mechanism most
times produces cost functions of higher degree. One
exception is the linear cost function of Section 4.1.

2.10 Handling Image Sequences

With F frames, feature-points are extracted and arranged in
F matrices Xf ; f ¼ 1; . . . ; F . Correspondences are repre-
sented by a set of F � 1 pp-matrices collected in variable
IP ¼ P1 j � � � j PF�1½ � and Problem 1 is extended to

Problem 5.

IP� ¼ arg min
IP

JðX1; . . . ;XF ; IPÞ

s:t: P1; . . . ;PF�1 2 Pp:

The obvious consequence is an increase on the dimension-
ality and number of constraints. Furthermore, putting the
cost function in explicit polynomial form may become even
harder. The relaxation to DSs constraints is straightfor-
ward. The new vectorized variable is q ¼ vec IPð Þ, so the
canonical constraint matrix A is block-diagonal with blocks
A1; . . . ;AF�1. A block diagonal matrix with TU blocks is
also TU—Appendix A.4—so the relaxation is still exact.

3 CONCAVE PROGRAMMING FOR DSs PROBLEMS

To minimize nonlinear concave cost functions constrained to
convex sets, we cannot rely on local methods because many
local minima may occur. Instead, we apply global optimization
algorithms that exploit both the concavity of the cost function
and the convexity of the constraining set. In [14], we give
detailed descriptions of three such algorithms which were
used in our experiments.

Concave programming is the best studied class of
problems in global optimization [10], [21], so our formula-
tion has the advantage that several efficient and practical
algorithms are available for its resolution. Among existing
optimal methods, cutting-plane, and cone-covering [17]
provide the most efficient algorithms, but these are usually
hard to implement. Enumerative techniques [20] are the
most popular, mainly because their implementation is
straightforward.

Recently, special attention has been paid to suboptimal
concave minimization algorithms. Júdice and Faustino [11]
describe implementations of Frank and Wolfe and Keller
algorithms and claims good performances in large-scale
sparse problems. Simulated Annealing [3] is also having
growing popularity.

We implemented the method of [4]. As iterations run, the
current best solution follows an ever improving sequence of
extreme points of the constraining polytope. On each
iteration, global optimality is tested and a pair of upper and
lower bounds are updated. Worst case complexity is
nonpolynomial but, like the simplex algorithm, it typically
visits only a fraction of the extreme points. Our implementa-
tion takes advantage of the sparse structure of the constraints
and deals with redundancy and degeneracy using the
techniques of [12].

4 EXPERIMENTS

In this section, we consider some of the most frequently
used assumptions for correspondence and cast them in our
global correspondence framework. Each main assumption
results on a particular correspondence method, suitable for
a given application. For each considered assumption, we
develop an explicit cost function and describe the details of
the resulting method. Finally, the implementation difficul-
ties are discussed.4
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4. Code available at http://www.isr.ist.utl.pt/~maciel/code.html.

Fig. 6. Finding J�ðqÞ, concave in 0; 1½ � and such that
J�ðqÞ ¼ JðqÞ;8qi 2 0; 1f g.



4.1 Correlation Matching

Matching by correlation of image patches is the most popular
method for stereo correspondence. It is well-suited to solve
situations with short baselines and small photometric distor-
tion. This criterion provides the simplest formulation of the
correspondence problem so it can be efficiently used to match
large numbers of features. However, other assumptions must
be used in order to solve emerging ambiguities and perform
outlier rejection. Our formulation solves both problems in a
natural way.

Features consist of image patches with N pixels centered
around the previously segmented points of interest. Row i
of X (and Y) is the row vectorization of a patch around the
ith feature-point of the first (and second) image. We
normalize the rows of X and Y to zero mean and unit
norm, producing matrices X̂X and ŶY. The sum of the
correlation coefficients of the rows of X and Y is given by
the matrix inner product of X̂X and ŶY. The objective function
of this method is

JcorrðPÞ ¼ �tr PŶYX̂X>� 	
: ð20Þ

Using algebraic properties of the trace operator [9], we
obtain

JcorrðqÞ ¼ �vec X̂XŶY>� 	>
q ð21Þ

which is linear in q ¼ vecðPÞ. Problem 3 of Section 2.6 with
this linear cost function was solved using a simplex algorithm.
Our implementation takes advantage of the sparse
TU structure of the constraints and deals with degeneracy.

