
Sapienza – Università di Roma

FACOLTÀ DI INGEGNERIA

Corso di Laurea Specialistica in Ingegneria Informatica

Tesi di Laurea Specialistica

Object Manipulation from Simplified Visual Cues

Candidato:
Giovanni Saponaro

Relatore:
Prof. Daniele Nardi

Correlatore:
Prof. Alexandre Bernardino

Anno Accademico 2007–2008

i

Sommario

La robotica umanoide in generale, e l’interazione uomo–robot in particolare,
stanno oggigiorno guadagnando nuovi e vasti campi applicativi: la robotica si
diffonde sempre di più nella nostra vita. Una delle azioni che i robot umanoidi
devono poter eseguire è la manipolazione di cose (avvicinare le braccia agli
oggetti, afferrarli e spostarli). Tuttavia, per poter fare ciò un robot deve prima di
tutto possedere della conoscenza sull’oggetto da manipolare e sulla sua posizione
nello spazio. Questo aspetto si può realizzare con un approccio percettivo.

Il sistema sviluppato in questo lavoro di tesi è basato sul tracker visuale
CAMSHIFT e su una tecnica di ricostruzione 3D che fornisce informazioni su
posizione e orientamento di un oggetto generico (senza modelli geometrici) che
si muove nel campo visivo di una piattaforma robotica umanoide. Un ogget-
to è percepito in maniera semplificata: viene approssimato come l’ellisse che
racchiude meglio l’oggetto stesso.

Una volta calcolata la posizione corrente di un oggetto situato di fronte al
robot, è possibile realizzare il reaching (avvicinamento del braccio all’oggetto).
In questa tesi vengono discussi esperimenti ottenuti col braccio robotico della
piattaforma di sviluppo adottata.

ii

Abstract

Humanoid robotics in general, and human–robot interaction in particular, is
gaining new, extensive fields of application, as it gradually becomes pervasive
in our daily life. One of the actions that humanoid robots must perform is the
manipulation of things (reaching their arms for objects, grasping and moving
them). However, in order to do this, a robot must first have acquired some
knowledge about the target object and its position in space. This can be ac-
complished with a perceptual approach.

The developed system described in this thesis is based on the CAMSHIFT vi-
sual tracker and on a 3D reconstruction technique, providing information about
position and orientation of a generic, model-free object that moves in the field
of view of a humanoid robot platform. An object is perceived in a simplified
way, by approximating it with its best-fit enclosing ellipse.

After having computed where an object is currently placed in front of it, the
robotic platform can perform reaching tasks. Experiments obtained with the
robot arm of the adopted platform are discussed.

Acknowledgements

First of all, I would like to thank my daily supervisor in this project for his un-
interrupted support and patience during my eight months of stay in VisLab and
Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon. Thank
you very much, Prof. Alexandre Bernardino. That, plus. . . passionately dis-
cussing algorithms while eating a Portuguese doce and sipping a coffee together
(several times) is priceless.

I also wish to express my gratitude to my home advisor: Prof. Daniele Nardi
of Sapienza University of Rome. Not only has he provided me with the chance to
do my thesis research abroad, but he has been helpful, encouraging and available
for suggestions at all times.

I would like to thank Prof. José Santos-Victor of Instituto Superior Técnico
for his confidence in hosting me, and for making VisLab such an enjoyable
environment to work at, ultimately making it a breeze to do research there.

This work was partially supported by EC Project IST-004370 RobotCub
and by the Portuguese Government – Fundação para a Ciência e Tecnologia
(ISR/IST pluriannual funding) through the POS Conhecimento Program that
includes FEDER funds. This is gratefully acknowledged.

In Lisbon I found plenty of nice people since day one. I am glad to have
met the Italian gang of IST, dearest friends and valued teachers to me: Alessio,
Giampiero and Matteo. And then I certainly wish to thank many more col-
leagues for the fruitful discussions that ensued and for the fun (apologies if I
forgot anybody): Christian, Daniel, Daniela, Dario, Prof. Gaspar, Ivana, Jonas
the Superschwiizer, Jonas the Swede, Luisão, L. Vargas, Manuel, Marco, Mário,
Matthijs, Plinio, Ricardo, Rubén, Samuel, Verica.

Thank you Aleka, Andrea, Patty, Sabrina, Valentin and everybody else back
from my Erasmus year. Cheers to Cimpe and Claudione, crazy Portugal-lovers.
Oh, thanks to PierFrok for the tip.

Nico (e Tigas), obrigado por tudo, desde 2005 c©. Obrigado à trindade:
Carmen, Joana, Lara, Leonor. Agradeço também ao Gustavo, ao Piçarra, ao
Paulo e a todos os portugueses que andam por Roma.

Naturalmente grazie a tutti coloro con cui ho condiviso esperienze in Italia.
A Balerio per l’amicizia antica. A Sofia, sister of a lifetime. Ai compagni di
scuola: Ilardo, Il Giulio, Jessica, Lorenzo, Nausicaa, Valerione Picchiassi. Ai
compagni di università: la crew “Gli anni ’12” e lo staff di foruming.

Grazie ad Aurora, a Ludovico e ai gatti tutti: anche se preferisco i cani,
faccio un’eccezione.

iii

iv

Grazie a tutti gli altri amici relativamente recenti ma già ottimi e abbondanti:
Aldo Rock, Mauro, Simone, Riccardo.

E poi, grazie davvero a tutta la mia famiglia. A mia madre Paola e a mio
padre Francesco per il loro amore infinito. A mio fratello Davide che è sempre
stato fonte di ispirazione; ad Arianna e a Carlo.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 RobotCub . 3
1.3 Thesis Background . 4
1.4 Problem Statement . 6
1.5 Thesis Structure . 6

2 Related Work 7
2.1 Image Segmentation Techniques 8

2.1.1 Clustering Segmentation 10
2.1.2 Edge Detection Segmentation 11
2.1.3 Graph Partitioning Segmentation 12
2.1.4 Histogram-Based Segmentation 14
2.1.5 Level Set Segmentation 15
2.1.6 Model-Based Segmentation 17
2.1.7 Neural Networks Segmentation 18
2.1.8 Region Growing Thresholding Segmentation 19
2.1.9 Scale-Space Segmentation 20
2.1.10 Semi-Automatic Livewire Segmentation 22

2.2 Stereopsis . 22
2.3 Object Manipulation with Visual Servoing 24

2.3.1 Image-Based Visual Servoing 26
2.3.2 Position-Based Visual Servoing 26

2.4 Object Affordances . 27

3 Robot Platform and Software Setup 29
3.1 Kinematic Description of Baltazar 31

3.1.1 Kinematic Notation . 32
3.1.2 Head Structure . 33
3.1.3 Baltazar and Its Anthropomorphic Arm 35
3.1.4 Anthropomorphic Arm Forward Kinematics 38
3.1.5 Anthropomorphic Arm Inverse Kinematics 39

3.2 Hardware Devices of Baltazar . 40
3.2.1 “Flea” Cameras . 40
3.2.2 Controller Devices . 41

3.3 Software Setup . 43
3.3.1 YARP . 44
3.3.2 Other Software Libraries 46

v

vi CONTENTS

4 Proposed Architecture 47
4.1 Visual Processing . 47
4.2 CAMSHIFT Module . 49

4.2.1 CAMSHIFT and HSV Conversion 51
4.3 3D Reconstruction Approach . 53

4.3.1 From Frame Coordinates to Image Coordinates 53
4.3.2 3D Pose Estimation . 57

4.4 Object Manipulation Approaches 58

5 Experimental Results 61
5.1 Segmentation and Tracking . 61
5.2 3D Reconstruction . 63
5.3 Object Manipulation Tasks . 64

5.3.1 Reaching Preparation . 64
5.3.2 Grasping Preparation . 65

6 Conclusions and Future Work 69
6.1 Conclusions . 69
6.2 Future Work . 70

A CLAWAR 2008 Article 71

B Trigonometric Identities 81

Bibliography 83

Online References 89

List of Figures

1.1 Example of service robots . 2
1.2 RobotCub logo and iCub baby robot prototype 3
1.3 Baltazar humanoid robot and its workspace 5

2.1 Block diagram of VVV . 8
2.2 Why segmentation is difficult . 8
2.3 Edge-based segmentation . 11
2.4 Edge detection and intensity profile 12
2.5 Canny edge detector . 13
2.6 Graph partitioning segmentation: normalized cuts 14
2.7 Block diagram of object tracking 16
2.8 Level set segmentation . 16
2.9 Level set based 3D reconstruction 17
2.10 Model based segmentation . 18
2.11 Neural Networks segmentation. 19
2.12 Region growing . 20
2.13 Space-scale representation . 21
2.14 Space-scale segmentation . 23
2.15 Semi-automatic Livewire segmentation 24
2.16 Perspective geometry for imaging 25
2.17 Examples of Position-Based Visual Servoing (PBVS) 27
2.18 Block diagram of PBVS . 27
2.19 Object affordances . 28

3.1 Baltazar humanoid robot in relax position 30
3.2 Different forms of DH notation 32
3.3 Scheme of Baltazar robotic head 34
3.4 Real Baltazar robotic head . 34
3.5 Real Baltazar and its CAD model 36
3.6 Scheme of Baltazar anthropomorphic arm 36
3.7 Real Baltazar anthropomorphic arm 37
3.8 Point Grey “Flea” camera . 41
3.9 Right eye Baltazar camera . 42
3.10 National Instruments 7340 Motion Controller 43
3.11 Software architecture of the iCub 45

4.1 Block diagram of CAMSHIFT . 50
4.2 RGB and HSV colour spaces . 52

vii

viii LIST OF FIGURES

4.3 Image coordinates . 53
4.4 Pinhole camera model . 55
4.5 3D reconstruction scheme . 55
4.6 3D reconstruction software module scheme 57
4.7 Structure of Baltazar head with transformation matrices 58
4.8 Cross product between hand and target orientations 59

5.1 CAMSHIFT tracking experiment 61
5.2 Second CAMSHIFT tracking experiment 62
5.3 3D reconstruction experiment . 63
5.4 Object manipulation: inverse kinematics experiment 64
5.5 Reaching preparation experiment 66
5.6 Robot hand wearing a glove . 67
5.7 Evaluation of target–hand axis and angle 68

A.1 CLAWAR logo . 71

List of Tables

2.1 Purposes of object affordances 28

3.1 Joint angles of Baltazar robotic head 33
3.2 MDH parameters of Baltazar binocular head 35
3.3 SDH parameters of Baltazar anthropomorphic arm 38
3.4 MDH parameters of Baltazar anthropomorphic arm 38
3.5 Joint angles in Baltazar arm server 43

ix

x LIST OF TABLES

List of Algorithms

1 Basic k-Means . 10
2 Expectation Maximization (EM) 48
3 Mean Shift . 49
4 CAMSHIFT . 52

xi

xii LIST OF ALGORITHMS

List of Acronyms and
Abbreviations

ADC Analogue-to-Digital Converter

AI Artificial Intelligence

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CAMSHIFT Continuously Adaptive Mean Shift

CCD Charge-Coupled Device

CLAWAR Climbing and Walking Robots and the Support Technologies for
Mobile Machines

CV Computer Vision

CMY Cyan Magenta Yellow

DH Denavit-Hartenberg

DOF Degree of Freedom

DSP Digital Signal Processor

EM Expectation Maximization

FPGA Field-Programmable Gate Array

FPS Frames per Second

GSL GNU Scientific Library

HSV Hue Saturation Value

IBVS Image-Based Visual Servoing

IPC Inter-Process Communication

MDH Modified Denavit-Hartenberg

NMC Networked Modular Control

ROI Region of Interest

xiii

xiv LIST OF ALGORITHMS

PBVS Position-Based Visual Servoing

PSC Propagation of Surfaces under Curvature

PUI Perceptual User Interface

RGB Red Green Blue

RobotCub Robotic Open-Architecture Technology for Cognition,
Understanding and Behaviour

SDH Standard Denavit-Hartenberg

SOM Self-Organizing Map

YARP Yet Another Robot Platform

Chapter 1

Introduction

1.1 Motivation

A current field of research in humanoid robotics is the study of interactions
between a robot and its human users, focusing on topics such as perception,
learning and imitation. Neurosciences and developmental psychology, which
study the inner mechanisms of the human brain, also contribute to these matters
as they try to understand key cognitive issues: how to learn sensory-motor
coordination, which properties of observed objects or of the world we learn,
how human beings imitate each other, and how they recognize actions.

The reason why interactions are relevant and worth studying in robotics is
twofold. First, they allow us to progress within the underlying scientific disci-
plines: robotics, image processing, Computer Vision (CV), Artificial Intelligence
(AI), signal processing and control theory.

Secondly, by improving human-robot interactions and better understanding
our brain, we also contribute to specific applications that have an increasing
social impact, namely rescue operations, emergencies, visual monitoring of urban
areas, as well as robotic assistants that improve quality of life for the elderly or
disabled people [HJLY07].

Grasping and manipulation are among the most fundamental tasks to be
considered in humanoid robotics. Fig. 1.1 shows two examples of service robotics
platforms that possess enough tools, appliances and flexibility to potentially
adapt to human tasks.

Just like humans distinguish themselves from other animals by having highly
skilled hands, so can humanoid robots: dexterous ability must be considered as
a key component in practical applications such as service robotics or personal
robot assistants.

The high dexterity that characterizes human manipulation does not come for
granted at birth. Instead, it arises gradually during a complex developmental
process which spans different stages. After recognizing things surrounding them
by the means of vision, babies first attempt to reach for these things, with a
very limited precision. Then, at some point they start to adapt their hands to
the shape of objects, initially letting these objects fall on the ground because
of incorrect grasping procedures. Only after some years are they finally able to
master their arm and hand skills.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Two examples of service robots, built by the University of Karlsruhe
(Germany) and Fujitsu, respectively.

Furthermore, perception develops in parallel with these manipulation skills,
in order to incrementally increase the performance in detecting and measur-
ing those object features that are important for touching, grasping and holding
something. Along time, interactions with objects of diverse shapes are success-
fully performed by applying various possible reaching and manipulation tech-
niques. Salient effects are produced (e.g., an object moves, it is deformed, or it
makes a sound when squeezed), perceived and associated to actions. An agent
thus learns object affordances [MLBSV08], i.e., the relationships among a cer-
tain manipulation action, the physical characteristics of the object involved, and
the observed effects. The way of reaching for an object evolves from a purely
position-based mechanism to a complex behaviour which depends on target size,
shape, orientation, intended usage and desired effect.

Framed within the Robotic Open-Architecture Technology for Cognition,
Understanding and Behaviour (RobotCub) Project [MVS05], this thesis aims
at providing simple 3D object perception for enabling the development of ma-
nipulation skills in a humanoid robot, by approximating a perceived object with
its best-fit enclosing ellipse.

This work addresses the problem of reaching for an object and preparing the
grasping action, according to the orientation of the objects to interact with. The
proposed technique is not intended to have very accurate measurements of object
and hand postures, but merely the necessary quality to allow for successful
object–hand interactions. Precise manipulation needs to emerge from experience
by optimizing action parameters as a function of the observed effects. To have
a simple enough model of object and hand shapes, they are approximated as
2D ellipses located in a 3D space. An underlying assumption is that objects
have a sufficiently distinct colour, in order to facilitate segmentation from the
image background. Perception of object orientation in 3D is provided by the
second-order moments of the segmented areas in left and right images, acquired
by a humanoid robot active vision head.

1.2. ROBOTCUB 3

(a) RobotCub Consortium logo. (b) The iCub robot platform
standing.

Figure 1.2: RobotCub logo and a prototype of its baby robot prototype, the
iCub.

This thesis will describe: the humanoid robot platform “Baltazar” that was
used for research and tests, the adopted CV techniques, a simple method to
estimate the 3D orientation of a target object, strategies for the reaching and
grasping tasks, experimental results and future work.

1.2 RobotCub and the Development of a Cog-
nitive Humanoid Robot

The RobotCub Consortium [Rob] is a five-year-long project, funded by the Eu-
ropean Commission through Unit E5 (“Cognition”) of the Information Society
Technologies priority of the Sixth Framework Programme (FP6).

RobotCub is a project to study cognition through robotics. Its objective is to
create a completely open design for a humanoid robot — “open hardware, open
software, open mind”. All the RobotCub hardware designs and software are
free and open source. The RobotCub Consortium is composed of 16 partners:
11 from Europe, 3 from Japan and 2 from the USA. LIRA-Lab [LIR] at the
University of Genoa, Italy, is the coordinator.

Inspired by recent results in neurosciences and developmental psychology,
the objective of RobotCub is to build an open-source humanoid platform for
original research on cognitive robotics, with a focus on developmental aspects.
One of the tenets of the project is that manipulation plays a key role in the
development of cognitive ability.

The iCub is a humanoid baby robot designed by the RobotCub consortium.
The iCub, shown in Fig. 1.2b, is a full humanoid robot the size of a two-year-
old child. Its total height is around 90 cm, and it has 53 Degree of Freedoms
(DOFs), including articulated hands to be used for manipulation and gesturing;
in addition, the iCub is equipped with an inertial system in its hand, stereo
audition, and the ability to perform facial expressions.

4 CHAPTER 1. INTRODUCTION

At the time of writing this thesis, a study is being conducted for determining
if and how many DOFs are minimally required to produce and generate plausible
facial expressions. The iCub robot should eventually be able to crawl and sit
(to free the hands from supporting the body) and autonomously transition from
crawling to sitting and vice-versa.

This thesis work was carried out at the Computer and Robot Vision Labo-
ratory [Vis], Institute for Systems and Robotics, IST, Lisbon (Portugal) during
2008. At the time of working on this project, the arm-hand system of a full iCub
prototype was still being assembled. Therefore, for this work another humanoid
robot platform was used: Baltazar [LBPSV04, LSV07]. It consists of a robotic
torso and a binocular head, built with the aim of understanding and performing
human-like gestures, mainly for biologically inspired research.

