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Abstract

This paper considersthe problem of 3D reconstruction from 2D pointsin one
or more images and auxiliary information about the corresponding 3D fea
tures : alignments, coplanarities, ratios of lengths or symmetries are known.
Our £rst contribution is a necessary and suffcient criterion that indicates
whether adataset, or subsetsthereof, deEnesarigid reconstruction up to scale
and translation. Another contribution is a reconstruction method for one or
more images. We show that the observations impose linear constraints on
the reconstruction. All the input data, possibly coming from many images,
is summarized in a single linear system, whose solution yields the recon-
struction. The criterion which indicates whether the solution is unique up to
scale and trandation is the rank of another linear system, called the “twin”
system. Multiple objects whose relative scale can be arbitrarily chosen are
identifed. The reconstruction is obtained up to an af£ne transformation, or,
if calibration is available, up to a Euclidean transformation.

1 Introduction

Reconstructing static scenes with some geometric structure has recently drawn a lot of
attention [4, 11, 5]. By structure, it is meant that some sets of 3D points verify properties
of coplanarity, alignment or symmetry or that some distance ratios are known. This situ-
ation is of practical importance because it is common in man-made scenes and because it
may allow to obtain reconstruction from a single view. Possible applications can be found
in urbanism (virtual models of existing or ancient buildings), leisure (models for virtual
reality), real-estate (models of inside and outside of houses or appartments) etc.

The geometric information is given a-priori, asin [4, 11, 3, 2].

There are two main contributions in this paper. The £rst is a criterion that indicates
whether a given dataset defnes the reconstruction of one or more objects up to scale and
tranglation. This criterion is calculated as the rank of a matrix introduced in Section 5.3
and is insensitive to noise. The second contribution is a method for obtaining a recon-
struction. All the input data, which may come from many images, is “summarized” in a
single linear system whose solution gives the reconstruction. In the presence of errorsin
the input image features, a least-squares solution is sought (Sec. 5.4).
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Figure 1: A simple 3D scene (left) and itsreconstruction (right). If the bottom pointswere
not known to be coplanar, the relative scale of pyramid and cube would be ambiguous
(middle).

We use three “ predominant” directions, which form the basis—not necessarily orthog-
onal [11, 12, 3]- in which reconstruction is obtained. The vanishing points' of these
directions play a specia role [3, 12, 2] and are assumed to have been estimated [10, 9]
and given in the input data.

If the angles between the “predominant” 3D directions are known, partial calibration
of the camera can be computed from the vanishing points [1, 12, 8, 2] and an Euclidean
reconstruction will obtained. Otherwise, an “af£ne”’ reconstruction is obtained [6].

An example of input datais shown in Figure 1 (left). The predominant directions are
the “x”, “y” and “z" axes (“x” and “y” are aligned with the base of the pyramid). This
dataset consists of 11 points and some auxiliary information : the 3D points (1-4), (5-7)
and (9-11) liein ahorizontal plane. Also, points(1,5), (2,6) and (3,7) lie on three vertical
lines, and (s)he has said that point 8 is midway, along the “y” axis between points 9 and
10. Theinput datais precisely defned in Section 2.2.

Published methods use auxiliary information that involve alignment, coplanarity [12,
2, 11], knowledge of world distances[3, 11] and angles. Additionally, the versatility of the
method is increased by the use of known ratios of distances. In this way, some symmetry
relations can be exploited. In all the presented experimental results (Sec. 6), some length
ratios are known, whithout which the reconstructions could not be obtained.

An important contribution of the proposed method is that it determines whether there
are many objects that can be scaled independently (Figure 1(middle)), and whether each
one defnes arigid reconstruction (Prop. (1-3)). Inthe simplest case, if no length ratios or
symmetries are known and if asingle image is used, each object is always defEned up to
a scale factor (Prop. (2)). In the more general case, each object (Def. 1 and 2 and Prop.
(1,3)) does not necessarily have arigid solution, so it is indispensable to have a criterion
that indicates the nature of the solution.

2 General conditions

In this section the notation is introduced and the input dataiis precisely defned.

1The vanishing point of a 3D direction is the image point in which intersect all projections of 3D lines
parallel to that direction.



2.1 Notation

The three “ predominant” 3D directions are called v, v, and vs. Pointsin R? are always
represented by their coordinates in the basis {vy, vo, v3}. We defnee; = [1 OO]T,
e;=[010]",e3=[001]". Linesin theimage are represented by a3 x 1 vector 1. The
set of points contained in thelineis {x € R?| [x" 1]1=0}.

