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Abstract

This paper overviews experiments in autonomous
visual-based navigation undertaken at the Instituto de
Sistemas e Robótica. By considering the precise na-
ture of the robot’s task, we specify a navigation method
which fulfills the environmental and localization re-
quirements best suited to achieving this task. On-
going research into task specification using 3D models,
along with improvements to our topological navigation
method are presented. We show how to build 3D models
from images obtained with an omnidirectional camera
equipped with a spherical mirror, despite the fact that
it does not have a single projection centre.

1. Introduction

The problem of navigation is central to the success-
ful application of mobile robots. Autonomous visual-
based navigation can be achieved using catadioptric
vision sensors. Significantly, such a sensor can gener-
ate diverse views of the environment. We have utilized
omnidirectional, panoramic and bird’s-eye views (i.e.
orthographic images of the ground plane) to achieve a
variety of navigation tasks [8].

The motivation for our research comes from studies
of animal navigation. These suggest that most species
utilize a very parsimonious combination of perceptual,
action and representational strategies [3] that lead to
much more efficient solutions when compared to those
of today’s robots. For example, when entering one’s
hall door one needs to navigate with more precision
than when walking along a city avenue. This obser-
vation of a path distance/accuracy trade-off is a fun-
damental aspect of our work [8, 17], with each mode
requiring a specific environmental representation and
localization accuracy.

For traveling long distances within an indoor envi-
ronment our robot does not rely upon knowledge of its
exact position [18]. Instead, fast qualitative position-
ing is undertaken in a topological context by matching
the current omnidirectional image to an a priori ac-
quired set, i.e. an appearance based approach to the
problem using PCA [11]. For tasks requiring very pre-
cise movements, e.g. docking, we developed a method
termed Visual Path Following [7] for tracking visual
landmarks in bird’s-eye views of a scene. We can eas-
ily integrate these approaches in a natural manner. In
one experiment the robot navigates through the Com-
puter Vision Lab, traverses the door, travels down a
corridor and then returns to its starting position.

It is important to note that for successful comple-
tion of such a task, user-specified information is re-
quired. While our robot is autonomous it is not in-
dependent. This constraint lead us to investigate a
method whereby a user could specify particular sub-
tasks in as intuitive a manner as possible. This is the
subject of on-going research. We wished to solve this
problem by designing an effective human-robot inter-
face using only omnidirectional images. In this paper,
we show how to construct this complimentary human-
robot interface module and how it fits into our existing
navigation framework. Our solution is to reconstruct a
3D model of the environment from a single omnidirec-
tional image. An intermediate step in this construction
requires the generation of perspective images. Thus,
we show how our sensor can be modeled by the central
projection model [9], despite the fact that it does not
have a single centre of projection [1].

Additionally, this paper presents an improvement
to our topological navigation module. In our previ-
ous work, entire omnidirectional images where used for
localization. Using a statistical method termed Infor-
mation Sampling [19], we can now select the most dis-



Figure 1: Left: the omnidirectional camera. Right: the
camera mounted on the mobile robot.

criminatory data from a set of images acquired a pri-
ori. This not only gives us a speed increase but is also
beneficial when dealing with such problems as partial
occlusion and illumination change.

This paper is outlined as follows: Section 2 intro-
duces the Information Sampling method and presents
associated results. Section 3 details our human-robot
interface in addition to showing how the central pro-
jection model can model our spherical sensor. Results
are also given. In Section 4 we present our conclusions
and the future direction of our research.

2. Information Sampling for Nav-
igation

Information Sampling is a statistical method to extract
the most discriminatory data from a set of omnidirec-
tional images acquired a priori. We rank this data from
most to least discriminatory. For more details on rank-
ing methods, see [19]. Then, using only the highest
ranking data we build a local appearance space which
the robot utilizes for autonomous navigation. Theoret-
ically, Information Sampling can be applied on a pixel-
by-pixel basis to any type of image. For computational
reasons, we use windows instead of pixels, extracted
from omnidirectional images. Our set up is shown in
Figure 1.

