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Abstract

We address the problem of robot localization based
on eigenspace representations of a collection of views
of the workspace, often referred to as appearance based
methods. We study several approaches to build such
eigenspaces in an incremental fashion (subspace track-
ing), thereby allowing the simultaneous localization
and mapping of a mobile vehicle. We see how dif-
ferent ways of determining whether or not new infor-
mation (images) should be included in the eigenspace
model lead to different error values and model size
(complexity). The performance evaluation allows us
to know which criterion and parameters to use in a
specific application to meet error specifications subject
to computational constraints.

1 Introduction

We address the problem of mobile robot localiza-
tion based on video images. Rather than localizing
from known geometric features we rely on appearance-
based methods to solve this problem [3, 7]. The idea
consists in representing the robot environment as a
topological map, storing a (usually large) set of land-
mark images. To speedup the comparison of the robot
views with these landmark images, it is advantageous
to use low-dimensional approximations of the space
spanned by the original image set. One example is to
use principal component analysis (PCA) that uses the
set of input images to extract an orthonormal basis (or
model) of a lower dimensional subspace (eigenspace)
that approximates the input images.

When building such a map, images taken from po-
sitions close to each other are likely to be strongly
correlated. Eigenspace models are then used to build
a compact representation of the set of images. In
the traditional approach to calculate these eigenspace
models, known as batch method, the robot must cap-
ture all the images needed to build the map and then,
using either eigenvalue decomposition of the covari-
ance matrix or singular value decomposition of the

data matrix, calculate the model. This approach has
some drawbacks. Since the entire set of images is nec-
essary to build the model, it is impossible to make
the robot build a map while visiting new positions.
Update of the existing model is only possible from
scratch, which means that original images must be
kept in order to update the model, requiring a lot of
storage capability.

To overcome these problems, some authors [8, 2,
4, 5, 6] proposed algorithms that build the eigenspace
model incrementally (sometimes referred to as sub-
space tracking in the communications literature). The
basic idea behind these algorithms is to start with an
initial subspace (described by a set of eigenvectors and
associated eigenvalues) and update the model in order
to represent new acquired data. This approach allows
the robot to perform simultaneous localization and
map building. There is no need to build the model
from scratch each time a new image is added to the
map, and it is thus easier to deal with dynamic envi-
ronments. Whenever the robot acquires a new image,
the first step consists in determining whether or not
this image is well represented by the existing subspace
model. The component of the new image that is not
well represented by the current model is added to the
basis as a new vector. Then, all vectors in the basis
are “rotated” in order to reflect the new distribution
of the energy in the system.

Recently, Artač et al [1] improved Hall’s algorithm
[4] by suggesting a way of updating the low dimen-
sional projections of the images, allowing to discard
the image as soon as the model has been updated.
New data represents an increase in the model dimen-
sionality and, as a consequence, in the computational
cost. Therefore, we look for criteria to guide the deci-
sion on whether or not to increase the dimensionality
of the model. Deciding not to increase the dimension-
ality of the model, we are discarding information that
will affect the accuracy of the representations.

In this work we describe the results achieved by
implementing and testing the incremental PCA algo-

Proceedings of ICAR 2003 
The 11th International Conference on Advanced Robotics 
Coimbra, Portugal, June 30 - July 3, 2003 

417



rithm presented in [4] and improved by [1]. Although
these methods have been proposed by other authors,
very little or no performance evaluation has been done
regarding criteria that affect the dimensionality of the
model. In this paper, we compare the set of methods
usually chosen to decide whether or not a new vector
must be added to the existing basis.

Our implementation is slightly different from the
Artač’s algorithm, as we calculate the covariance ma-
trix in the way proposed by [8]. The implementation
was done in MATLABr. We used a set of omnidi-
rectional images taken from a corridor in our lab to
test the algorithm. We also show preliminary results
achieved when testing the algorithm for mobile robot
localization. In Section 2 we describe the traditional
approach for building eigenspace models and the in-
cremental approach. In Section 3 we show results in
terms of reconstruction error and dimensionality of
the model when using different criteria to control the
update of the model. We conclude outlining the work
done and presenting some directions to the future.

2 Principal Component Analysis

In the traditional (batch) approach, the images
taken are resized to column vectors xi ∈ R

m×1;
i=1. . .n, where m is the number of pixels in the image
and n is the number of images. Then, the eigenspace
model is calculated by solving the EVD of the covari-
ance matrix C ∈ R

m×m composed as

C =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)T (1)

where x̄ = 1

n

∑n
i=1

xi is the mean image vector.
The eigenvectors ui, i = 1 . . . n associated to

nonzero eigenvalues of the matrix C form an orthonor-
mal basis spanning at most min(m,n) dimensions.
We can discard eigenvectors associated with small
eigenvalues and keep just k � min(m,n) eigenvec-
tors which will form the basis. Each one of the n
images is then projected in this subspace, generating
n k -dimensional points.

