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Abstract—

This paper presents results on mosaic-based visual nav-

igation of an underwater autonomous vehicle, navigating

close to the sea floor. A high-quality video-mosaic is au-

tomatically built to be used as a representation of the en-

vironment. A visual servoing strategy is adopted to drive

the vehicle along a specified trajectory (indicated by way-

points) relative to the mosaic. The control errors are de-

fined by registering the instantaneous views acquired by

the vehicle with the mosaic. Extensive testing was con-

ducted at sea, where the vehicle was able to autonomously

navigate over the mosaic for extended periods of time. The

presented results illustrate the validity and appropriateness

of the approach.

I. Introduction

The underwater environment poses a difficult challenge
for precise vehicle positioning. One of the contributing
reasons is the absence of electromagnetic signal propa-
gation that prevents the use of long range beacon net-
works. Aerial or land robot navigation can rely upon the
Global Positioning System to provide real-time updates
with errors of just few centimeters, anywhere around the
world. The underwater acoustic equivalent is severely lim-
ited both in range and accuracy, thus requiring the previ-
ous deployment of carefully located beacons, and restrict-
ing the vehicle operating range to the area in between.
Sonar equipment provides range data and is increasingly
being used in topographic matching for navigation, but
the resolution is too low for precise, sub–metric naviga-
tion. Vision can provide precise positioning if an adequate
representation of the environment exists, but is limited to
short distances to the floor due to visibility and light-
ing factors. However, for the mission scenarios where the
working locations change often and are restricted to rel-
atively small areas, the use of visual based positioning is
the most appropriate.
The methodology described in this paper was devised

for mission scenarios where an autonomous platform is re-
quired to map an area of interest and to navigate upon it,
as illustrated in Fig. 1. First, a high–quality video–mosaic
is automatically built and used as a representation of the
sea-bottom. Then, a visual servoing strategy is devised to
drive the vehicle along a specified trajectory defined over
the mosaic map. A possible application scenario for these
methods is in underwater archeological site exploration or
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in marine geological surveys, where an AUV is required
to do an initial area mapping followed by periodic inspec-
tions.
During navigation, the performance depends heavily

upon the ability of the vehicle to localize itself with re-
spect to the previously constructed map. Two impor-
tant requirement are the bounding of localization errors
and real-time availability of position estimates. To ad-
dress this, two distinct visual routines are run simulta-
neously: low–rate image-to-mosaic registration and fast
motion estimation between consecutive frames of the in-
coming video stream. Localization information can either
be expressed directly in terms of an image frame (e.g.
pixel location on the mosaic) or can be converted to an
explicit position and orientation of the vehicle in 3D.
To avoid driving the vehicle over the areas where the

mosaic matching may be too difficult (such as near the
borders of the region covered by the mosaic), a trajec-
tory generation module was implemented. This module
provides a set of waypoints between the current and final
location that simultaneously searches for a short travel
path while keeping away from the mosaic borders.
The use of video mosaics as environmental representa-

tions for navigation has received considerable attention
from both the land and the underwater robotics commu-
nities. In the area of land robotics, Kelly[10] addressed
the feasibility of using large mosaics for industrial robot
guidance. Recent progress has been attained in devising
efficient methods to cope with the complexity of mapping
large cyclic environments comprising linear segments[14].
In the context of underwater robotics, the use of mosaic-
ing techniques for navigation is a topic of increasing re-
search interest [12], [11], [3]. Xu[16] investigated the use
of seafloor mosaics, constructed using temporal image gra-
dients, in the context of concurrent mapping and localiza-
tion and for real-time applications. Huster[8] described a
navigation interface using live-updated mosaics, and illus-
trated the advantages of using it as a visual representation
for human operation. However, as the mosaic is not used
in the navigation control loop, there is no guaranty the
vehicle is driven to the desired position. One of the works
with which this paper more closely relates to is the work
of Fleischer[2], in the sense it combines spatially consis-
tent mosaic with underwater ROV navigation. In their
approach, the navigation system requires additional sen-
sors to provide heading, pitch and yaw information. This
contrasts with our approach, which relies solely upon vi-
sion to provide information for all the relevant degrees of
freedom during navigation.
The structure of this paper is as follows. Section II.
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Fig. 1. The operation modes for the implemented mosaic-based navigation system.

gives a brief overview on algorithm used for the creation of
mosaic maps. The following Section III. addresses naviga-
tion topics, namely the localization and tracking with re-
spect to the mosaic and the trajectory generation. Section
IV. presents the implemented visual control scheme. Rep-
resentative results are presented in Section V., which illus-
trate the good performance of the overall method. Finally
Section VI. presents some discussion and conclusions.