Note that this problem cannot be directly solved using
bipartite matching. Weighted bipartite matching [8] finds
only perfect matches (pt ¼ minðp1; p2Þ). In unweighted
bipartite matching, feature rejection hinges on the right
threshold setting [5] and cannot optimize the criterion of (21).

4.1.1 Experiment with Real Data

In this first example, we illustrate the whole extent of the
methodology using a linear cost function. In particular, we
start with a set of automatically selected features, perform
feature rejection in all images, and use prior knowledge to
reduce the search space (support constraints).

We selected six images from the Hotel sequence—Fig. 1.
This image sequence presents two challenges: First, all
image pairs have high disparity so proximity constraints
cannot be used. Second, there are repeated image-patterns
so correlation criterion is highly ambiguous.

The experiment assumes we know a coarse estimate of the
Fundamental matrix between consecutive views—epipolar
constraints. An edge detection algorithm was used to segment
5,000 feature-points on each image. Support matrices were

built which eliminate candidates farther than seven pixels
from the epipolar lines, thus reducing the dimensionality of
the global problem. Correspondences between consecutive
image pairs were computed by optimizing the correlation cost
function of (21) using the simplex algorithm. pt was set to 3,000.
We thenlooked for features with correspondence across all six
images and built a feature track matrixW suitable for Tomasi-
Kanade’s factorization method [27] with 1,000 observations.
The row space ofWwas computed by SVD and the 100 points
most distant to its rank-3 subspace were removed. This was
done to remove possible outliers. Finally, the factorization
method was applied to the remaining 900 points.

The results in Fig. 8 show the reconstruction from the
computed matches. Each linear problem was solved in a
fraction of a second by a simplex algorithm running on a
Pentium processor. Inspection of the images of Fig. 8 does
not reveal any evident spurious point nor major global
distortion on the reconstruction. In the next sections, we
evaluate the performance of this method qualitatively.

4.1.2 Performance Evaluation

We compared the performance of this method against the
procedure of [28].This benchmarking methodbuilds an initial
list of candidate pairs using a greedy correlation algorithm.
These candidates are pruned for outliers using a random
sampling algorithm with an extra rigidity assumption. The
outlier rejection algorithm randomly chooses small sets of
feature pairs to estimate Fundamental matrices. It then
computes the median distances between points and corre-
sponding epipolar lines and chooses the Fundamental matrix
that minimizes this criterion. We propose to replace the initial
greedy stage by our optimal method and measure the gain in
robustness.

We selected one image pairs with large disparity from
the Kitchen sequence.5 Images were corrupted with zero-
mean Gaussian noise with increasing standard deviation.
We then applied a corner detector that locally tuned the
position of a set of 75 manually segmented feature points. A
second data set was built adding spurious points—Fig. 9. In
this section, we impose exactly one match for each point on
the first image (pt ¼ p1). Later on, we study how the method
behaves with varying pt.

We measured the number of incorrect matches returned
by the two algorithms in repeated experiments performed
on data with increasing levels of noise. The results are
summarized on Figs. 10 and 11. In the case of 75 features
plus 150 outliers, the cardinality of Ppðp1; p2Þ is roughly
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5. Data was provided by the Modeling by Videotaping group in the
Robotics Institute, CMU.

Fig. 7. An example of a support matrix representing the epipolar constraint. Feature 13 on the left produces the right epipolar line. All candidate

matching points must be within a certain threshold distance from the line. All other possibilities are not allowed.



10260. Exhaustive search would be impractical, while the

simplex algorithm visits less than 500 solutions. A total of

65,100 experiments were performed.
The original method of [28] consistently produced higher

number of mismatches, especially when outliers are present.
We observed that, when the greedy algorithm returns more
than 40 percent of outliers among the candidates, the
validation procedure starts rejecting many good matches.
This tends to raise the percentage of wrong matches.

