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Abstract

Least squares minimization of the differential epipolar
constraint is a fast and efficient technique to estimate struc-
ture and motion for pair of views. Previous work in this
area showed how unbiased and consistent estimates could
be obtained minimizing the squared errors. However, it im-
plicitly assumes that the errors along the x and y directions
are identical and uncorrelated. This is rarely the case for
real data, due to the aperture problem. Instead, one should
minimize the covariance weighted squared error. More-
over, when dense sequences are acquired, further robust-
ness can be achieved by integrating the reconstruction of
structure over time. This paper has two main contributions:
(i) we show that the minimization of the weighted squared
errors (i.e. Maximum-Likelihood estimate) outperforms the
more traditional approach of un-weighted least squares, (ii)
we show how structure estimation can be integrated over
time in a multi-view approach that drastically improves es-
timates.

1. Introduction

Optical flow can be effectively used to estimate struc-
ture and motion. In the last 20 years, a number of different
solutions to the problem of structure from motion in the dif-
ferential setting has been proposed. Linear techniques are
fast and can be expressed in closed form, but the estimation
of motion and structure is biased. Zhang and Tomasi [1]
recently showed that the bias is due to the incorrect choice
of the objective function and that unbiased and consistent
estimates can be obtained by direct minimization of the dif-
ferential epipolar constraint in the least squares sense. How-
ever, that approach assumes that errors on the x and y direc-
tions are identical and uncorrelated. Whenever this is not
true, severe errors and bias can be produced during the min-
imization process. Instead, we minimized the mahalanobis
distance (the re-weighted squared error), which takes into
account the spatial structure of the error: this is the Maxi-
mum Likelihood formulation of the problem.

If more than two images are available, more informa-

tion can be used for structure and motion estimation. One
possible approach consists in blending the various depth es-
timates arising from pair-wise application of structure and
motion estimation methods. Alternatively we formulate a
single estimation problem, where all the information is used
simultaneously to determine structure and motion.

In summary, we extend previous work in two fundamen-
tal ways: (i) by considering the covariance of the noise in
the estimation problem and (ii) by proposing a multi-view
approach that increases statistical precision by relying on a
reduced number of parameters.

2. Problem Formulation

In this section we review the basic motion model and the
structure and motion estimation algorithm proposed in [1].

The relationship between the image plane motion field
u(x) and the motion of the camera is given by:

u(x) =
1

Z
A(x)v + B(x)ω + n(x) (1)

where (v, ω) are the camera linear and angular velocities
and n(x) ∼ N(0,Σ) is zero-mean gaussian additive noise.
The matrices A(x) and B(x) are functions of image coor-
dinates defined as follows:

A =

[

1 0 −x
0 1 −y

]

;B =

[

−xy (1 + x2) −y
−(1 + y2) xy x

]

2.1 Two-frames non linear estimation of structure
and motion

Given to views of the same scene, the instantaneous mo-
tion model of Eq.(1) is valid when the camera rotation is
small and the forward translation is small relative to the
depth. If this condition is met optical flow between the two
frames can be computed and depths and velocities can be
estimated. Consider M frames Ij j ∈ {1 . . . M} and let
I0 be the reference view. We further assume that all the
image pairs {I0, Ij} satisfy the small motion approxima-
tion. The residual for the ith feature relative to a pair of
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Figure 1. (a) Angle between true and esti-
mated linear velocities for the re-weighted
and un-weighted algorithms with constant er-
ror ellipse orientation. (b) Standard devia-
tion of the estimated linear velocities for the
re-weighted and un-weighted algorithms with
random error ellipse orientation.

frames{I0, Ij} is defined as:

ri = ui −
1

Zi

A(xi)v − B(xi)ω (2)

ui is the optical flow of the ith feature calculated from the
frames {I0, Ij} and xi denotes the feature’s position in the
reference frame. Stacking the residuals ri in the 2N × 1
vector ρ = [r1, . . . , rN ] the motion and structure can be
estimated by solving the least squares problem:

(v̂, ω̂, Ẑ) = arg min
(v,ω,Z)

‖ρ‖2 (3)

where Z = (Z1, . . . , ZN ). Note that the Zi are estimated
with respect to the reference frame I0 for each j.

The problem in Equation (3) is a non linear least squares
estimation and has to be solved by an iterative technique.
We used Gauss-Newton in the form:

Jk∆[v, ω,Z]k = −ρk (4)

where J is the Jacobian of ρ and k is the iteration index.
In general, J is rank deficient, due the fact that the residual
function is invariant under the transformation (v, ω,Z) 7→
(αv, ω, αZ). The rank deficient linear system (4) can be
solved in the least square sense by using the pseudoinverse
of J . Alternatively, the constant α can be fixed by imposing
the constraint ‖v‖ = 1. Such constraint can be differenti-
ated, i.e. vk∆vk = 0, and this equation added as the last
line of the linear system in Eq. (4). The resulting system of
equations is full rank and can be solved with techniques for
full rank least squares problems that are about twice as fast
as the pseudoinverse [2].

