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{jasv,alex}@isr.ist.utl.pt – http://www.isr.ist.utl.pt/vislab

Abstract. We discuss the role of spatial representations and visual geometries in
vision-based navigation. To a large extent, these choices determine the complex-
ity and robustness of a given navigation strategy. For instance, navigation systems
relying on a geometric representation of the environment, use most of the avail-
able computational resources for localization rather than for “progressing” towards
the final destination. In most cases, however, the localization requirements can be
alleviated and different (e.g. topological) representations used. In addition, these
representations should be adapted to the robot’s perceptual capabilities.

Another aspect that strongly influences the success/complexity of a navigation
system is the geometry of the visual system itself. Biological vision systems display
alternative ocular geometries that proved successful in different (and yet demanding
and challenging) navigation tasks. The compound eyes of insects or the human
foveated retina are clear examples. Similarly, the choice of the particular geometry
of the vision system and image sampling scheme, are important design options when
building a navigation system.

We provide a number of examples in vision based navigation, where special
spatial representations and visual geometries have been taken in consideration,
resulting in added simplicity and robustness of the resulting system.

1 Introduction

Most of the research on vision-based navigation has been centered on the
problem of building full or partial 3D representations of the environment,
which are then used to drive an autonomous robot. Instead of concentrating
the available resources to progress towards the goal, the emphasis is often
put on the process of building (or using) these 3D maps. This explains why
many existing systems require large computational power, but still lack the
robustness needed for many real-world applications. In contrast, examples of
efficiency can be drawn from biology. Insects, for instance, can solve very large
and complex navigation problems in real-time [1], in spite of their limited
sensory and computational resources.

One striking observation in biology is the diversity of “ocular” geometries.
Many animals eyes point laterally, which may be more suitable for navigation
purposes. The majority of insects and arthropods benefit from a wide field of
view and their eyes have a space-variant resolution. To some extent, the per-
formance of these animals is related to their specially adapted eye-geometries.
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Similarly, one possibility to explore the advantages of having large fields of
view in robotics is to use omni-directional cameras.

Studies of animal navigation suggest that most species utilize a very par-
simonious combination of perceptual, action and representational strategies
that lead to very efficient solutions when compared to those of today’s robots.

Both robustness and an efficient usage of computational and sensory re-
sources can be achieved by using visual information in closed loop to ac-
complish specific navigation tasks or behaviors [2,3]. However, this approach
alone cannot deal with global tasks or coordinate systems (e.g. going to a
distant goal), because it lacks adequate representations of the environment.
Hence, a challenging problem is that of extending these local behaviors, with-
out having to build complex 3D representations of the environment.

At this point, it is worth discussing the nature of the navigation require-
ments when covering long distances, as compared to those for short paths.
Many animals, for instance, make alternate use of landmark-based navigation
and (approximate) route integration methods [1]. For example, to walk along
a city avenue, position accuracy to within one block is sufficient. However,
entering our hall door would require much more precise movements.

This path distance/accuracy tradeoff between long-distance/low-precision
and short-distance/high-accuracy mission segments plays an important role
in finding efficient solutions for robot navigation.

In the following sections we discuss how different imaging geometries and
environment representations can be used for improving the navigation capa-
bilities of an autonomous system.

2 Imaging geometries

In this section we discuss two aspects of the imaging geometry. Firstly, we
consider the case of omni-directional cameras whose enlarged fields of view
can be advantageous for navigation. Then, we detail the log-polar mapping
which is a space-variant image sampling scheme, similar to those found in
natural seeing systems. Finally, a combination of both camera and image
sensor design is introduced.

2.1 Omni-directional Vision

Omni-directional cameras provide a 360◦ view of the robot’s environment
and have been applied to autonomous navigation, video conferencing and
surveillance [4] -[7], among others. Omni-directional images are usually ob-
tained with a combination of cameras and convex mirrors. Mirror shapes can
be conic, spherical, parabolic or hyperbolic [7].

Visual landmarks are easier to find with omni-directional images, since
they remain in the field of view much longer, than with a conventional cam-
era. The imaging geometry has various properties that can be exploited for
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navigation or recognition. For example, vertical lines in the environment are
viewed as radial image lines (see Fig.3).