II. Mosaic Map Creation

When mapping large areas, the quality constraints for
the mosaicing process are very demanding, given the im-
portant role of the mosaic as the only environmental rep-
resentation. The implemented mosaic creation method,
which is summarized in this section, builds upon previous
work on underwater video mosaicing[4] and pose estima-
tion[5]. For a detailed description please refer to [6].
The method comprises three major stages. The first

stage consists of the sequential estimation of the image
motion, using a reduced image motion model. The set of
resulting consecutive homographies is cascaded, in order
to infer the approximate topology of the camera move-
ment. The topology information is then used to predict
the areas where there is image overlap resulting from non-
consecutive images.
Secondly, the overall topology is refined by iteratively

executing the following two steps. (1) Point correspon-
dences are established between non-adjacent pairs of im-
ages that present enough overlap. (2) The topology is up-
dated by searching for the set of homographies that min-
imizes the overall sum of distances in the point matches.
The final stage of the algorithm consists of estimating

the set of homographies and a world plane description
that best fit the observation data. As the main concern
is attaining high registration accuracy, a general parame-
terization of the homographies with 6 DOF for the pose
is used, which is capable of modelling the effects of wave–
induced general rotation and translation.
The overall method is fully automatic and can handle a

very general vehicle motion, including loop trajectories, or
zig-zag scanning patterns. The method main features are
the ability to cope with long image sequences, automatic
inference of the path topology and full 3–D recovery of
the overall geometry, up to scale.

III. Mosaic Navigation

The mosaic based navigation comprises 3 distinct mod-
ules: localization, guidance and control signal generation.
An overall block illustration of the main modules is given
in Figure 2.

Mosaic map

Localization
(Mosaic Matching)

MosImg

Guidance
(waypoint generation)

Control

Fig. 2. Overall visual servoing control scheme.

A. Localization on the Mosaic

The first step of mosaic localization consists of finding
the initial match between the current camera image and
the corresponding area on the mosaic. In order to do so, a
coarse estimate of the vehicle 3D position and orientation,
with respect to the mosaic world referential, is required.
This will typically be provided by some other modality of
autonomous navigation in which a coarse global position
estimate is maintained, such as beacon-based navigation
or surface GPS reading. From this estimate, a correspond-
ing homography is computed and used for searching for
point matches.
The online localization comprises two complementary

processes which run in parallel, at very distinct rates.
Image–to–Mosaic – The currently acquired image is
matched directly over the mosaic, as to have an ab-
solute position estimate. For this, a robust matching
procedure is used to filter out correspondence outliers
from a set of possible point matches initially found
by area correlation. The current position estimate
is used to restrict the search area. If the matching
is not successful on the first attempt, then a spiral-
shaped search pattern is used in the subsequent tries.
In each new attempt, the search for matches is car-
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ried out using a distance interval from the previous
try1.

Image–to–Image – This process estimates the incre-
mental vehicle motion by matching pairs of images
from the incoming video stream. The effectiveness of
the image matching is assessed by the percentage of
correctly matched points found. In the case of unreli-
able measures, occurring when the number of selected
matches is close to the minimum required for the ho-
mography computation, the resulting homography is
discarded and replaced by the last reliable one.

The complementary nature is illustrated by the fact
that the two processes address different requirements of
the position estimation needed for control and naviga-
tion: real-time operation and bounded errors. The mo-
saic matching is a potential time-consuming task because
successful mosaic matching might not be achieved at the
first attempt. However it provides an accurate position
measurement. Conversely, the image-to-image tracking is
a much faster process, but due to its incremental nature
tends to accumulate small errors over time, eventually ren-
dering the estimate useless for our control purposes, if used
by itself. It is also worth noting that this scheme is well
fit for multiprocessor platforms, as the two processes can
be run separately.
The contributions from the two processes are combined

by simply cascading the image-to-image tracking homo-
graphies over the last successful image-to-mosaic match-
ing. A typical position estimation update rate of 7 Hz is
attained, on a dual processor machine.
The considered image motion model for the on-line

tracking is the four-parameter homography, that accounts
for 3-D translation and rotation over the vertical axis.
This model assumes fronto-parallelism of the image plane
with respect to the scene, and is more restrictive than
the most general six d.o.f. model. However, the four-
parameter model was found to be the best trade-off be-
tween (1) accurate motion representation capability and
(2) insensitivity to estimation noise, which causes accu-
mulated error build-up.