2.1. Related Work

Ohba [12] presents a method to divide images into a
number of smaller windows. Eigenspace analysis was
then applied to each window. Thus, even if a num-
ber of windows become occluded, the remaining ones
contain enough information to perform the given task.
Unfortunately, this method requires storage of a very
large number of image windows and the chances of one
window, acquired at runtime being matched to a num-
ber of images from the a priori set is high. Therefore,
it is highly desirable that only the most discrimina-
tory windows are selected from each acquired image.
A number of solutions have been proposed including
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Figure 2: Left: A 32 × 32 omnidirectional image ac-
quired at runtime and its most discriminatory 8 × 8
information window. Right: Its reconstruction using
this information window.

the use of interest operators [14], pre-defined grids [4]
or criteria such as detectability, uniqueness and relia-
bility [12]. It should be noted that unlike the other so-
lutions cited here, Information Sampling does not rely
on eigenspace analysis or the use of interest operators.

2.2. Information Sampling: Overview

Essentially, Information Sampling can be described as
a process for (i) reconstructing an entire image from the
observation of a few (noisy) pixels and (ii) determining
the most relevant image pixels, in the sense that they
convey the most information about the image set.

Part (i) selects a number of pixels, d to test accord-
ing to a selection matrix, S. The problem is to estimate
an (entire) image based on these partial (noisy) obser-
vations of the pixels, d. Once we have this information,
we can calculate the maximum a posteriori estimate of
an image, ÎMAP [13] as follows:

ÎMAP = argmax
I
p(I|d) =

(Σ−1
I + ST Σ−1

n S)
(Σ−1

I Ī + ST Σ−1
n d)

(1)

In order to determine the best selection of pixels in the
image, part (ii) involves computing the error associ-
ated with the above reconstruction. This error is calcu-
lated as the determinant of the error covariance matrix:
Σerror = Cov(I− ÎMAP ). In essence, we wish to deter-
mine the S that minimizes (in some sense) Σerror. This
will be our information window. Notice that the infor-
mation criterion is based on the entire set of images
and not, as with other methods, on an image-by-image
basis. More details on Information Sampling can be
found in [19].

Figure 2 (left) shows an omnidirectional image ac-
quired at runtime and (right) its reconstruction us-
ing only the most discriminatory information window.
This illustrates the power of our method. Results are
detailed in the following section.
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Figure 3: Top: Close-up of the 32 × 32 information
windows: unknown (left), closest (middle) and recon-
structed (right). Bottom: The position of the unknown
and closest images in their respective omnidirectional
images.

2.3. Position Estimation Results

Once the best window was determined using Informa-
tion Sampling, we built a local appearance space [19, 4]
using only the data selected with this window from each
a priori image. This additionally compressed our data
to only approximately one thousandth of the original
128 × 128 image data. Successful position estimation
has been achieved using windows as small as 4×4 pixels
in size.

We projected only the selected windows from each
image into the eigenspace. This is an improvement on
previous approaches, where all windows first had to be
projected. Thus, we were able to immediately reduce
the ambiguity associated with projection. Figure 3 top
row, from left to right, shows the most relevant in-
formation window from an unknown image, its closest
match from the a priori set of omnidirectional images
and its reconstruction. The bottom row shows the in-
formation window in the unknown 128 × 128 image
(left) and its closest match from the a priori set, ob-
tained by projecting only the most relevant information
window (right). We note here that we could in princi-
pal, given enough computing power, use equation (1)
to reconstruct a 128 × 128 image using only the most
relevant window.

Figure 4 shows the distance between images ac-
quired at run time and those acquired a priori. The
global minimum is the correct estimate of the robot’s
current topological position. Local minima correspond
to images similar to the current one, some distance
away from the robot’s position. Figure 4 (left) shows
the graph obtained using 16 × 16 images, while Fig-
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Figure 4: A 3D plot of images acquired at run time
versus those acquired a priori using (top) 16×16 images
and (bottom) 4× 4 information windows, respectively.

ure 4 (right) that obtained using the most discriminat-
ing 4 × 4 image window. While different local minima
are obtained by both methods, the global minimum is
maintained. Thus, we have shown that effective navi-
gation can be undertaken using only the most informa-
tive 16 pixels from each image.

3. Human Robot Interface

Once we had developed an effective method for au-
tonomous qualitative robot navigation along a topo-
logical map, we turned our attention to developing an
intuitive user interface from which to select subtasks.
While final experiments have yet to be undertaken, in
this section we show how to construct this interface.