1.3 Thesis Background

Manipulation skills at macro- and micro-scales are very important requirements
for robot applications. This is valid both in industrial robotics and in less-
traditional fields. As far as industry is concerned, robot manipulators hold a
key role in many scenarios; to name a few:

• handling;

• food;

• fabrics;

• leather.

Similarly, in less structured domains of robotics, manipulation still play a
relevant part:

• surgery;

• space;

• undersea.

Manipulation and grasping systems are thus a vital part of industrial, service
and personal robotics, they are employed in various applications and environ-
ments, not just in advanced manufacturing automation as one may intuitively
think.

Actuating a robotic limb is not merely commanding it to a given position:
the issue is also where and how to move it, and for this purpose CV (the ability
for machines to understand images) is a powerful tool that can assist humanoid
robotics broadly. In particular, CV is used for robot manipulation tasks: reach-
ing for something, touching or grasping it.

A major difficulty for humanoid robots in order to successfully perform a
grasping task is the variety of objects they have to interact with: a robot should
be able to see and understand any shape and size, including never-before-seen
objects. To do this, deploying simple model-free methods (i.e., not enforcing any
model) is often the sensible choice to follow, including in the approach presented
in this thesis.

1.3. THESIS BACKGROUND 5

Figure 1.3: Humanoid robot Baltazar operating in its workspace, as seen from
one of its cameras. The anthropomorphic hand of Baltazar is reaching for a
visually-tracked object and is about to grasp it.

In particular, our objective is to approximate an object positioned in front
of a humanoid robot with its smallest enclosing ellipse. In addition, the target
object may not necessarily be static, so the developed techniques must also
cope with following where this target is moving. This is done by the means of
Continuously Adaptive Mean Shift (CAMSHIFT) trackers.

A computer vision technique to estimate the 3D position and orientation of
a moving target object placed in front of a humanoid robot, equipped with a
stereo rig, will be presented. The information inferred will subsequently be used
by the robot to better interact with the object, that is, to manipulate it with
its arm: an approach for real-time preparation of grasping tasks is described,
based on the low-order moments of the target’s shape on a stereo pair of images
acquired by an active vision head.

To reach for an object, two distinct phases are considered [LSV07]:

1. an open-loop ballistic phase to bring the manipulator to the vicinity of
the target, whenever the robot hand is not visible in the robot’s cameras;

2. a closed-loop visually controlled phase to accomplish the final alignment
to the grasping position.

The open-loop phase (reaching preparation) requires the knowledge of the
robot’s inverse kinematics and a 3D reconstruction of the target’s posture. The
target position is acquired by the camera system, where the hand position is
measured by the robot arm joint encoders. Because these positions are mea-
sured by different sensory systems, the open-loop phase is subject to mechanical
calibration errors. The second phase (grasping preparation), operates when the
robot hand is in the visible workspace. 3D position and orientation of target
and hand are estimated in a form suitable for Position-Based Visual Servoing
(PBVS) [CH06, HHC96]. The goal is to make the hand align its posture with
respect to the object. Since both target and hand postures are estimated in the
same reference frame, this methodology is not prone to significant mechanical
calibration errors.

6 CHAPTER 1. INTRODUCTION

1.4 Problem Statement

The objective is to estimate the 3D position and orientation of an object placed
in front of a humanoid robot, in order for make it possible to interact and
manipulate such object. This estimation is done in two visual processing steps:
tracking the object shape as it (possibly) moves within the robot stereo cameras’
2D vision, then combining the inferred information through 3D reconstruction
methods.

Computation must be real-time, so that the understanding of a dynamic
scene and the interactions with objects are accurate but also usable in practical
experiments. This constraint calls for a simplified, model-free vision approach.
An object position and orientation will be approximated with its best-fit enclos-
ing ellipse.

Furthermore, the employed software components must be clearly decoupled,
in order to make it possible to adapt them to other robotic platforms and
scenarios (such as a full iCub robot; see p. 3).

Finally, the geometric measurements acquired so far should to be used for
the two phases of a reaching task, necessary for object manipulation: (i) an
initial phase whereby the robot positions its hand close to the target with an
appropriate hand orientation, and (ii) a final phase where a precise hand-to-
target positioning is performed using Visual Servoing methods.

1.5 Thesis Structure

The thesis is organized as follows:

• Chapter 2 lists the existing techniques for segmentation, stereo vision
(in particular 3D reconstruction) and manipulation tasks for humanoid
robots;

• Chapter 3 describes the structure of the robot used in our development
and experiments, “Baltazar”, as well as the software libraries and tools
that make up this work;

• Chapter 4 details the CAMSHIFT tracker implementation, the 3D recon-
struction software module and the proposed manipulation approach;

• Chapter 5 displays the behaviour and results obtained with the developed
work;

• Chapter 6 draws the concluding remarks and it outlines some possible
ways to continue the research work started in this thesis.

Chapter 2

Related Work

Research in the field of robot manipulation in human-robot environments has
emphasized the importance for a robot to constantly sense its environment,
instead of referring to internal, predefined models. Results provided by the
Edsinger Domo [Eds] upper torso, developed at MIT CSAIL [CSA], suggest to
use sparse perceptual features to capture just those aspects of the world that are
relevant to a given task. Many manipulation tasks can be designed and planned
through the perception and control of these features, and the Domo system
includes strategies to reduce the uncertainty that is inherent in human-robot
scenarios, addressing the following aspects:

• generalization across objects within an object class;

• variability in lighting;

• cluttered backgrounds;

• no prior 3D models of objects or the environment.

Another important contribution was given by Tomita et al. [TYU+98]: the
Versatile 3D Vision system “VVV” can construct the 3D geometric data of
any scene when two or more images are given, by using structural analysis and
partial pattern matching. It can also recognize objects, although under the
assumption that their geometric models are known. This is a relevant difference
from our proposed approach, which, instead, is free of geometric models. A
general user of VVV can make a task-oriented system whose ability is at least
the same of a specialized robotic system (one that was built for a very specific
action).

Within this chapter we will summarize the techniques that are related to the
modules that compose our proposed architecture. Section 2.1 will outline the
main image segmentation techniques existing in literature; Section 2.2 will give
a brief insight on stereo vision and 3D reconstruction; Section 2.3 will present
the existing approaches for visual-based robot manipulator control; Section 2.4
will introduce the object affordances learning tool, to improve manipulation
performances.

7

8 CHAPTER 2. RELATED WORK

Figure 2.1: Block diagram of the “VVV” 3D vision robot system [SKYT02].

Figure 2.2: Why segmentation is difficult: these are three surfaces whose image
information can be organized into meaningful assemblies easily and successfully
by the human eye, but it is not straightforward to do so for machines.

2.1 Image Segmentation Techniques

The human eye is powerful because it is extremely versatile: it can recognize
objects nearly instantly, it can follow (track) their motion, recognize the mood
of living beings from their facial expressions, decide when a circumstance is
dangerous, compute the number and speed of objects, and more. It is because
of this breadth of skills that the human eye is difficult to emulate.

Recent CV systems, on the other hand, are normally highly specialized; fur-
thermore, they usually work well only under certain hypotheses. Some relevant
fields of research inside CV are tracking and image segmentation.

The purpose of image segmentation is to better organize the way we process
a picture, by separating the interesting or relevant parts from those which are
not useful for a given problem. Image segmentation, or simply “segmentation”
for brevity, consists of dividing an image into two or more subset regions that
cover it, according to a certain criterion, in order to simplify the representation
and focus the attention on relevant parts of the image [FvDFH95].

One of the major difficulties in object recognition problems is knowing which
pixels we have to recognize, and which to ignore [FP02]. For example, it is

2.1. IMAGE SEGMENTATION TECHNIQUES 9

difficult to tell whether a pixel lies on the surfaces in Fig. 2.2 simply by looking
at the pixel. Specifically, it is difficult to tell whether a pixel lies on the three
surfaces in the picture simply by looking at the pixel; the solution to the problem
is to work with a compact representation of the “interesting” image data that
emphasize relevant properties. Segmentation is the process of obtaining such
compact representation [SS01].

The goal in many tasks is for the regions to represent meaningful areas of the
image, such as crops, urban areas, and forests of a satellite image. Each of the
resulting subsets contains those pixels of the image which satisfy a given con-
dition: for instance, having the same colour, the same texture, or having rough
edges. Furthermore, changing the representation of an image to something more
meaningful means that it also becomes easier to analyze and process.

Practical applications of image segmentation include:

• recognizing a face or any other trait that is salient in a given situation;

• traffic controlling systems;

• medical imaging:

- revealing, diagnosing and examining tumours;

- studying other pathologies and anatomical structures;

- measure the volume of tissues;

- computer-guided surgery;

• locate objects in satellite images;

• fingerprint recognition.

Traditionally [SS01, ch. 10], segmentation has had two objectives:

1. to decompose the image into parts for further analysis;

2. to perform a change of representation.

The importance of the first objective is straightforward to understand and is
discussed thoroughly in texts like [FvDFH95, FP02, SS01, TV98]. The second
one, however, is more subtle: the pixels of an image must be organized into
higher-level units that are either more meaningful or more efficient for further
analysis, or both. A critical issue is whether or not segmentation can be per-
formed for many different domains using bottom-up methods that do not use
any special domain knowledge.

Since there is no general solution to the image segmentation problem, sev-
eral different approaches to implement segmentation have been proposed in
literature, each having its advantages and drawbacks. A brief list of the most
common techniques will now be given. Further down, the CAMSHIFT algo-
rithm, which belongs to the class of histogram-based segmentation approaches
(see Section 2.1.4) and is the technique adopted in this thesis, will be detailed.

10 CHAPTER 2. RELATED WORK

2.1.1 Clustering Segmentation

In pattern recognition, clustering is the process of partitioning a set of pattern
vectors into subsets called clusters [TK03]. Several types of clustering algorithms
have been found useful in image segmentation.

One way to look at the segmentation problem is thus to attempt to deter-
mine which components of a data set naturally “belong together” in a cluster.
Generally, two approaches for clustering are considered in literature [FP02]:

partitioning: carving up a large data set according to some notion of the
association between items inside the set, i.e., decomposing the set into
pieces that are good with regards to a model. For example:

- decomposing an image into regions that have coherent colour and
texture inside them;

- decomposing an image into extended blobs, consisting of regions that
have coherent colour, texture and motion and look like limb segments;

- decomposing a video sequence into shots—segments of video showing
about the same scene from about the same viewpoint.

grouping: starting from a set of distinct data items, collect sets of these items
that make sense together according to a model. Effects like occlusion
mean that image components that belong to the same object are often
separated. Examples of grouping include:

- collecting together tokens that, when taken together, form a line;

- collecting together tokens that seem to share a fundamental matrix.

The key issue in clustering is to determine a suitable representation for the
problem in hand.

A famous clustering algorithm is k-Means, first described in [Mac67]. Ba-
sic pseudocode is shown in Algorithm 1. k-Means is an iterative technique to
partition an image into k clusters. The algorithm works by randomly selecting
centroids, finding out which elements are closest to the centroid, then working
out the mean of the points belonging to each centroid, which becomes the new
centroid. Region membership is checked again, and the new centroids are com-
puted again. This operation continues until there are no points that change
their region membership.

Algorithm 1 Basic k-Means
1: Place k points into the space represented by the objects that are being

clustered. These points represent initial group centroids.
2: Assign each object to the group that has the closest centroid.
3: When all objects have been assigned, recalculate the positions of the k

centroids.
4: Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized
can be calculated.

While the k-Means algorithm is guaranteed to converge, it has a few draw-
backs:

2.1. IMAGE SEGMENTATION TECHNIQUES 11

Figure 2.3: An example of edge-based segmentation, showing the computed
edges of the left input image on the right.

• it may occur that k-Means converges to a local, possibly not global, solu-
tion;

• the algorithm is significantly sensitive to the initial randomly-selected clus-
ter centres (to reduce this effect, one can execute k-Means multiple times,
but this is costly);

• basic k-Means relies on the assumption that the number of clusters k is
known in advance. Alternatives have been proposed to overcome this
limitation of the initial setting, for example “Intelligent k-Means” by
Mirkin [Mir05, p. 93].

2.1.2 Edge Detection Segmentation

Edge points, or simply “edges”, are pixels at or around which the image values
undergo a sharp variation.

Edge detection techniques have been used as the base of several segmentation
techniques, exploiting the tight relationship that exists between region bound-
aries and edges—the sharp adjustment in intensity at the region boundaries, as
in Fig. 2.3.

The edge detection problem can be formulated like this: given an image
that has been corrupted by acquisition noise, locate the edges most likely to be
generated by scene elements (not by noise). Fig. 2.4 shows an example of edge
detection computations.

Though, the edges identified by edge detection are often disconnected. To
segment an object from an image, however, one needs closed region boundaries.
Discontinuities are normally bridged if the distance between the two edges is
within some predetermined threshold.

The Canny edge detection algorithm [Can86] is known as the optimal edge
detector. It follows a list of three criteria with the aim of improving previous
methods of edge detection:

good detection: the algorithm should mark as many real edges in the image
as possible. This is the first and most obvious principle, that of low error

12 CHAPTER 2. RELATED WORK

(a) A 325×237-pixel image, with scan-
line i = 56 (over the baby’s forehead)
highlighted.

(b) Intensity profile along the highlighted scan-
line.

Figure 2.4: An intensity image (left) and the intensity profile along a selected
scanline (right). The main sharp variations correspond to significant contours.

rate. It is important that edges occurring in images should not be missed
and that there be no responses to non-edges.

good localization: the edges marked should be as close as possible to the
edges in the real image. This second criterion suggests that the edge
points should be well localized, in other words, that the distance between
the edge pixels as found by the detector and the actual edge is to be at a
minimum.

minimal response: a given edge in the image should only be marked once,
and, where possible, image noise should not create false edges. The third
criterion is thus to have only one response to a single edge; this was im-
plemented because the first two criteria were not sufficient to completely
eliminate the possibility of multiple responses to an edge.

To satisfy these requirements, the calculus of variations (a technique which
finds the function which optimizes a given functional) is employed [Can86]. The
optimal function in Canny’s detector is described by the sum of four exponential
terms, but can be approximated by the first derivative of a Gaussian. See Fig. 2.5
for an example.

2.1.3 Graph Partitioning Segmentation

Various algorithms exist in this class of methods, all of which model (groups
of) pixels as vertices of a graph, while graph edges define the correlation or
similarity among neighbouring pixels.

2.1. IMAGE SEGMENTATION TECHNIQUES 13

(a) Input image: a colour photograph of a
steam engine.

(b) After having passed a 5 × 5 Gaussian
mask across each pixel for noise reduction,
the input image becomes slightly blurred.

(c) Result of Canny edge detector.

Figure 2.5: Canny edge detector example.

14 CHAPTER 2. RELATED WORK

Figure 2.6: The image on top being segmented using the normalized cuts frame-
work into the components shown below. The affinity measure used involved both
intensity and texture. Thanks to having a texture measure, the railing shows as
three reasonable coherent segments, which would not have happened with other
approaches such as k-Means.

Popular graph partitioning segmentation techniques include: normalized
cuts, random walker, minimum mean cut, and minimum spanning tree-based
algorithms.

Originally proposed by Shi and Malik [SM97], the normalized cuts method
involves the modelling of the input image as a weighted, undirected graph. Each
pixel is a node in the graph, and an edge is formed between every pair of pixels;
the weight of an edge is a measure of the similarity between the pixels.

The image is partitioned into disjoint sets (called “segments”; see Fig. 2.6)
by removing the edges that connect the segments. The optimal partitioning of
the graph is the one that minimizes the weights of the edges that were removed
(the “cut”). The algorithm seeks to minimize the “normalized cut”, which is
the ratio of the cut to all of the edges in the set.

2.1.4 Histogram-Based Segmentation

In this class of techniques, a histogram is computed from all of the image pixels,
taking into account colour or intensity values. Then, the peaks and valleys of

2.1. IMAGE SEGMENTATION TECHNIQUES 15

such histogram are used to locate meaningful clusters in the image. By doing
so, clusters are directly obtained after building the histogram.

See Fig. 2.7 for a generic scheme of these approaches. X, Y, and Area are
relative to the colour probability distribution representing the tracked object
(compare Section 4.2). Area is proportional to Z, i.e., the distance from the
camera. Roll (inclination) is also tracked, as a fourth degree of freedom. For each
video frame, the raw image is first converted to a colour probability distribution
image via a colour histogram model of the colour being tracked (e.g., flesh
for face tracking). The centre and size of the colour object are found via the
CAMSHIFT algorithm operating on the colour probability image. The current
size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. This process is iterated
for continuous tracking.

Histogram-based segmentation methods present an important advantage
compared to other techniques: high efficiency. Typically, these techniques re-
quire only one pass through the image pixels. For this reason, we will choose
the CAMSHIFT algorithm, which belongs to this class, because we require a
fast, simple, efficient tracker in our perceptual humanoid robotics framework.

Building the histogram is a critical phase; as mentioned above, one can
choose different types of measures like colour or intensity. This fact is important
when envisioning a perceptual framework [Bra98], as is the case of our project
and humanoid robotics.

A Perceptual User Interface (PUI) is one in which a machine is given the
ability to send and produce analogs of human senses, such as allowing computers
to perceive and produce localized sound and speech, giving robots a sense of
touch and force feedback, or the ability to see.

2.1.5 Level Set Segmentation

In general, level set segmentation is a method for tracking the evolution of con-
tours and surfaces. Originally proposed in [OS88], this technique uses Propaga-
tion of Surfaces under Curvature (PSC) schemes. The idea is to move surfaces
under their curvature, propagating the surfaces towards the lowest potential of
a cost function.

This framework has several advantages:

• level sets yield a useful representation of regions and their boundaries on
the pixel grid without the need of complex (and costly) data structures.
Therefore, optimization is simplified, as variational methods and standard
numerics can be employed;

• level sets can describe topological changes in the segmentation, i.e., parts
of a region can split and merge;

• it is possible to describe the image segmentation problem with a varia-
tional model, thus increasing flexibility (and permitting the introduction
of additional features, shape knowledge, or joint motion estimation and
segmentation).