2.2 Input Data

The input data consists in 2D points in the image(s) and auxiliary information, which
indicates geometric properties of the corresponding 3D objects. The image points can
be given in the pixel coordinates or, if calibration is known, in the Euclidean coordinate
system associated with the camera.

2.2.1 Imagefeatures
1. Image pointsxy, ..., xp, projections of 3D points X, ..., Xp.

2. Thevanishing points of the 3D directionsvy, vo, vs. If F' > 1imagesare available,
the vanishing points are called r{, 1 € {1,2,3}. Eachoneisa3 x 1 vector of
homogeneous coordinates. These vectors [1] form the three £rst columns of the
projection matrix (See Eq. (2)).

2.2.2 Auxiliary information

1. Knowledge that some observed 3D points belong to planes parallel to two of the
canonical axes. Each plane is expressed as a list of (indices of) image features.
For example, in Figure 1, the user would have specifed that points (1-4) lieon a
horizontal plane etc. Lines are formed by the intersection of two planes.

2. Information on ratios of distances taken along predominant directions. For exam-
ple, the distance along the “y” axisfrom point 9 to 8 is equal to that from point 8 to
10. We call thisinformation “ metric information” .

3. If many images are avail able, one knows which image each 2D feature comes from.

Note that, when many images are given, planes may contain points observed in different
images. A 3D point visiblein many images can be“tracked” by defning a“x=constant”, a
“y=constant” and a“z=constant” plane that contain all the projections of that point. Also,
metric information may relate points visible in different images and the related distances
may be taken along different axes (See Sec. 6).

Auxiliary information is given through a text interface, but graphical interfaces can
be imagined [4]. We do not know of automatic ways of obtaining auxilliary information
from 2D points, much less from images, except in ssimple cases.

3 Useof auxiliary information

First, the set of distinct coordinates needed to describe the 3D datais determined and coor-
dinates are related to image features. Then, using the metric information, the coordinates
are expressed as alinear function of a subset of coordinates and of signed distances.



Consider, in the input data in Figure 1 (Ieft), the line (10,11). Since thislineis par-
alel to the “x” axis, the coordinates of these points are of the form [Cy, C2, C3] and
[C4, Cs, C3] respectively. The second and third coordinates are identical. Then, consider-
ing that theline (9,10) isparallel to the“y” axis, the coordinates of point 9 are necessarily
of the form [C1, C5, Cs]. By using al the user-supplied information, the set of distinct
3D coordinates 4, . . ., Cy isidentif£ed, and one knows the correspondance between 2D
points and 3D coordinates. Thisis easily implemented using basic set operations. The
distinct coordinates are grouped in avector C = [CY, .. ., CN]T.

Then, knowing that some distances, taken along coordinate axes, are equal, or have a
known ratio u yields constraints of the form :

Ci —Cj :U(Ck —Cl).
Def£ning the signed distance W = C'y, — C}, one gets

C, = O +W
C; = C;j+ulV,
or, in matrix terms,
Ci 1 u
c; | |1 o 0
o= lale |
C 1 0 w
N , Co
B U

The values of C;, C;, Cj, and C; are uniquely defned by C;, C; and W. Using all the
user's input, C is represented as a linear function of a sub-vector Cy and of a vector
signed of distances W = [y, .. ., Wp/]T:

C=BCy+UW. Q)
The choice of matrices B and U is not unique. One possible representations is chosen

that minimizes the sum of lengths of Cy and W and aso minimize the length of W. If
no metric information is used, B isthe identity matrix and U is a zero-column matrix.

4 Useof image features

We now show how the observations impose linear constraints on Cy and W. The obser-
vation are produced by apinhole camera. The projection of a3D point X with coordinates
[Cy, Ca, 6‘3]T (inbasis{vy,vs,v3})toa2D point x = [z, 22] can be modeled as[8]:

[ﬂ,\[rl ry T —RT][?} ®)

for some )\ € R. Here, T isthe vector of (unknown) coordinates of the optical center.
If the projection [x " 1] T of apoint with coordinates Ce; +C’e; +C"e; isobserved,
one may [8] build the 2D line 1 passing through that point and any one of ther; :

1~ri><[ﬂ. ©)



This 2D line is moreover the projection of the set of points with coordinates :
{Y | 3# eR, Y = ue; + C”eq;/ + C"ei//} . (4)

The projection of a3D point belonging to this line has the form :

|: M :| = A [ rKL rg rs3 } (uel + C”ei/ —+ C’”eiu) — \RT

1 ®)
= A (/ﬂ‘i +C'ryr + C'"ryrr — RT)
If C’, C"” and T are not known, but the user has located 1 in the image, one has a
linear constraint on C’, C” and T : any 2D point y in 1 verifes [y " 1]1 = 0, so that,
after expansion, one has:

0 = ITI‘WC/ + ITI‘WCW - lTriquy - lTI‘,L‘//T,;// (6)

This equation is a linear equation in the coordinates and in T. One veri£es that the
three constraints given by each point (one constraint per vanishing point) form a system
of rank two only.