Our interface consists of a 3D interactive reconstruc-
tion of a structured environment obtained from a single
omnidirectional image. In order to build such a model,
we first have to generate perspective images from our
catadioptric sensor, despite the fact that it does not
have a single centre of projection, since it utilizes a
spherical mirror. The benefit of such an interface is
that even though it does not provide very fine details
of the environment, it provides the user with a suffi-
ciently rich description that may easily be transmitted
over a low bandwidth link.

3.1. Catadioptic Sensor Modeling

In [9] Geyer and Daniilidis present a central projection
model for all catadioptric systems with a single pro-
jection centre. This model combines a mapping to a
sphere followed by a projection to a plane. The pro-
jection of a point in space (x, y, z) to an image point
(u, v) can be written as:

[
u
v

]
=

l +m
l · r − z

[
x
y

]
= P(x, y, z; l,m) (2)

r =
√
x2 + y2 + z2
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Figure 5: Left: Central Projection Model. Right:
Spherical Mirror.
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Figure 6: Mean absolute error between the central pro-
jection model and the projection with a spherical mir-
ror. Vertical bars indicate the standard deviation.

where l and m, represent the distance from the sphere
centre to the projection centre, O, and the distance
from the sphere centre to the plane, respectively. This
is graphically represented by Figure 5 (left).

On the other hand, catadioptric sensors which use
a spherical mirror, shown in Figure 5 (right), are es-
sentially modelled by the equation of reflection at the
mirror surface, γi = γr [7].

A camera with a spherical mirror cannot be exactly
represented by the central projection model. In order
to find an approximate representation, we compare the
image projection error, instead of analyzing the projec-
tion centre itself.

Let P(xi, yi, zi; θ) denote the central projection de-
fined in equation (2) and Pc be the projection with a
spherical mirror. Grouping the geometric and intrinsic
parameters together - θ and θc for the former and latter
projections - we want to minimize the cost functional
associated with the image projection error:

θ̂ = argθ min
∑

i

‖P(xi, yi, zi; θ) − Pc(xi, yi, zi; θc)‖2

The minimization of this cost functional gives the de-
sired parameters, θ for the central projection model, P
which approximates the spherical sensor characterized
by Pc and θc. Despite the fact that projection using
spherical mirrors cannot be represented by the central
projection model, Figure 6 shows that for a certain

operational range, this theory gives a very good ap-
proximation. The error is less than 1 pixel.

3.2. Forming Perspective Images

The acquisition of correct perspective images, indepen-
dent of the scenario, requires that the vision sensor be
characterised by a single projection centre [1]. By defi-
nition the spherical projection model has this property
but due to the intermediate mapping over the sphere
the images obtained are, in general, not perspective.

In order to obtain correct perspective images, the
spherical projection must first be reversed from the im-
age plane to the sphere surface and then, re-projected
to the desired plane from the sphere centre. We term
this reverse projection back-projection after Sturm in
[15, 16]. The back-projection of an image pixel (u, v),
obtained through spherical projection, yields a 3D di-
rection k · (x, y, z) given by the following equations, de-
rived from equation (2):

a = (l +m), b = (u2 + v2)

[
x
y

]
=
la− sign(a)√(1 − l2)b+ a2

a2 + b

[
u
v

]
(3)

z = ±
√

1− x2 − y2

where z is negative when |l +m| /l > √
u2 + v2, and

positive otherwise. It is assumed, without loss of gener-
ality, that (x, y, z) lies on the surface of the unit sphere.

Note that the set {(x, y, z)}, interpreted as points
of the projective plane, already define a perspective
image. However for displaying or obtaining specific
viewing directions further development is required.

Letting R denote the orientation of the desired (pin-
hole) camera relative to the frame associated with the
results of back-projection, the new perspective image
{(λu, λv, λ)} becomes:


 λu
λv
λ


 = K ·R−1


 x
y
z


 (4)

where K contains the intrinsic parameters and λ is a
scaling factor. This is the pin-hole camera projection
model [5], when the origin of the coordinates is the
camera centre.

3.3. Interactive 3D Reconstruction

We now describe the method used to obtain 3D mod-
els given the following information: a perspective im-
age (obtained from an omnidirectional camera with a
spherical mirror), a camera orientation obtained from
vanishing points [2] and some limited user input [6, 10].



