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Abstract

Unbiased and consistent estimates of structure and mo-
tion can be obtained by least squares minimization of the
differential epipolar constraint. Previous work on this sub-
ject does not make use of geometrical constraints that of-
ten are present in natural and man built scenes. This
paper shows how linear constraints among feature points
(collinearity and coplanarity) and bilinear relations among
such entities (parallelism and incidence) can be incorpo-
rated in the minimization process to improve the structure
and motion estimates. There are 2 main contributions:
(i) the formulation of a constrained minimization problem
for structure and motion estimation from optical flow and
(ii) the solution of the optimization problem by Levenberg-
Marquardt and direct projection. We show that the proposed
approach is stable, fast and efficient.

1. Introduction

Optical flow has been efficiently used for structure and
motion estimation. The differential epipolar constraint has
been manipulated in different way in order to linearize the
minimization problem [1, 2] . Although fast and of closed
form, linear techniques are shown to lead to biased estima-
tion of motion and structure. Zhang and Tomasi [3] recently
demonstrated that such bias is due to the incorrect choice
of the objective function and that unbiased and consistent
estimates can be obtained by minimization of the differ-
ential epipolar constraint in the least squares sense. How-
ever, this approach does not exploit any constraints of the
scene geometry. Man built and natural environments fea-
ture many geometrical entities (lines and planes for exam-
ple) often arranged in special configurations (parallelism,
incidence etc). Attempts to incorporate such constraints in
reconstruction algorithms have been previously done in the
stereo framework [4, 5, 6].

In this paper we approach the problem of using such ge-
ometrical constraints in the differential structure from mo-
tion setting. We show (i) how to incorporate linear con-
straints among feature points (collinearity and coplanarity)

and bilinear relationships among such entities (parallelism
and incidence at a certain angle) in the minimization of the
differential epipolar constraint; (ii) we show how fast and
stable convergence is obtained by the use of a Levenberg-
Marquardt iterative minimization and a direct projection
method [7] for constraints enforcement. The result is a fast
and efficient algorithm which drastically reduces the recon-
struction error.

Note that in this paper we do not discuss the problem of
segmentation: we assume that planes and lines are already
detected by one of the existing segmentation techniques [8].

2. Unconstrained Non Linear Estimation of
Structure and Motion

2.1 Problem Formulation

The relationship between the image plane motion field
u(x) and the motion of the camera is expressed as :

u(x) =
1

Z
A(x)v + B(x)ω + n(x) (1)

where (v, ω) are the linear and angular camera velocities
and n(x) ∼ N(0, σ) is zero-mean gaussian additive noise.
Z is the depth of the scene points whose 3D position we
indicate with X = [X,Y, Z]. The matrices A(x) and B(x)
are functions of image coordinates defined as follows:

B =

[

−xy (1 + x2) −y

−(1 + y2) xy x

]

;A =

[

1 0 −x

0 1 −y

]

We assume that the focal length is equal to 1, so that the
projection model is such that x = 1

Z
[X,Y ].

2.2 Unconstrained Optimization

Given two views of the same scene, the instantaneous
motion model of Eq.(1) is valid when the camera rotation
is small and the forward translation is small relative to the
depth. If this condition is met, optical flow between the two
frames can be computed and depths and velocities can be
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estimated. We define the residual for the ith feature relative
to the pair of as:

ri = ui −
1

Zi

A(xi)v − B(xi)ω (2)

We stack the residuals ri in the 2N × 1 vector ρ =
[r1, . . . , rN ] and the structure and motion parameters in the
vector θ = (v, ω,Z) with Z = (Z1, . . . , ZN ). Structure
and motion can be estimated by solving the least squares
problem:

θ̂ = arg min
θ

‖ρ(θ)‖2 (3)

.
The problem in Equation (3) is a non linear least squares

estimation and has to be solved by an iterative technique.
We used Gauss-Newton in the form:

Jk∆θk = −ρk (4)

where J is the Jacobian of ρ, and k is the iteration index.
Initialization: Iterative techniques for the solution of

non linear optimization problems are locally convergent and
a good initialization is needed in order to find the abso-
lute minimum. Initialization is made easier in our problem
due to the separability of the differential epipolar constraint
equation. Defining:

e = [e1, e2] =
A(x)v

‖A(x)v‖
(5)

the vector ẽ = [e1,−e2]
T is normal to the component of the

optical flow generated by the linear velocity:

ẽ ·
1

Z
A(x)v = 0 (6)

Multiplying Eq. (1) by ẽ we get:

ẽ(u − B(x)ω) = 0 (7)

from which ω can be estimated by least squares mini-
mization when v is known. When v and ω are known we
can estimate the ratio 1

Z
from:

1

Z
=

eT (u − B(x)ω)

‖A(x)v‖
(8)

To generate the initial value for the variables (v, ω,Z) it
is sufficient to initialize the vector v on the half sphere of
radius 1 and then estimate the respective ω and Z using Eq.
(7) and Eq. (8).

3. Constrained Non Linear Estimation of
Structure and Motion

3.1 Constraints Formulation

We consider only constraints linear in the features coor-
dinates (i.e. collinearity and coplanarity) and bilinear con-
straints among such geometrical entities (i.e. parallelism

and incidence at a certain angle). Planes are parameterized
by a direction p and a distance d. Lines are described by the
intersection of 2 planes. Constraints can be expressed as:

Xpa = da X ∈ plane (9)

papb = θa,b incidence at angle θh,l (10)

pa = pb parallelism (11)

3.2 Constrained Optimization

Coplanarity and collinearity can be easily incorporated
in equation Eq. (3) by parameterization. If a set of points
Xh, h ∈ {1 . . . H} belongs to a plane, their depth can be
parameterized as Zh = d

[xh,yh,1]p . The residual of such
points takes the form:

rh = uh − A(xh)
[xh, yh, 1]p

d
v − B(xh)ω (12)

Indicating with c the vector of the parameters of the M con-
straints, i.e. c = [p1, d1 . . .pM , dM ], structure and motion
can be estimated by solving:

Θ̂ = arg min
θ

‖ρ(Θ)‖2 (13)

where Θ = (v, ω,Zu, c) and Zu is the vector of the depths
of the points for which no constraints are available . To
speed up the solution we used Levenberg-Marquardt itera-
tion technique instead of Gauss-Newton:

Lk∆Θk = −JT
k ρk (14)

where J is the jacobian of ρ(Θ). The matrix Lm,n is de-
fined as Lm,m = (1+λ)(JT J)m,m and Lm,n = (JT J)m,n

for m 6= n. The parameter λ is fixed to be 10−3 at the
beginning.

Constraints among geometrical entities (Eq. (10) and
(11)) define a feasible space where to search to the absolute
minimum of the function we are optimizing. To solve the
constrained minimization problem we used a direct pro-
jection method [7]: constraints of the form f(c) = 0 are
differentiated obtaining linear equations in ∆c:

∂f

∂c
∆c = 0 (15)

Such equations are added to the system in Eq. (14)
which is solved as for normal Levenberg-Marquardt itera-
tions. Due to the fact that the constraints are replaced by
their differentials, the incremented structure and motion pa-
rameters Θk+1 do not belong to the feasible space but to its
tangent space. To keep the solution in the feasible space the
vector Θk+1 is re-projected onto it, i.e. Θk+1 7→ P(Θk+1)
where P is the projector.
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Figure 1. (a) Linear velocity error. (b) Structure error.

This approach is known as direct projection. The main
advantage of this technique is that a constrained minimiza-
tion problem is transformed into an un-constrained one that
can be solved by a standard iterative technique. The draw-
back is that convergence is not guaranteed since the min-
imization method finds a descent direction in the tangent
space which does not ensures that such direction projected
onto the feasible space is still descent. Formally this means
that ‖ρ(Θk+1)‖

2 < ‖ρ(Θk)‖2 that does not imply that
‖ρ(P(Θk+1)‖

2 < ‖ρ(Θk)‖2. Nevertheless for the class of
problems we are trying to solve this approach has very good
convergence properties. This are reviewed more in detail in
the experiments section.