On the other hand, level set segmentation has a problem: a level set function
is restricted to the separation of only two regions. Brox and Weickert [BW04]

16 CHAPTER 2. RELATED WORK

Figure 2.7: Block diagram of histogram-based object tracking. The grey box is
the Mean Shift algorithm.

(a) Input image. (b) Level set segmentation.

Figure 2.8: Level set segmentation of a squirrel image: two regions have been
detected.

2.1. IMAGE SEGMENTATION TECHNIQUES 17

Figure 2.9: Level set based 3D reconstruction of a mug, using synthetic data
generated from a 3D model (a). Without noise, the reconstruction (b) is lim-
ited only by the resolution of the model, 140 × 140 × 140. With noise, the
surface appears rough (c). Including a prior improves the appearance of the
reconstruction (d).

proposed a new formulation of the potential function to minimize, taking into
account the number of regions, too.

What is more, level set segmentation is well suited to generate 3D reconstruc-
tions of objects [Whi98]. See Fig. 2.9 for a sample run of Whitaker’s algorithm.
The strategy applied is as follows: construct a rather coarse volume that is the
solution to a linear problem, i.e., the zero-level sets of a function, without the
prior. This volume will serve as initialization for a level set model which moves
towards the data given by range maps while undergoing a second-order flow to
enforce the prior. After the rate of deformation slows to below some predefined
threshold, the resolution is increased, the volume resampled, and the process
repeated (in an attempt to avoid convergence to local minima).

Note that this last strategy employs predefined models of shapes: the ap-
proach has much to share with model-based segmentation methods, explained
below.

2.1.6 Model-Based Segmentation

Model-based segmentation approaches (or knowledge-based segmentation), com-
monly adopted in medical imaging, rely on the assumption that structures of

18 CHAPTER 2. RELATED WORK

Figure 2.10: Model based segmentation results using a prostate model, to detect
carcinoma cell masses. The white contour shows the result at convergence;
the black contour shows the hand-drawn ground-truth contours supplied by a
radiation oncologist.

interest have a repetitive form of geometry.
State of the art methods in the literature for knowledge-based segmenta-

tion [FRZ+05] involve active shape and appearance models, active contours
and deformable templates (see Fig. 2.10 for an example). Note that there is an
intersection with level set segmentation methods (refer to Section 2.1.5).

One can seek a probabilistic model that explains the variation of the shape,
for instance, of an organ and then, when segmenting an image, impose con-
straints using this model as a prior. Specifically, such a task involves:

1. registration1 of the training examples to a common pose;

2. probabilistic representation of the variation of the registered samples; and

3. statistical inference between the model and the image.

So, these algorithms are based on matching probability distributions of pho-
tometric variables that incorporate learned shape and appearance models for
the objects of interest. The main innovation is that there is no need to com-
pute a pixel-wise correspondence between model and image. This allow for fast,
principled methods.

2.1.7 Neural Networks Segmentation

Neural network image segmentation typically relies on processing small areas of
an image using an unsupervised neural network (a network where there is no
external teacher affecting the classification phase) or a set of neural networks.

After such processing is completed, the decision-making mechanism marks
the areas of an image accordingly to the category recognized by the neural
network, as exemplified in Fig. 2.11. A type of network well designed for these
purposes [RAA00] is the Kohonen Self-Organizing Map (SOM).

1Registration fits models that are previously known; 3D reconstruction extracts models
from images.

2.1. IMAGE SEGMENTATION TECHNIQUES 19

(a) Human head Magnetic Resonance input
image.

(b) Neural Networks segmentation of MR
image.

Figure 2.11: Neural Networks segmentation.

2.1.8 Region Growing Thresholding Segmentation

Just like edge detection (see Section 2.1.2) is implemented by quite different
processes in photographs and range data, segmenting image into regions presents
a similar situation.

Region growing is an approach to image segmentation in which neighbouring
pixels are examined and added to a region class if no edges are detected [FP02].
This process is iterated for each boundary pixel in the region. If adjacent regions
are found, region-merging techniques are used in which weak edges are dissolved
and strong edges are left intact.

This method offers several advantages over other techniques:

• unlike edge detection methods (such as gradient and Laplacian), the bor-
ders of regions found by region growing are thin –since one only adds pixels
to the exterior of regions– and connected;

• the algorithm is stable with respect to noise: the resulting region will
never contain too much of the background, as long as the parameters are
defined correctly;

• membership in a region can be based on multiple criteria, allowing us to
take advantage of several image properties, such as low gradient or gray
level intensity value, at once.

There are, however, disadvantages to region growing. First and foremost,
it is very expensive computationally: it takes both serious computing power
(processing power and memory usage) and a decent amount of time to implement
and run the algorithms efficiently.

20 CHAPTER 2. RELATED WORK

Figure 2.12: One iteration of the region growing process during which the two
patches incident on the minimum-cost arc labelled a are merged. The heap
shown in the bottom part of the figure is updated as well (which bears a con-
siderable computational cost): the arcs a, b, c and e are deleted, while two new
arcs f and g are created and inserted in the heap.

An example of region growing thresholding is [FH86]. This algorithm it-
eratively merges planar patches by maintaining a graph whose nodes are the
patches and whose arcs (edges) are associated with their common boundary
link adjacent patches. Each arc is assigned a cost, corresponding to the av-
erage error between the points of the two patches and the plane best fitting
these points. The best arc is always selected, and the corresponding patches are
merged. Note that the remaining arcs associated with these patches must be
deleted while new arcs linking the new patch to its neighbors are introduced.
The situation is illustrated by Fig. 2.12.

2.1.9 Scale-Space Segmentation

Scale-space segmentation, also known as multi-scale segmentation, is based on
the computation of image descriptors at multiple scales of smoothing. It is a
general technique used for signal and image segmentation (see Fig. 2.13 and
Fig. 2.14).

The main type of scale-space is the linear (Gaussian) scale-space, which has
wide applicability as well as the attractive property of being possible to derive
from a small set of scale-space axioms. The corresponding scale-space framework
encompasses a theory for Gaussian derivative operators, which can be used as a
basis for expressing a large class of visual operations for computerized systems

2.1. IMAGE SEGMENTATION TECHNIQUES 21

(a) t = 0, corresponding to the original im-
age f .

(b) t = 1.

(c) t = 4. (d) t = 16.

Figure 2.13: Space-scale representation L(x, y; t) for various t scales. As the
parameter t increases above 0, L is the result of smoothing f with a larger and
larger filter.

that process visual information. This framework also allows visual operations to
be made scale-invariant, which is necessary for dealing with the size variations
that may occur in image data, because real-world objects may be of different
sizes and in addition the distance between the object and the camera may be
unknown and may vary depending on the circumstances.

For a two-dimensional image f(x, y), its linear (Gaussian) scale-space repre-
sentation is a family of derived signals L(x, y; t) defined by the convolution of
f(x, y) with the Gaussian kernel

gt(x, y) =
1

2πt
e−(x2+y2)/2t (2.1)

such that
L(x, y; t) = (gt ∗ f)(x, y), (2.2)

where the semicolon in the argument of L implies that the convolution is per-
formed only over the variables x, y, while the scale parameter t after the semi-
colon just indicates which scale level is being defined. This definition of L works
for a continuum of scales , but typically only a finite discrete set of levels in the
scale-space representation would be considered.

In Fig. 2.14b, each “x” identifies the position of an extremum of the first
derivative of one of 15 smoothed versions of the signal (red for maxima, blue for

22 CHAPTER 2. RELATED WORK

minima). Each “+” identifies the position that the extremum tracks back to at
the finest scale. The signal features that persist to the highest scale (smoothest
version) are evident as the tall structures that correspond to the major segment
boundaries in the figure above.

2.1.10 Semi-Automatic Livewire Segmentation

In this segmentation method, the user outlines the Region of Interest (ROI)
with mouse clicks, then an algorithm is applied so that the path that best fits
the edge of the image is shown. It is based on the lowest cost path algorithm
by Dijkstra.

The user sets the starting point clicking on an image pixel. Then, as he
starts to move the mouse over other points, the smallest cost path is drawn
from the starting point to the pixel where the mouse is over, changing itself if
the user moves the mouse. If the user wants to choose the path that is being
displayed, he will simply click the image again.

One can easily see in Fig. 2.15 that the places where the user clicked to
outline the desired ROI are marked with a small square. It is also easy to see
that Livewire has snapped on the image borders.

2.2 Stereopsis

Since a considerable portion of this thesis work deals with how a humanoid robot
can perceive object positions and orientations in 3D space by using a binocular
head (see Section 4.3), some introductory theoretical background is first due.

Stereopsis, also known as stereo vision or simply “stereo”, allows two-dimensional
images to be interpreted in terms of 3D scene structure and distance [TV98].

Humans have an uncanny ability to perceive and analyze the structure of
the 3D world from visual input, operating effortlessly and with little or no idea
of what the mechanisms of visual perception are.

Depending on the nature of the features we wish to observe (2D or 3D,
points or lines on the surface of the object, etc.), different formulations and
algorithms come into play. However, the underlying mathematics has much
in common: all the different cases can be formulated in such a way that they
require solutions of simultaneous transcendental, polynomial, or linear equations
in multiple variables which represent the structure of the object and its 3D
motion as characterized by rotation and translation.

In particular, what is inferred is a sensation of depth from the two slightly
different projections of the world onto the retinas of the two eyes. The differences
in the two retinal images are called horizontal disparity, retinal disparity, or
binocular disparity. The differences arise from the eyes’ different positions in
the head.

Stereo vision involves two processes:

• the binocular fusion of features observed by the two eyes;

• the actual reconstruction of the features observed in the world.

They can be translated into two problems:

2.2. STEREOPSIS 23

(a) A signal (black), various multi-scale smoothed versions of it (red) and
some segment averages (blue).

(b) Dendrogram resulting from the segmentation in Fig. 2.14a.

Figure 2.14: Space-scale segmentation example.

24 CHAPTER 2. RELATED WORK

Figure 2.15: Example run of a semi-automatic Livewire technique applied on a
picture.

correspondence: which parts of the left and right images are projections of
the same scene element?

reconstruction: given a number of corresponding parts of the left and right
image, and possibly information on the geometry of the stereo system,
what can we say about the 3D location and structure of the observed
objects?

The correspondence problem is out of the scope of this project. In our
proposed approach in Section 4.3, we will focus on 3D reconstruction.

2.3 Object Manipulation with Visual Servoing

Existing visual-based robot control approaches [CH06, CH07, HHC96], sum-
marized below, solve the issue of representing a gripper–object relationship by
handling models of gripper and object in memory. This approach, while accurate
and powerful, presents two drawbacks:

• the object model may be poor; besides, in several circumstances it may
not be available at all (as addressed by Malis and Chaumette [MC02] or
by Dufournaud et al. [DHQ98]);

• computational cost is high due to the manipulation program having to
memorize and compute comparison operations to such models.

Visual Servoing [Cor97] is a multi-disciplinary approach to the control of
robots based on visual perception, involving the use of cameras to control the
position of the robot relative to the environment as required by the task. This
technique uses visual feedback information extracted from a vision sensor, to

2.3. OBJECT MANIPULATION WITH VISUAL SERVOING 25

Figure 2.16: Basic perspective geometry for imaging. Lower case letters refer to
coordinates in the object space, upper case letters to coordinates on the image
plane. Focal length (denoted here with F) is assumed to be 1.

26 CHAPTER 2. RELATED WORK

control the motion of robots. This discipline spans CV, robotics, control, and
real-time systems.

The task in Visual Servoing is to control the pose (3D position and orien-
tation) of a robot’s end-effector, using visual information (features) extracted
from images.

Visual Servoing methods are commonly classified as image-based or position-
based2, depending on whether image features or the camera position define the
signal error in the feedback loop of the control law.

2.3.1 Image-Based Visual Servoing

Image-Based Visual Servoing (IBVS) is a feature-based technique, meaning that
it employs features that have been extracted from the image to directly provide
a command to the robot (without any computation by the robot controller).
Typically for IBVS, all the information extracted from the image features and
used in control, occurs in a 2D space. In most cases this coincides with the image
coordinates’ space. Despite this 2D information, because of which the approach
is also known as “2D servoing control”, the robot still has the capability to move
in 3D.

IBVS involves the estimation of the robot’s velocity screw, q̇, so as to move
the image plane features, f c, to a set of desired locations, f∗ [MC02]. IBVS
requires the computation of the image Jacobian (or interaction matrix). The
image Jacobian represents the differential relationships between the scene frame
and the camera frame (where either the scene or the camera frame is attached
to the robot):

J(q) =
[

∂f
∂q

]
=

∂f1(q)

∂q1
. . . ∂f1(q)

∂qm

...
. . .

...
∂fk(q)

∂q1
. . . ∂fk(q)

∂qm

 (2.3)

where q represents the coordinates of the end-effector in some parameterization
of the task space T , f = [f1, f2, . . . , fk] represents a vector of image features, m
is the cardinality of the task space T , and k is the number of image features.

2.3.2 Position-Based Visual Servoing

PBVS is traditionally a model-based technique. The pose of the object of inter-
est is estimated with respect to the camera frame, then a command is issued to
the robot controller, which in turn controls the robot. In this case, the image
features are extracted as well, like in IBVS, though the feature information is
used to estimate the 3D object pose information in Cartesian space.

PBVS is usually referred to as “3D servoing control”, since image measure-
ments are used to determine the pose of the target with respect to the camera
and some common world frame. The error between the current and the desired
pose of the target is defined in the task (Cartesian) space of the robot; hence,
the error is a function of pose parameters, e(x). Fig 2.17 shows possible example
tasks of PBVS.

2Some “hybrid approaches” have also been proposed: 2-1/2-D Servoing, Motion Partition
Based Servoing, and Partitioned DOF Based Servoing.

2.4. OBJECT AFFORDANCES 27

Figure 2.17: Two examples of PBVS control. Left: eye-in-hand camera con-
figuration, where the camera/robot is servoed from cx0 (current pose) to cx∗0
(desired pose). Right: a monocular, standalone camera system used to servo a
robot-held object from its current to the desired pose.

Fig 2.18 illustrates the general working scheme of PBVS, where the difference
in pose between the desired and the current pose represents an error which is
then used to estimate the velocity screw for the robot, q̇ = [V; Ω]T , in order to
minimize that error.

2.4 Object Affordances

Object affordances, or simply “affordances” for brevity, are a way to encode the
relationships among actions, objects and resulting effects [MLBSV08].

The general tool adopted to capture the dependencies in affordances (see
Fig. 2.19) is that of Bayesian networks. Affordances make it possible to infer

Figure 2.18: Block diagram of PBVS [HHC96]. The estimated pose of the
target, cx0, is compared to the desired reference pose, cx∗0. This is then used
to estimate the velocity screw, q̇ = [V; Ω]T , for the robot so to minimize the
error.

28 CHAPTER 2. RELATED WORK

Figure 2.19: Object affordances represent the relationships that take place
among actions (A), objects (O) and effects (E).

Table 2.1: Object affordances can be used for different purposes: to predict
the outcome of an action, to plan the necessary actions to achieve a goal, or to
recognize objects/actions.

input output function

(O,A) E predict effect

(O,E) A action recognition and planning

(A,E) O object recognition and selection

causality relationships by taking advantage of the intervention of a robot and the
temporal ordering of events. Table 2.1 lists the basic purposes of affordances.

Contrary to similar approaches, in the affordances framework the dependen-
cies shown in Fig. 2.19 are not known in advance (in which case we would learn
a mapping between paris of actions and objects, or use supervised learning).
Not assuming any prior knowledge on these dependencies, with affordances we
try to infer the graph of the network directly from the exteroceptive and pro-
prioceptive measurements. In addition, the affordances model allows the robot
to tune the free parameters of the controllers.

This framework combines well with a developmental architecture whereby
the robot incrementally develops its skills. In this sense, affordances can be seen
as a bridge between

• sensory–motor coordination, and

• world understanding and imitation.

Results on the learning and usefulness of object affordances for robots that
use monocular vision (one camera only) are discussed in [MLBSV08]. With the
(future) work of this thesis we intend to combine affordances with information
obtained from stereo vision.

Chapter 3

Robot Platform and
Software Setup

In 2004, Computer and Robot Vision Laboratory [Vis] at IST in Lisbon de-
veloped a humanoid robot platform, “Baltazar” [LBPSV04], which was used
for this work. Baltazar, shown in Fig. 3.1, is an anthropomorphic torso that
features a binocular head as well as an arm and a hand. It was built as a sys-
tem that mimics human arm-hand kinematics as closely as possible, despite the
relatively simple design.

Baltazar is well suited (and was designed) for research in imitation, skill
transfer and visuomotor coordination. The design of Baltazar was driven by
these constraints:

• the robot should resemble a human torso;

• the robot kinematics should be able to perform human-like movements
and gestures, as well as to allow a natural interaction with objects during
grasping;

• payload should be at least 500 g (including the hand);

• force detection should be possible;

• the robot should be easy to maintain and be low cost (it contains regular
DC motors with reduced backlash and off-the-shelf mechanical parts).

In this section we will summarize mechanical and kinematic details of Bal-
tazar, its sensors and technology. More details (such as the design of the 11-DOF
hand of Baltazar, not actually used in this thesis work as we focus on grasping
preparation) can be found in [Lop06, p. 113].

A software library used to develop programs for Baltazar, called Yet Another
Robot Platform (YARP), is used extensively in the whole RobotCub developers
community and in the implementation of this thesis, therefore YARP and its
middleware mechanisms will also be described; other secondary software tools
that we used will be cited.

29

30 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

Figure 3.1: Baltazar humanoid robot in relax position.

3.1. KINEMATIC DESCRIPTION OF BALTAZAR 31

3.1 Kinematic Description of Baltazar

Robot kinematics studies the motion of robots, thus taking into account the
positions, velocities and accelerations of robot links, but without regard to the
forces that actually cause the motion (whose study belongs to robot dynamics):
robot kinematics uses just geometrical constraints. The kinematics of manipu-
lators involves the study of the geometric- and time-based properties of motion,
in particular how the various links move with respect to one another and with
time.