B. Trajectory Generation

To illustrate the usefulness of mosaic as navigation
maps, a simple trajectory generation algorithm was im-
plemented. The main purpose of generating trajectories
is to make the vehicle avoid the map areas in which the
mosaic matching is likely to fail. Examples of such are
the areas of non-static algae, the mosaic borders or re-
gions that were not imaged during the mosaic acquisition
phase. For the results in this paper, only the distance to
the mosaic borders was considered, but the method can
straightforwardly be used to avoid any region definable a
priori in the map.

1In order to find the appropriate intervals, a set of experiments
have been conducted using typical underwater images and mosaics.
The breakdown of the matching algorithm was evaluated by testing
it when coping with increasingly longer intervals.

The first step consists in the creation of a cost map
which defines the cost associated with navigating over ev-
ery elementary region of the map image. In here, the re-
gions to be avoided have higher costs than the rest. This
cost map is created by using the distance transform on a
reduced–sized binary image of the valid region of the mo-
saic map. The outcome of this operation is a cost image
in which each pixel of the valid mosaic region contains a
positive value that decreases with the distance to the bor-
der of the valid region. Outside the valid region, the cost
is set to a sufficiently high positive number.
Given the current position of the vehicle on the mosaic

(i.e. the projection of the camera optical axis on the mo-
saic plane) and the desired end position, we want to find
the path that minimizes the accumulated cost over the
cost map. This minimization problem can be formulated
as a minimal path cost problem, where a path is defined
as an ordered set of neighboring locations on the mosaic
map. An efficient way to solve it is using Dijkstra’s al-
gorithm [13], whose complexity is O

(
m2

)
where m is the

number of pixels in the cost image. An example of the
generation of trajectories using this method is presented
in Fig. 3.

Start

End

Fig. 3. Trajectory generation example – Mosaic with superimposed
trajectory (left), and corresponding cost image (right).

The computation of the cost image is performed off-line,
during the mosaic creation phase. The generation of a new
trajectory is required to be performed on-line during the
mosaic servoing whenever a new end-point is specified.
For the purpose of avoiding the mosaic edges, a relatively
small number of trajectory waypoints are required. There-
fore the size of the cost image can be reduced, so that the
computation of the trajectory does not compromise the
on-line nature of the mosaic servoing.

IV. Visual Control

The test–bed ROV used in this paper is equipped with
two horizontal back thrusters and a vertical one. The
geometric arrangement of these propellers has motivated
the design of decoupled controllers to operate the robot
in the horizontal plane and maintain a constant vertical
distance to the floor.
The controllers were designed within the framework

of the visual servoing strategies [9]. Therefore, the de-
vised control law makes use of direct image measurements,
as opposed to the use of 3–D pose information, which
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can be calculated on-line with small additional computa-
tional cost. This framework also presents the advantage
of easy integration and switching to other visual–based
behaviours, such as template–based station keeping [15]
which uses the same control approach.

A. Servoing over the Mosaic

Servoing to a goal position over the mosaic is defined as
the regulation to zero of an image error function e = s−sd.
Here, s = (xc, yc) is the projection of the current image
center onto the mosaic, and sd = (xd, yd) represents the
desired docking point, as illustrated in Fig. 4.

reference position

s

s
d

Fig. 4. Definition of error measures on the mosaic. The current
image frame is represented by the frame rectangle and the ref-
erence is marked by the cross.

Changes in the image features, ṡ, can be related to
changes in the relative camera pose. This kinematic rela-
tionship is often referred to as the image Jacobian or the
interaction matrix [9], [1]:

ṡ = Lvcam (1)

where L is the image Jacobian and vcam is the 6×1 camera
velocity screw. The image Jacobian for the image center
is given by:

L(s,Z) =

[ − 1
Z 0 xc

Z xcyc −(1 + x2
c) yc

0 − 1
Z

yc

Z (1 + y2
c ) −xcyc −xc

] (2)

This Jacobian depends both on the image point coordi-
nates and their depth, Z. An exponential decrease of the
error function is obtained by imposing ė = −λe, with λ
some positive constant. Using Eq.(1), we can then solve
for the camera motion that guarantees this convergence:

v∗
cam = −λL(s,Z)+(s − sd) (3)

where v∗
cam is the resolved camera velocity that comprises

the control objective and L+ is the pseudo-inverse of the
image Jacobian.