Our omnidirectional system [8] combines a camera and a spherical mirror,
mounted on top of a mobile platform, as shown in Fig. 1.
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Fig. 1. Left: omni-directional camera. Center: camera mounted on the mobile robot.
Right: camera (spherical mirror) projection geometry - symmetry about the z-axis
simplifies the geometry.

The geometry of image formation is obtained by equaling the incidence
and reflection angles on the mirror surface. The resulting mapping relates
the coordinates of a 3D point, P, to the coordinates of its projection on the
mirror surface, Pm, and finally, to its image projection p, as in Fig. 1.

2.2 Space variant (log-polar) sampling

Foveated active visual systems are widely present in animal life. A represen-
tation of the environment with high-resolution and a wide field of view is
provided through the existence of the space-variant ocular geometry and the
ability to move the eyes.

The most common space-variant image representation is the log-polar
mapping, introduced in [9], due to its similarity to the retinal resolution and
organization on the visual cortex of primates. The log-polar transformation is
a conformal mapping from points on the cartesian plane x = (x, y) to points
in the cortical plane z = (ξ, η) [9], as shown in Fig. 2. The log-polar mapping
is described by :

[ξ, η]t =
[
log(

√
x2 + y2), arctan

y

x

]t

[x, y]t =
[
eξ cos η, eξ sin η

]t

The application of the log-polar mapping to artificial vision was first mo-
tivated by its perceptually based data compression capabilities. When com-
pared to cartesian images, log-polar images allow faster sampling rates with-
out reducing the size of the field of view and the resolution on the central
part of the retina (fovea). In addition to rotation and scale invariance [10], the
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Fig. 2. The log–polar transformation maps points in the cartesian (far left) to the
cortical planes (middle left). The effective image resolution becomes coarser in the
periphery, as shown in the retinal plane (middle right). The log-polar mapping
implements a focus of attention in the center of the field of view, equivalent to a
weighting window in cartesian coordinates (far right).

log-polar geometry provides additional algorithmic benefits: easy computa-
tion of time-to-contact [3,11], increased stereo resolution on verging systems
and good disparity selectivity for vergence control [12,13].

2.3 Omnidirectional vision and Space variant sampling

Both omnidirectional cameras and the log-polar sensor have a rotational sym-
metry, which suggests the combination of both. As a result, rather than get-
ting the usual omni-directional images, a so-called panorama can be directly
obtained by reading out the image pixels. As an additional benefit, the an-
gular resolution is constant, as the log-polar geometry is based upon circular
rings with a constant number of pixels (see Fig. 3). The joint mirror profile

Fig. 3. Combination of omnidirectional images and a log-polar sensor (top) yields
directly a constant resolution panorama (bottom).

and sensor layout design was addressed in the EU project Omniviews.
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3 Environmental representations

In this section we discuss various environmental representations for naviga-
tion. We will focus on alternatives to the traditional geometric maps. First,
we discuss the use of topological maps. Then, we shall see how to use vari-
ous forms of image-based (local) representations. Finally, we mention visual
servoing as an implicit local representation of the environment.

3.1 Topological Maps

Topological Maps [14,15,8] can be used to travel long distances in the en-
vironment, without demanding accurate control of the robot position along
a path. The environment is represented by a graph. Nodes correspond to
recognizable landmarks, where specific actions may be elicited, such as en-
tering a door or turning left. Links are associated with regions where some
environmental structure can be used to control the robot (see Section 3.3).

Landmarks are directly represented by images and a map is thus a col-
lection of inter-connected images (Fig. 4). Precise metric information is not
necessarily required to go from one particular locale to another. For example,
to get from the city center, Rossio, to Saldanha, we may go forward until we
reach the statue in Rotunda, turn right in the direction of Picoas and carry
on until we finally reach Saldanha Square. The navigation problem is decom-
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Fig. 4. A topological map of touristic landmarks in Lisbon, Portugal.

posed into a succession of sub-goals, identified by recognizable landmarks.
The required navigation skills consist of following roads, making turns and
recognizing landmarks.
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3.2 Panoramas, Bird’s eye views and mosaics

Images acquired with an omni-directional camera are distorted, when com-
pared to those of a perspective camera. For instance, a corridor appears as
an image band of variable width. However, the image formation model can
be used to correct some distortions, yielding Panoramic images or Bird’s Eye
Views, which may serve as local image-based environment representations
that facilitate tracking or feature extraction.