2.1 Incremental PCA

The algorithm proposed by [4] assumes that we al-
ready have an eigenspace model built and we want
to update this model with new data (a new image).
The first step consists in determining whether or not
this image is well represented by the existing subspace
model. We then project the new image to the current
basis. The component of the new image that is not
well represented by the current model is added to the
basis as a new vector. Then, all vectors in the basis
are “rotated” in order to reflect the new distribution
of the energy in the system. The rotation is repre-
sented by a matrix of eigenvectors obtained by the

eigenvalue decomposition of a special matrix. This
matrix is composed taking into account the current
eigenvalue distribution and the projection of the new
data in the current basis. These steps are detailed in
the equations below.

The existing eigenspace model can be represented
by Ω = (x̄,U,Λ,n), defining the mean vector, the set
of eigenvectors kept in the basis, the corresponding
eigenvalues and the number of images respectively.

We calculate the initial basis as proposed by [8].
This method allows us to calculate an implicit, or ”low
dimensional” covariance matrix:

C̃ =
1

n

n
∑

i=1

(X − x̄)T (X − x̄) (2)

The eigenvalues and eigenvectors of C and C̃ are re-
lated by

λj = λ̃j (3)

and
uj = (nλ̃j)

−1/2(X − x̄)ũj, j=1. . . n, (4)

where λj and λ̃j are the j-th eigenvalues of C and C̃,

uj and ũj are the j-th eigenvectors of C and C̃, n is the
number of images in the initial set, X = [x1x2 · · ·xn]
is the data matrix, and x̄ is the mean vector. In
practice, additional care must be taken in order to
avoid numerical instabilities: very small eigenvalues
and eigenvectors associated must be discarded before
calculating the basis for matrix C. This approach
allows a reduction in the problem complexity by solv-
ing an eigenvalue problem in R

n×n instead of R
m×m,

given that n � m when working with images. Again,
we can retain the k most representative eigenvectors,
with k ≤ n. With the initial eigenspace model cal-
culated, we follow the method proposed by [4] and
improved by [1], which we describe next.

To update the existing basis to take a new image
xn+1 into account, we update the mean:

x̄′ =
1

n + 1
(nx̄ + xn+1) (5)

Then, we project the new image to the current basis
U. an+1 is the vector that represents the new image
in the current basis:

an+1 = UT (xn+1 − x̄) (6)

The residual vector, orthogonal to each basis vector
ui, is given by:

hn+1 = (Uan+1 + x̄) − xn+1 (7)

To update the basis we use the normalized residual
vector:

ĥn+1 =

{

hn+1

‖hn+1‖2
if ‖hn+1‖2 6= ε

0 otherwise
(8)
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where ε is a threshold in the range of machine preci-
sion.

The new eigenvectors are obtained by appending
ĥn+1 to the current basis and rotating them:

U′ = [U, ĥn+1]R. (9)

To update the representations ai, i = 1 . . . n, we re-
construct each image using the old basis:

xi = Uai + x̄, i = 1 . . . n, (10)

and project them to the new basis, thus generating
new low dimensional representations ai, i = 1 . . . n+1:

ai = (U′)T (xi − x̄′), i = 1 . . . n + 1. (11)

Once the basis is updated, we can discard the orig-
inal image and the old basis. The n + 1 images are
now represented in a (k + 1)-dimensional basis.

2.2 The rotation matrix R

In order to better understand the role of matrix
R presented in Section 2.1, we give a two-dimensional
example (see Figure 1) . Given the set of points in the
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Figure 1: Eigenvectors calculated by batch method.

figure, we calculate principal components by using the
batch method.

Suppose now that we want to incrementally con-
struct the basis using the same data set. The initial
basis can be calculated using the six aligned points.
Then we must update the basis in order to represent
the point that is not aligned. The mean is updated,
the new point is projected to the current basis, the
normalized residue vector is calculated and appended
to the current basis. Figure 2 shows the eigenvectors
obtained before applying the rotation R . Comparing
Figure 2 and Figure 1 we can see that is necessary to
apply a rotation in order to correctly align the eigen-
vectors.

2.2.1 Computing rotation R. The columns of
the rotation matrix R are the eigenvectors of a ma-
trix D, which is composed by taking into account the
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Figure 2: Eigenvectors before applying the rotation.

current eigenvalue distribution and the projection of
the new data in the current basis. For a complete ex-
planation on composing matrix D, refer to [4]. Matrix
D is given by:

D =
n

n + 1

[

Λ 0

0 0

]

+
n

(n + 1)2

[

aaT γa

γaT γ2

]

, (12)

where γ represents the portion of the new image that
is not well represented by the current basis:

γ = ĥ
T

n+1(xn+1 − x̄). (13)

Solving the eigenproblem:

DR = RΛ′, (14)

we obtain R.