Iterative techniques for non linear optimization problems
are locally convergent and a good initialization is needed in
order to find the global minimum. In our problem initial-
ization is easier due to the separability of the differential

epipolar constraint equation. Defining:

e = [e1, e2] =
A(x)v

‖A(x)v‖ (5)

the vector ẽ = [e1,−e2]
T is normal to the component of

the optical flow generated by the linear velocity and can be
used to eliminate this from the residual in Eq. (2):

ẽ · 1

Z
A(x) = 0 ⇒ ẽ · (u − B(x)ω) = 0 (6)

from which ω can be estimated by least squares minimiza-
tion when v is known. When v and ω are known we can
estimate the ratio 1

Z
from:

1

Z
=

e
T (u − B(x)ω)

‖A(x)v‖ (7)

To generate the initial value for (v, ω,Z), it is sufficient
to initialize the vector v on the half sphere of ray 1 and then
estimate the corresponding ω and Z using equations (6) and
(7).

3. Re-weighted Multi-View Formulation

In this section we re-formulate the maximum-likelihood
and time integrated version of the algorithm described in the
previous section.

3.1 Re-weighted Formulation

The algorithm described previously gives a consistent
and unbiased solution to the problem when errors are
isotropic and all equals. However, due to the aperture prob-
lem, the flow estimates in the direction of the image gradient
are much more precise than those in the normal direction.
Hence, errors are usually elliptic and correlated along the
directions x and y. An estimate of the covariance matrix Σ
for the computed flow vectors is given by the hessian of the
images gray levels around the considered feature point [3]:

Σ−1 =

(

Ixx Ixy

Iyx Iyy

)

(8)

where I(x, y) is the image brightness. Assuming that there
is no correlation between the noise relative to different fea-
tures, Equation (3) can be rewritten as:

(v̂, ω̂, Ẑ) = arg min
(v,ω,Z)

‖W 1

2 ρ‖2 (9)

where W is the block diagonal matrix whose blocks are
the matrices Σ−1

i : this is the maximum-likelihood estimator.
The Gauss-Newton iterations associated to Eq. (4) become:

W
1

2 Jk∆[v, ω,Z]k = −W
1

2 ρk (10)

Again the constraint ‖v‖ = 1, expressed as vk∆vk = 0
is added as the last line of the linear system in Eq. (10).
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Figure 2. Structure and motion error using the two views algorithms over the pairs {I0, I1} and {I0, I2}
and using the multi-frame algorithm over the 3 frames simultaneously. (a) Linear velocities (v1, v2).
(b) Structure

Figure 3. Multi-frame reconstruction over 3
frames. 271 features were used. Average
optical flow is one pixel per frame.

3.2 Multi-view Structure and Motion Estimation

The algorithm described above can be applied to all im-
age pairs, {I0, Ij}, satisfying the small motion approxi-
mation, yielding different and independent estimates of the
same parameters Z.

Since the parameters Z are shared by all the minimiza-
tions of the type of Eq.(3), it is possible to minimize all the
two frames residuals simultaneously, in a single non linear
least square problem. Stacking the linear and angular ve-
locities (vj , ωj) between pair of frames {I0, Ij} in 3M × 1
vectors −→v = [v1 . . . vM ] and −→ω = [ω1 . . . ωM ] we can for-
mulate the multi-view minimization as :

(−̂→v , −̂→ω , Ẑ) = arg min
(−→v ,−→ω ,Z)

‖W 1

2
−→ρ ‖2 (11)

where −→ρ 2NM×1 = [ρ1, . . . , ρM ] is obtained by stacking
the two-frames residual vectors, ρj , and W2NM×2NM is
the block diagonal weight matrix whose diagonal blocks are
the two-frames weight matrices Wj , j ∈ {1 . . . M}. For the

Figure 4. Multi-frame reconstruction over 3
frames. 245 features were used. Average
optical flow is one pixel per frame.

minimization we used again Gauss-Newton in the form:

W
1

2 Jk · ∆[−→v ,−→ω ,Z] = −W
1

2
−→ρ (12)

where J2NM,N+6M is the jacobian of −→ρ
The advantage of the multi-frame minimization is that

the number of fitted parameters is significantly reduced,
hence improving the statistical precision of the estimate.
Assuming that Z is estimated M times independently from
the two-frames algorithms, the precision of the estimate is
about εs u 1/

√

M(2N − p), where p denotes the number
of estimated parameters, in our problem p = N + 6M . For
the multi-frame estimation we get εm u 1/

√
M2N − p.