Scan lines of panoramic images contain the projections of all visible points
at constant angles of elevation. Hence, the unwarping consists of mapping
concentric circles to lines [16]. The horizon line is actually transformed to a
scan line and vertical 3D lines are mapped as vertical image lines.

Bird’s eye views are obtained by radial correction around the image cen-
ter1, corresponding to a scaled orthographic projection of the ground plane.
For example, corridors appear as image bands of constant width, simplifying
the navigation system. Image panoramas and bird’s eye views are illustrated
in Fig. 5.
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Fig. 5. Left: omni-directional image, the corresponding bird’s eye view and the
panoramic image. Right: Video mosaic of the sea bottom.

When the camera motion undergoes pure rotation or when the observed
scene is approximately planar Video Mosaics constitute interesting represen-
tations. Video mosaics can be built by accurately registering images acquired
during the camera motion. They offer high resolution and large fields of view,
and can serve as visual maps for navigation [18]. Figure 5 shows a video mo-
saic of the sea-bottom2.

3.3 Local structure (servoing)

Visual servoing can also be interpreted as yet another form of visual rep-
resentation. The goal of (image-based) visual servoing consists in reaching

1 Hicks [17] obtained ground plane unwarped images directly, with the use of a
custom-shaped mirror.

2 Work developed in the EU ESPRIT-LTR Project 30185 NARVAL
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desired configurations of image features. As such configurations, (uniquely
?) constrain the camera pose with respect to the work space, they can be
considered as an implicit camera-environment representation, rather than
describing their (world) coordinates explicitly.

4 Examples of Navigation and Vision based Control

In this section we give various examples of visual based navigation and con-
trol. All the different examples explore certain camera/image geometries and
specific representations of the environment.

4.1 Topological maps and image eigenspaces

When using a topological map to describe the robot’s global environment, a
mission can be specified as: “go to the third office on the left-hand side of the
second corridor”.

The topological map consists of a large set of reference (omni-directional)
images acquired at pre-determined positions (landmarks), connected by links
in a graph. During operation, the reference image that best matches the
current view indicates the robot’s qualitative position.

Reference images can be interpreted as points in a high-dimensional space,
each indicating a possible reference position of the robot. As the number of
images required to represent the environment can be very large, we build a
lower-dimensional linear subspace approximation using Principal Component
Analysis (PCA), [19].

Figure 6 shows the first 3 principal components (eigenimages) computed
from 50 omni-directional images in one corridor, shown in descending order
in accordance with their eigenvalues.

Fig. 6. The first 3 eigenimages obtained with the omni-directional vision system.

A “distance”, dk, between the current view and the set of reference images
can be computed in real-time using the projections in the eigenspace. The
position of the robot is that associated with the reference image, Ik having
the lowest distance, dk.

Omni-directional images help dealing with relatively dynamic environ-
ments, where people partially occlude the robot’s view. Even when a person
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is very close to the robot, the occlusion is not sufficiently large so as to cause
the robot to misinterpret its topological position.

We have built a topological map from omni-directional images, acquired
every 50 cm, along corridors. Reference positions were ordered according to
the direction of motion, thus maintaining a causality constraint.

We acquired a set of prior images, P , and ran the robot in the corridor
to acquire a different set of run-time images, R. Figure 7 shows the distance
dk, between the prior and run-time images.
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Fig. 7. Left: A 3D plot of the error (dk) between images acquired at run time,
R versus those acquired a priori, P. This plot represents the traversal of a single
corridor. The global minimum is the estimate of the robot’s topological position.
Right: One of the paths traveled by the robot

The error surface presents a global minimum, corresponding to the cor-
rect estimate of the robot’s topological position, and degrades in a piecewise
smooth manner. Spurious local minima are due to distant areas of the corri-
dor that may look similar to the robot’s current position and can be avoided
by restricting the search space to a neighborhood of the current position
estimate. Figure 7 shows results obtained when driving the robot along a
corridor. The distance traveled was approximately 21 meters. Odometry was
used to display the path graphically.