2.3 Model’s Dimension

The specific application or the system’s storage ca-
pability can make us to keep the dimensionality low
instead of adding a new vector to the basis. On the
other hand, keeping low the dimensionality will reduce
the accuracy of the representations. We will need a
criterion to decide whether or not to keep the dimen-
sionality of the basis. We tested four criteria to deal
with the model’s dimensionality:

a) Adding a new vector whenever the size of the
residue vector (Equation 7) exceeds an absolute
threshold;

b) Adding a new vector when the percentage of en-
ergy carried by the last eigenvalue in the total
energy of the system exceeds an absolute thresh-
old, or equivalently, defining a percentage of the
total energy of the system that will be kept in
each update;

c) Discarding eigenvectors whose eigenvalues are
smaller then a percentage of the first eigenvalue;

d) Keeping the dimensionality constant.

In the next section we will present results of the
performance evaluation of these criteria.
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3 Experimental Results

We tested the algorithm using a sequence of 53
gray level images, taken every 20cm apart with a mo-
bile robot equipped with an omnidirectional camera.
The robot used in our experiments was a TRC Lab-
mate (see Figure 3). It is a differential-driven robot
equipped with an on board computer (Pentium IV
- 1.5 GHz - 384 Mbytes of RAM). The vision sys-
tem consists of an omnidirectional catadioptric sys-
tem, composed by the camera pointing upwards to a
spherical mirror. This system is mounted on top of the
mobile robot with its axis coincident to the platform’s
rotation axis. The set of omnidirectional images were
taken in a corridor of our lab. The implementation
was done following the procedure described in Sec-
tion 2.1. Actually, we implemented four versions of
the algorithm, changing the criterion used to decide
whether or not to increase the dimensionality of the
model. We started by calculating the initial model

Figure 3: The mobile robot Labmate.

from a subset of the images of the sequence, then we
presented the next images, one by one, updating the
model in each step. The same procedure was used in
the four versions of the algorithm.

In Figures 4 to 7 we show the results in terms of
reconstruction error (root mean squared error - RMS)
and the resulting dimension of the model, as a func-
tion of the norm of the residue vector (Figure 4); as a
function of the fraction of the total energy contained
in the eigenvalues (Figure 5); as a function of the frac-
tion of the energy contained in the most important
eigenvalue (Figure 6); and as a function of a thresh-
old in the number of vectors kept in the basis (Figure
7). The error is calculated as follows:

Error =

√

∑m
i=1

(xi − x̂i)2

m
, (15)

where xi is the brightness of the i-th pixel of an orig-
inal image, x̂i is the brightness of the i-th pixel of the
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Figure 4: Error RMS and Number of Eigenvectors
obtained when using the norm of the residue vector as
a threshold.
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Figure 5: Error RMS and Number of Eigenvectors
obtained when using a fraction of the total energy as
a threshold.

reconstructed image and m is the number of pixels in
the image.

In Figure 5, a threshold of 95% means that in each
update, 95% of the actual energy of the system will be
retained. The eigenvectors associated with eigenval-
ues outside this range will be discarded. In Figure 6,
a threshold of 5% means that in each update, only the
eigenvectors associated with eigenvalues whose energy
represents 5% or more of the energy contained in the
most important eigenvalue will be kept. The eigen-
vectors associated with eigenvalues outside this range
will be discarded.

The results obtained confirmed the general idea
that more accurate results, in terms of image recon-
struction, are obtained by increasing the number of
vectors in the basis, at the cost of additional compu-
tational complexity.

There is a difference between the two energy meth-
ods. The method based on a fraction of the energy
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Figure 6: Error RMS and Number of Eigenvectors
obtained when using a fraction of the energy of the
most important eigenvalue as a threshold.
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Figure 7: Error RMS and Number of Eigenvectors
obtained when making constant the number of vectors
in the basis.

of the most important eigenvalue seems to be more
”conservative” on discarding eigenvectors. This is due
to the fact that the first eigenvalue remains approx-
imately constant over the entire experiment (and it
may even increase in some cases). The criterion of
keeping a fixed number of vectors in the basis seems to
be more suitable when the application requires a fixed
time response or limited computational resources are
available.

A comparison can also be made regarding the
reconstruction error obtained by the incremental
method and the batch method. Figure 8 shows the
reconstruction error - RMS for the set of 53 images
obtained by the batch method and the incremental
method. The threshold was based in a fixed number
of vectors in the basis equal to 25. The batch method
is represented with the same number of vectors to en-
able the comparison. We can see that the incremental
method approximates the batch method in a reason-
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Figure 8: Reconstruction error RMS for each im-
age in the set when using 25 eigenvectors as a fixed
threshold.

able manner.
Figure 9 shows the first image of the set and the

results achieved when the reconstruction was made
with a basis of 10 and 25 eigenvectors by the batch
and the incremental methods.