The vast majority of robots belong to the serial link manipulator class, which
means that it comprises a set of bodies called links in a chain, connected by
joints1. Each joint has one DOF, either translational or rotational; for example,
the anthropomorphic arm used for the work of this thesis has 6 rotational DOFs.

For a manipulator with n joints numbered from 1 to n, there are n+ 1 links,
numbered from 0 to n. Link 0 is the base of the manipulator, while link n carries
the end-effector. Joint i connects links i and i− 1.

The kinematic model of a robot expresses how its several components move
among themselves, achieving a transformation between different configuration
spaces. The “spaces” mentioned here are the ones of the Cartesian geometric
world workspace, as opposed to less-intuitive spaces that are directly associated
with the robot’s joint parameters, which are usually [Cra05, SS00] denoted as a
vector q.

The following types of kinematics approaches are commonly studied in robotics:

forward kinematics computes the position of a point in space (typically, that
of the end-effector), given the values of the joint parameters (lengths and
angles);

inverse kinematics computes all the joint parameters, given a point in space
that the end-effector must lie on;

forward velocity kinematics (or forward differential kinematics) computes
the velocity of a point in space, given the derivatives of the joint parame-
ters;

inverse velocity kinematics (or inverse differential kinematics) computes the
derivatives, i.e., velocities of joint parameters, given spatial velocities.

Forward kinematics (also known as direct kinematics) is the problem of
transforming the joint positions of a robot to its end-effector pose. In other
words, it is the computation of the position and orientation of a robot’s end-
effector as a function of its joint angles. For example, given a serial chain of
n links and letting θi be the angle of link i, then the reference frame of link n
relative to link 0 is

0Tn =
n∏

i=1

i−1Ti(θi)

where i−1Ti(θi) is the transformation matrix from the frame of link i to that of
link i− 1.

1To be more accurate, parallel link and serial/parallel hybrid structures are theoretically
possible, although they are not common.

32 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

(a) Standard Denavit-Hartenberg (SDH)
convention.

(b) Modified Denavit-Hartenberg (MDH)
convention.

Figure 3.2: Different forms of DH notation. Note: ai always indicates the length
of link i, but the displacement it represents is between the origins of frame i
and frame i+1 in the standard form, between frames i−1 and i in the modified
form.

3.1.1 Kinematic Notation

A word of advice on the study and notation of kinematics: in robotics literature,
at least two related but different conventions to model serial manipulator kine-
matics go by the name DH, however they actually vary in a few details related
to the assignment of reference frames to the rigid bodies (links) of robots.

These differences among DH parameterizations are rarely acknowledged (with
the exception of [Cor96]). Typically, an author chooses one of the existing DH
notations, writes down “this is the Denavit-Hartenberg convention” then sticks
to it from that moment on. One should, however, pay attention to which DH
formulation is being used and understand it.

Two different methodologies, shown in Fig. 3.2, have been established to
assign coordinate frames:

1. Standard Denavit-Hartenberg (SDH) form: frame i has its origin along
the axis of joint i+ 1.

2. Modified Denavit-Hartenberg (MDH) form, also known as “unmodified”
DH convention: frame i has its origin along the axis of joint i.

MDH is commonly used in the literature on manipulator mechanics, and the
(forward and inverse) kinematics approaches for Baltazar that exist so far, have
in fact followed the MDH form. However, further on we will see cases where
it is practical to make a change of representation to SDH to model the arm of
Baltazar by the means of publicly-available robotics simulation tools.

The difference between SDH and MDH is the following. In SDH, we positionDifference between
SDH and MDH. the origin of frame i along the axis of joint i+ 1. With MDH, instead, frame i

has its origin along the axis of joint i.
A point to stress is that the choices of the various reference frames to assign

(with SDH or with MDH) are not unique, even under the constraints that need
to be enforced among consecutive links. For example, the origin of the first
reference frame O0 can be arbitrarily positioned anywhere on the first joint
axis. Thus, it is possible to derive different, equally valid, coordinate frame
assignments for the links of a given robot. On the other hand, the final matrix

3.1. KINEMATIC DESCRIPTION OF BALTAZAR 33

Table 3.1: Joint angles of Baltazar robotic head.

angle description

θl left eye camera vergence

θr right eye camera vergence

θp pan (neck rotation)

θt tilt (head rotation)

that transforms from the base to the end effector, nT0, must be the same—
regardless of the intermediate frame assignments.

For a detailed description of DH conventions and the meaning of the four
parameters (a: link length; α: link twist; d: link offset; θ: joint angle) refer, for
example, to:

• [SHM05], which explains SDH thoroughly; Chapter 3 is publicly available2;

• [Cra05] for MDH; or

• [Cor96] (both parameterizations).

If we use the SDH representation, the following 4×4 homogeneous transfor-
mation matrix

i−1Ai =

cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (3.1)

represents each link’s coordinate frame with respect to the previous link’s coor-
dinate system, i.e.,

0Ti = 0Ti−1
i−1Ai (3.2)

where 0Ti is the homogeneous transformation describing the pose (position and
orientation) of coordinate frame i with respect to the world coordinate system
0.

With MDH, Eq. 3.2 still holds, however the homogeneous transformation
matrix assumes the following form (instead of Eq. 3.1):

i−1Ai =

cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 di sinαi−1

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 (3.3)

3.1.2 Head Structure

The mechanical and geometrical structure of the robotic head used for this
thesis work can be seen in Fig. 3.3, which shows the four DOFs of the head,
all of which are rotational: neck rotation (pan), head elevation (tilt), left eye
vergence, and right eye vergence.

2http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/

chap3-forward-kinematics.pdf

http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-kinematics.pdf
http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-kinematics.pdf

34 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

Figure 3.3: Scheme of Baltazar robotic head, code-named “Medusa” [BSV99].
The meaning of the four joint angles θl, θr, θp and θt is explained in Table 3.1.

Figure 3.4: Real Baltazar robotic head.

3.1. KINEMATIC DESCRIPTION OF BALTAZAR 35

Table 3.2: A possible MDH parameterization of the left eye of the binocular
head of Baltazar, taken from [LBPSV04]. B is the baseline distance between
the two eyes.

Joint i ai−1 [cm] di [cm] αi−1 [◦] θi [◦]

1 0 0 0 θp

2 15 0 −π θt

3 0 B/2 π 0

4 0 0 π θr

A view of the real Baltazar robotic head, along with its two cameras, can be
seen in Fig. 3.4.

Manual adjustments can be made to align the vergence and elevation axes of
rotation with the optical centres of the cameras. Inter-ocular distance (baseline)
can also be modified. MDH parameters of the head are displayed in Table 3.2.

Let 2P denote the 3D coordinates of point P expressed in eye coordinates.
If we denote by AP the coordinates of P expressed in the arm base (shoulder)
coordinate system, this relation holds:

AP = ATH
1T0

1T2
2P (3.4)

where the head–arm transformation ATH is given by

ATH =

0 0 1 −27
−1 0 0 0
0 −1 0 29.6
0 0 0 1

 (3.5)

and the translation values of the first three rows of the last column of Eq. 3.5
are expressed in centimetres.

3.1.3 Baltazar and Its Anthropomorphic Arm

Baltazar has an anthropomorphic arm inspired from human arms. However,
given the complexity of articulations that a human arm can present, it is still
not viable to reproduce one from a technology standpoint. Thus, some simpli-
fications are due, and unfortunately they bring along a loss of maneuverability.
The anthropomorphic arm of Baltazar is a fair compromise between complexity
and imitation of a human arm.

Fig. 3.5 shows the robotic platform Baltazar in its entirety, whereas a scheme
and a picture of the arm can be seen in Fig. 3.6 and in Fig. 3.7, respectively.

The intersection between the two last motor axes, at the base of the wrist,
is considered the end-effector for Baltazar.

Forward and inverse kinematics of the robotic arm are taken into account.
This arm, which aims to replicate a human one, consists of 6 joints:

• 2 joints are associated with the shoulder;

• 2 with the elbow; and

36 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

Figure 3.5: Real Baltazar and its CAD model (obtained with the Webots robot
simulator [Web]).

Figure 3.6: Scheme of Baltazar anthropomorphic arm with available rotation
DOFs.

3.1. KINEMATIC DESCRIPTION OF BALTAZAR 37

Figure 3.7: Real anthropomorphic arm of Baltazar.

38 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

Table 3.3: A possible SDH parameterization of the anthropomorphic arm of
Baltazar, derived during this thesis work in order to make use of existing robotics
tools.

Link i ai [cm] di+1 [cm] αi [◦] θi+1 [◦]

0 0 0 π/2 −π/2
1 0 0 π/2 π/2

2 2.82 29.13 π/2 π/2

3 2.18 0 π/2 π

4 0 26.95 π/2 π/2

5 0 0 0 −π/2

Table 3.4: A possible MDH parameterization of the anthropomorphic arm of
Baltazar, taken from [LBPSV04].

Joint i ai−1 [cm] di [cm] αi−1 [◦] θi [◦]

1 0 0 0 0

2 0 0 π π/2

3 0 29.13 π π/2

4 2.82 0 π 0

5 −2.18 26.95 −π π/2

6 0 0 π 0

• 2 with the wrist.

As far as this work is concerned, forward kinematics will be used as an
extra tool or constraint to the iterative inverse kinematics solution which will
be detailed later. The purpose is to exclude those solutions that do not respect
a specific restriction imposed on the position of some joints. This is done to
operate the robot easily and with no risk of damage when it is close to other
objects, such as a table.

3.1.4 Anthropomorphic Arm Forward Kinematics

A possible SDH parameterization of Baltazar 6-DOF arm, written down for this
thesis work in a way similar to how the iCub arm kinematics was derived3, is
shown in Table 3.3. Similarly, an MDH parameterization for the anthropomor-
phic arm is shown in Table 3.4.

3http://eris.liralab.it/wiki/ICubForwardKinematics

http://eris.liralab.it/wiki/ICubForwardKinematics

3.1. KINEMATIC DESCRIPTION OF BALTAZAR 39

3.1.5 Anthropomorphic Arm Inverse Kinematics

The inverse kinematics problem is that of computing the joint angles4 that a
robot configuration should present, given a spatial position and orientation of
the end-effector. This is a useful tool for manipulator path planning, more so
than forward kinematics.

One problem is that, in general, the inverse kinematic solution is non-unique,
and for some manipulators no closed-form solution exists at all. If the manipula-
tor possesses more DOFs than the number strictly necessary to execute a given
task, it is called redundant and the solution for joint angles is under-determined.
On the other hand, if no solution can be determined for a particular manipu-
lator pose, that configuration is said to be singular. Typically, a singularity is
due to an alignment of axes reducing the effective DOFs.

We address inverse kinematics in two steps. First, we set the anthropo-
morphic arm to the desired position (positioning of wrist); then, we change its
orientation to a suitable one (orientation of hand).

Let P denote the desired position of the wrist, and Z be a null vector. In
homogeneous coordinates, this means that:

P =
[
x y z 1

]T
, (3.6)

Z =
[
0 0 0 1

]T
. (3.7)

The position of the wrist, P, can be related to the various joint angles by
cascading the different homogeneous coordinate transformation matrices:

P =
5∏

i=0

iTi+1 Z, (3.8)

where, as per Eq. 3.2, iTi+1 denotes homogeneous transformation between
frames i+ 1 and i.

In order to achieve a desired 3D location, the first four joints of the arm
(counting from the shoulder) must be set to a specific position. Like [LBPSV04],
we will use the following transcendental result iteratively in order the determine
these positions. Equation

a cos(θ) + b sin(θ) = c (3.9)

has solutions

θ = 2 arctan

(
b±√a2 + b2 + c2

a+ c

)
. (3.10)

Eq. 3.10 is useful for determining the joint angles of an inverse kinematics
problem. Notice that this equation has two solutions: the desired joint position
can be chosen accordingly to the physical limits of a joint and/or by using
additional criteria (comfort, least change).

To position the arm wrist to a given position P in space, we need to de-
termine the corresponding values of joints θ1, θ2, θ3, θ4. Given the kinematic
structure of the anthropomorphic arm of Baltazar, the distance ρ from the base

4For a robot whose joints are all rotational, like the one used in this work.

40 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

to the wrist (end-effector) depends only on θ4. Using Eq. 3.8, the following
constraint holds:

a cos(θ4) + b sin(θ4) = ρ2 − (a2
2 + l22 + l21 + a2

1), (3.11)

where {
a = 2(−a2a1 + l2l1)
b = −2(l2a1 + a2l1). (3.12)

Since Eq. 3.11 is compatible with the transcendental Eq. 3.10, we can deter-
mine the value of θ4.

The solution of θ2 and a constraint on θ3 are obtained from the z component
(third column) of P, obtained from Eq. 3.8. In order for the parameters in
Eq. 3.10 to permit the existence of a θ2 solution, we need θ3 to be such that:

a2 + b2 + c2 > 0 (3.13)a = d2 cos(θ4) + l2 sin(θ4)− d1 sin(θ3)
b = −d1 sin(θ4) + l2 cos(θ4) + l1
c = z.

(3.14)

The algorithm that computes inverse kinematics consists in initializing θ3
in such a way that the constraint of Eq. 3.13 holds, subsequently allowing the
computation of the remaining joint angles [Car07].

All the computed angle variables are tested against the two solutions of
Eq. 3.10, so that we can verify if the values are coherent with the physical joint
limits of the anthropomorphic arm (see Table 3.5 on p. 43).

As far as hand orientation is concerned, it is sufficient to constrain the solu-
tions to a specific plane, by specifying a normal vector to the plane as an input
of the inverse kinematics software solver. Note that, in this way, one DOF is
still free (hand palm up or hand palm down).

3.2 Hardware Devices of Baltazar

3.2.1 “Flea” Cameras

Two colour cameras are attached on each of the eyes of Baltazar. These are
“Flea” cameras, manufactured by Point Grey Research and displayed in Fig. 3.8.
They are equipped with an IEEE-1394 FireWire interface and the following
characteristics:

• very compact size: 30× 31× 29 mm;

• 1/3” Sony Charge-Coupled Device (CCD) sensor;

• high processing speed, up to 640×480 resolution at 60 Frames per Second
(FPS);

• external trigger, strobe output;

• 12-bit Analogue-to-Digital Converter (ADC).

3.2. HARDWARE DEVICES OF BALTAZAR 41

Figure 3.8: Point Grey “Flea” camera. The small dimensions of these cameras
is worth noting, making it possible to employ them as (moving) humanoid eyes.

3.2.2 Controller Devices

The four DOFs of the head of Baltazar correspond to four axes or encoders;
these are managed by a National Instruments PCI-7340 motion control board,
shown in Fig. 3.10.

The 7340 controller is a combination servo and stepper motor controller for
PXI, Compact PCI, and PCI bus computers. It includes programmable motion
control for up to four independent or coordinated axes of motion, with dedicated
motion I/O for limit and home switches and additional I/O for general-purpose
functions. Servo axes can control:

• servo motors;

• servo hydraulics;

• servo valves and other servo devices.

Servo axes always operate in closed-loop mode. These axes use quadrature
encoders or analog inputs for position and velocity feedback and provide analog
command outputs with a standard range of ±10 V.

Stepper axes of the 7340 controller, on the other hand, can operate in open-
or closed-loop mode. In closed-loop mode, they use quadrature encoders or ana-
logue inputs for position and velocity feedback (in closed-loop only), and they
provide step/direction or clockwise/counter-clockwise digital command outputs.
All stepper axes support full, half, and microstepping applications.

The 7340 controller reflects a dual-processor architecture that uses a 32-
bit CPU, combined with a Digital Signal Processor (DSP) and custom Field-
Programmable Gate Arrays (FPGAs), all in all providing good performance.

With regards to application software for this controller, the bundled tool NI-
Motion is used. NI-Motion is a simple high-level programming interface (API)
to program the 7340 controller. Function sets are available for LabVIEW [Lab]
and other programs.

42 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

(a) “Flea” camera seen from above.

(b) “Flea” camera seen from below.

Figure 3.9: Right eye Baltazar camera as seen from two perspectives.

3.3. SOFTWARE SETUP 43

Figure 3.10: National Instruments 7340 Stepper/Servo Motion Controller.

Table 3.5: Joint angles as available in Baltazar arm YARP server. The “physical
limits” are the actual angle limitations of the real robot joints, while the “original
bounds” column indicates the limits that had been theoretically planned in
Lopes et al. [LBPSV04], for the sake of historical reference.
All angles are expressed in degrees.

encoder description arm joint physical limits original bounds

1 shoulder abduction/adduction 1 [-45 35] [-45 135]

2 shoulder extension/flection 2 [-40 5] [-110 10]

3 not used - - -

4 torso rotation - - -

5 shoulder external/internal rotation 3 [-90 0] [-90 0]

6 elbow extension/flection 4 [-90 0] [-90 0]

7 arm pronation/supination 5 [-80 80] [-90 90]

8 wrist extension/flection 6 [-29 45] [-45 45]

LabVIEW is a platform and development environment for a visual program-
ming language (also from National Instruments) called “G”.

In order to actuate the anthropomorphic arm and hand of Baltazar, another
control board is mounted on the platform. The Networked Modular Control
(NMC) communication protocol5 is used to control the six joints of the limbs
of the robot.

3.3 Software Setup

During the development of a piece of software, particularly if it is a project in-
volving different people and institutions as well as operating systems and hard-
ware, one should keep in mind certain basic principles of software engineering
at all times:

5http://www.jrkerr.com/overview.html

http://www.jrkerr.com/overview.html

44 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

• high cohesion;

• low coupling

• explicit interfacing;

• information hiding.

Some software libraries that were largely employed in the development of
this project (chiefly the YARP set of libraries) will now be briefly presented.

3.3.1 YARP

The iCub software (and other projects developed under the “umbrella” of the
RobotCub Consortium, such as this thesis) is potentially parallel and distributed.
Apart from Application Programming Interfaces (APIs) that speak directly to
the hardware, the upper layers might require further support libraries, as is of-
ten necessary when programming robot systems immersed in various computer
networks. In fact, many software solutions are already available [CCIN08, Ta-
ble 1]. In the case of RobotCub, these missing libraries include middleware
mechanisms and were custom developed: their suite is called YARP.