4.2 Servoing on local structure

To navigate along the topological graph, we have to define a suitable vision-
based behavior for corridor following (links in the map). In different envi-
ronments, knowledge about the scene geometry can be used to define other
behaviors. In this section we provide examples on how to explore local image
structure for servoing the robot.

Centering Behavior: The first visually guided behavior is the centering
reflex, described in [20] to explain the behavior of honeybees flying within
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two parallel “walls”. The qualitative visual measure used is the difference
between the image velocities computed over a lateral portion of the left and
right visual fields, [2]. The ocular geometry (Divergent Stereo) was an early
attempt to use wide fields of view images for navigation [2].

The robot control system involves two main loops. The Navigation loop
governs the robot heading in order to balance the bilateral flow fields, hence
maintaining the robot at similar distances from structures on the right or left
sides. The Velocity loop controls the robot forward speed as a function of the
amplitude of the lateral flow fields. The robot accelerates in wide spaces and
slows down when the environments becomes narrower.

Additionally, a sustaining mechanism is embodied in the control loops
to avoid erratic behaviors of the robot, in the absence of (localized) flow
information. It allows the use of the robot in rom-like environments or when
the “walls” are not uniformly textured. Figure 8 shows the robot trajectories
(from odometry) superimposed on the experimental setup, for various real-
time experiments.
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Fig. 8. Left to right: Compound eyes of insects and the divergent stereo configura-
tion; results of the centering reflex obtained with the Divergent Stereo approach in
closed loop operation for different scene layouts.

To test the velocity control, we considered the funneled corridor with
varying width. As the corridor narrows down, the average flow increases and
the velocity control mode forces the robot to slow down, enabling the robot
to make a softer, safer maneuver.

Corridor Following with Bird’s eye views: In another example, the
parallelism of the corridor guidelines is used to control the robot heading
direction. To simplify the servoing task, the visual feedback is provided by
Bird’s eye views of the floor, computed from omni-directional images.
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Tracking the corridor guidelines is done with bird’s eye (orthographic)
views of the ground plane (see Fig. 9). Projective-planar transformations,
computed from differential odometric data are used to predict the position
of points and lines from one image to the next.
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Fig. 9. Bird’s eye views during tracking of the corridor guidelines.

The use of bird’s eye views of the ground plane simplifies both the ex-
traction of the corridor guidelines (the corridor has a constant width) and
the computation of the robot position and orientation errors, with respect to
the corridor’s central path, which are the inputs of a closed loop controller.

Visual Path Following: Topological navigation can be used to travel
between distant places, without accurate localization along the path. For
local tasks, we rely on Visual Path Following when the robot must follow a
reference trajectory accurately for e.g. door traversal, docking and navigation
in cluttered environments.

Bird’s eye views are used to track environmental features, estimate the
robot’s position/orientation and drive the robot along a pre-specified trajec-
tory. Again, this geometry simplifies the tracking and localization problems.

The features used are corner points defined by the intersection of edge
segments, tracked with a robust fitting procedure. Vertical lines project as
radial (or vertical) lines, in the bird’s eye view (or panoramic) images. Track-
ing is simplified by using bird’s eye (orthographic) views of the ground plane,
thus preserving angular measurements and uniformly scaling distances.

Figure 10 illustrates tracking and localization while traversing a door into
a room. The tracked features (shown as black circles) are defined by vertical
and ground-plane segments, in bird’s eye view images. The robot position
and orientation (in the image) are estimated with an Extended Kalman filter
and used to control the robot’s angular velocity [8] for trajectory following.

Figure 10 shows tracking and localization while following a reference tra-
jectory, relative to a visual landmark composed of two rectangles. The figure
shows the mobile robot at the final position after completion of the task. The
processing time is about 0.4 sec/image.
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Fig. 10. Far left (clockwise) Feature tracking at three instants (black circles); es-
timated scene model and self-localization results. Far right: Visual Path Following
results: Dash-dotted line shows the landmark. The dotted line is the reference tra-
jectory, specified in image coordinates, and the solid line shows the filtered position
estimates; robot at the final position

Tracking with log-polar images: The Medusa binocular head is an
active tracking system shown in Fig. 11, running at video rate (25 Hz) without
any special processing hardware. The mapping from 128x128 cartesian to
32x64 log-polar images takes about 3 ms, which is highly compensated by
the reduction achieved (8 times) in the remaining computations.