Since the robot’s control input is defined, in general, in
the vehicle reference frame, it is useful to relate the vehicle
velocities to camera velocities. This relationship is given
by the vehicle–to–camera Jacobian, designated by:

vcam = Jr2cv̄robot (4)

where v̄robot contains the controllable velocity components
of the vehicle velocity screw and Jr2c is the robot–to–
camera Jacobian relationship. This Jacobian is a function
of the camera position and orientation in the vehicle refer-
ence frame, and can easily be computed from transform-
ing linear and angular velocity components between the
frames. With Jr2c, it is possible to re-formulate the control
objective in terms of desired vehicle velocity components,
such that the image center is driven towards the docking
point over the mosaic. It also allows to take the vehi-
cle motion constraints into account by considering only
the vehicle controllable degrees of freedom, thus resulting
into physically executable trajectories.
Substituting (4) into (1), we obtain an expression that

relates the image motion to the vehicle velocity:

ṡ = LJr2cv̄robot (5)

With this expression, we can solve for the vehicle ve-
locity in the horizontal plane, necessary to guarantee the
convergence of the image error function:

v̄∗
robot = −λ

(
L(s,Z)Jr2c

)+(s− sd) (6)

Figure 5 illustrates the structure of the visual servoing
controller utilized in this paper. The term B−1 is part of
the dynamic model of the vehicle’s thrusters, and allows
the computation of the necessary forces and motor torques
that correspond to the required (steady state) velocities.

Guidance +
-

+

e

- ·(L(s,Z) ·Jr2c)
+

sd

s

× B-1 u

Mosaic

matching

Fig. 5. Control block diagram.

B. Auto–altitude control

The controller for the vertical plane aims at maintaining
the camera at constant altitude during navigation. The
controller design is such that it maintains the projection
of the current image onto the mosaic at the same scale.
To recover the scale, we turn to [7], from which it follows

that the image scaling induced by a homography can be
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computed from the determinant of its upper left 2 × 2
block:

s =
√

|H2×2| (7)

For the auto-altitude controller, we consider the current
image–to–mosaic homography and reconstruct its scaling
factor. This is then compared to a reference scaling (typ-
ically taken from the initial image–to–mosaic homogra-
phy) so as to generate the appropriate control error. For
auto altitude control, we only consider the camera velocity
along its optical axis, whose desired value is then gener-
ated proportional to the apparent scale error:

ucam = −k(s − sd) (8)

Once again, relating Eq. (8) to the vehicle velocity vec-
tor through Eq. (4) (where the Jacobian this time is cal-
culated only for the vehicle vertical velocity), results into
the desired vertical velocity control law:

urobot = −kJ+
r2c(s − sd) (9)

where (s− sd) is the control error J+
r2c is a pseudo-inverse

of the robot-to-camera Jacobian matrix, taking into con-
sideration the vertical motion of the vehicle.

V. Results

The results reported in this paper were obtained from
experiments conducted using a custom modified Phantom
500SP ROV. The ROV is illustrated in Fig. 6 and among
other sensors, is equipped with a pan and tilt camera. The
controllable degrees of freedom are defined by the geomet-
ric arrangement of the thrusters. The forward–backward
force and a differential torque are applied by two horizon-
tally placed thrusters while an upward–downward force is
applied by a vertically placed thruster. This arrangement
creates non-holonomic motion constraints thus requiring
the vehicle to undergo complex maneuvers during posture
stabilization.

Fig. 6. Computer controlled Phantom ROV with the on–board cam-
era. The camera housing is visible in the lower center, attached
to the crash frame.

A set of experiments using the remotely operated vehi-
cle were conducted at sea. The ROV was deployed from a

pier, and operated within the umbilical cord range of 100
meters. For this range the water depth varied between 2
and 7 meters. For the servoing tests, the mosaic of Fig. 7
was used. This mosaic is sized 477 × 544 pixels and was
created using 46 images of 192 × 144 pixels. The images
were acquired over a sandy area delimited by algae.
An on-board sensor measured the distance from the sea

floor to the position where the first image of the sequence
was captured. The measured value of 4.29 meters was
then used to set the overall mosaic map scale. The mo-
saic covers approximately 64 square meters, from which
26 correspond to sand. Each pixel on the mosaic corre-
sponds to a sea floor area of about 2× 2 centimeters. The
rectangular region that contains the mosaic area measures
9.5× 10.8 meters.
It should be noted that the mosaic process was able to

successfully cope with image contents that clearly departs
from the assumed planar and static conditions. This is
visible in the large percentage of the mosaic area used by
moving algae.