In terms of localization, the image reconstruction
error may not be the most representative error metric.
For that purpose we conducted a set of preliminary ex-
periments with the mobile robot to assess the quality
of the localization as a function of the chosen criterion
and parameters.

We used a set of 103 omnidirectional images of the
same corridor. The basis was built with images 1,
4, 7, 10,... and so on. We then tried to localize the
other images in the set, projecting them to the ba-
sis and measuring the distance to the projections of
the images used to build the subspace. We considered
a correct match only if the image could be correctly
localized with respect to the two nearest reference im-
ages. The error rate is defined as the number of in-
correct matches divided by the total number of tested
images. Figure 10 shows the error rate in localization
and the number of eigenvectors obtained in the basis
as a function of the norm of the residue vector.

Invariance to rotation could be obtained, for ex-
ample, by transforming the omnidirectional images to
panoramic images and working in frequency domain.

4 Conclusions

In this paper we addressed the problem of mobile
robot localization using appearance-based methods.
These methods are used to build eigenspaces mod-
els that hold low dimensional representations of the
images used for constructing a topological map. We
explained the difference between the batch and the
incremental way of constructing such a model. We
implemented an incremental version of this method
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(a)
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(d) (e)

Figure 9: The original first image (a), reconstructed
image using 10 eigenvectors by batch method (b), re-
constructed image using 10 eigenvectors by incremen-
tal method (c), same using 25 eigenvectors by batch
method (d), same using 25 eigenvectors by incremen-
tal method (e).

that allows simultaneous localization and map build-
ing and discussed some criteria regarding the dimen-
sionality of the model.

The performance curves presented in this paper can
be used in various ways. Firstly, they provide a mean
for comparing different criteria to build incremental
eigenspaces for localization. Secondly, given concrete
application specifications or requirements, in terms
of accuracy and computational load, the performance
curves allow us to decide which method to use and
which parameters to select.

In the future we plan to exploit other strategies as
to control the update process of the subspace model,
possibly taking into account the tradeoff between the
accuracy gain arising from incorporating new data
and the associated increase in computational cost.
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[1] M. Artač, M. Jogan and A. Leonardis, “Mo-
bile Robot Localization Using an Incremental
Eigenspace Model,” Proceedings of the 2002 IEEE

10 11.8 13.6 15.4 17.2 19 20.8 22.6 24.4 26.2 28
0

10

20

30

40

50

60

70

80

90

100

Residue Vector Norm Threshold

E
rr

or
 R

at
e 

(%
)

Error Rate

10 11.8 13.6 15.4 17.2 19 20.8 22.6 24.4 26.2 28
0

6

12

18

24

30

36

42

48

54

60

N
um

be
r o

f E
ig

en
ve

ct
or

s

Number of Eigenvectors

Figure 10: Localization error rate and Number of
Eigenvectors obtained when using the norm of the
residue vector as a threshold.

International Conference on Robotics and Au-
tomation,Washington DC,May 2002.

[2] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang,
J. Winkeler and H. Zhang, “An eigenspace update
algorithm for image analysis,” Graphical Models
and Image Processing, Vol. 59, pp. 321-332, Sept.
1997.

[3] J. Gaspar, N. Winters and J. Santos-Victor,
“Vision-based Navigation and Environmental
Representations with an Omni-directional Cam-
era,” In IEEE Transactions on Robotics and Au-
tomation, Vol. 16, Number 6, pp. 890-898, Decem-
ber 2000.

[4] P. Hall, D. Marshall and R. Martin, “Incremental
eigenanalysis for classification,” British Machine
Vision Conference, Vol. 14, pp. 286-295, Sept.
1998.

[5] P. Hall, D. Marshall and R. Martin, “Merging
and splitting eigenspace models,” IEEE Trans-
actions on Pattern Analysis and Machine Intel-
ligence, Vol. 22, Number 6, pp. 1042-1048, 2000.

[6] P. Hall, D. Marshall and R. Martin, “Adding and
subtracting eigenspaces with eigenvalue decompo-
sition and singular value decomposition,” Image
and Vision Computing, 20 (13-14), pp. 1009-1016,
2002.

[7] A. Leonardis and H. Bischof, “Robust recognition
using eigenimages,” Computer Vision and Image
Understanding, Vol. 78, Number 1, pp. 99-118,
2000.

[8] H. Murakami and B.V.K.V. Kumar, “Efficient cal-
culation of primary images from a set of images,”
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(5), pp. 511-515, 1982.

422


	ICAR2003
	Return to Menu