YARP is open source and, as such, it is suitable for inclusion of newly de-
veloped iCub code. The rationale in this choice lays in the fact that having the
source code available and, especially, well understood, can potentially simplify
the software integration activity.

In order to facilitate the integration of code, clearly the simplest way would
be to lay out a set of standards and to ask developers to strictly follow them.
In a large research project like RobotCub, the community should also allow
for a certain freedom to developers, so that ideas can be tested quickly. These
two requirements are somehow conflicting. Especially, they are conflicting when
different behaviours are to be integrated into a single system and the integrator
is not the first developer.

To allow developers to build upon the already developed behaviours, the
researchers of RobotCub chose to layer the software and release-packaged be-
haviours in the form of APIs. The idea is to produce behaviours that can be
used without necessarily getting into the details of the middleware code em-
ployed. While for lower levels there is no much alternative than following a
common middleware approach, higher levels and user level code can be devel-
oped by considering a less demanding scenario. In the latter case, modules are
distributed with interfaces specified in an API—possibly a C++ class hierarchy.

Internally, each module will unleash a set of YARP processes and threads
whose complexity will be hidden within the module. Various levels of configu-
ration are possible. In one case, the given module would be capable of running
on a single processor machine. This is a tricky and difficult choice since in many
cases the behaviour of the robot relies explicitly on timing, synchronization, and
performances of its submodules. Considering that eventually each module is a
very specialized controller, issues of real-time performances have to be carefully
evaluated. The modules’ APIs will include tests and indications on the compu-
tational timing and additional requirements in this respect, to facilitate proper
configuration and use.

Fig. 3.11 exemplifies the iCub software architecture. The lowest level of
the software architecture consists of the level-0 API which provides the basic

3.3. SOFTWARE SETUP 45

Figure 3.11: Software architecture of the iCub (and RobotCub).

control of the iCub hardware by formatting and unformatting IP packets into
appropriate classes and data structures. IP packets are sent to the robot via
a Gbit Ethernet connection. For software to be compliant to the iCub, the
only requirement is to use this and only this API. The API is provided for
both Linux and Windows. The iCub behaviours/modules/skills will be devel-
oped using YARP to support parallel computation and efficient Inter-Process
Communication (IPC). YARP is both open source and portable (i.e., OS inde-
pendent), so it fits the requirements of RobotCub in this sense. Each module
can thus be composed of several processes running on several processors.

YARP is an open source framework for efficient robot control, supporting dis-
tributed computation and featuring a middleware infrastructure [YAR, MFN06].

YARP was created for a number of reasons:

• computer multitasking: it is useful to design a robot control system as a set
of processes running on different computers, or several central processing
units (CPUs) within a single system;

• making communication between different processes easy;

• code decoupling and modularity: it is a good practice to maintain and
reuse small pieces of code and processes, each one performing a simple
task. With YARP it is easy to write location-independent modules, which
can run on different machines without code changes whatsoever;

• possibility to redistribute computational load among CPUs, as well as to
recover from hardware failures.

In particular, as far as communication is concerned, YARP follows the Ob-
server design pattern (also known as publish/subscribe; see [GHJV00]). One or

46 CHAPTER 3. ROBOT PLATFORM AND SOFTWARE SETUP

more objects (“observers” or “listeners”) are registered to observe an event that
may be raised by the observed object (the “subject”).

Several port objects deliver messages to any number of observers, i.e., to
their ports.

3.3.2 Other Software Libraries

Besides YARP, other libraries used for the implementation that are worth men-
tioning are GNU Scientific Library (GSL), its Basic Linear Algebra Subprograms
(BLAS) interfaces, and OpenCV.

GSL is a software library written in C for numerical calculations. Among
other things, GSL includes an implementation of the BLAS interface.

BLAS [BLA] is a set of routines for linear algebra, useful to efficiently per-
form operations with vectors and matrices. They are divided into:

• Level 1 BLAS for vector-vector operations;

• Level 2 BLAS for matrix-vector operations;

• Level 3 BLAS for matrix-matrix operations.

During the development of this thesis, GSL and BLAS were used to make
computations between matrices fast and robust (preventing memory leaks and
segmentation faults, thus improving security).

OpenCV [Ope] is a multi-purpose CV library originally developed by Intel.
Nowadays it is free for commercial and research use (under a BSD license). This
library has two characteristics that it shares with RobotCub research and that
made us choose it:

• being cross-platform;

• having a focus on real-time image processing. If OpenCV finds Intel’s
Integrated Performance Primitives (IPP) on the working system, it will
use these commercial optimized routines to accelerate itself.

Chapter 4

Proposed Architecture

In RobotCub and in this thesis project too, manipulation is seen as a means
to assist perception under uncertainty. Often, vision alone is not enough to
reliably segment distinct objects from the background. Overlapping objects or
similarity in appearance to the background can confuse many visual segmen-
tation algorithms. Rather than defining an object in terms of its appearance
or shape as a predefined model, we propose a simple framework, where only
the position and orientation of a tracked object are taken into consideration.
This will be done by estimating the orientation as the major axis of the best-fit
enclosing ellipse that surrounds the object.

In this section we will describe the proposed visual processing (a segmen-
tation based on colour histograms), our 3D reconstruction technique, and the
applications to object manipulation tasks.

4.1 Visual Processing

Using CV to control grasping tasks is natural, since it allows to recognize and
to locate objects [DHQ98]. In particular, stereopsis can help robots reconstruct
a 3D scene and perform visual servoing.

As discussed in Section 2.1, the problems of object tracking and image
segmentation can be handled from several different perspectives. There exist
elaborate methods which implement tracking, based, for example, on: contour
tracking by the means of snakes; association techniques and matrix Eigenvalues
(Eigenspace matching); maintaining large sets of statistical hypotheses; com-
puting a convolution of the image with predefined feature detector patterns.
Most of these techniques, though, are computationally expensive and not suited
for our framework, which must be simple enough and be able to run in real
time, such as at 30 FPS.

So, CV algorithms that are intended to form part of a PUI, such as our prob-
lem and all RobotCub research in general, must be fast and efficient. They must
be able to track in real time, yet not absorb a major share of the computational
resources that humanoid robots have.

The majority of the available segmentation algorithms in literature do not
cover all the needs of our objective optimally, because they do not possess all
of our requirements:

47

48 CHAPTER 4. PROPOSED ARCHITECTURE

• being able to track similar objects;

• being robust to noise;

• working well and reasonably fast, since the tracking algorithm is going to
be run in parallel with a considerable set of computationally heavy tasks,
so that the robot arm is able to intercept and grasp objects;

• in particular, we want to run several concurrent instances of the algorithm
at the same time, so performance is an important requirement.

A possible approach we initially thought of was to interpret motion statis-
tically: by performing a Bayesian interpretation of the problem, the solution
of motion estimation could be translated to inferring and comparing different
similarity functions, generated from different motion models.

Alternatively, we could have used the Expectation Maximization (EM) al-
gorithm1 to choose the best model. This method is frequently employed in
statistical problems, and it consists of two phases, shown in Algorithm 2.

Algorithm 2 Expectation Maximization (EM)
1: (E step) Extrapolate a parameterized likelihood.
2: (M step) Maximize the expected likelihood found in the E step.

More precisely, in the E step we associate all the points that correspond to
a randomly chosen model, and in the M step we update the model parameters
basing on the points that were assigned to it. The algorithm is iterated over
and over, until the model parameters converge.

The solutions recalled so far in this chapter deal with a problem that is
similar to the one we want to address—on the one hand, we need to establish
a priori the set of motion models that the object can present; on the other hand
we wish to choose the best possible motion model.

To sum up, several different approaches for segmentation are possible; though,
since the development of a tracking algorithm is not the main objective of this
work (it is but an initial component of it), and performance is a strong require-
ment, we opted for using a simple, ready-made solution from OpenCV (Intel
Open Source Computer Vision Library, [Ope]), which is a library of C/C++
functions and algorithms frequently used in image processing. The method that
we chose was CAMSHIFT, detailed further down. However, some custom mod-
ifications were applied by us on the OpenCV version of CAMSHIFT. The most
relevant of them are these two:

• we compute the enclosing ellipse of an object by focusing the attention
on the axes and centroid of such an ellipse (rather than memorizing and
transmitting a whole rectangular area, we just handle, for instance, the
major axis of the ellipse);

• we add networking capabilities to the OpenCV implementation of CAMSHIFT,
by encapsulating it into the YARP module system (see Section 3.3.1) and

1A variant of k-Means (see Section 2.1.1).

4.2. CAMSHIFT MODULE 49

using a middleware mechanism. This makes it possible to run several in-
stances of the tracker in parallel, for example two trackers to track an
object with stereopsis, or multiple objects.

4.2 CAMSHIFT Module

The Continuously Adaptive Mean Shift algorithm, or CAMSHIFT for short, is
based on Mean Shift [CM97], which in turn is a robust, non-parametric iterative
technique for finding the mode of probability distributions. Interestingly, the
Mean Shift algorithm was not originally intended to be used for tracking, but
it proved effective in this role nonetheless (see [Bra98]).

CAMSHIFT is fast and simple; as such, it fulfils the requirements of our
project. It is a technique based on colour, however, contrary to similar algo-
rithms, CAMSHIFT does not take into account colour correlation, blob growing,
region growing, contour considerations, Kalman filter smoothing and prediction
(all of which are characteristics that would place a heavy burden on computa-
tional complexity and speed of execution).

The complexity of most colour-based tracking algorithms (other than CAMSHIFT)
derives from their attempt to deal with irregular object motion, which can be
due to:

• perspective (near objects to the camera seem to move faster than distal
ones);

• image noise;

• distractors, such as other shapes present in the video scene;

• occlusion by hands or other objects;

• lighting variation.

Indeed, all of the above are serious problems that are worth studying and
being modelled for certain practical applications, however the main trait of
CAMSHIFT is that it is a fast, computationally-efficient algorithms that miti-
gates those issues “for free”, i.e., during the course of its own execution.

Algorithm 3 Mean Shift
1: Choose a search window size.
2: Choose the initial location of the search window.
3: Compute the mean location in the search window.
4: Centre the search window at the mean location computed in step 3.
5: Repeat steps 3 and 4 until convergence (or until the mean location moves

less than a preset threshold).

At the beginning of this section, we mentioned that in general Mean Shift (see
Algorithm 3) operates on probability distributions. Therefore, in order to track
coloured objects in a video frame sequence, the colour image data has to be
represented as a probability distribution [CM97] — to do this, colour histograms
are used.

50 CHAPTER 4. PROPOSED ARCHITECTURE

Figure 4.1: Block diagram of CAMSHIFT.

Colour distributions that are derived from video image sequences may change
over time, so the Mean Shift algorithm must be modified to dynamically adapt
to the probability distribution that it is tracking at a given moment. It is here
that the new, modified algorithm –CAMSHIFT– bridges the gap (also see 2.7).

Given a colour image and a colour histogram, the image produced from the
original colour image by using the histogram as a lookup table is called back-
projection image. If the histogram is a model density distribution, then the
back-projection image is a probability distribution of the model in the colour
image. CAMSHIFT detects the mode in the probability distribution image by
applying Mean Shift while dynamically adjusting the parameters of the target
distribution. In a single image, the process is iterated until convergence—or
until an upper bound on the number of iterations is reached.

A detection algorithm can be applied to successive frames of a video sequence
to track a single target. The search area can be restricted around the last known
position of the target, resulting in possibly large computational savings. This
type of scheme introduces a feedback loop, in which the result of the detection
is used as input to the next detection process. The version of CAMSHIFT
applying these concepts to tracking of a single target in a video stream is called
Coupled CAMSHIFT.

The Coupled CAMSHIFT algorithm as described in [Bra98] is demonstrated
in a real-time head tracking application, which is part of the Intel OpenCV
library [Ope].

4.2. CAMSHIFT MODULE 51

4.2.1 CAMSHIFT and HSV Conversion

In order to use a histogram-based method to track coloured objects in a video
scene, a probability distribution image of the desired colour present in the video
sequence must first be created. For this, one first creates a model of the desired
hue by using a colour histogram.

The reason why Hue Saturation Value (HSV) space is better suited for our
proposed perceptual interface is the following. Other colour models like Red
Green Blue (RGB), Cyan Magenta Yellow (CMY), and YIQ are hardware-
oriented [FvDFH95, p. 590]. By contrast, Smith’s HSV [Smi78] is user-oriented,
being based on the intuitive, “artistic” approach of tint, shade and tone.

In general, the coordinate system of HSV is cylindrical; however, the subset
of space within which the model is defined is a hexcone2, as in Fig. 4.2b. The
hexcone model is intended to capture the common notions of hue, saturation
and value:

• Hue is the hexcone dimension with points on it normally called red, yellow,
blue-green, etc.;

• Saturation measures the departure of a hue from achromatic, i.e., from
white or gray;

• Value measures the departure of a hue from black (the colour or zero
energy).

These three terms are meant to represent the artistic ideas of hue: tint, shade
and tone.

The top of the hexcone in Fig. 4.2b corresponds to V = 1, which contains
the relatively bright colours. Descending the V axis gives smaller hexcones, that
correspond to smaller (darker) RGB subcubes in Fig. 4.2a.

The HSV colour space is particularly apt to capture senses and perception,
more so than RGB. HSV corresponds to projecting standard Red, Green, Blue
colour space along its principle diagonal from white to black [Smi78], as seen
looking at the arrow in Fig. 4.2a. As a result, we obtain the hexcone in Fig. 4.2b.
HSV space separates out Hue (colour) from Saturation (i.e., how concentrated
the colour is) and from brightness. In the case of CAMSHIFT, we create our
colour models by taking 1D histograms (with 16 bins) from the H channel in
HSV space.

CAMSHIFT is designed for dynamically-changing distributions. These oc-
cur when objects in video sequences are being tracked and the object moves so
that the size and location of the probability distribution changes in time. The
CAMSHIFT algorithm adjusts the search window size in the course of its op-
eration. Instead of a set or externally adapted window size, CAMSHIFT relies
on the zeroth moment information, extracted as part of the internal workings of
the algorithm, to continuously adapt its window size within or over each video
frame.

The zeroth moment can be thought of as the distribution “area” found under
the search window [Bra98]. Thus, window radius, or height and width, is set to
a function of the zeroth moment found during search. CAMSHIFT, outlined in
Algorithm 4, is then calculated using any initial non-zero window size.

2Six-sided pyramid.

52 CHAPTER 4. PROPOSED ARCHITECTURE

(a) RGB colour cube. (b) HSV colour system.

Figure 4.2: RGB and HSV colour spaces. In the single-hexcone HSV model, the
V = 1 plane contains the RGB model’s R = 1, G = 1, and B = 1 planes in the
regions shown.

Algorithm 4 CAMSHIFT
1: Choose the initial location of the search window.
2: Perform Mean Shift as in Algorithm 3, one or more times. Store the zeroth

moment.
3: Set the search window size equal to a function of the zeroth moment found

in Step 2.
4: Repeat Steps 2 and 3 until convergence (mean location moves less than a

preset threshold).

4.3. 3D RECONSTRUCTION APPROACH 53

Figure 4.3: Image coordinates.

4.3 3D Reconstruction Approach

In order for a humanoid robot to be able to do things in the world, it requires
to have a tridimensional perception, which is what we want to accomplish in
this module, in a precise yet simple and efficient (fast) way.

The anthropomorphic head of Baltazar (Fig. 3.4, p. 34) has two cameras,
mounted in a way similar to the eyes of a human being (Fig. 3.9, p. 42).

The notion of depth is thus obtained from the combination of information
that comes from the two cameras. In this section, we will explain a method
to determine the coordinates of one point in the area that is visible from both
cameras at a given moment. In particular, we want to reconstruct the 3D
coordinates of two points for each object, corresponding to the two extremities
of the major axis of the best-fit ellipse to the object. This visual simplification
facilitates real-time performances and at the same time it opens the way for
manipulation tasks.

4.3.1 From Frame Coordinates to Image Coordinates

A digitalized image is usually stored in a framebuffer which can be seen as a
matrix of pixels with W columns (from “width”) and H rows (from “height”).

Let (i, j) be the discrete frame coordinates of the image with origin in the
upper-left corner, (Ox, Oy) be the focal point of the lens (the intersection be-
tween the optical axes and the image plane) in the frame coordinates, and (x, y)
be the image coordinates, as illustrated in Fig 4.3.

Image coordinates relate to frame coordinates in this way:

x = (i−Ox) · Sx (4.1)
y = (j −Oy) · Sy (4.2)

where Sx, Sy are the horizontal and vertical distances of two adjacent pixels in
the framebuffer.

54 CHAPTER 4. PROPOSED ARCHITECTURE

An a priori hypothesis is that we know the relative displacement of the
two cameras (rotation and translation) at all times. This makes sense, as we
can continuously update the angle values in our software module, receiving
instantaneous values from the robot encoders, for example at a frequency of one
update per second.

The matrix of intrinsic parameters of a camera, which sets the relationship
between a 3D point and the pixels in a sensor, will not be explicitly computed in
this project. In other words, we avoid the calibration phase. The only aspects
that we will consider are:

• image resolution;

• focal distance; and

• pixel size.

In stereo analysis, triangulation is the task of computing the 3D position of
points in the images, given the disparity map and the geometry of the stereo
setting. The 3D position (X,Y, Z) of a point P can be reconstructed from
the perspective projection (see Fig. 2.16, p. 25) of P on the image planes of
the cameras, once the relative position and orientation of the two cameras are
known.

For example, if we choose the 3D world reference frame to be the left camera
reference system, then the right camera is translated and rotated with respect
to the left one, therefore six parameters will describe this transformation.

In the most general case, the right camera can be rotated with respect to
the left one (or vice versa) in three directions.

For 3D reconstruction, we use a pinhole camera model like the one in Fig. 4.4.
The relationships that exist between the world coordinates of a point P =

(X,Y, Z) and the coordinates on the image plane (x, y) in a pinhole camera are

x = F ·X/Z (4.3)
y = F · Y/Z (4.4)

where lower-case letters refer to image position, upper-case ones to world posi-
tion (in metres), and F is the focal distance of the lens (also in metres).