Fig. 7. Fronto–parallel rendering of the mosaic used for the navi-
gation experiments, covering an area of approximately 64 m2.

An illustrative underwater servoing experiment is pre-
sented in Fig. 8 where a top-view of the ROV trajectory
and references are plotted. The ROV completed several
loop trajectories and travelled for 159 meters, during a
7 minute run. The references where manually specified
through a simple user-interface, where the operator was
required to click over the desired end position. A more
detailed view of a 42 second part of the run is given in
Fig. 9.
As stated before, the on-line tracking comprises two

complementary processes of position estimation, running
simultaneously but at distinct rates. The mosaic match-
ing was triggered in fixed intervals of 5 seconds, typically
requiring 3 seconds to be complete if it was successful on
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Start

End

Fig. 8. Underwater mosaic servoing experiment. This plot shows a
top–view of the ROV trajectory for the complete run with the
reference positions marked with crosses. The ROV trajectory
was recovered for the on–line image–to–mosaic matching with
updates from the image–to–image tracking, and is marked with
the full line.

Fig. 9. Trajectory detail comprising two endpoints. The generated
path contains a set of waypoints and is marked by the dashed
line. In order to allow the sense of speed, a set of arrows is
superimposed. The arrows are drawn every 2 seconds and sized
proportionally to the platform velocity. The abrupt changes in
the trajectory correspond to the position estimate corrections
due to the image–to–mosaic matching.

the first attempt. The image–to–image tracking ran per-
manently over consecutive pairs of incoming images, and
was used to update the current position estimate at ap-
proximately 7Hz.
During the sea trials, the set of images used by the

image–to–image tracker were recorded on disk for lat-
ter processing. This allowed for the off-line matching of
the whole sequence over the mosaic, using the same al-
gorithms as during the on-line mosaic matching. It was
therefore possible to recreate the trajectory using the 4
d.o.f. fronto-parallel parameterization for the pose and
compare it to the on-line estimates, which combined the
incremental image–to–image tracking estimate with the
last available mosaic matching.
Figure 10 plots the horizontal metric distance between

the camera centres for the on-line and off-line estimates,
during a selected period of 60 seconds. The duty cycle
of the mosaic matching is represented as a square wave,
where the rising edge corresponds to the acquisition of a
new image to be matched over the mosaic, and the falling
edge corresponds to the instant when the mosaic matching
information becomes available. It can be noticed that the
error does not fall to zero during the mosaic updates. This
is due to the fact that the mosaic-based estimate is only
available some time after the corresponding image was
acquired, thus allowing for the error to grow in between.
This plot illustrates the need and importance of the

periodic mosaic matching, which is apparent from the fast
error build-up between mosaic matches. This approach
also presents the advantage of allowing the monitoring
of the accumulated error during the on-line run, which
can be directly measured immediately after a successful
mosaic match. Although not taken into account in this set
of tests, the magnitude of the accumulated error can be
used to adjust the image–to–mosaic matching frequency,
thus adapting to cases where the image–to–image tracking
performance changes.
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Fig. 10. Diference between the online position estimate, using mo-
saic matching with inter–image tracking updates, and the offline
estimate, obtained by maching all the images over the mosaic.
This figure shows the horizontal (XY) distance, where the on-
line mosaic matching instants are marked with small circles.
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VI. Conclusions

This paper addressed the problem of underwater au-
tonomous navigation using video mosaics as maps for ser-
voing, where vision is the only sensory modality. The
methodology described is devised for mission scenarios
where an autonomous platform is required to map an area
of interest and navigate upon it afterwards.
Illustrative results from extensive tests at sea were pre-

sented, in which a camera-equipped commercial ROV was
able to autonomously navigate over automatically created
mosaics without getting lost for extended periods of time.
The testing conditions illustrated some of the common dif-
ficulties for visual based mosaicing and navigation, such
as the presence of moving objects and non-planar sea bot-
tom, and served to illustrate the robustness and appropri-
ateness of the approach.
This paper contributes to the field by demonstrating the

feasibility of using video mosaics as navigation maps for
underwater vehicles moving in 3D, relying on the visual
servoing framework. The creation of autonomous vehicles
requires the ability to navigate in unstructured and un-
known environments, without resorting to external posi-
tioning methods. The framework and experimental results
of this paper constitute a definite achievement regarding
this goal.
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