Initialization For constrained minimization parameters
for planes and lines must also be initialized. We first esti-
mate an initial structure and motion as in the unconstrained
case. The set of parameters c can be initially estimated by
using the initial structure and Eq. (9). Such first estimate
must be refined in order to have c in the feasible space.
This is simply done by re-projection. For example, if M

perpendicular planes are present the projector is the unitary
transformation that align them with M perpendicular uni-
tary vectors. The optimal solution to this problem can be
easily computed by SV D (see [9]).

4. Results

We extensively tested the algorithm using synthetically
generated flow fields. For homogeneity and simplicity we
used the same experimental conditions and benchmarks as
in [10]. The focal length of the simulated camera is set to
1 and the focal plane dimensions to 512×512 pixels. The
field of view is 90 degrees. Random cloud of 100 points

are generated in a depth range of 2-8 focal lengths. The
motion is a combination of rotations and translations. The
rotational speed magnitude was constant and chosen to be
0.23 degrees per frame. The magnitude of the linear veloc-
ity was chosen to fixate the point at the center of the random
cloud. The average optical flow generate by this setup is ap-
proximately 1 pixel per frame which is very similar to real
working conditions. Zero-mean gaussian noise of different
std was added to the components of the velocity. The noise
range was between 0 and 0.3 pixels which is a realistic esti-
mate for our working conditions (see [11] and [10]).

Simulations We generated 48 points distributed on 3 or-
thogonal surfaces for testing purposes. Initialization was
obtained by estimating the linear velocity by subspace
methods [12] and then using Equations (7) and (8) to es-
timate ω and Z. We did 4 tests to asses the performance
of the constrained minimization: we first used plane Gauss-
Newton with no constraints, we then used Gauss-Newton
with one plane constraint, three planes constraints and fi-
nally three orthogonal plane constraints. Figures 1 (a) and
(b) show the linear velocity and structure errors for differ-
ent noise levels. The error functions are described in the
appendix.

Real Images Optical flow is estimated at sparse posi-
tions over the image plane by the method described in [13].
The average disparity for the two sequences used is approx-
imately 2 pixels per frame. The total number of features
used is 245 the Teabox and 271 for the Linuxbox sequence.

Convergence Properties To speed up the convergence
the Levenberg-Marquardt iterative algorithm was used. For
a noise of 0.1 pixels, which is the normal amount expected
in our working conditions (see [11]), the global minimum
is found essentially all the times within 10-15 steps. For
very noisy fields, i.e. 0.3 pixels, the convergence rate is



about 70%. Convergence rate for noisy fields can be further
increased by randomly initializing several times the algo-
rithm and then taking the solution that generates the mini-
mal residual flow. This process is made easy by the variable
separability described in section 2.

5. Conclusions

In this paper we showed how linear geometrical con-
straints (collinearity and coplanarity) and bilinear con-
straints among them (incidence and parallelism) can be used
to improve structure and motion estimation in the differen-
tial setting. While Gauss-Newton is proved to converge fast
in the unconstrained case, Levbenberg-Marquardt has to be
used when constraints are incorporated. The method of di-
rect projection, used to enforce the constraints, is proved to
be stable and efficient. Simulations and tests on real images
show the efficiency of the proposed method.

Appendix A

Sensitivity in the 3D reconstruction is measured aligning
the ground-truth and the reconstructed model and taking the
average of the distance between estimated and true features
positions, X̂ and X, divided by the average object size. A
similar approach is taken to assess the error in the recon-
structed velocities:

σr = E[
‖Xi − X̂i‖

obj. size
]; σv =

√

√

√

√

1

L − 1

L
∑

l=1

[cos−1(v̄v̂l)]2

(16)
where i runs over the features and v̄ is the average of the re-
constructed velocities, that minimizes

∑L

l=1 cos−1 v̂lv̄ sub-
ject to ‖v̄‖ = 1. L is the number of trials.

The average rotation matrix R̄ is computed from the esti-
mates, R̂l. The rotation sensitivity is computed as the stan-
dard deviation of the difference angle, φ, between R̄ and the
estimates, R̂, for each trial sample:

σφ =

√

√

√

√

1

L − 1

M
∑

l=1

φ2
l ; φl = cos−1[

Tr(R̂lR̄) − 1

2
]

(17)
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