The simultaneous rejection and correspondence of
features is a reliable strategy. The reconstruction in Fig. 12
was obtained in spite of 50 percent outliers in data and
noise with 50 percent of the signal standard deviation. With
such an amount of image noise, the corner detector
returned features with location errors up to eight pixels.
These errors produced a highly distorted reconstruction but
the correspondences were all correct.

4.1.3 Sensitivity to the Number of Selected Features

The theory of this paper revolves around the idea of finding
an optimal subset of correspondences from the set of all
possible candidates. However, nothing has been said about
the size of this subset. In other words, one must know what is
a “reasonable” value for pt. To have a more precise estimate,
we ran a sensitivity test to evaluate how well the method
performs as a function of the number of required matches.

Fig. 13 shows the percentage of wrong matches (number
of wrong matches =pt) versus pt. The experiment was done
with images shown in the previous section. For each value
of pt, the graph shows the average number of mismatches in
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Fig. 8. Three views of a 3D cloud with 900 points.

Fig. 9. Two images—480� 512 pixels, 256 gray levels—from the Kitchen

sequence with spurious features. Wireframe is for better perception only.

Fig. 10. The average number of incorrect matches found in 100 trials for

increasing levels of data corruption. Fig. 11. Comparison of two profiles from the plots of Fig. 10.



80 runs with different noise sample and outlier features.
The important factors are also depicted in Fig. 13. There are
zero errors even when pt is close to the maximum number
of available correct features. The number of wrong matches
increases when there are no more correct features available
for matching. For small values of pt, the number of
mismatches also grows. Though image dependent, the
errors grow for fewer required matches. This is due to an
increase in ambiguity since there are many features that
look alike for the few required correspondences. In other
words, if the number of candidates is large and the required
number of matches is small, there are a lot more
possibilities of finding a wrong match with high correlation
for every feature. The strong constraint of global matching
does not make much of a difference here. Under these
circumstances, the limitation is more on the criterion itself
that does not discriminate features then on the method.

4.2 Matching in a Calibrated Trinocular System

Consider a trinocular system in generic configuration—-
focal points are not colinear—for which we know all
Fundamental Matrices. Fig. 14 shows the notation. Each
Fundamental matrix Fk;l defines pl epipolar lines Lm

k;l; m ¼
1; . . . ; pl on image k. A point on image k corresponding to
the mth point on image l must lie close to Lm

k;l. We
arrange the distances between every possible pair of point
and the epipolar line in matrices D1;2, D2;3, and D1;3.
Dk;lði; jÞ contains the distances between points i ¼
1; . . . ; pk of image k and the epipolar lines Lj

k;l.
We want to compute a set of correspondences that

minimize the sum of distances between each point and the
corresponding epipolar line. The variable of this problem is
IP ¼

�
P>

1;2 j P2;3

�
. We close the loop by estimating the

compound correspondence P̂P1;3 ¼ P1;2P2;3. The objective func-
tion is

Jtri ¼
Xp1
i¼1

Xp2
j¼1

P1;2 �D1;2 þP2;3 �D2;3 þ P̂P1;3 �D1;3

� 	
þ ! JcorrðP1;2Þ þ JcorrðP2;3Þ þ JcorrðP̂P1;3Þ

� �
;

where � is the element-wise product. The addition of
correlation terms Jcorr—Section 4.1—is used to remove
ambiguities. The value of weight ! is chosen experimentally.
By algebraic manipulation, we obtain the quadratic objective
function

Jtri qð Þ ¼ q>Jtriqþ c>triq ð22Þ

with q ¼ vec IPð Þ. We reduce the dimensionality of the
problem using the support matrices Sk;lði; jÞ ¼ Dk;lði; jÞ �
"; 8i; j (see Fig. 14). An entry ði; jÞ of Sk;l is set to 1 if the ith
point on image k is close toLj

k;l. These constraints are included
in the problem as described in Section 2.8. We recover each
one of the full variables through vec Pk;l

� 	
¼ Bk;l p

c
k;l.