Considering the two cameras and referring as B to the baseline (distance
between the optical centres of them), we can now obtain the missing coordinate
Z:

yL =
FYL

ZL
(4.5)

YR = YL −B (4.6)
ZL = ZR = Z (4.7)

yR =
FYR

ZR
= F

YL −B
Z

(4.8)

yL − yR = F
B

Z
⇐⇒ Z =

FB

yL − yR
. (4.9)

We will now analyze the case in which the two cameras are in an arbitrary
relative orientation. A description of various vergence situations can be con-
sulted in [BSV99].

4.3. 3D RECONSTRUCTION APPROACH 55

Figure 4.4: Pinhole camera model.

Figure 4.5: 3D reconstruction scheme for a stereo pair of cameras with arbitrary
vergence.

56 CHAPTER 4. PROPOSED ARCHITECTURE

Looking at Fig. 4.5, we can thus write down the following equations for the
Z coordinate:

tan(θL + xL/F) =
B/2
Z

(4.10)

tan(θR + xR/F) =
B/2
Z

(4.11)

Z =
B

tan(xL/F + θL)− tan(xR/F + θR)
. (4.12)

As for the X coordinate, we obtain:

tan(θL + xL/F) =
XL

Z
(4.13)

tan(θR + xR/F) =
XR

Z
(4.14)

X = −Z
2
[
tan(xL/F + θL) + tan(xR/F + θR)

]
. (4.15)

Finally, the 3D reconstructed coordinate Y is obtained like this:

Z ′R = Z/ cos θR (4.16)
Z ′L = Z/ cos θL (4.17)

Y =
ZyR

2F cos θR
+

ZyL

2F cos θL
(4.18)

In order to determine the coordinates of an object in a fixed reference frame,
it is necessary to consider the forward kinematics of the head of Baltazar (see
Section 3.1.2). From coordinates that are expressed in the image plane, we want
to obtain coordinates in a fixed reference frame (a frame attached to the robot
torso, which does not move).

Recall the scheme of Baltazar head, illustrated in Fig. 3.3. The expression
given in Eq. 4.19 was obtained from geometrical analysis, and it provides a
relationship between coordinates in the image plane (of one of the two cameras)
with the coordinates expressed in a fixed frame.

Pl = Rl(P− tl). (4.19)

For the sake of simplicity, Eq. 4.19 refers to the left camera case, thus the l
subscript. The rotation and translation matrices are, in particular, equal to

Rl =

 cpcl − ctspsl −spst ctclsp + cpsl

−stsl ct clst

−clsp − cpctsl −cpst cpctcl − spsl

 ;

tl =

−B′cl − tY stsl + tZ(−clsp − cpctsl)
tY ct − tZcpst

tY clst −B′sl + tZ(cpctcl − spsl)

 (4.20)

where B′ = B/2 (half the baseline distance).
From a geometrical point of view, the camera sensors mounted on the Bal-

tazar head simply measure relative positions; these two cameras are used to
calculate the position of objects within their workspace, relative to their optical

4.3. 3D RECONSTRUCTION APPROACH 57

Figure 4.6: 3D reconstruction software module scheme, outlining the data that
are passed as inputs/outpus among YARP modules.

centre. Thus, a 3D point is mapped onto a two-dimensional space, by the means
of its projection on the image plane. It is precisely in this way that we obtain
the 2D coordinates of a pair of stereo cameras: the resulting coordinates derive
from a 3D point located in the surrounding of Baltazar.

4.3.2 3D Pose Estimation

Consider now a target object placed in front of the robot; tracking is accom-
plished by running two CAMSHIFT processes. Let points {p1, p2}targetl and
{p1, p2}targetr be the extremities of the major ellipse axis expressed in the 2D
coordinate frame of the left and right tracker, respectively3.

A 3D reconstruction process receives the coordinates of the four points
{p1, p2}l,r as inputs, along with the instantaneous head joint angle values of
the robot, used to compute the time-varying extrinsic camera parameter ma-
trices: not just the target object, but also the robot cameras may be moving
during experiments. Transformation matrices wTl and wTr represent the roto-
translations occurring, respectively, from the left and right camera reference
frame to the world (torso) reference frame, as shown in Fig. 4.7.

Fig. 4.6 shows how the 3D reconstruction module works. It receives inputs
from two CAMSHIFT trackers (one per each eye), it receives the instantaneous
head joint angles (with which it builds transformation matrices), then finally it
computes estimated coordinates and orientation of a tracked object.

Thanks to how YARP is designed, we can easily run various concurrent
instances of this modules in parallel. Specifically, in the grasping preparation
(visual servoing) phase we will be interested in 3D reconstructing the target
object and the robot hand at the same time.

Once the reconstruction is computed, 3D coordinates of {p1, p2} are ob-
tained. The difference vector p1 − p2 encodes the orientation of the target.

3The same considerations apply for stereo tracking and 3D reconstruction of the robot
hand, but for the sake of simplicity only the target object case is explained here. From now
on, the “target” exponent in the notation is therefore omitted.

58 CHAPTER 4. PROPOSED ARCHITECTURE

Figure 4.7: Mechanical structure of Baltazar head, its reference frames and
points of interest. Transformation matrices are highlighted in green.

4.4 Object Manipulation Approaches

As mentioned in p. 5, in this work we consider two distinct phases for a manip-
ulation task:

reaching preparation: this phase aims at bringing the robot hand to the
vicinity of the target. It is applied whenever a target is identified in the
workplace but the hand is not visible in the cameras. The measured 3D
target position is used, in conjunction with the robot arm kinematics,
to place the hand close to the target. Inevitably, there are mechanical
calibration errors between arm kinematics and camera reference frames,
so the actual placement of the hand will be different from the desired one.
Therefore, the approach is to command the robot not to the exact position
of the target but to a distance safe enough to avoid undesired contact both
with the target and the workspace.

grasping preparation: in this phase, both target and hand are visible in the
camera system and their posture can be obtained by the methods pre-
viously described. The goal is now to measure the position and angular
error between target and hand, and use a PBVS approach to make the
hand converge to the target. The features used in such an approach are 3D
parameters estimated from image measurements—as opposed to IBVS, in
which the features are 2D and immediately computed from image data.

Reaching preparation is relatively easy, since in this phase we just position
the arm to the vicinity of the target object (within a threshold of 20 cm). The
arm starts moving from a predefined position outside of the field of view of the

4.4. OBJECT MANIPULATION APPROACHES 59

Figure 4.8: Unit vector of the target object along its orientation axis (purple);
unit vector and orientation of robot hand (red); third axis resulting from their
cross product, and corresponding unit vector (green).

two cameras, and it reaches the position estimated by the inverse kinematics
solver.

On the other hand, there are two peculiarities in the presented grasping
preparation approach:

• Normally, PBVS requires the 3D model of the observed object to be
known [HHC96], but in our framework one gets rid of this constraint:
by using the stereo reconstruction technique explained above, the only
condition to prepare the servoing task is that the CAMSHIFT trackers
are actually following the desired objects—whose models are not known
beforehand.

• Classical PBVS applications consider that target and end-effector posi-
tions are measured by different means, e.g. target is measured by the
camera and end-effector is measured by robot kinematics. This usually
leads to problems due to miscalibrations between the two sensory systems.
Instead, in this work, target and hand positions are measured by the cam-
era system in the same reference frame, therefore the system is robust to
calibration errors.

Having computed 3D position and orientation of both a target object and
of the robot hand, features suitable for the application of the PBVS technique

60 CHAPTER 4. PROPOSED ARCHITECTURE

must be obtained. As described in [CH06], the robot arm can be controlled by
the following law:{

v = −λ ((ttarget − thand) + [thand]× ϑu
)

ω = −λϑu
(4.21)

where v and ω are the arm linear and angular velocities, λ establishes the
trajectory convergence time, ttarget and thand are the target and hand positions,
[·]× is the associated skew-symmetric matrix of a vector; ϑ,u are the angle-axis
representation of the rotation required to align both orientations. Other control
laws can be applied to this problem, but they normally rely on an angle–axis
parameterization of the rotation.

It is possible to calculate the required angle ϑ and axis u by applying a
simple cross product rule between the normalized hand and target orientation
vectors: {

u = otarget × ohand

ϑ = arcsin ‖u‖2
(4.22)

where ‖ · ‖2 is the Euclidean norm, otarget is a unit vector in the direction of
the target object’s reconstructed orientation and ohand is a unit vector in the
direction of the hand’s reconstructed orientation (see Fig. 4.8).

Chapter 5

Experimental Results

This chapter contains experimental results obtained by testing the programs
that were written for this thesis. The whole project was carried out at Com-
puter and Robot Vision Laboratory [Vis], Institute for Systems and Robotics,
Instituto Superior Técnico, Lisbon (Portugal) for eight months during 2008.

All the tests were performed on the machine that is attached to the Bal-
tazar robotic platform: a personal computer with a Dual Intel Xeon 3.20GHz
processor, 1GB of RAM, running Microsoft Windows XP Pro SP2.

The development environment adopted was Microsoft Visual Studio 2005,
also providing a graphical debugging interface for C++.

5.1 Segmentation and Tracking

Figure 5.1: CAMSHIFT tracking experiment, with a grey sponge.

Fig. 5.1 shows an early version of the custom modified CAMSHIFT tracker
while running during a video experiment. The best-fit enclosing ellipse is drawn
in red, the major axis in blue.

61

62 CHAPTER 5. EXPERIMENTAL RESULTS

(a) Second CAMSHIFT tracking ex-
periment screenshot.

(b) 16-bin CAMSHIFT colour histogram used
for iterative searches during all of the experi-
ment of Fig 5.2a.

Figure 5.2: Another CAMSHIFT tracking experiment, with a green sponge.

The major axis of the ellipse represents an estimation of the target object
orientation. One can see that such axis is not completely parallel to the long
edges of the cuboid sponge: this is due to previous motion and frames that
cause an oscillatory nature of the ellipse (axes).

Furthermore, we can see the estimated extremities of the major axis (p1 and
p2) marked with green circles. Note that this type of experiments did not yet
take into account the manipulation (reaching and grasping) of objects, thus the
object centroid is neither estimated nor visually marked.

All in all, this first experiment (which involved only one instance of CAMSHIFT
tracker running at a time—no stereo vision yet) proved quite successful. The
tracked object, a grey sponge, was tracked continuously for several minutes.
When the object was shaken (rotated) very fast in the experimenter’s hand, it
was still tracked. This means that each iteration of CAMSHIFT managed to
use the colour histogram successfully for its search. On the other hand, there
were some stability issues with the major ellipse of the axis or when the object
was occluded for a few seconds (the tracker would not completely lose it, but its
tracked region would shrink to the very small visible portion of the sponge dur-
ing the occluded sequence, predictably making the axis shake between various
orientations).

Fig. 5.2 shows the execution of another CAMSHIFT tracking task. Here, we
are computing (and displaying) not the reconstructed extremities p1 and p2 of
the major axis of the ellipse, but rather p1 and the estimated object centroid.
Fig. 5.2b shows the 16-bin colour histogram after it has been initialized for this
experiment (green is the colour the tracker will look for, at every iteration).
Note that the histogram remains constant during the whole experiment, also
providing some robustness against occlusions.

5.2. 3D RECONSTRUCTION 63

5.2 3D Reconstruction

Figure 5.3: 3D reconstruction experiment.

In Fig. 5.3 we can see the output of the 3D reconstruction module during
an experiment. Three windows are visible:

• left eye CAMSHIFT tracker;

• right eye CAMSHIFT tracker; and

• 3D reconstruction module output.

As far as the two trackers are concerned, we can see an optimal behaviour
and drawing of the ellipses with their respective major axes. This contrasts
with previous tracking experiments such as Fig. 5.1 for a number of reasons:
first of all, the tracked sponge is not moving now. Because we were interested in
measuring and judging the quality of our 3D reconstruction, in this experiment
we chose a static scenario (there was some minor flickering and oscillation in
the camera views during the video, but it was a negligible phenomenon, as
the tracked axis kept stable throughout the whole experiment). Secondly, the
tracked object was completely in front of the white table that is in front of
Baltazar—greatly facilitating colour segmentation.

The most important part of this experiment, though, is the behaviour of
the 3D reconstruction module. It is the black window with white text at the
bottom of Fig. 5.3. The first three lines of text, written in capital letters, contain
numerical values used internally by the 3D reconstruction module: coordinates
in pixels, angles in degrees and lengths in metres. Then, the coordinates of the
two extremities of the reconstructed axis (p1 and p2) are printed, in a (X,Y, Z)
world reference frame, where Z is positive in the direction in front of the face
of Baltazar. This means, for example, that a coordinate of

Z = 0.280

(metres) corresponds to 28 cm in front of the robot torso, on the white table.
The 3D reconstructed coordinates are correct in this experiment: they were

checked with a ruler and the error along all the three dimensions was small (less
than 5 cm).

Finally, the orientation of the target object (encoded as the different between
reconstructed p1 and reconstructed p2) is printed.

64 CHAPTER 5. EXPERIMENTAL RESULTS

5.3 Object Manipulation Tasks

5.3.1 Reaching Preparation

Figure 5.4: Object manipulation: inverse kinematics solver experiment.

Recall (p. 5) that in accordance to our perceptual framework we have split
the reaching task in two distinct phases:

reaching preparation: an open-loop ballistic phase to bring the manipulator
to the vicinity of the target, whenever the robot hand is not visible in the
robot’s cameras;

grasping preparation: a closed-loop visually controlled phase to accomplish
the final alignment to the grasping position.

We shall now focus on the first problem, reaching preparation. In this phase
our aim is to position the anthropomorphic arm of Baltazar, initially outside of
the cameras’ field of view, in the “vicinity” of the target. To start off, we define
this vicinity as the 3D reconstructed coordinates of the centroid of the target
object, minus a safety threshold of 20 cm along the horizontal axis (parallel to
the table and to the ground, directed towards the right of the robot, from its
own point of view). So, for this phase to be successful, we need to position
the robot wrist at 20 cm from the object centroid. A necessary condition to
accomplish this, is to solve the robot arm inverse kinematics for the desired
hand position coordinates.

Fig 5.4 shows a number of inverse kinematics solutions found for Cartesian
coordinates

X = 23, Y = −42, Z = 22 [cm].

Specifically, each of the 9 inverse kinematics solutions is a vector of 6 joint
angles q = [q1, q2, q3, q4, q5, q6], expressed in degrees. The 6 angles correspond
to the 6 encoder values that are actually streamed by the YARP arm server of
Baltazar (see Table 3.5). Upon inspection of the computed results, two things
immediately strike one’s attention:

• q4 (elbow) has the same constant value (−51.427◦) for all the solutions;

• q6 (wrist) is constantly zero.

5.3. OBJECT MANIPULATION TASKS 65

The output of the fourth column, q4, has always the same value because
there exists a redundancy between this joint and the hand ones (several pos-
sible inverse kinematics solutions, depending on how “high” the elbow is). In
particular, these joints only affect the orientation of the hand, so we applied
a simplification here, to reduce the number of solutions. Also, recall that the
end-effector of Baltazar is designed to be the base of the wrist (p. 35), not the
palm of the hand or the tip of any finger.

Moving on from inverse kinematics to actual arm actuating, Fig. 5.5 shows
an experiment of a reaching preparation task. Initially (Fig. 5.5a) the arm is
positioned outside of the robot cameras’ field of view, at a predefined posi-
tion. Then it is moved within the field of view. Finally (Fig. 5.5c), the robot
arm is correctly positioned in the vicinity of the 3D estimated object centroid
coordinates, within a safety threshold of 20 cm from it.

5.3.2 Grasping Preparation

The second and last phase of the reaching task is the “grasping preparation”
phase. Contrary to reaching preparation, this task uses closed-loop feedback
control. At the beginning of this task, hand and target object are already quite
close (for example at a distance of 20 cm, in accordance to the desired safety
threshold that we have imposed during the previous phase). The objective of
grasping preparation is a more precise alignment of hand and target, thanks to
a control law.

At the time of writing this thesis, experiments for this section were still at an
initial stage. However, we did test the necessary arm control law computations
and show here some results.

Fig 5.6 shows the hand of Baltazar wearing a latex glove in the vicinity of the
target object. We applied this glove in an attempt to make colour segmentation
(of the hand) more robust, thanks to a more uniform colour to be found by the
search histogram of CAMSHIFT. This glove does not impede finger movement,
so it is not a problem for the grasping itself.

Fig. 5.7 displays some tests done when tracking and 3D reconstructing both
a target object and a robot hand at the same time. The relative angle–axis
alignment is thus computed, as per Eq. 4.21. The initial results on this part are
promising, as the three obtained angle values are similar to the real ones: 0, 45,
90 degrees, respectively.

66 CHAPTER 5. EXPERIMENTAL RESULTS

(a) Arm is at a predefined position out of
the robot field of view.

(b) Robot arm is now within the field of
view of cameras.

(c) Hand is finally positioned at target (mi-
nus a safety horizontal threshold).

Figure 5.5: Reaching preparation task experiment: the robot arm moves grad-
ually towards the estimated centroid position of the target object.

5.3. OBJECT MANIPULATION TASKS 67

Figure 5.6: Baltazar robot hand wearing a glove, in order to make its colour more
homogeneous, thus facilitating CAMSHIFT tracking and 3D reconstruction of
the hand.

68 CHAPTER 5. EXPERIMENTAL RESULTS

(a) Object and hand are parallel; u = (X = −0.006, Y = −0.062, Z = −0.041), θ =
4.285◦.

(b) Object and hand have a relative slope of roughly 45◦; u = (X = −0.129, Y =
0.737, Z = −0.129), θ = 49.413◦.

(c) Orthogonality scenario; u = (X = −0.146, Y = 0.919, Z = 0.362), θ = 87.408◦.

Figure 5.7: Evaluated axis u and angle θ between tracked object and hand in
several scenarios in three different stereo pairs.