5 Solutionsto the reconstruction problem

The coordinates, distances and camera positions are solutions of alinear system obtained
from the above-described constraints. This system may or may not de£ne a unigue recon-
struction up to scale and trandlation. In the absence of noise in the observation, the ranks
of certain subsystems indicate whether thisis the case. In the presence of noise, the rank
is altered, but a“twin” system may be built whose rank indicates whether the input data
defnes areconstruction that is unique up to scale and tranglation.

5.1 Linear system

Concatenating Equations (6) obtained from the input data, one obtains a system of M
equations :
T,

}—FL : = Oma, (7)
Tr

where A isthe M x N matrix of coef£cients that multiply the C; and L, M x 3F,
multiplies the T ;. We use the abbreviations E = [AB | AU], and V = [Cy; W].

Row and column permutations may expose a block-diagonal structure in E. Each
block corresponds to one “connected” object in the input data and we will use the terms
“block” and “object” indifferently. Each block of E corresponds to a subset (deEned by
the columns of the block) of coordinatesin V, and a subset (deEned by the rows) of 2D
features. We will say that block E, is visible in the images in which the 2D features
appear.

It isassumed that [F L] isitself single-block. If thisis not the case, the data contains
totally unrelated data sets. Each one can be treated separately, as described below.

Co

[AB| AU [ w



After identifying, in E, blocks E4, . . ., Eq (if any) that are visible in one image only
and grouping the remaining blocks (if any) in E’, Eq. (7) becomes :

E Vv L
1 .1 .1 ':[‘1
B V + L: : = OMXla (8)
@ E' V? L? TF

Here, V has been split into V4,..., Vg and V'. Each L, is decomposed in L, =
[LL... L], whereeach L] hasthree columns and multiplies one of the T;.

5.2 Natureof solutions: corank criteria

Def. 1 : We say that the reconstruction of block p, visiblein image g, is uniquely defned
up to ascale factor if and only if thereisa V, such that for al Vv, T, that solve
E,V, + LIT, = O, thereis ascalefactor A, such that V,, is of theform:

V, = \VE+ 5, T, ©)

Here S, is defned in the following way : row number n of S, if it corresponds to

acoordinate Cy;, taken along the jth axis (1, 2 or 3for “x”, “y” and “z"), is equal
to e;r. Otherwise, if it corresponds to a distance w;, itisequal to O 3.

Equation (9) clearly displaysthe “scale and translation” interpretation, A, being the scale
and S, T, the trandation in the coordinates.

From now on, we assume that all the C; are distinct and all the W; are nonzero. One
then has the following properties®

Prop. 1 Reconstruction of block p is uniquely defEned up to a scale factor if and only if
E, has corank equal to one.

Prop. 2 All blocks E,, defned without metric information have corank equal to one.
We now turn to the rest of the system :
Def. 2 We say that thereisa single rigid solution to the system

T
EV' +L : =0 (10)
Tr

if there exist some vectors AT5,...,ATr € R3 and V'* such that for al V’,
Ty, ..., Tr that solve (10), there exists a scale factor \ such that

T, = )\ATf-i-Tl fef{2...F}ad

VI = AV 4 ST, (1)

2Demonstrations are not given to save space. They appear in an article submitted to ajournal.



Note that, in this de£nition, all the camera positions are uniquely defned by T';. Also,
thereisasingle scale factor, evenif £’ can be block-diagonalized in more than one block.
The following property holds:

Prop. 3 Thereisasinglerigid solution if and only if [E’ L] has corank four.

Properties (1-3) hold for all possible sizes of the £, and E.

5.3 Corank criteriain the presence of noise: twin matrices

The criteria given in Prop. (1-3) are valid when there are no errors in the input image
features. In the presence of errors, the rank of submatrices of E and [E L] is dtered, so
that the corank criteria proposed above cannot be used directly. However, a“twin matrix”
may be built, that has the rank that [F L] would have in the absence of noise. The corank
criteria are used on the twin matrix.