Convergence properties for the two-frame and multi-frame
minimization are considered in the experiments section.

In the multi-frame setting it is more convenient to handle
the scale ambiguity by fixing the norm of Z, which automat-
ically fixes the norms of the different vj .

3.3 Experiments

We extensively tested the algorithm using synthetic flow
fields. For homogeneity and simplicity we used the same



experimental conditions and benchmarks as in [4]. The fo-
cal length was set to 1 and the focal plane dimensions to
512×512 pixels. The field of view is 90o. Random clouds
of 100 points are generated in a depth range of 2-8 focal
lengths. The motion is a combination of rotations and trans-
lations. The rotational speed magnitude was constant and
chosen to be 0.23 degrees per frame. The magnitude of the
linear velocity was chosen to fixate the point at the cen-
ter of the random cloud. With this setting the average op-
tical flow is about 1 pixel per frame, very similar to real
working conditions. Zero-mean gaussian noise was added
to the components of the velocity with different degrees of
ellipticity and orientation. The shape of the elliptical un-
certainty was varied changing the value of the parameter
rλ =

√

λmax/λmin where λmax and λmin are the largest
and smallest eigenvalues of the covariance matrix Σ.

Simulations: The two frames re-weighted algorithm
was tested for different ellipticity in the range 0 ≤ rλ ≤ 20.
We performed two different set of tests. In the first, the er-
rors were elliptical and the orientation of the error ellipses
was kept constant. Figure 1(a) shows the bias in the estima-
tion of the linear velocity. The un-weighted algorithm fails
almost systematically to find the correct camera velocity. In
the second test, the ellipses orientation was random. Fig-
ure 1 (b) shows that both the un-weighted and re-weighted
algorithms lead to an unbiased translational velocity, but the
re-weighted version has globally a lower error, up to 3 times
smaller for ellipticity rλ = 20.

In the case of the multi-view minimization we used 3
views, of which one is fixed as the reference view. We es-
timated motion and structure parameters (v1, ω1, v2, ω2,Z)
for different noise levels using the two-views algorithm with
the image pairs {I0, I1} and {I0, I2} and using the multi-
view algorithm with the 3 views simultaneously. Figure 2
clearly shows that the multi-view algorithm outperforms the
single-view.

Real Images: Figures (3) and (4) show two examples
of the multi-frame reconstruction using a total of 3 frames.
Features were tracked using the method in [3]. Sequences
are acquired with a hand held commercial camcorder at
25 Hz. The average feature motion is about 1 pixel per
frame. Due to the unavailability of the ground truth, we
assessed the efficiency of our method by measuring the pla-
narity of the 3 planar surfaces of the box-like shapes. This
was done by fitting 3 planes to the 3D reconstruction and
measuring the average residual of the fit. We found that
the re-weighting improves the planarity of about 10% and
the multi-frame integration of about 30% for both the se-
quences.

Convergence: Both the two-view and multi-view algo-
rithms converge within 4-5 iterations to a minimum. The
global minimum can be found starting the algorithm for dif-
ferent random initializations and checking the values of the

residuals at the end of the minimizations. The global min-
imum is found essentially all the times starting with 15-20
random initializations. Initialization is made easier by vari-
able separability described in Section 2.

4 Conclusions

We described a Maximum Likelihood estimation of struc-
ture and motion from optical flow, using the differential
epipolar constraint. The main contributions consist in (i)
considering the full directional uncertainty of the observa-
tions and (ii) formulating a multi-view approach that uses
all the available image data in a single estimation problem.

Appendix A

Sensitivity in the 3D reconstruction is measured aligning
the ground-truth and the reconstructed model and taking the
average of the distance between estimated and true features
positions, X̂ and X, divided by the average object size. A
similar approach is taken to assess the error in the recon-
structed velocities:

σr = E[
‖Xi − X̂i‖
obj. size

]; σv =

√

√

√

√

1

L − 1

L
∑

l=1

[cos−1(v̄v̂l)]2

(13)
where i runs over the features and v̄ is the average of the re-
constructed velocities, that minimizes

∑L

l=1 cos−1 v̂lv̄ sub-
ject to ‖v̄‖ = 1. L is the number of trials.

The average rotation matrix R̄ is computed from the esti-
mates, R̂l. The rotation sensitivity is computed as the stan-
dard deviation of the difference angle, φ, between R̄ and the
estimates, R̂, for each trial sample:

σφ =

√

√

√

√

1

L − 1

M
∑

l=1

φ2
l ; φl = cos−1[

Tr(R̂lR̄) − 1

2
]

(14)
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