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This thesis presented an approach to perform manipulation tasks with a robot
by the means of stereopsis clues and certain desired characteristics: using simple,
generic features (best-fit ellipses) so that we can handle many different object
that the robot has not dealt with before, and managing real-time performance.

We have addressed the problem of reaching for an object and preparing the
grasping action, according to the orientation of the objects that a humanoid
robot needs to interact with. The proposed technique is not intended to have
very accurate measurements of object and hand postures, but merely the neces-
sary quality to allow for successful object–hand interactions and learning with
affordances (Section 2.4). Precise manipulation needs to emerge from experience
by optimizing action parameters as a function of the observed effects.

To have a simple model of object and hand shapes, we have approximated
them as 2D ellipses located in a 3D space. An assumption is that objects have
a sufficiently distinct colour, in order to facilitate segmentation from the image
background. Perception of object orientation in 3D is provided by the second-
order moments of the segmented areas in left and right images, acquired by a
humanoid robot active vision head.

As far as innovations are concerned, the Versatile 3D Vision system “VVV”
(Tomita et al., [TYU+98]) presents some analogies with our approach, in fact it
can construct the 3D geometric data of any scene when two or more images are
given, by using structural analysis and partial pattern matching. However, it
works under the strong assumption that the geometric CAD models of objects
are known beforehand in a database. This is a relevant difference from our
proposed approach, which, instead, is model-free.

The Edsinger Domo (p. 7) is also similar to our proposed approach, in the
sense that it emphasizes the importance for a robot to constantly perceive its
environment, rather than relying on internal models. While the Edsinger Domo
focuses on sparse perceptual features to capture just those aspects of the world
that are relevant to a given task, we focus specifically on simplified object fea-
tures: best-fit enclosing ellipses of objects and their estimated orientation in

69

70 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

3D.

6.2 Future Work

With regards to visual processing and tracking, the combined CAMSHIFT and
3D reconstruction approach can potentially be made more stable by using not
just two, but more points to characterize each object (for example, by taking into
account the minor axis of every ellipse in addition to its major one). However,
this modification could increase computational cost and its viability needs to be
verified.

As for manipulation, future work intends more thorough testing of the two
phases (reaching preparation and grasping preparation), in particular of the
latter.

Another improvement will be the combination of this work with the object
affordances framework, thus adding a learning layer to the approach (for exam-
ple by iterating many grasping experiments and assigning points to successful
tests).

Appendix A

CLAWAR 2008 Article

Figure A.1: The logo of CLAWAR Association.

We now include a copy of the original paper [SB08] published in the pro-
ceedings of the 11th International Conference on Climbing and Walking Robots
and the Support Technologies for Mobile Machines (CLAWAR 2008) held in
Coimbra, Portugal on 8–10 September 2008.

71

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

1

Pose Estimation for Grasping Preparation from Stereo Ellipses

Giovanni Saponaro1, Alexandre Bernardino2

1 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Sapienza - Università di Roma, via Ariosto 25, 00185 Rome, Italy

2 Institute for Systems and Robotics - Instituto Superior Técnico
Torre Norte, Piso 7, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

giovanni.saponaro@gmail.com, alex@isr.ist.utl.pt

This paper describes an approach for real-time preparation of grasping tasks,
based on the low-order moments of the target’s shape on a stereo pair of images
acquired by an active vision head. The objective is to estimate the 3D position
and orientation of an object and of the robotic hand, by using computationally
fast and independent software components. These measurements are then used

for the two phases of a reaching task: (i) an initial phase whereby the robot
positions its hand close to the target with an appropriate hand orientation,
and (ii) a final phase where a precise hand-to-target positioning is performed
using Position-Based Visual Servoing methods.

Keywords: Reaching, Grasping, 3D Pose Estimation, Stereo, Visual Servoing.

1. Introduction

Grasping and manipulation are among the most fundamental tasks to be
considered in humanoid robotics. Like humans distinguish themselves from
other animals by having highly skilled hands, humanoid robots must con-
sider dexterous manipulation as a key component of practical applications
such as service robotics or personal robot assistants.

The high dexterity present in human manipulation does not come for
granted at birth, but it arises from a complex developmental process across
many stages. Babies first try to reach for objects, with very low precision;
then they start to adapt their hands to the shape of the objects, and only
at several years of age they are able to master their skills. Together with
the manipulation, perception develops in parallel in order to incrementally
increase performance in detecting and measuring the important object fea-
tures for grasping. Along time, interactions with objects of diverse shapes

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

2

are performed, applying many reaching and manipulation strategies. Even-
tually, salient effects are produced (e.g. the object moves, deforms, makes a
sound when squeezed), perceived and associated to actions. An agent learns
the object affordances,10 i.e. the relationships between a certain manipu-
lation action, the physical characteristics of the object and the observed
effect. The way of reaching for an object evolves from a purely position-
based mechanism to a complex behavior which depends on target size,
shape, orientation, intended usage and desired effect.

Framed by the context of the EU project RobotCub,9 this work aims
at providing simple 3D object perception for enabling the development of
manipulation skills in a humanoid robot. The objective of the RobotCub
project is to build an open-source humanoid platform for original research
on cognitive robotics, focusing especially on developmental aspects. Inspired
by recent results in neurosciences and developmental psychology, one of the
tenets of the RobotCub project is that manipulation plays a key role in the
development of cognitive ability.

This work puts itself in an early stage of this developmental pathway
and will address the problem of reaching for an object and preparing the
grasping action according to the orientation of the objects to interact with.
It is not intended to have a very precise measurement of object and hand
postures, but merely the necessary quality to allow for successful interac-
tions with the object. Precise manipulation will emerge from experience,
by the optimization of action parameters as a function of the observed ef-
fects.10 To have a simple enough model of object and hand shape, they are
approximated as 3D ellipses. The only assumption is that objects have a
sufficiently distinct color to facilitate segmentation from the background.
Perception of object orientation in 3D is provided by the second-order mo-
ments of the segmented areas in the left and right images, acquired in the
humanoid robot active vision head.

The paper will describe the humanoid robot setup, computer vision
techniques, 3D orientation estimation, the strategy to prepare the reaching
and grasping phases, and experimental results.

2. Robotics setup

The robotic platform of RobotCub, called the iCub, has the appearance of
a three-year-old child, with an overall of 53 degrees of freedom (see Fig. 1).
However, the iCub’s arm-hand system is still under development and for
this work the robot Baltazar7 was used: it is a robotic torso built with
the aim of understanding and performing human-like gestures, mainly for

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

3

biologically inspired research (see Fig. 1).
To reach for an object, two distinct phases are considered:8 (i) an open-

loop ballistic phase is used to bring the manipulator to the vicinity of the
target, whenever the robot hand is not visible in the robot’s cameras; (ii)
a closed-loop visually controlled phase is used to make the final alignment
to the grasping position. The open-loop phase (reaching preparation) re-
quires the knowledge of the robot’s inverse kinematics and a 3D reconstruc-
tion of the target’s posture. The target position is acquired by the camera
system, where the hand position is measured by the robot arm joint en-
coders. Because these positions are measured by different sensory systems,
the open-loop phase is subject to mechanical calibration errors. The second
phase, grasping preparation, operates when the robot hand is in the visible
workspace. 3D position and orientation of target and hand are estimated
in a form suitable for Position-Based Visual Servoing (PBVS).4,6 The goal
is to make the hand align its posture with respect to the object. Since both
target and hand postures are estimated in the same reference frame, this
methodology is not prone to mechanical calibration errors.

Fig. 1. Left: RobotCub humanoid platform iCub. Middle: humanoid robot Baltazar in
its workspace. Right: view from one of Baltazar’s eyes during a grasping task.

2.1. Software architecture

The software architecture used in this project is based on YARPa, a
cross-platform, open-source, multitasking library, specially developed for
robotics. YARP facilitates the interaction with the devices of humanoid
robot Baltazar, as well data exchange among the various software com-
ponents (middleware). Other libraries used are OpenCVb for image pro-

aYet Another Robot Platform: http://eris.liralab.it/yarp.
bOpen Computer Vision Library: www.intel.com/technology/computing/opencv.

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

4

cessing, and GSLc for efficient matrix computation, especially in the 3D
reconstruction part (see Sec. 3.2).

Particular care was put into designing the several components of the
project as distributed. YARP takes care of inter-process communication
(IPC), while the several concurrent instances of the CAMSHIFT tracker
(left and right view of the target object, left and right view of the robot
hand) can run on different machines or CPU cores: as modern processors
sprout an increasing number of cores, the code can thus take advantage of
the extra power available and improve real-time performance.

3. Visual processing

Using computer vision to control the grasping task is natural, since it al-
lows to recognize and to locate objects (see Ref. 5 and Ref. 6). In particular,
stereo vision can help robots reconstruct the 3D scene and perform visual
servoing. In this work, the CAMSHIFT tracking algorithm2,3 was used ex-
tensively. A brief outline of it is given in the next section.

3.1. CAMSHIFT algorithm

Originally designed for the field of perceptual user interfaces and face track-
ing,3 CAMSHIFT is a method based on color histograms and MeanShift,1

which in turn is a robust, non-parametric and iterative technique that finds
the mode of a probability distribution, in a manner that is well suited for
real-time processing of a live sequence of images.

A sketch of the algorithm logic and a sample execution are presented
in Fig. 2. For this project, a modified version of the CAMSHIFT implemen-
tation publicly available in OpenCV was used. The inputs are the current
original image obtained from the camera and its color histogram in the HSV
(hue, saturation, value) space. The output of each iteration of CAMSHIFT
is a “back projected” image, produced by the original image by using the
histogram as a lookup table. When it converges, a CAMSHIFT tracker re-
turns not only the position, but also the size and 2D orientation of the
best-fit ellipse to the segmented target points. Then, the boundary points
in the ellipse along its major axis are computed.

Consider a target object placed in front of the robot; tracking is accom-
plished by running two CAMSHIFT processes. Let points {p1, p2}target

l and

cGNU Scientific Library: http://www.gnu.org/software/gsl/.

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

5

Fig. 2. Left: Flux diagram of the CAMSHIFT object tracking algorithm. Right:
CAMSHIFT tracking of an object. The approximating best-fit ellipse is drawn in red,
the major axis in blue, and the extremities of the axis are small green circles.

{p1, p2}target
r be the extremities of the major ellipse axis expressed in the

2D coordinate frame of the left and right tracker, respectivelyd.

3.2. 3D reconstruction

Fig. 3. Left: mechanical structure of Baltazar’s head, reference frames and points of
interest; transformation matrices are highlighted in green. Right: unit vector of the target
object along its orientation axis (purple), versor and orientation of robot hand (red), and
third axis resulting from their cross product, and corresponding unit vector (green).

A 3D reconstruction process receives the coordinates of the four points
{p1, p2}l,r as inputs, along with the instantaneous head joint angle values
of the robot, used to compute the time-varying extrinsic camera parameter

dThe same considerations apply for stereo tracking and 3D reconstruction of the robot
hand, but for the sake of simplicity only the target object case is explained in this paper.
From now on, the “target” exponent in the notation is therefore omitted.

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

6

matrices: not just the target object, but also the robot cameras may be mov-
ing during experiments. Transformation matrices wTl and wTr represent
the roto-translations occurring, respectively, from the left and right camera
reference frame to the world (torso) reference frame, as shown in Fig. 3.

Once the reconstruction is computed, 3D coordinates of {p1, p2} are
obtained. The difference vector p1−p2 encodes the orientation of the target.

4. Reaching and grasping preparation

As mentioned in Sec. 2 and Ref. 8, two distinct phases in reaching and
grasping preparation are considered.

Reaching preparation: this first phase aims at bringing the robot
hand to the vicinity of the target. It is applied whenever a target is identified
in the workplace but the hand is not visible in the cameras. The measured
3D target position is used, in conjunction with the robot arm kinematics,
to place the hand close to the target. Inevitably, there are mechanical cal-
ibration errors between arm kinematics and camera reference frames, so
the actual placement of the hand will be different from the desired one.
Therefore, the approach is to command the robot not to the exact position
of the target but to a distance safe enough to avoid undesired contact both
with the target and the workspace.

Grasping preparation: in this phase, both target and hand are visible
in the camera system and their posture can be obtained by the methods
previously described. The goal is now to measure the position and angu-
lar error between target and hand, and use a PBVS approach to make
the hand converge to the target. The features used in such an approach
are 3D parameters estimated from image measurements—as opposed to
Image-Based Visual Servoing (IVBS), in which the features are 2D and im-
mediately computed from image data. There are, however, two peculiarities
in the presented approach:

(1) Normally, PBVS requires the 3D model of the observed object to
be known,4,6 but in this project one gets rid of this constraint: by using
the stereo reconstruction technique explained in Sec. 3.2, the only condition
to prepare the servoing task is that the CAMSHIFT trackers are actually
following the desired objects—whose models are not known beforehand.

(2) Classical PBVS applications consider that target and end-effector
positions are measured by different means, e.g. target is measured by the
camera and end-effector is measured by robot kinematics. This usually leads
to problems due to miscalibrations between the two sensory systems. In-
stead, in this work, target and hand positions are measured by the camera

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

7

system in the same reference frame, therefore the system becomes more
robust to calibration errors.

Having computed 3D position and orientation of both a target object
and of the robot hand, features suitable for the application of the PVBS
technique must be obtained. As described in Ref. 4, the robot arm can be
controlled by the following law:{

v = −λ
(
(tt − th) + [th]× ϑu

)
ω = −λϑu

(1)

where v and ω are the arm linear and angular velocities, λ establishes the
trajectory convergence time, tt and th are the target and hand positions;
ϑ,u are the angle-axis representation of the rotation required to align both
orientations. Other control laws can be applied to this problem, but most
of them rely on an angle-axis parameterization of the rotation. In this case,
it is possible to calculate the required angle ϑ and axis u by applying a sim-
ple cross-product rule between the normalized hand and target orientation
vectors:

u = otarget × ohand and ϑ = arcsin ‖u‖L2 (2)

where ‖ · ‖L2 is the Euclidean norm, otarget is a unit vector in the direction
of the target object’s reconstructed orientation and ohand is a unit vector
in the direction of the hand’s reconstructed orientation (see Fig. 3).

5. Experiments and results

Fig. 4. Evaluated axis u and angle ϑ between tracked object and hand in sev-
eral scenarios, in three different stereo pairs. Left: object and hand are parallel –
u = (X = −0.006, Y = −0.062, Z = −0.041), ϑ = 4.285◦. Middle: about 45◦
– u = (−0.129, 0.737,−0.129), ϑ = 49.413◦. Right: orthogonality scenario – u =
(−0.146, 0.919, 0.362), ϑ = 87.408◦.

Keeping in mind that the aim of this work is not high accuracy, but
good qualitative estimations in order to interact with objects in front of
the robot (see Sec. 1 and Ref. 10), the precision obtained is satisfactory.
Fig. 4 shows the obtained results, estimated through Eq. (2).

June 20, 2008 21:39 WSPC - Proceedings Trim Size: 9in x 6in saponaro-bernardino-clawar2008

8

6. Conclusions and future work

A simple algorithm for reaching and grasping preparation in a humanoid
robot was presented in this paper. The method does not assume any par-
ticular shape model for the hand and objects, and it is robust to calibration
errors. Although not relying on high precision measurements, the method
will provide a humanoid robot with the minimal reaching and grasping ca-
pabilities for initiating the process of learning object manipulation skills
from self-experience.

Future work includes evaluating the proposed technique with actual
servoing and grasping experiments, as well as improving the pose estimation
method by using the minor axis of ellipses in addition to the major one.

Acknowledgments

Work supported by EC Project IST-004370 RobotCub, and by the Por-
tuguese Government - Fundação para a Ciência e Tecnologia (ISR/IST
pluriannual funding) through the POS Conhecimento Program that in-
cludes FEDER funds. The authors also want to thank Dr. Manuel Lopes
for his guidance on visual servoing.

References

1. A. J. Abrantes, J. S. Marques, The Mean Shift Algorithm and the Unified
Framework, ICPR, p. I: 244–247, 2004.

2. J. G. Allen, R. Y. D. Xu, J. S. Jin, Object Tracking Using CamShift Algorithm
and Multiple Quantized Feature Spaces, 2003 Pan-Sydney Area Workshop on
Visual Information Processing, Vol. 36, pp. 3–7, 2004.

3. G. R. Bradski, Computer Vision Face Tracking for Use in a Perceptual User
Interface, Intel Technology Journal, 2nd Quarter 1998.

4. F. Chaumette, S. Hutchinson, Visual Servo Control, Part I: Basic Ap-
proaches, IEEE Robotics & Automation Magazine, Vol. 13, Issue 4, 2006.

5. Y. Dufournaud, R. Horaud, L. Quan, Robot Stereo-hand Coordination for
Grasping Curved Parts, BMVC, pp. 760–769, 1998.

6. S. Hutchinson, G. D. Hager, P. I. Corke, A Tutorial on Visual Servo Control,
IEEE Transactions on Robotics and Automation, Vol. 12, Issue 5, 1996.

7. M. Lopes, R. Beira, M. Praça, J. Santos-Victor, An anthropomorphic robot
torso for imitation: design and experiments, IROS 2004, Japan, 2004.

8. M. Lopes, A. Bernardino, J. Santos-Victor, A Developmental Roadmap for
Task Learning by Imitation in Humanoid Robots: Baltazar’s Story, AISB 2005
Symposium on Imitation in Animals and Artifacts, UK, 12-14 April 2005.

9. G. Metta et al., The RobotCub Project: An Open Framework for Research in
Embodied Cognition, IEEE-RAS ICHR, December 2005.

10. L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor, Learning Object
Affordances: From Sensory-Motor Maps to Imitation, IEEE Transactions on
Robotics, Special Issue on Bio-Robotics, Vol. 24(1), February 2008.