Fig. 11. Left: the Medusa stereo head with four joints (camera vergence, pan and
tilt). Middle: estimated rotation in a tracking sequence (top). The frames shown
below correspond to the notable points signaled in the plot, associated to local
maxima in target motion. Right: Target trajectory measured with stereo

We developed tracking algorithms for objects undergoing general para-
metric 2D motions, using log-polar images [13]. Figure 11 shows results dur-
ing a face tracking experiment with a model containing both translation and
rotation. Similar results are obtained for more complex motions.

Currently, the binocular system is placed on a static platform and is
able not only to track object motion but also to measure its distance and
orientation relative to the camera system (see Fig. 11). In future work we
intend to place the robotic head on a mobile platform where, by tracking
objects, navigation behaviours like following or avoiding objects would be
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possible. Also fixating static objects in the environment can be important for
several navigation tasks [21], like ego-motion estimation or path planning.

4.3 Topological and local navigation

The following experiment integrates global and local navigation tasks, com-
bining Topological Navigation and Visual Path Following. Figure 12 shows
an image sequence of the robot during the entire run.

Fig. 12. Left: sequence of images of an experiment combining visual path following
for door traversal and topological navigation for corridor following. Right: same
type of experiment with showing the trajectory estimated from odometry (top)
and the true one (bottom).

The mission starts in the VisLab. Visual Path Following is used to nav-
igate inside the room, traverse the door and drive the robot out into the
corridor. Then, control is transferred to the topological navigation module,
which drives the robot all the way to the end of the corridor. At this position
a new behavior is launched, consisting of the robot executing a 180o turn,
after which the topological navigation mode drives the robot back to the lab.
entry point. Once the robot is approximately located at the lab. entrance,
control is passed to the Visual Path Following module, which locates appro-
priate visual landmarks and drives the robot through the door. It follows a
pre-specified path until the final goal position, well inside the lab., is reached.

Figure 12 shows the robot trajectory during one experiment, and its esti-
mate using odometry. When returning to the laboratory, the uncertainty in
odometry is approximately 0.5m. Thus, door traversal would not be possible
without the use of visual control.

4.4 Mosaic Servoing

In another example we have used video mosaics as a map for the navigation
of an underwater vehicle [18]. The vehicle pose is estimated with respect
to the mosaic, thus allowing us to control its trajectory towards a desired
configuration. Figure 13 shows estimates of the camera pose over time when
the underwater vehicle is swimming over an area covered by the mosaic.
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Fig. 13. Using video mosaics for navigation.

5 Conclusions

We discussed the fundamental issues of environmental representations and
ocular/image geometries, when addressing the problem of visual based navi-
gation.

In spite of all the recent progress in autonomous (visual) navigation, the
performance of today’s robots is still far from reaching the efficiency, robust-
ness and flexibility that we can find in biology (e.g insect vision).

In biology, the diversity of ocular/image geometries seem to be extremely
well adapted to the main tasks to handle by each species. Additionally, ex-
periments show that spatial representations seem to be remarkably efficient.

Similarly, these aspects are determinant to the success of artificial visual
navigation systems. Rather than being defined in advance, spatial represen-
tations and the geometry of the vision system should be at the core of the
navigation system design. Different navigation methods, eye geometries and
environmental representations should be used for different problems, with
distinct requirements in terms of processing, accuracy, goals, etc.

In terms of eye geometries, we discussed omni-directional cameras and
space variant image sampling. We gave examples of different environmental
representations, including topological maps, image-based descriptions (panora-
mas, bird’s eye views, mosaics) and local servoing structures.

Examples of vision based navigation and control were presented to illus-
trate the importance of the choice of eye geometry and spatial representation.
In our opinion, studying eye/image geometries and spatial representations in
artificial systems is an essential step, both for understanding biological vision
systems and for designing truly flexible and robust autonomous systems.
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