The twin matrix has the same shape® as [E L]. Distinct coordinates C and camera
positions Ty are generated randomly. The 3D lines Eq. (4) corresponding to these coor-
dinates project in 2D lines::

I~ (O” - ’Ti//) Sy — (Cl — Tz’) S, (12)

where [s; so s3] = R~ . Thetwin system is built from these lines in the exact same way
that [E' L] was built from the lines Eq. (3). One shows that noise in the vanishing points
does not ater the rank of the twin matrix. In consequence, the twin matrix has the rank
that [E L] would have in the absence of noise. Using moating-point arithmetic, the rank
of the twin matrix can be reliably computed [ 7], which guarantees that the corank criteria
Prop. (1-3) can be computed from the twin matrix.

54 Computation of solutions

In this section, we show how to compute vectors V%, V'* and AT  from the matrix [E L]
and how to obtain a particular solution to Eq. (8).

Intheabsence of noiseand if [E’ L'] has corank four, V* and ATy, ..., AT g verify :
AT,
E'V*4+L" = Opnrx1,
ATp

where L is obtained by removing the £rst three columnsin L’ (which correspond to T ).
Clearly, in the absence of noise, [E’ L] has corank equal to one. In the presence of noise,
thisis not the case any more, but the singular vector [7] of [E’ L] corresponding to the
least singular value may be taken as an estimate of [V*; ATy;...; ATpg|. The V; are
likewise estimated by the singular vectors of £, corresponding to the least singular value.
A particular reconstruction is given by :

V=AMV +S5T (pei{l...Q})andT; =AT;+ T (fe{1...F}) (13)

for some Aq,...,Ag, N € Rand T; € R?.

3Zeros occur at the same placesin both matrices.



Figure 2: Original image (left) and two views of reconstruction.

55 Summary of the reconstruction algorithm

Identifcation: ldentify distinct coordinates and distances and the correspondence be-
tween these and the observations.

Lines: For each 2D point x;, build thelines1 ~ [x, 1] x r; between x; and two at least
of the vanishing points r; in that image.

System: Using the lines obtained above, build the matrices F and L of thelinear system.
Block-diagonalize [E L] and apply the following steps to each block.

Twin system: Generate random distinct coordinates and camera positions and the corre-
sponding observations. From these, build the twin matricesof £ and L.

Factorization: Factorize EinEy,...,Egand E'.

Characterization: Determine the nature of the solutions from the rank of the twin ma-
trices of each E; and of [E’ L'].

Reconstruction: Compute a solution to Eq. (8) as proposed in Section 5.4.

6 Experimental results

In this section, experimental results are presented. In all examples, the reconstruction
basisis orthonormal.

Singleimage Figure 1 (right) showsthe reconstruction obtai ned from the data described
in the introduction, with the extra assumption that points (5-7 and 9-11) are coplanar. The
vertical faces of the cube form an angle of 87 degree, which indicates that the Euclidean
structure of the sceneiswell captured.



Figure 3: Two indoor images, looking ahead and to the right, and the reconstruction.

Figure 2 (left) shows an image with 122 points and (middle, right) two views of the
corresponding reconstruction. The lengths of C, C, and W are 151, 102 and 26 respec-
tively. Symmetry relations are needed to obtain a uniquely defned solution.

Multipleimages Figure 3 shows two indoor images, taken from almost the same place,
at approximately right angle. 61 pointswereidenti£ed, none being visible in both images.
The two images are connected only by two horizontal planes (ceiling and @oor) and one
vertical plane: theleft wall in the second image, which appearsin the extremeright of the
£rst image. Without metric information, the system would be single-block but without a
singlerigid solution : the second camera could be translated forward arbitrarily. However,
by specifying that the two sides of the hall have equal lengths, one enforces the existence
of asinglerigid solution : the distance from theleft wall in the £rst image (marked with an
“A") to the farthest door in the second image (marked “A-prime”) is equal to the distance
from the right wall in the second image (marked “B-prime”) to the farthest door in the
£rst image (marked “B”). Here, metric information relates features in different images.

7 Conclusions and future work

We have presented a method for 3D reconstruction from one or more views based on
image features and auxiliary geometric information provided by the user. The main im-
provements in the proposed method are :

e A criterion, insensitive to noise, determines the nature of the solution, before the
reconstruction is attempted.



e Many images may be processed at once rather than sequentially, asin [11].

e Some symmetry relations and, more generally, knowledge of distance ratios along
the principal directions can be exploited.

The proposed method, which does not use special shapes, could add mexibility to asystem
such as [4], which requires object to £t in templatesin itsinitial reconstruction phase.

If a probabilistic model of the error in the observations is given, maximum likeli-
hood estimation could provide more precise and statistically characterized solutions. The
present method could provide an initial estimate Maximum likelihood estimation islikely
to be implemented by an iterative process requiring an initial solution, which could be
provided by the presented method. Ongoing work also aims at extending the method
to handle more than three predominant directions and auxiliary information relating the
positions of the cameras.
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