Jtri is, in general, not concave, so a concave version J�

was computed using (17) and (18) before the minimization
algorithm was applied.

4.2.1 Results

We applied the described method to the images of Fig. 15.
Points were extracted by an edge detector with a bucketing
procedure to increase feature sparsity. A total of 500 points
were extracted from the first image and 1,500 from the
remaining. The second and third images contain, at least,
1,000 outliers, so the problem was solved in the presence of
more than 65 precent of outliers in the data.

We then manually segmented 20 points from each image,
and used them to compute fundamental matrices between
each pair of images. The width of the epipolar bands was
set to 15 pixels because of large errors on the fundamental
matrices and large distances between consecutive points on
an edge. Maximum disparity was set to 50 pixels.

The quadratic problem was solved, taking more than
30 minutes of CPU time. The result was an observation
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Fig. 13. Testing the senstivity of pt. The vertical line represents the

maximum number of correct canditates available.

Fig. 14. Notation for a trinocular system.

Fig. 12. Wireframe and texture-mapped VRML reconstructions using

50 percent of outliers in data, and noise with 50 percent of images

standard deviation.



matrix W with 500 observations. The row space of W was
computed by SVD, and the 50 points most distant to its rank-
3 subspace were removed. This was done to remove existing
outliers. Finally, the factorization method was applied to the
remaining 450 points. The resulting reconstruction is shown
in Fig. 15.

We could find some wrong matches. Given the scene
complexity it is hard to fully evaluate its performance. There
is also a large amount of noise on the reconstructed points.
When several candidates exist on the intersection of two
epipolar bands, they are disambiguated using the correlation
term of the cost function. Correlation is not a good criterion to
match edges because of directional uncertainty. To correct
this, either better estimation of the epipolar geometry or a
different disambiguating criterion should be used.

4.3 2D Point Registration

In this section, we describe one method to performing 2D
image registration with affine models. We propose to search
in correspondences that best 2D affine transformation of the
first image feature-point set. We also describe a lip-tracking
application. Figs. 16 and 17 show one example. Also, this
experiment reveals the importance of a good design of JðÞ.
In many situations, we can solve the same problem with
much simpler models which, in the computational domain,
can make quite a difference.

Fig. 16 illustrates how to represent row and column
coordinates of feature points in matrices X (and Y). Our
goal is to find a pp-matrix P� such that CX 6 CP�Y are
related by a linear transformation (in the LSE sense). This is
translated into the following cascaded optimization pro-
blem, where L is the 2D linear transformation:

Problem 6.

P� ¼ arg min
P

min
L

CX�CPYLk k2
� �

s:t: P 2 Pc
pðp1; p2Þ:

This problem is equivalent to choosing P such that the
observation matrix

WP ¼ CX j CPY½ � ð23Þ

is rank-2. Matrix CX spans the whole subspace where the
observations lie. We can a priori compute �—the orthogo-
nal projector7 onto the column space of CX—and use it in
the objective function

J2DðPÞ ¼ k�CPYk2: ð24Þ

The maximum of this second order polynomial solves the
registration problem. Since there is no rejection of model
points, this problem is equivalent to minimizing the
projection on the null space of CX. In practice, we use the
following approximation

~JJ2DðPÞ ¼ �uCPuj j þ �uCPvj j þ �vCPuj j þ �vCPvj j;
ð25Þ

where�u and�v are basis vectors of the column space ofCX,
and u and v are the two columns of CY. This is equivalent to
solving a linear problem with objective function

~JJi
2DðPÞ¼ ! �uCPuð Þ ! �uCPvð Þ! �vCPuð Þ! �vCPvð Þ

ð26Þ

for all 16 possible sign combinations. We solve all 16 linear
problems, set the signs that make all terms positive and
choose the solution with largest objective.