80 APPENDIX A. CLAWAR 2008 ARTICLE

Appendix B

Trigonometric Identities

Formulas for rotation about the principal axes by θ:

RX(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (B.1)

RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (B.2)

RZ(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (B.3)

Identities having to do with the periodic nature of sine and cosine:

sin θ = − sin(−θ) = − cos(θ + 90◦) = cos(θ − 90◦), (B.4)
cos θ = cos(−θ) = sin(θ + 90◦) = − sin(θ − 90◦). (B.5)

The sine and cosine for the sum or difference of angles θ1 and θ2, using the
notation of [Cra05]:

cos(θ1 + θ2) = c12 = c1c2 − s1s2, (B.6)
sin(θ1 + θ2) = s12 = c1s2 + s1c2, (B.7)

cos(θ1 − θ2) = c1c2 + s1s2, (B.8)
sin(θ1 − θ2) = s1c2 − c1s2. (B.9)

The sum of the squares of the sine and cosine of the same angle is unity:

c2(θ) + s2(θ) = 1. (B.10)

If a triangle’s angles are labeled a, b and c, where angle a is opposed side A,
and so on, then the law of cosines is

A2 = B2 + C2 − 2BC cos a. (B.11)

81

82 APPENDIX B. TRIGONOMETRIC IDENTITIES

The tangent of the half angle substitution:

u = tan
θ

2
, (B.12)

cos θ =
1− u2

1 + u2
, (B.13)

sin θ =
2u

1 + u2
. (B.14)

To rotate a vector Q about a unit vector K̂ by θ, we use Rodrigues’s formula
which yields the rotated Q′:

Q′ = Q cos θ + sin θ(K̂×Q) + (1− cos θ)(K̂ · Q̂)K̂. (B.15)

Bibliography

[AM04] Arnaldo J. Abrantes and Jorge S. Marques. The Mean Shift Algo-
rithm and the Unified Framework. In International Conference on
Pattern Recognition, volume I, pages 244–247, August 2004.

[AXJ04] John G. Allen, Richard Y. D. Xu, and Jesse S. Jin. Object Track-
ing Using CamShift Algorithm and Multiple Quantized Feature
Spaces. In Massimo Piccardi, Tom Hintz, Sean He, Mao Lin Huang,
and David Dagan Feng, editors, 2003 Pan-Sydney Area Workshop
on Visual Information Processing (VIP2003), volume 36 of CR-
PIT, pages 3–7, Sydney, Australia, 2004. ACS.

[Bei07] Ricardo Beira. Mechanical Design of an Anthropomorphic Robot
Head. Master Thesis in Design Engineering, Instituto Superior
Técnico, Lisbon, Portugal, December 2007.

[Bra98] Gary R. Bradski. Computer Vision Face Tracking for Use in a
Perceptual User Interface. Intel Technology Journal, 2nd Quarter
1998.

[BSV99] Alexandre Bernardino and José Santos-Victor. Binocular Visual
Tracking: Integration of Perception and Control. IEEE Trans-
actions on Robotics and Automation, 15(6):1080–1094, December
1999.

[BW04] Thomas Brox and Joachim Weickert. Level Set Based Image Seg-
mentation with Multiple Regions. In DAGM, Lecture Notes in
Computer Science, pages 415–423. Springer, 2004.

[Can86] John Canny. A Computational Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, 1986.

[Car07] Paulo Carreiras. PREDGRAB – Predição de Trajectórias de Alvos
Móveis. Master Thesis in Electrical and Computer Engineering,
Instituto Superior Técnico, Lisbon, Portugal, September 2007. In
Portuguese.

[CCIN08] Daniele Calisi, Andrea Censi, Luca Iocchi, and Daniele Nardi.
OpenRDK: A Modular Framework for Robotic Software Develop-
ment. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Nice, France, September 2008.

83

84 BIBLIOGRAPHY

[CH06] François Chaumette and Seth Hutchinson. Visual Servo Control,
I: Basic Approaches. IEEE Robotics & Automation Magazine,
13(4):82–90, December 2006.

[CH07] François Chaumette and Seth Hutchinson. Visual Servo Control,
II: Advanced Approaches. IEEE Robotics & Automation Magazine,
14(1):109–118, March 2007.

[CM97] Dorin Comaniciu and Peter Meer. Robust Analysis of Feature
Spaces: Color Image Segmentation. In CVPR, pages 750–755.
IEEE Computer Society, 1997.

[Cor96] Peter I. Corke. A Robotics Toolbox for MATLAB. IEEE Robotics
and Automation Magazine, 3(1):24–32, March 1996.

[Cor97] Peter I. Corke. Visual Control of Robots: High-Performance Vi-
sual Servoing. John Wiley & Sons, Inc., New York, NY, USA,
1997.

[Cra05] John J. Craig. Introduction to Robotics: Mechanics and Control.
Prentice Hall, 3rd edition, 2005.

[DHQ98] Yves Dufournaud, Radu Horaud, and Long Quan. Robot Stereo-
Hand Coordination for Grasping Curved Parts. In British Machine
Vision Conference, pages 760–769, 1998.

[FH86] Olivier D. Faugeras and Martial Hebert. The Representation,
Recognition, and Locating of 3-D Objects. International Journal
of Robotics Research, 5(3):27–52, 1986.

[FP02] David A. Forsyth and Jean Ponce. Computer Vision: A Modern
Approach. Prentice Hall, August 2002.

[Fra04] Alexandre R. J. François. CAMSHIFT Tracker Design Experi-
ments with Intel OpenCV and SAI. Technical Report IRIS-04-423,
Institute for Robotics and Intelligent Systems, University of South-
ern California, July 2004.

[FRZ+05] Daniel Freedman, Richard J. Radke, Tao Zhang, Yongwon Jeong,
D. Michael Lovelock, and George T. Y. Chen. Model-Based Seg-
mentation of Medical Imagery by Matching Distributions. IEEE
Transactions on Medical Imaging, 24:281–292, 2005.

[FvDFH95] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. Addison-
Wesley, 2nd edition, 1995.

[GHJV00] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 2000.

[GML+08] Nicola Greggio, Luigi Manfredi, Cecilia Laschi, Paolo Dario, and
Maria Chiara Carrozza. Real-Time Least-Square Fitting of El-
lipses Applied to the RobotCub Platform. In Stefano Carpin, It-
suki Noda, Enrico Pagello, Monica Reggiani, and Oskar von Stryk,

BIBLIOGRAPHY 85

editors, SIMPAR – Simulation, Modeling and Programming for
Autonomous Robots, First International Conference, Venice, Italy,
volume 5325 of Lecture Notes in Computer Science, pages 270–282.
Springer, November 2008.

[HHC96] Seth Hutchinson, Gregory D. Hager, and Peter I. Corke. A Tuto-
rial on Visual Servo Control. IEEE Transactions on Robotics and
Automation, 12(5):651–670, October 1996.

[HJLY07] Huosheng H. Hu, Pei Jia, Tao Lu, and Kui Yuan. Head Gesture
Recognition for Hands-Free Control of an Intelligent Wheelchair.
Industrial Robot: An International Journal, 34(1):60–68, 2007.

[HN94] Thomas H. Huang and Arun N. Netravali. Motion and Struc-
ture from Feature Correspondences: A Review. Proceedings of the
IEEE, 82(2):252–268, February 1994.

[LBPSV04] Manuel Lopes, Ricardo Beira, Miguel Praça, and José Santos-
Victor. An Anthropomorphic Robot Torso for Imitation: Design
and Experiments. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2004), 2004.

[Lin08] Tony Lindeberg. Scale-space. In Benjamin Wah, editor, Ency-
clopedia of Computer Science and Engineering, volume IV, pages
2495–2504. John Wiley and Sons, September 2008.

[Lop06] Manuel Lopes. A Developmental Roadmap for Learning by Imi-
tation in Robots. PhD thesis, Instituto Superior Técnico, Lisbon,
Portugal, May 2006.

[LSV07] Manuel Lopes and José Santos-Victor. A Developmental Roadmap
for Learning by Imitation in Robots. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, 37(2):308–321, April 2007.

[Mac67] James B. MacQueen. Some Methods for Classification and Analysis
of Multivariate Observations. In Lucien M. Le Cam and Jerzy Ney-
man, editors, Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. University of California
Press, 1967.

[MC02] Ezio Malis and François Chaumette. Theoretical Improvements in
the Stability Analysis of a New Class of Model-Free Visual Ser-
voing Methods. IEEE Transactions on Robotics and Automation,
18(2):176–186, April 2002.

[MFN06] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP:
Yet Another Robot Platform. International Journal on Advanced
Robotics Systems, Special Issue on Software Development and In-
tegration in Robotics, 3(1), March 2006.

[Mir05] Boris Mirkin. Clustering for Data Mining: A Data Recovery Ap-
proach. Chapman & Hall/CRC, 2005.

86 BIBLIOGRAPHY

[MLBSV08] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José
Santos-Victor. Learning Object Affordances: From Sensory-Motor
Maps to Imitation. IEEE Transactions on Robotics, 24(1):15–26,
2008.

[MVS05] Giorgio Metta, David Vernon, and Giulio Sandini. The RobotCub
Approach to the Development of Cognition. Lund University Cog-
nitive Studies, 123:111–115, January 2005.

[Nes07] Torindo Nesci. Mean Shift Tracking. Master Thesis in Computer
Engineering, Sapienza – Università di Roma, Rome, Italy, 2007. In
Italian.

[OS88] Stanley Osher and James A. Sethian. Fronts Propagating with
Curvature Speed: Algorithms Based on Hamilton-Jacobi Formula-
tions. Journal of Computational Physics, 79:12–49, 1988.

[RAA00] Constantino Carlos Reyes-Aldasoro and Ana Laura Aldeco. Image
Segmentation and Compression Using Neural Networks. In Ad-
vances in Artificial Perception and Robotics CIMAT, pages 23–25,
2000.

[SB08] Giovanni Saponaro and Alexandre Bernardino. Pose Estimation
for Grasping Preparation from Stereo Ellipses. In Lino Marques,
Ańıbal T. de Almeida, M. Osman Tokhi, and Gurvinder S. Virk,
editors, 11th International Conference on Climbing and Walk-
ing Robots and the Support Technologies for Mobile Machines
(CLAWAR 2008), pages 1266–1273, Coimbra, Portugal, September
2008. World Scientific Publishing.

[SHM05] Mark W. Spong, Seth Hutchinson, and Vidyasagar Mathukumalli.
Robot Modeling and Control. John Wiley & Sons, Inc., 2005.

[SKYT02] Yasushi Sumi, Yoshihiro Kawai, Takashi Yoshimi, and Fumiaki
Tomita. 3D Object Recognition in Cluttered Environments by
Segment-Based Stereo Vision. International Journal of Computer
Vision, 46(1):5–23, January 2002.

[SM97] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Seg-
mentation. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 1997), June 1997.

[Smi78] Alvy Ray Smith. Color Gamut Transform Pairs. In SIGGRAPH
78, volume 12, pages 12–19, August 1978.

[SS00] Lorenzo Sciavicco and Bruno Sicliano. Robotica industriale. Model-
listica e controllo di manipolatori. McGraw-Hill, 2nd edition, 2000.
In Italian.

[SS01] Linda G. Shapiro and George C. Stockman. Computer Vision.
Prentice Hall, 2001.

[TK03] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern
Recognition. Academic Press, 2nd edition, 2003.

BIBLIOGRAPHY 87

[TV98] Emanuele Trucco and Alessandro Verri. Introductory Techniques
for 3-D Computer Vision. Prentice Hall, 1998.

[TYU+98] Fumiaki Tomita, Takashi Yoshimi, Toshio Ueshiba, Yoshihiro
Kawai, and Yasushi Sumi. R&D of versatile 3D vision system
VVV. In IEEE International Conference on Systems, Man, and
Cybernetics (SMC’98), volume 5, pages 4510–4516, San Diego, CA,
USA, October 1998.

[UPH07] Ranjith Unnikrishnan, Caroline Pantofaru, and Martial Hebert.
Toward Objective Evaluation of Image Segmentation Algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6):929–944, June 2007.

[Whi98] Ross T. Whitaker. A Level-Set Approach to 3D Reconstruction
from Range Data. International Journal of Computer Vision,
29:203–231, October 1998.

88 BIBLIOGRAPHY

Online references

[BLA] BLAS – Basic Linear Algebra Subprograms. http://www.netlib.org/
blas/.

[CLA] CLAWAR – Climbing and Walking Robots and the Support Technologies
for Mobile Machines. http://www.clawar.org/.

[CSA] MIT CSAIL – MIT Computer Science and Artificial Intelligence Labo-
ratory. http://www.csail.mit.edu/.

[Eds] Edsinger Domo robot. http://people.csail.mit.edu/edsinger/
domo.htm.

[Lab] LabVIEW – Laboratory Virtual Instrumentation Engineering Work-
bench. http://www.ni.com/labview/.

[LIR] LIRA-Lab – Laboratory for Integrated Advanced Robotics, Genoa, Italy.
http://www.liralab.it/.

[Ope] OpenCV – Open Source Computer Vision Library. http://
opencvlibrary.sf.net/.

[Rob] RobotCub – An Open Framework for Research in Embodied Cognition.
http://www.robotcub.org/.

[Vis] VisLab – Computer and Robot Vision Laboratory, Institute for Systems
and Robotics, Instituto Superior Técnico, Lisbon, Portugal. http://
vislab.isr.ist.utl.pt/.

[Web] Webots. http://www.cyberbotics.com/.

[YAR] YARP – Yet Another Robot Platform. http://eris.liralab.it/
yarp/.

89

http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.clawar.org/
http://www.csail.mit.edu/
http://people.csail.mit.edu/edsinger/domo.htm
http://people.csail.mit.edu/edsinger/domo.htm
http://www.ni.com/labview/
http://www.liralab.it/
http://opencvlibrary.sf.net/
http://opencvlibrary.sf.net/
http://www.robotcub.org/
http://vislab.isr.ist.utl.pt/
http://vislab.isr.ist.utl.pt/
http://www.cyberbotics.com/
http://eris.liralab.it/yarp/
http://eris.liralab.it/yarp/

Index

3D reconstruction, 17, 24, 53, 54, 56,
57, 60, 63, 65

affordances, see object affordances
angle–axis parameterization, 60, 68

Baltazar, 4, 29, 61, 63, 65
anthropomorphic arm, 35

forward kinematics, 38
inverse kinematics, 39

end-effector, 35
hardware devices, 40
head, 33, 56

Bayesian networks, 27
binocular disparity, see horizontal dis-

parity
BLAS, 46

calculus of variations, 12
calibration, 54
CAMSHIFT, 9, 15, 48–51, 57, 61, 62

Coupled CAMSHIFT, 50
cognition, 1, 15
control law, 60, 65
correspondence, 24

Denavit-Hartenberg (DH), 32
MDH, 32
SDH, 32

developmental psychology, see psychol-
ogy

Dijkstra’s algorithm, 22

ellipse, 2, 5, 47, 48, 62

focal distance, 54

grasping, 1, 2, 58, 65
GSL, 46

horizontal disparity, 22
HSV, 51

humanoid robotics, 1, 2, 7, 15

iCub, 3, 4
image segmentation, 2, 8, 9, 47, 63, 69

applications, 9
clustering, 10
k-Means, 10
EM, 48
Intelligent k-Means, 11

edge detection, 11, 19
Canny edge detection, 11, 12

graph partitioning, 12
normalized cuts, 14

histogram-based, 9, 14, 15
level set, 15, 17, 18

Whitaker’s algorithm, 17
medical imaging, 17
model-based, 17
neural networks, 18
region growing, 19
scale-space, 20
semi-automatic, 22

imitation, 1, 29
industrial robotics, 4
interactions, 1
intrinsic parameters, 54

Kohonen, see SOM

manipulation, 1–4, 24, 58, 64
Mean Shift, 16, 49
middleware, 44, 49

neurosciences, 1, 3

object affordances, 2, 27
observer design pattern, see publish/subscribe
occlusion, 49, 62
open source, 3, 44, 45
OpenCV, 46, 48, 50
orientation, 2

90

INDEX 91

perception, 1, 2, 15, 47, 49, 69
perspective projection, 54
pinhole camera model, 54
PSC, 15
psychology, 1, 3
publish/subscribe, 45
PUI, 15

reaching, 2, 5, 58, 64
registration, 18
retinal disparity, see horizontal dispar-

ity
RobotCub, 2, 3, 44, 47

saliency, 2
security, 46
segmentation, see image segmentation
sensory-motor coordination, 1
software engineering, 43
SOM, 18
stereo vision, see stereopsis
stereopsis, 22, 49, 54, 63

triangulation, 54

vergence, 54
Visual Servoing, 24

Image-Based Visual Servoing, 26,
58

Position-Based Visual Servoing, 26,
59

YARP, 44, 57

	Introduction
	Motivation
	RobotCub
	Thesis Background
	Problem Statement
	Thesis Structure

	Related Work
	Image Segmentation Techniques
	Clustering Segmentation
	Edge Detection Segmentation
	Graph Partitioning Segmentation
	Histogram-Based Segmentation
	Level Set Segmentation
	Model-Based Segmentation
	Neural Networks Segmentation
	Region Growing Thresholding Segmentation
	Scale-Space Segmentation
	Semi-Automatic Livewire Segmentation

	Stereopsis
	Object Manipulation with Visual Servoing
	Image-Based Visual Servoing
	Position-Based Visual Servoing

	Object Affordances

	Robot Platform and Software Setup
	Kinematic Description of Baltazar
	Kinematic Notation
	Head Structure
	Baltazar and Its Anthropomorphic Arm
	Anthropomorphic Arm Forward Kinematics
	Anthropomorphic Arm Inverse Kinematics

	Hardware Devices of Baltazar
	``Flea'' Cameras
	Controller Devices

	Software Setup
	YARP
	Other Software Libraries

	Proposed Architecture
	Visual Processing
	CAMSHIFT Module
	CAMSHIFT and HSV Conversion

	3D Reconstruction Approach
	From Frame Coordinates to Image Coordinates
	3D Pose Estimation

	Object Manipulation Approaches

	Experimental Results
	Segmentation and Tracking
	3D Reconstruction
	Object Manipulation Tasks
	Reaching Preparation
	Grasping Preparation

	Conclusions and Future Work
	Conclusions
	Future Work

	CLAWAR 2008 Article
	Trigonometric Identities
	Bibliography
	Online References