Let p = [u v 1]T be the projection of a 3D point
[C C ′ C ′′ 1]T that we want to reconstruct. Then, if we
consider a normalized camera [5], we have the follow-
ing: 

 u
v
1


 = λ [r1 r2 r3 0]



C
C ′

C ′′

1




= λ (Cr1 + C ′r2 + C ′′r3)

(5)

where r1, r2, r3 are vanishing points. As is usual, we
choose 0 as the origin of the coordinates for reconstruc-
tion. Next, we define lines towards vanishing points:

li = ri × [u v 1]T , i = 1 . . . 3. (6)

Then, using the cross and internal products property
that (r × p)T .p = 0, we obtain:

lTi .r1C + lTi .r2C
′ + lTi .r3C

′′ = 0 (7)

which is a linear system in the coordinates of the 3D
point. This can be rewritten as:

 0 lT1 .r2 lT1 .r3
lT2 .r1 0 lT2 .r3
lT3 .r1 lT3 .r2 0





 C
C ′

C ′′


 = 0. (8)

Generalising this system toN points we again obtain
a linear system:

A.C = 0 (9)

where C contains the 3N tridimensional coordinates
that we wish to locate and A is block diagonal, where
each block has the form shown in equation (8). Thus,
A is of size 3N × 3N . Since only two equations from
the set defined by equation (8) are independent, the
co-rank of A is equal to the number of points N . As
expected, this shows that there is an unknown scale
factor for each point.

Now, adding some limited user input, in the form of
co-planarity or co-linearity point constraints, a number
of 3D coordinates become equal and thus the number
of columns of A may be reduced. As a simple example,
if we have 5 points we have 5 × 3 free coordinates, i.e
the number of columns of A. Now, if we impose the
constraint that points P1, P2, P3 are co-planar, with
constant z value and points P4, P5 are co-linear, with
a constant (x, y) value, then the total number of free
coordinates is reduced from the initial 15 to 12. Thus,
the coordinates P2z, P3z, P5x, P5y are dropped from
the linear system defined by equation (9).

Given sufficient user input, the co-rank of A becomes
1. In this case, the solution of the system will give a
reconstruction with no ambiguity other than that - well
known - of scale [10].

 1
 2

 3
 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

Figure 7: User defined planes orthogonal to the x axis
(light gray), y axis (white) and z axis (dark gray).

Axis Planes Lines
x (1, 2, 9, 10, 11), (3, 4, 14, 15, 16),

(5, 7, 12, 13)
y (5, 6, 10, 11, 12), (7, 8, 13, 14, 15),

(1, 3, 9, 16) (1, 2)
z (1, 2, 3, 4, 5, 6, 7, 8), (9, 12, 13, 16)

Table 1: User-defined planes and lines. The numbers
are the indexes of the image points shown in Figure 7.
The first column indicates the axis to which the planes
are orthogonal and the lines are parallel.

3.4. Developing the Human Robot In-
terface: Results

Figure 7 shows an omnidirectional image and super-
posed user input. This input consists of the 16 points
shown, knowledge that sets of points belong to con-
stant x, y or z planes and that other sets belong to
lines parallel to the x, y or z axes. Table 1 details all
the user-defined data. Planes orthogonal to the x and
y axes are in light gray and white respectively, and one
horizontal plane is shown in dark gray (the topmost
horizontal plane is not shown as it would occlude the
other planes). The coordinates in the original image
were transformed to the equivalent pin-hole model co-
ordinates and used for reconstruction. Figure 8 shows
the resulting texture-mapped reconstructions. These
results are interesting given that they required only a
single image and limited user input to reconstruct the
surroundings of the sensor.

4. Conclusions & Future Work

This paper presented experiments in visual-based nav-
igation using an omnidirectional camera. We showed
improvements to our topological module by using In-
formation Sampling. We explained how our sensor,
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Figure 8: Views of the reconstructed 3D model.

despite the fact that it does not have a single projec-
tion centre, can be modeled by the central projection
model. Then, using single omnidirectional images and
some limited user input we showed how to build a 3D
model of the environment. This acted as a basis for an
intuitive human-robot interface.

In terms of our future work, we plan on extend-
ing the implementation of Information Sampling. Ad-
ditionally, creation of large scene models shall be
achieved by fusing different models together. We plan
on carrying out extended closed-loop control exper-
iments verifying the applicability of our navigation
framework.
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