4.3.1 Results

We applied the described method to a sequence of images of a
talking person. A set of 20 feature points was manually
extracted on the first image—Fig. 16. This set of points is the
shape model. On each subsequent image, 130 edge points
were automatically extracted around the mouth area, and
used to build the objective function of (26). Fig. 17 shows
extracted points on five of the 20 test images. Matched points
are marked with bigger dots. The last image was artificially
rotated, to test situations with large deformations and
disparities. The linear problems were solved using a simplex
algorithm and the proper solution chosen. Finally, matched
points were used to estimate the linear deformation L of
Problem 6. Each frame took around 8 seconds of processing
time on a Pentium processor. This is dramatically shorter time
than what it takes for the higher-order problems like
trinocular stereo.

We compared the performance of this method with three
well-known, simple and effective methods for matching
2D point patterns and curves. The first method is Iterative
Closest Point (ICP) [30]. This method finds the closest points
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Fig. 16. Lip tracking template.

Fig. 15. Church images, extracted points and views of the generated 3D

could with 450 points.

6. Matrix Cp1�p1 ¼ I � 1
p1
1p1�p1 centers feature coordinates to zero mean

(centroid). The translation component is eliminated. 7. � ¼ XðXTXÞ�1XT projects vectors on the spanðXÞ



betweenthetwoimagessatisfyingamaximumtoleranceDmax

for distance. It then removes outliers through a statistical

analysis of distances. Rigid motion is then computed solving a

system of equations in least-squares sense. We computed a

full affine transformation of the centered data, instead. The

computed transformation is then applied to all points. The

procedure is iterated until it converges.
The second benchmark method was proposed by Scott

and Longuet-Higgins [23]. This method uses the principles

of proximity and exclusion (one-to-one match). It minimizes

the sum of squared distances between matched points. It

starts computing a Gaussian-weighted distance matrix

Gi;j ¼ e�
X1

i
�X2

jk k2

2(2
; ð27Þ

where xf
i is the coordinate vector of the ith feature from

frame f . An affinity matrix is then computed by P ¼ UV>,

where columns of U and V are the left and right singular

vectors of G. Large entries of P indicate strongly coupled

features, so they are considered good matches, as long as

the uniqueness constraint is held.
The third and final method was proposed by Shapiro

and Brady [24]. It is a modification of the previous method,

intended to solve situations with large translation, rotation,

and scaling. It starts measuring intraframe point distances

and uses them to compute the symmetric matrix:

Hf
i;j ¼ e�

X
f
i
�X

f
j

��� ���2

2(2
: ð28Þ

Each frame is represented by matrix Uf with the singular

vectors of Hf . The first elements of each row of U are the

coordinates of a point in the reference system of the

principal modes of the point set. Correlation between all

possible pairs of rows of U is computed and the results are

stored in an affinity matrix P that is used like in the method

of Scott and Longuet-Higgins.
To compare the performance of all four algorithms, we

computed the average distance between computed matches

and manually segmented ground truth points. The results

are shown in Fig. 18.
Fig. 18 clearly shows that our method is more robust. In

return, it requires slightly heavier computation. Among all

the benchmark algorithms, ICP is the best suited for this

application. Both the first and second benchmark methods

use proximity as the major criterion. They clearly fail on the

last image because they get stuck on local minima. The large

rotation is never captured. The last algorithm fails because

of the large number of spurious points, which affects the

shape modes.

4.4 3D Point Registration

In this section, we describe a method of performing 3D point

registration, similar to the 2D registration of Section 4.3.

Noncontact 3D reconstruction systems provide only partial

views of the objects that must be combined in complete

descriptions.
We group the 3D point coordinates in matrices

X ¼
x1
1 y11 z11
..
. ..

. ..
.

x1
p1

y1p1 z1p1

2
64

3
75;Y ¼

x2
1 y21 z21
..
. ..

. ..
.

x2
p2

y2p2 z2p2

2
64

3
75: ð29Þ

The goal is to find a 3D rigid transformation that aligns a

fraction of these points, and reject nonoverlapping points.

We propose to search for a general linear transformation

that aligns subsets of the data, solving Problem 7, where L

is a 3D linear transformation.

Problem 7.

P� ¼ arg min
P

min
L

CX�CPYLk k2
� �

s:t: P 2 Ppðp1; p2Þ:

With 3D data, the approximate linear cost function—(26)—

transforms to

~JJi
3DðPÞ ¼ ! �xCPxð Þ ! �xCPyð Þ ! . . .! �zCPzð Þ; ð30Þ

where�x,�y, and�z are basis vectors of the column space of

CX, and x, y, z refer to the second set. There are 512 possible

combinations of signs. Again, we solve all the 512 linear

problems, set the signs that make all terms positive, and

choose the solution with largest objective.
In order to eliminate points on both sets, we use

Ppt
p ðp1; p2Þ constraints. Points with large coordinate values

are priviledged, so wrong solutions appear when pt is

small. On the other hand, when pt is close to p1, some

spurious points are not eliminated.
To overcome this difficulty, we set pt to 90 percent of p1

and used a ransac procedure to find the most consistent

points. We solved Problem 7 using several random samples

of the first data set. The resulting transformations were

applied to all the data and points with close matches were

voted. After a number of trials, points with highest scores

were used to compute a final rigid transformation.
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Fig. 18. Performance of four different lip-tracking algorithms.

Fig. 17. Extracted edges on five of the 20 test images. Matched edges

are marked with bigger dots.



4.4.1 Results

We used a structured-light 3D reconstruction system to build

three clouds of 3D points—Fig. 19. The set in the middle is

reference X.
Each set containsaround1,600points, fromwhich 300were

randomly selected. The ransac procedure consisted of 30 trials,
each randomly choosing p1 ¼ 100 points from the reference
set. Support constraints for disparity bounds were added to
reduce problem dimensions down to 6,000. Linear problems
were solved in approximately 1.2 seconds. On each one of the
30trials, thebest500points werevoted.At the end,points with
more than 10 votes were used in a final problem. The resulting
matches were used to compute the desired rigid transforma-
tion. Finally, an ICP-like algorithm was used to refine the
registration. It measures distances between points in one set
and linearly interpolated surface patches on the other. It uses
local least-squares to compute the rigid transformation that
minimizes the sum of the 30 percent smallest distances. Fig. 20
shows the registration of the three data sets.

When point sets are related by large transformations and
contain many spurious points, ICP and similar methods fail,
except if a good initial guess is provided. The proposed
method is suitable to automatically provide such initial
guesses, but requires heavy computation.

The biggest practical difficulty in 3D registration is the
fact that, usually, many spurious points must be eliminated
from all data sets. Furthermore, there is usually no exact
match between data sets. To solve such situations with
precision, point sets should first be interpolated and cost
functions should be computed using interpolated values.

Finally, performing surface interpolation on registered
point clouds becomes a new problem because topological
information is lost.

5 CONCLUSION

We have shown a methodology to solve the correspondence
problem, which avoids unwanted assumptions by requiring
their explicit statement. Furthermore, it reliably handles
outliers, even in situations where other robust methods fail.

The most important limitation of the methodology is the
dimensionality of the optimization problems, especially
when the objective functions are high-order polynomials. A
practical way of minimizing this is the inclusion of additional
a priori constraints, with minor changes to the underlying
formulation of the problem. Ongoing work is being con-
ducted on the implementation of an efficient algorithm for
high-order polynomial problems. These will allow us to deal
with the assumption of rigidity under various camera
models—see [15].

APPENDIX A

PARTIAL-PERMUTATION AND RELATED MATRICES

A.1 Definitions

As stated in Section 2.1, we generalize the usual definition
of pp-matrices to nonsquare matrices, defining them using
(2), (3), and (4).

A ½p1 � p2� pp-matrix P is rank-pt iff it also complies
with (31)

Xp1
i¼1

Xp2
j¼1

Pi;j ¼ pt: ð31Þ

The set of rank-pt pp-matrices of dimension p1 � p2 is denoted
byPpt

p ðp1; p2Þ. The case pt ¼ p2 
 p1 is simpler because (4) and
(31) can be changed to a single (32):

Xp2
j¼1

Pij ¼ 1 ; 8i ¼ 1 . . . p1: ð32Þ

The resulting set of matrices Pc
pðp1; p2Þ is denoted as the set

of column-wise partial permutation matrices.
As stated in Section 2.3, we define DSs—the set of doubly

substochastic matrices—by (3), (4), and (6). Appendix A.2
shows that, for given p1 and p2, DSs is the convex-hull of Pp,
and that every element of Pp is a vertex of DSs.

The convex-hull of Ppt
p is Spt

s —rank pt doubly substochastic
matrices. It is defined by (3), 4), (6), and (5). As shown in
Appendix A.2, for given p1, p2, and pt, the vertices of Spt

s

belong to Ppt
p and every element of Ppt

p is a vertex of Spt
s .

Finally, Sc
s stands for the set of column-wise substochastic

matrices. It is the convex-hull of Pc
p, and is defined by (3), (4),

and (6). In Appendix A.2, it is shown that Sc
s is the convex-

hull of Pc
p, and that every element of Pc

p is a vertex of Sc
s .

A.2 Integral Property of DSs and Related Sets

In this section, we prove the following propositions

Proposition 1. For given p1, p2, the elements of Ppðp1; p2Þ are
the vertices of DSsðp1; p2Þ.

Proposition 2. For given p1, p2, the elements of Ppt
p ðp1; p2Þ are

the vertices of Spt
s ðp1; p2Þ.

Proposition 3. For given p1, p2, the elements of Pc
pðp1; p2Þ are

the vertices of Sc
sðp1; p2Þ.

These results are generalizations of Birkhoff’s theorem—see
[9], [2], [18]—which states that the set of n � n doubly stochastic
matrices is a compact convex set whose extreme points are
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Fig. 20. Two views of the registered 3D data sets.

Fig. 19. Three point sets to be registered.



permutation matrices. Our proofs are inspired in the
approach of [18].

All three results comprise a necessity and a sufficiency
condition. We need to prove that being an element of
Ppðp1; p2Þ is both a sufficient and a necessary condition for a
p1 � p2 matrix to be an extreme point of DSsðp1; p2Þ. In
Appendix A.2.1, we prove that every element of Pp is an
extreme point of DSs—sufficiency—showing how to write
any dss-matrix as a convex combination of pp-matrices. This
also proves that DSs is a bounded convex polytope. By the
same token, we can prove sufficiency for Ppt

p and Pc
p, so we

omit this step. Necessity is proven in Appendix A.2.2,
showing that vertices of DSs, Spt

s , and Sc
s have integer

coordinates. Since they are constrained to the interval 0; 1½ �,
then they can only be either 0 or 1 so (2) is satisfied by the
vertices.

A.2.1 Sufficiency

Consider thatP is a ½p1 � p2�pp-matrix. If we suppose thatP is
not an extreme point of DSsðp1; p2Þ, then it will be possible to
find two matricesP1;P2 2 DSsðp1; p2Þ such thatP1 6¼ P2 6¼ P
and two positive scalars *1; *2 with *1 þ *2 ¼ 1 such that
*1P1 þ *2P2 ¼ P. Nonnegativity conditions assure that the
entries of P1 and P2 that correspond to zeros of P are zero.
Since P has, at most, one nonzero entry per row and per
column, then the same happens to P1 and P2. Their row and
column sums are lower or equal than 1—they belong to
DSs—so every nonzero entries must be equal or smaller than
1. The only solution left isP1 ¼ P2 ¼ Pwhich contradicts the
initial assumption.

A.2.2 Necessity

We now show that the constraint matrices of (10), (11), and
(12), that define DSs, Spt

s , and Sc
s , satisfy the conditions of

Theorem 2—proven in [18].

Theorem 2. If A is a Totally Unimodular (TU) matrix of size
m � n, then the polytope C ¼ q 2 INn : Aq � bf g is integral
for all b 2 ZZm for which C is not empty.

A matrix A is TU if the determinant of every square
submatrix of A is 0, 1 or �1. To show that a given A matrix
is TU, we use the following result, also proven in [18].

Theorem 3. A is an m � n TU matrix iff for each of its row
selections using row index set I " 1; . . . ; mf g, there exists a
partition I1; I2 of I such that

X
i2I1

aij �
X
i2I2

aij

�����
����� � 1; 8j ¼ 1; . . . ; n ð33Þ

We know in advance that DSs, Spt
s , and Sc

s are not empty.
Also, the definitions of these polytopes use integer b vectors
—(9), (13), (14), (15), and (16). Therefore, showing that their
A matrices satisfy (33) ensures that the conditions of
Theorem 2 are met and, therefore, that DSs, Spt

s , and Sc
s are

integral polytopes.

A.2.3 Integral Property of DSs

The matrix A of (10) satisfies the conditions of (33) if, for
every row selection I, we choose a partition so that I1 selects
only rows from block A1 and I2 selects only rows from
block A3. Each block contains at most one nonzero element
per column, so (33) always holds. Since A is TU, b is an

integer, and DSs is not empty, then all the vertices of DSs

are integer.

A.2.4 Integral Property of Spt
s

MatrixA of (11) satisfies the conditions of (33) if, for each row
selection I, we choose a partition so that column sums will be

constrained to �1; 0; 1f g. We do so the following way:

If I does not include neither A4 nor A5: Build the partition as in

Appendix A.2.3, that is, I1 should include only rows from

block A1 and I2 should include only rows from block A3.

If I includes both A4 and A5 simultaneously: Put all rows from
A1 in I1 and the remaining in I2—from A3, A4, and A5.

Note that every column contains entries 1 and �1 that
cancel out.

If I includes A4 but not A5: Put A1 and A3 in I1. I2 will

indicate a single row A4. The I1 part of each column will

sum either 0, 1, or 2, and every column will be subtracted

by an entry 1 from I2.

If I includes A5 but not A4: Put all rows in I1 and leave I2
empty.

A.2.5 Integral Property of Sc
s

The matrix A of (12) is in the conditions of (33). For each

row selection I, choose a partition in the following way:

If I does not include A2: Choose a partition like for DSs.

If I includes bothA1 andA2: Choose a partition like forDSs and

put all the rows of A2 in the same partition as those of A1.

If I includes A2 but not A1: Choose a partition like for DSs and

put all the rows of A2 in the same partition as those of A3.

A.3 DSs with Support Constraints Remains Integral

In this section, we show that the constraints of Problem 4 in
Section 2.8 still define an integral polytope. This is enough

to show that the solution of Problem 4 is an element of
Pp—or Ppt

p or Pc
p. In Appendix A.2.2, we show that it is only

required that the constraint matrix AB remains Totally
Unimodular (TU). Note that B is a submatrix—a column
selection—of a p1p2 � p1p2½ � identity matrix, so AB is a

submatrix of A. Since A is TU—Section A.2.2—and since,
by definition, any submatrix of a TU matrix is also TU, then

AB is necessarily TU, so Problem 4 has an integer solution.

A.4 Block-Diagonal TU Matrices

In this section, we prove that, if a block-diagonal matrix A

has TU blocks, then A is also TU.
Consider that A has F blocks (Af with f ¼ 1; . . . ; F ). Each

block Af has dimension mf � nf , so the total dimension of A
is m � n with m ¼

PF
f¼1 mf and n ¼

PF
f¼1 nf . Recall

Theorem 3 that states a necessary and sufficient condition
for a matrix to be TU. Each row selection of A using row

index set I " 1; . . . ; mf g corresponds to a certain row
selection If of each block Af , for which it is possible to
build partitions If

1 , If
2 that will ensure that (33) holds. We

known this because Theorem 3 is a necessary condition for
TU, so, since each block Af is TU by definition, then they
must satisfy the conditions of the theorem. We can, therefore,

build the partition
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I1 ¼
[F
f¼1

If
1 ; I2 ¼

[F
f¼1

If
2 : ð34Þ

The nonzero entries of each column of A belong to a single

block, so (33) holds for all columns of A. We can apply the

sufficiency of Theorem 3 and conclude that A is TU.
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